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Abstract. Fully Homomorphic Encryption (FHE) schemes enable to compute over encrypted data. Among
them, TFHE [7] has the great advantage of offering an efficient method for bootstrapping noisy ciphertexts,
i.e., reduce the noise. Indeed, homomorphic computation increases the noise in ciphertexts and might com-
promise the encrypted message. TFHE bootstrapping, in addition to reducing the noise, also evaluates (for
free) univariate functions expressed as look-up tables. It however requires to have the most significant bit
of the plaintext to be known a priori, resulting in the loss of one bit of space to store messages. Furthermore
it represents a non negligible overhead in terms of computation in many use cases.
In this paper, we propose a solution to overcome this limitation, that we call Programmable Bootstrap-
ping Without Padding (WoP-PBS). This approach relies on two building blocks. The first one is the
multiplication à la BFV [10] that we incorporate into TFHE. This is possible thanks to a thorough noise
analysis showing that correct multiplications can be computed using practical TFHE parameters. The
second building block is the generalization of TFHE bootstrapping introduced in this paper. It offers the
flexibility to select any chunk of bits in an encrypted plaintext during a bootstrap. It also enables to
evaluate many LUTs at the same time when working with small enough precision. All these improvements
are particularly helpful in some applications such as the evaluation of Boolean circuits (where a bootstrap
is no longer required in each evaluated gate) and, more generally, in the efficient evaluation of arithmetic
circuits even with large integers. Those results improve TFHE circuit bootstrapping as well. Moreover, we
show that bootstrapping large precision integers is now possible using much smaller parameters than those
obtained by scaling TFHE ones.
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1 Introduction

Fully Homomorphic Encryption (FHE) is a family of encryption schemes allowing to perform computation over
encrypted data. FHE schemes use noisy ciphertexts for security reasons, i.e., ciphertexts containing some ran-
domness. This noise grows after every performed homomorphic operation, and, if not controlled, can compromise
the message and prevent the user from decrypting correctly. A technique called bootstrapping and introduced by
Gentry [11] allows to reduce the noise, by mean of a public key called bootstrapping key. By using bootstrapping
frequently, thus reducing the noise when needed, one can perform as many homomorphic operations as she
wants, but it remains an expensive technique, both in terms of execution time and memory usage.

Nowadays, the most practical FHE schemes are based on the hardness assumption called Learning With
Errors (LWE), introduced by Regev in 2005 [16], and on its ring variant (RLWE) [18,15]. Even if bootstrapping
is possible for all these schemes, some of them (such as BGV [3], BFV [2,10] and CKKS [5]) actually avoid
it because the technique remains a bottleneck. These schemes make use of RLWE ciphertexts exclusively and
adopt a leveled approach, which consists in choosing parameters that are large enough to tolerate all the noise
produced during the computation. These schemes take advantage of SIMD encoding [17] to pack many messages
in a single ciphertext and perform the homomorphic evaluations in parallel on all of these messages at the same
time, and they naturally perform homomorphic multiplications between RLWE ciphertexts by doing a (tensor)
product followed by a relinearization/key switching.

TFHE [6,7,8] is also an (R)LWE-based FHE scheme which differentiates from the other (R)LWE-based
cryptosystems because it supports a very efficient bootstrapping technique. TFHE was originally proposed as an
improvement of FHEW [9], a GSW [12] based scheme with a fast bootstrapping for the evaluation of homomor-
phic Boolean gates. Apart from improving FHEW bootstrapping, TFHE also introduces new techniques in order
to support more functionalities than the ones proposed by FHEW and to improve homomorphic evaluation of
complex circuits.

TFHE efficiency comes in part from the choice of a small ciphertext modulus which allows to use CPU native
types to represent a ciphertext both in the standard domain and in Fourier domain. This is what we call the
TFHE context.
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TFHE encrypts messages in the most significant bits, meaning a message m ∈ Z is rescaled by a factor
∆ ∈ Z before being reduced modulo q. The small noise e ∈ Z is added in the least significant bit, so a noisy
plaintext looks like ∆ ·m + e mod q. In this paper, when we refer to bits of precision, we mean the quantity
p = log2( q∆ ). We illustrate this in Figure 1. Note that if m > 2p some of the information in m will be lost
because of the modulo.

m
precision = 7 bits

e

q

MSB

∆ 0

LSB

Fig. 1. In TFHE, messages are encoded in the most significant bits (MSB), and so it is rescaled by a scaling factor ∆,
while the error appears in the least significant bits (LSB). The precision is log2( q

∆
), i.e 7 bits in the figure.

TFHE bootstrapping is very efficient, but also programmable, meaning that a univariate function can be
evaluated at the same time as the noise is being reduced. It is often called programmable bootstrapping and
noted PBS. The function to be evaluated is represented as a look-up table (LUT) and the bootstrapping rotates
this table (stored in an encrypted polynomial) in order to output the correct element in the table. The LUT
has to have redundancy (each coefficient is repeated a certain amount of time consecutively) in order to remove
the input ciphertext noise during the PBS.

A multi-output version of the PBS is described in [4] allowing the evaluation of multiple functions {fi}i over
one encrypted input. Each function fi is encoded as a LUT in a polynomial Pi. One can find a shared polynomial
Q such that we can decompose each Pi as Q · P ′i and compute CTout ← PBS∗(ctin,BSK, Q). Then, one needs
to multiply CTout by each of P ′i and sample extract the resulting ciphertexts. One would have obtained the
evaluation of each function.

One drawback of this method is that the noise inside the i-th output ciphertexts depends on P ′i .
A recent paper revisits the TFHE bootstrapping [13]. It gives two algorithms and a few optimizations to

compute programmable bootstrapping on large precision ciphertexts encrypting one message decomposed in
a certain base. Those algorithms could be used to homomorphically compute multivariate functions if we call
them with the right lookup tables.

The BGV/BFV/CKKS leveled approach is very convenient when the circuit that has to be homomorphically
evaluated is small in terms of multiplicative depth, but also known in advance. When multiple inputs have to
be evaluated with the same circuit at once, this approach is also very good in terms of amortized computation
time. However, when the circuit is deep and unknown, the TFHE approach is more convenient.

A recent work by Boura et al., called Chimera [1], tries to take advantage of both approaches, by building
bridges between FHE schemes (TFHE, BFV and CKKS), in order to switch between them depending on which
functionality is needed.

TFHE and its fast PBS are very powerful, but have some limitations:

A In general, to correctly bootstrap a ciphertext, its encrypted plaintext needs to have its first MSB set to
zero. The only exception is when the univariate function evaluated is negacyclic.

B One cannot bootstrap efficiently a message with a large precision (e.g. more than 6 bits). The number of
bits of the message we bootstrap is strictly related to the dimension N of the ring chosen for the PBS. This
means that the more we increase the precision, the more we have to increase the parameter N , and the
slower the computation is.

C The PBS algorithm is not multi-thread friendly. Indeed, it is a loop working on an accumulator.
D There exist no native multiplication between two LWE ciphertexts. There are two approaches to multiply

LWE ciphertexts: (i) use two programmable bootstrappings to evaluate the function x 7→ x2

4 so we can build

the multiplication x · y = (x+y)2

4 − (x−y)2

4 ; (ii) use 1 or more TFHE circuit bootstrappings [7] in order to
convert one of the inputs into a GGSW (if not given as input) and then performing an external product.
Since both techniques use PBS, they both suffer from limitations A and B.

E Because of limitations A and B it is not possible, in an efficient manner, to homomorphically split a message
contained in a single ciphertext into several ciphertexts containing smaller chunks of the original message.

F The PBS can evaluate only a single function per call. Using the [4] trick, we can evaluate multiple Look-Up
Tables at the same time, but the output will have an additional amount of noise which depends on the
function evaluated.



Improved PBS with Larger Precision in TFHE 3

G TFHE gate bootstrapping represents a very easy solution for evaluating homomorphic Boolean circuits.
However, this technique requires a PBS for each binary gate, which results in a costly execution. Furthermore,
when we want to apply a similar approach to the arithmetic circuit with bigger integers (more than 1 bit),
TFHE does not provide a solution.

H TFHE circuit bootstrapping requires ` PBS followed by many key switchings which is quite time consuming.

Contributions. In this paper we overcome the above-mentioned TFHE limitations. First, we generalize TFHE
PBS so it can evaluate several functions at once without additional computation or noise. This approach is
possible when the message to bootstrap is small enough. It overcomes limitation F and enables to compute
a single generalized PBS when computing a circuit bootstrapping instead of ` PBS, overcoming limitation H.
Circuit bootstrapping is particularly interesting in the leveled evaluation of Look-Up Tables, as shown in [7].

Furthermore, we thoroughly study the noise growth when computing a tensor product followed by a relin-
earization (i.e. the BFV-like multiplication) and found parameters compatible with the TFHE context repre-
senting a new way of computing LWE multiplications in TFHE. This multiplication is efficient and does not
require a PBS which overcomes limitation D. We also propose a packed use of this algorithm to compute several
LWE products at once or a sum of several LWE products at once. Our noise analysis is also valid for BFV-like
schemes and can help estimate the noise growth there.

From this multiplication, we define a new PBS procedure that does not require the MSB to be set to zero,
overcoming limitation A. This new procedure is composed of few generalized PBS that can be computed in
parallel which makes it more multi-thread compatible (limitation C). Observe that, differently from Chimera,
which builds bridges to move between different schemes, we add the support for a BFV-like multiplication into
TFHE, in order to remove some of the TFHE limitations. In this way, we don’t need to switch between schemes,
and we can remain all the time in the TFHE context.

From this new PBS we are able to homomorphically decompose a plaintext from a single ciphertext into
several ciphertexts encrypting blocks of the input plaintext, overcoming limitation E, and also relax the need
for PBS at every gate in the gate bootstrapping and its generalization, overcoming limitation G.

From this new decomposition algorithm and the Tree-PBS algorithm [13], we are able to create a fast PBS
for larger input messages, overcoming limitation B. We can also in an even faster manner refresh the noise
(bootstrap, not PBS) in a ciphertext from this new decomposition algorithm.

2 Background and Notations

The parameter q is a positive integer and represents the modulo for the integers we are working with. We note
Zq the ring Z/qZ. The parameter N is a power of 2 and represents the size of the polynomial we are working
with. We note Rq the ring Zq[X]/(XN + 1). A Gaussian distribution with a mean set to zero and a standard
deviation set to σ is written χσ. We use the symbol || for concatenation. We refer to the most (resp. least)
significant bits of an integer as MSB (resp. LSB). We alse refer to look-up tables as LUT. The (computational)
complexity of an algorithm Alg, potentially dependent on some parameters p1, · · · , pn, is denoted Cp1,··· ,pnAlg .

Remark 1. Observe that in this paper we use different notations compared to TFHE [6,7,8]. In TFHE, the
message and ciphertext spaces are expressed by using the real torus T = R/Z. On a computer, they implemented
T by using native arithmetic modulo 232 or 264, which means that they work on Zq (with q = 232 or q = 264).
This is why we prefer to use Zq instead of T. It is made possible because there is an isomorphism between Zq
and 1

qZ/Z as explained in [1, Section 1].

LWE, RLWE & GLWE Ciphertexts. A GLWE ciphertext of a message M ∈ Rq with the scaling factor ∆ ∈ Zq
under the secret key S ∈ Rk

q is defined as follows:

CT = (A1, · · · , Ak, B =

k∑
i=1

Ai · Si + bM ·∆eq + E) = GLWES(M ·∆) ∈ Rk+1
q

such that S = (S1, · · · , Sk) ∈ Rk
q is the secret key with coefficients either sampled from a uniform binary,

uniform ternary or Gaussian distribution, {Ai}ki=1 are polynomials in Rq with coefficients sampled from the
uniform distribution in Zq, E is an noise (error) polynomial in Rq such that its coefficients are sampled from a
Gaussian distributions χσ. The parameter k is a positive integer and represents the number of polynomials in
the GLWE secret key. To simplify notations, we sometimes define Sk+1 as −1.

A GLWE ciphertext with N = 1 is an LWE ciphertext and in this case we consider the parameter n = k for
the size of the LWE secret key and we note both the ciphertext and the secret with a lower case e.g. ct and s.
A GLWE ciphertext with k = 1 and N > 1 is an RLWE ciphertext.
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Lev, RLev & GLev Ciphertexts. A GLev ciphertext with the base B ∈ N∗ and ` ∈ N∗ levels, of a message
M ∈ Rq under the GLWE secret key S ∈ Rk

q is defined as the following vector of GLWE ciphertexts:

CT = (CT1, · · · ,CT`) = GLevB,`S (M) ∈ R`×(k+1)
q

where CTi=GLWES(M · q
Bi

) is a GLWE ciphertext.
A GLev ciphertext with N = 1 is a Lev ciphertext and in this case we consider the parameter n = k for the

size of the LWE secret key. A GLev ciphertext with k = 1 and N > 1 is a RLev ciphertext.

Decomposition Algorithms. The decomposition algorithm in the integer base B ∈ N∗ with ` ∈ N∗ levels is written
dec(B,`) and takes as input an integer x ∈ Zq and output a decomposition vector of integers (x1, · · · , x`) ∈ Z`q
such that: 〈

dec(B,`)(x),
( q

B1
, · · · , q

B`

)〉
=

⌊
x · B

`

q

⌉
· q
B`
∈ Zq

Note that this decomposition starts from the MSB. When we apply this decomposition on a vector of integers,
we end up with a vector of decomposition vector of integers.

We can also decompose an integer polynomialsX ∈ Rq into a decomposition vector of polynomials (X1, · · · , X`) ∈
R`
q such that: 〈

dec(B,`)(X),
( q

B1
, · · · , q

B`

)〉
=

⌊
X · B

`

q

⌉
· q
B`
∈ Rq

When we apply this decomposition on a vector of Polynomials, we end up with a vector of decomposition
vectors of polynomials.

Key Switching. A technique that is often used in FHE is called key switching and it allows to change parameters
and keys in the ciphertext. The key switching is a technique that makes the noise grow and it is performed
using a so-called key-switching key which is a public key composed of encryptions of secret key elements.
There are different types of key switchings: we will quickly list and describe the ones that are interesting
for the understanding of the paper. The LWE-to-GLWE key-switching key is noted KSK and it is equal to
KSK={CTi=GLevB,`

S′ (si)}
1≤i≤n

, where s = (s1, . . . , sn) ∈ Znq is the input LWE secret key and S′=(S′1,...,S
′
k)∈R

k
q is the

output GLWE secret key.

– CTout ← PrivateKS({cti}i∈{1,...,p},KSK) : allows to apply a private linear function f :(Z/qZ)p−→Z/qZ[X] over

p LWE ciphertexts {cti=LWEs(m1)}i∈{1,...,p} and creates a GLWE ciphertext CTout=GLWES′ (f(m1,··· ,mp)). For more
details check [7, Algorithm 2].

– CTout ← PublicKS({cti}i∈{1,...,p},KSK, f) : is a public version of the previous key switching, i.e. a key

switching with a public linear function f . For more details check [7, Algorithm 1]. The key switching used in
TFHE PBS is a public key switching, where the function f is the identity function and the output GLWE
is instantiated with k = n′ and N = 1 (i.e., as an LWE instance).

– CTout ← PackingKS({ctj}pj=1, {ij}
p
j=1,KSK) : is a (public) key switching procedure enabling to pack sev-

eral LWE ciphertexts into one GLWE. It takes as input a set of p LWE ciphertexts as well as a set of p
indexes. Given the set of indexes {ij}pj=1, the function f has the following shape: f({mj}pj=1)−→

∑p
j=1mj ·X

ij .

GSW, RGSW & GGSW Ciphertexts. A GGSW ciphertext with the base B ∈ N∗ and ` ∈ N∗ levels, of a message
M ∈ Rq under the GLWE secret key S=(S1,··· ,Sk)∈Rkq is defined as the following vector of GLev ciphertexts:

CT =
(
CT1, · · · ,CTk+1

)
= GGSW

(B,`)
S (M) ∈ R(k+1)×`×(k+1)

q

where CTi=GLev
(B,`)
S (−Si·M) is a GLev ciphertext. Remember that we note Sk+1=−1.

A GGSW ciphertext with N = 1 is a GSW ciphertext, and a GGSW ciphertext with k = 1 and N > 1 is a
RGSW ciphertext.

TFHE PBS. The bootstrapping of TFHE has a double functionality: it reduces the noise in the ciphertexts and
at the same time evaluate a univariate function, we call it PBS for programmable bootstrapping. In order to be
performed, the PBS uses a so called bootstrapping key, i.e., a list of GGSW encryptions of the elements of the
secret key used to encrypt the input LWE (noisy) ciphertext of the PBS. The procedure is composed of three
major steps:

– Modulus Switching : the input LWE ciphertext in Zn+1
q is converted into a ciphertext in Zn+1

2N ;
– Blind Rotation: a GLWE encryption of a redundant LUT is rotated (by using a loop of CMux operations [8])

according to the LWE ciphertext produced in the previous step and the public bootstrapping key;
– Sample Extraction: the constant coefficient of the GLWE output of the previous step is extracted as a LWE

ciphertext.
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TFHE Circuit Bootstrapping. In 2017, TFHE authors propose a technique called citcuit bootstrapping [7], to
convert an LWE ciphertext into a GGSW ciphertext, and to reduce its noise at the same time.

The circuit bootstrapping is composed by a series of ` TFHE PBS (as described in the previous paragraph),
followed by a list of (k + 1)` private key switching procedures. The goal is to build one by one all the GLWE
ciphertexts composing the output GGSW.

3 Building Blocks

In this section we describe two building blocks: the LWE multiplication, that uses an existing GLWE multipli-
cation together with some key switchings and sample extraction, and a generalized version of TFHE PBS. Both
techniques are necessaries in order to build our constructions in the rest of the paper.

3.1 LWE Multiplication

We first recall the multiplication algorithm for GLWE ciphertexts in Algorithm 1. It is composed of a tensor
product followed by a relinearization and is widely used in the literature [10] (we recall the GLWE [3] algorithm,
instead of the more limited RLWE version). Since this algorithm is largely used in the rest of the paper, we
thoroughly study its noise growth and provide a formal noise analysis where Var(S) is the variance of a GLWE
secret key polynomial S ∈ Rq, Var(S′even) (resp. Var(S′odd)) is the variance of even (resp. odd) coefficients in S2

and Var(S′′) is the variance of coefficients in Si·Sj which is the product between two independent secret key
polynomials Si, Sj ∈ Rq.

Algorithm 1: CT← GLWEMult (CT1,CT2,RLK)

Context:


S = (S1, . . . , Sk) ∈ Rkq : a GLWE secret key

∆ = min (∆1, ∆2) ∈ Zq
PT1 = M1∆1 ∈ Rq
PT2 = M2∆2 ∈ Rq

Input:


CT1 = GLWES (PT1) = (A1,1, · · · , A1,k, B1) ∈ Rk+1

q

CT2 = GLWES (PT2) = (A2,1, · · · , A2,k, B2) ∈ Rk+1
q

RLK =
{

CTi,j = GLev
(B,`)
S (Si · Sj)

}1≤j≤i

1≤i≤k
: a relinearization key for S

Output: CT = GLWES

(
PT1·PT2
∆

)
∈ Rk+1

q

1 begin
/* Tensor product */

2 for 1 ≤ i ≤ k do

3 T ′i ←
[⌊

[A1,i·A2,i]Q
∆

⌉]
q

4 end
5 for 1 ≤ i ≤ k, 1 ≤ j < i do

6 R′i,j ←
[⌊

[A1,i·A2,j+A1,j ·A2,i]Q
∆

⌉]
q

7 end
8 for 1 ≤ i ≤ k do

9 A′i ←
[⌊

[A1,i·B2+B1·A2,i]Q
∆

⌉]
q

10 end

11 B′ ←
[⌊

[B1·B2]Q
∆

⌉]
q

/* Relinearization */

12 CT←
(
A′1, · · · , A

′
k, B

′)+
∑k
i=1

〈
CTi,i, dec(B,`)

(
T ′i
)〉

+
∑1≤j<i

1≤i≤k

〈
CTi,j · dec(B,`)

(
R′i,j

)〉
13 end

Theorem 1 (GLWE multiplication). Let CT1=GLWES(PT1)∈Rk+1
q and CT2=GLWES(PT2)∈Rk+1

q be two GLWE ci-
phertexts, encrypting respectively PT1=M1∆1∈Rq and PT2=M2∆2∈Rq, under the same secret key S=(S1,...,Sk)∈Rkq ,

with noise sampled respectively from χσ1 and χσ2 . Let RLK=
{

CTi,j=GLev
(B,`)
S (Si·Sj)∈R`×(k+1)

q

}1≤j≤i

1≤i≤k
be a relineariza-

tion key for the GLWE secret key S, with noise sampled from χσRLK
.

Algorithm 1 computes a new GLWE ciphertext CT encrypting the product PT1·PT2/∆∈Rq where ∆=min(∆1,∆2)

(a scaling factor), under the secret key S, with a noise variance VarGLWEMult estimated by the following formula:
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VarGLWEMult=
N
∆2

(
∆2

1||M1||
2
∞σ

2
2+∆2

2||M2||
2
∞σ

2
1+σ21σ

2
2

)
+

+ N
∆2

(
q2−1
12

(
1+kNVar(S)+kNE2(S)

)
+ kN

4
Var(S)+ 1

4
(1+kNE(S))2

)
(σ21+σ22)+

+ 1
12

+ kN
12∆2 ·

(
(∆2−1)·

(
Var(S)+E2(S)

)
+3·Var(S)

)
+
k(k−1)N

24∆2 ·
(
(∆2−1)·

(
Var(S′′)+E2(S′′)

)
+3·Var(S′′)

)
+

+ kN
24∆2 ·

(
(∆2−1)·

(
Var(S′odd)+Var(S′even)+2·E2(S′mean)

)
+3·(Var(S′odd)+Var(S′even))

)
+k`Nσ2RLK·

(k+1)
2
·B

2+2
12

+

+ kN
2

(
q2

12B2`
− 1

12

)(
(k−1)·(Var(S′′)+E2(S′′mean))+Var(S′odd)+Var(S′even)+2E2(S′mean)

)
+

+ kN
8
·((k−1)·Var(S′′)+Var(S′odd)+Var(S′even)).

(1)

Let k∗= k(k+1)
2 and k+=

(k+1)(k+2)
2 . The complexity of the algorithm is:

C(k,`,n,N)
GLWEMult = C(k,N)

TensorProduct + C(k,`,N)
Relin

C(k,N)
TensorProduct = 2(k + 1)CFFT + k

+CiFFT + (k + 1)
2
NCmultFFT + k

∗
NCaddFFT

C(k,`,N)
Relin = N`k

∗Cdec + k
∗
`CFFT + k

∗
`(k + 1)NCmultFFT + (k

∗
`− 1)(k + 1)NCaddFFT + (k + 1)CiFFT

(2)

Proof (sketch). In the proof, we compute the decryption of the resulting ciphertext, obtaining the message plus
the noise so we can estimate its variance. The detailed computation leading us to the aforementioned noise
formula is provided in Supplementary Material C.

ut
The same Algorithm 1 can be adapted in order to perform a GLWE square: the square is more efficient since

R′i,j and A′i are computed with a single multiplication instead of two. For more details, we refer to Algorithm 9
in the Supplementary Material A.1.

3.1.1 Single LWE Multiplication We now define Algorithm 2 for homomorphically multiply two LWE
ciphertexts. It requires the sample extraction procedure, which is an algorithm adding no noise to the ciphertext
and consisting in simply rearranging some of the coefficients of the GLWE input ciphertext to build the output
LWE ciphertext encrypting one of the coefficients of the input polynomial plaintext. The sample extraction is
described in [8, Section 4.2] for RLWE inputs, and can be easily extended to GLWE, but due to page constraint,
please find this algorithm in the Supplementary Material A, Algorithm 14.

Theorem 2 (LWE-to-GLWE Packing Key Switch). We start with the simplest case were we pack a
single LWE ciphertext. Let ctin=LWEs(m·∆)∈Zn+1

q be an LWE ciphertext encrypting m·∆∈Zq, under the LWE secret
key s = (s1, . . . , sn) ∈ Znq , with noise sampled respectively from χσ. Let S′ be a GLWE secret key such that
S′=(S′1,...,S

′
k)∈R

k+1
q . Let KSK={CTi=GLevB,`

S′ (si)∈R`×(k+1)
q }

1≤i≤n
be a key switching key from s to S′ with noise sampled

from χKSK.
There are two different variances after a packing key switch: one for the coefficient we just filled written

Varfill and another for the empty coefficients Varemp. Those variances are estimated by:

Var
(1)
fill = σ

2
+ n ·

(
q2

12B2`
−

1

12

)
·
(

Var(si) + E2
(si)

)
+
n

4
· Var(si) + n · ` · σ2

KSK ·
B2 + 2

12

Var(1)emp = n · ` · σ2
KSK ·

B2 + 2

12

(3)

When we pack 1 ≤ α ≤ N LWE ciphertexts, we have Var
(α)
fill =Var

(1)
fill +(α−1)·Var(1)emp and Var(α)

emp =α·Var(1)emp.
The complexity of the algorithm is:

C(α,`,n,k,N)
PackingKS = α`nCdec + α`n(k + 1)NCmul + ((α`n− 1)(k + 1)N + α)Cadd

Proof (sketch). In the proof, we compute the decryption of the resulting ciphertext, obtaining the message plus
the noise so we can estimate the two variances. The detailed computation leading us to the aforementioned
noise formulas are provided in Supplementary Material D.

ut

Theorem 3 (LWE Multiplication). Let ct(1)=LWEs(m1·∆1) and ct(2)=LWEs(m2·∆2) be two LWE ciphertexts,
encrypting respectively m1·∆1 and m2·∆2, both encrypted under the LWE secret key s = (s1, . . . , sn), with noise
sampled respectively from χσ1

and χσ2
. Let KSK={CTi=GLevB,`

S′ (si)}
1≤i≤n

a key switching key from s to S′ where

S′=(S′1,...,S
′
k), with noise sampled from χσKSK

. Let RLK be a relinearization key for S′, defined as in Theorem 1.
Algorithm 2 computes a new LWE ciphertext ctout, encrypting the product m1·m2·∆out, where ∆out=max(∆1,∆2),

under the secret key s′. The variance of the noise in ctout can be estimated by replacing the variances σ1 and
σ2 in the RLWE multiplication (Formula 1, Theorem 1) with the variance estimated after a packing key switch
(Formula 3, Theorem 2).

The complexity is:
C(`KS,`RL,n,k,N)

LWEMult = 2 · C(1,`KS,n,k,N)

PackingKS + C(k,`RL,n,N)

GLWEMult + C(N)
SampleExtract
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Algorithm 2: ctout ← LWEMult (ct1, ct2,RLK,KSK)

Context:



s = (s1, · · · , sn) ∈ Znq : the LWE input secret key

s′ = (s′1, · · · , s
′
kN ) ∈ ZkNq : the LWE output secret key

S′ =
(
S′1, . . . , S

′
k

)
∈ Rkq : a GLWE secret key

∀1 ≤ i ≤ k, S′i =
∑N−1
j=0 s′(i−1)·N+j+1X

j ∈ Rq

∆out = max(∆1, ∆2) ∈ Zq

Input:


ct1 = LWEs(m1 ·∆1) ∈ Zn+1

q

ct2 = LWEs(m2 ·∆2) ∈ Zn+1
q

RLK : a relinearization key for S′ as defined in algorithm 1

KSK =
{

CTi = GLevB,`
S′ (si)

}
1≤i≤n

: a key switching key from s to S′

Output: ctout = LWEs′ (m1 ·m2 ·∆out) ∈ ZkN+1
q

1 begin
/* KS from LWE to GLWE */

2 CT1 = GLWES′ (m1 ·∆1)← PackingKS({ct1}, {0},KSK) ;
3 CT2 = GLWES′ (m2 ·∆2)← PackingKS({ct2}, {0},KSK) ;

/* GLWE multiplication: Tensor product + Relinearization */
4 CT = GLWES′ (m1 ·m2 ·∆out)← GLWEMult(CT1,CT2,RLK)

/* Sample extract the constant term */
5 ctout = LWEs′ (m1 ·m2 ·∆out)← SampleExtract (CT, 0)

6 end

3.1.2 Packed Products & Packed Sum of Products It is possible to use algorithm 2 to compute with a
single multiplication several products, or several squares, or a sum of several products, or even a sum of several
squares.

These four functionalities can be easily achieved by slightly modifying Algorithm 2. In the case of PackedMult
and PackedSumProducts, the algorithm take in input two sets of LWE ciphertexts

{
ct

(1)
i

}
=
{

LWEs(m
(1)
i ·∆1)

}
0≤i<α

and
{

ct
(2)
i

}
=
{

LWEs(m
(2)
i ·∆2)

}
0≤i<α

:

1. PackedMult: the goal is to compute LWE encryptions of the products m(1)
i ·m

(2)
i ·∆out, where ∆out=max(∆1,∆2).

The two input sets are packed with a packing key switch into two GLWE ciphertexts with indexes ℒ1=

{0,1,2,··· ,α−1} and ℒ2={0,α,2α,··· ,(α−1)α} respectively. The resulting GLWE ciphertexts are multiplied with the
GLWE multiplication (Algorithm 1) and finally all the coefficients at indexes i · (α+ 1) (for 0 ≤ i < α) are
extracted.

2. PackedSumProducts: the goal is to compute a LWE encryption of the sum of products
∑α−1
i=0 m

(1)
i ·m

(2)
i ·∆out,

where ∆out=max(∆1,∆2). The two input sets are packed with a packing key switch into two GLWE ciphertexts
with indexes ℒ1={0,1,2,··· ,α−1} and ℒ2={α−1,α−2,α−3,··· ,0} respectively. The resulting GLWE ciphertexts are
multiplied with the GLWE multiplication (Algorithm 1) and finally the coefficient at index α−1 is extracted.

Note that it is possible to compute packed squares and a packed sum of squares if the two LWE input sets are
equal. It is also possible to compute squares and a sum of squares by computing a RLWE multiplication between
an RLWE ciphertext and itself. In that case, a single set of LWE input in provided {cti} = {LWEs(mi ·∆)}0≤i<α:

1. PackedSquares: the goal is to compute LWE encryptions of the squares m2
i ·∆. The input set is packed

with a packing key switch into a GLWE ciphertext with indexes ℒ={20−1,21−1,22−1,··· ,2α−1−1}. The resulting
GLWE ciphertext is squared by using the GLWE square algorithm and finally all the coefficients at indexes
2i+1 − 2 (for 0 ≤ i < α) are extracted.

2. PackedSumSquares: the goal is to compute a LWE encryption of the sum of squares
∑α−1
i=0 m2

i ·2∆. To
achieve this goal, the input set is packed with a packing key switch into a GLWE ciphertext with redundancy,
using two indexes sets ℒ1={0,1,2,··· ,α−1} and ℒ2={2α−1,2α−2,2α−3,··· ,α}. The resulting GLWE ciphertext is
squared by using the GLWE square algorithm and finally the coefficient at index 2α− 1 is extracted.

Note that we could also compute packed products and a packed sum of products with a GLWE square
algorithm by changing ℒ, ℒ1 and ℒ2 and also extracting different coefficients.

Also note that for these four algorithms, there are restrictions regarding the maximum value that α can take
each time. We provide more details in the Supplementary Material A.2.

3.2 Generalized PBS

We propose a more versatile algorithm for the PBS where we are able to bootstrap a precise chunk of bits,
instead of only the MSB as described in TFHE, and to also apply several function evaluation at once. We
describe this generalization in Algorithm 3. We introduce two new parameters, κ and ϑ, which redefine the
modulus switching step of TFHE PBS. In particular, κ defines the number of MSB that are not considered in
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the PBS, while 2ϑ defines the number of functions that can be evaluated at the same time in a single generalized
PBS.

The two parameters κ and ϑ are illustrated in Figure 2, where ”input” represents the plaintext (with noise)
that is encrypted the input ciphertext of the modulus switching, and ”output” illustrates the plaintext (with
noise)that is encrypted inside the output ciphertext (after modulus switching). The first κ MSB will not impact
the following steps of the generalized PBS and ϑ bits will be set to 0 in order to encode 2ϑ functions in the
LUT stored in Pf . Observe that the case (κ, ϑ) = (0, 0) corresponds to the original TFHE PBS.

Input:

m̄ m e

κ 2N
ϑ

Output:

m

2N
ϑ

Fig. 2. Modulus switching operation in the generalized PBS (Algorithm 3): on top of the figures we illustrate the data
(m̄,m, e), on the bottom the dimensions (κ, 2N , ϑ).

We also define the ”plaintext modulus switching” function written PTModSwitch to recover the plaintext of
the encrypted output of a modulus switching algorithm. Let m ∈ Zq be a message, ∆ ∈ Zq its scaling factor,
κ ∈ Z and ϑ ∈ N the parameters of a modulus switching. We define q′ = q

∆2κ . The case where κ ≥ 0 is
illustrated in Figure 3. We defined (β,m′)←PTModSwitchq(m,∆,κ,ϑ)∈{0,1}×N as follow:

If κ ≥ 0 :

{
m′ = m mod q′

2

if m mod q′ < q′
2 , β = 0, else β = 1

Else :

{
m′ = m

β is a random bit

Output:

m

β m′

2N
ϑ

Fig. 3. Plaintext after the modulus switching from the generalized PBS (Algorithm 3) where κ ≥ 0: on top of the figure
we illustrate the data(m, β, m′), on the bottom the dimensions (2N , ϑ).

Note that for simplicity purpose, we provide the generalized PBS noise formula only for binary secret keys.
However, in Supplementary Material B we provide formulas as well as proofs for more key distributions (binary,
ternary and Gaussian).

Theorem 4 (Generalized PBS). Let s=(s1,··· ,sn)∈Znq be a binary LWE secret key. Let S′=(S′1,...,S
′
k)∈R

k
q be a

GLWE binary secret key such that S′i=
∑N−1
j=0 s′(i−1)·N+j+1X

j, and s′ = (s′1, · · · , s′kN ) be the corresponding binary
LWE secret key. Let Pf be a r-redundant LUT for a function f :Z→Z and ∆out be the output scaling factor. Let
(κ, ϑ) be the two integer variables defining (along with N) the window size to be modulus switched, such that
q2ϑ

∆in2
κ <2N, and let (β,m′)=PTModSwitchq(m,∆in,κ,ϑ)∈{0,1}×N.
Then Algorithm 3 takes as input a LWE ciphertext ctin=LWEs(m·∆in)∈Zn+1

q with noise distribution from χσin ,
a bootstrapping key BSK=

{
CTi=GGSWB,`

S′ (si)
}n
i=1

from s to S′ and a (possibly trivial) GLWE encryption of Pf ·∆out,

and returns an LWE ciphertext ctout under the secret key s′, encrypting the message (−1)β ·f(m′)·∆out if and only

if the input noise has variance σ2
in<

∆2
in

4Γ2−
q′2

12w2 + 1
12−

nq′2

24w2− n
48 , where Γ is a variable depending on the probability of

correctness defined as P=erf
(
Γ√
2

)
, w=2N ·2−ϑ and q′=q·2−κ.

The output noise after the generalized PBS is estimated by the formula:

Var(PBS) = n`(k + 1)N
B2 + 2

12
Var(BSK) + n

q2 −B2`

24B2`

(
1 +

kN

2

)
+
nkN

32
+

n

16

(
1−

kN

2

)2

.



Improved PBS with Larger Precision in TFHE 9

The complexity of Algorithm 3 is the same as the complexity of TFHE bootstrapping [8], i.e.,

C(n,`,k,N)
GenPBS = C(n)

ModulusSwitching + nC(n,`,k,N)
CMUX C(N)

SampleExtract with


C(n)

ModulusSwitching = (n+ 1)CScale&Round

C(n,`,k,N)
CMUX = (k + 1)(n+ 1)C(N)

Rotation + 2n(k + 1)NCAdd + C(n,`,k,N)
ExternalProduct

C(n,`,k,N)
ExternalProduct = n`(k + 1)NCdec + n`(k + 1)CFFT + n(k + 1)`(k + 1)NCmultFFT+

+n(k + 1)(`(k + 1)− 1)NCaddFFT + n(k + 1)CiFFT

Proof (sketch). In the proof, we compute the decryption of the resulting ciphertext, obtaining the message plus
the noise so we can estimate its variance. The detailed proof of this theorem is provided in Supplementary
Material B.

ut

Algorithm 3: ctout ← GenPBS (ctin,BSK,CTf ,κ, ϑ)

Context:



s = (s1, · · · , sn) ∈ Znq : the LWE input secret key

s′ = (s′1, · · · , s
′
kN ) ∈ ZkNq : the LWE output secret key

S′ =
(
S′1, . . . , S

′
k

)
∈ Rkq : a GLWE secret key

∀1 ≤ i ≤ k, S′i =
∑N−1
j=0 s′(i−1)·N+j+1X

j ∈ Rq

Pf ∈ Rq : a r-redundant LUT for x 7→ f(x)

∆out ∈ Zq : the output scaling factor

f : Z→ Z : a function

(β,m′) = PTModSwitchq(m,∆in,κ, ϑ) ∈ {0, 1} × N

Input:


ctin = LWEs(m ·∆in) = (a1, · · · , an, an+1 = b) ∈ Zn+1

q

BSK =
{

CTi = GGSWB,`

S′ (si)
}n
i=1

: a bootstrapping key from s to S′

CTf = GLWES′ (Pf ·∆out) ∈ Rk+1
q

(κ, ϑ) ∈ Z× N : define along with N the chunk of the plaintext to bootstrap

Output: ctout = LWEs′
(

(−1)β · f
(
m′
)
·∆out

)
if we respect requirements in Theorem 4

1 begin
/* modulus switching */

2 for 1 ≤ i ≤ n+ 1 do

3 a′i ←
[⌊

ai·2N·2
κ−ϑ

q

⌉
· 2ϑ

]
2N

4 end

/* blind rotate of the LUT */

5 CT← BlindRotate
(

CTf , {a′i}
n+1
i=1 ,BSK

)
;

/* sample extract the constant term */
6 ctout ← SampleExtract (CT, 0)

7 end

4 Upgraded Bootstrapping

This section describes our main contributions, i.e. the WoP-PBS (PBS without a bit of padding) and the PBS
evaluating multiple look-up tables at the same time (we call this algorithm PBSmanyLUT).

4.1 WoP-PBS first version

A big constraint with TFHE PBS is the negacyclicity of the rotation of the LUT. It implies a need of a padding bit
(as mentioned in Limitation A). We propose a solution to remove that requirement, by using the aforementioned
LWE multiplication (Algorithm 1) and the generalized PBS (Algorithm 3). This new bootstrapping is called
the programmable bootstrapping without padding (WoP-PBS) and a first version is described in Algorithm 4.

Theorem 5 (PBS Without Padding (V1)). Let s=(s1,··· ,sn)∈Znq be a binary LWE secret key. Let S′=

(S′1,...,S
′
k)∈R

k
q be a GLWE secret key such that S′i=

∑N−1
j=0 s′(i−1)·N+j+1X

j∈Rq, and s′=(s′1,··· ,s
′
kN )∈ZkNq be the corre-

sponding binary LWE key. Let Pf∈Rq (resp. P1∈Rq) be a r-redundant LUT for the function f : Z 7→ Z, (resp.
the constant function x 7→ 1) and ∆out ∈ Zq be the output scaling factor. Let CTf be a (possibly trivial) GLWE
encryption of Pf ·∆out and CT1 be a trivial GLWE encryption of P1·∆out. Let (κ, ϑ) ∈ Z × N be the two integer
variables defining (along with N) the chunk of the plaintext that is going to be bootstrapped, such that q2ϑ

∆in2
κ <2N,

and let (β,m′)=PTModSwitchq(m,∆in,κ,ϑ)∈{0,1}×N.
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Algorithm 4: ctout ←WoP-PBS1(ctin,BSK,RLK,KSK, Pf ,∆out,κ, ϑ)

Context:



s = (s1, · · · , sn) ∈ Znq
s′ = (s′1, · · · , s

′
kN ) ∈ ZkNq

S′ =
(
S′(1), . . . , S′(k)

)
∈ Rkq

∀1 ≤ i ≤ k, S′(i) =
∑N−1
j=0 s′(i−1)·N+j+1X

j ∈ Rq

f : Z→ Z : a function

P1 ∈ Rq : a redundant LUT for x 7→ 1

(β,m′) = PTModSwitchq(m,∆,κ, ϑ) ∈ {0, 1} × N
CTf = GLWES′ (Pf ·∆out) ∈ Rk+1

q (might be a trivial encryption)

CT1 ∈ Rk+1
q : a trivial encryption of P1 ·∆out

Input:



ctin = LWEs(m ·∆in) = (a1, · · · , an, an+1 = b) ∈ Zn+1
q

BSK =
{

BSKi = GGSW
(B,`)

S′ (si)
}

1≤i≤n
: a bootstrapping key from s to S′

RLK =
{

CTi,j = GLev
(B,`)

S′

(
S′i · S

′
j

)}1≤j≤i

1≤i≤k
: a relinearization key for S′

KSK =
{

CTi = GLev
(B,`)

S′
(
s′i
)}

1≤i≤kN
: a key switching key from s′ to S′

Pf ∈ R : a redundant LUT for x 7→ f(x)

∆out ∈ Zq : the output scaling factor

(κ, ϑ) ∈ Z× N : define along with N the window size

Output: ctout = LWEs′ (f(m′) ·∆out) if we respect requirements in Theorem 5
1 begin

/* Compute two PBS in parallel: */

2 ctf = LWEs′ ((−1)β · f(m′) ·∆out)← GenPBS (ctin,BSK,CTf ,κ − 1, ϑ) ;

3 ctSign = LWEs′ ((−1)β ·∆out)← GenPBS (ctin,BSK,CT1,κ − 1, ϑ) ;

/* Compute the multiplication */
4 ctout ← LWEMult(ctf , ctSign,RLK,KSK);

5 end

Let KSK=
{

CTi=GLev
(B,`)

S′ (s′i)
}

1≤i≤n
be a key switching key from s′ to S′, with noise sampled respectively from

χσ(1) and χσ(2) . Let RLK=
{

CTi,j=GLev
(B,`)

S′ (S′i·S
′
j)
}1≤j≤i

1≤i≤k
be a relinearization key for S′, defined as in Theorem 1.

Let BSK=
{

CTi=GGSWB,`

S′ (si)
}n
i=1

be a bootstrapping key from s to S′.
Then the Algorithm 4 takes in input a LWE ciphertext ctin=LWEs(m·∆in)∈Zn+1

q where ctin=(a1,··· ,an,an+1=b), with
noise sampled from χσin , and returns an LWE ciphertext ctout∈ZkN+1

q under the secret key s′ encrypting the
messages f(m′)·∆out if and only if the input noise has variance verifying Theorem 3.

The output ciphertext noise variance verifies Var(WoP-PBS1)=Var(LWEMult) with input variances for the LWE
multiplication (Algorithm 2) defined as σi=Var(GenPBS), for i ∈ {1, 2}.

The complexity of Algorithm 4 is:

C(n,`PBS,k1,N1,`KS,`RL,k2,N2)

WoP-PBS1
= 2C(n,`PBS,k1,N1)

GenPBS + C(`KS,`RL,N1,k2,N2)

LWEMult

Proof (Sketch). We only provide a proof of correctness of the algorithm, considering that the noise and the
complexity are directly deduced from the GenPBS and LWEMult algorithms. Both of the GenPBS are
applied with the same parameters except for the evaluated function (Pf or P1). Thus, in both ciphertexts ctf
and ctSign the value of β is the same. Then, ctout=LWEs((−1)2β ·f(m′)·∆out)=LWEs(f(m′)·∆out).

ut

Remark 2. Observe that, in Algorithm 4 we set KSK as a key switching key for s′ to S′ where s′ is the LWE
secret key composed of the coefficients in S′. In practice, the key switching can be done to a key S′′, that has
nothing to do with s′. In this case, the RLK should be adapted as well to the key S′′.

It shall be noticed that in Algorithm 4:

– The two GenPBS have the same input ciphertext. To make the evaluation more efficient (evaluating a
single bootstrapping instead of two), it is possible to use either the multi-value bootstrap described in [4],
which will be faster but at the cost of a higher output noise. Another option would be to take advantage
of the PBSmanyLUT, that we describe in detail in Algorithm 6 if the input message is small enough (cf.
Remark 3).

– There could be only one key switching done in LWEMult (instead of two) if one of the two inputs is
provided as a GLWE ciphertext (one GenPBS does not perform the final sample extraction).

– The LWEMult on line 4 can be replaced be a MultSquareLWE which is faster.

These improvements could impact both increase the noise but improve the complexity of the algorithm.

4.2 WoP-PBS second version

Another big constraint with TFHE PBS is that the polynomial size is directly linked to the size of the message
we want to bootstrap (as mentioned in Limitation B).
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The smallest growth of the polynomial size slows down the computation by more than a factor 2 as TFHE
PBS complexity is proportional to the FFT complexity: N log2(N) with N the polynomial size. Keeping that
in mind, we offer a different way to perform a bootstrap without padding in Algorithm 5 which can be more
efficient in a multi-threaded machine. The main idea behind this Algorithm is to write a message m as β||m′
with β the most significant bit and m′ the rest of the message. The function f to be computed is broken into
two functions: f0 and f1. We want f0 if β is equal to 0 and f1 if β = 1. We use β as an encrypted decision bit,
so we can choose between f0(m′) or f1(m′) thanks to the LWEMult algorithm.

Algorithm 5: ctout ←WoP-PBS2(ctin,BSK,RLK,KSK, Pf ,∆out,κ, ϑ)

Context:



s = (s1, · · · , sn) ∈ Znq
s′ = (s′1, · · · , s

′
kN ) ∈ ZkNq

S′ =
(
S′(1), . . . , S′(k)

)
∈ Rkq

∀1 ≤ i ≤ k, S′(i) =
∑N−1
j=0 s′(i−1)·N+j+1X

j ∈ Rq

f0(x) = f(x) = f1(x− p) for a certain p

(β,m′) = PTModSwitchq(m,∆,κ, ϑ) ∈ {0, 1} × N
P1 ∈ Rq : as defined in Algorithm 4

CTfi = GLWES′
(
Pfi ·∆out

)
∈ Rk+1

q (might be a trivial encryption)

CT1 ∈ Rk+1
q : a trivial encryption of P1 · ∆out

2

Pf0 , Pf1 ∈ Rq : redundant LUTs of the two halves of Pf

Input:



ctin = LWEs(m ·∆in) = (a1, · · · , an, an+1 = b) ∈ Zn+1
q

BSK,KSK,RLK : as defined in Algorithm 4

Pf ∈ Rq : a redundant LUT for x 7→ f(x)

∆out ∈ Zq : the output scaling factor

(κ, ϑ) ∈ Z× N : define along with N the window size

Output: ctout = LWEs′ (f(m′) ·∆out) if we respect requirements in Theorem 6
1 begin

/* Compute in parallel 3 PBS: */

2 ctf0 = LWEs′ ((−1)β ·∆out · f0(m′))← GenPBS(ctin,BSK,CTf0 ,κ, ϑ) ;

3 ctf1 = LWEs′ ((−1)β ·∆out · f1(m′)) ← GenPBS(ctin,BSK,CTf1 ,κ, ϑ) ;

4 ctSign = LWEs′ ((−1)β · ∆out
2 )← GenPBS(ctin,BSK,CT1,κ, ϑ) ;

/* Compute two sums in parallel: */

5 ctβ0 = LWEs′ ((1− β) ·∆out)← ctSign + (0, ∆out
2 ) ;

6 ctβ1 = LWEs′ (−β ·∆out)← ctSign − (0, ∆out
2 ) ;

/* Compute two multiplications in parallel: */
7 ctβ·f0 ← LWEMult(ctf0 , ctβ0 ,RLK,KSK) ;

8 ctβ·f1 ← LWEMult(ctf1 , ctβ1 ,RLK,KSK) ;

/* Add the previous results: */
9 ctout ← ctβ·f0 + ctβ·f1 ;

10 end

Theorem 6 (PBS Without Padding (V2)). Let f0 and f1 be the two functions representing f such that
f0(x) = f(x) = f1(x− p) for a certain p ∈ N. Then, under the same hypothesis of Theorem 5, the Algorithm 5
takes in input a LWE ciphertext ctin=LWEs(m·∆in)=(a1,··· ,an,an+1=b), with noise from χσin , and returns in output a
LWE ciphertext ctout under the secret key s′ encrypting the messages f(m′)·∆out if and only if the input noise has
variance verifying the Theorem 3.

The output ciphertext noise variance verifies Var(WoP-PBS2)=2·Var(LWEMult) with input variances for the
LWEMult defined as σi=Var(GenPBS), for i ∈ {1, 2}.

The complexity of Algorithm 4 is:

C(n,`PBS,k1,N1,`KS,`RL,k2,N2)

WoP-PBS2
= 3C(n,`PBS,k1,N1)

GenPBS + 2C(`KS,`RL,N1,k2,N2)

LWEMult + (N2 + 3)Cadd

Proof (Sketch). We have ctβ0=LWEs′ (
∆out

2 ((−1)β+1)). If β = 0, then ctβ0=LWEs′ (∆out) else ctβ0=LWEs′ (0). Then, ctβ0=

LWEs′ ((1−β)∆out). Similarly, we obtain ctβ1=LWEs′ ((−β)∆out). The output ciphertext ctout is then equal to LWEs′ (((−1)β(1−

β)∆outf0(m′)+(−1)β(−β)∆outf1(m′). Thus, if β = 0, ctout=f0(m′) else ctout=f1(m′), as expected.
ut

It shall be noticed that in Algorithm 5:

– The three GenPBS have the same input ciphertext. As we observed for Algorithm 4, to make the evaluation
more efficient by evaluating a single bootstrapping instead of three, it is possible to use either the multi-value
bootstrap described in [4] or to take advantage of the PBSmanyLUT (Algorithm 6 and cf. Remark 3).

– We could remove two key switch (among four) as explained for the WoP-PBS1.
– To improve both performance and noise, in practice, we can do a lazy relinearization as described in [14],

i.e. the step of relinearization of the two LWEMult will be done after the final addition.
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– The two LWEMult followed by the final addition can be replaced by a PackedSumProducts (Algo-
rithm 11 described in detail in Supplementary Material A.2).

These improvements could increase the noise but also improve the complexity of the algorithm.

4.3 A multi-output PBS

We are able to extract any chunk of the encrypted plaintext with ϑ, κ and N . When possible, one can define
a smaller chunk for the plaintext by trimming the bound in the LSB using a ϑ > 0. It means that after the
modulus switching there are ϑ LSB set to 0. More formally, after the modulus switching, a plaintext m∗ will be
of the form m∗ = m ·∆+ e · 2ϑ ∈ Zq.

Thank to the ϑ LSB set to 0 in the plaintext, one can evaluate 2ϑ functions at the cost of only one GenPBS
without increasing the noise compared to a regular TFHE PBS. The procedure is described in Algorithm 6.

Algorithm 6: ct1, . . . , ct2ϑ ← PBSmanyLUT(ctin,BSK, P(f1,...f2ϑ ),∆out,κ, ϑ)

Context:



s = (s1, · · · , sn) ∈ Znq
s′ = (s′1, · · · , s

′
kN ) ∈ ZkNq

S′ =
(
S′(1), . . . , S′(k)

)
∈ Rkq

∀1 ≤ i ≤ k, S′(i) =
∑N−1
j=0 s′(i−1)·N+j+1X

j ∈ Rq

f1, · · · , f2ϑ : Z→ Z
(β,m′) = PTModSwitchq(m,∆,κ, ϑ) ∈ {0, 1} × N
CT(f1,··· ,f2ϑ ) = GLWES′

(
P(f1,...f2ϑ

) ·∆out

)
(might be a trivial encryption)

Input:


ctin = LWEs(m ·∆in) = (a1, · · · , an, an+1 = b) ∈ Zn+1

q

BSK =
{

BSKi = GGSW
(B,`)

S′ (si)
}

1≤i≤n
P(f1,...f2ϑ

) : a redundant LUT for : x 7→ f1(x)|| . . . ||f
2ϑ

(x)

(κ, ϑ) ∈ Z× N : define along with N the window size

Output: ct1, . . . , ct
2ϑ

such that ctj = LWEs′
(

(−1)β · fj(m′) ·∆out

)
1 begin

/* modulus switching */
2 for 1 ≤ i ≤ n+ 1 do

3 a′i ←
[⌊

ai·2N·2
κ−ϑ

q

⌉
· 2ϑ

]
2N

4 end

/* blind rotate of the LUT */

5 CT← BlindRotate
(

CT(f1,··· ,f2ϑ ), {a′i}1≤i≤n+1,BSK
)

;

/* sample extract the first 2ϑ terms (coeffs. from 0 to 2ϑ − 1) */

6 for 1 ≤ j ≤ 2ϑ do
7 ctj ← SampleExtractj−1 (CT)

8 end

9 end

The form of the LUT polynomial is set accordingly to the ϑ parameter so that it contains up to 2ϑ functions.
As for TFHE bootstrapping, one needs to have redundancy in the LUT to remove the input noise. Each block
of functions (i.e., the sequence of fi, i ∈ [1, 2ϑ] coefficients) is repeated all along the polynomial. The LUT can
be build as follow:

P(f1,...,f2ϑ
) = X

N
2p

p−1∑
j=0

X
j N
p

N
p2ϑ
−1∑

k=0

X
k·2ϑ

2ϑ−1∑
i=0

fi+1(j)X
i
, with p =

q

∆in · 2κ+1

By doing so, one can sample extract at the end 2ϑ coefficients which leads to 2ϑ output ciphertexts, one for
each evaluated functions. By neglecting the computational cost of the ϑ sample extractions, the complexity is
the same than for PBS evaluating only one function. The noise is also not impacted.

This method is particularly efficient when the polynomial size is constrained by the desired output noise. If
the polynomial size is chosen large enough, there will be bits set to zero between the modulus switching noise
and the message. This new method allows to exploit those bits to compute different functions on the same input
ciphertext.

Theorem 7 (Multi-output PBS). Let s = (s1, · · · , sn) ∈ Znq be a binary LWE secret key. Let S′=(S′1,...,S
′
k)∈R

k
q

be a GLWE secret key such that S′i=
∑N−1
j=0 s′(i−1)·N+j+1X

j∈Rq, and s′=(s′1,··· ,s
′
kN )∈ZkNq be the corresponding LWE key.

Let P(f1,...f2ϑ
)∈Rq be a r-redundant LUT for the functions x 7→f1(x)||...||f

2ϑ
(x) and ∆out ∈ Zq be the output scaling

factor. Let (κ, ϑ) ∈ Z × N be the two integer variables defining (along with N) the window size to be modulus
switched, such that q2ϑ

∆in2
κ <2N, and let (β,m′)=PTModSwitchq(m,∆in,κ,ϑ).



Improved PBS with Larger Precision in TFHE 13

Then the Algorithm 3 takes in input a LWE ciphertext ctin=LWEs(m·∆in)=(a1,··· ,an,an+1=b), with noise distribution
from χσin , a bootstrapping key BSK=

{
CTi=GGSWB,`

S′ (si)
}n
i=1

from s to S′ and a (trivial) GLWE encryption of Pf ·∆out,

and returns in output 2ϑ LWE ciphertexts {ctj}j∈[0,2ϑ]
under the secret key s′ encrypting the messages (−1)β ·

fj(m′)·∆out if and only if the input noise has variance verifying the Theorem 3.
The complexity of the algorithm is:

C(n,`,k,N,ϑ)
PBSmanyLUT = C(n,`,k,N)

GenPBS + 2
ϑC(N)

SampleExtract

Proof. The proof is the mainly the same as the one from the GenPBS Supplementary Material B. Let p =
q

∆in·2κ+1 be the number of possible values for each fi, i ∈ [0, 2ϑ]. Let m ∈ [0, p − 1] be a plaintext value. The
polynomial P(f0,··· ,f2ϑ ) encodes the following LUT:

. . . , f1(m), . . . , f
2ϑ

(m), . . . , f1(m), . . . , f
2ϑ

(m)︸ ︷︷ ︸
N/p elements

, f1(m + 1), . . . , f
2ϑ

(m + 1), . . . , f1(m + 1), . . . , f
2ϑ

(m + 1)︸ ︷︷ ︸
N/p elements

, . . .


︸ ︷︷ ︸

p blocks

From the GenPBS, ϑ bits are set to 0. Then, by construction of the LUT, LUT(f0,··· ,f2ϑ )[m
∗+i]=fi+1(m′) for

i ∈ [0, 2ϑ − 1], so that sample extracting gives the expected result.
ut

Remark 3. Observe that PBSmanyLUT and WoP-PBS algorithms can be combined in two different ways:

1. PBSmanyLUT used to improve WoP-PBS: In WoP-PBS1, the ctSign and each ctfi resulting from
distinct GenPBS can be evaluated at once by using a single PBSmanyLUT. Similarly, in WoP-PBS2,
ctSign and each ctf0,i and ctf1,i could be evaluated at once. In both cases, this variant can be applied only
if the polynomial size chosen for the WoP-PBS is large enough to allow multiple LUT evaluations (i.e, if
precision is not yet a bottleneck condition): this variant of the WoP-PBS will improve the complexity of
the algorithm, without impacting the noise growth.

2. WoP-PBS used to improve PBSmanyLUT: The PBSmanyLUT algorithm implicitly performs a GenPBS
with a special modulus switching. This GenPBS can actually be replaced by a WoP-PBS (with the same
special modulus switching) as a WoP-PBS performs the same operation as GenPBS, without the bit of
padding constraint. This technique is what we call WoPBSmanyLUT.

Remark 4. A technique to evaluate many LUTs at the same time by performing a single TFHE bootstrapping
(plus a bunch of polynomial multiplications per LUT) has been already proposed in [4] and used in [13]. Their
technique does not impose a strong constraint on the polynomial size used for the bootstrapping, however it
results in a larger output noise, that strictly depends on the function that is evaluated. If the noise constraints
at the output of the bootstrapping are a problem, the technique of [4] will require to increase the polynomial
size.

Our new PBSmanyLUT is a better alternative to this technique in some situation as the output noise will
be independent of the function evaluated. But this comes at the cost of having sufficient space for the evaluation
of the different LUTs (ϑ bits on the modulus switching to evaluate 2ϑ functions so a large enough polynomial
size N must be chosen). If we already are working with large enough polynomials, there is no computation
overhead and no increase of the noise when replacing a GenPBS by a PBSmanyLUT.

5 Applications

In this section we present some of the applications that take advantage from our new techniques. In particular,
we show that:

– Using a combination of LWEMult and GenPBS improves the gate bootstrapping technique of TFHE [8],
cause it allows to perform leveled binary operations between bootstrappings (instead of bootstrapping every
single gate).

– The improved gate bootstrapping technique can be extended in order to evaluate arithmetic circuits with
larger precision, by using a combination of LWEMult and WoP-PBS (or its variants).

– Using the PBSmanyLUT technique allows to improve the Circuit Bootstrapping of TFHE by a factor `,
without affecting the noise growth.

– The WoP-PBS technique (and its variants) can be used to bootstrap on larger precision inputs.

5.1 Fast Arithmetic

We start by describing an improvement of FHE Boolean circuit evaluation, then, we extend it to arithmetic
circuits dealing with integers encoded in more than a single bit, and finally, we describe how to use the later to
build exact computation on bigger encrypted integers.
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5.1.1 Fast Boolean Arithmetic In TFHE [6], authors improve techniques proposed in FHEW [9] to perform
fast homomorphic evaluation of Boolean circuits and called this feature gate bootstrapping. It is very easy to use,
because it performs one bootstrapping for each bivariate Boolean gate evaluated: there is no need to be careful
with the noise management anymore because each gate reset the noise systematically. This also makes the
conversion between the cleartext Boolean circuits and the encrypted circuits quite straightforward in practice.

However, performing a bootstrapping at each bivariate Boolean gate is very expensive when we want to
evaluate large circuits and seem unnecessary. One idea to make the evaluation more efficient would be to mix
the bootstrapping with some leveled operations, at the cost of loosing the ease of not caring about noise growth.
But this idea cannot be immediately applied when it comes to gate bootstrapping: in fact, the bootstrapping
also takes care of ensuring a fixed encoding in the ciphertexts, that may not be ensured if we introduce leveled
operations. Furthermore, TFHE can only evaluate linear combinations between LWE ciphertexts; non linear
operations would require the use of bootstrapping or of a non native product between LWE ciphertexts (e.g.
an external product which is not composable because it makes use of different input ciphertext types). This is
especially problematic when we want to evaluate an AND gate, for instance.

To be more clear, in gate bootstrapping, messages are encoded with what we call one ”bits of padding”:
meaning that we know that the MSB of the plaintext (without noise) is set to zero. This bit is used to perform
a linear combination while keeping the MSB of this combination so we can bootstrap it (the function is nega-
cyclic, so do not need a bit of padding) and get a correct result. Roughly speaking, the initial linear combination
evaluates the linear part of the gate and consumes the bit of padding, while the bootstrapping takes care of the
evaluation of the non-linear part of the gate, reduces the noise and brings the bit of padding back to be able to
perform a future operation.

We propose a novel approach based on the GenPBS and LWEMult which removes both the constraint
of padding bits and the difficulties with the non-linear leveled evaluations. Thus, this offers the possibility of
computing series of Boolean gates without the need of computing a bootstrap for every gate. A GenPBS
should only be computed to reduce the noise when needed. In Lemma 1, we only describe some of the most
common Boolean gates (i.e., XOR,NOT and AND), whose combination offers functional completeness. The
other gates can be obtained by combining these operations.

Lemma 1. Let bi ∈ {0, 1} such that cti=LWEs(bi· q2 )∈Zn+1
q , for i ∈ {1, 2}. Let

(
0, · · · , 0, q2

)
∈ Zn+1

q be a trivial
LWE ciphertext. Then, the following equalities between Boolean gates and homormorphic operators hold:

ct1 XOR ct2 = ct1 + ct2

ct1 AND ct2 = LWEMult(ct1, ct2,RLK,KSK)

NOT ct1 = ct1 +

(
0,
q

2

)

Proof (Sketch). A bit is naturally encoded as a 0 (resp. q
2 ) if its value is 0 (resp. 1). Then the Boolean gates

XOR and NOT stem from that encoding. The AND is a direct application of the LWEMult.

ut
The noise increases after each computed gate since no bootstrap is performed. Then, after chaining many of

them, a noise reduction might be required. We propose two simple processes exploiting the GenPBS with the
(negacyclic) sign function.

Lemma 2. Let ctin be a LWE ciphertext resulting from a Boolean circuit with gates defined as in Lemma 1.
Then, each of the following operators allows to bootstrap the ciphertext during the Boolean circuit evaluation:

ctout ← GenPBS(ctin,BSK, P1 ·XN/2, ∆out =
q

4
,κ = 0, ϑ = 0) +

(
0,
q

4

)
(4)

ctout ← GenPBS(ctin,BSK, Pf =

3N
4
−1∑

i=N
4

X
i
, ∆out =

q

2
,κ = −1, ϑ = 0) (5)

Proof. The first method 4 uses GenPBS with the parameters ∆out=
q
4 ,κ=0,ϑ=0 and Pf=P1∗XN/2. The output of

the GenPBS gives cttmp=LWEs(± q4 ). Then, depending on the sign, the term cttmp+(0, q4 ) is equal to LWEs(0) or
cttmp=LWEs( q2 ).

The second approach 5 uses other parameters for the modulus switching which can be seen as shifted of
one bit, i.e., κ = −1, ϑ = 0 and ∆out = q

2 . In this case, the sign does not impact the value of the encoded bit,

since ±0 = 0 and ± q2 = q
2 . Then, evaluating GenPBS with the function Pf=

∑ 3N
4
−1

i=N
4

Xi and ∆out=
q
2 , we obtain

ctout=LWEs(±0) or LWEs(± q2 ).

ut
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5.1.2 Modular Power of 2 Arithmetic We generalize the faster Boolean circuit method (described in
Lemma 1) to any power of two modular integer circuits. This enables a more efficient exact arithmetic modulo
2p for some integer p. For i ∈ {1, 2}, let cti = LWEs(mi · q2p ) be a LWE ciphertext encrypting the message
mi ∈ J0, 2pJ (i.e mi has a precision of p bits). As in the case of faster Boolean arithmetic, we define three
natural homomorphic operators to mimic modular 2p arithmetic: the addition (Add2p) that is evaluated as
an homomorphic LWE addition, the multiplication (Mul2p) that is evaluated as a LWEMult, and the unary
opposite (Opp2p) that is obtained by simply negating the LWE input.

When we deal with integers encoded in more than one bit, functions we have to apply during a PBS are no
longer negacyclic. It means that without a WoP-PBS we would have to have at least 2 bits of padding (one for a
linear combination and another one for the PBS with non-negacyclic function evaluation). This results in a big
N when we want to work with larger powers of two. With a WoP-PBS, we do not need to have bits of padding
and can simply compute leveled additions and multiplications, and only use a WoP-PBS when we have to reset
the noise to a lower level.

5.1.3 From Power of 2 Modular Arithmetic to Exact Integer Arithmetic We now present some
operators allowing to extend homomorphic computation modulo a power of two modular to bigger integer
arithmetic. To do so, we will use a few LWE ciphertexts to represent a single big integer. These required
operations offer the possibility to compute an exact integer multiplication between two LWE ciphertexts as
in 5.1.2 and keeping the LSB of the computation. However, we also need to be able to recover the MSB
of additions and multiplications for carry propgation when we deal with big integers encrypted with several
ciphertexts. The operators keeping the MSB of the computation between two messages m1,m2∈J0,2pJ are defined
as: AddMSB

2p :(m1,m2) 7→bm1+m2
2p c mod 2p and MulMSB

2p :(m1,m2) 7→bm1·m2
2p c mod 2p and their implementation is described

in Algorithm 7.

Algorithm 7: ctout← AddMSB
2p MulMSB

2p (ct1,ct2,BSK,KSK1,KSK2,RLK)

Context:



s = (s1, · · · , sn) ∈ Znq
s′ = (s′1, · · · , s

′
kN ) ∈ ZkNq

S′ =
(
S′(1), . . . , S′(k)

)
∈ Rkq

∀1 ≤ i ≤ k, S′(i) =
∑N−1
j=0 s′(i−1)·N+j+1X

j ∈ Rq

∆ = q
2p ∈ Zq

0 ≤ m1,m2 < 2p

PId : a redundant LUT for x 7→ x (identity function)

Input:



ct1 = LWEs(m1 ·∆) ∈ Zn+1
q

ct2 = LWEs(m2 ·∆) ∈ Zn+1
q

BSK =
{

BSKi = GGSW
(B,`)

S′ (si)
}

1≤i≤n
: a bootstrapping key from s to S′

KSK1 =
{

CTi = GLev
(B,`)

S′
(
s′i
)}

1≤i≤kN
: a key switching key from s′ to S′

KSK2 =
{

cti = Lev(B,`)s

(
s′i
)}

1≤i≤kN
: a key switching key from s′ to s

RLK =
{

CTi,j = GLev
(B,`)

S′

(
S′i · S

′
j

)}1≤j≤i

1≤i≤k
: a relinearization key for S′

Output: ctout = LWEs

([⌊
m1+m2

2p

⌋]
2p
·∆
)

ctout = LWEs

([⌊m1·m2
2p

⌋]
2p
·∆
)

1 begin
/* add p bits of padding */

2 ct′1 ←WoP-PBS(ct1,BSK,RLK,KSK1, PId, ∆/2
p, 0, 0);

3 ct′2 ←WoP-PBS(ct2,BSK,RLK,KSK1, PId, ∆/2
p, 0, 0);

/* compute the operation */

4 ct′ ← ct′1 + ct′2 ct′ ← LWEMult(ct′1, ct′2,RLK,KSK1) ;

/* key switch */

5 ct′′ ← PublicKS(ct′,KSK2, Id) ;

/* extract the LSB */

6 ct′LSB ←WoP-PBS(ct′′,BSK,RLK,KSK1, PId, ∆/2
p, p, 0);

/* subtract the LSB to only keep the MSB */

7 ct← ct′ − ct′LSB ;

/* key switch */
8 ctout ← PublicKS(ct,KSK2, Id) ;

9 end

In Algorithm 7, to improve efficiency, we can remove both PublicKS and include them in the relinearization
steps of the previous WoP-PBS. If parameters allow it, one might also replace Lines 6 and 7 of Algorithm 7
by a single WoP-PBS to extract the MSB directly.
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Lemma 3 (MSB operations). For i ∈ {1, 2}, let cti=LWEs(mi·∆) be two LWE ciphertexts, encrypting mi ·∆
with 0 ≤ mi < 2p and ∆= q

2p , both encrypted under the same secret key s = (s1, . . . , sn) ∈ Znq , with noise sampled
in χσi . Let BSK,KSK,RLK be defined as in Theorem 5.

Then, Algorithm 7 is able to compute a new LWE ciphertext ctout, encrypting the MSB of the sum, i.e,
the carry, [bm1+m2

2p c]
2p
·∆ (resp. a new LWE ciphertext ctout, encrypting the MSB of the product [bm1·m2

2p c]2p ·∆),
under the secret key s′. The variance of the noise of ctout can be estimated by composing the noise formulas of
the different operations composing the algorithm.

The complexity of Algorithm 7 is:

C(n,`PBS,k1,N1,`KS,`RL,k2,N2)

AddMSB
2p

= 3C(n,`PBS,k1,N1,`KS,`RL,k2,N2)

WoP-PBS + 2C(1,`KS,k2N2,1,n)

PublicKS

+ 2(N2 + 1)Cadd

C(n,`PBS,k1,N1,`KS,`RL,k2,N2)

MulMSB
2p

= 3C(n,`PBS,k1,N1,`KS,`RL,k2,N2)

WoP-PBS + 2C(1,`KS,k2N2,1,n)

PublicKS

+ (N2 + 1)Cadd + C(`KS,`RL,k2N2,1,k2N2)

LWEMult

(6)

Proof (sketch). The first two WoP-PBS of the algorithm send the two messages m1 and m2 to a lower scaling
factor q

22p . This way, when the leveled addition (resp. the LWEMult) operation is performed, the new precision
2p will be able to store the entire (both MSB and LSB) exact result. The third WoP-PBS is used to extract
only the LSB of the result, that will be subtracted from the result of the previous computation to obtain an
encryption of the MSB at scaling factor q

2p , i.e, ready to be used in the following computation. Observe that the
PublicKS are used in order to switch the secret key in order to be compatible with the following operation.

ut

Gate Bootstrap Binary arithmetic (p = 1) Integer arithmetic (p > 1)

TFHE as in Sec. 5.1.1 generalization in Sec. 5.1.3

Opp2p Negation Addition with a constant Negation

Add2p Bootstrapped XOR Homomorphic Add Homomorphic Add

AddMSB
2p

Bootstrapped AND MultLWE 3 WoPBS + 2 Homomorphic Add

+ 2 public key switch

Mul2p Bootstrapped AND MultLWE MultLWE

MulMSB
2p

x 7→ 0 x 7→ 0 3 WoPBS + MultLWE + Homomorphic Add

+ 2 public key switch

Noise reduction PBS at PBS WoPBS

frequency each gate when necessary when necessary

Table 1. Generalization of TFHE gate bootstrapping.

5.2 Faster Circuit Bootstrapping

In TFHE [7], authors present a technique called circuit bootstrapping, that allows to convert an LWE ciphertext
into an GGSW ciphertext. The circuit bootstrapping is necessary for leveled evaluations using the external
product: the latter’s inputs are both GLWE and GGSW ciphertexts, while its output is a GLWE ciphertext.
To sum up, circuit bootstrapping allows to build a new GGSW ciphertext from an LWE ciphertext so one can
use it as input to an external product for instance.

The authors of [7] observe that a GGSW ciphertext, encrypting a message µ ∈ Z (µ is binary in their
application) under the secret key S=(S1,...,Sk,Sk−1=−1), is composed by (k + 1)` GLWE ciphertexts encrypting
µ ·Si · q

Bj , for 1 ≤ i ≤ k+ 1 and 1 ≤ j ≤ `. As already mentioned in Section 2, the goal of circuit bootstrapping
is to build one by one all the GLWE ciphertexts composing the output GGSW. In order to do that, it performs
the following two steps:

– The first step performs ` independent TFHE PBS to transform the input LWE encryption of µ into inde-
pendent LWE encryptions of µ · q

Bj .
– The second step performs a list of (k + 1)` private key switchings from LWE to GLWE to multiply the

messages µ · qBj obtained in the first step by the elements of the secret key Si, and so to obtain the different
lines of the output GGSW.

Here, we propose a faster method based on the PBSmanyLUT algorithm (Algorithm 6). In a nutshell, the
idea is to replace the ` PBS of the first step by only one PBSmanyLUT (that costs exactly the same as a one
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of the ` original PBS and do not increase the noise). Since the most costly part of the circuit boostrapping is
due to the PBS part, the overall complexity is then roughly reduced by a factor `. In [7], ` = 4, so we have an
improvement of a factor 4, without any impact on the noise.

Lemma 4. Let consider the circuit boostrapping algorithm as described in [7, Alg. 11]. The ` indepedent boot-
strappings (line 2) could be replaced by:

{cti}i∈[1,`] ← PBSmanyLUT(ctin,BSK, P ·XN/2
ρ+1

, 1,κ = 0, ρ = dlog2(`)e)
∀i ∈ [1, `], cti +

(
0, q

2Bi

)
with

P (X) =

N
2ρ
−1∑

i=0

2ρ−1∑
j=0

q

2Bj
X

2ρ·i+j
.

Proof. By calling PBSmanyLUT with ρ = dlog2(`)e, we are able to compute `PBS in parallel. The polynomial
P represents the LUT:

 q

2B1
, . . . ,

q

2B`
, 0, . . . , 0︸ ︷︷ ︸

2ρ elements

,
q

2B1
, . . . ,

q

2B`
, 0, . . . , 0︸ ︷︷ ︸

2ρ elements

, . . . ,
q

2B1
, . . . ,

q

2B`
, 0, . . . , 0︸ ︷︷ ︸

2ρ elements


︸ ︷︷ ︸

N′=N/2ρ elements

In the end, for i ∈ [1, `], cti=LWES(± q

2Bi
), with the sign depending on the plaintext value. By adding the trivial

ciphertext (0, q

2Bi
) to the cti, we either get cti=LWES( q

Bi
) or LWES(0), as expected.

ut

5.3 Large Precision Without Padding (Programmable) Bootstrapping

We first describe a way to efficiently bootstrap an LWE ciphertext with larger precision and then show how to
also compute a PBS on such ciphertexts. Those algorithms do not require the input LWE ciphertext to have a
bit of padding.

5.3.1 Larger Precision Without Padding Bootstrapping We introduce a new procedure in Algorithm 8
to homomorphically decompose a message encrypted inside a ciphertext in α ciphertexts each encrypting a small
chunk of the original message. The key of the efficiency of this algorithm is to begin by extracting the least
significant bits instead of the most significant bits. To do so, we use the previously introduced parameter κ to
remove some of the most significant bits of the input message m and apply the bootstrapping algorithm on the
remaining bits as described in subsection 3.2. The bootstrapping algorithm must be a WoP-PBS (Algorithm 4
or 5) as the value of most significant bit is not guaranteed to be set to zero. This procedure allows us to obtain
an encryption of the least significant bits of the message. Next, by subtracting this result to the input ciphertext,
we remove the least significant bits of the input message. This gives a new ciphertext encrypting only the most
significant bits of the input message. From now on, this procedure is then repeated on the resulting ciphertext
until we obtain α ciphertexts, each encrypting mi∆i such that min∆in=

∑α−1
i=0 mi∆i.

This entails a significantly better complexity than the solution explained in the Limitation E as each boot-
strap only needs a ring dimension big enough to bootstrap correctly the number of bit of each chunk instead of
having to be big enough to bootstrap correctly the total number of bit of the input ciphertext.

Efficiency might be improved within the multiplication inside each WoP-PBS by adding a keyswitching
during the relinearization step to reduce the size of the LWE dimension. As the complexity of the WoP-PBS
depends on this LWE dimension, this will result in a faster version of Algorithm 8.

Lemma 5. Let ctin=LWEs(min·∆in)∈Zn+1
q be a LWE ciphertext, encrypting min·∆in∈Zq. under the LWE secret key

s = (s1, . . . , sn) ∈ Znq , with noise sampled from χσ. Let BSK,KSK and RLK as defined in Theorem 5. Let

ℒ={di}i∈[0,α−1] with di∈N∗ s.t. ∆in2
∑α−1
i=0

di≤q be the list defining the bit size of each output chunk. Algorithm 8
computes α ∈ N∗ new LWE ciphertexts {ctout,i}i∈[0,α−1], where each one of them encrypts mi·∆i, where ∆i=

∆in·2
∑i−1
j=1

dj , under the secret key s′. The variances of the noise is Var(ctout,i)=Var(WoP-PBS). The complexity is:
C(n,`PBS,k1,N1,`KS,`RL,α)

Decomp =αC(n,`PBS,k1,N1,`KS,`RL,1,n)

WoP-PBS1
+α(n+1)Cadd+(

α(α+1)
2 )Cadd.

An immediate application of Algorithm 8 is a high precision bootstrap algorithm. By using the decomposition
and then adding each ctout,i, one can get - with the right parameters- a noise smaller than the one of the input
ciphertext.
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Algorithm 8: ctout ← Decomp(ctin,BSK,RLK,KSK,ℒ)

Context:



s = (s1, · · · , sn) ∈ Znq
s′ = (s′1, · · · , s

′
N ) ∈ ZkNq

S′ =
(
S′(1), . . . , S′(k)

)
∈ Rkq

∀1 ≤ i ≤ k, S′(i) =
∑N−1
j=0 s′(i−1)·N+j+1X

j ∈ Rq

{Pfi}i∈[0,α−1] : LUTs for the functions fi

∀i ∈ [1, α− 1], ∆i = ∆in · 2
∑i−1
j=1

dj ≤ q
∆0 = ∆in,min∆in =

∑α−1
i=0 mi∆i

Input:


ctin = LWEs(min ·∆in) ∈ Zn+1

q

BSK,KSK,RLK : as defined in Algorithm 4

ℒ = {di}i∈[0,α−1] with di ∈ N∗

Output: {ctout,i = LWEs′ (mi ·∆i)}i∈[0,α−1]

1 begin
2 ct← ctin

3 for i ∈ [0, α− 1] do

4 κi ←
∑α−1
j=i+1 dj

5 ctout,i ←WoP-PBS(ct,BSK,RLK,KSK, Pfi , ∆i,κi, 0)

6 ct← ct− ctout,i

7 end

8 end

5.3.2 Larger Precision WoP-PBS The Tree-PBS and the ChainPBS algorithms introduced in [13]
allow to compute large precision programmable bootstrappings assuming that the input ciphertexts are already
decomposed in chunks. In a nutshell, the idea behind the Tree-PBS is to encode a high-precision function in
several LUTs. The first input ciphertext is used to select a subset among all the LUTs. This subset is then
rearranged thanks to a key switching to build new encrypted LUTs. The previous steps can be repeated on the
second input ciphertext, and so on. The Tree-PBS relies on the multi-output bootstrap from [4].

Thanks to the Algorithm 8, we are able to efficiently decompose a ciphertext. This allows to quickly switch
from one representation (one ciphertext for one message) to another (e.g., several ciphertexts for one message)
before calling the Tree-PBS or the ChainPBS algorithms.

Moreover, we can replace the calls to PBS in both of the algorithms by a WoP-PBS. This relaxes the
need to call Tree-PBS or ChainPBS with ciphertexts having a bit of padding. We call these two algorithms
respectively the Tree-WoP-PBS and the Chained-WoP-PBS. Note that these algorithms can also be used
to implement the AddMSB

2p and MulMSB
2p operators.

6 Conclusion

This paper extends TFHE by exceeding some of its limitations. In particular, we present a new technique that
allows to bootstrap messages without requiring a bit of padding, taking advantage of the GLWE multiplication
(tensor product plus relinearization) and of our generalized version of TFHE’s PBS. The latter, additionally
allows to evaluate multiple LUTs in a single PBS for free when possible.

These two techniques are particularly interesting when used to improve both the gate bootstrapping and the
circuit bootstrapping techniques of TFHE. Thank to this new programmable bootstrapping, there is no need
to compute a systematic PBS in every homomorphic Boolean gates as leveled additions and multiplications can
be evaluated between when noise allows it.

Additionally, the evaluation of Boolean circuits can be extended in order to support the evaluation of larger
powers of 2 modular arithmetic and exact integer arithmetic. The circuit bootstrapping can be drastically
improved, by replacing the evaluation of multiple PBS in the algorithm by a single PBSmanyLUT (that costs
exactly as a PBS), without affecting the noise growth.

Finally, we introduce two new efficient methods to bootstrap ciphertexts with large precision: a bootstrapping
method to bring the noise down as well as a programmable bootstrapping evaluating univariate functions.

Open problems. All the new techniques proposed improve the state of the art by adding new features to
TFHE and getting rid of some of its constraints. However, many enhancements could be added. In particular,
one of the major bottleneck concerns the computation of the negacyclic convolutions of polynomials. The most
efficient method based on the FFT inherently adds noise to ciphertext due to the use of floating points over
64 bits. When applied with larger floating point representation, the performances collapse. Thus, the study of
alternative methods compatible with the TFHE parameters might improve the practical performances.
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A More Algorithms

A.1 GLWE Square

Algorithm 9 describes the homomorphic square of a GLWE ciphertext.

The noise analysis is similar to the noise analysis in Theorem 1.

A.2 Packed Products & Packed Sum of Products

In this section we report details for the algorithms described in Section 3.1.2: Algorithm 10 details the PackedMult
operation, Algorithm 11 details the PackedSumProducts operation, Algorithm 12 details the PackedSquares
operation and Algorithm 13 PackedSumSquares. Their noise analysis can be deduced from the results of The-
orem 3.
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Algorithm 9: CT← GLWESquare(CTin,RLK)

Context:


S = (S1, . . . , Sk) : a GLWE secret key

∆ = min ({∆i}})
PT =

∑N−1
i=0 mi∆iX

i

Input:

CTin = GLWES (PT) = (A1, · · · , Ak, B)

RLK =
{

CTi,j = GLev
(B,`)
S

(
S(i) · S(j)

)}1≤j≤i

1≤i≤k
: a relinearization key for S

Output: CT = GLWES

(
PT2

∆

)
1 begin

/* Tensor product */
2 for 1 ≤ i ≤ k do

3 T ′i ←
[⌊ [

A2
i

]
Q

∆

⌉]
q

4 end
5 for 1 ≤ i ≤ k, 1 ≤ j < i do

6 R′i,j ←
[⌊

[2·Ai·Aj ]Q
∆

⌉]
q

7 end
8 for 1 ≤ i ≤ k do

9 A′i ←
[⌊

[2·Ai·B]Q
∆

⌉]
q

10 end

11 B′ ←
[⌊ [

B2
]
Q

∆

⌉]
q

/* Relinearization */

12 CT←
(
A′1, · · · , A

′
k, B

′)+
∑k
i=1

〈
CTi,i, dec(B,`)

(
T ′i
)〉

+
∑1≤j<i

1≤i≤k

〈
CTi,j · dec(B,`)

(
R′i,j

)〉
13 end

B TFHE Generalized PBS

In this section, we provide a detailed proof of Theorem 4.

Proof. We consider the following LWE input ciphertext: (ai, · · · , an, b) encrypted with the secret key s =
(s1, · · · , sn) so we have b =

∑n
i=1 ai · si + m + e with a message m and an error e ∈ χσ. We want to modulus

switch this ciphertext and compute a′i ←
[⌊

ai·2N ·2κ−ϑ

q

⌉
· 2ϑ
]

2N
, for 1 ≤ i ≤ n+ 1.

Let w = 2N · 2−ϑ and q′ = q · 2−κ . We note a′′i =
⌊
w
q′ ai

⌉
= w

q′ ai + ai, then we have a′′i ∈ U(J−w2 , w2 J) and

ai ∈ w
q′U(J−q

′

2w ,
q′

2w J).

It means that Var(a′′i ) = w2−1
12 and E(a′′i ) = −1

2 , and that Var(ai) = 1
12 −

w2

12q′2 and E(ai) = −w
2q′ .

We decrypt:

Decrypt
(
(a
′′
1 , · · · , a

′′
n, b
′′

= a
′′
n+1), SK

)
=

= b
′′ −

n∑
i=1

a
′′
i · si =

w

q′
b+ b−

n∑
i=1

(
w

q′
ai + ai) · si

=
w

q′

(
b−

n∑
i=1

ai · si

)
+ b−

n∑
i=1

ai · si

=
w

q′
m+

w

q′
e+ b−

n∑
i=1

ai · si

We can now study the error:

Var(Eres) =

= Var

(
w

q′
e+ b−

n∑
i=1

ai · si

)

=
w2σ2

in

q′2
+ Var(b) + n · Var(ai) · (Var(si) + E2

(si)) + n · E2
(ai) · Var(si)

=
w2σ2

in

q′2
+

1

12
−

w2

12q′2
+ n ·

(
1

12
−

w2

12q′2

)
·

1

2
+ n ·

w′2

4q′2
·

1

4

=
w2σ2

in

q′2
+

1

12
−

w2

12q′2
+

n

24
+

nw2

48q′2
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Algorithm 10:
{
ct

(out)
i

}α−1

i=0
← PackedMult

({
ct

(1)
i

}α−1

i=0
,
{
ct

(2)
i

}α−1

i=0
,RLK,KSK

)

Context:



s = (s1, · · · , sn) : the LWE input secret key

s′ = (s′1, · · · , s
′
kN ) : the LWE output secret key

S′ =
(
S′1, . . . , S

′
k

)
: a GLWE secret key

∀1 ≤ i ≤ k, S′i =
∑N−1
j=0 s′(i−1)·N+j+1X

j

α : such that α2 ≤ N
∆out = max(∆1, ∆2)

Input:


∀0 ≤ i < α, ct

(1)
i = LWEs(m

(1)
i ·∆1)

∀0 ≤ i < α, ct
(2)
i = LWEs(m

(2)
i ·∆2)

RLK : a relinearization key for S′ as defined in algorithm 1

KSK : a key switching key from s to S′ as defined in algorithm ??

Output:
{

ct
(out)
i = LWEs′

(
m

(1)
i ·m(2)

i ·∆out

)}α−1

i=0

1 begin
/* KS from LWE to GLWE */

2 ℒ1 = {0, 1, 2, · · · , α− 1};
3 ℒ2 = {0, α, 2α, · · · , (α− 1)α};
4 CT1 ← PackingKS({ct

(1)
i }

α−1
i=0 ,ℒ1,KSK) ;

5 CT2 ← PackingKS({ct
(2)
i }

α−1
i=0 ,ℒ2,KSK) ;

/* GLWE multiplication: Tensor product + Relinearization */
6 CT← GLWEMult(CT1,CT2,RLK)

/* Sample extractions */
7 for 0 ≤ i < α do

8 ct
(out)
i = LWEs′

(
m

(1)
i ·m(2)

i ·∆out

)
← SampleExtract (CT, i · (α+ 1))

9 end

10 end

E(Eres) = E
(
w

q′
e+ b−

n∑
i=1

ai · si

)
=
��

��E
(
w

q′
e

)
+ E(b)−

n∑
i=1

E(ai · si)

=
−w
2q′
−

n∑
i=1

−w
2q′
· E(si) =

w

2q′
·
(
n

2
− 1

)

In order to have correctness of the modulus switching with probability P = erf
(
Γ√
2

)
, the following condition

must be satisfied:

Γ ·
√

Var(Eres) = Γ ·

√
w2σ2

in

q′2
+

1

12
−

w2

12q′2
+

n

24
+

nw2

48q′2
<
w∆in

2q′

which implies that:

σ
2
in <

∆2
in

4Γ 2
−

q′2

12w2
+

1

12
−

nq′2

24w2
−

n

48
.

The steps of blind rotation and sample extraction are the same as in TFHE [8]. We report the proof that
estimates the noise after blind rotation (our analysis is slightly different from the analysis done in TFHE [8]):
the sample extraction step does not add any noise. In order to do the noise analysis for blind rotation, we need
to analyze the noise of the external product.

Let the GLWE secret key be S = (S1, . . . , Sk) ∈ Rk (in the algorithm it is notes S′ but we use the S notation
to make the proof more readable), such that each polynomial key Si has coefficients sampled from a uniform
binary, uniform ternary or Gaussian distribution with σ = 3.2. The external product � : GLWE×GGSW→ GLWE
takes in input:

– A GLWE ciphertext
c = GLWES(µ) = (A1, . . . , Ak, B = Ak+1) ∈ R

(k+1)
q

such that the coefficients of the polynomials Aα are sampled from U(J− q2 ,
q
2J) and B =

∑k
α=1Aα · Sα +

M1 + E1, where E1 ∈ Rq is such that each coefficient is sampled from N(0, σ2
1).

– A GGSW ciphertext
C = GGSWS(m) = Z +M2 ·G ∈ R

(k+1)`×(k+1)
q

where G = Id ⊗ g is the gadget matrix, with g> = ( qB , . . . ,
q
B` ). Each line of the GGSW ciphertext is of

the form
C

(i,j)
= (A

(i,j)
1 , . . . , A

(i,j)
k , B

(i,j)
) = (A

(i,j)
, B

(i,j)
) ∈ R

(k+1)
q

with i ∈ {1, . . . , k + 1} and j ∈ {1, . . . , `}, such that the coefficients of the polynomials A
(i,j)
α are sampled

from U(J− q2 ,
q
2J) and B(i,j) =

∑k
α=1A

(i,j)
α ·Sα+M

(i,j)
2 +E

(i,j)
2 , where E

(i,j)
2 ∈ Zq[X]/(XN + 1) is such that

each coefficient is sampled from N(0, σ2
2) and M

(i,j)
2 = M2

q
Bj (−Si) (with Sk+1 = −1).
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Algorithm 11: ctout ← PackedSumProducts({ct(1)i }
α−1
i=0 , {ct

(2)
i }

α−1
i=0 ,RLK,KSK)

Context:



s = (s1, · · · , sn) : the LWE input secret key

s′ = (s′1, · · · , s
′
kN ) : the LWE output secret key

S′ =
(
S′1, . . . , S

′
k

)
: a GLWE secret key

∀1 ≤ i ≤ k, S′i =
∑N−1
j=0 s′(i−1)·N+j+1X

j

α : such that α ≤ N
∆out = max(∆1, ∆2)

Input:


∀0 ≤ i < α, ct

(1)
i = LWEs(m

(1)
i ·∆1)

∀0 ≤ i < α, ct
(2)
i = LWEs(m

(2)
i ·∆2)

RLK : a relinearization key for S′ as defined in algorithm 1

KSK : a key switching key from s to S′ as defined in algorithm ??

Output: ctout = LWEs′
(∑α−1

i=0 m
(1)
i ·m(2)

i ·∆out

)
1 begin

/* KS from LWE to GLWE */
2 ℒ1 = {0, 1, 2, · · · , α− 1};
3 ℒ2 = {α− 1, α− 2, α− 3, · · · , 0};
4 CT1 ← PackingKS({ct

(1)
i }

α−1
i=0 ,ℒ1,KSK) ;

5 CT2 ← PackingKS({ct
(2)
i }

α−1
i=0 ,ℒ2,KSK) ;

/* GLWE multiplication: Tensor product + Relinearization */
6 CT← GLWEMult(CT1,CT2,RLK)

/* Sample extraction */

7 ctout = LWEs′
(∑α−1

i=0 m
(1)
i ·m(2)

i ·∆out

)
← SampleExtract (CT, α− 1)

8 end

Algorithm 12:
{
ct

(out)
i

}α−1

i=0
← PackedSquares

(
{cti}α−1

i=0 ,RLK,KSK
)

Context:



s = (s1, · · · , sn) : the LWE input secret key

s′ = (s′1, · · · , s
′
kN ) : the LWE output secret key

S′ =
(
S′1, . . . , S

′
k

)
: a GLWE secret key

∀1 ≤ i ≤ k, S′i =
∑N−1
j=0 s′(i−1)·N+j+1X

j

α : such that 2α ≤ N

Input:


∀0 ≤ i < α, cti = LWEs(mi ·∆)

RLK : a relinearization key for S′ as defined in algorithm 1

KSK : a key switching key from s to S′ as defined in algorithm ??

Output: {ct
(out)
i = LWEs′ (m

2
i ·∆)}α−1

i=0
1 begin

/* KS from LWE to GLWE */

2 ℒ = {20 − 1, 21 − 1, 22 − 1, · · · , 2α−1 − 1};
3 CT← PackingKS({cti}α−1

i=0 ,ℒ,KSK) ;

/* GLWE Square: Tensor product + Relinearization */
4 CT← GLWESquare(CT,RLK)

/* Sample extractions */
5 for 0 ≤ i < α do

6 ct
(out)
i = LWEs′

(
m2
i ·∆

)
← SampleExtract

(
CT, 2i+1 − 2

)
7 end

8 end

The output of the external product is:

– A GLWE ciphertext

c
out

= GLWES(M1 ·M2) = (A
out
1 , . . . , A

out
k , B

out
) ∈ R

(k+1)
q

with error E ∈ Rq such that each coefficient is sampled from N(0, σ2). We want to estimate σ.

Observe that the output is computed by computing:

c
out

= G
−1

(c)︸ ︷︷ ︸
R(k+1)`

·C = u ·C

where the operation G−1 is the decomposition with respect to the gadget matrix.

The product consists in the following steps:

1. Start by rounding each Aα (α = 1, . . . , k + 1) at the ` log2(B) bit by A′α, such that the coefficients of
Aα = Aα −A′α come from U(J− q

2B` ,
q

2B` J).
2. Decompose each A′α =

∑`
j=1A

′
α,j ·

q
B−l

with A′α,j ∈ R with coefficients from U(J−B
2 ,

B
2 J).

3. Return u = (A′1,1, . . . , A
′
1,`, . . . , A

′
k,1, . . . , A

′
k,`, B

′
1 = A′k+1,1, . . . , B

′
` = A′k+1,`).
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Algorithm 13: ctout ← PackedSumSquares
(
{cti}α−1

i=0 ,RLK,KSK
)

Context:



s = (s1, · · · , sn) : the LWE input secret key

s′ = (s′1, · · · , s
′
kN ) : the LWE output secret key

S′ =
(
S′1, . . . , S

′
k

)
: a GLWE secret key

∀1 ≤ i ≤ k, S′i =
∑N−1
j=0 s′(i−1)·N+j+1X

j

α : such that 2α ≤ N

Input:


∀0 ≤ i < α, cti = LWEs(mi ·∆)

RLK : a relinearization key for S′ as defined in algorithm 1

KSK : a key switching key from s to S′ as defined in algorithm ??

Output: ctout = LWEs′
(∑α−1

i=0 m2
i · 2∆

)
1 begin

/* KS from LWE to GLWE */
2 ℒ1 = {0, 1, 2, · · · , α− 1};
3 ℒ2 = {2α− 1, 2α− 2, 2α− 3, · · · , α};
4 CT← PackingKS({cti}α−1

i=0 ||{cti}α−1
i=0 ,ℒ1||ℒ2,KSK) ;

/* GLWE square: Tensor product + Relinearization */
5 CT← GLWESquare(CT,RLK)

/* Sample extraction */

6 ctout = LWEs′
(∑α−1

i=0 m2
i · 2∆

)
← SampleExtract (CT, 2α− 1)

7 end

Observe that:
c
out

= G
−1

(c) ·C = u ·C

=
k∑
i=1

∑̀
j=1

A
′
i,j ·C

(i,j)
+
∑̀
j=1

B
′
j ·C

(k+1,j)

Let’s compute the phase: k∑
i=1

∑̀
j=1

A
′
i,j ·C

(i,j)
+
∑̀
j=1

B
′
j ·C

(k+1,j)

 · (−S, 1)

=

 k∑
i=1

∑̀
j=1

A
′
i,j · (A

(i,j)
, B

(i,j)
) +

∑̀
j=1

B
′
j · (A

(k+1,j)
, B

(k+1,j)
)

 · (−S, 1)

=

k∑
i=1

∑̀
j=1

A
′
i,j · (B

(i,j) −A
(i,j) · S) +

∑̀
j=1

B
′
j · (B

(k+1,j) −A
(k+1,j) · S)

=

k∑
i=1

∑̀
j=1

A
′
i,j · (−M2

q

Bj
Si + E

(i,j)
2 ) +

∑̀
j=1

B
′
j · (M2

q

Bj
+ E

(k+1,j)
2 )

=

k∑
i=1

∑̀
j=1

A
′
i,j · E

(i,j)
2 +

∑̀
j=1

B
′
j · E

(k+1,j)
2 −

k∑
i=1

∑̀
j=1

A
′
i,j ·M2

q

Bj
Si +

∑̀
j=1

B
′
j ·M2

q

Bj

=
∑̀
j=1

(
k∑
i=1

(A
′
i,j · E

(i,j)
2 ) + B

′
j · E

(k+1,j)
2

)
+M2

− k∑
i=1

∑̀
j=1

(A
′
i,j ·

q

Bj
)Si +

∑̀
j=1

(B
′
j ·

q

Bj
)


=
∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 ) +M2

(
−

k∑
i=1

A
′
i · Si + B

′
)

=
∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 ) +M2

(
−

k∑
i=1

(Ai − Ai) · Si + (B − B)

)

=
∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 ) +M2

(
B −

k∑
i=1

Ai · Si − B +
k∑
i=1

Ai · Si

)

=
∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 ) +M2

(
M1 + E1 − B +

k∑
i=1

Ai · Si

)

=
∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 ) +M2 ·

(
E1 − B +

k∑
i=1

Ai · Si

)
︸ ︷︷ ︸

E

+M1 ·M2

So:

E =
∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 ) +M2 ·

(
E1 − B +

k∑
i=1

Ai · Si

)

Let’s compute the variance of E:

Var(E) = Var

∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 )


︸ ︷︷ ︸

(1)

+ Var

(
M2 ·

(
E1 − B +

k∑
i=1

Ai · Si

))
︸ ︷︷ ︸

(2)
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We give more details on steps (1) and (2).

Step (1). Observe that A′i,j ∈ R with coefficients from U(J−B
2 ,

B
2 J), so:

– E(A′i,j) = − 1
2 ,

– Var(A′i,j) = B2−1
12 .

E
(i,j)
2 ∈ Rq is such that each coefficient is sampled from N(0, σ2

2). Then:

Var

∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 )


= ` · (k + 1) · Var

(
A
′
i,j · E

(i,j)
2

)
= ` · (k + 1) ·N · Var

(
a
′
i,j · e

(i,j)
2

)
= ` · (k + 1) ·N ·

(
Var
(
a
′
i,j

)
· Var

(
e
(i,j)
2

)
+ E2

(
a
′
i,j

)
· Var

(
e
(i,j)
2

)
+ Var

(
a
′
i,j

)
· E2

(
e
(i,j)
2

))
= ` · (k + 1) ·N ·

(
B2 − 1

12
· σ2

2 +
1

4
· σ2

2

)

= ` · (k + 1) ·N ·
B2 + 2

12
· σ2

2

Step (2). Observe that M2 ∈ R and we have no information about the distribution. Observe that E1 ∈ Rq is
such that each coefficient is sampled from N(0, σ2

1). Observe that B,Ai come from U(J− q
2B` ,

q
2B` J). So:

– E(Ai) = E(B) = − 1
2 ,

– Var(Ai) = Var(B) = q2

12B2` − 1
12 = q2−B2`

12B2` .

Then:

Var

(
M2 ·

(
E1 − B +

k∑
i=1

Ai · Si

))
= ||M2||22 · Var

(
E1 − B +

k∑
i=1

Ai · Si

)

Where:

Var

(
E1 − B +

k∑
i=1

Ai · Si

)

= Var (E1) + Var
(
B
)

+ Var

(
k∑
i=1

Ai · Si

)

= Var (E1) + Var
(
B
)

+ kN · Var (ai · si)

= σ
2
1 +

q2 −B2`

12B2`
+ kN ·

(
Var (ai) · Var (si) + E2

(ai) · Var (si) + Var (ai) · E2
(si)

)
= σ

2
1 +

q2 −B2`

12B2`
+ kN ·

(
q2 −B2`

12B2`
·
(

Var (si) + E2
(si)

)
+

1

4
· Var (si)

)

= σ
2
1 +

q2 −B2`

12B2`
·
(

1 + kN ·
(

Var(si) + E2
(si)

))
+
kN

4
· Var(si)

If M2 ∈ {0, 1} is a bit of the binary key as in the TFHE bootstrapping (E(M2) = 1
2 and Var(M2) = 1

4 and
M2 is a constant polynomial which we note m2), then we have:

Var

(
m2 ·

(
E1 − B +

k∑
i=1

Ai · Si

))

=
(

Var (m2) + E2
(m2)

)
· Var

(
E1 − B +

k∑
i=1

Ai · Si

)
+ Var (m2) · E2

(
E1 − B +

k∑
i=1

Ai · Si

)

=
1

2
· Var

(
E1 − B +

k∑
i=1

Ai · Si

)
+

1

4
· E2

(
E1 − B +

k∑
i=1

Ai · Si

)

Observe that:

E
(
E1 − B +

k∑
i=1

Ai · Si

)
= E (E1)− E

(
B
)

+ E
(

k∑
i=1

Ai · Si

)

= 0 +
1

2
+ kN · E (ai) · E (si) =

1

2
−
kN

2
· E (si)

=
1

2
· (1− kN · E(si))

and:

E2

(
E1 − B +

k∑
i=1

Ai · Si

)
=

1

4
· (1− kN · E(si))

2
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Then:

Var

(
m2 ·

(
E1 − B +

k∑
i=1

Ai · Si

))

=
1

2
· Var

(
E1 − B +

k∑
i=1

Ai · Si

)
+

1

4
· E2

(
E1 − B +

k∑
i=1

Ai · Si

)

=
σ2
1

2
+
q2 −B2`

24B2`
+
kN

2
·
q2 −B2`

12B2`
·
(

Var (si) + E2
(si)

)
+
kN

8
· Var(si) +

1

16
· (1− kN · E(si))

2

=
σ2
1

2
+
q2 −B2`

24B2`
·
(

1 + kN ·
(

Var (si) + E2
(si)

))
+
kN

8
· Var(si) +

1

16
· (1− kN · E(si))

2

Finally, if M2 ∈ {0, 1} is a bit of the binary key as in the TFHE bootstrapping (E = 1
2 and Var = 1

4 ),
then we have:

Var(E) = Var

∑̀
j=1

k+1∑
i=1

(A
′
i,j · E

(i,j)
2 )


︸ ︷︷ ︸

(1)

+ Var

(
M2 ·

(
E1 − B +

k∑
i=1

Ai · Si

))
︸ ︷︷ ︸

(2)

= ` · (k + 1) ·N ·
B2 + 2

12
· σ2

2︸ ︷︷ ︸
(1)

+

+
σ2
1

2
+
q2 −B2`

24B2`
·
(

1 + kN ·
(

Var (si) + E2
(si)

))
+
kN

8
· Var(si) +

1

16
· (1− kN · E(si))

2︸ ︷︷ ︸
(2)

The external product is used to compute the CMux, which is used in the programmable bootstrapping
(PBS). In the PBS we have that:

– The message m2 in the RGSW is one of the bits of the LWE secret key, so it comes from a U({0, 1});
– The CMux input is computed by the formula

(ACC ·X−ai −ACC) � BSKi +ACC

And the noise goes down to a simple external product;
– The CMux in the PBS is repeated n times;
– The initial σRLWE in the PBS is equal to 0.

Then, the noise in the PBS can be estimated by:

Var(PBS) = n · ` · (k + 1) ·N ·
B2 + 2

12
· Var(BSK)+

+ n ·
q2 −B2`

24B2`
·
(

1 + kN ·
(

Var (si) + E2
(si)

))
+
nkN

8
· Var(si) +

n

16
· (1− kN · E(si))

2

If the RLWE secret key is binary:

Var(PBS) = n`(k + 1)N ·
B2 + 2

12
· Var(BSK)+

+ n ·
q2 −B2`

24B2`
·
(

1 +
kN

2

)
+
nkN

32
+

n

16
·
(

1−
kN

2

)2
.

ut

C Multiplication noise analysis

In this section we provide the details for the noise analysis of the multiplication described in Algorithm 1. We
start by providing some basic notations and analysis for the distributions composing the different elements that
are called in the multiplication. We then provide noise analysis for the two parts of the multiplication, i.e. the
tensor product in Section C.1 and the relinearization in Section C.3.

C.0.1 Notations. We use the notation [·]q to indicate a centered modular reduction, i.e., mod q with

representants chosen in J−q/2, q/2J⊂ Z. When we do operations by moving and integer value x ∈ Z between
different moduli q < Q ∈ N, the following conversions are used:

[x]q
q→Q−−−−→ [x]Q

[x]Q
Q→q−−−−→ [x]q + q · U where U ∈ Z
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Algorithm 14: ct← SampleExtract (CT, i)

Context:



s = (s1, · · · , skN ) : the LWE output secret key

S = (S1, . . . , Sk) : the GLWE input secret key

∀1 ≤ i ≤ k, Si =
∑N−1
j=0 s(i−1)·N+j+1X

j

M =
∑N−1
i=0 mi ·Xi : a polynomial message

∀1 ≤ i ≤ k, Ai =
∑N−1
j=0 ai,jX

j

B =
∑N−1
j=0 bjX

j

Input:

{
CT = GLWES (M ·∆) = (A1, · · · , Ak, B)

i ∈ {0, · · · , N − 1}
Output: ct = LWEs (mi ·∆)

1 begin
2 b′ ← bi
3 for 1 ≤ i ≤ k do
4 for 0 ≤ j < N do
5 a′(i−1)·N+j+1 ← todo

6 end

7 end

8 ct = LWEs (mi ·∆)← (a′1, · · · , a
′
k∗N , b

′)

9 end

Then, we have the following properties for polynomials P (X) ∈ R:

[P (X)]q
q→Q−−−−→ [P (X)]Q

[P (X)]Q
Q→q−−−−→ [P (X)]q + q · U(X) where U(X) ∈ R

When doing operations between polynomials:

n∑
i=1

[
P

(i)
(X)

]
q

=

[
n∑
i=1

P
(i)

(X)

]
q

+ q · U+
(X)

n∏
i=1

[
P

(i)
(X)

]
q

=

[
n∏
i=1

P
(i)

(X)

]
q

+ q · U∗(X)

Note that U+ and U∗ are integer polynomials. Their distribution depends on the distribution of the
polynomials.

C.0.2 Uniform distributions in a fixed interval. We observe what are the variance and expectations of
random variables from uniform intervals:

– Let ai be a uniform variable in J−∆/2, ∆/2J⊂ Z. Then:

ai ∈ U(J−∆/2, ∆/2J⊂ Z)

{
E(ai) = −1/2

Var(ai) = (∆2 − 1)/12

– Let ai be a uniform variable in J−q/2, q/2J⊂ Z. Then:

ai ∈ U(J−q/2, q/2J⊂ Z)

{
E(ai) = −1/2

Var(ai) = (q2 − 1)/12

C.0.3 Secret keys probability distributions. We analyze the probability distributions of the secret keys
and their combinations that appear in the multiplication. We start by observing some basic probability distri-
butions for uniform binary, uniform ternary and Gaussian keys in Table 2.

Binary Ternary Gaussian

Var(si) 1/4 2/3 σ2

E(si) 1/2 0 0

Var(s2i ) 1/4 2/9 2σ4

E(s2i ) 1/2 2/3 σ2

Var(sisj) 3/16 4/9 σ4

E(sisj) 1/4 0 0

Table 2. Variances and expectations for si, s
2
i and sisj with si and sj independently taken from the distribution D and

D is either uniform binary, uniform ternary or Gaussian.
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Distribution of SiSj: i = j case. We consider a polynomial S(X) =
∑N−1
i=0 si ·Xi ∈ Rq and S′(X) = S2(X) =∑N−1

i=0 s′i · Xi =
∑(N−2)/2
k=0 s′2k · X2k +

∑(N−2)/2
k=0 s′2k+1 · X2k+1 ∈ Rq. We have each si independently sampled

from the same distribution D of variance σ2
D and expectation µD.


E(s′α) = E (si · sj) · (2α−N + 2)

Var(s′2k) = 2 · Var
(
s2k
)

+ 2 · (N − 2) · Var (si · sj)
Var(s′2k+1) = 2 ·N · Var (si · sj)

Proof. Let’s start by focusing on the even terms:

s
′
α := s

′
2k =

∑
i+j=2k

si · sj

= s
2
k − s

2
N
2

+k
+

i6=j∑
i+j=2k

si · sj = s
2
k − s

2
N
2

+k
+

i6=j∑
i+j=2k<N

si · sj −
i6=j∑

i+j=2k≥N

si · sj

= s
2
k − s

2
N
2

+k
+

i6=j,i<j∑
i+j=2k<N

2 · si · sj −
i6=j,i<j∑

i+j=2k≥N

2 · si · sj

Observe that all the terms are independent since the couples (i, j) are exclusive in each sum. The variance
is:

Var(s′α) := Var(s′2k) = Var

s2k − s2N
2

+k
+

i6=j,i<j∑
i+j=2k<N

2 · si · sj −
i6=j,i<j∑

i+j=2k≥N

2 · si · sj


= Var

(
s
2
k

)
+ Var

(
s
2
N
2

+k

)
+ Var

 i6=j,i<j∑
i+j=2k<N

2 · si · sj

+ Var

 i6=j,i<j∑
i+j=2k≥N

2 · si · sj


= 2 · Var

(
s
2
k

)
+

i6=j,i<j∑
i+j=2k<N

4 · Var (si · sj)︸ ︷︷ ︸
k terms

+

i6=j,i<j∑
i+j=2k≥N

4 · Var (si · sj)︸ ︷︷ ︸
N−2

2
−k terms

= 2 · Var
(
s
2
k

)
+

i6=j,i<j∑
i+j=2k

4 · Var (si · sj)︸ ︷︷ ︸
N−2

2
terms

= 2 · Var
(
s
2
k

)
+
N − 2

2
· 4 · Var (si · sj)

= 2 · Var
(
s
2
k

)
+ 2 · (N − 2) · Var (si · sj)

The expectation is:

E(s
′
α) := E(s

′
2k) = E

s2k − s2N
2

+k
+

i6=j,i<j∑
i+j=2k<N

2 · si · sj −
i6=j,i<j∑

i+j=2k≥N

2 · si · sj


= ���E

(
s
2
k

)
−
���

��
E
(
s
2
N
2

+k

)
+ E

 i6=j,i<j∑
i+j=2k<N

2 · si · sj

− E

 i6=j,i<j∑
i+j=2k≥N

2 · si · sj


=

i6=j,i<j∑
i+j=2k<N

2 · E (si · sj)︸ ︷︷ ︸
k terms

−
i6=j,i<j∑

i+j=2k≥N

2 · E (si · sj)︸ ︷︷ ︸
N−2

2
−k terms

= 2 · k · E (si · sj)− 2 ·
(
N − 2

2
− k
)
· E (si · sj)

= 2 · E (si · sj) · (k −
N − 2

2
+ k) = E (si · sj) · (4k −N − 2)

= E (si · sj) · (2α−N + 2)

Now, let’s focus on the odd coefficients.

s
′
α := s

′
2k+1 =

∑
i+j=2k+1<N

si · sj −
∑

i+j=2k+1≥N

si · sj

=

i<j∑
i+j=2k+1<N

2si · sj −
i<j∑

i+j=2k+1≥N

2si · sj

Observe again that all the terms are independent since the couples (i, j) are exclusive in each sum. The
variance is:
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Var(s′α) := Var(s′2k+1) = Var

 i<j∑
i+j=2k+1<N

2si · sj −
i<j∑

i+j=2k+1≥N

2si · sj


= Var

 i<j∑
i+j=2k+1<N

2si · sj

+ Var

 i<j∑
i+j=2k+1≥N

2si · sj


= 4 ·

i<j∑
i+j=2k+1<N

Var (si · sj)︸ ︷︷ ︸
k+1 terms

+4 ·
i<j∑

i+j=2k+1≥N

Var (si · sj)︸ ︷︷ ︸
N
2
−(k+1) terms

= 4 · (k + 1) · Var (si · sj) + 4 · (
N

2
− k − 1) · Var (si · sj)

= 4 · Var (si · sj) · (k + 1 +
N

2
− k − 1) = 4 · Var (si · sj) ·

N

2

= 2 ·N · Var (si · sj)

The expectation is:

E(s
′
α) := E(s

′
2k+1) = E

 i<j∑
i+j=2k+1<N

2si · sj −
i<j∑

i+j=2k+1≥N

2si · sj


= E

 i<j∑
i+j=2k+1<N

2si · sj

− E

 i<j∑
i+j=2k+1≥N

2si · sj


= 2 ·

i<j∑
i+j=2k+1<N

E (si · sj)︸ ︷︷ ︸
k+1 terms

−2 ·
i<j∑

i+j=2k+1≥N

E (si · sj)︸ ︷︷ ︸
N
2
−(k+1) terms

= 2 · (k + 1) · E (si · sj)− 2 · (
N

2
− k − 1) · E (si · sj)

= 2 · E (si · sj)
(
k + 1−

N

2
+ k + 1

)
= E (si · sj) (4k + 4−N) = E (si · sj) (2α+ 2−N)

ut

In particular, in case of uniform binary, uniform ternary and Gaussian distributions, the squared secret keys
have coefficients distributed as in Table 3.

Binary Ternary Gaussian

E(s′α) 1
4
· (2α−N + 2) 0 0

E2(s′mean) = mean({E2(s′α)}N−1
α=0 ) (N2+2)

48
0 0

Var(s′2k) 3
8
·N − 1

4
(2N − 3) · 4

9
2N · σ4

Var(s′2k+1) 3
8
·N N · 8

9
2N · σ4

Table 3. General formula applied to polynomials with binary, ternary and Gaussian distributions. These formulas are
true for N power of 2, N 6= 1.

For the Binary case, we can observe that:

N−1∑
α=0

E2
(s
′
α) =

N/2−1∑
i=0

E2
(s
′
2i+1) +

N/2−1∑
i=0

E2
(s
′
2i)

 = N ·
(N2 + 2)

48

This means that in average, the expectation of a coefficient of the squared binary key is
√

(N2 + 2)/48.
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Proof. N/2−1∑
i=0

E2
(s
′
2i+1) +

N/2−1∑
i=0

E2
(s
′
2i)

 =

N−1∑
k=0

E2
(s
′
k)

=

N−1∑
k=0

(
k + 1

2
−
N

4

)2

=

N−1∑
k=0

(
(k + 1)2

4
− 2 ·

k + 1

2
·
N

4
+
N2

16

)

=

N−1∑
k=0

(
k2

4
+

1

4
+

2k

4
−
kN

4
−
N

4
+
N2

16

)

= N ·
(

1

4
−
N

4
+
N2

16

)
+

N−1∑
k=0

(
k2

4
+
k

2
−
kN

4

)

=
N

4
−
N2

4
+
N3

16
+

1

4
·
N−1∑
k=0

k
2

+

(
1

2
−
N

4

)
·
N−1∑
k=0

k

=
N

4
−
N2

4
+
N3

16
+

+
1

4
·

(N − 1)N(2(N − 1) + 1)

6
+

(
1

2
−
N

4

)
·

(N − 1)N

2

=
N(N2 + 2)

48
ut

Distribution of SiSj: i 6= j case. We consider two polynomials S1(X) =
∑N−1
i=0 S1,i · Xi ∈ Rq and S2(X) =∑N−1

i=0 S2,i ·Xi ∈ Rq.

We note as S′′(X) = Si(X)·Sj(X) =
∑N
α=1 S

′′
α·Xα =

∑N
α=1

(∑
h+k=α<N Si,h · Sj,k −

∑
h+k=α≥N Si,h · Sj,k

)
·

Xα ∈ Rq. We have each coefficient of the two secret keys independently sampled from the same distribution D
of variance σ2

D and expectation µD. {
E(S′′α) = E (Si,h · Sj,k) · (2α+ 2−N)

Var(S′′α) = N · Var (Si,h · Sj,k)

Proof. Let Si, Sj ∈ R be two independent keys following the same distribution (binary, ternary or Gaussian).
Then:

Si · Sj =

N∑
α=1

S
′′
α ·X

α
=

N∑
α=1

 ∑
h+k=α<N

Si,h · Sj,k −
∑

h+k=α≥N

Si,h · Sj,k

 ·Xα

Observe that all the terms in the sum are independent. The variance is:

Var(S′′α) = Var

 ∑
h+k=α<N

Si,h · Sj,k −
∑

h+k=α≥N

Si,h · Sj,k


= Var

 ∑
h+k=α<N

Si,h · Sj,k

+ Var

 ∑
h+k=α≥N

Si,h · Sj,k


=

∑
h+k=α<N

Var (Si,h · Sj,k) +
∑

h+k=α≥N

Var (Si,h · Sj,k)

=
∑

h+k=α[N]

Var (Si,h · Sj,k)

= N · Var (Si,h · Sj,k)

The expectation is:

E(S
′′
α) = E

 ∑
h+k=α<N

Si,h · Sj,k −
∑

h+k=α≥N

Si,h · Sj,k


= E

 ∑
h+k=α<N

Si,h · Sj,k

− E

 ∑
h+k=α≥N

Si,h · Sj,k


=

∑
h+k=α<N

E (Si,h · Sj,k)

︸ ︷︷ ︸
α+1 terms

−
∑

h+k=α≥N

E (Si,h · Sj,k)

︸ ︷︷ ︸
N−(α+1) terms

= (α+ 1) · E (Si,h · Sj,k)− (N − (α+ 1)) · E (Si,h · Sj,k)

= E (Si,h · Sj,k) · (α+ 1−N + α+ 1)

= E (Si,h · Sj,k) · (2α+ 2−N)
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Binary Ternary Gaussian

E(S′′α) 1
4
(2α+ 2−N) 0 0

E2(S′′mean) = mean({E2(S′′α)}N−1
α=0 ) N2+2

48
0 0

Var(S′′α) 3
16
·N 4

9
·N σ4 ·N

Table 4. General formula applied to polynomials with binary, ternary and Gaussian distributions.

ut
In particular, in case of uniform binary, uniform ternary and Gaussian distributions, the product secret keys

have coefficients distributed as in Table 4.
For the Binary case, we can observe that:

N−1∑
α=0

E2
(S
′′
α) = N ·

(N2 + 2)

48

This means that in average, the expectation of a coefficient of the squared binary key is
√

(N2 + 2)/48.

Proof.
N−1∑
α=0

E2
(S
′′
α) =

N−1∑
α=0

(
1

4
(2α+ 2−N)

)2

=
1

16
·
N−1∑
α=0

(2α+ 2−N)
2

=
1

16
·
N−1∑
α=0

(
4α

2
+ 4 + 8α+N

2 − 4Nα− 4N
)

=
1

16
·
(

4N +N
3 − 4N

2
+ 4

N−1∑
α=0

α
2

+ (8− 4N)

N−1∑
α=0

α

)

=
1

16
·
(

4N +N
3 − 4N

2
+ 4

(N − 1)N(2(N − 1) + 1)

6
+ (8− 4N)

(N − 1)N

2

)
=
N(N2 + 2)

48 ut

C.1 Tensor product

We perform a GLWE multiplication with dense messages having different scaling factors. The inputs are two
GLWE ciphertexts modulo q:

CT(1)
= (A

(1)
1 , · · · , A(1)

k , B
(1)

=

k∑
i=1

A
(1)
i · Si + E1 + P1) ∈ R

k+1
q

CT(2)
= (A

(2)
1 , · · · , A(2)

k , B
(2)

=

k∑
i=1

A
(2)
i · Si + E2 + P2) ∈ R

k+1
q

such that

– (S1, · · · , Sk) ∈ Rk is the secret key polynomial which have coefficients either sampled from a uniform binary,
uniform ternary or gaussian distribution,

– {A(1)
i }ki=1 and {A(2)

i }ki=1 are polynomials in Rq with coefficients sampled from U(J−q/2, q/2J),
– E1, E2 are error polynomials in Rq such that their coefficients are sampled from Gaussian distributions
χσ1

, χσ2
respectively,

– P1 = b∆1 ·M1eq and P2 = b∆2 ·M2eq, with M1,M2 ∈ TN [X] and ∆1 and ∆2 the scaling factors.

The first step (modulus switching, tensor product, rescale, round and modulo) is to compute:

T
′
i =



[
A

(1)
i · A(2)

i

]
Q

∆



q

depending on S
2
i k terms

R
′
i,j =



[
A

(1)
i · A(2)

j + A
(1)
j · A(2)

i

]
Q

∆



q

depending on Si · Sj
k(k − 1)

2
terms

A
′
i =



[
A

(1)
i · B(2) + B(1) · A(2)

i

]
Q

∆



q

depending on Si k terms

B
′

=

[⌊
[B1 · B2]Q

∆

⌉]
q

constant term 1 term
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where ∆ = min(∆1, ∆2). The intermediate result of this step are the polynomials:

[Ti]Q = A
(1)
i · A(2)

i =
[
A

(1)
i · A(2)

i

]
q

+ q · UTi ∈ RQ

[Ri,j ]Q = A
(1)
i · A(2)

j + A
(1)
j · A(2)

i =
[
A

(1)
i · A(2)

j + A
(1)
j · A(2)

i

]
q

+ q · URi,j ∈ RQ

[Ai]Q = A
(1)
i · B(2)

+ B
(1) · A(2)

i =
[
A

(1)
i · B(2)

+ B
(1) · A(2)

i

]
q

+ q · UAi ∈ RQ

[B]Q = B
(1) · B(2)

=
[
B

(1) · B(2)
]
q

+ q · UB ∈ RQ

These operations are performed in large precision Q = q2. The terms UTi , URi,j , UAi , UB are in R. Then the
polynomials are rescaled by ∆ and rounded modulo q:

[
T
′
i

]
q

=

[⌊
[Ti]Q

∆

⌉]
q

=

[
[Ti]Q

∆
+ Ti

]
q[

R
′
i,j

]
q

=

[⌊
[Ri,j ]Q

∆

⌉]
q

=

[
[Ri,j ]Q

∆
+ Ri,j

]
q[

A
′
i

]
q

=

[⌊
[Ai]Q

∆

⌉]
q

=

[
[Ai]Q

∆
+ Ai

]
q[

B
′]
q

=

[⌊
[B]Q

∆

⌉]
q

=

[
[B]Q

∆
+ B

]
q

such that Ti, Ri,j , Ai, B are the rounding errors in U(J−∆/2,∆/2J)
∆ . Let’s compute the noise growth generated

by these operations. In order to estimate it, we have to decrypt. Let SR = (S1 ·S2, S1 ·S3, · · · , Sk−1 ·Sk) ∈ R
(k−1)k

2
q

and ST = (S2
1 , S

2
2 , · · · , S2

k) such that (SR||ST ) = S⊗ S.

TensorDec(T
′
,R
′
,A
′
, B
′
) =

= B
′ −A

′ · S + R
′ · SR + T

′ · ST ∈ Rq

=
[B]Q

∆
+ B −

(
[A]Q

∆
+ A

)
· S +

(
[R]Q

∆
+ R

)
· SR +

(
[T]Q

∆
+ T

)
· ST ∈ Rq

=

(
[B]Q − [A]Q · S + [R]Q · SR + [T]Q · ST

)
∆

+
(
B −A · S + R · SR + T · ST

)
∈ Rq

So now, let’s analyze the term:

[B]Q − [A]Q · S + [R]Q · SR + [T]Q · ST =

= B
(1)
B

(2) − (A
(1)
B

(2)
+ A

(2)
B

(1)
) · S+

+

k∑
i=1

i−1∑
j=1

(A
(1)
i · A(2)

j + A
(1)
j · A(2)

i ) · SiSj +

k∑
i=1

(A
(1)
i · A(2)

i ) · S2
i ∈ Rq

= B
(1)
B

(2) − (A
(1)
B

(2)
+ A

(2)
B

(1)
) · S +

k∑
i=1

k∑
j=1

(A
(1)
i · A(2)

j ) · SiSj ∈ Rq

= B
(1)
B

(2) − (A
(1)
B

(2)
+ A

(2)
B

(1)
) · S + (A

(1) ⊗A
(2)

) · (S⊗ S) ∈ Rq

(7)

Now, let’s observe the following relations:

(B
(1) −A

(1) · S)(B
(2) −A

(2) · S) =

= B
(1)
B

(2) − (A
(1)
B

(2)
+ A

(2)
B

(1)
)S + (A

(1) · S)(A
(2) · S)

= B
(1)
B

(2) − (A
(1)
B

(2)
+ A

(2)
B

(1)
)S + (A

(1) ⊗A
(2)

) · (S⊗ S) ∈ RQ

(8)

and

(B
(1) −A

(1) · S)(B
(2) −A

(2) · S) = (P1 + E1 + qU1)(P2 + E2 + qU2) ∈ RQ

= P1P2 + P1E2 + P2E1 + E1E2+

+ q(P1U2 + P2U1 + E1U2 + E2U1) + q
2
U1U2 ∈ RQ

(9)

Observe that the coefficients of S2
i and SiSj are all ≤ N , if the key is binary or ternary. Since N < q, we

assume that they do not overlap modulo q. If the key is Gaussian, the coefficients will be a small factor of N in
the worse case, and we still assume they do not overlap modulo q.

By putting together Equations 7, 8 and 9, we obtain the following equality:

[B]Q − [A]Q · S + [R]Q · SR + [T]Q · ST = P1P2 + P1E2 + P2E1 + E1E2+

+ q(P1U2 + P2U1 + E1U2 + E2U1)+

+ q
2
U1U2 ∈ RQ

(10)
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Then we can observe:

TensorDec(T
′
,R
′
,A
′
, B
′
) =

=

(
[B]Q − [A]Q · S + [R]Q · SR + [T]Q · ST

)
∆

+
(
B −A · S + R · SR + T · ST

)
∈ Rq

=
(P1P2 + P1E2 + P2E1 + E1E2)

∆
+
q (P1U2 + P2U1 + E1U2 + E2U1)

∆
+

+
q2U1U2

∆
+
(
B −A · S + R · SR + T · ST

)
∈ Rq

=
(∆1∆2M1M2 +∆1M1E2 +∆2M2E1 + E1E2)

∆
+
q(∆1M1U2 +∆2M2U1 + E1U2 + E2U1)

∆
+

+
q2U1U2

∆
+
(
B −A · S + R · SR + T · ST

)
∈ Rq

= ∆
′
M1M2 +

∆1

∆
M1E2 +

∆2

∆
M2E1 +∆

−1
E1E2 + q

(
∆1

∆
M1U2 +

∆2

∆
M2U1

)
+

+
q

∆
(E1U2 + E2U1) + q

q

∆
U1U2 +

(
B −A · S + R · SR + T · ST

)
∈ Rq

The value q
∆ is an integer smaller than q according to our parameter choices. So q

∆ will not overlap modulo
q.

TensorDec(T
′
,R
′
,A
′
, B
′
) =

= ∆
′
M1M2 +

∆1

∆
M1E2 +

∆2

∆
M2E1 +∆

−1
E1E2 + q

(
∆1

∆
M1U2 +

∆2

∆
M2U1

)
+

+
q

∆
(E1U2 + E2U1) + q

q

∆
U1U2 +

(
B −A · S + R · SR + T · ST

)
∈ Rq

= ∆
′
M1M2 +

∆1

∆
M1E2 +

∆2

∆
M2E1 +∆

−1
E1E2 +

q

∆
(E1U2 + E2U1)+

+
(
B −A · S + R · SR + T · ST

)
∈ Rq

We extract the error:

Error(T′,R′,A′, B′) =
∆1

∆
M1E2 +

∆2

∆
M2E1 +∆

−1
E1E2︸ ︷︷ ︸

(I)

+

+
q

∆
(E1U2 + E2U1)︸ ︷︷ ︸

(II)

+
(
B −A · S + R · SR + T · ST

)
︸ ︷︷ ︸

(III)

∈ Rq

Let’s analyze each term separately.

(I) The variance of the first term is:

Var(I) = Var

(
∆1

∆
M1E2 +

∆2

∆
M2E1 +∆

−1
E1E2

)
= Var

(
∆1

∆
M1E2

)
+ Var

(
∆2

∆
M2E1

)
+ Var(∆−1

E1E2)

=
∆2

1

∆2
N ||M1||2∞σ

2
1 +

∆2
2

∆2
N ||M2||2∞σ

2
2 +

N

∆2
σ
2
1 · σ

2
2

=
N

∆2

(
∆

2
1||M1||2∞σ

2
1 +∆

2
2||M2||2∞σ

2
2 + σ

2
1σ

2
2

)

(II) Let’s estimate the expectation and variance of U1 and U2. They come from the modulus switching adding
two terms of error U1 and U2. They represent the part overlapping the modulo q.

Remember that, according to the RLWE assumptions, the A, B are insistinguishable from uniform in
U(J−q/2, q/2J) with CT = (A(X), B(X)) an RLWE ciphertext.

Observe that: [
B −

k∑
i=1

AiSi

]
Q

=

[
B −

k∑
i=1

AiSi

]
q

+ qU = [∆M + E + qU ]Q

We are looking for U . Then: [
B −

∑k
i=1AiSi

]
Q

q
=

[
B −

∑k
i=1AiSi

]
q

q
+ U

We assume that qU ≈ ∆M +E+ qU since ∆M +E appears in the LSB. In practice it’s like we did not cut the
Gaussian’s tails so we overestimate from here.[

B −
∑k
i=1AiSi

]
Q

q
≈ U
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In reality we study U as if we we were doing
B−
∑k
i=1 AiSi
q in Z, it supposes in general that U is not bigger

than Q/q so we can keep the modulo Q.
So we study the variance as follows:

Var (U) = Var


[
B −

∑k
i=1 AiSi −∆M − E

]
Q

q



≈ Var


[
B −

∑k
i=1 AiSi

]
Q

q


=

1

q2

(
Var(B) +

k∑
i=1

Var(AiSi)

)

=
1

q2
(Var(B) + kN · Var(Ai,j · Si,h))

=
1

q2

(
Var(Bj) + kN ·

(
Var(Ai,j) · Var(Si,h) + E2

(Si,h) · Var(Ai,j) + Var(Si,h) · E2
(Ai,j)

))
=

1

q2

(
q2 − 1

12
+ kN ·

(
q2 − 1

12
· Var(Si,h) + E2

(Si,h) ·
q2 − 1

12
+ Var(Si,h) ·

1

4

))

=
1

q2

(
q2 − 1

12
·
(

1 + kN · Var(Si,h) + kN · E2
(Si,h)

)
+
kN

4
· Var(Si,h)

)

And the expectation:

E (U) = E


[
B −

∑k
i=1 AiSi −∆M − E

]
Q

q



≈ E


[
B −

∑k
i=1 AiSi

]
Q

q


=

1

q
· E
(
B −

k∑
i=1

AiSi

)

=
1

q
·
(
E(B) +

k∑
i=1

E(AiSi)

)

=
1

q
· (E(B) + kN · E(Ai,j) · E(Si,h))

= −
1

2q
−
kN

2q
· E(Si,h)

= −
1

2q
(1 + kN · E(Si,h))

By now, we note the coefficients Si,h of Si, simply by S. Then:

Var(II) = Var

(
q

∆
(E1U2 + E2U1)

)
=

q2

∆2
· Var (E1U2 + E2U1)

=
q2

∆2
· (Var(E1U2) + Var(E2U1))

=
q2

∆2
· (N · Var(e1u2) +N · Var(e2u1))

=
N · q2

∆2
·
(

Var(e1)Var(u2) + E2
(u2)Var(e1) + Var(e2)Var(u1) + E2

(u1)Var(e2)
)

=
N · q2

∆2
·
(

Var(e1)Var(u) + E2
(u)Var(e1) + Var(e2)Var(u) + E2

(u)Var(e2)
)

=
N · q2

∆2
·
(

(Var(e1) + Var(e2)) · Var(u) + E2
(u) · (Var(e1) + Var(e2))

)
=
N · q2

∆2
·
(

Var(u) + E2
(u)
)
· (Var(e1) + Var(e2))

=
N

∆2

(
q2 − 1

12

(
1 + kNVar(S) + kNE2

(S)
)

+
kN

4
Var(S) +

1

4
(1 + kNE(S))

2

)
(σ

2
1 + σ

2
2)

Observe that ei and uj indicate the coefficients of Ei and Uj respectively. The factor N comes from the fact
that they are polynomials.

(III) In this third part, we compute the variance of the error caused by the rounding. We consider thatB,A,R,T

are all sampled from U(J−∆/2,∆/2J)
∆ . We also consider that:

– S is composed by k elements of the form Si = S, which distribution are given in Table 2.
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– ST is composed by k elements of the form S2
i = S′, which distribution is studied in Section ??. In particular,

S′ =
∑N−1
α=0 S

′
αX

α = S′even + S′odd with S′even =
∑N/2−1
i=0 S′2iX

2i and S′odd =
∑N/2−1
i=0 S′2i+1X

2i+1.

– SR is composed by k(k−1)
2 elements of the form Si · Sj = S′′, which distribution is studied in Section ??.

Then:

Var(III) = Var
(
B −A · S + R · SR + T · ST

)
= Var

(
B
)

+ Var
(
A · S

)
+ Var

(
R · SR

)
+ Var

(
T · ST

)
=
∆2 − 1

12∆2
+ k ·N ·

(
Var(a) ·

(
Var(S) + E2

(S)
)

+ E2
(a) · Var(S)

)
+

+
k(k − 1)

2
·N ·

(
Var(r) ·

(
Var(S′′) + E2

(S
′′

)
)

+ E2
(r) · Var(S′′)

)
+

+ k ·
(
N

2
· Var(t) ·

(
Var(S′odd) + Var(S′even) + 2 · E2

(S
′
mean)

)
+
N

2
· E2

(t) ·
(

Var(S′odd) + Var(S′even)
))

=
∆2 − 1

12∆2
+ kN ·

(
∆2 − 1

12∆2
·
(

Var(S) + E2
(S)
)

+
1

4∆2
· Var(S)

)
+

+
k(k − 1)N

2
·
(
∆2 − 1

12∆2
·
(

Var(S′′) + E2
(S
′′

)
)

+
1

4∆2
· Var(S′′)

)
+

+
kN

2
·
(
∆2 − 1

12∆2
·
(

Var(S′odd) + Var(S′even) + 2 · E2
(S
′
mean)

)
+

1

4∆2
·
(

Var(S′odd) + Var(S′even)
))

=
∆2 − 1

12∆2
+

kN

12∆2
·
(

(∆
2 − 1) ·

(
Var(S) + E2

(S)
)

+ 3 · Var(S)
)

+

+
k(k − 1)N

24∆2
·
(

(∆
2 − 1) ·

(
Var(S′′) + E2

(S
′′

)
)

+ 3 · Var(S′′)
)

+

+
kN

24∆2
·
(

(∆
2 − 1) ·

(
Var(S′odd) + Var(S′even) + 2 · E2

(S
′
mean)

)
+ 3 ·

(
Var(S′odd) + Var(S′even)

))
The formula is correct if N 6= 1. In fact, observe that the study for key S′′ adapts for N = 1 but the key S′

does not. The square keys are not polynomials so there is just 1 term (not odd or even anymore). In case of S′

with N = 1, we fix the formula as follows:

If N = 1


Var(S′odd) = 0

Var(S′even) = 2 · Var(s2i )

E(S′mean) = E(s2i )

The factor 2 in Var(S′even) is given by the N/2 that took care of odd and even coefficients.
Finally:

Var(E) = Var(Error(T′,R′,A′, B′))

= Var

(
∆1

∆
M1E2 +

∆2

∆
M2E1 +∆

−1
E1E2

)
︸ ︷︷ ︸

(I)

+

+ Var

(
q

∆
(E1U2 + E2U1)

)
︸ ︷︷ ︸

(II)

+ Var
(
B −A · S + R · SR + T · ST

)
︸ ︷︷ ︸

(III)

= N
∆2

(
∆2

1||M1||
2
∞σ

2
2+∆2

2||M2||
2
∞σ

2
1+σ21σ

2
2

)︸ ︷︷ ︸
(I)

+

+ N
∆2

(
q2−1
12

(
1+kNVar(S)+kNE2(S)

)
+ kN

4
Var(S)+ 1

4
(1+kNE(S))2

)
(σ21+σ22)︸ ︷︷ ︸

(II)

+

+ 1
12

+ kN
12∆2 ·

(
(∆2−1)·

(
Var(S)+E2(S)

)
+3·Var(S)

)
+
k(k−1)N

24∆2 ·
(
(∆2−1)·

(
Var(S′′)+E2(S′′)

)
+3·Var(S′′)

)
+︸ ︷︷ ︸

(III)

+ kN
24∆2 ·

(
(∆2−1)·

(
Var(S′odd)+Var(S′even)+2·E2(S′mean)

)
+3·(Var(S′odd)+Var(S′even))

)︸ ︷︷ ︸
(III)

C.2 Bi-Distributed Error Polynomials

In this section, we analyse the case where the message is not a dense polynomial and the error polynomial
has coefficients following two different distributions. In particular, we suppose that the message polynomial M
contains 0 ≤ α ≤ N filled coefficients, and their corresponding error terms following a Gaussian distribution
N(0, σ2

fill), and there are N − α empty coefficients with containing error from the distribution N(0, σ2
emp).

We consider two message polynomials M1 and M2. The first one contains the α1 message coefficients
m1,1, · · · ,m1,α1 and the second polynomial contains the α2 message coefficients m2,1, · · · ,m2,α2 .

We will make the noise analysis only for the coefficients in the resulting plaintext polynomial filled with
single product of the form m1,i ·m2,j for 1 ≤ i ≤ α1 and 1 ≤ j ≤ α2.
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As instance, in a product like:

(a0 + a1X + a3X
3
) · (b0 + b1X) =

= a0b0 + (a0b1 + a1b0)X + a1b1X
2

+ a3b0X
3

+ a3b1X
4

= c0 + c1X + c2X
2

+ c3X
3

+ c4X
4

we are not going to analyse the noise in the c1 coefficient as instance.
An example is the result of a LWE to GLWE key switching, where the constant term is the only one containing

a message, and its error is larger than the error in the other coefficients.
In the error of the tensor product:

Error(T′,R′,A′, B′) =
∆1

∆
M1E2 +

∆2

∆
M2E1 +∆

−1
E1E2︸ ︷︷ ︸

(I)

+

+
q

∆
(E1U2 + E2U1)︸ ︷︷ ︸

(II)

+
(
B −A · S + R · SR + T · ST

)
︸ ︷︷ ︸

(III)

∈ Rq

the only difference happens in terms (I) and (II). Let’s analyze them separately.

(Ifill) The variance is:

Var(Ifill)

= Var

(
∆1

∆
M1E2 +

∆2

∆
M2E1 +∆

−1
E1E2

)
= Var

(
∆1

∆
M1E2

)
+ Var

(
∆2

∆
M2E1

)
+ Var(∆−1

E1E2)

=
∆2

1

∆2
||M1||2∞

(
(α1 − 1) · σ2

2,emp + σ
2
2,fill

)
+
∆2

2

∆2
||M2||2∞

(
(α2 − 1) · σ2

1,emp + σ
2
1,fill

)
+

+
1

∆2

(
σ
2
1,fillσ

2
2,fill + (α1 − 1)σ

2
1,fillσ

2
2,emp + (α2 − 1)σ

2
1,empσ

2
2,fill + (N − α1 − α2 + 1)(σ

2
1,empσ

2
2,emp)

)

(IIfill) By now, we note the coefficients Si,h of Si, simply by S. Then:

Var(IIfill) =

= Var

(
q

∆
(E1U2 + E2U1)

)
=

q2

∆2
· Var (E1U2 + E2U1)

=
q2

∆2
· (Var(E1U2) + Var(E2U1))

=
q2

∆2
· (α1Var(e1,fillu2) + (N − α1)Var(e1,empu2)) +

q2

∆2
· (α2Var(e2,fillu1) + (N − α2)Var(e2,empu1))

=
q2

∆2
· (α1Var(e1,fillu) + (N − α1)Var(e1,empu)) +

q2

∆2
· (α2Var(e2,fillu) + (N − α2)Var(e2,empu))

=
q2

∆2
·
(

Var(u) + E2
(u)
)
· (α1Var(e1,fill) + (N − α1)Var(e1,emp) + α2Var(e2,fill) + (N − α2)Var(e2,emp))

=
N

∆2
·
(
q2 − 1

12

(
1 + kNVar(S) + kNE2

(S)
)

+
kN

4
Var(S) +

1

4
(1 + kNE(S))

2

)
·

· (α1σ1,fill + (N − α1)σ1,emp + α2σ2,fill + (N − α2)σ2,emp)

Observe that ei and uj indicate the coefficients of Ei and Uj respectively. The factor N comes from the fact
that they are polynomials.

C.3 Relinearization

The last step (relinearization) is to compute:

Relin(T
′
,R
′
,A
′
, B
′
) =

(
A
′
1, · · · , A

′
k, B

′)
+

k∑
i=1

〈
CTi,i, dec(B,`)

(
T
′
i

)〉
+

1≤j<i∑
1≤i≤k

〈
CTi,j · dec(B,`)

(
R
′
i,j

)〉

where:
RLK =

{
CTi,j = GLev

(B,`)
S (Si · Sj) =

{
RLK

(i,j)
h

}
1≤h≤`

}1≤j≤i

1≤i≤k

is the realinearization key, so that each component RLK
(i,j)
h , with i ∈ [1, k], j ∈ [1, i], h ∈ [1, `] is defined as:

RLK
(i,j)
h = RLWES

(
Si · Sj ·

q

Bh

)
=

(
A

RLK
(i,j)
h

, B
RLK

(i,j)
h

)
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with 
B

RLK
(i,j)
h

=
∑k
α=1 Aα,RLK

(i,j)
h

· Sα + E
RLK

(i,j)
h

− Si · Sj · q

Bj
mod q

A
α,RLK

(i,j)
h

coefficients in U(J− q2 ,
q
2 J)

E
RLK

(i,j)
h

coefficients in N(0, σ2
RLK)

To ease the notations in this section, we will note T′,R′,A′, B′ as T,R,A, B respectively.

Decomposition We start by decomposing T and R w.r.t the basis B and the number of level ` starting from
the MSB. By using the previous notation, we have:

– T = {Ti}i∈[k] = {T ′i + Ti}i∈[k], with T ′i =
∑N−1
p=0 T ′i,pX

p, and each T ′i,p is the closest multiple of q
B` in Zq.

Then, we write each T ′i,p as
∑`
h=1 T

′
i,p,h

q
Bh , where each T ′i,p,h ∈ J−B

2 ,
B
2 J.

The Ti =
∑N−1
p=0 Ti,p·Xp term represents the rounding error, so that each coefficient of Ti,p ∼ U(J− q

2B` ,
q

2B` J).
– R = {Ri,j}i∈[k],j∈[i−1] = {R′i,j +Ri,j}i∈[k],j∈[i−1], with R′i,j =

∑N−1
p=0 R′i,j,pX

p, and each R′i,j,p is the closest

multiple of q
B` in Zq. Then, we write each R′i,j,p as

∑`
h=1R

′
i,j,p,h

q
Bh , where each R′i,j,p,h ∈ J−B

2 ,
B
2 J.

The Ri,j =
∑N−1
p=0 Ri,j,p · Xp term represents the rounding error, so that each coefficient of Ri,j,p ∼

U(J− q
2B` ,

q
2B` J).

We note as T ′i,h the polynomial
∑N−1
p=0 T ′i,p,hX

p and as R′i,j,h the polynomial
∑N−1
p=0 R′i,j,p,hX

p.

Relinearization

CT = Relin(T,R,A, B)

= (A, B) +

k∑
i=1

〈
CTi,i, dec(B,`) (Ti)

〉
+

1≤j<i∑
1≤i≤k

〈
CTi,j · dec(B,`) (Ri,j)

〉
∈ Rq

= (A, B) +

k∑
i=1

∑̀
h=1

RLK
(i,i)
h · T ′i,h +

k∑
i=1

i−1∑
j=1

∑̀
h=1

RLK
(i,j)
h · R′i,j,h ∈ Rq

= (A, B) +

k∑
i=1

∑̀
h=1

(
A

RLK
(i,i)
h

, B
RLK

(i,i)
h

)
· T ′i,h +

k∑
i=1

i−1∑
j=1

∑̀
h=1

(
A

RLK
(i,j)
h

, B
RLK

(i,j)
h

)
· R′i,j,h ∈ Rq

=

A+
∑k
i=1

∑`
h=1

A
RLK

(i,i)
h

·T ′i,h+
∑i−1
j=1

A
RLK

(i,j)
h

·R′i,j,h

,B+
∑k
i=1

∑`
h=1

B
RLK

(i,i)
h

·T ′i,h+
∑i−1
j=1

B
RLK

(i,j)
h

·R′i,j,h

 ∈ Rq

= (Ares, Bres) ∈ Rq

The computation of the phase gives:

CT · (−S, 1) = Bres −Ares · S

= B+
∑k
i=1

∑`
h=1

B
RLK

(i,i)
h

·T ′i,h+
∑i−1
j=1

B
RLK

(i,j)
h

·R′i,j,h

−A·S−
∑k
i=1

∑`
h=1

A
RLK

(i,i)
h

·T ′i,h+
∑i−1
j=1

A
RLK

(i,j)
h

·R′i,j,h

·S
= B−A·S+

∑k
i=1

∑`
h=1

A
RLK

(i,i)
h

·S+E
RLK

(i,i)
h

+S2
i ·

q

Bh

·T ′i,h+

+
∑k
i=1

∑`
h=1

∑i−1
j=1

A
RLK

(i,j)
h

·S+E
RLK

(i,j)
h

+Si·Sj ·
q

Bh

·R′i,j,h−∑ki=1
∑`
h=1

A
RLK

(i,i)
h

·T ′i,h+
∑i−1
j=1

A
RLK

(i,j)
h

·R′i,j,h

·S
= B−A·S+

∑k
i=1

∑`
h=1

E
RLK

(i,i)
h

+S2
i ·

q

Bh

·T ′i,h+
∑k
i=1

∑`
h=1

∑i−1
j=1

E
RLK

(i,j)
h

+Si·Sj ·
q

Bh

·R′i,j,h
= B−A·S+

∑k
i=1

∑`
h=1 E

RLK
(i,i)
h

·T ′i,h+
∑k
i=1

∑`
h=1 S

2
i ·

q

Bh
·T ′i,h+

+
∑k
i=1

∑`
h=1

∑i−1
j=1

E
RLK

(i,j)
h

·R′i,j,h+
∑k
i=1

∑`
h=1

∑i−1
j=1

Si·Sj ·
q

Bh
·R′i,j,h

= B−A·S+
∑k
i=1

∑`
h=1 E

RLK
(i,i)
h

·T ′i,h+
∑k
i=1 S

2
i ·T
′
i+
∑k
i=1

∑`
h=1

∑i−1
j=1

E
RLK

(i,j)
h

·R′i,j,h+
∑k
i=1

∑i−1
j=1

Si·Sj ·R
′
i,j

= B−A·S+
∑k
i=1

∑`
h=1

E
RLK

(i,i)
h

·T ′i,h+
∑i−1
j=1

E
RLK

(i,j)
h

·R′i,j,h

+
∑k
i=1

(
S2
i ·(Ti−Ti)+

∑i−1
j=1

Si·Sj ·(Ri,j−Ri,j)
)

= B−A·S+R·SR+T·ST+
∑k
i=1

∑`
h=1

E
RLK

(i,i)
h

·T ′i,h+
∑i−1
j=1

E
RLK

(i,j)
h

·R′i,j,h

−R·SR−T·ST

= Pres + E +
k∑
i=1

∑̀
h=1

E
RLK

(i,i)
h

· T ′i,h +

i−1∑
j=1

E
RLK

(i,j)
h

· R′i,j,h

−R · SR −T · ST︸ ︷︷ ︸
Error

The error term is then:

Error = E︸︷︷︸
(I)

+
k∑
i=1

∑̀
h=1

E
RLK

(i,i)
h

· T ′i,h +

i−1∑
j=1

E
RLK

(i,j)
h

· R′i,j,h


︸ ︷︷ ︸

(II)

−R · SR −T · ST︸ ︷︷ ︸
(III)

For each term, we compute their variance:



Improved PBS with Larger Precision in TFHE 37

(I) This is the error obtained from the tensor product computation
(II) The variance of the second term is:

Var(II) = Var

 k∑
i=1

∑̀
h=1

E
RLK

(i,i)
h

· T ′i,h +

i−1∑
j=1

E
RLK

(i,j)
h

· R′i,j,h


= Var

∑k
i=1

∑`
h=1 E

RLK
(i,i)
h

·T ′i,h

+Var

∑k
i=1

∑`
h=1

∑i−1
j=1

E
RLK

(i,j)
h

·R′i,j,h


= k`Var

E
RLK

(i,i)
h

·T ′i,h

+
k(k−1)`

2
Var

E
RLK

(i,j)
h

·R′i,j,h


= k`NVar

e
RLK

(i,i)
h

·t′i,h

+
k(k−1)`N

2
Var

e
RLK

(i,j)
h

·r′i,j,h


= k`N

Var(e
RLK

(i,i)
h

)·Var(t′i,h)+Var(e
RLK

(i,i)
h

)·E2(t′i,h)+E2(e
RLK

(i,i)
h

)·Var(t′i,h)

+

+
k(k−1)`N

2

Var(e
RLK

(i,j)
h

)·Var(r′i,j,h)+Var(e
RLK

(i,j)
h

)·E2(r′i,j,h)+E2(e
RLK

(i,j)
h

)·Var(r′i,j,h)


= k`N

(
σ2RLK·Var(t′i,h)+σ2RLK·E

2(t′i,h)
)
+
k(k−1)`N

2

(
σ2RLK·Var(r′i,j,h)+σ2RLK·E

2(r′i,j,h)
)

= k`Nσ2RLK·
(

B2−1
12

+ 1
4

)
+
k(k−1)`N

2
σ2RLK·

(
B2−1

12
+ 1

4

)

= k`Nσ
2
RLK ·

(k + 1)

2
·
B2 + 2

12

(III) The variance of the third term is:

Var(R · SR −T · ST )

= Var(R·SR)+Var(T·ST )

=
∑k
i=1

∑i−1
j=1

Var(Ri,j ·SiSj)+
∑k
i=1 Var(Ti·S

2
i )

= k(k−1)
2

·Var(Ri,j ·SiSj)+k·Var(Ti·S
2
i )

= k(k−1)N
2

·
(

Var(ri,j)·Var(S′′)+E2(ri,j)·Var(S′′)+Var(ri,j)·E
2(S′′mean)

)
+

+ kN
2
·(Var(S′odd)+Var(S′even))·

(
Var(ti)+E2(ti)

)
+kN·E2(S′mean)·Var(ti)

= k(k−1)N
2

·
((

q2

12B2`
− 1

12

)
·Var(S′′)+ 1

4
·Var(S′′)+

(
q2

12B2`
− 1

12

)
·E2(S′′mean)

)
+

+ kN
2
·(Var(S′odd)+Var(S′even))·

((
q2

12B2`
− 1

12

)
+1

4

)
+kN·E2(S′mean)·

(
q2

12B2`
− 1

12

)

= kN
2
·(k−1)

(
q2

12B2`
− 1

12

)
·(Var(S′′)+E2(S′′mean))+

kN
8
·(k−1)·Var(S′′)+

+ kN
2
·
(

Var(S′odd)+Var(S′even)+2E2(S′mean)
)
·
(

q2

12B2`
− 1

12

)
+ kN

8
·(Var(S′odd)+Var(S′even))

= kN
2

(
q2

12B2`
− 1

12

)(
(k−1)·(Var(S′′)+E2(S′′mean))+Var(S′odd)+Var(S′even)+2E2(S′mean)

)
+

+ kN
8
·((k−1)·Var(S′′)+Var(S′odd)+Var(S′even))

Finally:

Var(Mult) = Var (E) + k`Nσ
2
RLK ·

(k + 1)

2
·
B2 + 2

12
+

+
kN

2

(
q2

12B2`
−

1

12

)(
(k − 1) · (Var(S′′) + E2

(S
′′
mean)) + Var(S′odd) + Var(S′even) + 2E2

(S
′
mean)

)
+

+
kN

8
·
(
(k − 1) · Var(S′′) + Var(S′odd) + Var(S′even)

)

D Packing KS LWE to GLWE noise analysis

We consider the LWE secret key s = (s1, · · · , sn) ∈ Znq and an input LWE ciphertext ct = (a1, · · · , an, b) ∈ Zn+1
q

such that b=
∑n
i=1 aisi+m+e with e from χσ.

We consider the GLWE secret key S=(S1,··· ,Sk)∈Rkq and a key switching key composed of the following GLWE

ciphertexts {C(i,j)=(A
(i,j)
1 ,··· ,A(i,j)

k ,B(i,j))∈Rk+1
q } with 1 ≤ i ≤ n and 1 ≤ j ≤ ` such that B(i,j) =

∑k
ψ=1A

(i,j)
ψ ·Sψ +

si
q
Bj + E(i,j) with coefficients of E(i,j) from χσKSK

.
During the algorithm we will round the {ai} to the closest multiple of q

B` and then decompose them such

that for 1 ≤ i ≤ n we have a′i = ai + āi and for 1 ≤ j ≤ ` we have a′i =
∑`
j=1 a

′
i,j

q
Bj with āi uniform in

J −q
2B` ,

q
2B` J and a′i,j uniform in J−B2 , B2 J.

We have Var(āi) = q2

12B2` − 1
12 , Var(a′i,j) = B2−1

12 and E(āi) = E(a′i,j) = − 1
2 .

The output is:

Cres = (0, · · · , 0, b)−
n∑
i=1

∑̀
j=1

a
′
i,j · C

(i,j)

=

− n∑
i=1

∑̀
j=1

a
′
i,j · A

(i,j)
1 , · · · ,−

n∑
i=1

∑̀
j=1

a
′
i,j · A

(i,j)
k , b−

n∑
i=1

∑̀
j=1

a
′
i,j · B

(i,j)


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Let’s decrypt the output:

Decrypt(Cres,S) =

= b−
n∑
i=1

∑̀
j=1

a
′
i,j · B

(i,j) −

 k∑
ψ=1

− n∑
i=1

∑̀
j=1

a
′
i,j · A

(i,j)
1

Sψ


= b−

n∑
i=1

∑̀
j=1

a
′
i,j · B

(i,j)
+

k∑
ψ=1

n∑
i=1

∑̀
j=1

a
′
i,j · A

(i,j)
1 · Sψ

= b−
n∑
i=1

∑̀
j=1

a
′
i,j ·


���

���k∑
ψ=1

A
(i,j)
ψ · Sψ + si

q

Bj
+ E

(i,j)

+

����������k∑
ψ=1

n∑
i=1

∑̀
j=1

a
′
i,j · A

(i,j)
1 · Sψ

= b−
n∑
i=1

∑̀
j=1

a
′
i,j · si

q

Bj
−

n∑
i=1

∑̀
j=1

a
′
i,j · E

(i,j)
= b−

n∑
i=1

a
′
i · si −

n∑
i=1

∑̀
j=1

a
′
i,j · E

(i,j)

= b−
n∑
i=1

(ai + āi) · si −
n∑
i=1

∑̀
j=1

a
′
i,j · E

(i,j)
= b−

n∑
i=1

ai · si −
n∑
i=1

āi · si −
n∑
i=1

∑̀
j=1

a
′
i,j · E

(i,j)

= m+ e−
n∑
i=1

āi · si −
n∑
i=1

∑̀
j=1

a
′
i,j · E

(i,j)

Let’s now study the error term in the filled coefficient:

Varfill = Var

e− n∑
i=1

āi · si −
n∑
i=1

∑̀
j=1

a
′
i,j · E

(i,j)


= Var(e) + Var

(
n∑
i=1

āi · si

)
+ Var

 n∑
i=1

∑̀
j=1

a
′
i,j · E

(i,j)


= σ

2
+ n · (Var(āi)Var(si) + E2

(āi)Var(si) + E2
(si)Var(āi)) + n · ` · σ2

KSK · (Var(a′i,j) + E2
(a
′
i,j))

= σ
2

+ n ·
(

q2

12B2`
−

1

12

)
·
(

Var(si) + E2
(si)

)
+
n

4
· Var(si)n · ` · σ2

KSK ·
B2 + 2

12

Let’s finally study the error term in the other coefficients:

Varemp = Var

 n∑
i=1

∑̀
j=1

a
′
i,j · E

(i,j)

 = n · ` · σ2
KSK ·

B2 + 2

12
.
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