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Abstract: Side-channel attacks exploit information from the physical
implementation of cryptographic systems, rather than from theoretical weaknesses. In
recent years, cache attacks have made significant progress in their ability to recover
secret information by combining observations of the victim's cache access and
knowledge of the internal structure of the cipher. So far, cache attacks have been
implemented for most Feistel-structured and SPN-structured block cipher algorithms,
but the security of algorithms for special structures has little attention.

In this paper, the Flush+Reload attack is performed on the implementation of
MISTY1. Unlike Feistel and SPN structures, MISTY1 is a class of the block cipher
with a recursive structure. The FL function is performed before the plaintext input
S-box and after the ciphertext output S-box, making it difficult to attack the first and
last rounds. However, we find that the key scheduling part of MISTY1 leaks many
bits of key, which, together with the leakage of partial bits of the round key during
encryption, was sufficient to recover the key of the MISTY1 algorithm.

We design the algorithm that only needs to observe one time encryption to
recover the MISTY1 128-bit key and use leakage during encryption to reduce the
complexity of the algorithm. We experiment on 32-byte cache line and 64-byte cache
line environment, respectively. In the 32-byte cache line environment, an adversary
only needs to observe five times encryption to recover the all 128-bit key of the
MISTY1 in 0.035 seconds; in the 64-byte cache line environment, an adversary needs
to observe 10 times encryption to recover the entire 128-bit key in 2.1 hours.

Keywords: Side Channel, Cache attack, Flush+Reload, MISTY1, Key Scheduling
Part

1 Introduction
The theoretical security of cryptographic systems does not ensure implementation

security. Side channel attacks are a major type of implementation level attack on a
cryptographic system. They exploit the leakage of electromagnetic radiation, power
consumption, the runtime, or even light, sound and heat leakage during encryption. In
recent years, cache attacks based on cache access mechanisms of microprocessors
have become an active area of research. Cache attacks exploit the basic principle that
cache access is two orders of magnitude faster than memory access. This is a security
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threat to cryptographic systems because cache access relies on the input of the
cryptographic algorithm, i.e., the plaintext and the key. Therefore, the analysis at the
execution time of certain operations leaks partial bits of the key.

In the block cipher, the S-box is the only nonlinear structure whose security
determines the security of the entire cryptographic algorithm. The nonlinear nature of
the S-box dictates that it usually uses look-up tables to deploy. Unfortunately, if the
S-box stores in multiple cache lines, the adversary can directly obtain partial bits of
the S-box input by observing which cache line is accessed, and then derive the entire
key based on the leakage generated by multiple plaintexts encryption.

Related Work: Kocher [1] and Kelsey et al [2] took the lead in mention that
cache behavior may pose a security threat. Tsunoo et al [3] gave the first practical
results of a time-driven caching attack on the Data Encryption Standard (DES).
Various cache attacks against AES were given in [4]-[7], some of which require the
ability to detect the first or last round of AES. In addition to this, the security of block
cipher algorithms such as SM4 [8], ARIA [9], Camellia [10], and Pilsung [11] had
been discussed under cache attacks.

Unlike the above block cipher algorithms, MISTY1 [12] is not a Feistel or SPN
structure cipher algorithm, it has a unique Recursive structure. MISTY1 run FL
function before the first round of plaintext input to the S-box and after the last round
of ciphertext output from the S-box, which makes the adversary difficult to attack
the first round and the last round of MISTY1, so previous methods in block ciphers
can not apply to MISTY1 directly. Tsunoo et al. have discussed cache attacks on
MISTY1 in a 32-byte cache line environment[13]. They used the average method,
which requires 162 plaintexts to recover the entire key in a practical setting. In fact,
the work of [13] did not fully investigate the leakage generated by key scheduling and
encryption of MISTY1, and it would be difficult for the adversary to observe such a
large number of encryption in a real-world environment.

So what leakage exist in MISTY1, and how to do a cache attack on MISTY1 in a
real-world environment?

Leakage of key scheduling part: MISTY1 divides the 128-bit key into eight
subkeys. We find that the subkey will be calculated directly through the S-box in the
key scheduling part of MISTY1, which leaks some bits of subkeys and the
relationship between adjacent subkeys by cache attack on S-box.

Leakage of encryption: Due to the complex structure of MISTY1, we do not
need to ensure what exactly the input and output of each round is, but can reduce the
round key space by the elimination method. The adversary can observe multiple
encryptions to confirm partial bits of the round key.

Attack overview: The attack is divided into two phases: online observation and
offline analysis. In the online observation phase, the adversary uses the Flush+Reload
attack to collect the leakage generated by key scheduling and encryption of MISTY1.
In the offline analysis phase, the adversary gets some bits of the subkey directly based



on the leakage of the key scheduling part; then, the adversary needs to set the
judgment conditions to reduce the complexity of the attack based on the relationship
between adjacent subkeys and the leakage of the round key during encryption. In
summary, we only need to observe a very small number of encryption to recover the
128-bit key of the MISTY1.

Attack results: We experiment in 32-byte cache line and 64-byte cache line
environments. In the 32-byte cache line environment, the adversary only needs to
observe the encryption of one plaintext to recover all the key, and the complexity of
the attack algorithm is O( 72 ), and the runtime is 0.035 seconds on a personal laptop.
In the 64-byte cache line environment, the adversary needs to observe the encryption
of 10 plaintexts to recover all the keys, the complexity of the attack is O( 382 ), and the
running time on a personal laptop is 7661.06 seconds(about 2.1 hours).

Our Contributions:
 We show how the key scheduling part and each round of encryption leaks

information about the master key and the round key.
 We implement the first cache attack on the block cipher algorithm MISTY1 with

the recursive structure. The attack is divided into two phases, online observation
and offline analysis.

 We propose algorithms on how to recover the MISTY1 master key using
observation of one plaintext in the 32-byte cache line and 64-byte cache line
environments.

 We reduce the complexity of the attack algorithm by exploiting the leakage
during multiple encryption and perform a practical attack in the 32-byte cache
line and 64-byte cache line environments.

Document Outline:
In Section 2 we briefly introduce the theory of cache attacks and the details of the

block cipher MISTY1. In Section 3 we describe how to obtain the leakage generated
by key scheduling and encryption of MISTY1. In Section 4 we illustrate how to attack
MISTY1 on 32-byte cache lines environment. In Section 5 we show how to attack
MISTY1 on 64-byte cache lines environment. In Section 6 we give the experimental
results, and we summarize the whole paper in Section 7.

2 Background
2.1 Cache attack

The CPU cache is a very fast memory, placed between the main memory and the
CPU [14]. It usually ranges in size from some hundred kilobytes to a few megabytes.
According to the principle of locality, i.e., the storage units accessed by the CPU
tend to be clustered in a small continuous region, CPU cache can effectively avoid
high latency. Each cache is stored in cache lines. For now, the most common cache
line size is 64 bytes, with a small portion being 32 bytes.



When the CPU attempts to access data, it first looks in the cache, and then there
are two cases of cache hit and cache miss.

Cache hit: The CPU finds the requested data in the cache, and the requested data
can be supplied to the CPU core with almost no latency.

Cache miss: The CPU does not find the requested data in the cache and must first
fetch the data via the front side bus and copy it to the cache, resulting in a latency
roughly two orders of magnitude higher than that of a cache hit.

The speed difference between a cache hit and a cache miss may reveal
information about the contents of the cache. Moreover, because the contents of the
cache depend on previous computations, recovering information about the contents of
the cache can disclose secret information about previous computations. Currently,
cache attacks are used in breaking symmetric ciphers[3-11], public key ciphers[15-17],
digital signature algorithms[18-22], and zero-knowledge proofs[23].

2.2 Flush+Reload
Flush+Reload[24] can evict memory blocks from all levels of cache, which

depends on the shared memory pages between the spy process and the crypto process.
In Intel processors, user threads can use the clflush instruction to flush readable and
executable pages, which make the adversary can use the clflush instruction to
frequently refresh the target memory block and measure the time to reload that
memory block. If, during execution, the victim accesses the memory block, the block
will be cached and the adversary's access will be fast. However, if the victim does not
access the block, the adversary will reload the block from memory and the access will
take longer. Therefore, the adversary can know if the victim accessed the memory
block during execution. The Flush+Reload attack is divided into three steps:

1) The target memory block is flushed from all levels of cache.
2) The spy process waits for the crypto process to access the memory block.
3) The spy process reloads the memory block and measures the load time.

2.3 Flush+Reload on S-box
S-box(Substitution-box) is the basic structure of the block cipher to execute

substitution calculation. The S-box is the only nonlinear structure in the block cipher,
so the goodness of its S-box metrics directly determines the goodness of the entire
block cipher.

When the storage size of the S-box is more than the size of the cache line, it may

leak some information about the key. Take aS as an example, aS is an S-box with

a bits input and output. aS has 2a entries of size 2b bytes, so the table of aS

requires 2a b bytes of memory. Suppose the size of the cache line is 2k bytes, then

aS will be stored in 2a b k  cache lines( a b k  ). The entries of aS is stored

sequentially in cache lines and the entries are stored in the same cache line only if

they have the same first -a b k bits, so if the adversary knows where aS is stored



and can use Flush+Reload to know which cache line was accessed during the S-box

operation, then the adversary can recover the first -a b k bits of the input of aS .

Since the set of inputs is known, the adversary can also get the set of outputs, which

has 2k b ( 2 / 2a a b k  ) elements.

2.4 MISTY1
MISTY1 is a block cipher algorithm designed by Japanese scholar M. Matsui[12].

MISTY1 was recommended as a transitional block cipher by NESSIE(New European
Schemes for Signatures, Integrity and Encryption), and was also listed as one of the
block cipher standards by ISO (the International Organization for Standardization)
and IEC (the International Electrotechnical Commission). Moreover, the MISTY1
algorithm is one of the selected block ciphers by the Japanese CRYPTERC project in
May 2003.

MISTY1 has a 128-bit key, a 64-bit block and a variable number of rounds,
which must be a multiple of 4. The MISTY1 with 8 rounds is most often used. Before
describing the MISTY1 in detail, the following symbols are given:

Table 1 symbols
nX X is a sequence of 0,1with n bits
LX the left half of X

RX the right half of X
|| the connector of the sequence

]:[ jiX the i-th bit to the j-th bit of X
jiX , the j-th bit of iX

2.4.1 Basic module of MISTY1
(1)FL function
FL is a linear transformation function with 32-bit input and output, which divides

the 32-bit subkey 32
iKL and the input 32X into two equal left and right parts,

i.e. 21
32 || iii KLKLKL  and RL XXX ||32  , then executes the following operations:

RiLR XKLXY  )( 1 , .)( 2 LiLL XKLXY 

(2)FO function
FO function is a nonlinear function with a 3-round Feistel structure, both its input

and output are 32 bits. Its input is 32-bit data )||( 00
32 RLX  and two 64-bit subkeys

),,,( 4321 iiiii KOKOKOKOKO and 48-bit keys ),,( 321 iiii KIKIKIKI . For each round

)31(  jj , the following operation is executed:



.,),( 111   jjjijijjijj RLRKIKOLFIR

Then, the output of FO is 343
32 ||)( RKOLY i .

(3)FI function
FI is a 3-round Feistel structure function with 16-bit input and output. FI

consists of two S-boxes, S7 and S9. With the input 16X and ijKI , ijFI split them as

follows:

.||,|| 2,1,
7
0

9
0

16
ijijij KIKIKIRLX 

where ]6:0[1, ijij KIKI  is a 7 bits key, ]15:7[2, ijij KIKI  is a 9 bit key, and then

executes the following operation:

).()(9, 7
0

9
0

9
1

7
0

7
1 RZELSRRL 

.)()(7, 1,
9
1

7
1

7
22,

9
1

9
2 ijij KIRTRLSRKIRL 

).()(9, 7
2

9
2

9
3

7
2

7
3 RZELSRRL 

where )(TZE means to add two zeros before the first bit of T (Zero-Extend),

)(TTR means to truncate the first two bits of T (Truncate). At last FI function

output 9
3

7
3

16 || RLY  .

(4)S-box
MISTY1 uses two S-boxes, S9 with 9-bit input and output and S7 with 7-bit input

and output, both of which can be implemented by look-up table.
S7 has 72 entries of size 1 bytes, and thus table of S7 require 128 bytes of

memory. S9 has 92 entries of size 2 bytes, and thus table of S9 require 1KB of
memory. This is the essential reason of the leakage on MISTY1.

2.4.2 Encryption of MISTY1
Taking the 8-round MISTY1 as an example, 64-bit plaintext 64P split into equal

lengths and two parts 0L and 0R , then the encryption process executes the following

operations:

(1) For odd rounds )7,5,3,1( ii , do:

).,,(),(),,( 1111 iiiiiiiiiii KIKORFOKLRFLLKLLFLR  

(2) For even rounds )8,6,4,2( ii , do:



).,,(, 11 iiiiiii KIKORFORLLR  

(3) At the end of 8 rounds of encryption, do:

).,(),,( 1081099899 KLRFLLKLLFLR 

(4)Finally, output 64 bit ciphertext:

99
64 || RLC 

Figure 1 flow chart of MISTY1

2.4.3 Key scheduling part of MISTY1
The key scheduling part of MISTY1 first divides 128-bit master key K into

eight 16-bit subkeys:
76543210 |||||||||||||| KKKKKKKKK 

Then, according to )(
1 iKi KFIK

i
 , eight 16-bits subkeys could be generated:

76543210 ,,,,,,, KKKKKKKK 

The correspondence between the round subkeys , ,ij ij ijKO KI KL and the actual

subkeys , ,i i iKO KI KL is as follows, where i is identified with -8i when 8i  :

Table 2 Round key generation of MISTY1
Round
key 1iKO 2iKO 3iKO 4iKO 1iKI 2iKI 3iKI 21 || ii KLKL

Value iK 2iK 7iK 4iK 5iK 1iK 3iK 62/)1(2/)1( ||  ii KK odd i



42/22/ ||  ii KK even i

Each round of the FO function uses seven 16-bit round subkeys and the FL
function uses two 16-bit round subkeys. When the subkeys computed by

)(
1 iKi KFIK

i
 , iK is the input of S7 and S9, which leads to the leakage many bits

of key and makes it easier for an adversary to recover the 128-bit key, details are
given in Section 3.

3 Leakage in key scheduling and encryption of MISTY1
3.1 Leakage in key scheduling of MISTY1

The key scheduling part of the MISTY1 is related to iK and 1iK . Let 1 ij ,

1iK and 2iK denote the first 9 bits and the last 7 bits of iK , 1jK and 2jK denote

the first 7 bits and the last 9 bits of jK . See Figure 2 for the procedure of the key

scheduling part.

Figure 2 Key Scheduling Part

In the software implementation of the MISTY1, S9 has 92 entries of size 2
bytes, thus the table of S9 require 1KB of memory. S7 has 72 entries of size 1 bytes,
thus the table of S7 require 128 bytes of memory. Assuming that the size of the cache
line is k2 bytes and the adversary can make the cache attack on S9 and S7. As

Section 2.3 describes, the adversary can recover the first k10 bits of 1iK and the



first k7 bits of 2iK when the victim accessing the first S9 and S7. Moreover, the

victim accessing the second S9 , the adversary can obtain the first k10 bits of

221 )()(9 jii KKZEKSy  .

After the whole key scheduling part completed, the adversary can recover the
following three parts of leakage:

(1) )70](9:0[  ikK i

(2) )70](15:9[  ikK i

(3) )70](9:0[  ikyi

3.2 Leakage in encryption of MISTY1
We focus on the calls to the FI function during encryption. For each encryption,

the order of the round keys used by the FI function is determined, as shown in
Table 3.

Table 3 Round keys used by FI function
Round Round keys
1 5K  1K  3K 

2 6K  2K  4K 

3 7K  3K  5K 

4 0K  4K  6K 

5 1K  5K  7K 

6 2K  6K  0K 

7 3K  7K  1K 

8 4K  0K  2K 

If the adversary can make the cache attack on S9 and S7, he can record the cache
trace of every access to S9 and S7 during encryption. In the online phase, the
adversary needs to log 48 S9-accesses and 24 S7-accesses of each encryption and

mark the corresponding iK  .

In the offline phase, the adversary doesn't need to know the specific input and
output of each FI function. Let the input of the i-th call of FI function be

)||( 21 iii xxx  , the input of the second S9 be iz , and the round key be
inK  , the i-th

call of FI function is shown in Figure 3.



Figure 3 the i-th call of FI function

The relationship between 2,in
K  , 1ix , 2ix and iz is as follows:

iiin zxZExSK
i

 )()(9 212,

The adversary can obtain the first k10 bits of 1ix by the cache attack . Let

Y be the set of the first S9 outputs, that is, ]}9:0[]9:0[|)(9{ 1 kxkttSY i  . By

making cache attacks on S9 and S7, we get ]9:0[ kzi  , ]6:0[2 kxi  and

]9:0[1 kxi  . So we can use the elimination method to determine ]8:0[2, kK
in  . That is,

if there is n , for any Yy , satisfies ]8:0[]8:0[ kykn  , then we can know:

iin zxZEknkK
i

 )(]8:0[]8:0[ 22,

The range size of ]8:0[2, kK
in

 ( ]15:7[ kK
in

 ) is k92 . Each cache attack on



encryption of MISTY1 can eliminate some wrong values. We can determine

]8:0[2, kK
in

 accurately after observing 5-10 encryption. Since the generation of

inK  is related to the
inK and 1inK , it will leakage the information of them, which

can help the adversary recover the key of MISTY1.

4 Attack scheme for 32-byte cache line
4.1 Information Leakage

According to 2.3, for each cache attack on S9, the adversary can recover the first
5 bits of the input. And for each cache attack on S7, the adversary can obtain the first
2 bits of the input.

According to 3.1, in the leakage of the key scheduling part, the adversary can

recover three parts of information of the key: (1) )70](4:0[  iK i

(2) )70](10:9[  iK i (3) ))()(9,70](4:0[ 221 jiii KKZEKSyiy 

According to 3.2, the adversary can determine )70](3:0[2  iK i accurately

after observing some encryption.

4.2 Baseline attack in 32 byte cache line

Assuming that the adversary know a pair of plaintext and ciphertext ),( cm

encrypted by the correct key of MISTY1. According to the leakage of key scheduling
part, we propose a baseline attack on MISTY1 for 32-byte cache line, and the
algorithm is divided into the following steps:

(0) By the cache attack, the adversary already know )70](4:0[  iK i ,

)70](10:9[  iK i and ))()(9,70](4:0[ 221 jiii KKZEKSyiy 

(1) Exhaust the unknown 4 bits of ]8:5[0K to compute ])8:0[(9 0KS . According to

the known information, if ]8:5[0K is not satisfied the equation

]10:9[]10:9[]3:2])[8:0[(9]3:2[ 1000 KKKSy  , continue the loop; if it is

satisfied, proceed to (2)

(2) Compute ]1:0[]1:0])[8:0[(9]8:7[ 001 yKSK  and

4,04011,111,0 ])8:0[(9 yKSKK  . Recursively exhaust )71](6:5[  iK i , and

determine whether ]8:0[iK satisfies equation



]10:9[]10:9[]3:2])[8:0[(9]3:2[ 1 iiii KKKSy . If not, continue the loop; if it

satisfies, calculate ]1:0[]1:0])[8:0[(9]8:7[1 iii yKSK  and

4,411,111, ])8:0[(9 iiii yKSKK   , then proceed to (3)

(3) Determine the sum of )70(11,111,   iKK ii is 0 or not, if not, then return (2), if

it is satisfied, then let 011,0 K or 1, and calculate )71(11,  iK i , proceed to (4)

(4) Exhaust )70](15:12[  iK i , determine if cKm ),(MISTY1 holds or not. If

it is satisfied, output the correct key K ; if not, continue the loop.
See Algorithm 1 for the Baseline attack for 32-byte cache line.
Algorithm 1 Baseline attack on MISTY1 in 32 byte cache line
input: Ki[0:4], Ki[9:10], yi[0:4], 0≤i≤7, encryption algorithm MISTY1

output：K = K0|| K1|| K2|| K3|| K4|| K5|| K6|| K7

1: for K0[5:8] = 24-1 downto 0 do

2: if S9(K0[0:8])[2:3]⊕K0[9:10]⊕K1[9:10]≠y0[2:3] then

3: continue

4: else

5: K1[7:8]=S9(K0[0:8])[0:1]⊕y0[0:1]

6: K0,11⊕K1,11=S9(K0[0:8])4⊕y0,4
7: for i = 1 upto 7 do

8: for Ki[5:6]=22-1 downto 0 do

9: if S9(Ki[0:8])[2:3]⊕Ki[9:10]⊕Ki+1[9:10]≠yi[2:3] then

10: continue

11: else

12: Ki+1[7:9]=S9(Ki[0:8])[0:1]⊕yi[0:1]

13: Ki,11⊕Ki+1,11=S9(Ki[0:8])4⊕yi,4
14: end if

15: if sum(K0,11⊕K1,11, K1,11⊕K2,11, ..., K7,11⊕K0,11) ≠ 0 then

16: continue

17: else

18: for j = 0 upto 7 do

19: for Kj[12:15] = 24-1 downto 0

20: if MISTY1(m, K) = c then

21: return K

22: else

23: continue

24: end if

25: end for

26: end for

27: end if



28:end for

Complexity estimation about Algorithm 1: In step (1), we should first exhaust

4 bits of ]8:5[0K , and the equation (i) contains two bits of known information,

making only 1/4 go to the next loop. So the complexity of step (1) is )2( 24O .

In step (2), we should exhaust 2 bits of )71](6:5[  iK i , and the equation (ii)

contains two bits of known information, making only 1/4 go to the next loop. So the

complexity of step (2) is )2( )22(7 O .

In step (3), we should exhaust 1 bit of 11,0K , so the complexity of step (3) is

)2(O .

In step (4), we should exhaust 4 bit of )70](15:12[  iK i , so the complexity of

step (4) is )2( 84O .

Therefore, the total complexity of Algorithm 1 is )2()2( 35841)22(724 OO  .

Baseline attack can be used to recover the key when the adversary observes only one
time encryption. If the adversary can observe multiple encryption, he can use the

leakage of ]3:0[2,inK  to reduce the complexity of the attack algorithm.

4.3 Improved attack on MISTY1 in 32 byte cache line
The improved attack reduces the complexity of step (4) in Algorithm 1, noted as

Step (4*).

Step (4*) First, exhaust 4 bits of ]15:12[0K . Then recursively exhaust

)71](15:12[  iK i , and determines whether ]3:0[]11:8)[,( 2,1 inii KKKFI  holds

at the same time, if not, continue the loop, if it holds, then determine whether K

satisfies cKmMISTY ),(1 . If not, continue the loop; if it satisfies, output the correct

key K and end the algorithm.

Algorithm 2 Improved attack on MISTY1 in 32 byte cache line
input: Ki[0:4], Ki[9:10], yi[0:4], 0≤i≤7, encryption algorithm MISTY1

output：K = K0|| K1|| K2|| K3|| K4|| K5|| K6|| K7

1: for K0[5:8] = 24-1 downto 0 do

2: if S9(K0[0:8])[2:3]⊕K0[9:10]⊕K1[9:10]≠y0[2:3] then



3: continue

4: else

5: K1[7:8]=S9(K0[0:8])[0:1]⊕y0[0:1]

6: K0,11⊕K1,11=S9(K0[0:8])4⊕y0,4
7: for i = 1 upto 7 do

8: for Ki[5:6]=22-1 downto 0 do

9: if S9(Ki[0:8])[2:3]⊕Ki[9:10]⊕Ki+1[9:10]≠yi[2:3] then

10: continue

11: else

12: Ki+1[7:9]=S9(Ki[0:8])[0:1]⊕yi[0:1]

13: Ki,11⊕Ki+1,11=S9(Ki[0:8])4⊕yi,4
14: end if

15: if sum(K0,11⊕K1,11, K1,11⊕K2,11, ..., K7,11⊕K0,11) ≠ 0 then

16: continue

17: else

18: for K0[12:15] = 24-1 downto 0

19: for j = 1 upto 7 do

20: for Kj[12:15] = 24-1 downto 0

21: if FI(Kj-1, Kj)[8:11] ≠K’j[0:3] then

22: continue

20: else if MISTY1(m, K) ≠ c then

21: continue

22: else

23: return K

24: end if

25: end for

26: end for

27: end if

28:end for

Complexity estimation about Algorithm 2: In step (4*), we should first exhaust

4 bits of ]15:12[0K . Then recursively exhaust 4 bits of )71](15:12[  iK i , and

and the equation (iii) contains four bits of known information, making about 1/16 go

to the next loop. so the complexity of step (4*) is )2( )4-4(74 O .

Therefore, the total complexity of Algorithm 2 is

)2()2( 7)44(741)22(724 OO  .

5 Attack scheme for 64-byte cache line
5.1 Information Leakage



According to 2.3, for each cache attack on S9, the adversary can recover the first
4 bits of the input. And for each cache attack on S7, the adversary can obtain the first
1 bit of the input.

According to 3.1, in the leakage of the key scheduling part, the adversary can

recover three parts of information of the key: (1) )70](3:0[  iK i (2) )70(9,  iK i

(3) ))()(9,70](3:0[ 221 jiii KKZEKSyiy 

According to 3.2, the adversary can determine )70](2:0[2  iK i accurately

after observing some encryption.

5.2 Baseline attack in 64 byte cache line

Assuming that the adversary know a pair of plaintext and ciphertext ),( cm

encrypted by the correct key of MISTY1. According to the leakage of key scheduling
part, we propose a baseline attack on MISTY1 for 64-byte cache line, and the
algorithm is divided into the following steps:

(0) By the cache attack, the adversary already know )70](3:0[  iK i ,

)70(9,  iK i and ))()(9,70](3:0[ 221 jiii KKZEKSyiy 

(1) Exhaust the unknown 5 bits of ]8:4[0K to compute ])8:0[(9 0KS . According to

the known information, if ]8:4[0K is not satisfied the equation

9,19,0202,0 ])8:0[(9 KKKSy  , continue the loop; if it is satisfied, proceed to (2)

(2) Compute ]1:0[]1:0])[8:0[(9]8:7[ 001 yKSK  and

3,03010,110,0 ])8:0[(9 yKSKK  . Recursively exhaust )70](6:4[  iK i , and

determine whether ]8:0[iK satisfies equation 9,19,22, ])8:0[(9  iiii KKKSy . If

not, continue the loop; if it satisfies, calculate

]1:0[]1:0])[8:0[(9]8:7[1 iii yKSK  and 3,310,110, ])8:0[(9 iiii yKSKK   , then

proceed to (3)

(3) Determine the sum of )70(10,110,   iKK ii is 0 or not, if not, then return (2), if

it is satisfied, then let 011,0 K or 1, and calculate )71(11,  iK i , proceed to (4)

(4) Exhaust )70](15:11[  iK i , determine if cKm ),(MISTY1 holds or not. If



it is satisfied, output the correct key K ; if not, continue the loop.
See Algorithm 3 for the Baseline attack for 64-byte cache line.
Algorithm 3 Baseline attack on MISTY1 in 64 byte cache line
input: Ki[0:3], Ki9:, yi[0:3], 0≤i≤7, encryption algorithm MISTY1

output：K = K0|| K1|| K2|| K3|| K4|| K5|| K6|| K7

1: for K0[4:8] = 25-1 downto 0 do

2: if S9(K0[0:8])3⊕K0,9⊕K1,9≠y0,2then

3: continue

4: else

5: K1[7:8]=S9(K0[0:8])[0:1]⊕y0[0:1]

6: K0,10⊕K1,10=S9(K0[0:8])3⊕y0,3
7: for i = 1 upto 7 do

8: for Ki[4:6]=23-1 downto 0 do

9: if S9(Ki[0:8])2⊕Ki9⊕Ki+1,9≠yi,2 then

10: continue

11: else

12: Ki+1[7:9]=S9(Ki[0:8])[0:1]⊕yi[0:1]

13: Ki,10⊕Ki+1,10=S9(Ki[0:8])3⊕yi,3
14: end if

15: if sum(K0,10⊕K1,10, K1,10⊕K2,10, ..., K7,10⊕K0,10) ≠ 0 then

16: continue

17: else

18: for j = 0 upto 7 do

19: for Kj[11:15] = 25-1 downto 0

20: if MISTY1(m, K) = c then

21: return K

22: else

23: continue

24: end if

25: end for

26: end for

27: end if

28:end for

Complexity estimation about Algorithm 3: In step (1), we should first exhaust

5 bits of ]8:4[0K , and the equation (iv) contains one bit of known information,

making only 1/2 go to the next loop. So the complexity of step (1) is )2( 15O .

In step (2), we should exhaust 3 bits of )71](6:4[  iK i , and the equation (vi)

contains one bit of known information, making only 1/2 go to the next loop. So the

complexity of step (2) is )2( )13(7 O .



In step (3), we should exhaust 1 bit of 11,0K , so the complexity of step (3) is

)2(O .

In step (4), we should exhaust 4 bit of )70](15:11[  iK i , so the complexity of

step (4) is )2( 85O .

Therefore, the total complexity of Algorithm 1 is )2()2( 59851)13(715 OO  .

Baseline attack can be used to recover the key when the adversary observes only one
time encryption. If the adversary can observe multiple encryption, he can use the

leakage of ]2:0[2,inK  to reduce the complexity of the attack algorithm.

5.3 Improved attack on MISTY1 in 64 byte cache line
The improved attack reduces the complexity of step (4) in Algorithm 3, noted as

Step (4*).

Step (4*) First, exhaust 5 bits of ]15:11[0K . Then recursively exhaust

)71](15:11[  iK i , and determines whether ]2:0[]10:8)[,( 2,1 inii KKKFI  holds

at the same time, if not, continue the loop, if it holds, then determine whether K

satisfies cKmMISTY ),(1 . Continue the loop if not and output the correct key K if

it satisfies.

Algorithm 4 Improved attack on MISTY1 in 64 byte cache line
input: Ki[0:3], Ki9:, yi[0:3], 0≤i≤7, encryption algorithm MISTY1

output：K = K0|| K1|| K2|| K3|| K4|| K5|| K6|| K7

1: for K0[4:8] = 25-1 downto 0 do

2: if S9(K0[0:8])3⊕K0,9⊕K1,9≠y0,2then

3: continue

4: else

5: K1[7:8]=S9(K0[0:8])[0:1]⊕y0[0:1]

6: K0,10⊕K1,10=S9(K0[0:8])3⊕y0,3
7: for i = 1 upto 7 do

8: for Ki[4:6]=23-1 downto 0 do

9: if S9(Ki[0:8])2⊕Ki9⊕Ki+1,9≠yi,2 then

10: continue

11: else

12: Ki+1[7:9]=S9(Ki[0:8])[0:1]⊕yi[0:1]

13: Ki,10⊕Ki+1,10=S9(Ki[0:8])3⊕yi,3
14: end if



15: if sum(K0,10⊕K1,10, K1,10⊕K2,10, ..., K7,10⊕K0,10) ≠ 0 then

16: continue

17: else

18: for K0[12:15] = 24-1 downto 0

19: for j = 1 upto 7 do

20: for Kj[12:15] = 24-1 downto 0

21: if FI(Kj-1, Kj)[8:11] ≠K’j[0:3] then

22: continue

20: else if MISTY1(m, K) ≠ c then

21: continue

22: else

23: return K

24: end if

25: end for

26: end for

27: end if

28:end for

Complexity estimation about Algorithm 2: In step (4*), we should first exhaust

5 bits of ]15:11[0K . Then recursively exhaust 4 bits of )71](15:12[  iK i , and

]2:0[2,inK  making about 1/8 go to the next loop. so the complexity of step (4*) is

)2( )3-5(75 O .

Therefore, the total complexity of Algorithm 4 is

)2()2( 38)35(751)13(715 OO  .

6 Experimental Results
We build 32-byte cache lines experiment in gem5 simulation configuration [30]

with architecture of x86-64 at 2.0 GHz , 32 KB L1-I/L1-D Cache, 2 MB L2 Cache
and 32B cache line. We conduct 64-byte cache line experiment on Huawei Matebook
14 with Intel(R) Core(TM) i5-8265U CPU, 1.60 GHz, 256 KB L1-I/L1-D Cache, 1
MB L2 Cache and 64B cache line. The offline analysis program was written in Python
and run on a Huawei Matebook 14 laptop.

We assume that the adversary has get a pair of plaintext and ciphertext encrypted
by MISTY1. To obtain cache usage information, we use the Flush+Reload attack in
Mastik toolkit[25]. In this section, we use the key
0x00112233445566778899aabbccddeeff for our experiments.

6.1 Leakage of key scheduling part
6.1.1 32-byte cache line



Recall Section 3, in 32-byte cache line environment S9 needs 32(=1KB/32B)
cache lines to storage. From the start to the end of S9, we perform Flush+Reload on
the 32 cache lines in turn and record the latency. The shortest time corresponding to
the first 5 bits of the S9 input. Figure 4 shows the latency during Flush+Reload.

Figure 4 Leakage of ]4:0[iK

Recall Section 4, it leaks the first 5 bits of iK , they are 0x0, 0x4, 0x8, 0xc, 0x11,

0x15, 0x19, 0x1d.
Recall Section 3.1, in 32-byte cache line environment S7 needs 4(=128B/32B)

cache lines to storage. From the start to the end of S7, we perform Flush+Reload on
the 4 cache lines in turn and record the latency. The shortest time corresponding to the
first 2 bits of the S7 input. Figure 5 shows the latency during Flush+Reload.



Figure 5 Leakage of ]10:9[iK

From the Figure 5, we can obtain ]10:9[iK , they are 0,1,2,3,0,1,2,3.

For the second S9 access, we can similarly obtain the first 5 bits the input, which

corresponds to ))()(9,70](4:0[ 221 jiiii KKZEKSyiy 

Figure 6 Leakage of ]4:0[iy

From the Figure 6, we can obtain ]4:0[iy , they are 0x1e, 0x18, 0x1a, 0xa, 0x8,

0x18, 0xa, 0xc.



6.1.2 64-byte cache line
In 64-byte cache line environment S9 needs 16(=1KB/64B) cache lines to storage.

From the start to the end of S9, we perform Flush+Reload on the 16 cache lines in
turn and record the latency. The shortest time corresponding to the first 4 bits of the
S9 input, which showed in Figure 7.

Figure 7 Leakage of ]3:0[iK

Recall Section 5, it leaks the first 4 bits of iK , they are 0x0, 0x2, 0x4, 0x6, 0x8,

0xa, 0xc, 0xe.
In 64-byte cache line environment S7 needs 2(=128B/64B) cache lines to storage.

From the start to the end of S7, we perform Flush+Reload on the 2 cache lines in turn
and record the latency. The shortest time corresponding to the first 1 bit of the S7
input, which showed in Figure 8.



Figure 8 Leakage of 9,iK

From the Figure 5, we can obtain 9，iK , they are 0,0,1,1,0,0,1,1.

For the second S9 access, we can similarly obtain the first 4 bits the input, which

corresponds to ))()(9,70](3:0[ 221 jiiii KKZEKSyiy 

Figure 9 Leakage of ]3:0[iy

From the Figure 9, we can obtain ]3:0[iy , they are 0xf, 0xc, 0xd, 0x5, 0x4, 0xc,

0x5, 0x6.



6.2 Confirm the leakage of iK 

Recall to Section 3.2, We can determine ]8:0[ kK i  accurately after observing

some encryption. And it is vital for Algorithm 2 and 4.
6.2.1 32-byte cache line

Each )70](3:0[  iK i has 1624  possibilities. After observing one encryption,

the adversary gets the space size as Figure 10 shows:

Figure 10 Space of ]3:0[iK  after observing one encryption

Observing one encryption makes the adversary drop the fetch space from 322 to

)74567355(2 75.18  .

After observing 5 times encryption, the adversary can determine the value of

]3:0[2,inK  , as Figure 11 shows:

Figure 11 Determine ]3:0[iK  after observing 5 times encryption

6.2.2 64-byte cache line



Each )70](2:0[  iK i has 823  possibilities. After observing one encryption,

the adversary gets the space size as Figure 12 shows:

Figure 12 Space of ]2:0[iK  after observing one encryption

Observing one encryption makes the adversary drop the fetch space from 242 to

)63656766(2 64.19  .

After observing 10 times encryption, the adversary can determine the value of

]2:0[2,inK  , as Figure 13 shows:

Figure 11 Determine ]2:0[iK  after observing 10 times encryption

6.3 Recover the whole 128-bit key
6.3.1 32-byte cache line

When more than 5 times of cache leakage from encryption are available, the

adversary first needs to confirm )70](3:0[  iK i , and then use Algorithm 2 to

recover the key of MISTY1. We find the correct key in only 0.035s.



Let us consider a worse case, assuming that the adversary only observes only one

time encryption, then the adversary can exhaust the ]3:0[iK  space and then use

Algorithm 4 for the attack, then the attacker needs )2( 75.25O time complexity at

worst for the attack, which takes 5145.33 seconds(about 1.4 h) on a personal laptop
to complete the attack.

6.3.2 64-byte cache line
When more than 10 times of cache leakage from encryption are available, the

adversary first needs to confirm )70](2:0[  iK i , and then use Algorithm 4 to

recover the key of MISTY1. We find the correct key in 7661.06 seconds(about 2.1
hours).

Let us consider a worse case, assuming that the adversary only observes only one

time encryption, then the adversary can exhaust the ]2:0[iK  space and then use

Algorithm 4 for the attack, then the attacker needs )2( 64.57O time complexity at

worst for the attack. See Table 4 for complexity under different conditions.
Table 4 Complexity of attack algorithm under different conditions

32-byte cache line 64-byte cache line

Observe one
encryption

Algorithm 1/3 )2( 35O )2( 59O

Algorithm 2/4 )2( 75.25O )2( 64.57O

Observe multiple encryption )2( 7O )2( 38O

7 Discussion and Conclusion
Contermeasures. There are two basic ideas for defenses: one is to completely

eliminate cache leakage; the other is to eliminate the correlation between cache
leakage and secret information.

In the first idea, using constant-time program to prevent secret-related memory
accesses [26] and tuning the operating system so that it can preload certain data every
time a process is activated [7] are both effective approaches. In our case, if S9 and S7
are loaded into the cache in advance, the adversary will not be able to obtain
information by cache hit and cache miss.

In the second idea, the randomization-based approach [27] separates the memory
line from the cache set, which may prevent the adversary from finding the cache set
corresponding to the memory location. In addition to this, masking schemes [6] are
also effective, applying masks (implemented at the hardware level) to the offset fields



based on some unset addressing bits in the physical address. At this point the user no
longer has control over the offset field, so he cannot initialize the particular set he
wants to use as a target in the tertiary cache, nor can he determine if the set is used by
the victim.

The use of S9. The MISTY1 uses S9 to increase the security of the algorithm.
However, since the output length of S9 is larger than 8 bit, it has to use 2 byte of
memory to store it, which results in the entire S9 requiring 1K of memory. This means
the cache line size has to be larger than 1K to not generate leakage, which is difficult
to achieve. To avoid cache attacks, block cipher should use small S-boxes as much as
possible.

Next work. Our attack can be extended to the cloud environment, but most cloud
platforms nowadays disable the clflush command and use non-inclusive cache.
Fortunately, many advanced cache attack techniques are proposed to support it [28,
29]. The adversary does not need to share any virtual memory with the victim, nor
does he need to share the same processor core. The cache attack can succeed even
when the victim and adversary are run on different processor cores and do not share
virtual memory by exploiting hardware characteristics of the last-level cache (LLC),
which is shared across cores [29]. When the adversary can observe the accesses to S9
and S7, he can run our attack algorithm to recover the whole key of MISTY1.

Conclusion. In this work we implemented the Flush+Reload attack on the block
cipher MISTY1, and we recover the 128-bit key in 5145.33 seconds (about 1.4hours)
and 0.035 seconds in the 32-byte cache line environment by observing 1 and 5 times
encryption. Moreover, in the 64-byte environment we observe 10 times encryption to
recover the 128-bit full key in 7661.06 seconds (about 2.1 hours). Our work
demonstrates that the application of S9 and the design of the key scheduling part
make MISTY1 more vulnerable to cache attacks.
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