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Abstract. GIFT-COFB is a finalist of NIST Lightweight cryptography
project that aims at standardizing authenticated encryption schemes
for constrained devices. It is a block cipher-based scheme and comes
with a provable security result. This paper studies the tightness of the
provable security bounds of GIFT-COFB, which roughly tells that, if
instantiated by a secure n-bit block cipher, we need 2n/2 encrypted blocks
or 2n/2/n decryption queries to break the scheme. This paper shows
that the former condition is indeed tight, by presenting forgery attacks
that work with 2n/2 encrypted blocks with single decryption query. This
fills the missing spot of previous attacks presented by Khairallah, and
confirms the tightness of the security bounds with respect to encryption.
We remark that our attacks work independent of the underlying block
cipher.

1 Introduction

NIST Lightweight cryptography project1 aims at standardizing authenticated
encryption (AE) schemes for constrained devices. It started in Feburary 2019. In
March 2021, 10 finalists were announced. GIFT-COFB [1] is one of these finalists.
It is a variant of the COFB block cipher mode of operation proposed at CHES
2017 [3]. It is designed to enable a fast operation with small footprint. The
original COFB works with any block cipher, and GIFT-COFB specifies 128-bit
block version of GIFT [2] as its internal block cipher.

The provable security of GIFT-COFB and COFB has been studied [1, 3], and
the security bounds with respect to the combined notion of privacy (confiden-
tiality) and authenticity (integrity) were presented. In particular, assuming the
nonce-respecting adversary and that the underlying block cipher is a random per-
mutation, GIFT-COFB’s bound is roughly σ2/2n+nqd/2n/2 for σ = σe+σd+qe+qd,
where σe (σd) denotes the total queried blocks in encryption (decryption) queries,
and qe (qd) denotes the number of encryption (decryption) queries.

This bound suggests that, if

(1) σe reaches 2n/2, or
(2) σd reaches 2n/2, or

1 https://csrc.nist.gov/projects/lightweight-cryptography

https://csrc.nist.gov/projects/lightweight-cryptography


(3) qd reaches 2n/2/n,

the bound reaches 1 hence no security guarantee is possible.
Recently Khairallah [4, 5, 6] studied the tightness of the bound. He showed

attacks with qd = 2n/2 with about σe = 2n/2 or σe = 2n/4, called Weak Key
attack and Mask collision attack [4, 5]. He finally showed one with qe = 1,
σe = O(1) (few blocks) and qd = 2n/2, called Mask Presuming attack [6]. The last
one implies that the tightness condition (3) has only the small gap of logn factor.
For (2) it remains unsolved. Both might be an artifact in the proofs however
there is no clear answer so far.

It is natural to ask the tightness of (1). In this paper, we present an attack
with σe = 2n/2 and qd = 1. As in the previous attacks, this attack breaks the
authenticity, and matches the aforementioned bound. Hence, our result showed
that (1) is indeed tight.

Comparison of attack complexity. Table 1 shows the required complexities
for the attacks against GIFT-COFB. All are forgery attacks that break authenticity.
The block size is n = 128 and the maximum input block length of GIFT-COFB is
251, hence the Attack 1 at least needs σe = 2128−51·2+51 = 277. This attack does
not achieve birthday complexity of 2n/2, but we show it as a warm-up.

Our attacks complement [6] with regard to the balance of required encryption
and decryption complexity.

Table 1: Required complexities for successful forgery attacks. For Attack 1, each
query is 2` blocks. GIFT-COFB specifies n = 128 and ` ≤ 251.

Enc complexity (σe) Dec complexity (qd)
Weak Key [4] 2n/2 2n/2

Mask Collision [5] 2n/4 2n/2

Mask Presuming [6] O(1) 2n/2

Attack 1 (Ours) 2n−`2+` 1
Attack 2 (Ours) 2n/2 1

2 Notation

For the specification of GIFT-COFB refer to the specification document [1]. We
use the same notations as [1] to describe our attacks. See also Figure 1.

3 Attack 1

Our first attack searches over the collision of the mask value within one encryption
query. A mask is written as 2i3jL for some integer i and j and L is the first
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Fig. 1: GIFT-COFB.

n/2 bits of EK(N) for nonce N and the block cipher encryption EK . The index
i works as a block counter, and j works as a domain separator, and 2i and 3j

denotes the elements of GF(2n/2), xi and (x + 1)j [1]. In the attack 1, we derive
L from one encryption query whose length is long enough to occur the collision
of the inputs of block cipher. Specifically, the attack is as follows. For the ease of
sake, AD is always empty, the last message block is always complete. The tag
length is n bits as specified.

1. The attacker queries (N,M) to the encryption oracle and obtain its outputs.
Suppose that she obtains (N,M,C, T ) such that M = M [1] ‖ · · · ‖M [m] and
C = C[1] ‖ · · · ‖C[m].

2. For i ∈ {1, . . . ,m}, the attacker derives Y [i] by computing M [i]⊕ C[i].
3. Suppose that the collision Y [i] = Y [j] occurs for i 6= j and i, j ∈ {2, . . . ,m}.

Then X[i] = X[j] holds, so the attacker obtains G(Y [i − 1]) ⊕M [i − 1] ⊕
2i−132L ‖ 0n/2 = G(Y [j−1])⊕M [j−1]⊕2j−132L ‖ 0n/2. From this equation,
she can derive L.

4. The attacker queries (N ′, C ′, T ′) to the verification (decryption) oracle such
that N ′ = N , T ′ = Y [m], C ′ = C[1] ‖ · · · ‖C[m− 2] ‖C ′[m− 1], and

C ′[m− 1] = Y [m− 1]⊕M [m− 1]⊕ 2m−132L ‖ 0n/2 ⊕ 2m−233L ‖ 0n/2.
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Let T ∗ be the valid tag for (N ′, C ′), and suppose T ∗ = EK(X ′[m]). Then
the following equation holds.

X ′[m] = G(Y ′[m− 1])⊕ Y ′[m− 1]⊕ C ′[m− 1]⊕ 2m−233L ‖ 0n/2

= G(Y [m− 1])⊕ Y [m− 1]⊕ C ′[m− 1]⊕ 2m−233L ‖ 0n/2

= G(Y [m− 1])⊕ Y [m− 1]⊕ Y [m− 1]⊕M [m− 1]
⊕ 2m−132L ‖ 0n/2 ⊕ 2m−233L ‖ 0n/2 ⊕ 2m−233L ‖ 0n/2

= G(Y [m− 1])⊕M [m− 1]⊕ 2m−132L ‖ 0n/2

= X[m].

Thus, T ∗ = EK(X ′[m]) = EK(X[m]) = Y [m] holds. This forgery query is
not trivial (i.e., not trivially obtained by the encryption query) and will be
accepted with probability 1.

Complexity. To expect a collision between masks in the above procedure 3, we
need m ≈ O(2n/2) since Y [·] is n bits. However, when n = 128, GIFT-COFB ac-
cepts 251 input blocks at the maximum, due to the limitation of mask function [1]
(also see the proposition 6 of [7]). Therefore, we need to repeat this procedure
about 226 times, each of 251 blocks. Thus, the attacker needs roughly σe ≈ 277

and qd = 1 as described earlier.

4 Attack 2

We present a refined attack that achieves truly birthday complexity. In the Attack
2, we derive the difference of two mask values from two encryption queries taking
different nonce values. While the Attack 1 crucially relies on that fact that the
mask collision involves single L, it is still possible to mount a forgery attack by
finding a collision involving two Ls. Specifically, the attack is as follows. Again
we assume empty AD, and the last message block is always complete. The tag
length is n bits as specified.

1. The attacker queries (N1,M1) and (N2,M2) to the encryption oracle and ob-
tain their outputs. Suppose she obtains (N1,M1, C1, T1) and (N2,M2, C2, T2)
such that M1 = M1[1] ‖ · · · ‖M1[m], M2 = M2[1] ‖ · · · ‖M2[m], and m ≥ 3.

2. For i ∈ {1, . . . ,m} and j ∈ {1, 2}, the attacker derives Yj [i] by computing
Mj [i]⊕ Cj [i]. Let Yj [m+ 1] = Tj .

3. Suppose that the collision Y1[a] = Y2[b] occurs for a, b ∈ {2, . . . ,m}, a ≤ b 2,
and (a, b) 6= (2,m). Then X1[a] = X2[b] holds, so the attacker obtains
G(Y1[a − 1]) ⊕M1[a − 1] ⊕ 2a−132L1 ‖ 0n/2 = G(Y2[b − 1]) ⊕M2[b − 1] ⊕
2b−132L2 ‖ 0n/2, where L1 and L2 are the mask origin values of queries
(N1,M1, C1, T1) and (N2,M2, C2, T2), respectively. From this equation, she
obtains the difference of mask values, ∆ := 2a−132L1 ⊕ 2b−132L2.

2 We can assume a ≤ b without loss of generality.
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4. Suppose b 6= m 3. The attacker queries (N ′, C ′, T ′) to the verification oracle
such that N ′ = N1, T ′ = T1, C ′ = C ′[0] ‖ · · · ‖C ′[m], where

C ′[i] = C1[i], (i 6= a, i 6= a+ 1)
C ′[a] = C2[b]⊕ 2∆ ‖ 0n/2,

C ′[a+ 1] = Y2[b+ 1]⊕M1[a+ 1]⊕G(Y2[b+ 1])⊕G(Y1[a+ 1]).

The following equations hold.

X ′[a+ 1] = G(Y ′[a])⊕ Y ′[a]⊕ C ′[a]⊕ 2a32L1 ‖ 0n/2

= G(Y1[a])⊕ Y1[a]⊕ C ′[a]⊕ 2a32L1 ‖ 0n/2

= G(Y2[b])⊕ Y2[b]⊕ C2[b]⊕ 2∆ ‖ 0n/2 ⊕ 2a32L1 ‖ 0n/2

= G(Y2[b])⊕ Y2[b]⊕ C2[b]⊕ 2(2a−132L1 ⊕ 2b−132L2) ‖ 0n/2 ⊕ 2a32L1 ‖ 0n/2

= G(Y2[b])⊕ Y2[b]⊕ C2[b]⊕ 2b23L2 ‖ 0n/2

= X2[b+ 1],
X ′[a+ 2] = G(Y ′[a+ 1])⊕ Y ′[a+ 1]⊕ C ′[a+ 1]⊕ 2a+13jL1 ‖ 0n/2

= G(Y2[b+ 1])⊕ Y2[b+ 1]⊕ C ′[a+ 1]⊕ 2a+13jL1 ‖ 0n/2

= G(Y2[b+ 1])⊕ Y2[b+ 1]⊕ Y2[b+ 1]⊕M1[a+ 1]
⊕G(Y2[b+ 1])⊕G(Y1[a+ 1])⊕ 2a+13jL1 ‖ 0n/2

= G(Y1[a+ 1])⊕M1[a+ 1]⊕ 2a+13jL1 ‖ 0n/2

= X1[a+ 2],

where j = 2 if a 6= m− 1. Otherwise, j = 3. Since C ′[i] = C1[i] for i 6= a and
i 6= a+1, X ′[m+1] = X1[m+1] and T ∗ = EK(X ′[m+1]) = EK(X1[m+1]) =
T1 = T ′. As the probability of X1[a+ 1] = X2[b+ 1] is expected to be small,
this forgery query is not trivial and will be accepted with probability 1.

Extensions. The above attack poses some limitations such as b 6= m. This can
be circumvented as follows.

1. When b = m i.e., Y1[a] = Y2[m], the attack can be mounted if a 6= 2. The
attacker follows the procedures 1 – 3 in the Attack 2. Then she queries
(N ′, C ′, T ′) to the verification oracle such that N ′ = N2, T ′ = T2, C ′ =
C ′[0] ‖ · · · ‖C ′[m], where

C ′[i] = C2[i], (i 6= m− 2, i 6= m− 1)
C ′[m− 2] = Y2[m− 2]⊕M1[a− 2]⊕G(Y2[m− 2])⊕G(Y1[a− 2])⊕ 2−1∆,

C ′[m− 1] = Y1[a− 1]⊕M2[m− 1]⊕G(Y1[a− 1])⊕G(Y2[m− 1]).

3 The case b = m is described later.
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As above, the following equations hold.

X ′[m− 1] = G(Y ′[m− 2])⊕ Y ′[m− 2]⊕ C ′[m− 2]⊕ 2m−232L2 ‖ 0n/2

= G(Y2[m− 2])⊕ Y2[m− 2]⊕ C ′[m− 2]⊕ 2m−232L2 ‖ 0n/2

= G(Y2[m− 2])⊕ Y2[m− 2]⊕ Y2[m− 2]⊕M1[a− 2]
⊕G(Y2[m− 2])⊕G(Y1[a− 2])
⊕ 2−1(2a−132L1 ⊕ 2m−132L2) ‖ 0n/2 ⊕ 2m−232L2 ‖ 0n/2

= M1[a− 2]⊕G(Y1[a− 2])⊕ 2a−232L1 ‖ 0n/2

= X1[a− 1],
X ′[m] = G(Y ′[m− 1])⊕ Y ′[m− 1]⊕ C ′[m− 1]⊕ 2m−132L2 ‖ 0n/2

= G(Y1[a− 1])⊕ Y1[a− 1]⊕ C ′[m− 1]⊕ 2m−132L2 ‖ 0n/2

= G(Y1[a− 1])⊕ Y1[a− 1]⊕ Y1[a− 1]⊕M2[m− 1]
⊕G(Y1[a− 1])⊕G(Y2[m− 1])⊕ 2m−132L2 ‖ 0n/2

= M2[m− 1]⊕G(Y2[m− 1])⊕ 2m−132L2 ‖ 0n/2

= X2[m](= X1[a]).

Since C ′[m] = C2[m], T ∗ = T2 = T ′ holds.
2. When a = b = m+ 1, the attacker can mount almost the same attack as the

case of b = m.
3. When the collision of Y [·] occurs in one encryption query, the attacker can

mount the Attack 1.

Complexities. The attacker needs roughly σe = 2n/2 encrypted blocks and
qd = 1 for the attack 2. Suppose that the attacker queries plaintext of m blocks
qe times. At least, there are

((m−2)qe

2
)
possible pairs of Y [·] to induce the above

attacks (including other cases). Thus, σe = 2n/2 is necessary and sufficient.
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