
Explain Some Noise: Ablation Analysis for Deep
Learning-based Physical Side-channel Analysis

Lichao Wu
Delft University of Technology

Delft, The Netherlands
l.wu-4@tudelft.nl

Yoo-Seung Won
Nanyang Technological University

Singapore, Singapore
yooseung.won@ntu.edu.sg

Dirmanto Jap
Nanyang Technological University

Singapore, Singapore
djap@ntu.edu.sg

Guilherme Perin
Delft University of Technology

Delft, The Netherlands
guilherme.perin@tudelft.nl

Shivam Bhasin
Nanyang Technological University

Singapore, Singapore
sbhasin@ntu.edu.sg

Stjepan Picek
Delft University of Technology

Delft, The Netherlands
picek.stjepan@gmail.com

Abstract—Deep learning-based side-channel analysis repre-
sents a powerful option for profiling attacks on power and
electromagnetic leakages as it breaks targets protected with
countermeasures. While most of the papers report successful
results, it is not difficult to find cases where deep learning works
better or worse, especially concerning various countermeasures.
Current approaches concentrate on various data augmentations
or hyperparameter tuning options to make the attacks more
powerful. At the same time, understanding what makes an attack
difficult has received very little attention.

This paper proposes a side-channel analysis methodology
based on the ablation paradigm to explain how neural networks
process countermeasures. Our results show that an ablation is
a powerful tool as it allows to understand 1) in which layers
various countermeasures are processed, 2) whether it is possible
to use smaller neural network architectures without performance
penalties, and 3) how to redesign neural networks to improve
the attack performance when the results indicate that the target
cannot be broken. By using the ablation-based approach, we
manage to mount more powerful attacks or use simpler neural
networks without any attack performance penalties. We hope this
is just the first of the works in the direction of countermeasure
explainability for deep learning-based side-channel analysis.

I. INTRODUCTION

With an increasing market of embedded devices and its ever-
increasing security concerns and vulnerabilities, the demand
for certified products has gone up. This leads to thousands of
products undergoing strict security evaluations in evaluation
laboratories around the world on a daily basis [ALAM19].
Side-channel attack (SCA [KJJ99]) is one such threat against
which embedded devices are regularly evaluated. This work
focuses on power/electromagnetic (EM) side-channel attacks
targeting secret key recovery from cryptographic algorithms.
While there is a range of attacks that can be mounted on an
embedded device, profiling SCA [CRR02] remains a preferred
one as it provides worst-case guarantees under a supervised
learning paradigm.

In only a few years, deep learning got established
as a preferred option for profiling side-channel analysis
(SCA) [MPP16]. The results show that such techniques
manage to break diverse targets where many are protected

with state-of-the-art protection mechanisms like hiding and
masking [ZBHV19], [WP20]. More recently, we see a steady
continuation of a trend where researchers manage to find
smaller and shallower neural networks that perform well.
At the same time, our understanding of how and why the
deep learning-based attacks work does not improve. As such,
the research directions like explainability and interpretability
for deep learning should represent the major goal for future
research.

Unfortunately, such directions are difficult to explore and
even more difficult to offer conclusive findings. Those diffi-
culties are not unique for SCA. Indeed, explainability and in-
terpretability are questions heavily researched in other domains
(e.g., image classification [SWM17], [CLB+18], [AB18]) but
without strong success or definitive directions to follow. In
2017, DARPA launched a four-year program on explainable
artificial intelligence (XAI) [GA19] to investigate how XAI
can improve the understanding, trust, and performance of AI
systems. As there are no general findings, it is difficult to
expect that the security community can solve these problems
for a specific domain like the profiling SCA. Still, as the
neural networks used in profiling SCA are not very deep
(compared to neural networks used in other domains) and with
a trend to become even more shallow (and narrow) [ZBHV19],
[WAGP20], there is hope that it could be easier to understand
such neural networks. Finally, we note that SCA deals with
a commonly neglected phenomenon in other domains - noise.
In other domains, the noise comes from the environment or
uncertainty of the process, but the researchers aim to remove
it. In SCA, the task is to conduct a successful attack despite
the noise generated by the environment or countermeasures.
Consequently, we must be more interested in how machine
learning algorithm processes noise/countermeasures and re-
duces their effect on the final results.

This leads to the question, why is it even important to
explain neural networks? Especially if they work well, which
is a (relatively) common case in profiling SCA. There are
multiple reasons: 1) if the neural networks work well, we want

mailto:l.wu-4@tudelft.nl
mailto:yooseung.won@ntu.edu.sg
mailto:djap@ntu.edu.sg
mailto:guilherme.perin@tudelft.nl
mailto:sbhasin@ntu.edu.sg
mailto:picek.stjepan@gmail.com

to understand why to make them even more powerful, 2) if
the neural networks do not work well, we want to understand
what is the problem and how to resolve it, and 3) when
the neural networks work well, we want to understand what
represents the main difficulties for them to design better SCA
countermeasures.

There are not many results in SCA going in this direction.
For example, most of the effort up to now went into feature
visualization [HGG20], [MDP19]. While important and pow-
erful, this is not enough to provide answers to the question
above. As such, the SCA community must explore more
diverse techniques to improve the state-of-the-art of profiling
SCA explainability and interpretability.

Our goal is to provide a methodology enabling a better
understanding of neural network inner working. More pre-
cisely, we consider the ablation procedure where we “turn off”
(ablate) certain parts of a neural network and then observe the
impact on such a neural network. By comparing the results
before and after ablation, we can pinpoint locations where
important SCA information processing happens. Our main
contributions are:

1) We propose the methodology to conduct the ablation
analysis in profiling SCA.

2) We explore the influence of various types of noise in
the presence of ablation. We verify that various coun-
termeasures are not processed equally in all the neural
network layers. Additionally, we provide insights into the
countermeasures’ difficulty for neural networks.

3) We show that even smaller than currently used neural
networks can reach top performance in SCA, indicating
that the current methodologies can be further improved.

4) Our analysis enables a better understanding of the attack
performance and provides insights into how to make the
attack more powerful or from where to start to design
more resilient countermeasures.

5) We show how ablation can be used to resolve practical
issues in SCA like portability, i.e., where the training
device and device under attack are different.

The source code for all experiments will be published1.

II. BACKGROUND

A. Notation

Calligraphic letters like X denote sets, and the correspond-
ing upper-case letters X denote random variables and random
vectors X over X . The corresponding lower-case letters x and
x denote realizations of X and X, respectively. k is a key byte
candidate that takes its value from the keyspace K, and k∗ the
correct key byte.

Dataset is as a collection of traces (measurements) T, where
each trace ti is associated with an input value (plaintext or
ciphertext) di and a key ki. θ denotes the vector of parameters
to be learned in a profiling model (e.g., the weights in neural
networks), and H denotes the set of hyperparameters defining
the profiling model.

1Blinded for anonymous review

B. Deep Learning and Profiling SCA

Deep learning belongs to a family of machine learning
methods based on artificial neural networks with representa-
tion learning. Supervised machine (deep) learning deals with
the task of learning a function f that maps an input to the
output (f : X → Y)) based on examples of input-output pairs.
The function f is parameterized by θ ∈ Rn, where n denotes
the number of trainable parameters.

Supervised learning happens in two phases: training and
test. This corresponds to profiling SCA, executed in profiling
and attack phases. In the rest of this paper, we use the terms
profiling/training and attack/testing interchangeably.

1) The goal of the training phase is to learn the param-
eters θ′ that minimize the empirical risk represented
by a loss function on a dataset T of size N (T =
{(xi, yi)}Ni=1). As common in profiling SCA, we consider
the c-classification task, where c denotes the number of
classes depending on the leakage model we use. More
precisely, the classifier is a function that maps input
features to label space (f : X → Rc). In the rest of
this paper, the function f is a deep neural network with
the Softmax output layer.

2) In the attack phase, the goal is to make predictions about
the classes

y(x1, k
∗), . . . , y(xQ, k

∗),

where k∗ represents the secret (unknown) key on the
device under the attack. The outcome of predicting with
a model f on the attack set is a two-dimensional matrix
P with dimensions equal to Q× c. The probability S(k)
for any key byte candidate k is an SCA distinguisher:

S(k) =

Q∑
i=1

log(pi,v). (1)

The value pi,v denotes the probability that for a key k and
input di, we obtain the class v where class v is derived
from the key and input through a cryptographic function
and a leakage model.

To assess the attack performance, i.e., the number of mea-
surements required to break a target, it is common to use
the guessing entropy (GE) metric [SMY09]. With Q traces
in the attack phase, the attack outputs a key guessing vector
g = [g1, g2, . . . , g|K|] in decreasing order of probability. So,
g1 is the most likely and g|K| the least likely key candidate.
Guessing entropy is the average position of k∗ in g. In this
work, we calculate partial guessing entropy (i.e., considering
a specific key byte), but we denote it as guessing entropy for
simplicity.

C. Portability

The strength of profiling SCAs arises from their capability
to fully characterize the target device. In literature, most
works conduct profiling and test on the same device (“single-
device” model). However, in practical scenarios, the presence
of external factors, such as process variation or different
acquisition methods, may cause the “single-device-model”

2

attack to fail. These external factors lead to an issue known as
portability, subsuming all effects due to different devices and
secret information between profiling device and device under
attack.

As an example, in [KRKK18], the authors perform a pro-
filing SCA on AES encryption in a wireless keyboard, where
they reported 28% success when attacking a keyboard different
than the profiling one as opposed to 100% success when
profiling and testing on the same keyboard. This issue is pop-
ularly known as the portability issue. Though this is a critical
issue and evaluation labs face it on a daily basis, not many
investigations are conducted in this direction. One of the latest
approaches to address portability was presented by Bhasin
et al. [BCH+20] at NDSS 2020, by considering the multi-
device model (MDM). The idea is to use multiple copies of
devices similar to the targeted one for training and validation.
Then, the trained model could better generalize the leakage
and minimize the risk of overfitting to the training device.
MDM was also validated by [DGD+19], [GJS19]. [RBA20]
adopts an alternate approach to measure the difference between
devices and exploit that to improve profiled SCA. MDM trains
the model to learn the similarity and discrepancy by default.
Alternately, Zhang et al. [ZSX+20] analyzed the portability
issue for heterogeneous devices (clone device is different from
victim device), which we consider out of scope. However,
one possible drawback is that the evaluator needs to acquire
measurements from multiple copies of the same device, which
might be either expensive (in time or equipment) or simply not
available or both.

D. SCA Countermeasures

To mitigate side-channel attacks, designers deploy a series
of countermeasures. The main objective of these countermea-
sures is to either reduce or ideally remove sensitive leakage
from the side-channel traces [MOP07]. This section describes
some of the commonly used SCA countermeasures, which we
also use in our analysis. All countermeasures are implemented
following the open-source code2.

The first countermeasure is the Gaussian noise addition.
This corresponds to unintentional and intentional activity cap-
tured in parallel to the sensitive operation, which contributes
to the measurement’s noise component, directly reducing the
signal-to-noise ratio (SNR) of the captured traces. Uninten-
tional contribution caters to non-sensitive parts of the com-
putation, noise from connectors, digital to analog conversion,
etc. Dummy operations or dedicated noise generators introduce
intentional noise. With a low signal-to-noise ratio (SNR), the
attack generally requires more traces to be successful. For our
experiments, we add a random value drawn from a normal
distribution with zero mean and standard deviations [1.0, 5.0],
respectively, to investigate from low to high noise settings.

The second investigated countermeasure is desynchroniza-
tion. Similar to Gaussian noise, any misalignment in traces
reduces the SNR, forcing the attacker to either acquire more

2Available at https://github.com/AISyLab/Denoising-autoencoder

traces or execute an additional re-alignment step. While the
Gaussian noise is added in the amplitude domain, desynchro-
nization introduces random noise in the time domain. The re-
alignment is generally based on signal processing techniques
and is a complex operation in itself. It becomes even harder
when the traces are noisy, either due to the target device itself
or any underlying countermeasure. We introduce up to 5 points
of desynchronization of either polarity as it is the maximum
value leading to successful attacks in our experiments.

Finally, we study the effect of clock jitter as a countermea-
sure. The clock signal, which drives all digital circuits, can
have some random jitter. This jitter is normally undesirable
as it affects the performance and reliability of the underlying
circuit. Clock jitters increase the randomness for each point
in the time domain. The accumulation of the deforming effect
increases the misalignment of the traces and decreases the
overall SNR. We simulate the clock jitters by randomly adding
or removing points with a pre-defined range. If the generated
number is positive, points are added to the trace and otherwise
removed. We add jitter of up to a single point. Although this is
the smallest value that can be added, it still prevents GE from
converging for most of the cases. We discuss this in detail in
Section V.

E. Neural Network Architectures

1) Multilayer Perceptron: The multilayer perceptron
(MLP) is a feed-forward neural network mapping sets of inputs
onto sets of appropriate outputs. MLP consists of multiple
layers (at least three) of nodes in a directed graph, with each
layer fully connected to the next one.

2) Convolutional Neural Networks: Convolutional neural
networks (CNNs) commonly consist of three types of layers:
convolutional layers, pooling layers, and fully-connected lay-
ers. The convolution layer computes the output of neurons
connected to local regions in the input, each computing a dot
product between their weights and a small region they are
connected to in the input volume. Pooling decrease the number
of extracted features by performing a down-sampling operation
along the spatial dimensions. The fully-connected layer (the
same as in MLP) computes either the hidden activations or
the class scores.

F. Related Work

The domain of profiling SCA started in 2002, with the
template attack [CRR02]. While this attack is the most
powerful one from the information-theoretic perspective, in
practice, it suffers from unrealistic assumptions (unlimited
number of profiling traces, noise following Gaussian distri-
bution). Then, in the first years of machine learning-based
SCA, researchers considered simpler machine learning tech-
niques that commonly performed similar or slightly better
than template attack. Common examples of the used ap-
proaches are random forest [LMBM13], support vector ma-
chines [HGM+11], [HZ12], Naive Bayes [PHG17], and mul-
tilayer perceptron [GHO15]. From 2016, the SCA community

3

https://github.com/AISyLab/Denoising-autoencoder

shifted a large part of its attention to the deep learning tech-
niques [MPP16]. The two most explored approaches are mul-
tilayer perceptron (more complex architectures than before)
and convolutional neural networks. Both of those approaches
reached top performance where it is even possible to break
implementations protected with countermeasures [CDP17],
[KPH+19]. Only recently, the community started to expand
the deep learning perspective for profiling SCA, see, e.g.,
autoencoders that are used to pre-process the traces to remove
the influence of countermeasures [WP20].

As the trend of deep learning in SCA is relatively new
(compared to other domains), most works still concentrate
on improving the attack performance. For instance, in the
beginning, deep learning showed potential but not much more
than that [MPP16], [PSK+18]. Next, we can recognize a more
mature phase where authors reported strong attack perfor-
mance, even in the presence of countermeasures [CDP17],
[KPH+19]. Finally, more recent results manage to improve
the performance even further where interestingly, we see the
trend of using smaller (more shallow) deep learning architec-
tures [ZBHV19], [WAGP20], [PCP20].

While far from completed (as the results can be improved
even further), one can recognize that deep learning does repre-
sent a significant step forward for the profiling SCA. Simulta-
neously, the SCA community’s understanding of what happens
during the deep learning-based SCA process (i.e., interpretabil-
ity and explainability) is much more limited. Interpretability
is the degree to which a human can consistently predict the
model’s result [KKK16]. On the other hand, explainability
is the extent to which a machine learning system’s internal
mechanics can be explained in human terms. Several works
consider visualization techniques to find relevant features and
improve the interpretability [HGG20], [MDP19]. Van der Valk
et al. considered the activation functions in neural networks to
explain what neural networks learn while training on different
side-channel datasets or even datasets that are not side-channel
measurements [vdVPB19].

In this work, we aim to bridge this gap and use a well-
established technique from deep learning - ablation to under-
stand how noise and countermeasures are processed in deep
learning architectures in SCA.

III. ABLATION & SCA
A. Ablation

Ablation is a process long used in neuroscience, where
controlled damages are introduced in neural tissue to inves-
tigate the impact of damages on the brain’s capabilities to
perform assigned tasks. This approach provides deep insights
and explanations about each part of the tissue’s structure
and role when reacting to external stimuli [Sch77]. As the
complexity of neural networks increased, the explainability of
models has become an open question. As a natural extension,
ablation is adopted to understand neural networks better. An
ablation study investigates the performance of the system by
removing certain components to understand the contribution of
the component to the system [MLdPM19]. Note that ablation

requires that the system show slow degradation, i.e., that the
system continues to work even when specific components
are missing or reduced. A straightforward way to conduct
ablation for neural networks is to set the weights and biases
of a particular neuron (therefore, ablating that neuron) to zero.
While ablation often considers smaller changes to the system,
we will not differentiate it based on the number of components
we remove.

There is a connection between ablation and an approach
called pruning, which corresponds to the systematic removal
of parameters from an existing system [HPTD15]. Pruning in
neural networks is commonly done based on the magnitude
of the weights or by setting a threshold value. In both cases,
the weights contributing the least to the task at hand (e.g.,
classification) are removed. As we see, both pruning and
ablation can conduct the same operation type - removing a
part of a system. Still, the difference that we emphasize is in
the underlying motive to conduct such an operation. Pruning is
a widely used approach to speed up the training and inference
while minimizing the impact on the trained network’s original
performance. On the other hand, ablation reduces trainable
parameters to gain insights and interpret the trained network
inner working. As we are interested in understanding how
neural networks work in profiling SCA and how they deal with
various types of countermeasures, we will focus on ablation.
Next, we propose a methodology to ablate neural networks
used for profiling SCA to understand the neural network’s
inner functioning better.

B. Proposed Ablation Methodology

Explainability is one of the main issues for deep learning.
Within the SCA community, recent results [WP20] indicate
that deep learning performance can vary dramatically concern-
ing different types of noise/countermeasures. Unfortunately,
the precise reason for triggering the differences in the learning
process is unknown. Intuitively, it may relate to how the model
adapts to the noise: a naive noise/countermeasure could be
easily handled by, for example, a single layer. When the noise
increases, more layers may need to be used. Unfortunately,
to the best of our knowledge, there is no approach to offer a
concrete answer.

To systematically understand how a neural network model
behaves before and after adding noise/countermeasures, we
follow the ablation methodology presented in Algorithm 1.
First, the model is trained with the original dataset. Then,
when adding noise to the dataset and re-training the model,
the network changes should relate to the noise’s addition.
The main ablation procedure starts by randomly selecting and
ablating ρ% of the neurons/convolution filters. For neurons,
we do this by setting their weights and biases to zero. For
convolutional filters, we change the convolution filter size, and
we recreate the neural network. Note that we randomly select
neurons/convolution filters to be ablated as, in general, one
does not know what part of the neural network contributes to
the final neural network output.

4

Next, we calculate GE when ablating each layer indepen-
dently. We also record the weights for each layer. The ablated
model is re-trained for τ epochs to adjust the weights. We use
re-training as there was a change in the neural network model,
and we must allow it some additional training time to adjust
for the changes in the architecture. Finally, we calculate GE
to evaluate the recovery capability of the model.

Note that the ablation is performed in a layer-wise manner
instead of a neuron/convolution filter manner. The reason is
that each neuron/convolution filter’s contribution can fluctuate
due to the random weight initialization. As a result, it is
difficult to reach a consistent conclusion when one repeats
the proposed ablation methodology with a different pre-trained
model. Differing from that, by ablating the network layer-wise,
we can systematically study the ablation and countermeasure
effect. Since the neurons/convolution filters are randomly
selected, the ablation procedure is repeated σ times to obtain
more reliable results. Following the methodology, the number
of tests to be performed is positively correlated to the model
depth. Fortunately, since the model is pre-trained, the recovery
training can be efficient. Assuming the recovery training for
one model requires two minutes, we require on average two
and a half hours to finish the ablation procedure. 3

Algorithm 1 SCA Ablation Methodology.
1: procedure ABLATE(original dataset T , countermeasure

level (intensity) γ, repeat time σ, ablate rate ρ, recovery
epoch τ , ablated layer l)

2: Mpre ← Pre-train Model with T
3: Tγ ← Add countermeasure with level γ
4: for i = 0 to σ do
5: if i == 0 then . No ablation: for ref. GE and

weight calculation (with Tγ)
6: ρ = 0
7: end if
8: Mρ

pre,W
ρ,i
pre ← Ablate(Mpre) . Remove ρ% of

neurons/filters from layer l
9: GEρ,ipre ← Attack(Mρ

pre)
10: Mρ

abl,W
ρ,i
abl ← Train(Mρ

pre) . Train with Tγ for τ
epochs

11: GEρ,iabl ← Attack(Mρ
abl)

12: end for

13: Wρ ← 1
σ

σ∑
i=0

(W ρ,i
pre - W ρ,i

abl)

14: if i > 0 then
15: GEρ,ipre ← GEρ,0pre - GEρ,ipre
16: GEρ,iabl ← GEρ,0abl - GEρ,iabl
17: end if
18: end procedure

3This is naturally more computationally expensive than calculating GE for
the original model only, we consider the information obtained through ablation
more than justifying the extra computational time.

IV. EXPERIMENTAL SETUP

A. Threat Model
We consider a common profiling side-channel setting fo-

cusing on power/EM side-channel attacks targeting secret
key recovery from cryptographic algorithms. This model is a
standard model as numerous certification laboratories evaluate
hundreds of security-critical products under this model daily.

We assume an adversary with access to a clone device
running the target cryptographic algorithm, normally on an
embedded device. This clone device can be queried with
known/chosen parameters (keys, plaintext, etc.) while the
corresponding leakage measurements, like power or electro-
magnetic emanation, are recorded. Ideally, the adversary can
make infinite queries and build a corresponding database of
side-channel leakage measurements to build a precise profiling
model. This forms the profiling phase.

Next, the adversary queries the device under attack with
known plaintext to recover the secret key by querying the
characterized model with corresponding side-channel leakage
traces. This represents the attack phase. We investigate both
single device setup where the measurements in both phases
are done on the same device and portability setup where the
clone device and the device under attack differ.

B. General Setup
Note that while one could ablate the neurons/convolution

filters for any percentage, we give results for three levels: ρ =
{10, 50, 90}, to investigate the behavior of neural networks
for various settings (i.e., when we do a small change, medium
change, or a large change to the neural network architecture).
We run the recovery training for τ = {10} epochs as the
models are pre-trained, and they do not require a long time to
adapt to the changes in the network architectures due to the
ablation procedure. GE is calculated over 100 independent ex-
periments to obtain statistically significant results. Finally, GE
and weight variation presented in the experiments are averaged
over σ = {5} ablation experiments. All of the experiments
are implemented with the TensorFlow [AAB+15] computing
framework and Keras deep learning framework [C+15].

C. Datasets
We consider two popular datasets widely adopted in SCA

research: ASCAD with the fixed key and ASCAD with random
keys4. The measurements are obtained from an 8-bit AVR
microcontroller running an AES-128 implementation, where
the side-channel is electromagnetic emanation [BPS+20]. Both
datasets have masking countermeasure, making them more
difficult to attack and closer to reality. Note that the ASCAD
with random keys dataset uses different keys for training and
attack, but the corresponding measurements are obtained from
the same device. As most of the profiling attacks would record
traces with random keys during the profiling phase while
attacking the traces with an unknown fixed key, ASCAD with
random keys would simulate the real-world setting better 5.

4https://github.com/ANSSI-FR/ASCAD
5While still not being realistic as not considering portability.

5

https://github.com/ANSSI-FR/ASCAD

1) ASCAD with Fixed Key Dataset: This version of the
ASCAD dataset has 50 000 traces for profiling and 10 000
traces for the attack. 5 000 traces from the profiling set are used
for validation. We use a pre-selected window of 700 features
for the side-channel trace, and we attack key byte 3, which is
the first masked key byte (as recommended by the dataset).

2) ASCAD with Random Keys Dataset: The second AS-
CAD version has random keys, and the dataset consists of
200 000 traces for profiling and 100 000 traces for the attack.
We use 5 000 traces from the attack set for validation. We use
a pre-selected window of 1 400 features for this dataset and
attack key byte 3 (the first masked key byte).

D. Attack Architectures

In Table I, we depict the neural network architecture hy-
perparameters used. Here, four models with different com-
plexities, ’simple’ MLP (MLPs) [BPS+20], ’complex’ MLP
(MLPc) [WPP20], ’simple’ CNN (CNNs) [ZBHV19], and
’complex’ CNN CNNc [BPS+20] are designed based on
related works and used for evaluation. By evaluating those
models, we can better understand the noise processing in
different conditions. The hyperparameter selection is adapted
based on the dataset being tested. The experiments are con-
ducted under the Hamming weight (HW) and the identity (ID)
leakage settings.

Note that the difference in the number of trainable pa-
rameters for MLP is not so significant as for CNN. Indeed,
MLPc is around 30% larger than MLPs. At the same time,
CNNc is three orders of magnitude larger than CNNs.
Such a large difference comes from significantly larger fully-
connected layers and primarily the increase in the size and
number of convolution layers.

Network Architecture lr / Epochs Batch Size

MLPs (HW) Dense(200)*5 1e-4 / 100 100

MLPs (ID) - 3e-5 / 200 100

MLPc (HW) Dense(200)*8 1e-4 / 100 100

MLPc (ID) - 3e-5 / 200 100

CNNs (HW) Conv(4)+Dense(10)*2 5e-4 / 100 100

CNNs (ID) - 1e-6 / 200 100

CNNc (HW) Conv(64,128,256,512,512)
+Dense(1 024)*2 1e-4 / 75 200

CNNc (ID) - 1e-4 / 75 200

TABLE I: Baseline deep learning architectures.

V. EXPERIMENTAL RESULTS

The results presented here represent only a small part of
the conducted experiments. Additional results are located in
Appendix A. Since our experiments show that CNNs is giving
similar results to other considered architectures, we show the
corresponding figures in the appendix. Furthermore, we omit
experiments where the results indicate that the model did not
fit the data as in that case, ablation can give only limited

information (as showcased for the ASCAD with the fixed key
scenario and discussed in Section V-A).

Recall, all the experiments are done layer-wise, meaning
that a single experiment ablates one layer only. To conserve
space, we depict results for all layers in a single figure
(still, experiments are independent, so each column should
be considered independently). We depict our results with two
types of graphs: one that shows the GE difference concerning
various layers and one that depicts weight difference for the
various layers. Note that we give the average performance for
all possible values of the attack traces.

The figure title provides basic information on the neural
network performance without ablation for the GE difference
figures. The value “Ref before” denotes the GE value for the
reference model that is trained with the original version of the
dataset and then used to attack the dataset where the noise is
added, while the value “Ref after” denotes the GE value for
the reference neural network after re-training (which, for the
reference model means additional training for τ epochs). The
differences between the reference model’s attack performance
(observing results per columns) as we randomly select attack
traces for each experiment which causes some variation in the
attack performance. In each sub-figure, we depict the results
where we compare “Ref before” with the ablated network that
is not re-trained (“Before”) and “Ref after” with the ablated
network after the re-training phase (“After”). Values less than 0
denote that the original network (“Ref before” or ‘Ref after”)
performed better, while the values larger than 0 denote that the
ablated network (with or without re-training) performed better.

Additionally, we show the neural network weight differ-
ences for each layer, comparing the weight values before and
after the re-training procedure. Note that the neural networks
are ablated in both cases. As an example, consider Figure 2 (a)
where the value i on the x-axis represents the differences in
weights connecting layeri and layeri+1. When i equals zero,
the weights between the input layer and the first hidden layer
are averaged and compared. When i equals five, we process
the weight shared by the last hidden layer and the output layer.

A. Results for the ASCAD with the Fixed Key Dataset

Figure 1 presents results for the GE differences when
considering Gaussian noise with a standard deviation of 1.
Additional results for CNNs are given in Appendix, Fig-
ure 12. Observe from the results that both “Ref before” and
“Ref after” show very good behavior (GE of 0 or close to 0).
This means that the training process is sufficiently long, and it
is easy for a neural network to adapt to changes in the test set if
those changes come in the form of moderate Gaussian noise.
Somewhat larger performance variation happens for MLPs,
as short re-training is required to adapt to changes due to
the test set’s Gaussian noise and a smaller network capacity.
Stated differently, small network capacity allowed the original
network to model the data. However, that modeling did not
include any robustness to small differences.

Gaussian noise causes more significant changes for MLP
architectures in the first layers, indicating those layers deal

6

L1 L2 L3 L4 L515

10

5

0

GE
 d

iff
er

en
ce

Ref_before:4/Ref_after:0

Before
After

(a) MLPs: ρ = 10%

L1 L2 L3 L4 L5 L6 L7 L8
15

10

5

0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(b) MLPc: ρ = 10%

L1 L2 L3 L4 L5 L6 L7
0

1

2

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(c) CNNc: ρ = 10%

L1 L2 L3 L4 L5
60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:15/Ref_after:1

Before
After

(d) MLPs: ρ = 50%

L1 L2 L3 L4 L5 L6 L7 L8

40

20

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(e) MLPc: ρ = 50%

L1 L2 L3 L4 L5 L6 L7
20

10

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(f) CNNc: ρ = 50%

L1 L2 L3 L4 L5
75

50

25

0

GE
 d

iff
er

en
ce

Ref_before:2/Ref_after:0

Before
After

(g) MLPs: ρ = 90%

L1 L2 L3 L4 L5 L6 L7 L8
100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(h) MLPc: ρ = 90%

L1 L2 L3 L4 L5 L6 L7
150

100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(i) CNNc: ρ = 90%

Fig. 1: Guessing entropy difference before and after
the recovery training: Gaussian noise (γ, σ, ρ, τ) =
(1.0, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with the fixed key

with the noise. Even significant ablation rates do not cause
large final performance changes, implying we can use smaller
MLPs. Thus, a designer who wants to optimize the MLP
architectures should remove the neurons from the final layers
of MLP. What is more, GE can be even better after ablation
(see, e.g., Figures 1a and 1e), suggesting that too large model
capacity caused neural network model to overfit even in the
presence of Gaussian noise. For CNNs, the noise similarly
influences fully-connected layers as for MLP. After the re-
training, the convolution layer does not show much change due
to ablation, meaning that Gaussian noise is not processed in
any special way in that layer. These results indicate that strong
CNNs performance in the presence of Gaussian noise comes
from implicit feature selection and not spatial invariance
(which is to be expected as there is no misalignment). For
CNNc, we see improvement after ablation if the ablation rate
is low, while the difference is small to negligible for larger
ablation rates. Note while it seems there are significant GE
changes in the beginning layers for ρ = 10%, the scale is
different, so the changes are actually small.

In Figure 2, we depict the weight differences for three
considered neural networks (other cases are in Appendix, Fig-
ure 13). For MLP architectures, especially when considering
smaller ρ, there are changes in all but the last layer. This means
that the neural network adapts to smaller architectures due
to ablation and has a similar attack performance. Somewhat
larger changes happen at the end, but this is expected as
this is the neural network part building the final probabilities,

and we expect those to change whenever we change the
neural network architecture. Observe larger weight differences
in the layer after the ablation (see, e.g., Figure 13 (d)),
indicating the next layer adjusting to the new architecture.
For MLPc, the penultimate layer commonly has very small
weight differences, suggesting once more that the architectures
are larger than required (i.e., that specific layer does not do
much useful information processing). For CNNs, the largest
differences happen in the convolution layer, which means
that feature selection adapts for noise, but the classification
layers can process the information in a very similar manner.
For large ablation rates, the biggest change is in the layer
where the ablation happened. Considering the drop in the
weight differences for subsequent layers (see, e.g., Figure 13
(f)), we can conclude that the neural network model still
has enough capacity to adapt. Finally, for CNNc, the largest
weight differences happen in the beginning (in line for results
for CNNs, but we also observe some more activity in the
fully-connected layers as they adjust to the ablated layers.

0 1 2 3 4 5
Layer

0.0004

0.0006

0.0008
W

ei
gh

t D
iff

er
en

ce Ref
L0
L1
L2
L3
L4

(a) MLPs : ρ = 10%

0 1 2 3 4 5 6 7 8
Layer

0.0004

0.0006

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(b) MLPc : ρ = 50%

0 1 2 3 4 5 6 7
Layer

0.0000

0.0002

0.0004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(c) CNNc : ρ = 90%

Fig. 2: Weight difference before and after the
recovery training: Gaussian noise (γ, σ, ρ, τ) =
(1.0, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with the fixed key.

Next, we consider the desynchronization countermeasure
(Figure 3), the results for CNNs are listed in Figure 14 in
Appendix. The “Ref before” result implies that desynchro-
nization represents a more difficult countermeasure to adapt
to, and the original neural network model cannot adapt to this
countermeasure in the attack set. Still, even short re-training
shows a significant performance improvement (“Ref after”).
Thus, the network has more difficulty dealing with desynchro-
nization than Gaussian noise if not trained on it. At the same
time, short re-training allows neural networks to adapt to this
countermeasure.

The GE improvements that can be seen for the “Before”
case are not relevant. Indeed, the performance of “Ref before”
is similar to random guessing, so somewhat better GE does
not mean we can break the target. However, the results for
the “After” case are much more important. First, we notice
that MLP architectures could be reduced to a certain degree.
If the reduction happens in the deeper layers, the performance
can even improve, while ablation in the first layers causes
performance degradation. It is interesting to note that changes
are more significant for a larger part of the network (cf.
Figure 3), which means that MLP requires more layers to
deal with the desynchronization countermeasure. For CNNs

7

L1 L2 L3 L4 L5

5

0

5

GE
 d

iff
er

en
ce

Ref_before:110/Ref_after:1

Before
After

(a) MLPs: ρ = 10%

L1 L2 L3 L4 L5 L6 L7 L8

0

10

GE
 d

iff
er

en
ce

Ref_before:210/Ref_after:0

Before
After

(b) MLPc: ρ = 10%

L1 L2 L3 L4 L5 L6 L7
5.0

2.5

0.0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(c) CNNc: ρ = 10%

L1 L2 L3 L4 L5

10

0

10

GE
 d

iff
er

en
ce

Ref_before:102/Ref_after:3

Before
After

(d) MLPs: ρ = 50%

L1 L2 L3 L4 L5 L6 L7 L8

0

20

GE
 d

iff
er

en
ce

Ref_before:207/Ref_after:1

Before
After

(e) MLPc: ρ = 50%

L1 L2 L3 L4 L5 L6 L7

60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(f) CNNc: ρ = 50%

L1 L2 L3 L4 L5100

50

0

GE
 d

iff
er

en
ce

Ref_before:105/Ref_after:4

Before
After

(g) MLPs: ρ = 90%

L1 L2 L3 L4 L5 L6 L7 L8

50

0

50

GE
 d

iff
er

en
ce

Ref_before:203/Ref_after:1

Before
After

(h) MLPc: ρ = 90%

L1 L2 L3 L4 L5 L6 L7
150

100

50

0

GE
 d

iff
er

en
ce

Ref_before:2/Ref_after:0

Before
After

(i) CNNc: ρ = 90%

Fig. 3: Guessing entropy difference before and after
the recovery training: Desynchronization (γ, σ, ρ, τ) =
(5, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with the fixed key.

(Figure 14 in Appendix), ablating the convolution layer causes
large differences, which means that CNNs’s spatial invariance
is the determining factor for its success when dealing with
desynchronization. The changes for the fully-connected layers
are consistent with a small MLP (as there are only two dense
layers in CNNs). For CNNc, ablation causes very small
changes in several layers, indicating that the network capacity
is more than enough, so various changes are easily adjusted
for with the rest of the architecture.

Figure 15 in Appendix presents the weight differences for
the desynchronization scenario. The results for MLP show
small changes in weights if the ablation rate is lower and
the MLP architecture is smaller. This suggests that a small
neural network does not have many options on building a
model, so small changes do not affect the performance as
we basically build the same neural network model (minus the
neurons that are not needed as we already noticed there is some
redundancy). Somewhat bigger changes happen for MLPc as
this model has more capacity, allowing a better fit to data.
Removing parts of the network require more weight changes
as now, there are fewer options to fit the data in an equally
expressive manner. For CNNs, the largest differences happen
in the convolution layer. This again confirms the importance
of a convolution when dealing with a countermeasure working
in the time domain, like desynchronization. Additionally, we
see significant changes in the layer where ablation happened,
indicating there was not enough capacity to use the rest of that
specific layer to model the data in the same way. For CNNc,

we observe small weight differences in layers, showcasing
that the neural network has more than enough capacity to
model the desynchronization countermeasure, resulting in easy
adaptation to ablation. At the same time, this also means we
can reduce the size of the network significantly and maintain
the performance level.

Finally, in Figure 4, we depict the results for the clock
jitter (results for CNNs are in Appendix, Figure 16). Now,
both “Ref before” and “Ref after” give poor GE values. This
means that the network did not manage to learn a model that
fits data or adapt to the test set changes. As such, the results
are more difficult to explain since there are no successful
attacks. We can notice that all the MLP layers deal with the
countermeasure as significant changes are happening through-
out all the layers of both MLP and CNN. Interestingly, while
the results for CNNs indicate we require more layers, even
CNNc does not show good attack performance. Combined
with the fact that there is a significant activity for deeper
layers, this indicates we need even larger architectures for this
dataset.

L1 L2 L3 L4 L5
30

20

10

0
GE

 d
iff

er
en

ce
Ref_before:184/Ref_after:136

Before
After

(a) MLPs: ρ = 10%

L1 L2 L3 L4 L5 L6 L7 L8

0

20

GE
 d

iff
er

en
ce

Ref_before:193/Ref_after:200

Before
After

(b) MLPc: ρ = 10%

L1 L2 L3 L4 L5 L6 L7
20

0

20

GE
 d

iff
er

en
ce

Ref_before:190/Ref_after:194

Before
After

(c) CNNc: ρ = 10%

L1 L2 L3 L4 L5

10

0

10

GE
 d

iff
er

en
ce

Ref_before:120/Ref_after:126

Before
After

(d) MLPs: ρ = 50%

L1 L2 L3 L4 L5 L6 L7 L80

10

20

30
GE

 d
iff

er
en

ce
Ref_before:226/Ref_after:221

Before
After

(e) MLPc: ρ = 50%

L1 L2 L3 L4 L5 L6 L7

0

20

40

GE
 d

iff
er

en
ce

Ref_before:208/Ref_after:212

Before
After

(f) CNNc: ρ = 50%

L1 L2 L3 L4 L5
60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:97/Ref_after:92

Before
After

(g) MLPs: ρ = 90%

L1 L2 L3 L4 L5 L6 L7 L80

20

40

GE
 d

iff
er

en
ce

Ref_before:175/Ref_after:221

Before
After

(h) MLPc: ρ = 90%

L1 L2 L3 L4 L5 L6 L7

0

20

GE
 d

iff
er

en
ce

Ref_before:201/Ref_after:201

Before
After

(i) CNNc: ρ = 90%

Fig. 4: Guessing entropy difference before and af-
ter the recovery training: Clock Jitter (γ, σ, ρ, τ) =
(1, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with the fixed key.

The weight differences (Figure 17) become more significant
for deeper MLP layers compared to previous countermeasures.
This shows that clock jitter significantly influences the layers
just before the classification part. For CNNs, the convolution
layer changes are the most dramatic ones, which means that
this is the layer dealing the most with the countermeasure.

The ASCAD dataset results with a fixed key and the ID
leakage model are located in Appendix A. For Gaussian

8

noise (Figures 18 and 19), the results are in line with the
results for the HW leakage model. Again, the neural network
model capacity is more than sufficient as even much smaller
MLP architectures behave similarly. Additionally, we observe
a larger influence of the countermeasure, implying that more
classes make the classification problem more difficult (as
expected). For CNNs, we observe a minimal influence of
the convolution layer. Interestingly, the weight differences are
now much more pronounced, which means that they are more
spread over a larger number of classes. Then, ablating any part
of the network causes larger changes in the weights. The ID
leakage model’s desynchronization results (Figures 20 and 21)
confirm a combined effect of more classes and a more difficult
countermeasure, resulting in more MLP layers dealing with
the countermeasure. For CNNs, we observe a significantly
smaller influence of the convolution layer. We postulate this
happens as features discriminate more for 256 classes than for
nine classes, and we require a less powerful convolution layer
to select the most discriminative features. Finally, for the clock
jitter countermeasure, there is an activity in all layers, again
showing that we require, in general, larger neural networks to
deal with such a complex countermeasure. As the GE results
indicate we cannot break the target, we omit the results.

B. Results for the ASCAD with Random Keys Dataset

Aligned with the ablation experiment performed for AS-
CAD with a fixed key, three types of noise, Gaussian noise
(standard deviation of 1 or 5), desynchronization (max=5),
and clock jitter (max=1), are added to ASCAD with random
keys. The most representative results are given in this section,
while the rest is located in Appendix B. Note that we do not
present results for the ID leakage model as the results were not
good, i.e., the attacks did not work. The conclusion that can
be obtained in that case is similar to the clock jitter scenario
for ASCAD with a fixed key.

For Gaussian noise with standard deviation of 1, the rep-
resentative results are shown in Figure 5, while other GE
difference results are listed in Figure 22 in Appendix B.
According to “Ref before” and “Ref after”, the trained neural
network easily adapts to changes in the test set as the Gaussian
noise has limited influence on the neural network models’
performance.

In terms of GE variation before re-training, the effect of
ρ on the model’s attack performance is significant: a higher
ablation ratio ρ leads to a larger GE variation before training.
Similar to the results for ASCAD with a fixed key, ablation on
the shallower MLP layers causes more damage to the model
than the deeper layer. Even 90% of the ablation results in a
limited performance degradation (Figures 5g and 5h). Deeper
layers have more capability to handle the ablation effect but
there is also more redundancy. After the recovery training,
GE increased significantly in most cases, while the model’s
recovery capability varies when ablating different layers. For
MLP, ablating the shallower layers, as shown in Figure 5g
and 5h, results in the performance degradation, although the
recovery training reduces the GE variation compared to the

non-ablated models. When the deeper layers are ablated, the
GE performance is similar or even better than the reference
model. The likely reason for the performance improvement is
that the original model is overfitted.

For CNNs, the GE variation between the reference and
the ablated model increased after the recovery training (i.e.,
Figure 22c), indicating that the ablation reduces the model’s
capability in feature extraction and data classification. While
previous results indicate that the convolution layer does not
play an important role in dealing with Gaussian noise, we
observe a different behavior in this case. This happens due
to a very small neural network model and more variation in
the dataset due to random keys. Increasing the model size
again confirms our previous results that the convolution layer
does not have the central role for dealing with Gaussian noise.
Indeed, for CNNc, the same ablation ratio ρ causes almost
no performance drop. For dense layers in CNNc, we see that
ablating can improve the performance, which means the neural
network is too complex for the task, and it can overfit.

The weight differences results are given in Figure 23 in
Appendix. Similar to the observations for ASCAD with a fixed
key: with an increasing ablation ratio ρ, the overall weight
variation increases no matter what layer is ablated. For MLP,
the biggest changes occur in the deeper layer (Figures 23k
and 23l). Following this, a naive MLP design choice would be
to remove neurons in the deeper layers [Wei20]. For MLPc,
the small weight differences in the penultimate layer again
indicate that the architecture is larger than required. For CNN,
the weight variation is more concentrated in the shallower
layers. Interestingly, for CNNc when we ablate deeper layers
(i.e., L4/L5 in Figure 23l), the weight variation has almost
no changes compared to the reference, which indicates the
redundancy in those layers.

Next, we introduce desynchronization to the dataset (Fig-
ure 6, the rest of the results are in Figure 24 in appendix.
Differing from the Gaussian noise scenario, desynchroniza-
tion adds noise to the horizontal level, making the dataset
more difficult for classification. Similar to the ASCAD with
the fixed key scenario, the profiling model cannot adapt to
desynchronization without the recovery training, but having
ten epochs is more than sufficient for neural networks to adapt.

For MLP architectures, more layers are involved in this
countermeasure than for Gaussian noise, and ablating the
neurons reduces the performance, which means that the net-
work needs the original capacity for good results. For CNN
architectures, there is an interesting behavior. For CNNs,
GE is poor, indicating that the attack does not work, but
the results after ablation and re-training significantly improve
compared to original results (“Ref before” vs. “Ref after”).
At the same time, ablating specific layers does not deteriorate
the performance significantly. This indicates that those layers
can be reduced in size, but we require additional layers.
Consequently, CNNc shows much better attack performance.
With this new profiling model with a significantly higher
capacity, the convolution filters can be smaller, but we need to
keep sufficiently large dense layers (still, lower ablation rates

9

L1 L2 L3 L4 L5

10

5

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(a) MLPs: ρ = 10%

L1 L2 L3 L4 L5 L6 L7 L8

10

5

0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(b) MLPc: ρ = 10%

L1 L2 L3 L4 L5 L6 L7
2

0

2

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(c) CNNc: ρ = 10%

L1 L2 L3 L4 L5
40

20

0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(d) MLPs: ρ = 50%

L1 L2 L3 L4 L5 L6 L7 L8

40

20

0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(e) MLPc: ρ = 50%

L1 L2 L3 L4 L5 L6 L7

20

10

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(f) CNNc: ρ = 50%

L1 L2 L3 L4 L5

100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(g) MLPs: ρ = 90%

L1 L2 L3 L4 L5 L6 L7 L8100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(h) MLPc: ρ = 90%

L1 L2 L3 L4 L5 L6 L7
75

50

25

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(i) CNNc: ρ = 90%

Fig. 5: Guessing entropy difference before and after
the recovery training: Gaussian noise (γ, σ, ρ, τ) =
(1, 10, (10%, 50%), 10) for the HW leakage model on ASCAD
with random keys.

are fine and can even improve the attack performance.
Figure 25 shows the weight differences for the desynchro-

nization countermeasure. For MLP, aligned with the obser-
vation discussed before, weight changes are correlated with
the ablation rate and architecture size. Moreover, compared
with Gaussian noise, desynchronization is more difficult to
deal with, indicating that more layers would be involved in
adapting to this type of noise. For CNNs, the convolution
layer’s weight differences are small, suggesting that the layer
is not powerful enough for processing the countermeasure.
For CNNc, the biggest weight changes are in the convolution
layers, confirming that desynchronization is best resolved with
the convolution layer and that several convolution layers may
be needed. The observation again confirms the importance of
a convolution when dealing with a countermeasure working in
the time domain, as is the case for desynchronization.

Finally, we consider the clock jitter scenario. Similar to
the previous results for clock jitter, both “Ref before” and
“Ref after” give poor attack performance, which means that
the network failed to extract meaningful features from the
data. This is also confirmed by observing weight differences as
there are only minimal changes, which means that the neural
networks did not learn to fit the data. Since the results are less
informative, ablation does not provide many insights.

C. What Could We Explain?

Based on the extensive investigations testing different
datasets, neural networks, leakage models, and countermea-

L1 L2 L3 L4 L5
10

0

10

GE
 d

iff
er

en
ce

Ref_before:29/Ref_after:11

Before
After

(a) MLPs: ρ = 10%

L1 L2 L3 L4 L5 L6 L7 L8
20

0

20

GE
 d

iff
er

en
ce

Ref_before:188/Ref_after:4

Before
After

(b) MLPc: ρ = 10%

L1 L2 L3 L4 L5 L6 L7
15

10

5

0

GE
 d

iff
er

en
ce

Ref_before:61/Ref_after:5

Before
After

(c) CNNc: ρ = 10%

L1 L2 L3 L4 L5
30

20

10

0

GE
 d

iff
er

en
ce

Ref_before:31/Ref_after:7

Before
After

(d) MLPs: ρ = 50%

L1 L2 L3 L4 L5 L6 L7 L8

0

50

GE
 d

iff
er

en
ce

Ref_before:195/Ref_after:8

Before
After

(e) MLPc: ρ = 50%

L1 L2 L3 L4 L5 L6 L7

20

0

GE
 d

iff
er

en
ce

Ref_before:55/Ref_after:1

Before
After

(f) CNNc: ρ = 50%

L1 L2 L3 L4 L5

60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:38/Ref_after:8

Before
After

(g) MLPs: ρ = 90%

L1 L2 L3 L4 L5 L6 L7 L8

50

0

50

GE
 d

iff
er

en
ce

Ref_before:192/Ref_after:9

Before
After

(h) MLPc: ρ = 90%

L1 L2 L3 L4 L5 L6 L7
60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:49/Ref_after:2

Before
After

(i) CNNc: ρ = 90%

Fig. 6: Guessing entropy before and after the recovery
training: Desynchronization (γ, σ, ρ, τ) = (5, 10, 90%, 10)
for the HW leakage model on ASCAD with random keys.

sures on previous sections, spanning several hundred ex-
periments conducted in the last subsections, we learn the
following key takeaways about deep learning-based profiling
SCA. Firstly, Gaussian noise is easier to handle for a deep
neural network as a countermeasure when compared to desyn-
chronization and clock jitter, clock jitter being the hardest.
As a result, the latter two countermeasures need a deeper
network, while Gaussian noise is learned in the initial layers
allowing the use of rather shallower networks. In CNNs, the
convolution mostly handles desynchronization while having
minimal impact on Gaussian noise. Moreover, neural networks
struggle with countermeasure when the dataset has more
label classes, as for both the datasets, the imbalanced HW
dataset (following binomial distribution) was easier to handle
as compared to the balanced ID dataset. Lastly, with the
weight differences, we see that the impact of ablation is mostly
handled by the layer immediately following the ablated layer.

VI. APPLICATION TO THE MULTIPLE DEVICE MODEL

Next, we propose another application of ablation in tackling
portability issues for the profiling SCA, based on learned
lessons on the explainability of neural networks from the
previous section. While the adoption of the Multiple Device
Model (MDM) was proposed as a practical solution to porta-
bility in [BCH+20] (i.e., train and validate on multiple copies
of training device rather than just one), the availability of
multiple copies of a device remains a practical constraint. In
fact, the availability of multiple devices is a scoring criterion in

10

common criteria evaluations [Lom16]. A worst-case adversary
assumes the availability of multiple copies of the device.

This study’s main goal is to eliminate/mitigate the multiple
device assumptions but still generalize and address the porta-
bility issue while achieving the same or similar performance
as MDM, thus performing a worst-case analysis. We propose
Multiple Device Model from Single Device (MDMSD).

It was hypothesized in [BCH+20] that portability could be
seen as additive Gaussian noise, but this hypothesis was never
validated empirically. We validate this hypothesis through
ablation. In particular, we show that ablating layers in the
case of portability have similar behavior to the Gaussian
noise countermeasure in the previous section. We exploit
this understanding of the profiling model to bridge the gap
between the single device model and MDM with our proposed
MDMSD.

A. Datasets

The previously used datasets provide training and attack
data from the same device, thus not considering portability
issues. Next, we consider two portability-specific datasets. The
detailed setup for the datasets is summarised in Table II.

1) [BCH+20] dataset: The dataset contains measurements
from four copies of the target, AVR Atmega328p 8-bit micro-
controller, set up in parallel. It measured 50 000 power side-
channel traces corresponding to 50 000 random plaintexts. The
trace comprised of 600 sample points (features), containing
only the execution of the first SubBytes operation of an
unprotected AES-128, i.e., 16 S-box look-up, where each S-
box is an 8-bit input to an 8-bit output nonlinear mapping. The
dataset was then collected based on the measurements from
four different boards (B1, B2, B3, B4) with three randomly
chosen secret fixed keys (K1, K2, K3).

2) [oCHS18] dataset: This dataset refers to the CHES
Capture-the-flag (CTF) AES-128 trace set running on an
STM32 microcontroller, released in 2018 [oCHS18]. It con-
sists of different sets of power traces of masked AES-128,
with 650 000 sample points per trace. To accelerate our exper-
iments, we focus on a relevant window of 600 points only. The
first four sets contained 10 000 power traces. The first three
sets (Set 1 to 3) were collected from three different devices
(denoted by A, B, C), and each trace corresponds to encryption
with a randomly chosen key. Set 4 contains power traces from
Device C, with a single fixed key (K4). Set 5 contained 1 000
power traces collected from device C with a fixed key K5,
and Set 6 contained 1 000 power traces collected from a new
device D with fixed key K6.

B. Adapting Ablation Methodology for Portability Setting

We adapt our previously proposed methodology in Sec-
tion III-B to handle portability issues. In particular, we tune the
methodology for MDMSD setting as shown in Algorithm 2.
The proposed algorithm’s objective is to ablate and re-train the
model from a given training on the original device such that it
does not overfit to the training device itself but can generalize
to a range of devices.

Dataset
Reference Device Fix/Random

Key Type Key Notation

[BCH+20] B1 Fix K1 B1 K1
B2 Fix K2 B2 K2
B3 Fix K1 B3 K1
B4 Fix K3 B4 K3

[oCHS18] Device A Random - A RN
Device B Random - B RN
Device C Random - C RN
Device C Fix K4 C K4
Device C Fix K5 C K5
Device D Fix K6 D K6

TABLE II: The target datasets for MDMSD.

The adversary collects the traces for training and testing
based on the original device o, denoted as Traino and Testo
respectively. The original model, MLo, is first trained on this
device with epoch τo on Traino. The GE for pre-trained
model (GEo) is then computed as based on model MLo
and Testo dataset with additional noise α. The adversary
then ablates MLo with a rate ρ and re-trains with the same
number of epochs τo to obtain the new ablated model MLρr .
The GE for the ablated model (GEρr) is then computed
from model MLρr and dataset (Testo+Noise(β)). Next, the
adversary defines the threshold margin m. While the condition
GEρr > (m.GEo) holds, the adversary repeats the while
loop in Algorithm 2 starting from MLo. Once the condition
is no longer fulfilled, the ablated model is ready to handle
portability. The adversary can then test the data from the victim
device, Testv , and calculate GEρv and thus the secret key.

Algorithm 2 Methodology for MDMSD.
1: procedure MDMSD(The original device o with train, test

dataset Traino, T esto and training epoch τo, Victim device v
with test dataset Testv and training epoch τr , threshold margin
m, Noise value for train and test α, β, Ablate rate ρ)

2: MLo ← Pre-train Model with Traino, epoch τo
3: (GEρr , GEo) ← (∞, 0)
4: while GEρr > (m.GEo) do
5: MLr ← MLo
6: GEo ← Attack(MLo)
7: . Compute GE on (Testo +Noise(β)))
8: MLρr ← Ablate(MLr)
9: MLρr ← Train(MLρr)

10: . Train with (Traino +Noise(α)), epoch τr
11: GEρr ← Attack(MLρr)
12: . Compute GE on (Testo +Noise(β)))
13: end while
14: GEρv ← Attack(MLρr) . Compute GE on Testv
15: Return GEρv
16: end procedure

This MDMSD approach is aligned with the one proposed
in Algorithm 1. We tested three different ablation rate (10%,
50% and 99%) for [BCH+20] dataset. 99% ablation gave
the best result, about 6× better than other ablation rates (see
Figure 26 in Appendix). By 99% ablation, we mean ablating
the whole layer except for a single neuron (to maintain the
connectivity between layers). We hypothesize that portability
causes overfitting, which affects the whole layer, and thus

11

ablating the full layer (99%) is better. Consequently, we use
this configuration in the following experiments.

Parameters α and β must be chosen carefully to better
represent noise from portability. If α and β take a similar
value and are too small, the resulting GEo and GEρr will
be relatively the same and would not address the portability
issue. By setting a larger α, both MLo and MLρr will not
learn much information, so the attack on the test dataset will
also fail, even with ablation and re-training. Therefore, we use
relatively small α to make sure the model will work, then use
ablation to fight with large β that represents the portability-
induced noise. Finally, if the condition GEρr ≤ (m.GEo) is
satisfied, we stop the Algorithm 2 and obtain the final GE
from Testv dataset of victim device. If m is 1, the re-trained
model MLρr is better than MLo because GEρr is smaller than
GEo. However, ablation can lead to cases where GEρr could
be slightly higher than GEo. To counter such scenarios, we
provide a 5% leverage to GEρr , thus m = 1.05.

C. Evaluation Results

We use the MLP2 architecture proposed in [BCH+20] for
the following experiments. This architecture is selected as the
best performing one since it has sufficient capacity to model
the data and yet does not overfit as easily as the investigated
CNNs. More precisely, MLP2 architecture has four hidden
layers where each layer has 500 neurons, the batch size is 256,
the number of epochs is 50, the loss function is categorical
cross-entropy, and the optimizer is RMSprop with a learning
rate of 0.001.

1) Results for [BCH+20] Dataset: We train MLP2 (MLo)
for the dataset (Line 2 of Algorithm 2), with the (train)—(test)
datasets as follows: (B1 K1)—(B1 K1), (B2 K2)—(B2 K2),
(B3 K1)—(B3 K1), (B4 K3)—(B4 K3).

To apply the MDMSD, we use the following parameter
settings: m: 1.05, α: 5 × 10−4, β: 20 × α, τo: 50, τr: 50.
The re-trained MLρr performs slightly worse than the original
model MLo if the ablated layer handles overfitting from the
original dataset Traino. We use the 50 epoch for training (and
re-training) as in [BCH+20]. The results of Line 6 and 9 in
Algorithm 2 for each dataset are shown in Figure 7.

In Figure 7, the ablated second layer (L2) seems to achieve
better performance since GEr is less than 1.05×GEo for all
experiments. Therefore, we utilize the re-trained architecture
(MLρr) by ablating the second layer (L2). To directly compare
with previous results [BCH+20], we plot the progression
of GE for re-trained architecture in Figure 8b. Figure 8a
benchmarks the original result from [BCH+20]. We see that
MDMSD result outperforms the original result. Except for
(B4 K3)—(B1 K1), it mostly only requires 10-20 traces to
recover the correct key. To better represent the results, we
also compute the averaged GE for the eight results reported in
Figures 8a and 8b [BCH+20]. The averaged results are shown
in Figure 11a. MDMSD requires half the traces (about 30)
as compared to original results (about 60 traces) to break the
target.

L1 L2 L3 L4
100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(a) (B1 K1)—(B1 K1)

L1 L2 L3 L4

100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(b) (B2 K2)—(B2 K2)

L1 L2 L3 L4

75

50

25

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(c) (B3 K1)—(B3 K1)

L1 L2 L3 L4
100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(d) (B4 K3)—(B4 K3)

Fig. 7: Guessing entropy difference before and after the
recovery training for [BCH+20] dataset

0 10 20 30 40 50 60
0

20

40

60

80

100

Number of Traces

G
u
e
ss
in
g
E
n
tr
o
p
y

(B1 K1)—(B2 K2) (B1 K1)—(B4 K3)
(B2 K2)—(B1 K1) (B2 K2)—(B4 K3)
(B4 K3)—(B1 K1) (B4 K3)—(B2 K2)
(B3 K1)—(B4 K3) (B4 K3)—(B3 K1)

(a) Single Device Result

0 10 20 30 40 50 60
0

20

40

60

80

100

Number of Traces

G
u
e
ss
in
g
E
n
tr
o
p
y

(B1 K1)—(B2 K2) (B1 K1)—(B4 K3)
(B2 K2)—(B1 K1) (B2 K2)—(B4 K3)
(B4 K3)—(B1 K1) (B4 K3)—(B2 K2)
(B3 K1)—(B4 K3) (B4 K3)—(B3 K1)

(b) MDMSD Result

Fig. 8: Result for [BCH+20] Dataset.

Note that MDMSD is proposed to bridge the gap between
MDM and a single device threat model. If multiple devices
are available, MDM should always be preferred.

2) Results for [oCHS18] Dataset: Next, for [oCHS18]
dataset we focus on the KeySchedule leakage rather than S-
box operation as reported in [DFK19]. Specifically, we aim
to recover the Hamming weight of 0th byte round key in the
KeySchedule operation. As the leakage is the Hamming weight
of a byte, the range for GE is between 0 and 8.

We perform the cross-device attack on [oCHS18] dataset
to compare our approach. As seen in Figure 10a, we cannot
recover the Hamming weight information when we train B RN
dataset. To apply the MDMSD, we use the parameter setting:
m: 1.05, α: 5× 10−4, β: 20× α, τo: 50, τr: 50.

In Figure 9, ablating L4 satisfies GEr ≤ 1.05 × GEo.
Unlike to original result, all Hamming weight information
is recovered using less than 50 traces (see Figure 10b).
Especially, except for (B RN)—(D K6), only ten traces are
needed to recover the Hamming weight of the round key
(about 5 on average considering all experiments), while the

12

L1 L2 L3 L4
1

0

1

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:1

Before
After

(a) (A RN)—(C K4)

L1 L2 L3 L4
2

0

2

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:2

Before
After

(b) B RN—(C K4)

L1 L2 L3 L4
2

1

0

1

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:1

Before
After

(c) (C RN)—(C K4)

Fig. 9: Guessing entropy difference before and after the
recovery training for [oCHS18] dataset

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

Number of Traces

G
u
e
ss
in
g
E
n
tr
o
p
y

(A RN)—(C K4) (A RN)—(C K5) (A RN)—(D K6)
(B RN)—(C K4) (B RN)—(C K5) (B RN)—(D K6)
(C RN)—(C K4) (C RN)—(C K5) (C RN)—(D K6)

(a) Single Device Result

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

Number of Traces

G
u
e
ss
in
g
E
n
tr
o
p
y

(A RN)—(C K4) (A RN)—(C K5) (A RN)—(D K6)
(B RN)—(C K4) (B RN)—(C K5) (B RN)—(D K6)
(C RN)—(C K4) (C RN)—(C K5) (C RN)—(D K6)

(b) MDMSD Result

Fig. 10: Result for [oCHS18] dataset.

single device results never converge. As the dataset is fairly
simple to attack, changes observed for all layers in Figure 9
are very small, and ablating other layers had a similar effect
(we considered L4 as it gave the best results).

VII. DISCUSSION & SUMMARY

In this paper, we present the ablation methodology for
deep learning-based SCA. We concentrate on the behavior
of various types of noise (Gaussian noise, desynchronization,
clock jitter) and investigate a plethora of experimental set-
tings (neural networks, datasets, leakage models). Our results
indicate how various types of noise affect different neural
networks, allowing us to better understand the inner working
of neural networks. When the deep learning-based SCA breaks
the target, our methodology allows 1) to understand in what
layers the noise is handled, 2) gives intuition how difficult the
countermeasure is, and 3) allows us to understand whether
smaller neural networks can be used while reaching the same
performance. When deep learning-based SCA cannot break
the target, our methodology allows us to understand in what
layers is the largest influence of noise, thus indicating the
architectural parts that should be redesigned.

We enumerate the most important findings that we consis-
tently observed in the experiments:

1) Gaussian noise is an easier countermeasure for neural net-
works than desynchronization. This can be seen because
portability for Gaussian noise makes no issues, while for
desynchronization, we require re-training to adapt to the
changes in the dataset.

2) Clock jitter is an even more difficult countermeasure, and
we require comparably larger neural networks for suc-
cessful attacks. Note that while we mostly do not manage
to break datasets with the clock jitter countermeasure, it
does not mean it is impossible to break it, but only that

0 10 20 30 40 50 60
0

20

40

60

80

100

Number of Traces

G
u
e
ss
in
g
E
n
tr
o
p
y

Averaged GE for Original
Averaged GE for MDMSD

(a) Averaged GE Result
for [BCH+20] dataset

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

Number of Traces

G
u
e
ss
in
g
E
n
tr
o
p
y

Averaged GE for Original
Averaged GE for MDMSD

(b) Averaged GE Result for [oCHS18]
dataset

Fig. 11: Results for the two datasets considering portability.

it requires more measurements as demonstrated by Cagli
et al. [CDP17].

3) Gaussian noise is handled in the first layers of MLP
architectures (indicating rather shallow architectures are
sufficient), while desynchronization and clock jitter coun-
termeasures require more layers and deeper architectures.
Gaussian noise is only minimally processed in the CNNs’
convolution layer, while for desynchronization, the con-
volution layer plays the biggest role. This confirms the
results of Zaid et al. [ZBHV19] where the AES HD
architecture is rather shallow with two dense layers, and
ASCAD (Desync=100) has a deep architecture with ten
dense layers.

4) A neural network aims to adapt its weights in the layer
where ablation happens and in the next layer (less influ-
enced layers means that the adapting is easier).

5) Ablation can indicate what part of the neural network
needs to be adjusted for an attack to work. We show this
with the desynchronization countermeasure and ASCAD
with random keys.

6) Ablation indicates where countermeasures are processed
and whether a neural network can be made smaller.
However, in its current form, it does not show what parts
exactly can be removed without a performance penalty.

7) We require at least some model learnability for abla-
tion to provide meaningful results. If the trained model
performs on the level of random guessing, it is hard
to explain such a neural network’s inner working. Still,
the ablation study can serve as a strong indication of
such behavior, especially considering that recently, Wu et
al. showed how guessing entropy could be a misleading
metric [WWK+20]. If GE shows poor performance (e.g.,
on the level of random guessing) and ablating a neural
network does not show any differences in weights, it is
clear that the model did not learn anything.

8) Ablation is a useful tool in understanding how neural
networks work and how SCA countermeasures are pro-
cessed. Still, that does not mean every ablation experi-
ment will be equally easy to explain.

9) Ablation can help bridge the gap between the single
device model and MDM when multiple devices are not
available. Ablating layers responsible for the network’s
overfitting to a single device can help the model to

13

generalize better.
We mainly considered ablations happening in a single layer

only. While we are confident that such an approach gives
the most explainable results, we would like to investigate
in the future what happens when we ablate more layers
simultaneously. This is especially interesting for CNNs, where
we can ablate convolution and fully-connected layers. Finally,
as the current deep learning-based SCA trend uses relatively
small neural networks, we consider our work perfectly aligned
with the current state-of-the-art. Still, it would be interesting
to investigate ablation on larger neural network architectures,
as we postulate such architectures will become increasingly
important with the improvements in the countermeasures.

REFERENCES

[AAB+15] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from
tensorflow.org.

[AB18] Amina Adadi and Mohammed Berrada. Peeking inside the
black-box: A survey on explainable artificial intelligence (xai).
IEEE Access, 6:52138–52160, 2018.

[ALAM19] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian
Monrose. Sok: Security evaluation of home-based iot deploy-
ments. In 2019 IEEE symposium on security and privacy (sp),
pages 1362–1380. IEEE, 2019.

[BCH+20] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser,
Dirmanto Jap, Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind
the portability: A warriors guide through realistic profiled side-
channel analysis. In 27th Annual Network and Distributed
System Security Symposium, NDSS 2020, San Diego, California,
USA, February 23-26, 2020. The Internet Society, 2020.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora
Cagli, and Cécile Dumas. Deep learning for side-channel
analysis and introduction to ASCAD database. J. Cryptographic
Engineering, 10(2):163–188, 2020.

[C+15] François Chollet et al. Keras. https://github.com/fchollet/keras,
2015.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Con-
volutional neural networks with data augmentation against
jitter-based countermeasures. In Wieland Fischer and Nao-
fumi Homma, editors, Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 45–68, Cham, 2017. Springer
International Publishing.

[CLB+18] Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, and Cyn-
thia Rudin. This looks like that: deep learning for interpretable
image recognition. CoRR, abs/1806.10574, 2018.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template
attacks. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2002, 4th International Workshop, Redwood Shores,
CA, USA, August 13-15, 2002, Revised Papers, volume 2523
of Lecture Notes in Computer Science, pages 13–28. Springer,
2002.

[DFK19] Tobias Damm, Sven Freud, and Dominik Klein. Dissecting the
ches 2018 aes challenge. IACR Cryptol. ePrint Arch., 2019:783,
2019.

[DGD+19] Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh,
Arijit Raychowdhury, and Shreyas Sen. X-deepsca: Cross-
device deep learning side channel attack. In Proceedings of the

56th Annual Design Automation Conference 2019, DAC 2019,
Las Vegas, NV, USA, June 02-06, 2019, page 134. ACM, 2019.

[GA19] David Gunning and David Aha. Darpa’s explainable artificial
intelligence (xai) program. AI Magazine, 40(2):44–58, 2019.

[GHO15] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural
network based attack on a masked implementation of AES.
In 2015 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), pages 106–111, May 2015.

[GJS19] Aron Gohr, Sven Jacob, and Werner Schindler. CHES 2018 side
channel contest CTF - solution of the AES challenges. IACR
Cryptol. ePrint Arch., 2019:94, 2019.

[HGG20] Benjamin Hettwer, Stefan Gehrer, and Tim Güneysu. Deep
neural network attribution methods for leakage analysis and
symmetric key recovery. In Kenneth G. Paterson and Douglas
Stebila, editors, Selected Areas in Cryptography – SAC 2019,
pages 645–666, Cham, 2020. Springer International Publishing.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid
Verbauwhede, and Joos Vandewalle. Machine learning in side-
channel analysis: a first study. J. Cryptogr. Eng., 1(4):293–302,
2011.

[HPTD15] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning
both weights and connections for efficient neural networks. In
Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’15, page
1135–1143, Cambridge, MA, USA, 2015. MIT Press.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent Machine Homi-
cide - Breaking Cryptographic Devices Using Support Vector
Machines. In Werner Schindler and Sorin A. Huss, editors,
COSADE, volume 7275 of LNCS, pages 249–264. Springer,
2012.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In Michael J. Wiener, editor, Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

[KKK16] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Exam-
ples are not enough, learn to criticize! criticism for interpretabil-
ity. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 2280–2288. Curran Associates, Inc., 2016.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin,
and Alan Hanjalic. Make some noise. unleashing the power of
convolutional neural networks for profiled side-channel anal-
ysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 148–179, 2019.

[KRKK18] Kwonyoup Kim, Sangryeol Ryu, Taehyun Kim, and Taewon
Kim. AES Wireless Keyboard – Template Attack for Eaves-
dropping. BlackHat Asia, Singapore, 2018.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bon-
tempi, and Olivier Markowitch. A Machine Learning Approach
Against a Masked AES. In CARDIS, Lecture Notes in Computer
Science. Springer, November 2013. Berlin, Germany.

[Lom16] Victor Lomne. Common criteria certification of a smartcard: a
technical overview. CHES 2016, 2016.

[MDP19] Loı̈c Masure, Cécile Dumas, and Emmanuel Prouff. Gradient
visualization for general characterization in profiling attacks.
In Ilia Polian and Marc Stöttinger, editors, Constructive Side-
Channel Analysis and Secure Design - 10th International Work-
shop, COSADE 2019, Darmstadt, Germany, April 3-5, 2019,
Proceedings, volume 11421 of Lecture Notes in Computer
Science, pages 145–167. Springer, 2019.

[MLdPM19] Richard Meyes, Melanie Lu, Constantin Waubert de Puiseau,
and Tobias Meisen. Ablation studies in artificial neural net-
works. CoRR, abs/1901.08644, 2019.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards (Ad-
vances in Information Security). Springer-Verlag, Berlin, Hei-
delberg, 2007.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff.
Breaking cryptographic implementations using deep learning
techniques. In International Conference on Security, Privacy,
and Applied Cryptography Engineering, pages 3–26. Springer,
2016.

14

https://github.com/fchollet/keras

[oCHS18] Conference on Cryptographic Hardware and
Embedded Systems. Ches 2018 ctf, 2018.
https://chesctf.riscure.com/2018/news.

[PCP20] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek.
Strength in numbers: Improving generalization with ensembles
in machine learning-based profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2020(4):337–364, Aug. 2020.

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template
attack versus bayes classifier. J. Cryptogr. Eng., 7(4):343–351,
2017.

[PSK+18] Stjepan Picek, Ioannis Petros Samiotis, Jaehun Kim, Annelie
Heuser, Shivam Bhasin, and Axel Legay. On the performance
of convolutional neural networks for side-channel analysis. In
Anupam Chattopadhyay, Chester Rebeiro, and Yuval Yarom, ed-
itors, Security, Privacy, and Applied Cryptography Engineering,
pages 157–176, Cham, 2018. Springer International Publishing.

[RBA20] Unai Rioja, Lejla Batina, and Igor Armendariz. When sim-
ilarities among devices are taken for granted: Another look
at portability. In Abderrahmane Nitaj and Amr M. Youssef,
editors, Progress in Cryptology - AFRICACRYPT 2020 - 12th
International Conference on Cryptology in Africa, Cairo, Egypt,
July 20-22, 2020, Proceedings, volume 12174 of Lecture Notes
in Computer Science, pages 337–357. Springer, 2020.

[Sch77] Peter H Schiller. The effect of superior colliculus ablation on
saccades elicited by cortical stimulation. Brain research, 1977.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A
unified framework for the analysis of side-channel key recovery
attacks. In Antoine Joux, editor, Advances in Cryptology -
EUROCRYPT 2009, pages 443–461, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[SWM17] Wojciech Samek, Thomas Wiegand, and Klaus-Robert Müller.
Explainable artificial intelligence: Understanding, visualiz-
ing and interpreting deep learning models. arXiv preprint
arXiv:1708.08296, 2017.

[vdVPB19] Daan van der Valk, Stjepan Picek, and Shivam Bhasin. Kil-
roy was here: The first step towards explainability of neural
networks in profiled side-channel analysis. Cryptology ePrint
Archive, Report 2019/1477, 2019. https://eprint.iacr.org/2019/
1477.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart
Preneel. Revisiting a methodology for efficient cnn architectures
in profiling attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(3):147–168, Jun. 2020.

[Wei20] Léo Weissbart. Performance analysis of multilayer perceptron in
profiling side-channel analysis. In International Conference on
Applied Cryptography and Network Security, pages 198–216.
Springer, 2020.

[WP20] Lichao Wu and Stjepan Picek. Remove some noise: On pre-
processing of side-channel measurements with autoencoders.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(4):389–415, Aug. 2020.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you:
Automated hyperparameter tuning for deep learning-based side-
channel analysis. Cryptology ePrint Archive, Report 2020/1293,
2020. https://eprint.iacr.org/2020/1293.

[WWK+20] Lichao Wu, Léo Weissbart, Marina Krček, Huimin Li, Guil-
herme Perin, Lejla Batina, and Stjepan Picek. On the at-
tack evaluation and the generalization ability in profiling side-
channel analysis. Cryptology ePrint Archive, Report 2020/899,
2020. https://eprint.iacr.org/2020/899.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre
Venelli. Methodology for efficient cnn architectures in profiling
attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(1):1–36, Nov. 2019.

[ZSX+20] Fan Zhang, Bin Shao, Guorui Xu, Bolin Yang, Ziqi Yang,
Zhan Qin, and Kui Ren. From homogeneous to heterogeneous:
Leveraging deep learning based power analysis across devices.
In 57th ACM/IEEE Design Automation Conference, DAC 2020,
San Francisco, CA, USA, July 20-24, 2020, pages 1–6. IEEE,
2020.

L1 L2 L320

10

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(a) CNNs : ρ = 10%

L1 L2 L3
60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(b) CNNs : ρ = 50%

L1 L2 L3
150

100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(c) CNNs : ρ = 90%

Fig. 12: Guessing entropy difference before and after the
recovery training for CNNs: Gaussian noise (γ, σ, ρ, τ) =
(1.0, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with the fixed key.

APPENDIX

A. Results for the ASCAD with the Fixed Key Dataset

The additional results for ASCAD with the fixed key are
presented in this section. First, we depict the results for the
HW leakage model and CNNs in Figure 12. Figure 13
gives the weight differences for the HW leakage model. In
Figure 15, we give the weight difference results for the
desynchronization countermeasure and the HW leakage model.
Finally, Figures 16 and 17 present the results for the HW
leakage model and clock jitter.

0 1 2 3 4 5 6 7 8
Layer

0.0004

0.0006

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(a) MLPc : ρ = 10%

0 1 2 3
Layer

0.02

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(b) CNNs : ρ = 10%

0 1 2 3 4 5 6 7
Layer

0.0001

0.0002

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(c) CNNc : ρ = 10%

0 1 2 3 4 5
Layer

0.00050

0.00075

0.00100

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(d) MLPs : ρ = 50%

0 1 2 3
Layer

0.025

0.050

0.075

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(e) CNNs : ρ = 50%

0 1 2 3 4 5 6 7
Layer

0.0001

0.0002

0.0003

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(f) CNNc : ρ = 50%

0 1 2 3 4 5
Layer

0.0005

0.0010

0.0015

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(g) MLPs : ρ = 90%

0 1 2 3 4 5 6 7 8
Layer

0.0005

0.0010

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(h) MLPc : ρ = 90%

0 1 2 3
Layer

0.0

0.1

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(i) CNNs : ρ = 90%

Fig. 13: Weight difference before and after the
recovery training: Gaussian noise (γ, σ, ρ, τ) =
(1.0, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with the fixed key.

Next, Figures 18 and 19 give the results for the Gaussian
noise with γ = 1 for the ID leakage model. Finally, Figures 20
and 21 give results for desynchronization.

15

https://eprint.iacr.org/2019/1477
https://eprint.iacr.org/2019/1477
https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/899

L1 L2 L3
20

10

0

GE
 d

iff
er

en
ce

Ref_before:152/Ref_after:0

Before
After

(a) CNNs : ρ = 10%

L1 L2 L3

50

0

GE
 d

iff
er

en
ce

Ref_before:168/Ref_after:0

Before
After

(b) CNNs : ρ = 50%

L1 L2 L3
150

100

50

0

GE
 d

iff
er

en
ce

Ref_before:165/Ref_after:3

Before
After

(c) CNNs : ρ = 90%

Fig. 14: Guessing entropy difference before and af-
ter the recovery training for CNNs: Desynchronization
(γ, σ, ρ, τ) = (5, 10, (10%, 50%, 90%), 10) for the HW leak-
age model on ASCAD with the fixed key.

0 1 2 3 4 5
Layer

0.00025

0.00050

0.00075

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(a) MLPs : ρ = 10%

0 1 2 3 4 5 6 7 8
Layer

0.0002

0.0004

0.0006

0.0008

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(b) MLPc : ρ = 10%

0 1 2 3
Layer

0.01

0.02

0.03

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(c) CNNs : ρ = 10%

0 1 2 3 4 5 6 7
Layer

0.00005

0.00010

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(d) CNNc : ρ = 10%

0 1 2 3 4 5
Layer

0.00025

0.00050

0.00075

0.00100

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(e) MLPs : ρ = 50%

0 1 2 3 4 5 6 7 8
Layer

0.0002

0.0004

0.0006

0.0008

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(f) MLPc : ρ = 50%

0 1 2 3
Layer

0.01

0.02

0.03

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(g) CNNs : ρ = 50%

0 1 2 3 4 5 6 7
Layer

0.00005

0.00010

0.00015

0.00020

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(h) CNNc : ρ = 50%

0 1 2 3 4 5
Layer

0.0005

0.0010

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(i) MLPs : ρ = 90%

0 1 2 3 4 5 6 7 8
Layer

0.0002

0.0004

0.0006

0.0008

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(j) MLPc : ρ = 90%

0 1 2 3
Layer

0.00

0.02

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(k) CNNs : ρ = 90%

0 1 2 3 4 5 6 7
Layer

0.0001

0.0002

0.0003

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(l) CNNs : ρ = 90%

Fig. 15: Weight difference before and after the
recovery training: Desynchronization (γ, σ, ρ, τ) =
(5, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with the fixed key.

L1 L2 L320

10

0

GE
 d

iff
er

en
ce

Ref_before:157/Ref_after:204

Before
After

(a) CNNs : ρ = 10%

L1 L2 L3

10

0

10

GE
 d

iff
er

en
ce

Ref_before:147/Ref_after:214

Before
After

(b) CNNs : ρ = 50%

L1 L2 L30

20

40

GE
 d

iff
er

en
ce

Ref_before:210/Ref_after:212

Before
After

(c) CNNs : ρ = 90%

Fig. 16: Guessing entropy difference before and after the
recovery training for CNNs: Clock Jitter (γ, σ, ρ, τ) =
(1, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with the fixed key.

B. Results for the ASCAD with Random Keys Dataset

For the ASCAD with random keys, we provide results for
CNNs and HW leakage model in Figure 22, while the weight
differences are in Figure 23. Finally, Figure 24 gives the results
for CNNs for the desynchronization countermeasure in the
HW leakage model and Figure 25 gives the weight difference

0 1 2 3 4 5
Layer

0.002

0.003

0.004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(a) MLPs : ρ = 10%

0 1 2 3 4 5 6 7 8
Layer

0.002

0.003

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(b) MLPc : ρ = 10%

0 1 2 3
Layer

0.005

0.010

0.015

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(c) CNNs : ρ = 10%

0 1 2 3 4 5 6 7
Layer

2

4

6

W
ei

gh
t D

iff
er

en
ce

1e 5
Ref
L0
L1
L2
L3
L4
L5
L6

(d) CNNc : ρ = 10%

0 1 2 3 4 5
Layer

0.002

0.003

0.004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(e) MLPs : ρ = 50%

0 1 2 3 4 5 6 7 8
Layer

0.002

0.003

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(f) MLPc : ρ = 50%

0 1 2 3
Layer

0.010

0.015

0.020

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(g) CNNs : ρ = 50%

0 1 2 3 4 5 6 7
Layer

2

4

6

W
ei

gh
t D

iff
er

en
ce

1e 5
Ref
L0
L1
L2
L3
L4
L5
L6

(h) CNNc : ρ = 50%

0 1 2 3 4 5
Layer

0.002

0.004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(i) MLPs : ρ = 90%

0 1 2 3 4 5 6 7 8
Layer

0.002

0.004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(j) MLPc : ρ = 90%

0 1 2 3
Layer

0.01

0.02

0.03

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(k) CNNs : ρ = 90%

0 1 2 3 4 5 6 7
Layer

2

4

6

W
ei

gh
t D

iff
er

en
ce

1e 5
Ref
L0
L1
L2
L3
L4
L5
L6

(l) CNNc : ρ = 90%

Fig. 17: Weight difference before and after the
recovery training: Clock Jitter (γ, σ, ρ, τ) =
(1, 10, (10%, 50%, 90%), 10) for the HW leakage model
on ASCAD with the fixed key.

L1 L2 L3 L4 L5

1

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(a) MLPs: ρ = 10%

L1 L2 L3 L4 L5 L6 L7 L8

5

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(b) MLPc: ρ = 10%

L1 L2 L34

2

0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(c) CNNs: ρ = 10%

L1 L2 L3 L4 L5

15

10

5

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(d) MLPs: ρ = 50%

L1 L2 L3 L4 L5 L6 L7 L8
40

20

0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(e) MLPc: ρ = 50%

L1 L2 L3

20

10

0

GE
 d

iff
er

en
ce

Ref_before:5/Ref_after:0

Before
After

(f) CNNs: ρ = 50%

L1 L2 L3 L4 L5

60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(g) MLPs: ρ = 90%

L1 L2 L3 L4 L5 L6 L7 L8
100

50

0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(h) MLPc: ρ = 90%

L1 L2 L3

100

50

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(i) CNNs: ρ = 90%

Fig. 18: Guessing entropy difference before and af-
ter the recovery training: Gaussian noise (γ, σ, ρ, τ) =
(1.0, 10, (10%, 50%, 90%), 10) for the ID leakage model on
ASCAD with the fixed key.

results.

C. Methodology for the Multiple Device Model from a Single
Device

The results for MDMSD with different ablation rates are
given in Figure 26. Observe how ablation rates of 10% and

16

0 1 2 3 4 5
Layer

0.00010

0.00015

0.00020

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(a) MLPs: ρ = 10%

0 1 2 3 4 5 6 7 8
Layer

0.00010

0.00015

0.00020

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(b) MLPc: ρ = 10%

0 1 2 3
Layer

0.02

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(c) CNNs: ρ = 10%

0 1 2 3 4 5
Layer

0.0001

0.0002

0.0003

0.0004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(d) MLPs: ρ = 50%

0 1 2 3 4 5 6 7 8
Layer

0.0001

0.0002

0.0003

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(e) MLPc: ρ = 50%

0 1 2 3
Layer

0.01

0.02

0.03

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(f) CNNs: ρ = 50%

0 1 2 3 4 5
Layer

0.0001

0.0002

0.0003

0.0004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(g) MLPs: ρ = 90%

0 1 2 3 4 5 6 7 8
Layer

0.0002

0.0004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(h) MLPc: ρ = 90%

0 1 2 3
Layer

0.02

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(i) CNNs: ρ = 90%

Fig. 19: Weight difference before and after the
recovery training: Gaussian noise (γ, σ, ρ, τ) =
(1.0, 10, (10%, 50%, 90%), 10) for the ID leakage model
on ASCAD with the fixed key.

L1 L2 L3 L4 L5
10

5

0

GE
 d

iff
er

en
ce

Ref_before:17/Ref_after:0

Before
After

(a) MLPs: ρ = 10%

L1 L2 L3 L4 L5 L6 L7 L8
15

10

5

0

GE
 d

iff
er

en
ce

Ref_before:21/Ref_after:6

Before
After

(b) MLPc: ρ = 10%

L1 L2 L3

0

5

10

GE
 d

iff
er

en
ce

Ref_before:166/Ref_after:0

Before
After

(c) CNNs: ρ = 10%

L1 L2 L3 L4 L5

40

20

0

GE
 d

iff
er

en
ce

Ref_before:19/Ref_after:0

Before
After

(d) MLPs: ρ = 50%

L1 L2 L3 L4 L5 L6 L7 L8

60

40

20

0

GE
 d

iff
er

en
ce

Ref_before:20/Ref_after:7

Before
After

(e) MLPc: ρ = 50%

L1 L2 L3

0

20

GE
 d

iff
er

en
ce

Ref_before:165/Ref_after:0

Before
After

(f) CNNs: ρ = 50%

L1 L2 L3 L4 L5

75

50

25

0

GE
 d

iff
er

en
ce

Ref_before:18/Ref_after:0

Before
After

(g) MLPs: ρ = 90%

L1 L2 L3 L4 L5 L6 L7 L8

100

50

0

GE
 d

iff
er

en
ce

Ref_before:17/Ref_after:6

Before
After

(h) MLPc: ρ = 90%

L1 L2 L3

100

0

GE
 d

iff
er

en
ce

Ref_before:172/Ref_after:0

Before
After

(i) CNNs: ρ = 90%

Fig. 20: Guessing entropy difference before and after
the recovery training: Desynchronization (γ, σ, ρ, τ) =
(5, 10, (10%, 50%, 90%), 10) for the ID leakage model on
ASCAD with the fixed key.

0 1 2 3 4 5
Layer

0.00015

0.00020

0.00025

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(a) MLPs: ρ = 10%

0 1 2 3 4 5 6 7 8
Layer

0.00010

0.00015

0.00020

0.00025

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(b) MLPc: ρ = 10%

0 1 2 3
Layer

0.05

0.10

0.15

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(c) CNNs: ρ = 10%

0 1 2 3 4 5
Layer

0.0002

0.0003

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(d) MLPs: ρ = 50%

0 1 2 3 4 5 6 7 8
Layer

0.0001

0.0002

0.0003

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(e) MLPc: ρ = 50%

0 1 2 3
Layer

0.0

0.1

0.2

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(f) CNNs: ρ = 50%

0 1 2 3 4 5
Layer

0.0001

0.0002

0.0003

0.0004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(g) MLPs: ρ = 90%

0 1 2 3 4 5 6 7 8
Layer

0.0001

0.0002

0.0003

0.0004

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(h) MLPc: ρ = 90%

0 1 2 3
Layer

0.02

0.04

0.06

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(i) CNNs: ρ = 90%

Fig. 21: Weight difference before and after the
recovery training: Desynchronization (γ, σ, ρ, τ) =
(5, 10, (10%, 50%, 90%), 10) for the ID leakage model on
ASCAD with the fixed key.

L1 L2 L3

15

10

5

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(a) CNNs: ρ = 10%

L1 L2 L3

75

50

25

0

GE
 d

iff
er

en
ce

Ref_before:1/Ref_after:0

Before
After

(b) CNNs: ρ = 50%

L1 L2 L3

75

50

25

0

GE
 d

iff
er

en
ce

Ref_before:0/Ref_after:0

Before
After

(c) CNNs: ρ = 50%

Fig. 22: Guessing entropy difference before and after the
recovery training for CNNs: Gaussian noise (γ, σ, ρ, τ) =
(1, 10, (10%, 50%, 90%), 10) for the HW leakage model on
ASCAD with random keys.

50% give similar results, while 99% ablation rate performs
significantly better.

17

0 1 2 3 4 5
Layer

0.02

0.03

0.04

0.05

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(a) MLPs: ρ =
10%

0 1 2 3 4 5 6 7 8
Layer

0.01

0.02

0.03

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(b) MLPc: ρ =
10%

0 1 2 3
Layer

0.1

0.2

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(c) CNNs: ρ =
10%

0 1 2 3 4 5 6 7
Layer

0.004

0.006

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(d) CNNc: ρ =
10%

0 1 2 3 4 5
Layer

0.02

0.04

0.06

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(e) MLPs: ρ =
50%

0 1 2 3 4 5 6 7 8
Layer

0.01

0.02

0.03

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(f) MLPc: ρ =
50%

0 1 2 3
Layer

0.1

0.2

0.3

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(g) CNNs: ρ =
50%

0 1 2 3 4 5 6 7
Layer

0.004

0.006

0.008

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(h) CNNc: ρ =
50%

0 1 2 3 4 5
Layer

0.02

0.04

0.06

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(i) MLPs: ρ =
50%

0 1 2 3 4 5 6 7 8
Layer

0.02

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(j) MLPc: ρ =
50%

0 1 2 3
Layer

0.1

0.2

0.3

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(k) CNNs: ρ =
50%

0 1 2 3 4 5 6 7
Layer

0.005

0.010

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(l) CNNc: ρ =
50%

Fig. 23: Weight difference before and after the
recovery training: Gaussian noise (γ, σ, ρ, τ) =
(1, 10, (10%, 50%, 90%), 10) for the HW leakage model
on ASCAD with random keys.

L1 L2 L3
20

0

20

GE
 d

iff
er

en
ce

Ref_before:192/Ref_after:93

Before
After

(a) CNNs: ρ = 10%

L1 L2 L3
0

20

40

GE
 d

iff
er

en
ce

Ref_before:190/Ref_after:94

Before
After

(b) CNNs: ρ = 50%

L1 L2 L3
0

20

40

GE
 d

iff
er

en
ce

Ref_before:190/Ref_after:91

Before
After

(c) CNNs: ρ = 90%

Fig. 24: Guessing entropy difference before and af-
ter the recovery training for CNNs: Desynchronization
(γ, σ, ρ, τ) = (5, 10, (10%, 50%, 90%), 10) for the HW leak-
age model on ASCAD with random keys.

0 1 2 3 4 5
Layer

0.02

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(a) MLPs: ρ =
10%

0 1 2 3 4 5 6 7 8
Layer

0.005

0.010

0.015

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(b) MLPc: ρ =
10%

0 1 2 3
Layer

0.02

0.04

0.06

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(c) CNNs: ρ =
10%

0 1 2 3 4 5 6 7
Layer

0.002

0.004

0.006

0.008

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(d) CNNc: ρ =
10%

0 1 2 3 4 5
Layer

0.02

0.04

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(e) MLPs: ρ =
50%

0 1 2 3 4 5 6 7 8
Layer

0.01

0.02

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(f) MLPc: ρ =
50%

0 1 2 3
Layer

0.05

0.10

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(g) CNNs: ρ =
50%

0 1 2 3 4 5 6 7
Layer

0.002

0.004

0.006

0.008

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(h) CNNc: ρ =
50%

0 1 2 3 4 5
Layer

0.02

0.04

0.06

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4

(i) MLPs: ρ =
90%

0 1 2 3 4 5 6 7 8
Layer

0.00

0.01

0.02

0.03

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6
L7

(j) MLPc: ρ =
90%

0 1 2 3
Layer

0.0

0.1

0.2

0.3

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2

(k) CNNs: ρ =
90%

0 1 2 3 4 5 6 7
Layer

0.002

0.004

0.006

0.008

W
ei

gh
t D

iff
er

en
ce Ref

L0
L1
L2
L3
L4
L5
L6

(l) CNNc: ρ =
90%

Fig. 25: Weight difference before and after the
recovery training: Desynchronization (γ, σ, ρ, τ) =
(5, 10, (10%, 50%), 10) for the HW leakage model on ASCAD
with random keys.

0 10 20 30 40 50 60
0

20

40

60

80

100

Number of Traces

G
u
e
ss
in
g
E
n
tr
o
p
y

Averaged GE for MDMSD (Ablation 10%)
Averaged GE for MDMSD (Ablation 50%)
Averaged GE for MDMSD (Ablation 99%)

Fig. 26: Results of averaged GE for (B1 K1)
—(B2 K2) and (B1 K1)—(B4 K3).

18

	Introduction
	Background
	Notation
	Deep Learning and Profiling SCA
	Portability
	SCA Countermeasures
	Neural Network Architectures
	Multilayer Perceptron
	Convolutional Neural Networks

	Related Work

	Ablation & SCA
	Ablation
	Proposed Ablation Methodology

	Experimental Setup
	Threat Model
	General Setup
	Datasets
	ASCAD with Fixed Key Dataset
	ASCAD with Random Keys Dataset

	Attack Architectures

	Experimental Results
	Results for the ASCAD with the Fixed Key Dataset
	Results for the ASCAD with Random Keys Dataset
	What Could We Explain?

	Application to the Multiple Device Model
	Datasets
	DBLP:conf/ndss/BhasinCHJPS20 dataset
	 ches2018challenge dataset

	Adapting Ablation Methodology for Portability Setting
	Evaluation Results
	Results for DBLP:conf/ndss/BhasinCHJPS20 Dataset
	Results for ches2018challenge Dataset

	Discussion & Summary
	References
	Appendix
	Results for the ASCAD with the Fixed Key Dataset
	Results for the ASCAD with Random Keys Dataset
	Methodology for the Multiple Device Model from a Single Device

