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Abstract. We put forth a keyless wallet, a cryptocurrency wallet in
which money can be spent using a password alone, and no private keys
are required. It requires a smart contract blockchain. We propose two
schemes. In the first, the user sets a short wallet password and can spend
their money at a prespecified maturity date using the password alone.
Using this as a stepping stone, we propose a second scheme, in which the
user uses an OTP authenticator seed to generate a long series of time-
based OTP passwords for the foreseeable future. These are encrypted
and organized in a Merkle tree whose root is stored in a smart contract.
The user can spend funds at any time by simply visually providing the
current OTP password from an air gapped device. These OTPs can be
relatively short: Just 6 alphanumeric characters suffice. Our OTP scheme
can work in proof-of-stake as well as static and variable difficulty proof-
of-work blockchains. The low-entropy in the passwords and OTPs in
our scheme is protected from brute force attempts by requiring that an
adversary accompany any brute force attempt by a transaction on the
chain. This quickly incurs enormous economic costs for the adversary.
Thus, we develop the first decentralized rate limiting scheme. We use
Witness Encryption (WE) to construct a timelock encryption scheme in
which passwords are encrypted from past into future blocks by leveraging
the NP-language expressing proof-of-work or proof-of-stake performed as
the witness. Witness Encryption is a currently impractical cryptographic
primitive, but our scheme may become practical as these primitives are
further developed.

1 Introduction

The management of cryptocurrency [48] wallet private keys is a hassle.
Can we get rid of them and replace them with a simple short password or a
rotating 6-digit one-time password (OTP) [46,47]? Users are more familiar
with this model, but this seems, at first sight, impossible to achieve: The
blockchain is public infrastructure, and anyone has access to the public
keys and smart contracts [13, 51] governing the conditions under which
one can spend. Any such short password will be easily broken by an offline
brute force attack [50].
⋆ Research partly supported by funding from Harmony.



Perhaps unexpectedly, it is possible to build brute force resilient wal-
lets by leveraging the blockchain infrastructure itself. We build the first
keyless cryptocurrency wallets. We propose two constructions. Our first
construction is a password-based wallet. It operates as follows. Initially,
Alice inputs a short (perhaps 6 alphanumeric characters long) secret pass-
word into the newly installed wallet software, as well as a maturity date.
The wallet software creates a smart contract wallet containing the en-
crypted password on the blockchain and outputs a wallet address to which
money can be deposited at any time. The money is unspendable prior to
the maturity date. At any time prior to the maturity date, Alice can open
up a newly installed wallet instance and input the public wallet address
and the secret password. The newly installed wallet does not hold any
secret information such as private keys. Alice also enters the target ad-
dress to which she wishes the money to go. The wallet broadcasts two
transactions on the blockchain: A commit transaction immediately, and
a reveal transaction later, on the maturity date. The money is securely
transferred to the target address. The wallet becomes unusable after the
maturity date. This construction is a stepping stone for the next.

Our second and final construction, the Hours of Horus, is an OTP-
based wallet. It operates as follows. Alice initially uses her mobile wallet
to generate a high entropy OTP seed. This seed is used to generate a
large amount of time-based OTPs (with, say, hourly resolution) which
are encrypted and collected into a Merkle tree. The wallet creates a smart
contract containing the Merkle tree root on the blockchain and outputs
a wallet address to which money can be deposited at any time. The in-
ternal nodes of the Merkle tree are posted on a public high availability
location such as IPFS [10] and can also be kept by Alice in any untrusted
device, if desired for availability. Alice then disconnects the mobile wallet
and keeps it completely air gapped and offline. At any time, Alice can
use the offline device to generate a time-based OTP. Without plugging in
the offline device via USB or connecting it to the Internet, Alice visually
copies the short (perhaps 6 alphanumeric characters long) OTP that ap-
pears on the device’s screen into her online computer. The wallet on her
online computer can then be used to input a target address and amount
to be transferred. Contrary to our previous construction, this second con-
struction allows the user to spend money at any time (for the price of
maintaining the offline OTP device). As the OTPs are very short, this
wallet is highly usable. After the initial OTP seed generation, the seed
is kept in an air gapped device, ensuring any bugs in the hardware or
software cannot be abused to steal it.
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Critical to the security of both constructions is ensuring that no ad-
versary can brute force the short password or OTPs. Towards that goal,
we devise a new cryptographic mechanism to secure cryptocurrency wal-
let passwords from offline brute forcing attempts. Any adversary who
wishes to brute force these passwords must do so through the chain it-
self and record the attempt in a transaction. As such, these attempts
are governed by the limitations of the chain: Each transaction costs gas
to perform. This gives rise to the first decentralized rate limiting mech-
anism. Through appropriate cryptoeconomic parametrization, we ensure
that the adversary will, in expectation, and with any desired probability,
lose much more money than they will win out of brute forcing attempts.
The parametrization dictates the length of the password based on current
transaction gas costs and the capital to be protected.

To achieve this property, we leverage the fact that the network is per-
forming proof-of-work [23] (or proof-of-stake [37]) in a predictable rate in
expectation [12]. We use Witness Encryption (WE) [29] to encrypt the
password in such a way that it can only be decrypted using the future
proof-of-work/stake that will be performed by the network. As such, the
encryption is a Timelock Encryption [49] in which the miners function
in tandem [39] to decrypt the submitted password. This decryption is a
by-product of the proof-of-work/stake they are performing anyway. The
miners do not need to know that the passwords have been timelock en-
crypted. The security of timelock encryption ensures that the passwords
will not be decryptable prior to the chain progressing a certain number
of blocks. Our security argument stands upon five pillars:

1. a secure extractable Witness Encryption scheme,
2. a secure underlying blockchain (with Common Prefix),
3. a preimage/collision resistant hash function;
4. a secure pseudorandom OTP scheme, and
5. a rational adversary.

Our constructions could, in principle, be deployed to any smart-contract–
enabled proof-of-work/stake chain such as Ethereum. In particular, we
do not require any modifications to the Ethereum consensus mechanism
or smart contract virtual machine. The best known instantiation of the
Witness Encryption primitive, which the Timelock Encryption instance
makes use of, requires the use of multilinear maps. Multilinear maps
are (approximately) constructible using ideal lattices. Unfortunately, this
construction currently remains impractical. Until such constructions are
built, our scheme is of theoretical interest.
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Our contributions. The contributions of this paper are summarized as
follows:

– We introduce a timelock-based keyless cryptocurrency wallet in which
funds are spent by just using a short password at a prespecified ma-
turity date.

– We introduce the first timelock-based high usability OTP wallet, with
OTP length of just 6 alphanumeric characters. The funds can be spent
at any time just by providing the OTP password from an air gapped
device.

– In the process of building these wallets, we put forth the first decen-
tralized rate limiting scheme. The scheme protects the user from brute
force attacks by an adversary, by requiring all attempts to be recorded
on the chain.

Secondary contributions include the first instantiation of timelock
encryption applied to proof-of-stake blockchains and variable difficulty
proof-of-work blockchains. Lastly, our security argument uses a hybrid
approach which combines a high-entropy cryptographic parameter —
in which classical cryptographic security is ensured with overwhelming
probability— with a low-entropy cryptoeconomic parameter whose role
is to ensure the attack is uneconomical for a rational adversary. This
novel proof methodology may be of independent interest in analyzing
blockchain protocols, which often compose cryptography and economics.
Related work. Witness Encryption was introduced by Garg et al. [29]
(based on the Exact Cover problem). In that work, they propose a
construction which makes use of lattice-based approximate multilinear
maps proposed in previous work [28]. The lattice-based approach has
been improved [38] and its implementation details further explored [2].
A series of attacks on this construction have been discovered [1, 14, 15,
17, 19, 32]. A follow-up lattice-based approach [30] was put forth later,
but also attacked [18]. An integer-based implementation of multilinear
maps has also been proposed [20, 21] and attacked [14, 16, 45]. Current
advancements [40] seem, so far, immune to such attacks. All in all, the
state of the art consists of constructions that have poorly understood
security and sometimes exotic cryptographic assumptions.

Timelock Encryption was introduced by Rivest et al. [49]. A Time-
lock Encryption making use of Witness Encryption (based on the Sub-
set Sum problem) and blockchain proof-of-work was proposed by Liu et
al. [39]. This is the first instance of timelock encryption in which a com-
putationally limited decryptor can rely on the blockchain miners for the
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decryption of secrets. We make heavy use of their scheme in this work.
Applications of this scheme to cryptocurrencies have been previously dis-
cussed by Miller [44].

A taxonomy of cryptocurrency wallets and their security is put forth
by Karantias [33]. The security of offline wallets is explored by Karakostas
et al. [3]. The use of OTP [46,47] as a mechanism for cryptocurrency wal-
let protection has been explored in SmartOTP [31]. The SmartOTP work
was a great inspiration for the present paper. Contrary to our construc-
tion, their wallet uses OTPs as a second factor (in addition to private
keys) and requires large-length OTP strings which make it less usable,
but their implementation is quite practical and even has a Solidity imple-
mentation. Password-based cryptocurrency wallets have previously ap-
peared as brain wallets, but brute force attacks against them have proven
catastrophic [50].

2 Preliminaries

Blocks and chains. Recall that the proof-of-work blockchain consists of
block headers B = ⟨ctr, tx, s⟩ each of which contains a proof-of-work nonce
ctr, a short Merkle Tree [41] root of transaction data tx, and a pointer
s to the previous block in the chain [26]. The value H(B), where H is a
cryptographically secure hash function modelled as a random oracle [8],
is used as the s′ to include in the next block. Each block must satisfy the
proof-of-work equation requiring that H(B) ≤ T , where T is the mining
target. In the static difficulty model [25,26], T is assumed to be a constant,
but in the variable difficulty model [27], T varies with time depending on
how much mining power exists on the network. Our final construction will
work in both models, as well as proof-of-stake, but for now let us assume
that T is a constant and that we are working in a proof-of-work setting.

To address blocks within a chain C, we will use C[i] to mean the ith

(zero-based) block from the beginning, and C[−i] to mean the ith (one-
based) block from the end. So C[0] indicates the genesis block, C[−1] is
the current tip. |C| denotes the chain length. We use C[i:j] to denote the
subchain starting at the ith block (inclusive) and ending at the jth block
(exclusive). Omitting i takes the range to the beginning, while omitting
j takes the range to the end. Similarly, we use C{A:Z} to denote the
subchain starting at block A (inclusive) and ending at block Z (exclusive),
again allowing for omissions.

In the decentralized setting, each of the honest parties maintaining
the blockchain keeps a local chain C which may be different from the
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others. It is known [26] that these chains cannot deviate much from each
other. In particular, the Common Prefix property mandates that they
must all share a long common prefix and can only deviate with forks of
length up to k ∈ N, a constant determined by the security parameter
of the execution. Formally, if at any round r0 an honest party P0 has
adopted a chain C0, then at any round r1 > r0, any honest party P1 will
have adopted a chain C1 with the property that C0[: −k] is a prefix of C1.
This gives rise to the safety property of the ledger: Any transaction that
appears prior to C[−k] is considered confirmed, and it will eventually
appear at the same position in the chains of all honest parties.

The chain of an honest party grows with a certain rate, which is
bounded from below and above with overwhelming probability. This is
known as the Chain Growth property (the backbone [26] work contains
a proof for the lower bound; a proof of the upper bound is found in the
Appendix). This gives rise to liveness: If a transaction is submitted to the
network, it will eventually appear confirmed to all honest parties, after
at most ℓ ∈ N blocks have elapsed. These two security parameters k and
ℓ that govern the evolution of the chain are polynomial in the underlying
cryptographic security parameter κ, but constant in the execution time.
Timelock encryption. Our construction critically relies on timelock en-
cryption. Timelock encryption allows us to timelock a secret so that it can
be unlocked at a prespecified date and time t in the future, but not prior
to that. Timelock encryption consists of two algorithms:

1. a timelock algorithm timelock(m, t), which takes a plaintext message
m and a timestamp t after which decryption should be possible, and
returns a ciphertext c encrypted for time t, and

2. a timeunlock algorithm timeunlock(c, w), which takes a ciphertext c
encrypted using timelock, as well as a witness w illustrating that in-
deed time t has passed.

When the time t has elapsed, it becomes easy to compute a witness
which is not possible to compute earlier than the target time. At that
point, the timeunlock function can be called with this witness w for time
t, and it returns the original message m:

timeunlock(timelock(m, t), w) = m

Prior to time t having elapsed, timelock encryption security mandates
that the ciphertexts corresponding to the encryptions of two plaintexts
m1 and m2 should be indistinguishable from one another.

6



Witness encryption. To construct timelock encryption, it has been
proposed [39] to use Witness Encryption (WE). A Witness Encryption
scheme is a quite generic encryption scheme in which a plaintext can be
encrypted into a ciphertext that can be decrypted only if a solution to a
computational problem is given. More concretely, the Witness Encryption
scheme is parametrized by an NP language L (which describes a decision
problem) and an associated relation R (which verifies a solution to the
problem). The language L is a set of problem instances x (the inputs for
which the problem answer is yes). For each instance x ∈ L, there exists a
witness w such that xRw holds. For non-instances x ̸∈ L, no such witness
exists. The relation R is polynomially computable.

A witness encryption scheme, parametrized by an NP language given
by relation R consists of two algorithms:

1. an encryption algorithm WE.EncR(m,x), which takes a plaintext m
and a problem instance x and returns a ciphertext c encrypted for
this problem instance, and

2. a decryption algorithm WE.DecR(c, w), which takes a ciphertext c
and a witness w and returns the decrypted plaintext m as long as
xRw.

The correctness of the witness encryption requires that, whenever
xRw, it holds that WE.DecR(WE.EncR(m,x), w) = m. On the other
hand, the security of the scheme mandates that an adversary given c =
WE.EncR(m,x) can extract information about m only if they can also
produce (through a helper extractor machine) a valid witness w such that
xRw, except with negligible probability. Hence, a correct and secure wit-
ness encryption scheme allows a party to decrypt a ciphertext encrypted
with a problem instance if and only if the party can solve the problem
instance by providing a witness.

To construct timelock encryption using witness encryption, the prob-
lem statement asks for the existence of a series of blockchain work nonces
that solve the proof-of-work equation (or a series of correctly signed proof-
of-stake blocks with the appropriate chain length), as illustrated in Fig-
ure 1.

The instantiation of timelock encryption using witness encryption be-
gins by identifying the chain tip B. The timelock time t is expressed
in chain time: We ask that a certain number of blocks must have been
mined on top of B in order for the secret to become decryptable. The wit-
ness encryption NP language contains the integers t ∈ N indicating that
there exists a block with additional block height t descending from the
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known block B. The witness consists of a series of nonces ctri and trans-
action root hashes txi such that B0 = B and Bi = ⟨ctri, txi,H(Bi−1)⟩ and
H(Bi) ≤ T , where i ranges from 1 to t. Therefore, the timelock function
timelock(m, t) is defined as WE.EncR(m,x) where R corresponds to the
relation checking the validity of the blockchain and x corresponds to the
number of blocks t as well as the current chain tip B. The unlock function
timeunlock(c, w) is defined as WE.DecR(c, w) under the same relation R
where w consists of the sequence of ctri and txi. For the security proof of
instantiating timelock encryption using witness encryption applied on a
blockchain, consult Liu et al. [39].

Fig. 1. A timelock implemented using the moderately hard NP language of blockchain
discovery. Here, the problem instance x = (B, t) requests t = 7 blocks on top of B. The
witness consists of the block headers produced sequentially on top of B, irrespective
of any temporary forks that might have occurred.

B

duration t

1 2

2

3 4 5

5 6

6 70
witness w

Let us observe what the outcome of encrypting secrets in this manner
is. Whenever a secret is encrypted for block time t following block B,
the secret remains hidden until time t has arrived. The secret cannot be
decrypted prior to that time, because decrypting it would require the
decrypting party to produce (through an extractor) a witness w which is
a blockchain of height t extending B. However, due to the Common Prefix
property of the blockchain, no adversary can do that much sooner than
the honest parties converge to that height. Furthermore, the chain growth
rate is bounded both above (see Appendix for a short proof of this) and
below [26] by a certain velocity, and so, while we do not know its exact
growth rate, we can give a reasonable estimate of how quickly and slowly
it will grow (with overwhelming probability). When sufficient time has
elapsed, the miners will have produced a witness that anyone can use to
decrypt the secret. The result is that no one can know the secret prior to
the desired block height, but everyone will know it afterwards. Because
the adversary can have a chain that is leading by up to k blocks, she has
a short advantage in decrypting the secret slightly ahead of the honest
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parties. In that sense, the secret begins leaking to the adversary at block
time t − k. This will require us to establish certain time bounds in our
construction. Note here that no validity is ensured in txi, but the common
prefix property of blockchains makes this unnecessary.

The witnesses to these problem instances can grow linearly together
with the blockchain. To reduce witness size, a (zero knowledge) proof of
knowledge such as a zk-SNARK [9] can be used. In this case, instead of
witness encrypting against a decryptor who “knows a witness consisting
of a list of chain headers that satisfy the blockchain properties,” one can
instead witness encrypt against a decryptor who “knows a witness con-
sisting of a zero-knowledge proof of knowledge attesting to the knowledge
of chain headers that satisfy the blockchain properties.” This composition
of witness encryption and zero-knowledge proofs allows the witnesses pre-
sented to the blockchain to become constant size [39].

Contrary to timelock schemes that require the interested party to
devote compute power to decrypt the secret over time, the scheme using
blockchain witnesses allows any party (who can remain offline and have
limited compute power) to take advantage of the scheme.
Variable difficulty. In the variable difficulty model, the target T is
adjusted based on how the chain evolves. Concretely, the chain is split
into epochs of constant block length m each. At the end of each epoch,
the timestamp at the end of the chain is noted and the mining target
is adjusted with the aim of keeping the expected block production rate
constant. The way T is adjusted is algorithmically determined, and it is
important that it follows certain rules. While we will not articulate the
exact rules, we remark that the new value T ′ must fall within a range
τT, 1τ T , where τ ∈ (0, 1) (for example, Bitcoin sets τ = 1

4). This critical
condition is necessary to avoid certain attacks [7].
Proof-of-stake. Contrary to proof-of-work blockchains, a proof-of-stake
chain progresses in slots (prefixed time durations) during which parties
can create blocks or remain silent. As in proof-of-work, each block header
Bi consists of ⟨txi, si⟩, but now does not include a ctri. The blocks created
at each slot are accompanied by a signature σi created by a designated
leader for the slot. A proof πi illustrating the designated leader is the
rightful one is also broadcast together with the block. The probability
that a party becomes a leader at a given slot is roughly proportional to
the stake they hold within the system. These proofs of leadership are
different depending on the system and can be the random outcome of a
multiparty computation, as in the Ouroboros [37] system, or a verifiable
random function [43] evaluated on this randomness, as in the Ouroboros

9



Praos [22] construction. In the first system, each slot is allocated to pre-
cisely one party, and the production of no blocks, or two competing blocks
in the same slot, indicates adversarial behavior. In the second system, it
is possible that a slot is allocated to multiple honest parties, or no parties
at all. These details do not affect our scheme, as long as the following
property is maintained: For any 2k consecutive slots, at least k + 1 slots
are allocated to an honest party. Additionally, we will assume that the
common prefix property holds here, too.

As in proof-of-work, the chain is split into epochs. At the end of each
epoch, a multiparty computation is performed to determine the random-
ness value for the next epoch based on the stake distribution during the
current epoch. Different systems use different MPCs. Our only require-
ment is that these MPCs provide some evidence ue that the randomness
for epoch e is ρe. This evidence must be polynomially checkable in retro-
spect. This requirement is satisfied in proof-of-stake blockchains, as it is
this evidence that allows new nodes to bootstrap correctly [5].

3 A Password Wallet

Let us start by building a password-based wallet without the use of private
keys. This construction will be a stepping stone for the next. In this
construction, we will have a severe limitation: The wallet can only be
used to spend once, and at a predetermined time. Once the wallet has
been used, it cannot be reused with the same password. Furthermore, the
wallet becomes unusuable if the funds have not been spent prior to the
maturity date.

From a user point of view, the wallet works as follows. Initially, Alice
chooses a secret password with λ bits of entropy. We will determine this
λ later, but let us say, with foresight, that it will be enough to have a
password just 6 alphanumeric characters long. Alice also chooses a matu-
rity date, a timestamp in the future (expressed as chain height), and uses
her wallet software to generate a smart contract which she then posts on
the chain. This generates a public wallet address for Alice that she can
use to receive multiple payments prior to the maturiy date. The wallet
software can then be discarded and no secret information needs to be kept
by Alice, beyond the secret password that she remembers, and the public
contract that remains on the chain. No private keys are stored anywhere.
A short period before the maturity date arrives, Alice uses the wallet
software to connect to the chain network, and enters her password and
desired destination. The software issues two transactions to the chain:
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First, a txcommit transaction, which lets Alice illustrate prior knowledge
of her secret password; and, second, a txreveal transaction, in which Alice
proves that her previous commitment indeed corresponds to the secret
password committed on the chain. The first transaction is posted strictly
prior to the maturity date, while the second transaction is posted on or
after the maturity date.

Algorithm 1 A password-only wallet with a maturity date.
1: contract PasswordWallet
2: BLOCK_DELAY← 2k
3: c← ⊥; t1 ← ⊥
4: commitments← ∅
5: function construct(c, t1)
6: c← c
7: t1 ← t1
8: end function
9: function commit(z)

10: require(block.number < t1 − BLOCK_DELAY)
11: commitments[z]← true
12: end function
13: function reveal(sk, salt, αto, w)
14: z ← H(⟨sk, salt, αto⟩)
15: require(commitments[z])
16: require(WE.DecR(c, w) = sk)
17: to.transfer(address(this).balance)
18: end function
19: end contract

Let us explore how the contract is implemented. The smart contract
construction for the wallet is illustrated in Algorithm 1. It consists of
three methods: A construct method, called when the wallet is initialized;
a commit method, called shortly prior to the maturity date; and a reveal
method, called after the maturity date. These two last methods are used
for spending.

The interaction with the wallet is illustrated in Algorithm 2. When
Alice wishes to deploy her wallet, she begins by generating a password
sk

$← {0, 1}λ. She also chooses a future timestamp at which she will
be able to spend her money. She submits this information to her soft-
ware wallet. The software wallet connects to the blockchain and observes
the current stable blockchain tip B = C[−k] and its height t0. Alice’s
timestamp choice is translated to a future block height ∆ ∈ N which
denotes how far in the future, in block height after t0, she wants to
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spend her money: If ∆ = 100, the money will be spendable when the
blockchain reaches height t0 + ∆ blocks. We set t1 = t0 + ∆ to be the
block height at which spending becomes possible. The software wallet
constructs the contract of Algorithm 1 by broadcasting its construction
transaction txconstruct to the blockchain network. The constructor accepts
two parameters: The t1 parameter, and the c parameter. The c parame-
ter is a timelock-encrypted ciphertext of her password. Concretely, Alice’s
software wallet sets c = timelock(sk, t) by invoking WE.EncR(sk, x). Here,
R denotes the polynomially computable relation validating block headers
starting from a particular block and continuing up to a prespecified block
height, checking ancestry and proof-of-work nonces, as described in the
preliminaries. The problem instance x = (B, t) is the tuple consisting of
the latest known stable block and the maturity height. Observe now that
the ciphertext c which is published on the smart contract and known to
the adversary is a ciphertext which can only be decrypted after t blocks
have been mined on top of block B. The transaction returns a wallet
address pk at which she can receive money prior to the maturity height.

To spend her money, Alice runs the wallet software anew and inputs
her public wallet address pk, her password sk, and destination address
αto. The wallet software does not have any information beyond this. The
software runs an honest chain node which observes a chain C. At any time
before its local chain reaches height t1−ℓ−2k, the wallet generates a new
high-entropy salt salt $← {0, 1}κ (where κ is a security parameter in the
order of 128). This salt is short-lived (ℓ−2k blocks) and must survive un-
til the chain reaches height t1. It then creates a transaction txcommit. This
transaction contains a commitment z evaluated as z = H(⟨sk, salt, αto⟩),
where we assume that the encoding ⟨·⟩ denotes a uniquely decodable en-
coding of the triplet. This transaction is submitted to the smart contract
by invoking the commit method. Due to the liveness of the ledger, the
transaction is confirmed in a block with height at most t1 − 2k. The
smart contract records the commitment, as the requirement in Line 10 is
satisfied, and stores it in the commitments set.

After the local chain of the wallet reaches height t1 (due to the Chain
Growth lower bound, this will be soon enough [26]), the software gathers
the block headers C[t0:t1] to construct a timelock witness w. It then creates
a transaction txreveal which invokes the reveal method of the smart contract
and includes the plaintext password sk, which now becomes public, the
plaintext salt, which also becomes public information, the target address
αto, and the witness w. The reveal method checks that the submitted data
corresponds to the previous commitment, and that the stored encrypted
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password c timelock decrypts to the provided password sk. In that case,
it forwards the money to the αto address.

Algorithm 2 Interacting with the password wallet.
1: BLOCK_DELAY← 2k
2: pk ← ⊥ ▷ Published so that money can be received
3: B ← ⊥ ▷ Published on insecure public storage
4: t1 ← ⊥ ▷ The maturity date
5: upon initialize(t) do
6: sk

$← {0, 1}λ ▷ Password is generated with low entropy λ
7: B ← C[−k] ▷ Latest stable block
8: x← (B, t) ▷ NP language problem instance
9: c←WE.EncR(sk, x)

10: pk ← PasswordWallet.construct(c, t)
11: t1 ← t
12: return sk ▷ The user must remember this
13: end upon
14: upon spend(sk, αto) do
15: ▷ At any time prior to |C| < t1 − ℓ− 2k

16: salt $← {0, 1}κ ▷ Generate short-lived high-entropy salt
17: z ← H(⟨sk, salt, αto⟩)
18: PasswordWallet.commit(z)
19: wait until |C| = t1
20: w ← C{B:}
21: PasswordWallet.reveal(sk, salt, αto, w)
22: end upon

We now give a high-level overview of the correctness and security
of this scheme. The correctness property of the wallet mandates that
the honest wallet user can create a valid spending transaction, i.e., a
transaction which executes reveal to completion. The security property
mandates that the adversary cannot create a valid transaction. These
properties, together, ensure that the honest user can spend her money,
while the adversary cannot.

On the one hand, the scheme is correct, because the honest user can
always create the commit and reveal transactions in order, and, due to
liveness, these cannot be censored. When time t1 arrives, the smart con-
tract can verify the veracity of the claims and issue the final transfer.
On the other hand, the scheme is secure, because, prior to time t1 the
adversary does not hold a chain of length t1. Without such a chain, the
adversary cannot distinguish a correct from an incorrect guess, due to
the security of witness encryption. Any guess the adversary makes is a
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good as any. However, all of these guesses must be committed to the
smart contract sufficiently before time t1 arrives. And, so, the adversary
must choose to blindly submit some guesses and hope that some of them
are correct. This very soon becomes uneconomical, even if the password
length is quite short. We give more details on the security of the scheme
in the subsequent Analysis section.

One detail to note here is that the time t1 is given in block time.
Because the rate of blockchain growth can vary, the honest party must
monitor the chain and ensure that block height t1 has not passed. This
is one additional limitation of this scheme that makes it unusable. Addi-
tionally, the password can only be used once. In the next section, we lift
these limitations.

4 An OTP Wallet

The previous password-based construction has an important limitaton:
The money can only be spent once and at a prespecified date. This makes
the wallet highly unusable in practice.

Using the previous construction as a stepping stone, we now move on
to describe our Hours of Horus scheme. This is an OTP-based scheme in
which the OTP is used as the single factor for wallet access, without any
need to use private keys for signing.

The workflow of the OTP wallet is illustrated as a sequence diagram
in Figure 2. At the beginning, Alice initializes a time-based OTP de-
vice (such as a mobile phone app) which generates and stores an OTP
seed (leftmost column). Upon this generation, the device also generates a
smart contract, which is constructed and submitted to the chain through
a transaction txconstruct, as in the construction of Section 3. This trans-
action generates a wallet address pk to which payers can send money for
Alice. The OTP device also constructs a Merkle tree containing a large
number of encrypted future OTPs and submits them to IPFS [10] (or
other persistent storage service) publicly for availability reasons (right-
most column). These data could also be submitted to the chain, if gas
costs allow. Both pk and all internal Merkle tree nodes are public. After
this initial phase, the OTP device becomes air gapped.

At any time Alice wishes to spend, she visually consults her OTP
device which displays a time-based OTP key. Using a (newly booted)
online computer, she creates a transaction txcommit in which she commits
to the OTP , the amount she wishes to spend, and the target address. The
wallet waits a short amount of time before submitting the final txreveal
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Fig. 2. The sequence diagram of the OTP wallet. After initialization, the OTP device
becomes air gapped and the user submits the OTP visually to an online computer at
time t.
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to confirm the spending. This transaction is accompanied by a Merkle
tree proof-of-inclusion constructed using the IPFS data. The wallet then
releases the payment to the desired address.

Let us now give the technical details of how these transactions are
constructed. The smart contract deployed as a wallet is illustrated in
Algorithm 3. The interaction with the smart contract by the user is il-
lustrated in Algorithm 4. The constructor method of the smart contract
accepts a parameter r denoting a root of a Merkle tree. This is constructed
by generating a large number (MAX_TIME) of time-based OTPs for the
foreseeable future. For example, to support a wallet with a lifetime of 100
years with an hourly OTP resolution, 876,000 codes need to be generated.
Let OTP t denote the OTP for future time t ∈ N (in the example, t would
range from 1 to 876,000). These are generated from the OTP seed in the
OTP device by invoking the pseudorandom function G(seed, t) whose out-
put has λ bits of entropy. Each such OTP is then timelock encrypted for
time t, multiplied by the expected hourly production rate of the block-
chain (the hourly resolution is an arbitrary choice that can be made dif-
ferently, giving rise to a tradeoff between how much data must be stored
on IPFS versus how often the user can spend her money). Specifically,
the software computes ct = timelock(OTPt, t), which is implemented as
before using witness encryption on top of the most recent known block
B, setting ct = WE.EncR(OTPt, x), where x = (B, t). All of these ct are
then organized into a Merkle tree as illustrated in Figure 3 using the
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collision-resistant hash function H whose root is r. This r is submitted
to the constructor.

Fig. 3. Each OTPt is timelocked with time t. All the timelock ciphertexts ct are then
organized into a Merkle Tree whose root is r.

ct = timelock(OTPt , t) ht = H(ct  )

r

When the time comes for Alice to spend her money, she calls the
commit method of the smart contract by issuing a txcommit transaction.
This method takes parameters z and t. Here, z is the commitment z =
H(⟨OTP, salt, αto, amount⟩). For t, Alice looks at her local blockchain C,
obtains its length |C| and evaluates t = |C| + ℓ + 2k. So, t is a time (ex-
pressed in block height) at least ℓ + 2k blocks in the future. As liveness
ensures that this transaction will be confirmed within ℓ blocks, the con-
dition on Line 11 will succeed. The smart contract records the pair (z, t)
in the commitments set. Alice then waits for her chain to grow to a height
of at least t blocks, at which point she issues the txreveal transaction call-
ing the reveal method of the smart contract. She reveals the OTP (this
is no longer useful to any adversary), the salt, as well as the destination
address and amount to be transferred. These are accompanied by a proof-
of-inclusion π at position t in the Merkle Tree whose root r is recorded in
the smart contract obtained from the data stored on IPFS (anyone can
compute this). Additionally, it is accompanied by a witness that time t
has passed by providing the chain portion C{B:} (this can also be com-
puted by anyone). The smart contract verifies that the provided data is
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included in previous commitments, that the Merkle tree proof is valid for
the specified position, and that the timelock encryption of the provided
OTP indeed corresponds to the given ciphertext.

The honest party will always succeed in creating a valid spending
transaction. To see this, note that the party begins creating the commit
transaction at time t − ℓ − 2k. Due to liveness, it becomes confirmed at
block t − 2k at most, and so the check in Line 11 will pass. The reveal
transaction will be called with the corresponding data and release the
funds.

Algorithm 3 Hours of Horus: A short OTP wallet.
1: contract OTPWallet
2: BLOCK_DELAY← 2k
3: HOURLY_LIMIT← 1 ether
4: r ← ⊥
5: spent← ∅
6: commitments← ∅
7: function construct(r)
8: r ← r
9: end function

10: function commit(z, t)
11: require(t > block.number + BLOCK_DELAY)
12: commitments[z][t]← true
13: end function
14: function reveal(OTP, salt, αto, amount, ct, w, t, π)
15: h← H(⟨OTP, salt, αto, amount⟩)
16: require(commitments[z][t])
17: require(amount ≤ HOURLY_LIMIT)
18: require(¬spent[t])
19: require(MT.Ver(ct, t, r, π))
20: require(WE.DecR(ct, w) = OTP)
21: spent[t]← true
22: to.transfer(amount)
23: end function
24: end contract

To see why an adversary cannot create a valid spending transaction
beyond random guessing, we note that any adversary can either provide a
commit transaction prior to block t− 2k, or afterwards. If she provides a
commit transaction prior to it, then the timelock scheme will protect the
secret, and so the spending transaction will include a random OTP guess.
On the other hand, if she provides a commit transaction afterwards, it
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will not be accepted due to the time delay enforced in Line 11. Consult
the Analysis section for a more complete argument.

We remark that a standard time-based OTP cannot be used in this
case, because the chain, as a stochastic process, may have grown faster
or slower than expected. The OTP device must know the current height
of the blockchain to be able to reveal the correctly indexed OTP (which
will reside at OTP index |C|+ℓ+2k). One practical way to achieve this is
to have the mobile wallet (or a block explorer) display the current block
height, which can then be inputted by the user to the OTP application.

The OTP scheme can be used either as a single-factor or as a second
factor combined with a private key if desired. It is an effective second
factor because, if either, but not both, of the private key or the OTP
device become compromised, the wallet remains secure.

Algorithm 4 Interacting with the Hours of Horus wallet.
1: BLOCK_DELAY← 2k
2: seed← ⊥ ▷ After generation, remains air gapped
3: pk ← ⊥ ▷ Published so that money can be received
4: c← [ ] ▷ Published on insecure public storage (e.g., IPFS)
5: B ← ⊥ ▷ Published on insecure public storage
6: upon initialize do
7: seed $← {0, 1}κ ▷ Seed is generated with high entropy κ
8: B ← C[−k] ▷ Latest stable block
9: for t← 1 to MAX_TIME do

10: OTPt ← G(seed, t) ▷ Time t OTP with low entropy λ
11: x← (B,HOURLY_BLOCK_RATE · t)
12: ct ←WE.EncR(OTPt, x)
13: c← c ∥ ct
14: end for
15: r ← MT.build(c)
16: pk ← OTPWallet.construct(r)
17: end upon
18: upon spend(αto, amount) do
19: t1 ← |C|+ ℓ+ BLOCK_DELAY
20: salt← {0, 1}κ ▷ Generate short-lived high-entropy salt
21: OTPt ← G(seed, t1)
22: z ← H(⟨OTPt, salt, αto, amount⟩)
23: OTPWallet.commit(z, t1)
24: wait until |C| = t1
25: w ← C{B:}
26: π ← MT.prove(ct, c)
27: OTPWallet.reveal(OTPt, salt, αto, amount, ct, w, t1, π)
28: end upon
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One critical point of infrastructure is the online computer to which
the user inputs their OTP code. If that computer becomes compromised,
it can change the target address and amount that the user is inputting
and deplete the wallet. One practical mechanism to cut the user’s losses
is to establish an hourly limit in the amount that can be spent by the
wallet, as illustrated in Algorithm 3. In such a case, the compromised
computer can only steal the user’s funds once, and up to the specified
hourly limit, before being detected.

5 Analysis

We now give a more complete analysis of the scheme. First, let us prove
that the Password-based wallet of Algorithm 1 is correct.

Theorem 1 (Password Wallet Correctness (Informal)). Let the
blockchain have liveness and safety, and let the witness encryption scheme
WE be correct. An honest party spending at block height t1 − ℓ − 2k or
earlier will generate a valid spending transaction for Algorithm 1.

Proof (Sketch). The contract is created when B = C[−k] is stable. Due
to safety, all the future chains will be extending this block. The con-
tract is initialized with x = (B, t) by issuing the txconstruct transaction.
Due to liveness, this transaction is confirmed within ℓ blocks. The honest
user then creates a transaction txcommit when her own chain has length
|C| = t1− ℓ− 2k. Due to liveness, this transaction becomes confirmed for
all honest parties after ℓ blocks have elapsed, and is placed in position
C[t1 − 2k] or earlier. Therefore, Line 10 of the method commit succeeds.
When |C| = t1, the honest user calls reveal, passing w. Due to the cor-
rectness of the witness encryption scheme, the decryption succeeds. The
password and salt revealed match the ones committed. Due to liveness,
this transaction becomes confirmed.

The correctness of the OTP-based scheme is similar.

Theorem 2 (OTP Wallet Correctness (Informal)). Let the block-
chain have liveness and safety, and let the witness encryption scheme WE
be correct. An honest party spending multiple times prior to MAX_TIME−
ℓ− 2k will succeed in creating valid transactions. in Algorithm 3.

Proof (Sketch). The proof is the same as above, with the difference that
the value t is provided at the commit time, not the construct time. The
argument that Line 11 will be successful remains the same due to liveness.
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Our security analysis is in a hybrid cryptographic and cryptoeconomic
setting. In the system described, we have two security parameters. First,
we have the cryptographic security parameter κ (≈ 128 bits), which de-
termines the security of the hash function, the security of the witness
encryption scheme, and the security of the blockchain (in terms of live-
ness, safety, and common prefix). The probability of failure is negligible
in this parameter. Any breakage in this parameter can be catastrophic for
the system and can potentially provide the adversary with gains without
any cost. Secondly, we have the much shorter cryptoeconomic security
parameter λ (≈ 35 bits) which denotes the entropy of the chosen user
password sk or the length of each OTP OTPt. While this parameter is
hopelessly short from a cryptographic point of view (and 2−35 is nothing
but negligible), we will use it to establish a lower bound in the economic
cost of an attack. In particular, we will tweak this parameter so that
the return-on-investment of an attack can be made arbitrarily close to
−100%. The result will be that the adversary can make the probability
of success non-negligible, but at an economic cost which renders such
attempts irrational.

We begin by stating our Decentralized Rate Limiting lemma, which
establishes that an adversary must necessarily submit transactions to
the blockchain in order to have any non-negligible probability of success.
The probability of success is determined by the number of transactions
submitted by the adversary and made persistent by the system. Based
on this result, we will determine the cryptoeconomic parametrization (λ)
required to make the system economically infeasible to attack.

Lemma 1 (Decentralized Rate Limiting (Informal)). Consider a
static difficulty proof-of-work blockchain with safety and common prefix.
Let the hash function H be collision-resistant and preimage-resistant,
and let the witness encryption scheme WE be a secure witness encryption
with witness extractability. A PPT adversary who submits fewer than
g transactions that are eventually confirmed by all honest parties has a
probability of achieving a valid spending transaction in Algorithm 1 upper
bounded by g

2λ
+ negl(κ).

Proof (Sketch). In order for the adversary to have a valid transaction, she
must have created a txreveal in which she passes a password sk, a salt and
a α′

to address which is different from the honestly provided αto address.
This reveal transaction must be confirmed into the chain C adopted by a
verifier honest party Pv and have matching data with a previous tx′commit
transaction which was placed earlier in C. Additionally, tx′commit must be
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in C[t1 − 2k] or earlier (due to the check in Line 10). Due to the collision
resistance of H, the respective commit transaction must be different from
the one (txcommit) provided by the honest party, as αto ̸= α′

to.
Let rc denote the round during which the spender honest party Ps

broadcasts their txcommit transaction to the network, and let rz denote
the last round during which all honest parties have chains with length of
at most t1 − k.

Let us consider all adversarially generated commit transactions txicommit
(i ≥ 1) that are eventually reported as stable by Pv (the adversary can
also create transactions that do not make it in the chain of Pv, but we
will not count these). For these transactions, let us consider the round ri
during which each of these transactions txicommit was created.

Case 1: ri < rc. Since the honest spender has not yet submitted a
commitment, the only information that the adversary has is the ciphertext
c. If at this round the adversary can distinguish between sk and any
other plaintext in {0, 1}λ with probability non-negligible in κ, then, due
to the witness extractability of WE, an extractor can extract a witness
w attesting to the existence of a chain of height t1. But in that case, we
can perform a computational reduction to an adversary that breaks the
common prefix property of the chain by producing a chain of height t1
at round ri when the honest party Pv has adopted a chain of length only
t1 − ℓ− 2k. This breaks the common prefix assumption.

Case 2: rc ≤ ri ≤ rz. In this case, the honest spender has broadcast
a commitment to the network, but there are no chains of length t1. The
adversary now holds both the timelocked ciphertext c and the commit-
ment z. Again the adversary should not be able to distinguish between sk
and any other plaintext in {0, 1}λ, except with probability negligible in κ
(recall that the salt is kept secret and has κ bits of entropy). Otherwise,
we can either perform a reduction to a common-prefix-breaking adversary
making use of witness extractability, or we can perform a reduction to a
preimage-resistance-breaking adversary.

Case 3: ri > rz. By the definition of rz, in round ri there must exist
an honest party with a chain of length at least t1 − k. By the common
prefix property, all other honest parties have a chain of length exceeding
t1 − 2k.

Let us consider what happens in all of these three cases. In the first
two cases, any single guess that the adversary places into a transaction
can be correct with probability 1

2λ
+ negl(κ). In the third case, while the

adversary can potentially guess with better probability (due to the chain
reaching its leakage point t1 − k), any such transactions can never make
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it into the chain eventually adopted by Pv, as the check in Line 10 will
fail.

As the transactions that eventually make it into the chain of Pv were
all generated prior to rz, the probability that each of them is a valid
spending transaction is upper bounded by 1

2λ
+ negl(κ). If the adversary

submits at most g such transactions, and applying a union bound, the
overall probability of success is g( 1

2λ
+ negl(κ)) = g

2λ
+ negl(κ).

The above Lemma is identical for our other construction. We state it
for completeness.

Lemma 2 (OTP Decentralized Rate Limiting (Informal)). Con-
sider a static difficulty proof-of-work blockchain with safety and com-
mon prefix. Let the hash function H be collision-resistant and preimage-
resistant, and let the witness encryption scheme WE be a secure witness
encryption with witness extractability. Let G be a secure pseudorandom
function {0, 1}κ × N −→ {0, 1}λ. A PPT adversary who submits fewer
than g transactions that are eventually confirmed by all honest parties
has a probability of achieving a valid spending transaction in Algorithm 3
upper bounded by g

2λ
+ negl(κ).

Proof (Sketch). The proof here is identical to Lemma 1, noting that each
of the different OTPt essentially gives rise to independent attack paths
to the adversary. Due to the pseudorandom nature of the OTP scheme,
any previous OTPs do not reveal any information to our polynomial ad-
versary. An adversary making a spending attempt has a probability of
1
2λ

of succeeding in each attempt, unless it can be reduced to a collision-
resistance-breaking adversary, a common-prefix-breaking adversary, or an
adversary breaking the pseudorandomness of the OTP scheme. But all of
these events are negligible in κ.

At this point, we have established that the probability of success is
negligible in both parameters κ and λ. However, we will keep the parame-
ter λ short, and we will make the κ parameter reasonably long (κ = 128).
Setting λ = κ would, of course, give sufficient security. The reason for sep-
arating these two parameters is that the λ parameter affects the usability
of the system: It is the number of characters that must be remembered
by the user in the case of a password, or the number of characters that
must be visually copied by the user in the case of an OTP.

In the above result, we have expressed the probability as a sum of
two terms: g

1λ
+ negl(κ). This reflects the nature of the two parameters:

We opt to calculate the concrete probability with respect to λ, but only
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give an asymptotic probability with respect to κ. This treatment hints at
our intentions: Our high-level argument was to condition the system to
the overwhelming events that there will be no cryptographic breakage in
the hash function, common prefix property, blockchain safety, blockchain
liveness, and OTP pseudorandomness. Conditioned under these events,
the concrete probability as a function of λ allows us to make an argument
of why any attack is uneconomical. This gives rise to our (cryptoeconomic)
security theorem.

Theorem 3 (Cryptoeconomic Security (Informal)). Consider a chain
with fee f per transaction. If the wallet of Algorithm 1 or Algorithm 3 is
used with a maximum capital of V , then the parametrization λ > log V

f
yields a negative expectation of income for the adversary, with overwhelm-
ing probability in κ. Additionally, the expected return-on-investment for
this adversary is at most V

f1λ
− 1.

Proof (Sketch). Consider an adversary who submits g transactions that
are eventually confirmed by every honest party. This adversary is ir-
revocably investing a capital of gf for this attack. By Lemma 1, the
adversary has a probability of success upper bounded by g

1λ
(with over-

whelming probability in κ). The expected income for this adversary is at
most E[income] ≤ V g

1λ
− gf . Taking λ > log V

f , we obtain E[income] < 0.
The expected return-on-investment is E[income]

gf − 1.

In this scheme, we can set λ big enough to make the return-on-
investment as close to −100% as we want. If we want the return-on-
investment to be −1 + ϵ for some ϵ ∈ (0, 1], we let λ = log V

fϵ . In short,
we can make the adversary lose an amount arbitrarily close to all their
money in expectation.

To consider some concrete parametrization of the scheme, let us as-
sume that we wish to establish a target −90% (ϵ = 0.1) expected return-
on-investment for the adversary in a wallet where we want to store up
to V = $100,000 in capital at any point in time. Consider a block-
chain where the fees per transaction are1 at least f = $1.60. We obtain
λ = log V

fϵ = log2 625,000 < 20 bits. This corresponds to just 6 numeri-
cal characters (base 10), or just 4 alphanumeric characters (base 58). A
standard OTP authenticator such as Google’s Authenticator application
is therefore appropriate for such parameters. Increasing the maximum

1 This price corresponds to Ethereum–fiat prices and gas fees for simple transfer trans-
actions in May 2021. As smart contract transactions are significantly more expensive,
this is a conservative estimation for the fees.
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capital that will be stored in the wallet by three orders of magnitude to
$100,000,000 requires 5 alphanumeric characters instead.

6 Proof-of-Stake

We now adapt our OTP wallet construction to the proof-of-stake setting
(the password wallet can also be adapted likewise). For concreteness, we
describe a construction for the Ouroboros [37] and Ouroboros Praos [22]
systems, but our results are extensible to other systems as well (such as
Snow White [11] and Algorand [42]).

The construction does not change much from the proof-of-work case,
so we only provide a sketch of the construction here. The smart contract
remains identical, except for the moderately hard NP language describ-
ing the existence of a proof-of-work witness. More concretely, the problem
instance x is now (ρ, sl,D, t), where ρ denotes the randomness of the cur-
rent epoch, sl denotes the slot during which block B (the most recently
known stable block C[−k]) was generated, D denotes the stake distri-
bution during the current epoch, and t denotes the future time. While
the proof-of-stake chains also enjoy the common prefix property, unfortu-
nately, we cannot simply take any blockchain that has length t following
B, because the adversary can create blockchains of arbitrary length. The
proof-of-stake system ensures that such chains are not taken into account
by checking that any blockchain received on the network does not contain
blocks that were issued in future slots [37]. However, we cannot incorpo-
rate this check in the form of an NP language, as we do not have access
to a clock.

Instead, we rely on a critical property of the proof-of-stake system
that states that, in any consecutive 2k slots, at least k + 1 will be hon-
estly allocated. Therefore, we reinterpret the parameter t to mean the
number of slots after block B instead of the number of blocks. The wit-
ness w consists of two parts: Block data and epoch data. The block data
contains a sequence (σ1,H1, π1, sl1), (σ2,H2, π2, sl2), · · · , (σd,Hd, πd, sld)
of signatures σi each with their corresponding slot sli, with sli > sl and a
proof of leadership πi. As in the proof-of-work case, no transaction data is
verified. The epoch data contains a sequence (ρ1, u1), (ρ2, u2), · · · , (ρe, ue)
spanning all the epochs starting from the epoch of slot sl up until the
epoch of slot sl + t. For each of these, the randomness ρj and evicence
uj of the multiparty computation leading to it (typically a collection of
signatures) is included.
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The relation R polynomially verifies that all the signatures σi cor-
rectly sign their respective plaintext Hi, that the proofs of leadership πi
are correct, and that the evidence uj for the randomness ρj of each epoch
is correct. Critically, it also checks that, for every window of length 2k
slots, at least k + 1 blocks have been provided.

This completes the basic scheme. We can improve upon this scheme
by noting that blocks and signatures for everything but the most recent
epoch are not necessary, as long as the randomness and its evidence for
each epoch is given. This evidence can be made quite short using ATMs
schemes, in which the evidence consists of aggregate threshold signatures
(c.f., [35]). In such an optimization, a constant amount of bits is required
per epoch. Blocks only need to be presented for the last epoch in order to
have better time granularity. However, here, too, some pruning can occur:
It is sufficient that only k+1 blocks and signatures pertaining to the most
recent 2k slots of the most recent epoch are presented. The relation R
can then simply check the evidence for each epoch randomness, that the
k + 1 signatures are correct, that they all fall within a 2k window, and
that the slot during which the last such block was generated is t. Again,
the witness encryption can be composed with a zk-SNARK to make the
witnesses constant size.

Contrary to proof-of-work where the velocity of the chain is unknown,
despite bounded, in the proof-of-stake case we have a much better grasp
on how quickly the time t will be reached, as it is a slot number. While the
adversary still enjoys some early leakage (k slots early), the timelocked
data will be available at the prespecified time. In the proof-of-work case,
it is possible that the blockchain growth rate will increase or decrease due
to the stochastic nature of block production. As such, the proof-of-stake
scheme is naturally fitting to the timelock problem.

7 Variable Difficulty Proof-of-Work

The proof-of-work OTP wallet just described is suitable for the static
difficulty model in which the mining target T is not adjusted and remains
constant. Real blockhchain systems adjust their T parameter dynamically
in every epoch, as discussed in the Preliminaries section.

The construction for the dynamic difficulty proof-of-work model is
similar to the static difficulty proof-of-work construction, with a key dif-
ference in the NP language used for witness encryption. The key idea is
that, instead of encrypting for a chain descending from B and consist-
ing of t blocks in the future, we need to encrypt for a chain descending
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from B and consisting of blocks that have together accumulated a total
of t difficulty. More concretely, the witness encryption problem statement
x = (B, t, T0, r0, ν) contains B and t as before, but now also contains the
term T0, the difficulty of the chain at the point when timelock encryption
took place, the round r0 during which the first block of the current epoch
was generated, as well as ν, the position of block B within its current
epoch (ν = (|C| − k) mod m, where m denotes the fixed epoch length).

The format of the witness w is now a sequence of block headers in
the form ⟨Ti, ctri, txi,H(Bi−1), ri⟩, where ctri, txi and H(Bi−1) are as be-
fore, and, additionally, Ti is the individual block’s mining target and ri is
the round during which it was mined (following the notation of Garay et
al. [27]). The relation R checks that the witness provided forms a chain
that begins at the last known stable block B, that every block satisfies the
dynamic difficulty proof-of-work equation H(Bi) ≤ Ti, and that difficulty
has been adjusted correctly. Specifically, for the difficulty adjustment, it
checks that for all i ≥ 2, if i − ν mod m ̸= 1, then Ti−1 = Ti (ensuring
difficulty was not improperly adjusted internally within the epoch of B
or any subsequent epochs). It also checks that the rounds provided are
increasing ri < ri+1, and ensures that the difficulty at the epoch borders
i − 1, i with i − ν mod m ̸= 1 and i > 1 has been correctly adjusted
by verifying that Ti = min(max(T ′

i ,
1
τ T

′
i ), τT

′
i ), where T ′

i =
ri−1−ri−m

a Ti−1

is the unclamped target, and the term a indicates the expected block
production rate of the system in rounds [27]. To achieve security with
overwhelming probability, and not just in expectation, in κ, it is imper-
ative that the τ bounds are also checked by R (see Bahack [7] for more
details on a tail attack). Lastly, the relation checks that the difficulty is
sufficient, as required by the t parameter. To do this, the difficulty of each
block in the witness is summed up to discover the cummulative difficulty
of the fork, checking that

∑
⟨Ti,_,_,_,_⟩∈w

1
Ti
≥ t.

Now that the precise NP language has been established, a couple of
things need to be changed in our protocol. First of all, at the time the
OTPs are generated, MAX_TIME no longer indicates the maximum life-
time of the wallet (in chunks of HOURLY_BLOCK_RATE blocks), but the
maximum total difficulty accumulated during the lifetime of the wallet. So
we rename it to MAX_DIFFICULTY. This parameter is sensitive in case
the difficulty increases. Hence, the value must be increased sufficiently
(at the cost of increased IPFS storage needs) to cover for all foreseeable
difficulty adjustments for the expected lifetime of the wallet. One way
to do this is to look at past difficulty adjustment trends and extrapolate
them to the future for the number of years the wallet is to be usable. In

26



any case, this prediction does not need to be perfect: In the unfortunate
case that the OTPs are close to becoming exhausted, which can easily be
observed by inspecting the chain as it evolves, the wallet can be sunset
by moving the funds to a new wallet with a new lifetime.

Next, the value HOURLY_BLOCK_RATE no longer indicates the num-
ber of blocks generated in one hour, but the amount of difficulty that must
be accumulated before the next OTP can be utilized. So we rename it to
OTP_ROTATION_DIFFICULTY. This parameter is sensitive in case the
difficulty decreases. Hence, this value must be decreased sufficiently (at
the cost of increased IPFS storage needs) to allow the user to spend as
quickly as desired. As difficulty typically does not decrease, one way to do
this is to look at the previous HOURLY_BLOCK_RATE parameter and
multiply it by the current difficulty to obtain a lower bound for the future.
If one can predict a lower bound for how much future difficulty increases,
it is also possible to timelock encrypt with non-uniform difficulty: The
difference in the difficulty used to witness encrypt two early consecutive
OTPs can be smaller than the difference in difficulty used to witness
encrypt two later consecutive OTPs. The precise mechanism to do this
effectively depends on the cryptocurrency and empirical measurements.

Lastly, the smart contract must be modified in the security-critical line
that ensures that t is sufficiently in the future. In the static difficulty, t
counts the number of blocks (or slots in the proof-of-stake case), but here
it is counting difficulty. Therefore, it cannot be compared to block.number,
and the 2k delay (which also counts blocks) cannot be readily applied.
Instead, we must use a new variable2 block.cumdiff, the cummulative dif-
ficulty collected by the blockchain if all the difficulty from genesis to the
current block is summed up. Additionally, the 2k factor must be weighted
by the current difficulty 1

block.T , where block.T indicates the mining target
of the current block.

The argument for the correctness of the scheme and the security of
the scheme remains the same. Some remarks about the security portion
are in order. First, recall that any blockchain protocol does not accept
blocks with timestamps in the future. In the static difficulty model, this
was not important, but in the proof-of-stake and in the variable difficulty
model, it is something to consider. In particular, for the variable difficulty
case, if the adversary constructs blocks timestamped with future rounds,

2 This block property is not currently available in Ethereum Solidity, but it is available
in web3 as block.totalDifficulty. It is an easily implementable solution, but can
even be incorporated into a smart contract within the current infrastructure without
any forks [34].

27



she can cause the difficulty to drop more than it would be possible in
a real-world execution. However, this does not bless the adversary with
more mining power. Additionally, such chains will not be mined on by
honest parties (because they are considered invalid, as of yet), and so
they will only be extended by the adversary. The effect is the contrary of a
difficulty raising [7] attack: The total difficulty accumulated as the target
difficulty is artificially decreased becomes concentrated to its expected
value. Hence, the minority adversary, who does not win in expectation,
has an even lower probability of accumulating the difficulty goal described
by x in this futuristic chain. Therefore, we shall not be concerned about
this behavior.
The bounded delay model. The above high-level analysis, as well as
the more detailed analysis of the static case in Section 5, was in the
synchronous setting. However, all the proofs made direct use of high-level
chain properties such as the common prefix property, safety, and liveness.
The use of the rounds rc, ri, and rz to split time into chunks in the
proof of Lemmas 1 and 2 is material to the proof. However, these rounds
are defined based on transaction broadcast events and lengths attained
by local honest chains. In a setting where the parties incur an unknown
bounded delay ∆ (which satisfies certain conditions [25]), the properties
of the chain still hold, albeit with worse parameters k and ℓ, and the same
security proof remains valid.

8 Discussion

Having completed the presentation of our schemes, we now discuss a
couple of shortcomings and advantages of our scheme that differentiate it
from previously known solutions.
A bounty for the miners. In our analysis, we have considered a ra-
tional adversary who is only allowed to allocate her capital into taking
guesses for the user passwords and OTPs and holds a minority of the
adversarial power. This worldview is slightly myopic. An adversary with
a large capital operating in an open world can also use this money for
other purposes such as bribing miners. In fact, let us take a step back and
reconsider the honest majority assumption of the chain which allowed us
to conclude that the properties of common prefix, safety, and liveness
hold. What if the miners are not honest, but rational, instead? In this
case, the properties do not hold (it is known that the honest protocol
is not a Nash equilibrium [24], although it may be close to it [36]). In
our case of keyless wallets, the wallet functions as a bounty to the miner
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who creates a long chain fork: If an adversary can violate the common
prefix property, then she can, as far as the chain is concerned “go back in
time.” In such an attack, after the secrets become timelock decryptable,
the adversary creates a long chain reorganization and resubmits the cor-
rect guess to the wallet. As the reorganization was long, the delay check
in the smart contract succeeds and the trial is correctly committed to the
chain, granting the adversary the prize. This can be dangerous.

However, It can be argued that such bounties can be created by the
adversary herself: If she double spends her money, she creates an incen-
tive for herself to go back in time and reclaim it. But there is a crucial
difference: The adversary can only spend her own money in the double
spending case. Namely, although in a double spending case, the party
receiving the money was harmed by the chargeback, it is the adversary’s
money that is being double spent, not someone else’s. There is another
critical difference here: While a single adversary can create such boun-
ties for herself, keyless wallets are universal bounties claimable by any
miner. We remark, however, that a double spending adversary can twist
the double spending attack in a way that makes it a universal bounty:
The adversary first creates a legitimate transaction spending some of her
own money and receives, say, fiat money in exchange. She then creates a
double spending transaction in an alternative fork: That double spending
transaction pays 50% of her money to herself, and the rest to the miner
who confirms the given block. In this case, all miners are incentivized to
confirm this transaction and fork.

Therefore, we argue that the existing blockchain systems are not very
different in the way incentives are aligned as compared to our proposed
wallet. Nevertheless, as highlighted in the analysis, the proposed wallet
does indeed have a different security model from a standard wallet: it is
not purely cryptographic, but a cryptographic/cryptoeconomic hybrid.
Temporary dishonest majority. Our analysis assumed adversarial mi-
nority throughout the execution. However, this may not necessarily be the
case. Blockchains have faced situations where the adversarial power has
temporary majority spikes, even though the adversary generally controls
only a minority [4,6]. One of the arguments protecting from double spend-
ing stems from the ability of the user to set their own local k parameter
when they consider which transaction to accept as confirmed. The pa-
rameter k is not a global parameter of the system, but it can be set by
each user individually at the time of payment. If there are rumours or
evidence that the chain may be under attack, the user can delay accept-
ing payments. This is not the case for our protocol. While the user can
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set the critical 2k delay when instantiating the contract, and this is a
local choice, this choice cannot be changed later. If an adversary attains
majority after the contract has been instantiated, she will be able to roll
back the chain sufficiently to steal the user’s money. This limitation of
the system must be taken into account when deciding about the k pa-
rameter of the wallet: The parameter must not only withstand current
adversarial bounds, but adversarial bounds through the lifetime of the
wallet. One mechanism to deal with this issue is to migrate from a wallet
with a small k to a different wallet with a more conservative value when
evidence appears that the chain may become attacked in the near future.
If the blockchain network cannot be trusted to maintain honest major-
ity, and the adversarial majority spike length is unpredictable, the money
cannot be left and forgotten as in a key-based wallet.
Detectability of brute force attacks. One of the advantages of our
system is that brute force attacks are not only economically infeasible, but
they are also detectable. If an adversary submits a brute force attempt
to the wallet, a commit transaction will appear on the chain that the
honest user will see. As such, the user can decide to move their funds out
of their wallet if they observe such behavior. This benefit stems from the
fact that the brute forcing of user passwords and OTPs cannot be done
offline, but must necessarily be made on the chain. Our rate limiting
scheme is therefore not just enabling limiting, but also detection. It is the
first scheme of its kind that works in a decentralized manner on-chain.

9 Conclusion

We have presented the first wallets that work securely without any private
keys. We developed a password-based wallet with severe limitations: It
could only be used once and at a predetermined maturity date. We then
improved upon our first scheme by proposing an OTP wallet in which the
user can provide an OTP from an air gapped device. We analyzed our
scheme and proved it secure through a hybrid cryptographic/cryptoeco-
nomic argument which may be of independent interest. The cryptoeco-
nomic parametrization allowed us to set the OTP code to be quite short:
Just 6 alphanumeric characters sufficed even for large capital of seven
figures and with a very conservative economic margin of 90% capital loss
for the adversary in expectation. Our calculations were also conservative
with respect to current fees.

We finally extended our scheme to work in the proof-of-stake model,
as well as the variable difficulty proof-of-work model. While timelock
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encryption using blockchain witnesses leveraging witness encryption has
been described before, we are the first to extend it to proof-of-stake and
to effectively use it for the variable proof-of-work case as well (previous
considerations [39] considered the variable difficulty case, but did not ac-
count for the fact that the decryption time will be varying with the miner
population adjustments).

As far as we know, our work is the first to build any useful protocol,
and certainly to construct wallets, on top of timelock encryption and
blockchains. We believe that timelock encryption and witness encryption
is a promising cryptographic direction and, once established, will prove
to be cornerstones of future protocol development for blockchains (and
elsewhere). However, it remains to be seen whether a secure instantiation
of these primitives will ever become practical.

Appendix

A Variable Difficulty Algorithms

The algorithms for the variable difficulty OTP wallet appear in Algo-
rithm 5 and 6.

Algorithm 5 Hours of Horus in variable difficulty.
1: contract OTPWallet
2: BLOCK_DELAY← 2k
3: r ← ⊥
4: spent← ∅
5: commitments← ∅
6: function construct(r)
7: r ← r
8: end function
9: function commit(z, t)

10: require(t > block.number + BLOCK_DELAY/block.T)
11: commitments[z][t]← true
12: end function
13: function reveal(OTP, salt, αto, amount, ct, w, t, π)
14: h← H(⟨OTP, salt, αto, amount⟩)
15: require(commitments[z][t])
16: require(MT.Ver(ct, t, r, π))
17: require(WE.Dec(ct, w) = OTP)
18: to.transfer(amount)
19: end function
20: end contract
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Algorithm 6 Interacting with the Hours of Horus wallet in the variable
difficulty case.
1: BLOCK_DELAY← 2k
2: seed← ⊥ ▷ After generation, remains air gapped
3: pk ← ⊥ ▷ Published so that money can be received
4: c← [ ] ▷ Published on insecure public storage (e.g., IPFS)
5: B ← ⊥ ▷ Published on insecure public storage
6: upon initialize do
7: seed← {0, 1}κ ▷ Seed is generated with high entropy κ
8: B ← C[−k] ▷ Latest stable block
9: for t← 1 to MAX_DIFFICULTY do

10: OTPt ← G(seed, t) ▷ Time t OTP with low entropy λ
11: x← (B,OTP_ROTATION_DIFFICULTY · t)
12: ct ←WE.Enc(OTPt, x)
13: c← c ∥ ct
14: end for
15: r ← MT.build(c)
16: pk ← OTPWallet.construct(r)
17: end upon
18: upon spend(αto, amount) do
19: t1 ← ⌈C.cumdiff + (ℓ+ BLOCK_DELAY)/C[−1].T ⌉
20: salt← {0, 1}κ ▷ Generate short-lived high-entropy salt
21: OTPt ← G(seed, t1)
22: z ← H(⟨OTPt, salt, αto, amount⟩)
23: OTPWallet.commit(z, t1)
24: wait until C.cumdiff = t1
25: w ← C{B:}
26: π ← MT.prove(ct, c)
27: OTPWallet.reveal(OTPt, salt, αto, amount, ct, w, t1, π)
28: end upon

B Auxiliary Theorems

The following theorem establishes that chains cannot grow too quickly. It
uses the notation adopted from the backbone series [26,27].

Theorem 4 (Chain Growth Bound). In a typical execution, consider
a round r0 during which the longest chain that exists on the network has a
height of h0. Then at round r1 > r0, let h1 denote the height of the longest
chain that exists on the network. The chain cannot grow too quickly:

Pr[h1 − h0 > (1 + ϵ)(r1 − r0)nq
T

2κ
] ≤ exp(−Ω(κ(r1 − r0)))

Proof. Let us consider the case where the adversary uses all her queries
(if the adversary does not use all of her queries, we can force her to do
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so at the end of her round and ignore the results). Then there will be nq
queries per round in total, and (r1 − r0)nq queries across all the rounds
in r1 − r0. In typical executions, the longest chain on the network can
only grow if a query is successful. The probability of success of a query is
T
2κ . The random variable h1 − h0 is hence upper bounded by a Binomial
distribution with parameters T

2κ and (r1 − r0)nq, which has expectation
(r1 − r0)nq

T
2κ . Applying a Chernoff bound with error ϵ, we obtain the

desired result.

We include the Chernoff bound, referenced at a high level throughout
this paper, for completeness.

Theorem 5 (Chernoff bounds). Let {Xi : i ∈ [n]} are mutually inde-
pendent Boolean random variables, with Pr[Xi = 1] = p, for all i ∈ [n].
Let X =

∑n
i=1Xi and µ = pn. Then, for any δ ∈ (0, 1],

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.
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