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Abstract. For a hyperelliptic curve defined over a finite field IFqn with
n > 1, the discrete logarithm problem is subject to index calculus at-
tacks. We exploit the endomorphism of the curve to reduce the size of
the factorization basis and hence improve the complexity of the index
calculus attack for certain families of ordinary elliptic curves and genus
2 hyperelliptic Jacobians defined over finite fields. This approach adds
an extra cost when performing operation on the factor basis, but the
experiences show that reducing the size of the factor basis allows to have
a gain on the total complexity of index calculus algorithm with respect
to the generic attacks.
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1 Introduction

The security of many public key cryptographic implementations relies on the
difficulty of solving the discrete logarithm problem in the Jacobian of a hyperel-
liptic curve. In a general setting, this problem is stated as follows: given a finite
cyclic group G generated by g and an element h ∈ G, find an integer k such that
h = kg. In this paper, we take G to be the group of rational points of an elliptic
curve E defined over a finite field IFqn or the Jacobian J(H) of a hyperelliptic
curve H of genus g > 1 defined over IFqn .

In a generic group, the discrete logarithm problem can be solved by using
Pollard’s rho algorithm or the baby-step-giant-step algorithm. When the group is
known to have a certain algebraic structure, this may be exploited to improve the
performance of generic algorithms. For instance, Duursma, Gaudry, Morain [8]
used the automorphisms of the curve to speed up Pollard’s rho method on elliptic
curves and Jacobians of hyperelliptic curves. Another example is that of elliptic
curves defined over extension fields, where the index calculus method yields a
faster attack than generic algorithms. Once a convenient factor basis on the curve
is decided, the index calculus algorithm has three steps: the collection of relations
in which a random point is decomposed as sum of points in the factor basis, the
linear algebra step and the descent phase in which the discrete logarithm of h
is deduced. The choice of the factor basis depends on the curve and its field of
definition. The complexity of the algorithm crucially depends on the size of the
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factor basis, since this determines the probability for a point to be decomposed
over the basis and also the cost of the linear algebra step.

Let E be an elliptic curve defined over IFqn . In [7, 18], the authors suggest,
if q is a large prime and n small, to take the factor basis as :

F = {P ∈ E : x(P ) ∈ IFq} (1)

which has approximately q elements. Defining the factor basis like Gaudry does,
a natural observation is that −P ∈ F whenever P ∈ F . So, one can construct
the equivalence class {P,−P} in the factor basis and thus reduce its size by a
factor 2. Going further in this direction, the authors of [11, 12, 15] exploit small
torsion points to reduce the size of the factor basis.

We generalize the reduction of the factor basis based on the use of the auto-
morphism [−] : P 7→ −P by considering an efficient computable endomorphism
φ of the curve whose action on the basis is closed (i.e. φ(P ) ∈ F for all P ∈ F).
This allows us to consider equivalence classes of larger size than those proposed
by Gaudry. We focus on ordinary elliptic curves and hyperelliptic curves of genus
greater than 1 defined over finite fields with small characteristic and on GLV,
GLS and GLV-GLS families of hyperelliptic curves. In the relation search step of
the index calculus algorithm, each time a point decomposition is computed, we
obtain a new line in the matrix of relations whose coefficients are powers of the
eigenvalue of the endomorphism. Along the way, for elliptic curves with rational
2-torsion, we show that our definition of equivalent classes on the factor basis
is compatible to the one in [12], resulting into an improved algorithm for some
of these curves as well. We implemented this decomposition algorithm using the
computer algebra system MAGMA [3] and obtained a speed up factor close to
the size of our equivalence classes.

Our work is organized as follows: In Section 2, we recall the background on
the index calculus on elliptic curves. In Section 3, we present our reduction on
the size of the factor basis for elliptic curves defined over IFqn , q ≥ 2 and the
additional cost of the look up in equivalence class. In Section 4 we show a similar
approach for hyperelliptic curves. In Section 5 we briefly describe our MAGMA
implementation on elliptic curves defined over extension fields of composite de-
gree, on binary hyperelliptic curves of genus greater than 1 defined over a prime
degree extension fields and show benchmarks for our experiments.

2 Background on index calculus

We recall here the principle of the index calculus algorithm as presented in [18].
Consider a finite additive group G of prime order r and 2 elements h, g ∈ G.
Our goal is to find an integer k such that h = kg. The index calculus algorithm
consists of 4 main steps:

1. The computation of a convenient factor basis F = {g1, g2, · · · , gN} con-
sisting of some elements of G which generate whole G.
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2. The relation collection: Choose random integers αi modulo r and try to

decompose [αi]g into the factor basis, that is, [αi]g =

N∑
j=1

λi,jgj . This equation

is called a relation. The process is repeated until N relations are collected.
3. The linear algebra phase : Once N linearly independant relations were

found, construct the vector A = (αi)1≤i≤N and the matrix M = (λi,j)1≤i,j≤N
and find a vector X such that MX = A. This vector contains all the logarithms
of the basis elements with respect to g.

4. The descent phase : Choose random integers α and β 6= 0 and try to

decompose αg + βh in the factor basis, i.e. αg + βh =

N∑
j=1

λjgj and deduce the

logarithm of h with respect to g. By taking X = (x1, x2, · · · , xN ), we get that

h = ((

N∑
j=1

λjxj)− α)β−1g.

Index calculus attack over an elliptic curve. We consider an elliptic curve
E defined over the finite field IFqn . Let G = 〈P 〉 the subgroup of E(IFqn) of order
r, where r is the greatest prime divisor of the order N of E. For cryptographic
purposes, r ∼ N . To define the factor basis, we follow the approach in [12] which
is useful for our purposes. Let P1 be the projective space. Consider the morphism

µ : E → P1 (2)
P 7→ µ(P ),

defined over IFqn .

Definition 1. We define the factor basis with respect to µ as

FE,µ = {P ∈ E(IFqn) : µ(P ) ∈ IFq}.

To find a relation of the form

R = P1 + P2 + · · ·+ Pn,

we use the so called Semaev’s summation polynomial associated to the morphism
µ, introduced in [12, Proposition 2].

Themth-Semaev’s summation polynomial Sm,µ associated to the morphism µ
is a multivariate polynomial with coefficients in IFqn such that given P1, P2, · · · , Pm ∈
E(IFqn) we have

P1 + P2 + · · ·+ Pm = 0 ⇐⇒ Sm,µ(µ(P1), µ(P2), · · · , µ(Pm)) = 0. (3)

Example 1. Let E is defined by the equation y2 = x3 + Ax + B defined over a
finite field. When the morphism µ is defined by

x : E → P1

P 7→ x(P ),
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where x(P ) is the x-coordinate of the point P . Semaev’s summation polynomial
associated to x is given by:
1. S2,x(x1, x2) = x1 − x2;
2. S3,x(x1, x2, x3) = (x1 − x2)2x23 − 2((x1 + x2)(x1x2 +A) + 2B)x3 + ((x1x2 −
A)2 − 4B(x1 + x2));

3. Sn,x(x1, x2, · · · , xn) = Resx(Sn−k,x(x1, · · · , xn−k−1, x), Sk+2,x(xn−k, · · · , xn, x)
for any n ≥ 4 and 1 ≤ k ≤ n− 3.

Given R ∈ E(Fqn), the usual approach to find a relation R = P1+P2+· · ·+Pn
with Pi ∈ F is to solve the equation

Sn+1,µ(µ(P1), µ(P2), · · · , µ(Pn), µ(R)) = 0, (4)

where µ(P1), µ(P2), · · · , µ(Pn) are the unknowns. After replacing µ(R) by its
value, we perform a Weil descent with respect to a vector basis of Fqn over Fq
and obtain a polynomial system of n equations and n unknowns which can be
tackled using Gröbner basis algorithms [9, 10]. For a random morphism µ, the
expected degree of Sn,µ in each of the variables is bounded by (degµ)n−1.

For completeness, we give an upper bound for the complexity of the Gröbner
basis computation of the system S = {f1, f2, · · · , fn} that we obtain. Under
the assumption that S is regular, the maximum degree of polynomials occur-
ring during the computation of the Gröbner basis is bounded by the degree of
regularity dreg of the homogenized system, which in turn is smaller than the
Macaulay bound d =

∑n
i=1(degfi − 1) + 1.

Using the fact that the system S is composed of n polynomials of degree
(degµ)n−1 in n variables, we have d = n(degµ)n−1 − n + 1. The number of
columns of the d-Macaulay matrix is at most the number of monomials of degree
smaller than or equal to d which in our case is bounded by(

d+ n
n

)
=

(
n(degµ)n−1 − n+ 1 + n

n

)
=

(
n(degµ)n−1 + 1

n

)
'(

n(degµ)n−1

n

)
.

Then the complexity of computation of the Gröbner basis of the system S is in

Õ
((

n(degµ)n−1

n

)ω)
,

where ω < 3 is the complexity exponent of matrix multiplication. As n is negli-
gible compared to n2n−2 and using the Stirling’s formula, we get:(

n(degµ)n−1

n

)
∼ (n(deg µ)n−1)n

n ! ∼ (degµ)n(n−1)en(2πn)−1/2.

Finally, the complexity of Gröbner basis computation is

Õ
((

(degµ)n(n−1)enn−1/2
)ω)

, (5)

where ω is the factor occurring in the complexity of matricial product. Conse-
quently, to be able to solve the system resulting from Equation (4), Faugère et
al. focus on the case where degµ = 2.
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3 Our contribution

Let IFqn be a finite field, E an ordinary elliptic curve defined over IFqn , and
#E(IFqn) = hr, with h small and r a large prime number. For cryptographic
applications, we work in the group G = 〈P 〉, where P is an element of E(IFqn) of
order r. If φ is an endomorphism of E(IFqn) and gcd(r,#Ker(φ)) = 1, then φ(P )
is also of order r. Since E is ordinary, End(E) = EndIFqn (E). This implies that
φ(P ) ∈ G and in particular, that there exists an integer β such that φ(P ) = βP .

We exhibit several examples of curves and endomorphisms φ with the prop-
erty that if P ∈ F , then φ(P ) ∈ F . Then we construct an equivalence class
{P, φ(P ), φ2(P ), · · · , φk−1(P )}, where k ∈ Z will be chosen such that φk(P ) = P
for all P ∈ F . By considering one representant of each equivalence class in the
factor base, we reduce its size by a factor k.

Note that the eigenvalue β may be obtained by computing the roots of the
characteristic polynomial of φ in Fr. During the decomposition phase, whenever
a relation R = P1 + P2 + . . . + Pm is computed, one searches first the rep-
resentatives of the equivalence classes to which these points belong to. Let us
denote these representatives by P̂i, i = 1, . . . ,m. Then by computing βji such
that φji(Pi) = P̂i = βjiPi, one modifies the matrix of relations by adding a line
whose coefficients are β−ji for the columns corresponding to P̂i, i = 1, . . . ,m
and 0 otherwise. Note that this approach is effective as long as the size of the
equivalence class is small, since computing the discrete logarithm value βji by
exhaustive search is costly otherwise. In all examples considered in this paper,
k is of size O(log r).

Definition 2. For a given endomorphism φ of E defined over a finite field Fqn
such that φk = ±1 and a morphism µ : E → P1 such that µ(P ) = µ(−P ) for
P ∈ E(Fqn), we define respectively the trace and norm of µ with respect to φ :

Trφ(µ) : E → P1

Q 7→ µ(Q) + µ(φ(Q)) + · · ·+ µ(φk−1(Q)).

and

Nφ(µ) : E → P1

Q 7→ µ(Q) · µ(φ(Q)) · · · · · µ(φk−1(Q)).

Lemma 1. Let E be an elliptic curve defined over Fqn and µ : E → P1 such that
µ(P ) = µ(−P ) for all points P ∈ E(Fqn) and φ : E → E and endomorphism
of E such that φk = ±1. Consider Trφ(µ) : E → P1 the trace morphism with
respect to φ. The factorization basis FE,Trφ(µ) is invariant with respect to the
endomorphism φ, i.e. for every point Q ∈ E(Fqn), φ(Q) ∈ FE,Trφ(µ) whenever
Q ∈ FE,Trφ(µ).
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Proof. Let Q ∈ FE,Trφ(µ), i.e. Trφ(µ)(Q) ∈ IFq. We have that

Trφ(µ)(φ(Q)) = µ(φ(Q)) + µ(φ2(Q)) + · · ·+ µ(φk(Q))

= µ(φ(Q)) + µ(φ2(Q)) + · · ·+ µ(Q) (since φk ≡ ±1 (mod r))

= Trφ(µ)(Q).

Hence, Trφ(µ)(φ(Q)) ∈ IFq since Trφ(µ)(Q) ∈ IFq. Consequently, φ(Q) ∈ FE,Trφ(µ).
The proof that FE,Nφ(µ) is invariant under φ is similar. ut

3.1 Curves defined over an extension field of composite degree

Let IFqn be a finite field with q ≥ 2 and n = m1m2. Usually, m1 is small (i.e.
m1 ∈ {2, 3, 4}) and m2 is a large prime number. Let E be an ordinary elliptic
curve defined over IFqm1 and assume that #E(IFqn) = hr, with h small and r a
prime number. We would like to perform an index calculus attack in the group
E(IFqn).

Note that the curve E admits a Frobenius endomorphism πm1 defined by

πm1
: P = (x, y) 7→ πm1

(P ) = (xq
m1
, yq

m1
). (6)

There exists an integer µ such that for all Q of order r in E(IFqn), πm1
(Q) = µQ.

The integer µ is a root of the characteristic polynomial χE of πm1
, defined by:

χE(T ) = T 2 − tT + qm1 , (7)

where t is the trace of the Frobenius endomorphism.
To perform index calculus on the curve E, we define our factor base by

F = {P ∈ E(IFqn) : x(P ) ∈ IFqm2}. We observe that, if P = (x, y) ∈ F ,
then πm1

(P ) = (xq
m1
, yq

m1
) ∈ F . In fact, (x(πm1

(P )))q
m2

= (xq
m1

)q
m2

=
(xq

m2
)q
m1

= xq
m1

= x(πm1(P )), since xq
m2

= x. We conclude that, if P ∈ F
then πm1(P ), π

2
m1

(P ), · · · , πm2−1
m1

(P ) are also in F and we construct an equiva-
lence class {P, πm1

(P ), π2
m1

(P ), · · · , πm2−1
m1

(P )}. By putting only one represen-
tant of each equivalence class in the factor base, we reduce its size by a factor
m2.

This reduction applies for all elliptic curve defined over IFqn , with full 2-
torsion defined over IFqm1 , and consequently to all isogeny classes containing
such curves. Indeed, when the full 2-torsion is not defined over IFqm1 , the elliptic
curve will be 2-isogenous to a curve having the full 2-torsion defined over IFqm1 .
Using a heuristic assumption, there are only 2m1 isogeny classes out of the 2n/2

isogeny classes of elliptic curves defined over Fqn which are concerned by this
reduction.

Theorem 1. Let E be an elliptic curve defined over Fqm1 . The complexity of
the relation collection step in the index calculus algorithm in the group E(Fqn)
with n = m1m2 is

O
(
(
m1!

m2
2m1(m1−1)+m2em1m

−1/2
1 )ω +m12

m2

)
. (8)
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Proof. Here, we need to find 2m2

m2
relations. Recall that whenever a relation

Q = P1 + P2 + . . . + Pm1
is computed, one searches first the representatives of

the equivalence classes to which these points belong to. Since we need to do a
look up in an equivalence class with m2 elements for each point involved in a
relation, the cost of search in an equivalence class is m1m2. The probability of
finding a decomposition of a random point R ∈ E(IF2n) in the factor basis is
approximately

#Fm1/#Sm1

#E(IF2n )
' (2m2 )m1/m1!

2m2m1
= 1

m1!
.

So, the total cost of the relations search step in the index calculus algorithm is

O( 2
m2

m2
m1! + 2m2m1),

where A is the complexity of solving a polynomial system S of m2 equations
and m2 unknowns. Under the assumption that this system is regular, we use
Equation (5) and bound A by Õ

((
2m1(m1−1)em1m

−1/2
1

)ω)
. This yields the

complexity in Equation (8). ut

3.2 GLV curves.

The scalar multiplication of a point on a small dimension abelian variety is one
of the most important operations used in curve-based cryptography. In 2001,
Gallant, Lambert and Vanstone [16] introduced a method which uses efficiently
computable endomorphisms on the elliptic curve to decompose the scalar mul-
tiplication in a 2-dimensional multi-multiplication. They considered a curve E
with complex multiplication by Z[D+

√
−D

2 ], with D small. We quickly review the
examples of curves in [16] in the case where these are defined over an extension
field Fqn , and show how to choose a factor basis invariant under the action of
an endomorphism such that the value of k is small.

Example 2. Consider the elliptic curve E1 : y2 = x3 + ax defined over Fqn with
a ∈ IFqn . Let α ∈ Fqn an element of order 4. The map φ : E1 → E1 defined by
(x, y) 7→ (−x, αy) and O 7→ O is an endomorphism of the curve defined over
Fqn . The characteristic equation of this endomorphism is X2+1 = 0. To perform
the index calculus on this curve we consider the factor basis FE1,x. We realize
that x(φ(Q)) ∈ Fq whenever x(Q) ∈ Fq for all Q ∈ E1(Fqn). Thus, if Q ∈ FE1,x,
then φ(Q) ∈ FE1,x. Considering the equivalence class {Q,φ(Q)}, we can reduce
the size of the factor basis by a factor 2 as compared to the classical algorithm
considering the equivalence class {Q,−Q}.

Example 3. Consider the elliptic curve E2 : y2 = x3 + b defined over Fqn . Let
β ∈ Fqn be the cubic root of 1 in Fq. Then, the map φ : E2 → E2 defined
by (x, y) 7→ (βx, y) and O 7→ O is an endomorphism defined over Fqn . If Q ∈
E2(Fqn) is a point of prime order r, then φ(Q) = λQ, where λ is an integer
satisfying the equation X2 + X ≡ −1 (mod r). We define our factor basis as
FE2,x.
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3.3 GLS curves.

In 2009, Galbraith, Lin and Scott [30] improved scalar multiplication on an
elliptic curve by using the endomorphisms of a curve isogenous to it. We focus
on the case where the isogenous curve is the twist of the given elliptic curve.

Theorem 2. [30, Theorem 2] Let q > 3 be a prime number and E be an
elliptic curve over Fq. Let E′ over Fqn be the quadratic twist of E(Fqn), n ≥ 2.
Let φ : E → E′ be the twisting isomorphism defined over Fq2n , r|#E′(Fqn) be
a prime such that r > 2q. Let ψ = φ ◦ π ◦ φ̂, π is the q-power Frobenius map
on E. For P = (x, y) ∈ E′(Fqn)[r] we have ψ(x, y) = (u(1−q)xq, u3(1−q)/2yq) and
ψn(P ) + P = OE.

In this section, we consider µ = Trψ(x). A straightforward computation shows
that this morphism is given by

µ : E′ → P1

Q 7→ x(Q) + ukx(Q)q + uk(1+q)x(Q)q
2

+ · · ·+ uk(1+q+···+q
n−2)x(Q)q

n−1

,

where k = 1− q.

Lemma 2. We use the notation in Theorem 2. The morphism µ has degree
qn−1.

Proof. For all Q ∈ E′, the index of ramification of µ in Q, eµ(Q) = 1. Indeed, the
formal derivative µ′ = 1 6= 0 for all P ∈ E′. We have deg(µ) = #µ−1(Q) = qn−1.

In the light of Lemma 1, by choosing FE,µ as a factorization basis for index
calculus, we may reduce the factor basis size by a factor n, as compared to the
classical algorithm. However, to perform index calculus, we would need to use the
summation polynomial Sµ,n whose degree is q(n−1)

2

by Lemma 2. Consequently,
it is hard to give an explicit formula of the polynomial Sµ,n, not to mention
solving it. To work around this problem, we work with Sx,n and perform the
Weil descent in the decomposition step with respect to a normal basis of IFqn
over IFq.

Theorem 3. We use the notation of Theorem 2. The relation collection in the
index calculus algorithm on E′ with the factor basis FE′,µ has complexity

Õ
(
(n− 1)!

(
2n(n−2)enn−1/2

)ω
q
)
.

Proof. We pick N = {ω, ωq, . . . , ωqn−1} a normal basis of Fqn over Fq. We de-
note by Sx,n+1 ∈ Fqn [X1, . . . , Xn+1] the n + 1-th Semaev polynomial of E′
and by S′x,n+1 ∈ Fqn [X11, X12, . . . , X1n, . . . , Xn1, . . . , Xnn, Xn+1] the polyno-
mial obtained by substituting in Sx,n+1 the variables Xi by Xi1ω + Xi2ω

q +

. . .+Xinω
qn−1

, 1 ≤ i ≤ n. During the decomposition step of the index calculus
attack, we evaluate S′x,n+1 at Xn+1 by the x-coordinate of a random point R
and then perform a Weil restriction on the polynomial obtained in this way. This
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yields a system of n equations and n2 variables, that we denote by S. Now, let
us write the conditions that the points in the decomposition are in the factor
basis. For the point of whose x-coordinate is Xi we have that

µi = Xi + ukXq
i + uk(1+q)Xq2

i + · · ·+ uk(1+q+···+q
n−2)Xqn−1

i .

In this equation, we substitute again formallyXi byXi1ω+Xi2ω
q+. . .+Xinω

qn−1

and obtain

µi = Ai0ω +Ai1ω
q +Ai2ω

q2 + · · ·+Ain−1ω
qn−1

,

where Aij are linear polynomials in IFq[Xi1, Xi2, · · · , Xin]. The condition that
µqi = µi writes as

Ai0ω
q +Ai1ω

q2 + · · ·+Ain−1ω = Ai0ω +Ai1ω
q + · · ·+Ain−1ω

qn−1

.

After performing a Weil descent, we deduce the equations

Ain−1 −Ai0 = 0

Ai0 −Ai1 = 0

...
Ain−2 −Ain−1 = 0.

Since the first equation is linearly dependent on the n − 1 others, we obtain a
system of n − 1 linear equations in the variables Xi1, . . . , Xin, for 1 ≤ i ≤ n.
We solve this system and get Xi2, . . . , Xin in terms of Xi1. After substituting
their expressions in S, we are left with a system of n equations in the vari-
ables X11, . . . Xn1, whose degrees in each variables are 2n−2 that we solve using
Gröbner basis algorithms.

Finally, the complexity of Gröbner basis computation is in

Õ
((

2n(n−2)enn−1/2
)ω)

.

The probability of finding a decomposition of a point R ∈ E′(Fqn) in the factor-
ization basis is approximately

#Fn
E′,µ/Sn

#E(Fqn ) '
qn/n !
qn = 1

n !

and the cardinality of the factorization basis is approximately q
n . We conclude

that the relation collection step of the index calculus algorithm on E′ with the
factor basis FE′,µ has complexity

Õ
(
(n− 1) !

(
2n(n−2)enn−1/2

)ω
q
)
.

ut
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3.4 GLV-GLS curves.

Longa and Sica [25] generalized the GLS method to all GLV curves by exploit-
ing both the endomorphisms arising from the GLV and the GLS approach to
decompose the scalar multiplication in a 4-dimensional multi-multiplication. We
conclude this section with an example where two endomorphisms may be used
to reduce the factor basis.

Example 4. [25, Section 8] Consider the curve in Weierstrass form E′3(Fq2) :
y2 = x3 + 9u, where q = 2127 − 58309 and #E′3(Fq2) = r, r a 254-bit prime.
We take Fq2 = Fq[i]/(i2 + 1) and u = 1 + i ∈ Fq2 and φ(x, y) = (βx, y) with
β3 ≡ 1 (mod q) and ψ(x, y) = (u

1−q
3 xq, u

1−q
2 yq). We have that φ2 + φ + 1 = 0

and ψ2 + 1 = 0.

As before, we consider the factor basis FE′3,µ where µ = Trψ(x). Recall that we
have

µ(Q) = x(Q) + x(ψ(Q))

= x(Q) + u
1−q
3 x(Q)q.

Using the fact that β, µ(Q) ∈ Fq we compute:

µ(φ(Q)) = µ((βx(Q), y(Q)))

= βx(Q) + u
1−q
3 (βx(Q))q

= βx(Q) + u
1−q
3 βx(Q)q

= β(x(Q) + u
1−q
3 x(Q)q)

= βµ(Q) ∈ Fq.

Therefore, Q, φ(Q) and φ2(Q) are simultaneously in FE′3,µ. Since FE′3,µ is also
closed with respect to ψ, we extend the equivalence class to

{Q,φ(Q), φ2(Q), ψ(Q), ψ(φ(Q)), ψ(φ2(Q))}.

This allows us to gain a factor 6 speed up in the relation search step of the index
calculus algorithm. ut

Note that we cannot always extend the equivalence classes on the factor
basis using both endomorphisms for the simple reason that usually the GLV
endomorphism φ has characteristic equation of the type φ2 + aφ+ b = 0, where
a 6= 0 and b 6= ±1. For such an endomorphism, the eigenvalues do not have small
order modulo#E(Fqn) and this would result into large equivalence classes, which
we not know how to handle.

3.5 Elliptic curves with a rational small torsion point

In [11], Huot et al. proposed a method to reduce the factorization basis whenever
the elliptic curve has a rational two torsion point. Huot et al. worked out the
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attack on Edwards curves and on Jacobi intersection curves. We explain the
main idea of this method on a simple example of an elliptic curve in Weierstrass
form.

Example 5. We revisit the example of the elliptic curve E1 defined in Example 2.
We further assume that a ∈ Fq. We notice that (0, 0) is a 2-torsion point on E1.
For a given point P = (x, y) ∈ E1(IFqn) we see that

x(P + T2) =
x3 + ax

x2
− x

is in IFq whenever x ∈ IFq. Therefore, for a given point Q, the points Q and
Q+T2 are simultaneously in the factor basis FE1,x. Considering the equivalence
class Q,Q+T2,−Q,−Q+T2 in the factor basis, we can reduce its size by a factor
4 compared to the classical algorithm using the equivalence class {Q,−Q}.

In Example 5, the 2-torsion point T2 verifies x(P + T2) ∈ IFq whenever
x(P ) ∈ IFq. But this condition is not always satisfied. To work around this
problem, in [12] the authors consider a factor basis defined with respect to a
morphism ϕ invariant under the 2-torsion point of the curve.

Proposition 1. [12, Proposition 8] Let E be an elliptic curve defined over IFqn .
If char(IFqn) 6= 2, then there exists T ∈ E(IFqn)[2] and ϕ : E → IP1 a degree
2 morphism such that ϕ(P + T ) = −ϕ(P ) and ϕ(−P ) = −ϕ(P ) if and only if
there exists T ′ ∈ E[4] such that x(T ′) ∈ IFqn . In this case T = [2]T ′ and the
curve E has an equation of the form y2 = x3 + ax2 + bx where T = (0, 0) and b
a square in IFqn ; moreover, ϕ is of the form

λx(P )+
√
b

x(P )−
√
b
,

for a choice of the square root of b and λ ∈ IFqn .

We will show that whenever an efficient endomorphism exists on the curve
and a 2-torsion point is defined over Fqn it is possible in most cases to reduce
the factorization basis with respect to both the torsion point of the curve and
the endomorphism. To this purpose, we reformulate a result given by Charles [5]
and give its proof for completeness.

Lemma 3. Let E be an ordinary elliptic curve defined over IFqn and let ψ be an
endomorphism different from multiplication by a scalar. Assume that E(Fqn)[2]
is non-trivial.

1. If E(Fqn)[2] ' Z/2Z then ψ(T ) = γT, with γ ∈ {0, 1} for all T in E(Fqn)[2].
2. Assume that E(Fqn)[2] ' Z/2Z × Z/2Z and that Z[ψ] ' O, where O is

the ring of integers of a quadratic imaginary field. Then if 2 is split or
ramified in O, then there is a 2-torsion point T defined over Fqn such that
ψ(T ) = γT, with γ ∈ {0, 1}. If 2 is inert, there is no such T .
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Proof. 1) This is straightforward. Indeed, let us denote by πn the Frobenius
endomorphism of E. Using the commutativity of the endomorphism ring of E,
we have that:

πn(ψ(T )) = ψ(πn(T )) = ψ(T ).

Hence ψ(T ) = γT , with γ ∈ {0, 1}. 2) Under the isomorphism Z[ψ] ' O, ψ acts
on E[2] as a matrix whose characteristic polynomial is the minimal polynomial
of α ∈ O modulo 2. If 2 is inert in O, then no 2-torsion group is stabilized by

α. If 2 is split or ramified, then the matrix of α on E[2] is conjugate to
(
1 0
0 1

)
or
(
1 1
0 1

)
, respectively. In these cases, it is obvious that there is at least one

2-torsion point T which is an eigenvector for ψ. ut

Theorem 4. We use the notation and assumptions in Proposition 1. We con-
sider that there exists an endomorphism ψ : E → E and k a small integer
such that ψk(Q) = ±Q for all Q ∈ E and T is not in Ker ψ. Consider
µ1 = Trψ(ϕ) : E → P1 and µ2 = Nψ(ϕ) : E → P1. The factorization basis FE,µ1

and FE,µ2
are invariant under T and ψ. Morever, the summation polynomials

Sµ1,n and Sµ2,n are invariant under the action of the group (Z/2Z)n−1 o Sn.

Proof. The invariance of FE,µ1 and FE,µ2 with respect to ψ follows from Lemma 1
and the invariance with respect to T comes from Lemma 3. Indeed, we have that:

µ1(P + T ) = ϕ(P + T ) + ϕ(ψ(P + T )) + · · ·+ ϕ(ψk−1(P + T ))

= −ϕ(P ) + ϕ(ψ(P ) + T ) + · · ·+ ϕ(ψk−1(P ) + T ))

= −ϕ(P ) + ϕ(ψ(P ) + T ) + · · ·+ ϕ(ψk−1(P ) + T ))

= −ϕ(P )− ϕ(ψ(P ))− · · · − ϕ(ψk−1(P ))
= −µ1(P ) ∈ IFq.

A similar computation will show that µ2(P + T ) = ±µ2(P ). As shown in [12,
Prop. 7], the polynomial Pϕ,n is invariant under the action of (Z/2Z)n−1 o Sn.
This implies that Pµ1,n and Pµ2,n are also invariant under the action of this
group.

Remark 1. Heuristically, and the degrees of Trψ(ϕ) and Nψ(ϕ) are both equal
to d =

∑k−1
i=0 deg(ϕ)(deg(ψ))i. This means that in general the degree of the

polynomials Sµ1,n and Sµ2,n will be augmented by a factor dn−1 in each vari-
able as compared to the degree of Sϕ,n. This results into slower Gröbner basis
computation, which suggests that both k and degψ have to be very small in
general.

The invariance in Theorem 4 allows us to reduce the size of the factor basis
by a factor of 2k as compared to the original algorithm.
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Example 6. We consider the example of the elliptic curve E2 defined in Exam-
ple 3 such that b is a cubic root in IFqn , and let d = 3 3

√
b
2
. The curve E2 admits

an endomorphism ψ of order 3 and a 4-torsion point T ′, then, a 2-torsion point
T = 2T ′. By Proposition 1, there exists a degree 2 morphism ϕ such that
ϕ(P + T ) = −ϕ(P ) and ϕ(−P ) = −ϕ(P ) of the form

ϕ(P ) = x(P )+
√
d

x(P )−
√
d
.

We consider the morphism

µ : P 7→ ϕ(P ) · ϕ(ψ(P )) · ϕ(ψ2(P )).

We have:

µ =
x+
√
d

x−
√
d
· βx+

√
d

βx−
√
d
· β

2x+
√
d

β2x−
√
d

=
x3 + d

√
d

x3 − d
√
d

since β2 + β + 1 = 0.

Using the observation in Remark 1 we obtain a polynomial with degree 3 · 2n−1
in each variable.

To perform the index calculus on E2(IFqn), we use the factorization basis
Fµ,E2

. By Theorem 4, the size of Fµ,E2
is reduced by a factor 3, as compared to

the factor basis proposed in [12]. Moreover, since µ is invariant under the action
of Z/3Z, we can further symmetrize the polynomial Sµ,n and reduce its degree
by a factor 3 in each variable, so the cost of the Gröbner basis computation is
unchanged.

4 Index calculus attack over the Jacobian of a
hyperelliptic curve of genus g ≥ 2.

Throughout this section, the group G denotes a subgroup of order r of the
Jacobian J(H) of a hyperelliptic curve H of genus g defined over a finite field
IFqn by the equation

y2 + h1(x)y = h0(x), (9)

where deg(h1) ≤ g, h0 a monic polynomial of degree 2g + 1 and r the greatest
prime divisor of the order of J(H). We denote by P0 the point at infinity of H.
Whenever we use the Mumford representation of a representative D = (x2 +
u1x+ u0, v1x+ v0) ∈ J(H) we will simply write D = (u1, u0, v1, v0).

The factor basis for the index calculus algorithm is defined by:

F = {D = (P )− (P0) ∈ J(H) : x(P ) ∈ IFq}. (10)

This approach yields attacks faster than generic methods for genus g ≥ 3
(see [19]).

Similar considerations as those in Section 3 apply to an ordinary hyperelliptic
curve of genus > 1 defined over IFqn , most notably by the use of the Frobenius
morphism.
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4.1 Binary hyperelliptic curves defined over a prime degree
extension field

Lange [23, 24] showed that hyperelliptic curves defined over IF2n given by Equa-
tion (9) with h0, h1 ∈ IF2[x] and n prime are suitable for cryptographic appli-
cations because they allow fast arithmetic. These curves are called hyperelliptic
Koblitz curves in the literature.

Recall that for the Jacobian of these hyperelliptic curves the factor base is
defined by

F = {D = (P )− (P0) ∈ J(IF2n) : x(P ) ∈ IF2n}. (11)

We notice that if D ∈ F , then π(D), π2(D), · · · , πn−1(D) are also in F . Hence
we can construct the equivalence class {D,π(D), π2(D), · · · , πn−1(D)} in the
factor base and reduce its size by a factor n.

The characteristic polynomial of the Frobenius map is

χH(T ) = T 2g + a1T
2g−1 + · · ·+ agT

g + · · ·+ a1q
m1(g−1)T + qm1g, (12)

where ai ∈ Z and 1 ≤ i ≤ g can be precomputed by solving a point counting
problem.

We improve the complexity by a logarithmic factor as compared to the initial
algorithm in [19]. Indeed, the analysis in [19] can be rewritten in terms of the
size of the factor base, by keeping track that only #Fr elements in F will be
kept for the linear algebra step. We do not detail the analysis here since this
would be a mere reproduction of the computation in [19], but by taking into
account logarithmic factors, the complexity of the double large prime variation
algorithm is O(#F2−2/glog(#F)).

In our case, given the fact that we do a look up in an equivalence relation
of size n, this yields O(n2( 2

n

n )2−2/g) = O(n2/g(2n)2−2/g) for g ≥ 3. This is to
be compared against O(n(2n)2−2/g), which is the complexity of the algorithm
in [19] for Koblitz curves.

4.2 Buhler-Koblitz curves.

Buhler-Koblitz (BK) curves [4] are genus 2 hyperelliptic curves of the form

Hb : y
2 = x5 + b

defined over the finite field IFq where q is a prime such that q ≡ 1 (mod 10). We
take ε 6= 1 a primitive fifth root of the unity in IFq. If the point (x, y) ∈ Hb, then
(εx, y) ∈ Hb. This implies that the Jacobian of Hb admits an endomorphism

ϕ : (u1, u0, v1, v0) 7→ (εu1, ε
2u0, ε

4v1, v0)

of order 5 which satisfies the minimal polynomial T 4+T 3+T 2+T+1. To perform
the index calculus algorithm on the Jacobian of Hb, we define the factorization
basis by

F = {D = (P )− (P0) ∈ J(Hb(Fq)) : x(P ) ∈ Fq}.
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This factor basis is invariant with respect to ϕ and we can reduce its size by a
factor 5. As shown in [2, Section 8.1], if the BK curve is defined over Fq2 and
index calculus is performed in J(Fq2), then we can reduce the size of the factor
basis up to a factor 10 by considering a GLS endomorphism construction.

4.3 Furukawa-Kawazoe-Takahashi curves.

The Furukawa-Kawazoe-Takahashi (FKT) curves [14] are genus 2 hyperelliptic
curves of the form

Ha : y2 = x5 + ax

defined over the finite field such that q ≡ 1 (mod 8). Let α 6= 1 be a primitive
eighth root of the unity in IFq. We observe that if (x, y) ∈ Ha, then (α2x, αy) ∈
Ha. This induces an endomorphism of the Jacobian

ψ : (u1, u0, v1, v0) 7→ (α2u1, α
4u0, α

7v1, αv0)

of order 8, which satisfies the minimal polynomial T 4 +1. To perform the index
calculus algorithm on the Jacobian of Ha, we use the same factorization basis
F than those of the BK curves. This factor basis is invariant with respect to ψ
and this invariance allows us to reduce its size by a factor 4 as compared to the
classical algorithm considering the equivalence class {D,−D}.

4.4 Guillevic-Ionica curves.

Guillevic and Ionica [20] considered two families of elliptic curves defined over Fq2
and having efficiently computable endomorphisms for which the 4-dimensional
multi-multiplication algorithm can be applied.

The first family is given by curves with equation

E1,c(Fq2) : y2 = x3 + 27(10− 3c)x+ 14− 9c,

with c ∈ Fq2\Fq, c2 ∈ Fq. The construction of the endomorphisms in [20] is based
on the existence of an isogeny from the Jacobian of the genus 2 hyperelliptic curve
with equation

H1 : Y 2 = X5 + aX3 + bX, with a, b 6= 0 ∈ Fq such that c = a/
√
b.

to the product E1,c×E1,−c. This isogeny is defined over Fq2 . The second family
is given by curves with equation

E2,c(Fq2) : y2 = x3 + 3(2c− 5)x+ c2 − 14c+ 22,

with c ∈ Fq2 \ Fq, c2 ∈ Fq. Again, E2,c × E2,−c is isogenous over Fq2 to the
Jacobian of a genus 2 hyperelliptic curve given by the following equation.

H2 : Y 2 = X6 + aX3 + b, with a, b 6= 0 ∈ Fq such that c = a/
√
b.
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The two endomorphisms used in [20] do not have small order and hence it does
not seem possible to identify a factor basis on Ei,c with small orbits under the
action of these endomorphisms. However, due to the existence of isogenies to
J(Hi), solving the discrete logarithm problem on the elliptic curves is equivalent
to solving the problem on the genus 2 Jacobian. These curves were also proposed
by Smith in [29].

As explained in Section 2, on the Jacobian we define the factor basis by

F = {D = (P )− (P0) ∈ J(Hi(Fq2)) : x(P ) ∈ Fq}.
The divisors D = (P )− (P0) and πq(D) = (πq(P ))− (P0) are simultaneously in
F . So, we construct the equivalence class {D,πq(D)} in F and reduce the size
of the factor basis by a factor 2.

5 Complexity analysis and benchmarks

We have implemented in MAGMA [3] the relation search step of the index cal-
culus attack for the discrete logarithm problem on elliptic curves given in Sec-
tions 3.1 and 3.3. The polynomial system issued from the decomposition step is
solved using MAGMA’s implementation of the F4 algorithm. Since the decom-
position step for hyperelliptic curves is different from the elliptic curve case, we
have also experimented with genus 2 Koblitz curves. All tests were performed
on a 2.40GHz Intel Xeon E5-2680 processor.

Each equivalence class is of the form {Q,φ(Q), · · · , φk−1(Q)}; where k is such
that φk = ±1. We pick an element of this class which will be the representative
of it, and put it in the reduced basis. To implement this reduced basis, we
used the AssociativeArray data structure in MAGMA [3] which allows an
efficient look up in the equivalence classes. Thus, to be able to write a line in
the relation matrix comes with an extra cost because whenever we obtain a new
decomposition, for each point in the relation we search the representative of its
equivalence class in the reduced factor basis. However, the cost of this search
remains negligible with respect to the cost of computation of Gröbner basis.

In Table 1, we compare the theoretical complexities of the index calculus
algorithm with reduced basis, with full basis and Pollard’s rho method [8]. In
Table 2 and Table 3, we compare the runtime of the relation collection for the full
basis and for the reduced basis with respect to the equivalence classes for elliptic
curves defined over composite degree extension and for GLV − GLS curves
defined over Fq2 respectively. In Table 4, for n ∈ {7, 11, 13, 17}, we compare the
runtime of the relation collection algorithm for the full basis and for the reduced
basis with respect to our equivalence classes for hyperelliptic curves defined in
Section 4.1. In this table, for a given curve, only the values of n for which the
factor basis has large enough size were considered. Our running times for the
Pollard rho algorithm on these curves shown in the last column of this Table
suggest that Pollard rho remains faster for these genus 2 curves. The timings
presented in Table 2, 3 and 4 are an average of 10 runs for each parameter
choice and we can see that our reduced basis yields a decomposition phase which
is faster by a factor greater than the size of the equivalence class in each case.
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Table 1: Complexity Analysis.
Reduced basis Full basis Pollard rho

Elliptic curve over F2m1m2 (m1!
m2

2m1(m1−1)+m2em1m
−1/2
1 )ω (m1!2

m1(m1−1)+m2em1m
−1/2
1 )ω +m12

m2

√
π2m1m2−1

m2

Hyperelliptic curve over F2n
(2n)2−2/g

n−2/g n(2n)2−2/g
√

π2gn

2n

GLV-GLS (n− 1)!
(
2n(n−2)enn−1/2

)ω
q n!

(
2n(n−2)enn−1/2

)ω
q

√
πqn

2

Table 2: Experiments on elliptic curves defined over composite extension field.
m1 m2 Time reduced basis Time full basis Reduction ratio
2 7 0.229 sec. 1.63 sec. 7.1
3 11 1039.4 sec. 11442.4 sec. 11
2 17 154755.566 sec. 2727802.448 sec. 17.6

Table 3: Experiments on GLV-GLS curve defined over IFp2 .
p Time reduced basis Time full basis Reduction ratio
43 0.046 sec. 0.282 sec. 6.13
739 1.083 sec. 6.155 sec. 5.68
1051 2.538 sec. 15.92 sec. 6.27
2731 6.662 sec. 50.836 sec. 7.63
3163 8.211 sec. 68.881 sec. 8.38

Table 4: Experiments on hyperelliptic curves defined over prime extension field.
Curves n Time reduced basis Time full basis Reduction ratio Time Pollard-Rho
y2 + (x2 + x+ 1)y = x5 + 1 7 0.011 sec. 0.059 sec. 5.36 0.01 sec.
y2 + (x2 + x+ 1)y = x5 + x 11 0.252 sec. 2.441 sec. 9.69 0.054 sec.

13 0.559 sec. 7.740 sec. 13.84 0.212 sec.
17 17.432 sec. 613.6 sec. 38.2 5.178 sec.

y2 + y = x5 + x3 11 0.117 sec. 0.997 sec. 8.52 0.045 sec.
17 15.498 sec. 716.78 sec. 46.25 4.075 sec.

y2 + y = x5 + x3 + 1 7 0.026 sec. 0.082 sec. 3.15 0.006 sec.
11 0.604 sec. 6.855 sec. 11.35 0.11 sec.

y2 + xy = x5 + x2 + 1 7 0.016 sec. 0.114 sec. 7.12 0.01 sec.
17 10.386 sec. 118.761 sec. 11.43 0.89 sec.

y2 + (x2 + x)y = x5 + 1 7 0.02 sec. 0.089 sec. 4.45 0.01 sec
17 53.158 sec. 1621.319 sec. 30.5 6.03 sec.
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6 Conclusion

We have revisited the relation search step of the index calculus algorithm for
several families of small genus hyperelliptic curves considered for elliptic curve
cryptography. We have shown that the endomorphism of a Jacobian allows us
to construct equivalence classes on the factor base and decreases its size by a
factor equal to the order of the endomorphism of the Jacobian. This results into
a smaller number of relations to collect and also reduces the cost of the linear
algebra phase, and thus improves the complexity of the index calculus algorithm
on several families of curves suited for cryptography.
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