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Abstract. In this work, we propose generic and novel side-channel assisted chosen-
ciphertext attacks for NTRU-based Key Encapsulation Mechanisms (KEM) secure in
the chosen ciphertext model (IND-CCA security). Our attacks involve construction
of malformed ciphertexts which, when decapsulated by the target device, ensure
that a targeted intermediate variable has a very close relation with the secret key.
Subsequently, an attacker who can obtain information about the secret-dependent
variable through side-channels, can recover the full secret key. We propose several
novel CCAs which can be carried through instantiating three different types of oracles,
namely plaintext-checking oracle, decryption-failure oracle, and full-decryption oracle,
using side-channel leakage from the decapsulation procedure. Our proposed attacks
are applicable to two NTRU-based schemes: NTRU and NTRU Prime. The two
schemes are candidates in the ongoing NIST standardization process for post-quantum
cryptography. We perform experimental validation of our proposed attacks on
optimized implementations of NTRU-based schemes taken from the open-source
pqm4 library, using the EM-based side-channel on the 32-bit ARM Cortex-M4
microcontroller. All our proposed attacks are capable of recovering the full secret
key in only a few thousand chosen ciphertext queries to the target device on all
parameter sets of NTRU and NTRU Prime. Our attacks therefore stress on the need
for concrete protection strategies for NTRU-based KEMs.
Keywords: lattice-based cryptography · electromagnetic-based side-channel attack ·
learning with error · learning with rounding · chosen ciphertext attack · public
key encryption · key encapsulation mechanism

1 Introduction
The NIST standardization process for post-quantum cryptography is currently in the third
and final round with seven finalist candidates and eight alternate candidates for Public
Key Encryption (PKE), Key Encapsulation Mechanisms (KEM), and Digital Signatures
(DS) [AASA+20]. For this round, NIST has made it clear that resistance to side-channel
attacks (SCAs) and fault injection attacks (FIAs) will also be considered as important
criteria in the standardization process, especially amongst schemes with tightly matched
security and efficiency [AH21]. The cost of implementing protections against such attacks
will also be looked into closely. In [AASA+20, Section 2.2.3] NIST states that
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NIST hopes to collect more information about the costs of implementing these
algorithms in a way that provides resistance to side-channel attacks.

Three out of the four finalist candidates for PKE/KEMs are schemes from lattice-based
cryptography. Lattice-based PKE/KEMs can be broadly classified into two categories.
Schemes based on the Learning with Errors (LWE) [Reg09] and Learning with Round-
ing (LWR) [BPR12] problems are in the first category. The second category collects
schemes which are based on the Nth order Truncated Polynomial Ring Unit (NTRU) prob-
lem [HPS98]. The security of IND-CPA secure lattice-based schemes in a static key setting,
that is, when the secret key is reused, has been studied for a long time. Several works have
proposed efficient Chosen-Ciphertext Attacks (CCAs) on both LWE/LWR-based schemes
as well as NTRU-based schemes [DCQ19,QCD19,BDHD+19, BGRR19, Flu16]. These
attacks mainly work by assuming the presence of an oracle that provides some information
about the decrypted message.

There are at least three types of oracles that can be instantiated, depending upon the
setting, when using an IND-CPA secure scheme. These are the Key-Mismatch or Plaintext-
Checking (PC) oracle, the Decryption-Failure (DF) oracle, and the Full-Decryption (FD)
oracle. The Plaintext-Checking oracle typically provides a binary response, either correct
or wrong, about the attacker’s guess of the decrypted message (resp., shared secret key) of
a PKE (resp., KEM) for a chosen ciphertext. In the presence of a DF oracle, an attacker
can infer whether or not a given ciphertext results in a decryption failure. While both the
PC and DF oracles only provide a binary information, a full decryption oracle provides
information about the complete message for chosen ciphertexts. Based on the available
oracle, an attacker carefully chooses query ciphertexts in such a way that the corresponding
oracle’s responses reveal the secret key.

All NIST candidates for PKE/KEMs apply well-known CCA conversions to achieve
an IND-CCA security against adaptive CCAs. These IND-CCA secure schemes would
detect invalid/malformed ciphertexts with a very high probability and would return failure
or a pseudo-random output upon detection, thereby offering concrete protection against
CCAs. This removes the presence of all three aforementioned oracles in an ideal classical
black box setting. However, any cryptographic algorithm implemented on a real device
leaks information about some intermediate values such as timing, power consumption, and
electromagnetic (EM) emanation, through side-channels.

Following this line of thought, several side-channel assisted CCAs on LWE/LWR-based
PKE/KEMs have been proposed. They utilize side-channel information to instantiate
different types of oracles to gain information about the decryption output. This information
facilitates secret key recovery in several LWE/LWR-based NIST candidates. These include
the finalists, such as Kyber [ABD+20b], Saber [DKSRV20], and Frodo [ABD+20a]. A
similar analysis is, however, lacking for schemes based on the NTRU problem, including the
main finalist NTRU [CDH+19] and alternate finalist NTRU Prime [BBC+20]. Extending
such attacks to NTRU-based schemes is not trivial since the framework and arithmetic,
underlying NTRU-based schemes is vastly different from those based on the LWE/LWR
paradigm. Thus, mounting side-channel assisted CCAs on NTRU-based schemes remains
an open problem.

This remains the case, even when there are known CCAs on IND-CPA secure NTRU-
based schemes that work in a classical black box setting [JJ00,HGNP+03,DDSV19]. Most
existing CCAs have targeted older variants of NTRU. Adapting the same attacks to the
newer variants is not trivial, due to differences in the underlying arithmetic and finer
technical details. As an example, we refer to the work of Zhang et al. [ZCQD21]. They
demonstrated a successful attack on the NTRU-HPS variant of the NIST finalist NTRU
KEM with 100% success rate, but failed to achieve the same success rate when targeting
the NTRU-HRSS variant of NTRU KEM. Similarly, NTRU Prime also incorporates several
optimizations such as the use of rounded ciphertexts. Its arithmetic, over a non-cyclotomic
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field, poses significant challenges in performing CCAs, both in a black box setting as well
as in a side-channel setting.

Thus, there exists a sufficient gap in theoretical understanding in terms of how to
mount CCAs over the newer variants of NTRU-based schemes. These aspects make it
very interesting to develop side-channel assisted CCAs on NTRU-based schemes. Another
pertinent question that arises is, even if such attacks appear to be possible, is there a
significant difference in terms of the cost of side-channel CCAs on NTRU-based schemes,
compared to attacks on LWE/LWR-based schemes.

To address these critical questions, we propose here the first side-channel assisted CCAs
on IND-CCA secure NTRU-based schemes. Our attacks are applicable to the IND-CCA
secure NTRU and NTRU Prime KEMs, the NTRU-based candidates for PKE/KEMs in
the NIST Post Quantum Cryptography (PQC) standardization process. We attempt to
traverse the landscape of side-channel assisted CCAs, by demonstrating practical side-
channel attacks instantiating three different types of oracles. These are the PC oracle, the
DF oracle, and the FD oracle on all parameter sets of NTRU and NTRU Prime. Underlying
the attacks is the key idea of building suitably chosen ciphertexts that are capable of
instantiating the three types of oracles. The idea for the type of ciphertexts to be built is
inspired by the work of Jaulmes and Joux [JJ00]. They proposed the first CCA that works
in a black box setting on the original IND-CPA secure NTRU PKE scheme of Hoffstein et
al [HPS98]. We in this work propose novel and generic adaptations of their attack to mount
successful side-channel assisted CCAs on NTRU and NTRU Prime. Remarkably, all our
proposed attacks only require a few thousand chosen-ciphertext queries to the target device
for full key recovery with a 100% success rate and no offline analysis for key recovery. Our
analysis is also backed by successful experimental validation on optimized implementations
of NTRU and NTRU Prime KEM taken from the open-source pqm4 library [KRSS19], on
the 32-bit ARM Cortex-M4 microcontroller using the Electromagnetic Emanation (EM)
side-channel.

Contributions:

The main contributions of our work can be summarized as follows.

1. We demonstrate the first practical side-channel assisted chosen-ciphertext attacks
on NTRU-based schemes. The attacks target two NTRU-based schemes, NTRU
and NTRU Prime, which are final round candidates in the onging NIST PQC
standardization process. It is worth noting that such attacks until now, have only
been demonstrated on LWE/LWR-based schemes. Our work is the first to investigate
such attacks on NTRU-based schemes.

2. We traverse the landscape of side-channel assisted CCAs on NTRU-based schemes
by demonstrating practical attacks that instantiate three different types of oracles
through side-channels on IND-CCA secure NTRU and NTRU Prime KEMs for full
key recovery. These are the plaintext-checking oracle, decryption-failure oracle, and
full-decryption oracle.

3. The core idea in the construction of chosen ciphertexts to instantiate the three oracles
is inspired by the work of Jaulmes and Joux [JJ00]. They proposed the first CCA on
the original NTRU scheme of Hoffstein et al [HPS98]. We propose generic and novel
adaptations of their attack to develop successful CCAs. They are capable of utilizing
all three oracles for successful key recovery in NTRU and NTRU Prime KEMs.

4. Remarkably, we also propose the first attack that works with a 100% success rate on
the NTRU-HRSS variant of NTRU and Streamlined NTRU Prime, assuming the
presence of a plaintext-checking oracle for key recovery. We exhibit novel techniques
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to subvert the challenges posed by optimizations such as use of rounded ciphertexts
in NTRU Prime and use of arbitrary-weight secrets in the NTRU-HRSS variant of
NTRU, to perform successful key recovery.

5. We also demonstrate simple techniques to utilize side-channel leakage from the de-
capsulation procedure, to realize a practical plaintext-checking oracle and decryption-
failure oracle, to combine it with the capabilities of our proposed novel CCAs for
efficient key recovery attacks. Since these oracles only provide binary information,
the side-channel analysis relies on simple techniques and can be performed with very
minimal knowledge about the target implementation.

6. We perform experimental validation of our attacks on optimized implementations
of NTRU-based schemes taken from the open-source pqm4 library [KRSS19], using
the EM-based side-channel on the 32-bit ARM Cortex-M4 microcontroller. All our
proposed attacks are capable of recovering the full secret key in only a few thousand
chosen ciphertext queries to the target device on all parameter sets of NTRU and
NTRU Prime.

Availability of software

All softwares utilized for this work is placed into the public domain. They are available at
https://github.com/SCACCAONNTRU/SCACCAONNTRU.

Organization of the Paper

This paper is organized as follows. Section 2 provides the necessary background by
introducing the required notation and concepts as well as useful known results. Sections 3
and 4 present our proposed PC oracle-based attack. The discussion covers the attack routes
on NTRU Prime and on NTRU, respectively. Sections 5 and 6 discuss our DF oracle-based
and FD oracle-based SCAs, in that order. Section 7 discusses potential countermeasures
against our proposed attacks. Section 8 concludes our paper.

2 Lattice Preliminaries

2.1 Notation
We denote by Z/qZ or Zq, the ring of integers modulo an integer q, zero-centered in
the range [−q/2, q/2 − 1] ∩ Z if q is even, or [−(q − 1)/2, (q − 1)/2] ∩ Z if q is odd. For
brevity, we denote the threshold as q/2 throughout the paper, irrespective of q being
even or odd. Let Zq[x]/(φ(x)) denote the polynomial ring whose reduction polynomial
is φ(x). The ring elements are polynomials whose coefficients come from Zq. We use Rq
to denote a polynomial ring. Polynomials in Rq are written in bold lower case letters.
The ith coefficient of a polynomial a ∈ Rq is denoted by a[i]. The multiplication of two
polynomials a and b is denoted as c = a ·b. A polynomial is small if its coefficients are in
Z3 := {−1, 0, 1}. A polynomial is of weight-w if exactly w of its coefficients are nonzero.
An element x ∈ Rq which is sampled from a distribution D with standard deviation σ is
denoted by x← Dσ(Rq).

An array of bytes of an arbitrary length is denoted by B∗. Byte arrays of length n are
written as Bn. The ith bit in an element x ∈ Zq is denoted by xi. The acquisition of a
side-channel trace t corresponding to a particular operation X on an input p is denoted by
t⇐= X (p).

https://github.com/SCACCAONNTRU/SCACCAONNTRU
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2.2 NTRU One-Way Function
Hoffstein, Pipher, and Silverman in 1998 [HPS98] proposed the N th order Truncated
Polynomial Ring Unit (NTRU) public key encryption scheme. Its security relies on a
conjectured circular security assumption, better known as the NTRU assumption or the
NTRU One-Way Function, involving the factorization of polynomials in Rq [HPS98].

Definition 1 (NTRU OWF). Given RNTRU := Zq[x]/(xN − 1), a small invertible poly-
nomial p ← Dσ(RNTRU), and another small polynomial g ← Dσ(RNTRU), distinguish
structured samples g · p−1 ∈ RNTRU from uniformly random samples in U(RNTRU).

The problem was shown to be reducible to a shortest vector problem (SVP) over a
special class of lattices known as the NTRU lattices [CS97]. It is worth noting that the
NTRU cryptosystem has survived cryptanalysis for almost 24 years now. This instills a
lot of confidence in its security claims, despite the lack of provable security guarantees.
Two candidate PKE/KEMs in the NIST PQC standardization process, namely a main
finalist NTRU [CDH+19] and an alternate finalist NTRU Prime [BBC+20], are based on
the paradigm of the NTRU cryptosystem. For clarity, we refer to the original NTRU PKE
proposed in [HPS98] as NTRU-1998 whereas the finalists NTRU and NTRU Prime are
referred to by their respective names throughout this paper.

2.3 NTRU Prime
NTRU Prime is a suite of two IND-CCA secure KEMs: Streamlined NTRU Prime and
NTRU LPRime. The former is based on the NTRU paradigm. The latter is based upon
the LPR Encrypt paradigm [BBC+20]. We focus on the Streamlined NTRU Prime variant
and, henceforth, refer to it as NTRU Prime. At its core, it contains a perfectly correct
and deterministic IND-CPA secure PKE. It is defined by three parameters (n, q, w), where
n and q are prime numbers and w is a positive integer with the restrictions

2n ≥ 3w, q ≥ 16w + 1, xn − x− 1 is irreducible in Zq[x].

Unlike the NTRU-1998 PKE which operates in a cyclotomic ring (Z/qZ)[x]/(xn − 1) with
n = 2k, NTRU Prime operates in the field Rq := Zq[x]/(xn−x−1), which is not cyclotomic.
The choice is motivated by the need to protect against potential attacks that could exploit
the cyclotomic structure in lattice-based schemes [KEF20].

Algorithm 1 describes the NTRU Prime PKE. The procedure GenSmall() takes in a
seed ρ ∈ B∗ and samples for small polynomials in R3, whereas GenShort uses ρ ∈ B∗ to
sample for small weight-w polynomials from the space denoted as Rsh. The procedure
Round rounds every coefficient of a given polynomial to its nearest multiple of 3.

The key generation procedure NTRU_PRIME_PKE.KeyGen produces an NTRU in-
stance h = g/(3f) ∈ Rq with g ∈ R3 and f ∈ Rsh. The secret key is formed by f and
g. The public key is h ∈ Rq. The encryption procedure NTRU_PRIME_PKE.Encrypt
takes as input the message polynomial r ∈ Rsh and generates a product-form NTRU
instance c = Round(r · h) ∈ Rq as the ciphertext whose coefficients are multiples of 3. The
decryption procedure NTRU_Prime_PKE.Decrypt takes the ciphertext c to first compute
a = 3f ·c ∈ Rq. The parameters are chosen to ensure that the true, that is the non-reduced,
value of every coefficient a[i] for i ∈ [0, p − 1] always lies in the zero-centered range
(−q/2, q/2]. A suitable choice for the parameters, leading to the a in Line 3, is key to the
correctness of the decryption procedure. The resulting a is then reduced modulo 3 to yield
e = g · r ∈ R3. The latter, upon multiplication with ĝ ∈ R3, results in b′. Subsequently,
the weight of b′ is checked. If Weight(b′) = w, then r′ = b′ is the valid decryption output.
Otherwise, the decryption output is fixed to be (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ R3.
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Algorithm 1: Streamlined NTRU Prime PKE Core
1 Procedure NTRU_PRIME_PKE.KeyGen()
2 while g is invertible in R3 do
3 ρ← U(B∗), g← GenSmall(ρ) ∈ R
4 end
5 ĝ = 1/g ∈ R3
6 ρ← U(B∗), f ← GenShort(ρ) ∈ Rsh
7 h = g/(3f) ∈ Rq
8 return (pk = h, sk = (ĝ, f))
9

1 Procedure NTRU_PRIME_PKE.Encrypt(pk, r ∈ Rsh)
2 d = h · r ∈ Rq
3 c = Round(d) ∈ Rq
4 ct = Encode(c)
5 return (ct)
6

1 Procedure NTRU_PRIME_PKE.Decrypt(ct, sk)
2 c = Decode(ct) ∈ Rq
3 a = 3f · c ∈ Rq
4 e = a modR3
5 b′ = e · ĝ ∈ R3
6 if Weight(b′) = w then
7 return r′ = b′
8 end
9 else

10 return r′ = (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ Rsh
11 end

2.3.1 IND-CCA Secure NTRU Prime KEM

The NTRU Prime PKE core is only IND-CPA secure and, hence, is susceptible to
CCAs. The well-known Fujisaki Okamoto (FO) transform [FO99] can convert it into
an IND-CCA secure KEM. The transform instantiates NTRU_PRIME_PKE.Encrypt,
NTRU_PRIME_PKE.Decrypt, and several instances of hash functions in the IND-CCA
secure encapsulation and decapsulation procedures. Algorithm 2 supplies the detail. In
theory, the FO transform helps check the validity of ciphertexts through a re-encryption
procedure after decryption in Line 5 of NTRU_Prime_KEM.Decaps. Thus, the attacker
only sees, with a very high probability, decapsulation failures for invalid ciphertexts. This
provides strong theoretical security guarantees against CCAs.

2.4 NTRU
NTRU provides a suite of IND-CCA secure KEMs. Similar to NTRU Prime, NTRU’s core
contains a perfectly correct and deterministic IND-CPA secure PKE. It is parameterized
by pairwise coprime integers (n, p, q), sample spaces (Lf ,Lg,Lr,Lm), and an injection lift
operation Lift : Lm → Zx, p = 3 and q is a power of 2. Let k ∈ Z+, φ1 = (x − 1), and
φn = (xn−1 + xn−2 + . . .+ 1). We note that φ1 · φn = (xn − 1).

NTRU performs computations over two polynomial rings Sk := Zk[x]/(φn) and Tk :=
Zk[x]/(φ1φn). It offers parameter sets that fall into two broad categories, namely, NTRU-
HPS and NTRU-HRSS. While they share several unified design choices, there are notable
differences. NTRU-HPS selects coefficients from fixed-weight sample spaces, similar to the
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Algorithm 2: The FO transform from IND-CPA into IND-CCA secure KEM
1 Procedure NTRU_Prime_KEM.Encaps(pk)
2 ρ← U(B∗)
3 r = GenShort(ρ) ∈ Rsh
4 c = NTRU_PRIME_PKE.Encrypt(pk, r)
5 d = H(r, pk)
6 ct = (c,d), K = G(1, r, ct)
7 return ct,K

8

1 Procedure KEM.Decaps(sk, pk, ct)
2 ct = (c,d)
3 r′ = NTRU_PRIME_PKE.Decrypt(sk, c)
4 d′ = H(r′, pk)
5 c′ = NTRU_PRIME_PKE.Encrypt(pk, r′)
6 ct′ = (c′, d′)
7 if ct′ = ct then
8 return K = G(1, r′, ct′)
9 end

10 else
11 return K = G(1, ρ′, ct′) /* ρ′ ∈ B32 is a random secret */
12 end

NTRU-1998 PKE. NTRU-HRSS selects coefficients from an arbitrary-weight sample space.
We refer the reader to [CDH+19] for the respective details of both variants.

Without loss of generality, we use the NTRU-HPS PKE to describe the procedures of
the NTRU PKE core in Algorithm 3. The procedure Sample_fg() takes in a seed ρ ∈ B∗
and samples the secret polynomials f ,g ∈ Rp where p = 3. The key generation procedure
NTRU_PKE.KeyGen produces an instance h = 3g/(f) ∈ Tq, with (f ,g) forming the secret
key and h ∈ Tq forming the public key. We highlight here the change in position of the
multiplier 3 in h compared to its position in NTRU Prime, where h = g/3f ∈ Rq.

The encryption procedure NTRU_PKE.Encrypt takes a random r ∈ Lr and a message
m ∈ Lm as input to generate the ciphertext c as h·r+Lift(m) ∈ Tq as shown in Line 3. The
decryption procedure NTRU_PKE.Decrypt uses the ciphertext c to compute a ∈ f · c ∈ Tq
in Line 7. Just like in NTRU Prime, the true value of every coefficient of a is in Zq.
This is the key to the perfect correctness of the NTRU PKE. Subsequently, a ∈ Tq is
reduced modulo S3 and multiplied with fp to compute the message polynomial m′, which
is then used to recover the random polynomial r′ in Lines 10 and 11. Line 12 says that
the decryption procedure returns the polynomial pair (r′,m′) as the decryption output
only if (r′,m′) ∈ (Lr × Lm). Otherwise, it returns the fixed value (1, 1). The decryption
procedure also generates a single bit denoted as fail which denotes success or failure of
decryption, where fail = 0 denotes success, and failure otherwise.

2.4.1 IND-CCA Secure NTRU KEM

Unlike NTRU Prime KEM and several other LWE/LWR-based KEMs, NTRU KEM
achieves IND-CCA security without re-encryption, since the underlying NTRU PKE
core achieves the Bernstein-Persichetti rigidity [BP18]. This makes the decapsulation
procedure of NTRU among the fastest compared to other lattice-based KEMs. Algorithm 4
gives the encapsulation and decapsulation procedures of NTRU KEM. They instantiate
NTRU_PKE.Encrypt and NTRU_PKE.Decrypt, respectively, along with several instances
of hash functions.
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Algorithm 3: NTRU PKE Core
1 Procedure NTRU_PKE.KeyGen()
2 ρ← U(B∗)
3 (f ,g)← Sample_fg(ρ) ∈ (Lf ,Lg)
4 fq = (1/f) ∈ (Sq)
5 h = (3 · g · fq) ∈ (Tq)
6 hq = (1 · h) ∈ (Sq)
7 fp = (1/f) ∈ (S3)
8 return (pk = (h,hq), sk = (f , fp)
9

1 Procedure NTRU_PKE.Encrypt(pk, r,m ∈ (Lr × Lm))
2 m̄ = Lift(m) ∈ S3
3 c = h · r + m′ ∈ Tq
4 ct = Encode(c)
5 return (ct)
6

1 Procedure NTRU_PKE.Decrypt(ct, sk)
2 c = Decode(ct) ∈ Tq
3 if c 6≡ 0 mod (q, φ1) then
4 fail = 1
5 return (0, 0, fail)
6 end
7 a = f · c ∈ Tq
8 e = a mod S3
9 m′ = e · fp ∈ S3

10 m̄′ = Lift(m′)
11 r′ = (c− m̄′) · hq ∈ Sq
12 if r′,m′ ∈ (Lr × Lm) then
13 fail = 0
14 return (r′,m′, fail)
15 end
16 else
17 fail = 1
18 return (0, 0, fail)
19 end

2.5 Side-Channel assisted CCAs on LWE/LWR-based schemes
While IND-CCA secure KEMs are theoretically secure against CCAs, their security
properties are only valid as long as an attacker is unable to obtain any information about
the intermediate variables in the decapsulation procedure. Side-channel leakage that
reveals sensitive information about any of the variables can lead to serious security flaws.
The most severe outcome is a complete recovery of the secret key.

KEMs based on the LWE/LWR problem have been subjected to several side-channel
assisted CCAs [DTVV19,RRCB20,GJN20]. Their modus operandi starts with the attacker
constructing specially structured ciphertexts. When decrypted/decapsulated, the cipher-
texts ensure that a certain intermediate variable, referred to as the anchor variable, bears
a very close relation with a targeted portion or, in the best scenario for the attacker, the
complete secret key. CCAs on IND-CPA secure LWE/LWR-based schemes have revealed
the efficacy of specially constructed ciphertexts to turn the decrypted message into an
anchor variable. Once the attacker recovers the value of the anchor variable for the chosen
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Algorithm 4: IND-CCA secure NTRU KEM
1 Procedure NTRU_KEM.Encaps(pk)
2 ρ← U(B∗)
3 (r,m) = Sample_rm(ρ)
4 c = NTRU_PKE.Encrypt(pk, r,m)
5 k = H(r,m)
6 ct = c
7 return ct,K

8

1 Procedure NTRU_KEM.Decaps(sk, pk, ct)
2 ct = (c,d)
3 (r′,m′, fail) = NTRU_PKE.Decrypt(sk, ct)
4 k1 = H(r′,m′)
5 k2 = G(s, c)

/* s ∈ B32 is a random secret */
6 if fail = 0 then
7 return k1
8 end
9 else

10 return k2
11 end

ciphertexts using side-channels, the full secret key can be recovered. Based on the type
and amount of side-channel information available, we categorize the existing attacks on
LWE/LWR-based schemes into the following three categories.

2.5.1 Plaintext-Checking Oracle-Based SCA

The attacker constructs chosen ciphertexts such that the anchor variable only assumes a
very small number of possible values known to the attacker. Each possible value exclusively
depends on a targeted portion of the secret key. An attacker who can utilize side-channels
to retrieve the value of the anchor variable realizes an artificial Plaintext-Checking (PC)
oracle. Its responses can then be used to recover the full secret key.

For LWE/LWR-based schemes such as Kyber and Saber, the decrypted message for
chosen ciphertexts can be restricted to two values. These are m = 0, on the occurrence of
the all-zero bit string m0, and m = 1, on the occurrence of the string m1 whose entries are
all 0 except at the least significant bit, where the entry is 1. Side-channels such as timing
and electromagnetic emanation have been shown to be efficiently exploited to realize a
PC oracle in IND-CCA secure schemes whose binary responses m ∈ {0, 1} can recover the
full secret key in a few thousand chosen-ciphertext queries to the target decapsulation
device [DTVV19,RRCB20].

2.5.2 Decryption-Failure Oracle-Based SCA

The second class of attacks perform key recovery by exploiting side-channels to obtain
information about decryption failures for the attacker’s chosen ciphertexts. Crafted errors
are added to a valid ciphertext to trigger decryption failures. Whether m = mvalid or
minvalid depends upon a targeted portion of the secret key. Similar to the PC oracle-based
SCA, side-channels can detect decryption failures. This realizes a Decryption-Failure (DF)
oracle whose responses can recover the full secret key. Guo, Johansson, and Nilsson in
[GJN20] exploited timing side-channel information from non-constant time ciphertext
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comparison in Frodo KEM to detect decryption failures. Subsequently, Bhasin et al.
in [BDH+21] exploited EM side-channel vulnerabilities in several masked ciphertext
comparison approaches to realize a DF oracle in Kyber KEM. Both attacks were capable
of performing full key recovery with several thousand chosen ciphertext queries to the
target device.

As can be seen, both PC oracle and DF oracle-based SCA only extract binary informa-
tion about the anchor variable through side-channels. Thus, these attacks can be carried
out with a relatively simple attack setup and does not pose stringent requirements on the
Signal to Noise Ratio (SNR) for trace acquisition. Moreover, the analysis is also fairly
simple and can be performed with very limited knowledge of the target implementation.

2.5.3 Full-Decryption Oracle-Based SCA

While the PC oracle and DF oracle attacks only extract binary information (1-bit) about
the anchor variable through side-channel traces, they typically require a few thousand
chosen-ciphertext queries to the target device for full key recovery, especially given the
size of secrets used in lattice-based KEMs. This raises a natural question about the
possibility of more efficient attacks with a more powerful oracle to gather more than just
binary information about the decrypted message. In this direction, Xu et al. [XPRO20]
showed that an attacker who can obtain a complete knowledge of the decrypted message
m for chosen ciphertexts can effectively run the CCA in parallel mode, resulting in full
key recovery in only a handful of traces/queries. They showed how to perform full key
recovery using only 8 to 16 chosen-ciphertext queries in LWE/LWR-basd KEMs such as
Kyber and Saber. Their demonstration exploited vulnerabilities in the message encoding
as treated, for examples, in Amiet et al. [ACLZ20] and Sim et al. [SKL+20], and in the
decoding procedure that leak the complete message as discussed in, for examples, Ravi
et al. [RBRC20] and Ngo et al. [NDGJ21]. Table 1 lists side-channel assisted CCAs on
IND-CCA secure LWE/LWR-based schemes based on their oracle types.

While the above attacks work on IND-CCA secure LWE/LWR-based KEMs, they do
not extend trivially to NTRU-based KEMs. This is because the underlying arithmetic of
schemes based on the LWE/LWR paradigm is vastly different compared with schemes in
the NTRU paradigm. Mounting similar side-channel attacks in a chosen-ciphertext setting
on NTRU-based schemes has been an open problem. Even if nontrivial extension of such
attacks can be carried out, the comparative cost of attacking NTRU-based KEMs in a
chosen-ciphertext setting is previously unknown. To address these two questions we exhibit
the first side-channel assisted CCAs on NTRU-based schemes. We demonstrate that our
proposed attacks are practical, generic, and are capable of exploiting all three different

Side-Channel Assisted CCAs 
on Lattice-based KEMs

NTRU-basedLWE/LWR-based

PC Oracle-based
D’Anvers et al. [DTVV19]

Ravi et al. [RRBC20]

FD Oracle-based
Xu et al. [XPRO20]

Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

DF Oracle-based
Guo et al. [GJN20]

Bhasin et al. [BDH+21]

PC Oracle-based
[This Work]

DF Oracle-based
[This Work]

FD Oracle-based
[This Work]

Figure 1: Classification of various side-channel assisted CCAs on lattice-based KEMs.
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Table 1: Classification of side-channel assisted CCAs on IND-CCA secure LWE/LWR-
based schemes. It is based on the nature of the oracle used for key recovery, where anchor
denotes the anchor variable and mx, with or without subscript, denotes the decrypted
message.

Type of Oracle Oracle Response

Plaintext-Checking (PC) anchor ∈ {m0,m1}
Decryption-Failure (DF) anchor ∈ {mvalid,minvalid}
Full-Decryption (FD) anchor = m

types of oracles for full key recovery. Our attacks apply to all variants of the NTRU-based
KEMs in the final round of the NIST PQC process. Figure 1 gives a classification of the
various side-channel assisted CCAs attacks on lattice-based KEMs. Ours are highlighted
in red.

2.6 CCAs on NTRU-based schemes
Given the existence of the NTRU cryptosystem for almost 24 years now, several CCAs have
been proposed on different variants of the NTRU PKE cryptosystem. Jaulmes and Joux
[JJ00] presented the first CCA on the unpadded version of NTRU-1998 PKE. Their attack
requires knowledge of the full decryption output (i.e.) FD oracle and can recover the full
secret key with a handful of ciphertexts. They also present an adaptation of their attack
to the OAEP-like padding scheme, which works only with the knowledge of decryption
failures (i.e.) DF oracle for key recovery. Hoffstein and Silverman also presented CCAs
using the DF oracle on the unpadded NTRU-1998 PKE [HS99].

Han et al. [HHHK03] subsequently presented very efficient CCAs based on the FD oracle,
on optimized variants of unpadded NTRU-1998 PKE and their proposed attacks utilize
chosen ciphertexts that are completely pre-computed offline, independent of the previous
outputs. While the aforementioned attacks utilize invalid/maliciously crafted ciphertexts,
another class of CCAs exploit decryption failures for valid ciphertexts [HGNP+03,GN07].
While these attacks apply to variants of NTRU cryptosystem with non-negligible decryption
failure rate, they are not relevant to the more recent variants, and in particular, the NIST
PQC candidates NTRU and NTRU Prime, as they are based on perfectly correct PKE.

More recently, Ding et al. [DDSV19] presented a novel CCA on the NTRU-1998 PKE
using the DF oracle. While this attack with trivial modifications can be adapted to the
NTRU-HPS parameter set of NTRU assuming a PC oracle, Zhang et al. [ZCQD21] showed
that it does not work on the NTRU-HRSS variant of NTRU, due to the use of secrets
with arbitary weight. They adapt the attack of Ding et al. [ZCQD21] to the NTRU-HRSS
scheme, but the improved technique can only recover 93.6% of the keys. Thus, a CCA
against the NTRU-HRSS scheme that works with a 100% success rate is not known.
Moreover, to the best of our knowledge, we are also not aware of a CCA on NTRU Prime.
As we later show in the paper, mounting CCAs on NTRU Prime is especially challenging,
given its use of rounded ciphertexts and conditional checks on the decrypted message.

In this work, we improve upon the CCA proposed by Jaulmes and Joux [JJ00] and
propose generic and novel adapatations to the NIST PQC candidates NTRU and NTRU
Prime. Remarkably, our proposed attacks can perform key recovery with 100% success
rate on all parameter sets of NTRU and NTRU Prime, assuming the presence of a suitable
oracle. To the best of our knowledge, we therefore present the first CCA on IND-CPA
secure PKE of NTRU-HRSS and NTRU Prime, that works with a 100% success rate. We
also extend the same attacks to the side-channel setting, to propose the first side-channel
assisted CCAs on IND-CCA secure NTRU and NTRU Prime KEM.
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2.7 Test Vector Leakage Assessment

The Test Vector Leakage Assessment (TVLA) from [GJJR11] is a popular conformance-
based methodology in side-channel analysis. It has been widely used in both academia
and industry to evaluate cryptographic implementations. TVLA computes the univariate
Welch’s t-test over two given sets of side-channel measurements to identify their differenti-
ating features. By testing for a null hypothesis that the mean of the two sets is identical,
a PASS/FAIL decision is made. The TVLA formulation over measurement sets Tr and Tf
is given by

TVLA := µr − µf√
σ2

r

mr
+ σ2

f

mf

, (1)

where µr, σr, and mr (resp. µf , σf , and mf ) are the mean, standard deviation and
cardinality of the trace set Tr (resp., Tf ). The null hypothesis is rejected with a confidence
of 99.9999% only if the absolute value of the t-test score is > 4.5 [GJJR11]. A rejected
null hypothesis implies that the two trace/data sets are different and might leak some side-
channel information and, hence, is considered a FAIL test. The threshold was later shown
to depend on the length of the side-channel trace [DZD+17]. We choose the threshold as 5
based on our experimental settings.

While TVLA is mainly used as a metric for side-channel evaluation, it has also been
used as a tool for feature selection in multiple cryptanalytic efforts [RJJ+18]. Here we use
TVLA as a tool for feature selection from side-channel measurements [GLRP06].

3 Plaintext-Checking Oracle-Based SCA
We primarily use NTRU Prime, instead of NTRU, to describe our PC-oracle attack. The
former comes with complications that arise due to the use of rounded ciphertexts. Once
we have described the attack on NTRU Prime, we adapt it to NTRU. Our attack works
in two phases. We construct malicious ciphertexts and, subsequently, utilize side-channel
information from the decryption of these malicious ciphertexts to perform key recovery.

1. Pre-Processing Phase: We search for a ciphertext that, when decrypted, leads
to what we refer to as a single collision event. We query the decapsulation device
with specially crafted ciphertexts and analyze their side-channel leakage to detect
the event. Such a ciphertext is called a base ciphertext, denoted by cbase. We use it
to infer crucial information about the secret polynomials f and g.

2. Key Recovery Phase: We use the base ciphertext to construct new attack ci-
phertexts. They are built in such a way that, upon decryption, their corresponding
internal variable e, in Line 4 of NTRU_Prime_PKE.Decrypt procedure in Algorithm 1,
can only belong to either one of two exclusive classes, namely, e = 0 or e 6= 0 with a
single nonzero coefficient. Moreover, the value of e depends on a targeted portion of
the secret key. We exploit side-channel leakage from the operations that manipulate
e to obtain information about its value and devise a practical PC oracle. The oracle’s
responses (e = 0 or e 6= 0), obtained for several attack ciphertexts, are used to
recover the full secret key.

Figure 2 describes our PC oracle-based SCA on the decryption procedure of Streamlined
NTRU Prime KEM. The next two subsections describe the phases in our attack.
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Figure 2: Pictorial Illustration of our PC oracle-based SCA on NTRU Prime

3.1 Pre-Processing Phase: Retrieving the Base Ciphertext cbase

Our construction of chosen ciphertexts is inspired by the attack of Jaulmes and Joux on
NTRU-1998 in [JJ00]. We start with an intuition for the approach before proposing a
concrete methodology. The notation used is from Algorithm 1 of NTRU Prime.

3.1.1 Intuition

We first analyze the effect of decrypting c = k+k ·h, where k ∈ Z+, by looking at a = 3f ·c
in Line 3 of NTRU_Prime_PKE.Decrypt procedure as

a = 3f · c = k · 3f + k · 3f · h = k · 3f + k · 3f · (g/3f) = 3k · f + k · g. (2)

The coefficients of both f and g are in [−1, 0, 1]. Thus, the largest absolute value of any
coefficient a[i] is obtained when the corresponding f [i] and g[i] simultaneously take their
absolute maximum values, that is, when f [i] = g[i] = ±1. We call the event when the
corresponding coefficients of two or more polynomials attain their maximum absolute value
a collision. Thus, a[i] = 4k (resp. −4k) when f [i] = g[i] = +1 (resp. −1). We now choose
a suitable positive integer k, with 3 | k, based on the conditions

4k > q/2 and s · k < q/2 for s ∈ [0, 3]. (3)

For the sake of explanation, let f and g only collide at the the ith coefficient with the value
of +1. Hence, a has the coefficients

a[j] > q/2 if j = i and a[j] < q/2 if j 6= i. (4)

Since 3 | k, it is clear that 3 | a[i], for i ∈ [0, n − 1]. When a is reduced modulo q and
zero-centered in (−q/2, q/2], all coefficients, except for a[i], retain their true value and
remain a multiple of 3. This is because every time a[i] crosses the q/2 threshold, that is,
whenever a[i] > q/2, and upon subsequent reduction modulo q, we subtract the prime q
from a[i]. More explicitly,

a mod q = a − q · xi. (5)
Subsequently, e = a mod 3 ∈ R3 is nothing but

e = (−q mod 3) · xi. (6)

The approach ensures that a[i] crosses the q/2 threshold only during a collision. When
there is no collision, a[i] < q/2. Thus, for a choice of k in Equation (3), e[i] 6= 0 signifies a
collision at i, while all other coefficients remain zero.
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The same scenario applies when the collision value is −1. Subsequently, a[i] <
−(q/2) and, hence, when q is added to a[i] to zero-center it in the range [−q/2, q/2], the
corresponding e[i] 6= 0, implying a collision at i. Henceforth, to avoid repetitions, we focus
only on collision with the highest positive value of +1. The same analysis holds for the
lowest negative value of −1.

In our attack, it would be ideal to have a single collision between f and g, resulting in
an e that has a single nonzero coefficient. For illustration, we use one particular parameter
set of NTRU Prime. Our choice falls on sntrup761 whose (n, q, w) = (761, 4591, 286). We
denote by ρsingle the probability of a single collision between f and g for sntrup761. We
denote by ρ the probability of a collision at any given coefficient and by

ρmatch := ρ1 + ρ−1, where ρx, for x ∈ {−1, 1}

the probability of a collision between f and g with a matching coefficient of either −1
or 1. For f ∈ Rsh and g ∈ R3, we get ρmatch := (w/3n) and, hence, ρmatch ≈ 0.125 for
sntrup761. The probability of a single collision between f and g is

ρsingle = n · ρmatch · (1− ρmatch)n−1.

This value is impractically low at 8 · 10−43. We require better choices for the ciphertexts
to limit the number of collisions and, thus, the number of nonzero coefficients in e.

3.1.2 Constructing Ciphertexts for Single Collision

We split the value of a in Equation (2) into

a = 3k · f + k · g = 3k · t1 + k · t2, (7)

where t1 = f and t2 = g. To limit the number of collisions between t1 and t2 we make a
generic choice for c. This choice is

c = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h = k1 · d1 + k2 · d2 · h, (8)

where both d1 and d2 are polynomials with, respectively, m and n nonzero coefficients
(±1). The corresponding a = 3f · c is given by

a = k1 · d1 · 3f + k2 · d2 · h · 3f = 3k1 · d1 · f + k2 · d2 · g = 3k1 · t1 + k2 · t2, (9)

where t1 = d1 ·f and t2 = d2 ·g. The product of a polynomial d with xi modulo (xn−x−1)
is

(d · xi) mod (xn − x− 1) = dn−i + (dn−i + dn−i−1) x+ . . .

+ (dn−1 + d0)xi + d1x
i+1 + . . .+ dn−i−1x

n−1, (10)

with all coefficients in {−2,−1, 0, 1, 2}. We denote the resulting product by RotpR(d, i)
and refer to it informally as the rotation of d by i degrees. Thus,

t1 = d1 · f = (xi1 + xi2 + . . .+ xim) · f = f · xi1 + f · xi2 + . . .+ f · xim

= RotpR(f , i1) + RotpR(f , i2) + . . .+ RotpR(f , im) (11)

is the sum of rotations of f by varying degrees, governed by {i1, i2, . . . , im}. Similarly,
t2 is the sum of rotations of g by the degrees in {j1, j2, . . . , jn}. A collision occurs at
index i only if all the corresponding coefficients of RotpR(f , u), for u ∈ {i1, i2, . . . , im}, and
RotpR(g, v), for v ∈ {j1, j2, . . . , jn}, are either +2 or −2. We observe that the probability
of collisions quickly degrades as (m,n) increase.
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For the choice of c in Equation (8), the maximum possible value for a[i] in Equation
(9) is (3k1 · 2m+ k2 · 2n), which is obtained upon a collision. We therefore choose (k1, k2)
that satisfy three conditions:

3 | k1, 3 | k2, 3k1 · r + k2 · s

{
> q/2, if r = 2m, s = 2n,
< q/2, otherwise,

(12)

with 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n. In other words, we choose (k1, k2) such that a[i] > q/2
only when there is a collision at i, while a[i] < q/2, otherwise. Thus, e[i] 6= 0 for a collision
at i and e[i] = 0, otherwise.

Summarizing the above discussion, we select values for (m,n) and (k1, k2) for our
chosen ciphertexts in the form of Equation (8). The choice for (m,n) ensures that a single
collision takes place with a high probability. Given (m,n), we then choose (k1, k2) which
satisfies the conditions in Equation (12) such that e[i] 6= 0 indicates a collision at the ith

coefficient. The concrete values for (m,n) and (k1, k2) can be fixed for a given parameter
set of NTRU Prime.

3.1.3 Additional Challenge: Use of Rounded Ciphertexts

The encryption procedure of NTRU Prime generates ciphertexts whose coefficients are
rounded to the exact multiples of 3 (line 3 of NTRU_Prime_PKE.Encrypt procedure). Thus,
the scheme proposes to send only the quotient of each coefficient upon division by 3, thereby
reducing ciphertext size. Thus, every coefficient of the received ciphertext is multiplied
by 3 by the decryption procedure. However, our chosen ciphertexts (Equation (8)) are
not exact multiples of 3 and thus need to be rounded, which introduces a rounding noise
denoted as m′ ∈ R3. Thus, the actual value of our chosen-ciphertext used in decryption is
given by

c = Round(k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h)
= k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h + m′

= k1 · d1 + k2 · d2 · h + m′ (13)

The corresponding a = 3f · c is

a = k1 · d1 · 3f + k2 · d2 · h · 3f + m′ · 3f
= (3k1 · d1 · f) + (k2 · d2 · g) + (3f ·m′) = s + n, (14)

where s := (3k1 · d1 · f + k2 · d2 · g) is the signal component while n := 3f ·m′ is the noise
component. But, m ∈ R3 and f ∈ Rsh are small polynomials, making the size of noise
much smaller in comparison to the range q.

For the parameter set sntrup761, Figure 3 shows the distribution of the coefficients
n[j] for j ∈ [0, n − 1] of n. It is Gaussian with mean 0 and σ ≈ 57, which is much less
than q = 4591. The noise polynomial n = 3f ·m′ is a multiple of 3 and gets rounded to 0
when a is reduced modulo 3. However, when n is added to coefficients of a near q/2, the
noise is capable of giving rise to a false positive or a false negative collision. For a given
choice of (m,n) and (k1, k2), the largest possible value of a coefficient of a is denoted by
m1 := (3k1 · 2m+ k2 · 2n). The next largest value is denoted by m2. As stated in Equation
(12), we choose values for (k1, k2) such that m1 > q/2 and m2 < q/2. Let 0 ≤ r ≤ 2m and
0 ≤ s ≤ 2n. Let dm1 (resp. dm2) denote the distance between m1 (resp. m2) from q/2,
where

dm1 = ‖(3k1 · 2m+ k2 · 2n)− q/2‖ and

dm2 =
∥∥∥∥( max

(r,s) 6=(2m,2n)
(3k1 · r + k2 · s)

)
− q/2

∥∥∥∥ . (15)
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Figure 3: Distribution of the coefficients of the noise n := 3f ·m′ with mean 0 and σ ≈ 57
for sntrup761.

Table 2: Concrete values for the various parameters used to build chosen ciphertexts for
the two phases in our PC Oracle-based SCA for NTRU Prime

Scheme (m,n) Pre-Processing Phase Key Recovery Phase
(k1, k2); (dm1, dm2) (`11, `12, `13); (dm1, dm2) (`21, `22, `23); (dm1, dm2)

sntrup653 (0,4) (0,309); (162,147) (0,279,48); (66,69) (0,243,81); (120,123)
sntrup761 (0,4) (0,306); (153,153) (0,279,42); (63,63) (0,237,84); (105,132)
sntrup857 (0,4) (0,342); (153,189) (0,312,54); (75,75) (0,270,93); (135,135)
sntrup953 (0,4) (0,414); (141,273) (0,384,60); (81,99) (0,327,120); (165,162)
sntrup1013 (0,4) (0,465); (132,333) (0,435,72); (108,108) (0,375,129); (186,189)
sntrup1277 (0,4) (0,510); (141,369) (0,477,78); (111,123) (0,414,138); (201,213)

A false positive collision occurs when s[i] = m2 and the corresponding n[i] > dm2, ensuring
that s[i] + n[i] > q/2 and e[i] 6= 0. Similarly, a false negative can occur when s[i] = m1 due
to a valid collision. If, however, n[i] < −dm1, then s[i] + n[i] < q/2 and e[i] = 0, which
suppresses the collision.

Though the rounding noise n cannot be removed, the possibility of a false positive or
negative collision can, however, be minimized by placing additional constraints in choosing
the tuple (k1, k2). Along with constraints for (k1, k2) in Equation (12), we choose the
tuple that maximizes the distance dm1 (resp. dm2) for m1 (resp. m2) to prevent the noise
coefficient n[j] from growing large enough to push a[j] to the other side of q/2, which is
when an error occurs in the value of e. As long as the error n[j] does not push a[j] to the
other side of q/2, there will be no error in e. In other words, m1 and m2 should lie as far
as possible on either side of the threshold q/2. This additional constraint in the choice of
(k1, k2) is simply to maximize the distance tuple (dm1, dm2).

For sntrup761 of NTRU Prime, we empirically choose (m,n) = (0, 4) and (k1, k2) =
(0, 306). We stress that other values can also be chosen to construct ciphertexts corre-
sponding to single collision. Table 2 lists the concrete values of (m,n), (k1, k2) and the
corresponding distance tuple (dm1, dm2) for different parameter sets of NTRU Prime.
These values can be chosen beforehand for any given parameter set.

3.1.4 Detecting Collision through Side-Channels

Given (m,n) and (k1, k2), we randomly select polynomials d1 and d2 in Equation (8)
until we arrive at a ciphertext c that has a single nonzero coefficient for e. Since e is an
internal variable, it is not possible to classically obtain information about its value. Hence,
we utilize side-channel to identify e 6= 0. This leads to a classification problem with two
classes, namely e = 0 and e 6= 0.
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Figure 4: Experimental setup used for EM trace acquisition.

For e = 0, Line 5 of the NTRU_Prime_PKE.Decrypt procedure implies b′ = e · ĝ = 0
and, hence, Weight(b′) = wb′ = 0. For e 6= 0 with a single nonzero coefficient, however,
b′ 6= 0 with uniformly random coefficients in {−1, 0, 1} and, hence, wb′ 6= 0. Although the
exact value depends on the secret polynomial g, the average value of wb′ is 500 for sntrup761.
The large weight difference between the two classes should be easily distinguishable through
the EM side-channel. The same applies to other parameter sets of NTRU Prime.

In our experiments, we ran the optimized implementation of sntrup761 from the
open-source pqm4 library [KRSS] on the STM32F4DISCOVERY board (DUT) housing the
STM32F407, ARM Cortex-M4 microcontroller. The implementation, compiled with the fol-
lowing options -O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16,
was clocked at the maximum clock frequency of 168 MHz. EM measurements were observed
from the DUT using a near-field probe and processed using a Lecroy HD6104 oscilloscope
at a sampling rate of 500MSam/sec. Figure 4 shows our experimental setup to perform EM
trace acquisition. We adopt the Welch’s t-test to detect a collision for a chosen ciphertext.

0 1000 2000 3000 4000 5000
Time Index

30

20

10

0

10

20

30

40

50

t-t
es

t

t-test threshold

0 1000 2000 3000 4000 5000
Time Index

30

20

10

0

10

20

30

40

50

t-t
es

t

t-test threshold

(a) e = 0 (b) e 6= 0

Figure 5: The t-test plots between TO and TX for sntrup761.

Welch’s t-test for Collision Detection: Due to the large difference in weights, we focus
on capturing EM signals from the weight calculation operation in Line 6 of the decryption
procedure NTRU_Prime_PKE.Decrypt. We first obtain T replicated measurements from
the decryption of c = 0, which corresponds to e = 0. The trace set is denoted by TO.
To test if a given ciphertext c′ results in a collision, we similarly obtain T replicated
measurements from the decryption of c′, which is denoted by TX. Let T = TO ∪ TX. We
now perform the Welch’s t-test between TO and TX.
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• We center each trace ti ∈ T by removing the mean and dividing by its standard
deviation to obtain t′i.

• We compute the Welch’s t-test between the normalized traces in TO and TX based
on Equation (1). If there are several peaks well above the t-test threshold of ±5,
then e 6= 0 for c′. Otherwise, e = 0. Figure 5(a) depicts the t-test plot if e = 0 for c′
on T = 10 replicated measurements. As can be clearly seen, we do not observe any
significant peaks about the above the t-test threshold of ±5. It is possible that there
are a few points bordering the threshold or marginally exceeding it. We performed
an examination of the internal registers and the control flow to identify any change
in behaviour that could result in t-test values bordering the threshold. But, we were
unable to identify any discernible change in the state of the device. Thus, those
points with bordering t-test values can be safely ignored. Figure 5(b) corresponds
to e 6= 0. We can identify several peaks, well above the threshold, which clearly
indicates e 6= 0.

As we can see, leakage detection for identification of e 6= 0 does not assume any
knowledge about the implementation of the decapsulation procedure. In the worst case, the
attacker only requires to know the location of the targeted operations within the decryption
procedure, but as shown in previous works [ACLZ20,NDGJ21], it is also possible to identify
operations within the decapsulation procedure, through visual inspection.

We repeat this test for different choices of (d1,d2) until we obtain one for which e 6= 0,
indicating a possible collision. There is a chance that this collision, instead of being a
valid one, is a false positive. Moreover, our technique only realizes a binary oracle that
can distinguish between e = 0 and e 6= 0. Thus, we do not know the number of non-zero
coefficients in e. If we identify a tuple (d1,d2) that corresponds to e 6= 0, we simply
proceed to the key recovery phase of the attack. For a faulty base ciphertext with a single
false collision or multiple collisions, key recovery cannot be performed correctly. Thus, we
simply need to repeat the attack until the correct key is recovered.

We denote the ciphertext corresponding to e 6= 0 as cbase. For analytical purpose, we
assume that the ciphertext cbase that corresponds to e 6= 0 has a single non-zero coefficient
at index i. We us (d1att,d2att) to denote the tuple (d1,d2), with m and n nonzero
coefficients, respectively, that corresponds to cbase as . The ciphertext cbase is, therefore,

cbase = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h
= k1 · d1att + k2 · d2att · h. (16)

Upon retrieval of cbase, we proceed to the second phase of the attack, which is the key
recovery phase.

3.2 Key Recovery Phase
Attack Overview: The key recovery phase works by constructing new attack ciphertexts
using (d1att,d2att), which when decrypted result in only two possible values for e: (1)
e = 0 and (2) e 6= 0 with e[i] 6= 0 where i is the index of the single collision. The value of
e depends on the value of a targeted coefficient of f . This binary information obtained
using side-channels over several chosen ciphertexts leads to a complete recovery of f one
coefficient at a time.

3.2.1 Attack Methodology

We build, using (d1att,d2att), the ciphertext

catt = `1 · d1att + `2 · d2att · h + `3 = cbase + `3 · xu, (17)
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where `1, `2, `3 ∈ Z+, u ∈ [0, n − 1], and cbase = `1 · d1att + `2 · d2att · h. Let the error
introduced due to rounding be m′ ∈ R3. Thus, a = 3f · catt is given by

a = 3f · catt = 3`1 · d1att · f + `2 · d2att · h · 3f + `3 · 3f · xu + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · f · xu + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · RotpR(f , u) + n,

where n is the noise term 3f ·m′. Please note that this noise term n is different from the
noise term of the base ciphertext cbase. For the sake of explanation, we assume that d1att
and d2att collide at i with a value of +2. Thus, the coefficients of a can be expressed as

a[j] =
{

3`1 · 2m+ `2 · 2n+ 3`3 · RotpR(f , u)[j] + n[j], if j = i

3`1 · r + `2 · s+ 3`3 · RotpR(f , u)[j] + n[j], if (j 6= i), (r, s) 6= (2m, 2n)
(18)

In particular, given a constant δ := 3`1 · 2m+ `2 · 2n+ n[i], we can represent the coefficient
of a at the colliding index i as

a[i] = δ + 3`3 · RotpR(f , u)[i]. (19)

Thus, a[i] is linearly dependent on RotpR(f , u)[i].
Let βu denote RotpR(f , u)[i]. Based on the rotational property of polynomial multipli-

cation mod (xn − x− 1) in Equation (10), we know that

βu := RotpR(f , u)[i] =


f [i− r], for 0 ≤ u < i,

f [0] + f [n− 1], if u = i,

f [n− 1 + i− r] + f [n+ i− r], for i < u < n.

(20)

By simply changing the rotation index u we can ensure the dependency of a[i], that is,
the colliding index i, with different coefficients of the secret polynomial f . For a given u,
the five values in {−2,−1, 0, 1, 2} are possible candidates for βu. Our task is, therefore, to
select values for (`1, `2, `3) such that the occurrence of a[i] > q/2 and therefore e[i] 6= 0,
acts as a binary distinguisher capable of identifying every candidate for βu. To distinguish
βu = +2, for example, we choose integers `1, `2, `3 multiples of 3, that satisfy the condition

3`1 · r + `2 · s+ 3`3 · βu

{
> q/2, if r = 2m, s = 2n, and βu = 2,
< q/2, otherwise,

(21)

with 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n. This ensures that a[i] > q/2 and e[i] 6= 0 at the colliding
index i when βu = +2, while a[i] < q/2 and e[i] = 0 otherwise. For j 6= i, the coefficients
are a[j] < q/2 and e[j] = 0, since there is no other collision than at index i. Similarly, we
can identify βu = −2 by simply changing the sign of `3, that is, by using (`1, `2,−`3). If,
however, e = 0 for both ciphertexts, then βu ∈ {−1, 0, 1}. Let O denote the e = 0 event
and X denote the e 6= 0 event. This binary information thus constitutes a distinguisher
for every candidate for βu. An attacker who can realize a PC oracle to extract this binary
information about e, can therefore distinguish all candidates for βu.

Effect of Rounding Error: Some rounding error n is present on a. Adopting a similar
strategy to the one in Section 3.1.3, we select (`1, `2, `3) that minimize the possibility of a
false positive or a false negative in the collision. For distinguishing βu = 2, the tuple must
satisfy Equation 21. At the colliding index when βu = 2, the largest possible coefficient
of a is m1 := 3`1 · 2m+ `2 · 2n+ 3`3 · 2 > q/2. Let the second largest value be m2 < q/2
and the distance between m1 (resp. m2) and q/2 be dm1 (resp. dm2). The values for
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Table 3: Unique distinguishability of every candidate for βu ∈ [−2, 2] depending on e = 0
(O) or e 6= 0 (X) for sntrup761. We assume collision value is +2.

Either e = 0 or e 6= 0
Secret Coeffs. (`1, `2, `3)

(0, 279, 42) (0, 237, 84) (0, 279,−42) (0, 237,−84)

−2 O O X X
−1 O O X O
0 O O O O
1 X O O O
2 X X O O

(`1, `2, `3) should be chosen so as to maximize the distance dm1 and dm2, where

dm1 = ‖(3`1 · 2m+ `2 · 2n+ 3`3 · 2)− q/2‖ and

dm2 =
∥∥∥∥ max

(r,s,t) 6=(2m,2n,2)
(3`1 · r + `2 · s+ 3`3 · t)− q/2

∥∥∥∥ ,
with 0 ≤ r ≤ 2m, 0 ≤ s ≤ 2n, and 0 ≤ t ≤ 2. In other words, we should give enough
leeway to ensure that the possible error n[i] does not push a[i] to tho other side of q/2.
The same must be done for all choices of (`1, `2, `3) that are used to distinguish every
candidate for βu. Similar to the tuple (m,n) and (k1, k2) in Subsection 3.2, the tuple
(`1, `2, `3) can be chosen ahead and fixed for a given parameter set of NTRU Prime.

Table 3 is the decision table for the sntrup761 parameter set. It shows unique distin-
guishability for every candidate for βu ∈ {−2,−1, 0, 1, 2}, based on O or X for chosen
ciphertexts constructed using concrete values for the (`1, `2, `3) assuming a collision with
a value of +2. The responses for βu = +1 (resp. +2) can be swapped with βu = −1 (resp.
−2) if the collision value is −2. Every candidate for βu = RotpR(f , u)[i] can be uniquely
identified based on the information about O or X from only upto four chosen ciphertext
queries. We note that certain candidates such as +1 and +2 only require 2 queries to be
identified (going from left to right), 0 can be uniquely identified in 3 queries, while −1 and
−2 require all 4 queries. Thus, we can adopt such a greedy approach to identify the value
of βu in a more optimized manner.

Table 2 supplies the concrete values of the tuple (`1, `2, `3) and the corresponding
distance tuple (dm1, dm2), chosen for our attack on different parameter sets of NTRU
Prime. We use the notation (`x1, `x2, `x3) to denote the tuple used to distinguish x ∈ {1, 2}.
While these are specific parameters we used for our attack, we would like to emphasize
that there are several other values for (`1, `2, `3) which can be chosen to construct attack
ciphertexts for key recovery.

Since e is an internal variable, we use side-channel information to distinguish between
the classes O and X. As seen in Subsection 3.1.4, we used the Welch’s t-test to identify
if e 6= 0 to retrieve the base ciphertext cbase. The peaks in the t-test plot above the
pass/fail threshold of ±5 in Figure 5(b) are precisely the features that identify e 6= 0. In
the following discussion, we demonstrate techniques to leverage the identified features in
the t-test plot to build templates for the two classes O and X. The templates will then be
used to classify a given single trace into either of the two classes.

3.2.2 Classification using Reduced Templates

We select features of the t-test plot between TO (e = 0) and TX (e 6= 0) whose absolute
t-test value is greater than a certain chosen threshold Thsel as our set P of Points of
Interest (PoI). A reduced trace set T ′O or T ′X is constructed by using points in P. We
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choose a greater threshold than ±5 for better distinguishability. For the t-test results in
Figure 5, we set ±7 as the larger threshold. This threshold is a parameter of the attack
setup. We subsequently calculate the respective means mO,P and mX,P of T ′O and T ′X to
use as the reduced templates for each class.

A single trace t for classification is normalized such that t′ = t− t to obtain a reduced
trace t′P . The sum-of-squared difference Γ∗ of the trace is computed with each reduced
template

ΓO = (t′P −mO,P)> · (t′P −mO,P) and ΓX = (t′P −mX,P)> · (t′P −mX,P). (22)

The trace t falls into the class that corresponds to the least sum-of-squared difference. A
single power/EM trace of the targeted operation is sufficient to distinguish between X or
O. Thus, single side-channel traces from the decryption of chosen ciphertexts constructed
according to Equation (17) can recover βu = RotpR(f , u)[i]. Figure 6 visualizes the matching
of a section of the reduced trace tr with the reduced templates of the respective classes
O and X. There is a clear distinguishability between the reduced templates of the two
classes, leading to a classification with 100% success rate.
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Figure 6: Matching the reduced template tr of a given attack trace with the reduced
template of the two classes O and X.

3.2.3 Recovering the Full Secret Key

We have thus demonstrated recovery of a single coefficient βu = RotpR(f , u)[i]. By simply
changing the rotation index u, we can recover RotpR(f , u)[i] for all u ∈ [0, n− 1]. However,
recovering the exact value of the secret polynomial f requires knowledge about (1) the
colliding index i and (2) the collision value (either +2 or −2), both of which cannot be
inferred through side-channels using our technique. Thus, we need to try out all n possible
colliding indices i ∈ [0, n− 1] as well as the two possible collision values ±2. This amounts
to 2n choices for f . For sntrup761, 2n = 1, 522. For each choice, we compute the secret key
f ′ and check if f ′ ∈ Rsh and also attempt to decrypt known ciphertexts. We empirically
verified for all parameter sets, that the search space is reduced drastically to only a handful
of possibilities (≈ 10), upto a certain rotation of f .

It is possible that none of the guessed f ′ turns out to be correct. This could be due
to two reasons. Firstly, the rounding noise n within the attack ciphertexts catt could be
large enough to induce errors in e, which inturn results in erroneous oracle’s responses.
Secondly, the chosen base ciphertext cbase has multiple collisions, which again results in
erroneous oracle’s responses. In these cases, we simply reject the current (d1att,d2att) and
initiate a search for a new pair before repeating the attack until the correct f is recovered.



22 Generic Side-Channel Assisted CCAs on NTRU-based KEMs

We observe that failed iterations of the attack significantly impact the attack’s cost,
with respect to the number of traces for key recovery. In this respect, we can adopt a few
optimization approaches to reduce the impact of failed iterations, particularly in the key
recovery phase. If the side-channel oracle’s responses do not match the expected responses
in the decision table, then the key recovery phase can be immediately aborted, to restart
the pre-processing phase for a fresh base ciphertext. Similarly, if the recovered values of
βu for u ∈ [0, n− 1] appear to be very skewed and do not follow the expected distribution,
here again the key recovery phase can be immediately aborted, to restart the attack. We
summarize the attack flow of our PC oracle-based SCA on NTRU Prime in Figure 7.

3.2.4 Experimental Results

We implemented our proposed PC oracle-based SCA on the optimized implementation of
sntrup761 from the pqm4 library [KRSS]. The pre-processing phase to identify cbase, took
on average, 39 attempts. The number of attempts denoted as A also includes failed attack
iterations. Each attempt requires the capture of N = 10 traces to carry out the Welch’s
t-test for leakage detection. Thus, it takes A ·N ≈ 390 traces to identify cbase, which is
denoted as tbase. The subsequent attack phase requires up to 4 chosen-ciphertext queries,
(i.e.) up to 4 traces, to recover one coefficient. The secret polynomial f contains n = 761
coefficients and we denote the traces required in the attack phase as tattack. Thus, we
require ttotal = tbase + tattack ≈ 3269 traces for complete recovery of f . Our attack works
with a success rate of about 100% with no remaining brute force or offline analysis.

We also successfully verified our attack methodology using a simulated PC oracle on
other parameter sets of NTRU Prime. Table 4 gives the estimated trace complexity of our
attack for different parameter sets of NTRU Prime where the numbers are estimated with
N = 10 for the pre-processing phase. We can see that 4700 traces is enough for full key

Consturct cbase and perform 
Welch’s t-test based Leakage Detection

If (Leakage Present)

If (Weight Check(f) == Pass)

Yes

No

Yes

No

Success

Construct Reduced Templates 
RTO (Class O) , RTX (Class X)

Query Attack ciphertexts cattack
and classify as Class O/X

Pre-processing Phase

Key Recovery Phase
Use Binary distinguisher table to 

recover secret key f

(RTO, RTX)

Classify(cattack)

Figure 7: Attack Flow Diagram of our proposed PC Oracle-based SCA on NTRU Prime
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Table 4: Trace Complexity of our proposed PC oracle-based SCA on different variants of
NTRU Prime. We use tbase to denote the number of traces to retrieve the base ciphertext
and ttotal to denote the number of traces required for full key recovery.

Scheme tbase ttotal Scheme tbase ttotal

sntrup653 420 3005 sntrup953 270 3601
sntrup761 390 3269 sntrup1013 320 4026
sntrup857 420 3731 sntrup1277 240 4688

recovery across all parameter sets of NTRU Prime, thereby demonstrating the effectiveness
of our attack.

4 PC Oracle-based SCA on NTRU
In this section, we adapt our PC oracle-based SCA on NTRU Prime KEM to NTRU KEM.
The notation used is from the IND-CPA secure NTRU PKE described in Algorithm 3.
Since our attack applies in the same manner to both NTRU-HPS and NTRU-HRSS, we
primarily use NTRU-HPS for description of the attack, but also provide details on those
aspects that differ for NTRU-HRSS, wherever necessary.

4.1 Pre-Processing Phase
Let k1, k2 ∈ Z+. We construct the chosen ciphertext c as

c = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) ·h = k1 ·d1 + k2 ·d2 ·h, (23)

where 3 | ki, for i ∈ {1, 2}, and d1 and d2 are polynomials with, respectively, m and n
nonzero coefficients taking the value of +1. The corresponding a = f · c ∈ Tq in Line 7 of
NTRU_PKE.Decrypt procedure is given by

a = k1 · d1 · f + k2 · d2 · h · f = k1 · d1 · f + k2 · d2 · 3g = k1 · t1 + 3k2 · t2, (24)

where t1 = d1 · f and t2 = d2 · g ∈ Tq. The polynomial t1 (resp. t2) in the cyclotomic
ring T = Z[x]/(xn − 1) is the sum of exact rotations of the secret polynomial f by varying
degrees, that is, for u ∈ {i1, i2, . . . , im} (resp. v ∈ {j1, j2, . . . , jn}). Thus, a collision at
index i occurs when all the corresponding coefficients of the rotations of f and g have a
value of +1 or −1.

We choose (m,n) to maximize the probability of a single collision and, then, proceed to
choose (k1, k2) such that a collision at index i results in a[i] > q/2 while keeping a[i] < q/2
when there is no collision. From Equation (24), we observe that the absolute maximum
value of a coefficient of a upon collision is a[i] = k1 ·m+ 3k2 · n. Thus, we choose (k1, k2)
such that

3 | k1, 3 | k2, k1 · r + 3k2 · s

{
> q/2, if r = m, s = n,

< q/2, otherwise,
(25)

with 0 ≤ r ≤ m and 0 ≤ s ≤ n. If there is a collision at i, then the corresponding coefficient
of e = a : mod S3 in Line 8 of NTRU_PKE.Decrypt procedure is e[i] 6= 0. Otherwise, we
have e[i] = 0.

While the above analysis applies for NTRU-HPS, NTRU-HRSS uses g = g′ ·φ1 with the
coefficients of g′ coming from {−1, 0, 1}. Hence, the coefficients of the secret polynomial
g are elements in {−2,−1, 0, 1, 2}. Thus, the absolute maximum value possible for a
coefficient of a is a[i] = k1 ·m+3k2 ·2n and thus Equation (25) can be adapted accordingly.
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Table 5: Concrete values for the various parameters used to build chosen ciphertexts for
both the Pre-Processing and Key Recovery phase of our PC oracle-based SCA for different
variants of NTRU

Scheme (m,n) Pre-Processing Phase Key Recovery Phase
(k1, k2) (`11, `12, `13) (`21, `22, `23)

ntruhps2048509 (4, 3) (147, 51) (144, 45, 66) (114, 39, 120)
ntruhps2048677 (4, 3) (147, 51) (144, 45, 66) (114, 39, 120)
ntruhps4096821 (4, 4) (288, 102) (273, 93, 141) (228, 78, 228)

ntruhrss701 (4, 2) (492, 180) (483, 162, 243) (411, 138, 411)

4.1.1 Additional Challenge: Ciphertext Compression

Similar to the use of rounded ciphertexts in NTRU Prime to reduce ciphertext size,
NTRU also adopts compression exploiting the inherent property of valid ciphertexts. The
decryption procedure of NTRU expects valid ciphertexts to be a multiple of φ1 modulo q.
In other words, the sum of coefficients of a valid ciphertext is expected to be 0 modulo
q, which can also be seen from the conditional check in line 3 of NTRU_PKE.Decrypt
procedure. Thus, the scheme proposes to only send the first n− 1 coefficients of c, while
the last coefficient c[n− 1] is computed within the decryption procedure as

c[n− 1] = −
i=n−2∑
i=0

(c[i]) (26)

However c constructed according to Equation 23 is inherently not a multiple of φ1 modulo
q. But, it can be adapted to satisfy the requirement in the following manner. Thus, we
slightly modify c as

c = k1·(xi1−xi2 +xi3−. . .+xim)+k2·(xj1 +xj2 +xj3 +. . .+xjn)·h = k1·d1+k2·d2·h, (27)

where 2 | m (i.e.) m is even and polynomial d1 has equal number of positive and negative
non-zero coefficients (i.e.) d1 has m/2 coefficients with a value of +1 and m/2 coefficients
with a value of −1. This ensures that the sum of coefficients of c is 0. This is not required
for d2 since h is already a multiple of φ1, thus the product d2 · h in c is a multiple of
φ1. Thus, ciphertext c according to Equation (27) is processed without any errors in the
decryption procedure. Unlike the chosen ciphertexts for NTRU Prime which inherently
contain rounding error, chosen ciphertexts for NTRU do not contain any error, which
significantly simplifies our attack on NTRU. This applies for both NTRU-HPS as well as
NTRU-HRSS variants of NTRU.

Table 5 lists the concrete values of the tuples (m,n) and (k1, k2) used to construct
chosen ciphertexts for single collision, for different parameter sets of NTRU.

4.1.2 Detecting Collision through Side-Channels

Given chosen tuples (m,n) and (k1, k2), we construct several chosen ciphertexts c based on
Equation (27), until we identify cbase whose e 6= 0. This is identified through side-channel
leakage, in a similar manner to our attack on NTRU Prime. If e = 0, then m′ = e · fp = 0
(Line 9 of NTRU_PKE.Decrypt procedure). However, if e = ±xi, m′ contains uniformly
random coefficients in {−1, 0, 1}. This large difference in the value of m′ can be easily
identified through side-channels, thereby distinguishing between the two classes: (1) e = 0
(Class O) and (2) e 6= 0 with e[i] 6= 0 (Class X).

We performed practical experiments on the ntruhps2048677 parameter set of NTRU.
Side-channel measurements were acquired from the same target platform and experimental
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setup described in Section 3.1.4 and the Welch’s t-test based approach was used to identify
leakage corresponding to e 6= 0. Figure 8(a) depicts the t-test plots for several ciphertexts
c′ whose e = 0. As can be seen, there are no significant peaks about the threshold, which
indicates e = 0. However, Figure 8(b) corresponds to e 6= 0 for c′, where we can clearly
identify several peaks, well above the threshold, thereby indicating e 6= 0.

The identified ciphertext is denoted as cbase and its corresponding polynomial tuple
(d1,d2) according to Equation 27 is denoted as (d1att,d2att), which is subsequently used
to create the attack ciphertexts for key recovery. Since we can only differentiate between
e = 0 and e 6= 0, it is possible that e contains multiple non-zero coefficients. In such a
case, key recovery cannot be performed correctly and thus the search for cbase has to be
repeated until the correct key is recovered.
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Figure 8: The t-test plots for chosen ciphertexts whose (a) e = 0 and (b) e 6= 0 for
ntruhps2048677.

4.2 Key Recovery Phase
We build, using (d1att,d2att), the attack ciphertext

catt = `1 · d1att + `2 · d2att · h + `3 · (x− 1) · xu = cbase + `3 · (x− 1) · xu, (28)

where `1, `2, `3 ∈ Z+, u ∈ [0, n− 1]. The term `3 · (x− 1) · xu is used to ensure that catt is
a multiple of φ1 modulo q. Let RotpT(f , j) denote the product of f with xi in the ring T .
If we assume d1att and d2att collide at i with a value of +1, then

a[j] =


`1 ·m+ 3`2 · n+ `3 · (RotpT(f , u+ 1)[j]− RotpT(f , u)[j]), if j = i

`1 · r + 3`2 · s+ `3 · (RotpT(f , u+ 1)[j]− RotpT(f , u)[j]), if
{

(j 6= i) and
(r, s) 6= (m,n).

(29)
If we denote 3`1 · 2m+ 3`2 · 2n as a constant δ, then we can represent the coefficient of the
colliding index a[i] as

a[i] = δ + `3 · (RotpT(f , u+ 1)[i]− RotpT(f , u)[i]). (30)

Thus, a[i] is linearly dependent on βu = (RotpT(f , u)[i]−RotpT(f , u+ 1)[i]), which in turn
depends upon two coefficients of f . For a given u ∈ [0, n− 1], the possible candidates for
βu are {−2,−1, 0, 1, 2}. We choose (`1, `2, `3) such that the occurence of a[i] > q/2 and
therefore e[i] 6= 0 (Class X) acts as a binary distinguisher for βu. Our methodology for
choosing (`1, `2, `3) for NTRU resembles our technique used for NTRU Prime described in
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Table 6: Unique distinguishability of every candidate for βu ∈ [−2, 2] depending on e = 0
(the event O) or e 6= 0 (the event X) for ntruhps2048677

Either e = 0 or e 6= 0
Secret Coeffs. (`1, `2, `3)

(144, 66, 45) (114, 120, 39) (144, 66,−45) (114, 120,−39)

−2 O O X X
−1 O O X O
0 O O O O
1 X O O O
2 X X O O

Section 3.2.1, barring the additional constraints placed to deal with the rounding error, as
chosen ciphertexts of NTRU are devoid of rounding error.

Table 6 is the decision table for the ntruhps2048677 parameter set, which demonstrates
unique distinguishability for every candidate for βu ∈ {−2,−1, 0, 1, 2}, based on O or X.
Every candidate for βu = (RotpT(f , u)[i]− RotpT(f , u+ 1)[i]) can be uniquely identified in
no more than four chosen ciphertext queries. Table 5 gives the concrete (`1, `2, `3) values
for different parameter sets of NTRU. We write (`x1, `x2, `x3) to denote the tuple used to
distinguish x ∈ {1, 2}.

4.2.1 Classification using Reduced Templates

As shown in Section 3.2.2, side-channel leakage from the decryption of the attack ciphertext
catt can be used to classify a given ciphertext as either O/X, thereby realizing a PC oracle.
We use the distinguishing features of the t-test plot in Figure 8 to construct reduced
templates for both classes O and X. We then use the templates for classification using a
simple LSQ test. Figure 9 visualizes the matching of a section of the attack trace with
the reduced templates of the respective classes O and X. Here again, we are able to
observe clear distinguishability between the two classes and we experimentally obtained
100% success rate in classification, thereby demonstrating high accuracy of the realized
PC oracle.
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Table 7: Trace Complexity of our proposed PC oracle-based SCA on the indicated variants.
We use tbase to denote the number of traces needed to retrieve the base ciphertext and
ttotal to denote the number of traces required for full key recovery.

Scheme tbase ttotal Scheme tbase ttotal

ntruhps2058509 70 1791 ntruhps4096821 30 2911
ntruhps2058677 100 2364 ntruhrss701 70 2447

4.2.2 Recovering the Full Secret Key

Thus, we can use the realized PC oracle to uniquely recover the value of βu in upto four
traces, thereby obtaining information about two coefficients of f . The same can be repeated
for indices u ∈ [0, n− 1] to build a well-defined linear system, which can be trivially solved
to recover all n coefficients of the f . We can only recover the secret upto a rotation of i
indices (i.e.) f ′ = f · xi. The attacker does not know the collision index i, however the
multiplication of f by xi in the ring Tq does not change the coefficients of f . Moreover,
since the decryption involves multiplication and division by f , the rotated secret f ′ can
also be used to decrypt any message encrypted with the secret polynomial f .

As stated earlier, the secret key might not be recovered correctly if there are multiple
colliding indices in the base ciphertext cbase. Thus, we can simply repeat the attack until
the complete key is recovered correctly.

4.2.3 Experimental Results

We implemented our attack on the optimized implementation of ntruhps2048677 from
the pqm4 library [KRSS]. The pre-processing first step to retrieve cbase, required on
average, only 10 attempts. For N = 10 replicated measurements, the trace complexity
tbase of the pre-processing phase is ≈ 100 traces. The subsequent attack phase requires
upto 4 chosen-ciphertext queries (4 traces) to recover one coefficient. There are n = 677
coefficients. Altogether, including failed attack iterations, the complete secret polynomial
f can be recovered in ttotal ≈ 2364 traces. Our attack works with a success rate of about
100%, with no remaining brute force or offline analysis.

We also successfully verified our attack using a simulated PC oracle on the remaining
parameter sets of NTRU. Table 7 presents the estimated trace complexity of our attack for
different parameter sets of NTRU where the numbers are estimated with N = 10 for the
pre-processing phase. We can see that 2900 traces is enough for full key recovery across all
parameter sets of NTRU Prime, thereby demonstrating the effectiveness of our attack.

As can be seen, the attack complexity of NTRU is lesser than NTRU Prime by a factor
of ≈ 1.5 for almost similar dimensions of the secret polynomial f . This can be mainly
attributed to absence of rounding noise in NTRU, which simplifies the attack analysis
and allows for more relaxed choices of the attack parameters. This reduces the number of
attempts to identify the base ciphertext in the pre-processing phase, as well as reduces the
number of failed iterations of the attack.

4.2.4 Comparison with PC Oracle-based SCA on LWE/LWR-based schemes

We identify a few subtle but critical differences, when comparing our proposed PC oracle-
based SCA on NTRU-based schemes compared to similar attacks on LWE/LWR-based
schemes. The main difference lies in the anchor variable whose value is controlled carefully
through the chosen ciphertexts for key recovery. As seen from our attacks on NTRU and
NTRU Prime, the internal variable e within the decryption procedure, serves as the anchor
variable. However, the underlying arithmetic of LWE/LWR-based schemes is such that, it
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is possible to exercise direct control over the output of the decryption procedure (i.e.) the
decrypted message m through chosen ciphertexts, which serves as the anchor variable for
key recovery.

Another differing aspect is the ability to control the value of the anchor variable. While
our proposed attacks can restrict e to two classes e = 0 (Class O) and e = ±1 · xi (Class
X), the value of e in class X cannot be controlled. Thus, the pre-processing phase of our
attack involves a search for a base ciphertext whose e = ±1 · xi. The attacker can neither
control nor know the colliding index i, since it depends upon the secret key.

However, for LWE/LWR-based schemes, the two classes are fixed (i.e.) m = 0 (Class
O) and m = 1 (Class X), irrespective of the secret key. It is possible to build attack
ciphertexts to exactly restrict m to either 0 or 1. Since the decrypted message m is the
anchor variable, an attacker can also easily build ciphertexts for m = 0 and m = 1 to build
side-channel templates. Thus, the search for a base ciphertext is not necessary, which
heavily simplifies the PC oracle-based SCA on LWE/LWR-based schemes.

Though the attack seems to be more involved for NTRU-based schemes, we do not
observe a significant difference in the attacker’s cost (trace complexity) to perform full
key recovery. For comparison, we utilize experimental results from the work of Ravi et
al. [RRCB20] who demonstrated PC oracle-based SCA on LWE/LWR-based schemes,
using the same target platform and attack setup. Their attack on the Kyber512 parameter
set of Kyber required about 7700 traces for full key recovery (dimension n = 512 with
coefficients in {−2,−1, 0, 1, 2}). But, this count corresponds to three attack iterations to
improve success rate through majority voting. A single attack iteration takes about 2560
traces and thus the trace complexity of our proposed attack is comparable to the attack
LWE/LWR-based schemes.

4.3 Limitations of the PC Oracle-Based SCA

Our proposed PC oracle-based SCA can perform full key recovery on all parameter sets of
NTRU KEM and NTRU Prime KEM. However, we observe that side-channel leakage from
only a few operations within the decryption procedure can be used to obtain information
about the anchor variable e for key recovery. Thus, the attacker has a narrow scope to
obtain side-channel leakage to instantiate a PC oracle for key recovery.

This is particularly true for NTRU Prime KEM and we refer to the decryption procedure
of NTRU Prime (i.e.) NTRU_Prime_PKE.Decrypt procedure in Algorithm 1. The attack
ciphertexts result in e = 0/e = ±1 · xi. If e = 0, then b′ = 0 by line 5. If e = ±1 · xi, then
b′ has uniformly random coefficients in {−1, 0, 1} and its exact value depends upon the
secret polynomial g. However, in both cases, the weight of b′ is not equal to w, which is a
requirement to be satisfied by the decrypted message. Thus, by line 10, the decryption
procedure only returns a fixed value of (1, 1, . . . , 1, 0, 0, . . . , 0) for all the attack ciphertexts.

The effect of the anchor variable e for the attack ciphertexts, does not propagate
beyond the decryption procedure. Thus, the PC oracle attack can only be carried out using
side-channel information from operations that manipulate e and other dependent variables
within the decryption procedure. This restricts an attacker from utilizing side-channel
information from operations performed after decryption. These operations take place
within the re-encryption procedure from line 5 of KEM.Decaps in Algorithm 2.

In the following section, we improve upon the PC oracle-based SCA by proposing
a novel DF oracle-based SCA. The improved attack widens the scope of the attacker,
to obtain side-channel leakage from several other operations within the decapsulation
procedure, which aids in key recovery.
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5 Decryption-Failure Oracle-Based SCA
We start by providing some intuition for the decryption-failure (DF) oracle attack. We
demonstrate our attack on NTRU Prime only since the same approach extends trivially to
NTRU. The main idea is to carefully perturb valid ciphertexts, followed by observing the
effect of perturbation on the decrypted message. The perturbations are similar to those
used for the PC oracle-based attack.

Let cvalid be a valid ciphertext whose anchor variable e is denoted as evalid. Let c′ be
an element in a set of specially crafted ciphertexts. These are similar to those used for the
PC oracle-based attack. Upon decryption of c′, the corresponding e′ can only have two
possible values, namely, e′ = 0 and e′ = ±1 ·xi. We simply add the perturbation ciphertext
c′ to the valid ciphertext cvalid, to obtain a perturbed ciphertext cpert. Perturbing cvalid in
this manner, in turn, perturbs evalid so that the corresponding epert for cpert admits two
possible values, namely, epert = evalid (the class O) or evalid with a single coefficient error
at i (i.e.) epert = evalid ± 1 · xi, denoted as einvalid (the class X).

Decryption never fails for the class of valid ciphertexts. The decryption procedure
returns r′valid. For the second class of ciphertexts, however, there is a single coefficient
error in the anchor variable e, with einvalid = evalid ± 1 · xi. This triggers a decryption
failure and, hence, r′invalid := (1, 1, . . . , 1, 0, 0, . . . , 0) is returned as the decrypted message.
Here, the perturbed ciphertext cpert restricts the decrypted message r′ to two possibilities,
namely, r′valid and r′invalid. There, the decrypted message always takes the form of r′invalid.
The success or failure of decryption for the perturbed ciphertexts depends upon a targeted
portion of the secret key. Thus, an attacker who can obtain information about the
decryption outcomes through a Decryption-Failure (DF) oracle can fully recover the secret
key. In effect, we have ensured that the effect of the anchor variable e propagates to the
decrypted message r′, while this was not the case with the PC oracle-based attack where
the decrypted message always takes the form of r′invalid. Figure 10 illustrates the attack
targeting leakage from the decryption procedure. But, we can also rely on leakage from
the re-encryption procedure to instantiate the DF oracle.

A decryption failure can be identified through side-channel leakage from two sets
of operations. The first one consists of operations that manipulate the anchor variable
e. The second one includes operations that manipulate the decrypted message r′ in
the re-encryption procedure. Thus, an attacker enjoys a wider scope to obtain side-
channel information from several operations in the decapsulation procedure, including the
re-encryption operation toward a key recovery.
Remark 1. We observe that the DF oracle-based attack works with information about the
decrypted message r′. This can be used to perform key recovery over the IND-CPA secure
NTRU Prime PKE, even without the requirement of side-channels. Thus, our proposed DF
oracle-based attack on NTRU Prime is also the first theoretical chosen-ciphertext attack
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against the IND-CPA secure NTRU Prime PKE.
Similar to the PC oracle-based SCA, our DF oracle-based attack also works in two

phases, namely the pre-processing phase and the key recovery phase.

5.1 Pre-Processing Phase
As in Line 3 of NTRU_PRIME_PKE.Encrypt procedure in Algorithm 1, we construct a
valid ciphertext cvalid = Round(h · r). Its corresponding a = 3f · cvalid is

avalid = g · r + 3f ·m, (31)

where m is the rounding error. We then construct perturbations using the methodology
that was used to build the ciphertexts to obtain a single collision for NTRU Prime in
Section 3.1.2. Such a perturbation c′ is given by

c′ = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) ·h = k1 ·d1 + k2 ·d2 ·h, (32)

with 3 | k1, 3 | k2, and d1 and d2 having, respectively, m and n nonzero coefficients +1.
The corresponding a′ = 3f · c′ is

a′ = k1 · d1 · 3f + k2 · d2 · g + 3f ·m′′. (33)

We now use c′ to perturb cvalid as

cpert = Round(h·r+c′) = Round(h·r+k1·d1+k2·d2·h) = h·r+k1·d1+k2·d2·h+m′, (34)

where m′ is the rounding error. Upon decrypting c′, we express apert = 3f · cpert as

apert = g · r + k1 · d1 · 3f + k2 · d2 · g + 3f ·m′, (35)

Thus, apert ≈ avalid + a′. Let (k1 · d1 · 3f + k2 · d2 · g) be the signal component s of apert.
The noise n comprises of the rounding noise 3f ·m′ acting together with g · r, written
as gr, from avalid. For simplicity, we denote variables corresponding to the perturbed
ciphertext cpert (i.e.) apert and epert as a and e respectively.

To induce a decryption failure, that is, to perturb a single coefficient of e = a mod 3, we
need a single coefficient of a, say a[i], to be greater than q/2. This is achieved by choosing
(m,n) for the polynomials (d1,d2) in Equation (32) to maximize the probability of a single
collision. If there is a collision at i, then s[i] should be large enough to push a[i] beyond
the q/2 threshold. The coefficient s[i] at the colliding index is m1 := (3k1 · 2m+ k2 · 2n).
Let m2 denote the next largest possible value. We thus choose (k1, k2) such that m1 > q/2
and m2 < q/2.

The noise component n = g · r + 3f ·m′ in a, however, contributes to crossovers near
the q/2 threshold for coefficients of a, resulting in false positives and false negatives in
decryption failures. For sntrup761, the distribution of n′ is Gaussian with mean 0 and
a slightly larger standard deviation of σ ≈ 53 than σ = 50 for n in the PC oracle-based
attack. Though the increase is insignificant, we will soon see in Section 5.3 that the noise
term gr in n is also present as a constant bias in the attack ciphertexts used for key
recovery, along with the inherent rounding error. This additional bias poses challenges,
and thus we require a slightly different approach to construct chosen ciphertexts.

5.1.1 Additional Challenge: Dealing with the Bias gr

To negate the effect of gr, we slightly modify the constraints in choosing (k1, k2) so as to
obtain a single collision at the index where the corresponding coefficient gr[i] of gr whose
absolute value is high (both positive and negative value). We choose (k1, k2) such that

3 | k1, 3 | k2, (q/2− ε1) < m1 < (q/2− ε2), m2 < q/2, (36)
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with ε1, ε2 > 0. This way, even if there is a collision at i, we keep s[i] = m1 < q/2 in the
range [(q/2− ε1), (q/2− ε2)]. Such a constraint for (k1, k2) gives us several advantages.

The main advantage is that a[i] > q/2 only when two conditions, namely a collision at
i and n[i] > ε2, hold simultaneously. In allowing the noise coefficient to have a large value,
we increase the chances of gr[i] to also have a large value at the colliding index. Instead of
simply identifying a collision at any index, we increase the chances of achieving collision at
an index where gr[i] has a large value. Thus, even if a′[i] = m1 and is close to q/2, it gets
pushed further away from q/2 by gr[i]. This has a positive influence over key recovery as
it decreases the chance of a false negative for decryption failure in the key recovery phase.

With m1 chosen to be < q/2 by ε2 < dm1 < ε1, there is a leeway to increase dm2.
This reduces the chances of false positives at the other indices j 6= i where no collisions
occur. Thus, our modified constraints for choosing (k1, k2) according to Equation (36) offer
several advantages in reducing the false positives as well as false negatives for decryption
failures, which aids key recovery.

We choose (m,n) and (k1, k2) based on the aforementioned constraints to identify
ciphertexts with a single collision. Table 8 presents the concrete values chosen for our
attack on all parameter sets of specified NTRU Prime. Given (m,n) and (k1, k2), we
randomly select d1 and d2 to construct perturbations c′ based on Equation (32). The
aim is to identify a perturbation which, when added to a valid ciphertext cvalid, induces
a single coefficient error in the corresponding variable e (i.e.) einvalid = evalid ± xi. This
results in a decryption failure by yielding r′invalid.

5.2 Detecting Decryption Failure through Side-Channels
Decryption failures can be identified either by obtaining information about the anchor
variable e′ within the decryption procedure or the decrypted message r′ used in the
re-encryption procedure, through side-channels. We can therefore utilize side-channel
leakage from two sources. The first source consists of operations that manipulate e′ within
the decryption procedure in Lines 5 to 6 of NTRU_PRIME_PKE.Decrypt in Algorithm 1.
Operations within the re-encryption procedure in Line 5 of NTRU_Prime_KEM.Decaps in
Algorithm 2 form the second source.

We performed practical experiments on sntrup761. Measurements were acquired from
the same target platform and experimental setup used to perform the PC oracle-based
attack. In particular, we obtained side-channel leakage from the encoding of the decrypted
message r′ just after the decryption procedure. Other operations within the re-encryption
can also be deployed to infer information on r′.
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Figure 11: The t-test plots used to identify decryption failure for sntrup761.
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We used the Welch’s t-test described in Section 3.1.4 to identify leakage that differen-
tiates r′invalid (decryption failure) from r′valid (decryption success). Figure 11(a) depicts
the t-test plot for several perturbed ciphertexts cpert whose decryption does not fail (i.e.)
no error. One sees no significant peaks about the threshold, which indicates r′ = r′valid.
Figure 11(b), however, exhibits the t-test plot when the decryption fails for the perturbed
ciphertext. One can clearly identify several peaks, well above the threshold, indicating
r′ = r′invalid.

The ciphertext which successfully induces a decryption failure is denoted as cbase and
its corresponding polynomials d1 and d2 are denoted by d1att and d2att, with m and n
terms, respectively.

5.3 Key Recovery Phase
We now use the polynomials d1att and d2att of cbase to build new perturbed attack
ciphertexts. Side-channel leakage from their decapsulation is used to identify decryption
failures, which subsequently leads to full recovery of the secret polynomial f .

5.3.1 Attack Methodology

Our approach to build new perturbation ciphertexts for key recovery very closely resembles
the one used for the PC oracle-based attack on NTRU Prime in Section 3.2. We first build
the perturbation ciphertext c′ using (d1att,d2att) of cbase as

c′ = `1 · d1att + `2 · d2att · h + `3 · xu, (37)

with `1, `2, `3 ∈ Z+ and u ∈ [0, n− 1]. We add c′ to the term h · r of cvalid, and generate
the perturbed/invalid ciphertext cpert in the same way as done in Equation (34). The
corresponding a = 3f · cpert is given by

a = 3f · cpert = 3`1 · d1att · f + `2 · d2att · h · 3f + `3 · 3f · xu + gr + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · RotpR(f , u) + gr + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · RotpR(f , u) + n (38)

where n = 3f ·m′ + gr. If d1att and d2att collide at i, then we can write the coefficients
of a as

a[j] =
{

3`1 · 2m+ `2 · 2n+ 3`3 · RotpR(f , u)[j] + n[j], if j = i

3`1 · r + `2 · s+ 3`3 · RotpR(f , u)[j] + n[j], if (j 6= i), {(r = 2m, s = 2n).
(39)

As in the PC oracle-based attack, we choose (`1, `2, `3) to ensure that the following
conditions are met. First, a[j] < (q/2), for j 6= i, and, thus, e[j] = evalid[j]. Second,

Table 8: Concrete values for the various parameters used to build chosen ciphertexts for
both the Pre-Processing and Key Recovery phase of our DF Oracle-based SCA for different
variants of NTRU Prime

Scheme (m,n) Pre-Processing Phase Key Recovery Phase
(k1, k2); (dm1, dm2) (`11, `12, `13); (dm1, dm2) (`21, `22, `23); (dm1, dm2)

sntrup653 (0,4) (0,285); (30,315) (0,279,48); (66,69) (0,243,81); (120,123)
sntrup761 (0,4) (0,282); (39,321) (0,279,42); (63,63) (0,237,84); (105,132)
sntrup857 (0,4) (0,318); (39,357) (0,312,54); (75,75) (0,270,93); (135,135)
sntrup953 (0,4) (0,393); (27,420) (0,384,60); (81,99) (0,327,120); (165,162)
sntrup1013 (0,4) (0,444); (36,480) (0,435,72); (108,108) (0,375,129); (186,189)
sntrup1277 (0,4) (0,489); (27,516) (0,477,78); (111,123) (0,414,138); (201,213)
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the coefficients of a near the threshold q/2 are as far as possible from the threshold to
avoid accidental crossovers due to n. Third, the occurrence of a[i] > q/2 and, therefore,
e[i] 6= evalid[i], depends on a single coefficient βu ∈ {−2,−1, 0, 1, 2} of the rotated secret
polynomial RotpR(f , u)[i]. Thus, e = evalid (Class O) or e = einvalid (Class X) can act as
a binary distinguisher for every candidate of βu ∈ [−2, 2]. These constraints used to select
(`1, `2, `3) are the same as that used for the PC oracle-based SCA for NTRU Prime. Thus,
we arrive at the same values which were used for the PC oracle-based SCA, as can be seen
in Table 8. Thus, the decision table for unique distinguishability also stays the same (cf.
Table 3 in Section 3.2.1).

5.3.2 Classification using Reduced Templates

We utilize the differentiating features in the t-test plot shown in Figure 11(b) to build
reduced templates for both the classes O and X. Subsequently, they can be used to classify
any given trace corresponding to the decapsulation of an attack ciphertext into either of
the classes. This was treated earlier in Section 3.2.2. Figure 12 visualizes the matching of
a small section of an attack trace tr with the reduced templates of the respective classes
O and X. There is a clear distinguishability between the reduced templates of the two
classes. This enables us to correctly classify each given single trace with a 100% success
rate.
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Figure 12: Matching the reduced template tr of a given attack trace with the reduced
template of the two classes O and X.

5.3.3 Recovering the Full Secret Key

So far we have demonstrated the recovery of a single coefficient βu of the rotated secret
polynomial RotpR(f , u). Similarly, by changing the rotation index u, we can recover
Rotp(f , u)[i] for all u ∈ [0, n− 1]. Just in line with the PC oracle attack, recovering the
exact secret polynomial f requires knowing the colliding index i and the value (+2 or −2)
of the collision. By simply trying out all possible choices for i ∈ [0, n− 1] and the colliding
values +2 and −2, we check, for each choice, if f ′ ∈ Rsh and attempt to decrypt known
ciphertexts. We empirically verified that the search space is drastically reduced to ≈ 10,
up to a certain rotation of f . It is also possible that the secret is not recovered correctly,
due to a bad choice of the base ciphertext cbase. In this case, we simply retry the attack
until the correct key is recovered.
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Table 9: Trace Complexity of our proposed DF oracle-based SCA on different variants of
NTRU Prime. We use tbase to denote the number of traces to retrieve the base ciphertext
and ttotal to denote the number of traces required for full key recovery.

Scheme tbase ttotal Scheme tbase ttotal

sntrup653 163 4182 sntrup953 76 4436
sntrup761 165 4566 sntrup1013 74 4603
sntrup857 120 4631 sntrup1277 41 5287

5.3.4 Experimental Results

We ran our attack on the optimized implementation of sntrup761 taken from the pqm4
library [KRSS] on the ARM Cortex-M4 microcontroller. The pre-processing phase to
retrieve cbase requires an average of ≈ 165 attempts. For N = 10, the number of required
total attempts goes to ≈ 1650 traces (tbase). The number is almost 2.85× higher compared
with the PC oracle-based attack. The latter only requires ≈ 58 attempts. The increase
is partly due to the additional constraints to deal with the constant bias gr (Section
5.1.1). The subsequent attack phase can recover a single coefficient in up to 4 ciphertexts
and, thus, the complete attack requires ttotal = tbase + tattack ≈ 4566 traces for complete
recovery of f . Our attack works with a success rate of about 100% with no additional
brute force or offline analysis to perform.

We also successfully verified our attack methodology using a simulated DF oracle on all
the parameter sets of NTRU Prime. Table 9 gives the attack’s estimated trace complexity
for different schemes. The numbers are estimated with N = 10 for the pre-processing phase.
We can see that roughly between 4100 to 5300 traces are enough for full key recovery
across all listed parameter sets with a 100% success rate. The numbers are roughly 1.2 to
1.4 times the numbers for the PC oracle-based attack. This increase can be attributed
mainly to the longer pre-processing phase for the DF oracle-based attack.

5.3.5 Comparison with DF Oracle-based SCA on LWE/LWR-based schemes

Known DF oracle-based SCA on LWE/LWR-based schemes [GJN20,BDH+21] modified
single coefficients of the ciphertext to perturb the corresponding bits in the decrypted
message m that served as the anchor variable. Whether or not the perturbations result
in a decryption failure is linearly dependent on the secret key. This information, if could
be obtained by a DF oracle, led to full key recovery. For LWE/LWR-based schemes it is
notable that the location of the perturbed bit in the decrypted message can be precisely
controlled.

Although the underlying arithmetic is vastly different for a direct comparison, we
identify a few subtle differences when compared to our proposed DF oracle-based SCA
on the NTRU-based schemes. Our approach does not allow us to control the location of
the perturbed bit of the decrypted message. The more important but subtle difference
lies in the type of error used for perturbation. In our attack, we use carefully constructed
perturbations which, in fact, are the chosen ciphertexts used to carry out the PC oracle-
based attacks. In contrast, the attacks on LWE/LWR-based schemes use simpler errors
which perturb targeted single coefficients of the ciphertext polynomial.

For a quantitative comparison of the attacker’s effort, we utilize experimental results
from the work of Bhasin et al. [BDH+21]. It demonstrated a practical side-channel attack on
a side-channel resistant implementation of Kyber KEM. Their attack exploited side-channel
vulnerabilities in the ciphertext comparison operation to instantiate a DF oracle. Their
attack on Kyber512 took about 217 decapsulation queries and an additional offline analysis,
with a computational complexity of 265, for full key recovery. Similarly, Guo et al. [GJN20]
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proposed a timing side-channel attack targeting the ciphertext comparison operation
to instantiate a DF oracle-based attack on Frodo KEM. Their attack required about
230 decapsulation queries for full key recovery in Frodo− KEM− 1344− AES parameter
set. While the number of measurements includes replicated queries for better signal to
noise ratio, the number of decapsulation queries without replications is still very high at
≈ 118000.

Our proposed attack on NTRU-based schemes requirer much less number of traces, in
the range of 4500 to 7000 traces, for full key recovery with a 100% success rate across all
parameter sets of NTRU Prime.

6 Full-Decryption Oracle-Based SCA
We have thus shown that PC and DF oracles can be realized using side-channels through
careful choice of the chosen ciphertexts for NTRU Prime and NTRU KEM to perform full
key recovery. However, the PC and DF oracles only provide binary information (1-bit)
about the secret-dependent anchor variable, and therefore require a few thousand chosen
ciphertext queries to the target device. However, a more powerful side-channel adversary
who can extract more that just a single-bit information about the anchor variable, can
potentially perform more efficient attacks.

In this respect, Sim et al. [SKL+20] demonstrated single-trace message recovery attacks
over several IND-CCA secure NIST PQC KEMs. In particular, their attack targeted
those routines which manipulate sensitive variables such as the decrypted message, one
coefficient or one bit at a time. Targeting NTRU, they showed that the polynomial lift
operation computed on the decrypted message m′ in the decryption procedure (Line 10 of
NTRU_PKE.Decrypt procedure) is susceptible to side-channel attacks. They demonstrated
successful single-trace message recovery with close to a 100% success rate.

Though they do not demonstrate message recovery for NTRU Prime, we speculate
that the weight check operation on the variable b′ (Line 6 of NTRU_Prime_PKE.Decrypt
procedure) could also be susceptible to similar single-trace attacks, especially because it
involves manipulation of single coefficients of b′. The feasibility of performing single trace
recovery of b′ remains out of scope of this work.

However, the aforementioned side-channel vulnerabilities can potentially be exploited
to recover the complete decrypted message m′ in case of NTRU, or the variable b′ in case
of NTRU Prime in a single trace. We show that such vulnerabilities can also be used to
instantiate a Full-Decryption (FD) oracle in a CCA setting to mount very efficient key
recovery attacks. We first describe our attack on NTRU Prime KEM, and subsequently
on NTRU KEM.

6.1 Attack Methodology: NTRU Prime KEM
The attack methodology directly follows from our PC oracle-based SCA on NTRU Prime
KEM (cf. Section 3). We conduct the pre-processing phase to retrieve the base ciphertext
cbase whose e = ±xi. Using the side-channel based FD oracle, we assume complete recovery
of b′ for cbase in a single trace. From line 5 of NTRU_Prime_PKE.Decrypt procedure, we
know that

b′ = e · ĝ ∈ R3 (40)

where ĝ is the inverse of the secret polynomial g in R3. Since e = ±xi, g can be directly
recovered as g = e · b̂′ ∈ R3 where b̂′ is the inverse of b′ ∈ R3. The attacker does not
know i, but can simply try out all possible choices for i ∈ [0, n− 1] and recover the secret
polynomials f and g upto a rotation.
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6.2 Attack Methodology: NTRU KEM
The attack follows the pre-processing phase of the PC oracle-based SCA of NTRU KEM
from Subsection 4.1 to retrieve the base ciphertext cbase whose e = ±xi. Using the
side-channel based FD oracle, we assume complete recovery of m′ for cbase in a single
trace. From line 9 of NTRU_PKE.Decrypt procedure, we know that

m′ = e · fp ∈ S3 (41)

where fp is the inverse of f in S3. Since e = ±xi, fp can be simply computed as fp =
b̂′ · ê ∈ S3 where ê is the inverse of e ∈ R3. An attacker can try out all possible values of
i to fully retrieve fp and thereby calculate the secret key polynomials f and g.

Unlike the PC oracle or DF oracle-based attacks, the attacker can perform full key
recovery only using the base ciphertext cbase for both NTRU and NTRU Prime KEM,
which completely eliminates the need for key recovery phase. Thus, the trace requirement
of the FD oracle-based SCA primarily comes from the pre-processing phase of the attack.
Please refer to the column corresponding to tbase in Tables 4 and 7 for the estimated trace
complexity of the FD oracle-based SCA on different parameter sets of NTRU Prime KEM
and NTRU KEM respectively.

7 Countermeasures
Our proposed side-channel assisted CCAs rely on fixing targeted intermediate variables
to known values and, subsequently, utilizing side-channel leakage to identify its value to
perform key recovery. Thus, a complete randomization of the internal computation through
masking, can serve as a concrete countermeasure against the attacks. Let us briefly address
the countermeasures for the NTRU Prime KEM and the NTRU KEM separately.

In the case of NTRU Prime, the PC oracle-based attack only exploits leakage from
the decryption procedure. Thus, masking only the decryption procedure in decapsulation
protects against the PC oracle-based SCA. The same applies for the FD oracle-based attack
since it primarily relies upon leakage from the decryption procedure. The DF oracle-based
attack, however, is capable of exploiting leakage from the re-encryption procedure for key
recovery. Thus, the entire decapsulation procedure needs to be masked for a concrete
protection to thwart key recovery.

In the case of NTRU, the decapsulation procedure does not perform any re-encryption
of the decrypted message. Thus, the decryption procedure remains the only source of
side-channel leakage to instantiate the oracles for key recovery. All three attacks target
NTRU by exploiting leakage from the decryption procedure. We therefore believe that
masking the decryption procedure within decapsulation is sufficient to thwart our attacks.
However, the other unmasked operations within the decapsulation procedure, could also
offer an opportunity for the attacker to instantiate oracles for key recovery. We leave a
concrete analysis of this possible attack route for some future work.

Masking countermeasures, in general, are known to be costly in terms of performance.
There are several works, see, e.g., [LSCH10,WZW13, HCY20, SMS19], on protecting
NTRU-based primitives against side-channel attacks. Thus far, existing attacks as well
as countermeasures only target the polynomial multiplier involving the secret key in the
decryption procedure in Lines 3 and 5 in NTRU_Prime_PKE.Decrypt procedure of NTRU
Prime in Algorithm 1 and in Lines 7 and 9 of NTRU_PKE.Decrypt procedure of NTRU in
Algorithm 3.

Our attacks have shown that other operations within the decryption and decapsulation
procedure can also be targeted for key recovery. Moreover, schemes such as Streamlined
NTRU Prime include nonlinear operations which are nontrivial to mask. An example is
the weight check in Line 6 in the NTRU_Prime_PKE.Decrypt procedure of NTRU Prime.
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To the best of our knowledge, a concrete and complete masking scheme for NTRU-based
PKE/KEMs is yet to be devised. Developing efficient and concrete masking strategies for
NTRU-based PKE/KEMs, therefore, warrants an urgent attention from our community.

8 Conclusion
We have thus demonstrated the first practical side-channel assisted CCAs on NTRU and
NTRU Prime, which are final round candidates in the onging NIST PQC standardization
process. Our attacks involve careful construction of malformed ciphertexts which, when
decrypted, can instantiate three different types of oracles through side-channel leakage
from the decapsulation procedure. The resulting responses can then be used to perform
full key recovery. The oracles are plaintext-checking oracle, decryption-failure oracle, and
full-decryption oracle. We perform experimental validation of our proposed attacks on
optimized implementations of NTRU-based schemes, using the EM-based side-channel on
the 32-bit ARM Cortex-M4 microcontroller. All of our proposed attacks are capable of
recovering the full secret key in only a few thousand chosen ciphertext queries to the target
device on all parameter sets of NTRU and NTRU Prime. Our attacks stress on the need
for concrete masking strategies for NTRU-based KEMs to protect against side-channel
assisted CCAs.
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