
A New Approach to Garbled Circuits

Anasuya Acharaya1, Tomer Ashur2,3, Efrat Cohen4, Carmit Hazay5, and
Avishay Yanai6

1 Bar-Ilan University, Ramat Gan, Israel
acharya@biu.ac.il

2 imec-COSIC, KU Leuven, Leuven, Belgium
tomer.ashur@esat.kuleuven.be

3 TU Eindhoven, Eindhoven, the Netherlands
t.ashur@tue.nl

4 Bar-Ilan University, Ramat Gan, Israel
efrat.choen@biu.ac.il

5 Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

6 VMware Research, Herzliya, Israel
yanaia@vmware.com

Abstract. A garbling scheme is a fundamental cryptographic building
block with a long list of applications. In this work we revisit the founda-
tions of garbled circuits to propose a novel approach for garbling where
the truth table of each gate is represented as a whole using a single en-
coding of parameterized length rather than being encrypted in a row-wise
manner. We prove the scheme’s security for the case where each gate en-
coding has the same length ℓ as the labels. This scheme improves over
the state-of-the-art in both gate size compression—improving over the
work of Rosulek and Roy (CRYPTO’21) which required 1.5ℓ bits to rep-
resent a garbled gate—and in the adversary model, yielding statistical
security for arbitrary circuits, and against adversaries that are compu-
tationally unbounded and are allowed an exponential number of random
oracle queries.

1 Introduction

The theory and practice of garbled circuits has been the focus of a long line
of research, starting from the seminal work of [Yao86]. Garbled circuits have
been widely used for constant round secure two-party computation protocol
(2PC) [LP09]. Such a protocol proceeds by designating one party as a garbler
and the other as the evaluator. The garbler generates an encoded version of the
circuit of the function to be computed, using its private randomness. This is
referred to as a garbled circuit (GC). The GC is then sent to the evaluator along
with input labels corresponding to the garbler’s input bits. Next, the garbler
and evaluator engage in a constant round sub-protocol (e.g., oblivious transfer
(OT)) through which the evaluator receives the input labels corresponding only
to its own input to the function. Finally, the evaluator uses all the input labels
and the GC to compute the function output which it can share with the garbler.

Bellare et al. presented in [BHR12] an abstraction for garbling that cap-
tures [LP09] and all its subsequent optimizations. Subsequent works published
after [BHR12] have followed the same line of thought as [LP09] and also describe
themselves in terms of [BHR12].

1.1 Our Contributions

In this work we suspend the use of [BHR12]’s formalism and deviate from the line
of work starting in [LP09]. Concretely, we propose a novel scheme for garbling
circuits in the gate-by-gate paradigm that captures the gate’s truth table as a
whole in one encoding, rather than as a set of encrypted rows. We operate in the
random oracle model wherein both the garbler and the evaluator are given access
to a common random oracle (RO). This approach provides a twofold benefit
in simultaneously improving the communication complexity and guaranteeing
security against a stronger adversary.

Communication Complexity. Our garbling approach requires fresh randomness
only while sampling circuit input labels. Taking advantage of the random oracle,
all other labels and the rest of the GC are derived deterministically from this.
Such an approach effectively decouples the size of the circuit from the amount of
randomness used and the level of security achieved. In our scheme, we represent
each garbled gate using ℓ bits, where ℓ is also the length of each wire label. This
is an improvement over the state of the art, cf. [RR21]. [RR21] represents each
AND gate using 1.5κ bits where κ is a computational security parameter that
can be set to 128. In our notation, ℓ is a parameter independent of our statistical
security parameter ρ. The parameter7 ℓ can be set to 128 as in [RR21]. We leave
further optimization effort to future research.

Adversary Model. Although we require randomness only for sampling circuit
input labels, the use of a random oracle in garbling breaks the view of the
mapping between input and (random) output pairs. Whereas previous work used
this randomness to encrypt a predetermined output label—adding exploitable
redundancy at the gate level—we use it to derive the output labels directly. As a
result, in contrast with previous work that assumes PPT adversaries, our scheme
remains secure even against adversaries that are unbounded in computation and
memory.

We define the privacy notion that our scheme satisfies: input privacy. This is
a slight modification of the privacy in [BHR12] that is tailored to be a meaningful
definition against the adversaries we consider. Informally, it requires that for a
function and two inputs that give the same output, if the adversary is given
the garbled circuit and active input labels for one of these inputs, it cannot
distinguish between which input actually corresponds to the circuit and labels

7 We bound the number of random oracle queries that the adversary can make by an
exponent in ℓ. As such, the running time of the adversary (even though unbounded)
can be represented in terms of ℓ.

2

it got. We prove input privacy against unbounded adversaries and our proof
holds in the random oracle model where the adversary is allowed to make an
exponential number of queries to the random oracle. Furthermore, our proof
does not require the random oracle to be programmable.

1.2 Vision for Future Research

To the best of our knowledge, ours is the first garbling scheme of its kind for
garbling arbitrary circuits against computationally unbounded adversaries in a
way that is also communication efficient. This is to be considered in contrast with
existing schemes that give information-theoretic garbling of formulas that grow
exponentially with the formula-depth [Kol05]. As a consequence, our scheme
does not fit into the standard [BHR12] formalism and security games for garbled
circuits. We conjecture that pursuing a new formalism would require generalizing
standard garbling. Noting that such a new formalism may pave the way to further
optimizations we leave spelling out its definition for future work.

In particular, we conjecture that random oracles may not be necessary for the
security of the scheme and that it remains secure also in the standard model.
This effort of finding suitable primitives to replace a random oracle is also a
direction that we leave for future work.

Furthermore, our scheme currently requires six primitive calls to the random
oracles for garbling a gate where standard constructions based on [LP09] have
been able to do so using only four primitive calls and only for AND gates. We
leave it for future work to be able to obtain similar improvements.

Moreover, since we prove, inter alia, that the scheme is statistically secure,
we conjecture that it remains so against quantum adversaries and can find appli-
cations in the post-quantum world. Formally studying its implications in these
directions is left for future work.

1.3 Related Work

Secure garbling of circuits and corresponding ways of succinctly representing its
garbling has been the aim of a long line of research [BMR90,NPS99,KS08,LP09].
The most common paradigm for garbling a circuit operates at the gate level
where for each gate in the circuit, each line in the truth table of the gate function-
ality is encrypted separately (this is also known as the ‘gate-by-gate paradigm’).
The underlying primitive for encryption is a symmetric-key algorithm (e.g., a
pseudorandom function (PRF), a correlation robust hash function) which yields
extremely fast algorithms. This paradigm led to a long sequence of successful op-
timizations in computation and communication, that established garbled circuits
as a practical tool for achieving 2PC [PSSW09,KMR14,ZRE15].

The state-of-the-art in garbled circuit compression is [RR21] where the size
of each garbled gate is compressed to 1.5 ciphertexts; and [HK20] where the
communication for the circuit as a whole is reduced to the size of the longest
branch of computation. Both these works are in the computational setting and
guarantee security against Probabilistic Polynomial Time (PPT) adversaries. In

3

this work, we present a garbling algorithm in the random oracle model that gar-
bles circuits in the gate-by-gate paradigm, but capturing the truth table as a
whole rather than row-wise. Furthermore, our scheme provides statistical secu-
rity against computationally and memory unbounded adversaries. The adversary
we consider is allowed access to the random oracle, but is limited to a number
of invocations that is exponential in a statistical security parameter.

The subject of garbling in the presence of computationally and memory un-
bounded adversaries has already been broached in the literature. [Kil88] presents
a scheme for information-theoretic randomization of permutation branching pro-
grams (PBPs), in the plain model. However, this scheme is restricted in the
classes of functions it can represent efficiently (NC1 functions only). [Kol05]
presents a scheme for information theoretic garbling of formulas in the plain
model. However, since the size of their garbling grows exponentially with the
depth of the function formula, the construction is only efficient for functions ad-
mitting low-depth formulas. In comparison, our scheme operates in the random
oracle model but can size-efficiently garble circuits of arbitrary functions. In ad-
dition, in order to facilitate switching to the plain model in future work, our
current construction does not require the random oracle to be programmable.

An extended line of works is the study of randomized encodings [IK00,Ish13].
Given a function f and an input x, a randomized encoding is a representation
f̂(x, r) generated using randomness r such that no information beyond f(x)
can be derived from it. A garbling can be viewed as a special case of a ran-
domized encoding. Specifically, a projective garbling such as ours is a case of
a decomposable randomized encoding, where given the garbling and the active
input labels only, nothing beyond the function output is revealed. In partic-
ular, [IK02,CFIK03] explore information-theoretic randomized encodings. The
best known information-theoretic decomposable randomized encoding for gen-
eral functions corresponds to [Kol05] and has size exponential in the formula
depth.

1.4 Technical Overview

Our garbling scheme operates in the random oracle model and both the garbler
and evaluator get access to a random oracle RO. In order to provide security
against unbounded adversaries, the garbling scheme deviates from traditional
garbling in many aspects. We will discuss them below.

The Garbling Algorithm. The input to the garbling algorithm is a circuit C and
it outputs a garbled circuit F , an input encoding set e, and an output decod-
ing set d. The algorithm itself can be separated into the following subroutines
that are executed sequentially: (1) Init(C) → e; (2) Circuit(C, e) = (F, Y); (3)
DecodingInfo(Y)→ d.

Input Label Sampling. The first subroutine in the garbling algorithm takes the
circuit C and creates the input encoding set e. In the garbling algorithm, this
subroutine, Init(·) uses the garbler’s randomness. Although the circuit C is given

4

as input, this algorithm only uses n ∈ C, the number of input wires, allowing to
generate the generate e ahead of knowing the function f . Note that similar to
other traditional garbling schemes, this is also a projective garbling scheme. So
e contains a set of input wire labels. In our construction, for the n input wires,
and a length parameter ℓ, an ℓ-length label is sampled uniformly at random
corresponding to the 0 and 1 bit for each wire. The only constraint applied is
that both labels for the same wire cannot be the same.

Gate-by-Gate Garbling. The next subroutine Circuit(·) is a deterministic func-
tion. It takes the input encoding set e with all the randomness it entails, and
extends it to create the complete garbled circuit F and output wire labels Y .
In order to extend the existing randomness in a way that does not introduce
redundancy, Circuit(·) makes black box calls to random oracles.

This subroutine garbles a circuit by garbling separately each gate in topo-
logical order. To this effect, for the q total gates in the circuit C, each gate is
assigned an index i in this ordering. There are two random oracles employed
throughout the gate-by-gate garbling process: RO0 and RO1. These differ in the
size of their domains. Both these random oracles are tweakable: they take as an
additional input the gate index i so that they behave independently for each
gate.

Garbling a Gate. For a gate i, let A and B be its input wires, C be its output
wire and g(·) be its functionality (e.g., AND, XOR). When garbling within a
gate, our methods deviate significantly from traditional garbling techniques. At
its core, we make the following key observations: (1) each gate is a binary gate
so there are 4 combinations of input values, but only two possible output values;
(2) in order to garble against an unbounded adversary, one cannot afford to leak
information regarding correctness of attempted decryptions.

Stemming from the first observation, in our construction, we make a distinc-
tion between labels and keys. In the garbling, we attribute labels as representing
a wire value. That is, for a circuit wire A, LA

0 and LA
1 are its labels (similarly

LB
1 , L

B
0 for B, and LC

1 , L
C
0 for C). However, contrary to traditional garbling,

we do not use labels and keys interchangeably. We attribute keys to a gate,
with each key being used to derive an output wire label (rather than hiding
it as in previous work). Note that since there are only two output wire labels
(LC

0 , L
C
1), we only need two keys (Ki

0,K
i
1), one to derive each label. Therefore,

our construction employs a mechanism to convert the four possible combinations
of input wire labels into two keys.

A key design technique for this conversion is inspired from the second obser-
vation stated above. We require that for the gate i, label combinations {(LA

0 , L
B
0),

(LA
0 , L

B
1), (L

A
1 , L

B
0), (L

A
1 , L

B
1)} be mapped to keys (Ki

0,K
i
1) in such a way that

the gate functionality g(·) is preserved. For instance, if the gate is an AND gate,
{(LA

0 , L
B
0), (L

A
0 , L

B
1), (L

A
1 , L

B
0)} should be mapped to Ki

0, and (LA
1 , L

B
1) to Ki

1.
Furthermore, this mapping is exactly what the garbled gate itself constitutes
and therefore an encoding of it needs to be made public. In traditional garbling,
each such input label pair (LA, LB) would be separately used to encrypt an LC ,

5

yielding the four ciphertexts that make up the garbled gate. However, in doing
so, additional information needs to be provided to the evaluator to indicate a
successful decryption. Such an indicator would leak information to an unbounded
adversary that is capable of brute-forcing the entire space, regardless of the type
of primitive that was used for encryption (e.g., PRF; or in the random oracle
model).

The solution we employ encodes all four pairs into one encoding ∇. This is
such that ∇ in its entirety, applied to the correct input label pair will give the
correct key. This eliminates the need for the validity indicator altogether.

Finally, note that the entire gate garbling process needs to be a result of
deterministic steps starting from the input label values. Therefore, for gate i, let
LA
1 , L

A
0 and LB

1 , L
B
0 be the input labels. First, in order to eliminate redundancy,

for a, b ∈ {0, 1} each pair is input to a random oracle: ROi
0(L

A
a , L

B
b) → Xi

ab.
RO0, along with tweak i, takes as input two labels with total length 2ℓ and
outputs an ℓ-length stringXi. Next, the intermediate values (Xi

00, X
i
01, X

i
10, X

i
11)

are encoded according to the gate functionality into a single ℓ-bit string ∇i.
This string has the properties that given ∇i and any one Xi

ab it is mapped to
an Ki

g(a,b). Also, the pair ∇i and Xi
ab do not reveal information sufficient to

determine the other Ki or other values Xi. Next, for the values Ki
0 and Ki

1

so derived8, since they no longer have full entropy, they are input to another
random oracle to derive the output label: ROi

1(K
i
c) → LC

c for c ∈ {0, 1}. This
random oracle has ℓ-bit strings as both its domain and range. The garbled gate
itself can be represented using only ∇i.

Decoding Information. Once all the garbled gates and output wire labels are
derived in F , it remains to generate the output decoding information d. Here,
again, if we employ a decoding mechanism that allows distinguishing between
a correct and incorrect decoding, this reveals information that an unbounded
adversary can take advantage of. Therefore, we need to be able to decode in
such a way that for all output labels, valid or invalid, it yields some plausible
decoding, but with the constraint that for valid output labels, the decoding is
additionally also correct.

In our construction, we employ another random oracle RO2 for this. In the
subroutine that creates the decoding information, for every output wire j, we
sample an ℓ-bit string dj . This string has the property that, given wire labels
(Lj

0, L
j
1), it holds that lsb(RO2(L

j
0, d

j)) = 0 and lsb(RO2(L
j
1, d

j)) = 1. Note that
such a decoding will always yield some output even for arbitrary output labels.
The subroutine DecodingInfo(Y)→ d generates this decoding information given
the output wire labels set.

Evaluating the Garbled Circuit. For completeness we outline the evaluation pro-
cedure. An evaluator, given the garbled circuit F , a set of input wire labels X,
and the decoding information d works gate-by-gate. It has access to the random
oracles RO0, RO1, RO2 and knows the indices of each gate in the circuit.

8 Care is taken in the construction that both these values are unique.

6

Starting with the labels L ∈ X we describe each label and key in its view
during an honest evaluation as active. For each gate i, with active input labels
LA
a , L

B
b , the evaluator works by first accessing ROi

0(L
A
a , L

B
b) = Xi

ab. Then using
Xi

ab and ∇i ∈ F , it computes Ki
g(a,b). Next it derives the gate output wire label

ROi
1(K

i) = LC .

Finally, during decoding, for an output wire label Lj
b, using dj ∈ d, it com-

putes lsb(RO2(L
j
b, d

j)) = b as the function output.

Security. We guarantee statistical security against a computationally and mem-
ory unbounded adversary that is allowed an exponentially bounded number of
random oracle queries. Here, again, we deviate from the treatment of [BHR12]
and define a different indistinguishability based security game. A formal defini-
tion and analysis is provided in Section 3.4. We prove that our scheme satisfies
our privacy notion using two key arguments: (1) the adversary gains no distin-
guishing advantage when no random oracle queries are made; (2) we bound the
advantage gained upon a single oracle query, and use this to argue that even
when an exponential (in ℓ) number of queries are made, the advantage doesn’t
exceed 2−ρ, where ρ is the statistical security parameter.

2 Preliminaries

We provide here the definitions and notations we use throughout the paper.

2.1 Circuit Syntax

A Boolean circuit C : {0, 1}n → {0, 1}m has n input wires enumerated by the
indices 1, . . . , n, and m output wires enumerated by n + q −m + 1, . . . , n + q,
where q = |C| is the number Boolean gates.9 The output wire of gate i (also
denoted by gi) is n + i, which also implies that the gates satisfy a topological
order, allowing to speak of gi > gj when i > j. We say that a gate i ∈ [q′] ⊆ [q]
is at the first level if one or both of its input wires is also an input wire for the
circuit.

On occasion, we abuse notation and use g as a synonym for the binary func-
tion described by this gate. Namely, gi(a, b) is the result of the binary function
of gate gi on the binary inputs a and b. For example, if gi is an XOR gate then
gi(a, b) = a⊕ b. The interpretation would always be clear from the context.

2.2 Garbling Schemes

We briefly recall garbling schemes as described in [BHR12] along with the prop-
erties of interest.

9 The convention is to comprise the circuit of XOR and AND gates with fan-in 2.

7

Definition 1 (Garbling scheme [BHR12]). Let f : {0, 1}n → {0, 1}m be
a function with a circuit representation C. A garbling scheme (Gb,En,De,Ev)
consists of four polynomial-time algorithms defined as follows:

– (F, e, d)← Gb(1ρ,C): is a probabilistic algorithm that takes as input a circuit
C with n input wires and m output wires; and returns a garbled circuit F ,
input encoding set e, and output decoding set d.

– X := En(e, x) is a deterministic algorithm that takes as input an input en-
coding set e and a plain value x; and returns the value’s encoding X.

– Y := Ev(F,X): is a deterministic algorithm that takes as input a garbled
circuit F and a set of input labels X; and returns the output labels Y where
|Y | = m.

– {⊥, y} := De(Y, d): is a deterministic algorithm that takes as input the output
decoding information d and output labels Y ; and returns either the failure
symbol ⊥ or a plain value y = f(x).

These algorithms must satisfy the following properties:

– Correctness: For every circuit C and input x,

Pr[y = C(x) : (F, e, d)← Gb(C), X = En(e, x), Y = Ev(F,X), y = De(d, Y)] = 1

– Privacy: For all circuits C0,C1 such that the leakage ϕ(C0) = ϕ(C1), and
every x0, x1 such that C0(x0) = C1(x1),

{F0, X0, d0}(F0,e0,d0)←Gb(f0),X0=En(e0,x0)

c
≈ {F1, X1, d1}(F1,e1,d1)←Gb(f1),X1=En(e1,x1)

2.3 Other Basic Notations

We denote by ρ a statistical security parameter. In our garbling scheme, for each
gate indexed i, we denote by ∇i the garbled gate information. There are three
random oracles used in the scheme: RO0, RO1 and RO2. Out of these, RO0 and
RO1 are used to garble each gate, and they are tweakable: they take the gate
index i as an additional input. RO2 is used to generate decoding information.

For each wire W , its 0-label is denoted by LW
0 and its 1-label by LW

1 . For
each gate i, the outputs of RO0 are denoted as Xi

ab, for a, b ∈ {0, 1}. The keys
in the garbling are denoted as Ki

0 and Ki
1. We denote by lsb(·) a function that

outputs the least significant bit of the string that is its input.

2.4 Random Oracles

The security proof of our scheme holds in the non-programmable random or-
acle model, which abstracts a truly random function. Following the notation
from [KL14], the random-oracle model posits the existence of a public, random
function R that can be evaluated only by “querying” an oracle – which can be
thought of as a “black box” – returningR(x) when given input x. More Precisely,

8

Definition 2 (Random Oracle). A random oracle RO is an interface for an
oracle function R : {0, 1}a → {0, 1}b that is sampled uniformly from the family
of functions that map the domain of binary strings {0, 1}a into {0, 1}b.

We model honest parties as PPT algorithms whereas the adversary is compu-
tationally and memory unbounded. All parties have limited access to the random
oracle, namely, the number of queries is bounded. Note that the bound on the
number of queries is not necessarily polynomial. Concretely, our scheme allows
the adversary to make an exponential number of queries, but this number is not
enough to fully determine the complete map of the function that was sampled
in Definition 2.

The following lemma characterizes a key property of the random oracle. Here
we denote by RO the random oracle itself, and by V(·) the information learnt
by an unbounded adversary.

Lemma 1. Let RO : {0, 1}ℓ → {0, 1}k be a random oracle with fixed sized inputs
of length ℓ. Let Q = (q1, . . . , qm) be the queries made to the random oracle. Let
R = (r1, . . . , rm) be the set of responses such that for each query qj, rj is its
response. Then V(Q) = {Q,R}. For a query q ̸∈ Q, for all random choices of
responses r ∈ {0, 1}k,

Pr[RO(q) = r|V(Q)] = Pr[RO(q) = r]

Proof: The random oracle RO works by seeing a query q ∈ {0, 1}ℓ, and if
q has not been queried before, it samples a fresh element r ∈ {0, 1}k from the
range, and then maps q to r as its response. This mapping is stored in a list of
prior queries. If q had been queried before, the random oracle will find it on this
list and return the response in its mapping. Letting Q be the list of all previous
queries, over all random choices of r,

Pr[RO(q) = r|q ̸∈ Q] =
1

2k
.

Note that for the case that a query q is not in the list of previously made queries,
its response is freshly sampled and independently of all previous query responses.
Therefore,

Pr[RO(q) = r|V(Q), q ̸∈ Q] =
1

2k
.

If, by contradiction, V(Q) ⊃ {Q,R}, this would mean that more information
about the random oracle is revealed. Then, there would exist queries q ̸∈ Q for
which,

Pr[RO(q) = r|V(Q), q ̸∈ Q] ̸= 1

2k

This would contradict the fact that the response is sampled independently.
Therefore, the lemma follows. ⊓⊔

9

2.5 The Adversary

We denote by A a computationally and memory unbounded adversary. This
means that it can execute any algorithm that runs in finite time and keep the
output in memory for a later use. This definition not only includes all PPT
adversaries, but also adversaries that run in super-polynomial time and generate
an arbitrary-sized outputs that they store in memory.

The definition above allows the adversary to reconstruct the full map of any
known function with a finite domain by simply iterating all inputs (sometimes
in exponential time), computing the function locally, and storing the result in
memory. This applies to both deterministic and randomized functions where the
difference between the two is that reconstructing the former involves iterating
over the input domain whereas reconstructing the latter requires iterating over
the input domain for all possible sequences of coin-tosses.

A random oracle however is a special case of a probabilistic function. Proofs
in the random-oracle model can exploit the fact that R is chosen at random,
and that the oracle interface allows to evaluate it, inevitably leaking some of the
randomness. However the adversary is prevented from learning the full descrip-
tion of R since it is limited in the number of queries that it can make to the
oracle. Definition 3 formalizes the resulting adversary in our context.

Definition 3 (Oracle Adversary). An oracle adversary AO is a computa-
tionally unbounded algorithm in the random oracle model where the number of
queries made to the oracle during an attack is bounded by 2f(ρ,ℓ) where ρ is the
security parameter and ℓ is a parameter determining the labels length for circuit
input wires.

We continue on to describe our garbling scheme in Sections 3.1–3.2. In Sec-
tion 3.4 we show that this scheme defined achieves input privacy against the
adversary from Definition 3 for any f(ρ, ℓ) ≤ ℓ− ρ− 1.

3 The Scheme

In this section we present our scheme and prove its security. The scheme con-
sists of different algorithms for the garbler (Section 3.1) and for the evaluator
(Section 3.2). In Section 3.3 we discuss the correctness of the scheme and give an
intuition about its security. Then, in Section 3.4 we prove input privacy against
an information theoretic adversary.

3.1 Garbler

Given a circuit C for the function, the garbler employs the following algorithms:
(1) Init(C, ℓ)→ e; (2) Circuit(C, e) = (F, Y); (3) DecodingInfo(Y)→ d.

10

Input Encoding Generation. The garbler starts by executing an algorithm:
Init(C, ℓ)→ e. It is formally described in Algorithm 1. Let n be the number of
input wires in C and ℓ be a length parameter. This algorithm uses the garbler’s
randomness to sample ℓ-length labels to represent the 0 and 1 value for each
input wire. These labels are sampled uniformly at random, under the constraint
that two labels for the same wire cannot take the same value. This resulting set
of input wire labels is the input encoding set e. Looking ahead, this is the only
step in the garbled circuit construction that involves any randomness.

Algorithm 1 Algorithm Init(C, ℓ)

1: extract n from C
2: e = []
3: for input wire W ∈ [n] do
4: Sample LW

0 ← {0, 1}ℓ uniformly at random
5: Sample LW

1 ← {0, 1}ℓ − {LW
0 } uniformly at random

6: Set e[W] = eW = (LW
0 , LW

1)
7: end for
8: Return e

Garbled Circuit Generation. After creating the input encoding set e, the
garbler runs a deterministic algorithm to generate the garbled circuit:
Circuit(e,C) = (F, Y). This algorithm receives as input a circuit C with q gates
and a projective input encoding set e with labels for all n input wires. The output
of this algorithm is a garbled circuit F and Y , a set of labels (representing both
the 0 and 1 value) for the m output wires of the garbled circuit. A description
for it is given in Algorithm 2.

This algorithm works gate-by-gate where, for each of the q gates in the circuit,
it creates a garbled gate by calling a subroutine as described in Algorithm 3.
The garbled circuit so produced is,

F = ∇1, . . . ,∇q.

Note that unlike previous work the intermediate labels are not predetermined
and are instead derived from e by means of queries to the random oracle (details
are discussed in the text ahead).

Gate Garbling. We discuss now the subroutine that the garbling algorithm uses
to garble each gate of the circuit: (LC0 , L

C
1 ,∇i)← Gate(LA0 , L

A
1 , L

B
0 , L

B
1 , i, type). This

subroutine receives as input the gate index i, its input labels set (LA
0 , L

A
1 , L

B
0 , L

B
1)

and an indicator, type, that says whether this is an AND gate or an XOR gate.
The subroutine outputs a gate garbling ∇i and a set of labels for the gate
output wire (LC

0 , L
C
1). The details of this subroutine are formally described in

Algorithm 3.

11

Algorithm 2 Circuit(e,C)

1: initialize the wire label set W = [W1, . . . ,Wq] where each Wi = []
2: for each circuit input wire A do ▷ set circuit input wires as the input wires for

appropriate gates
3: for each gate indexed i for which A is an input wire do
4: Wi = Wi + (LA

0 , L
A
1)

5: W [i]←Wi

6: end for
7: end for
8: initialize F = []
9: initialize Y = []
10: for each gate i in C in topological order do
11: extract from C, the input wire indices: A,B
12: extract Wi = (LA

0 , L
A
1 , L

B
0 , L

B
1) ∈W

13: if g = ∧ then
14: (LC

0 , L
C
1 ,∇i)← Gate(LA

0 , L
A
1 , L

B
0 , L

B
1 , i,AND)

15: else
16: (LC

0 , L
C
1 ,∇i)← Gate(LA

0 , L
A
1 , L

B
0 , L

B
1 , i,XOR)

17: end if
18: set F [i]← ∇i

19: for each gate indexed j for which C is an input wire do
20: Wj = Wj + (LC

0 , L
C
1)

21: W [j]←Wj

22: end for
23: if i is an output gate then
24: Y [i]← (LC

0 , L
C
1)

25: end if
26: end for
27: Return (F, Y)

This is a deterministic function but with access to two random oracles: RO0

and RO1. Both of these are tweakable random oracles that take the gate index
i as an additional input. The oracle ROi

0(·) takes 2ℓ-bit strings as inputs and
outputs an ℓ-bit string uniformly at random for each input. The oracle ROi

1(·)
takes an ℓ-bit string and outputs a random string of the same length.

A gate is garbled in the following stages. First, given the
set of input labels (LA

0 , L
A
1 , L

B
0 , L

B
1), each of the combinations,

((LA
0 , L

B
0), (L

A
0 , L

B
1), (L

A
1 , L

B
0), (L

A
1 , L

B
1)) is a 2ℓ-bit string where at least ℓ

bits are common with at least one other combination. To unlink the pairs,
the input label combinations are passed into a random oracle RO0. In order
for the random oracle to sample fresh outputs for different gates which may
have potentially the same input wires, RO0 is initialized with a tweak, as
ROi

0(·). For bits a, b ∈ {0, 1}, this step creates ROi
0(L

A
a , L

B
b)→ Xi

ab. The values
(Xi

00, X
i
01, X

i
10, X

i
11) are intermediate garbling values, each ℓ-bit long, that are

the outputs of the random oracle.

12

Algorithm 3 Gate((LA
0 , L

A
1), (L

B
0 , L

B
1), i, type)

1: Xi
00 = ROi

0(L
A
0 , L

B
0)

2: Xi
01 = ROi

0(L
A
0 , L

B
1)

3: Xi
10 = ROi

0(L
A
1 , L

B
0)

4: Xi
11 = ROi

0(L
A
1 , L

B
1)

5: initialize ∇i ← 0ℓ

6: if type = AND then
7: for index j ∈ [ℓ] do
8: Slice ← Xi

00[j]||Xi
01[j]||Xi

10[j]||Xi
11[j]

9: if Slice ∈ {0000, 0001, 1110, 1111} then ▷ See Table 1
10: ∇i[j]← 1
11: end if
12: end for
13: Ki

0 = Xi
00&∇i

14: Ki
1 = Xi

11&∇i

15: else if type = XOR then
16: for index j ∈ [ℓ] do
17: Slice ← Xi

00[j]||Xi
01[j]||Xi

10[j]||Xi
11[j]

18: if Slice ∈ {0000, 0110, 1001, 1111} then ▷ See Table 2
19: ∇i[j]← 1
20: end if
21: end for
22: Ki

0 = Xi
00&∇i

23: Ki
1 = Xi

01&∇i

24: end if
25: LC

0 ← ROi
1(K

i
0)

26: LC
1 ← ROi

1(K
i
1)

27: Return (LC
0 , L

C
1 ,∇i)

Next, the set (Xi
00, X

i
01, X

i
10, X

i
11) is used to create a gate garbling∇i of size ℓ

bits. This lies in the heart of our construction and is one of our key contributions.
The details on how exactly ∇i is created are given in Tables 1–2 and depends on
the gate type. This garbling ∇i is such that for any intermediate value Xi

ab, a
key can be derived as ∇i&Xi

ab = Ki
g(a,b). This key is used for garbling and g(·, ·)

here represents the gate functionality: AND or XOR. An essential property that
∇i satisfies is that on its application with any of the Xi

ab, it produces one of two
distinct values Ki

0 and Ki
1 and that too according to the gate functionality.

Finally, note that the ℓ-length keys Ki
0 and Ki

1 derived in the previous stage
need not preserve full entropy. Therefore, these are passed as input to another
random oracle RO1 with tweak i that gives ℓ-bit strings as outputs. The output
of this random oracle, (LC

0 , L
C
1) are designated as the labels of the output wire

C of this gate. These output labels, along with the gate garbling ∇i are the
outputs of this subroutine.

Decoding Information. The last of the Garbler’s algorithms is a randomized
algorithm: DecodingInfo(Y)→ d. It takes the labels set for the output wires, Y ,

13

Table 1. For a gate index i and j ∈ [ℓ], this table defines ∇i
∧[j] as a function of

Xi
00[j], X

i
01[j], X

i
10[j], X

i
11[j]. In addition, the right side demonstrates how combining

Xi
ab[j]&∇i[j] collapses into only two distinct key values Ki

0 = K00 = K01 = K10 and
Ki

1 = K11. Each row in the table corresponds to one bit-slice of the values Xi
ab[j] for

a, b ∈ {0, 1}.

Xi
00 Xi

01 Xi
10 Xi

11 ∇i
∧ K00 K01 K10 K11

0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 0 1
2 0 0 1 0 0 0 0 0 0
3 0 0 1 1 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0
5 0 1 0 1 0 0 0 0 0
6 0 1 1 0 0 0 0 0 0
7 0 1 1 1 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0
9 1 0 0 1 0 0 0 0 0
10 1 0 1 0 0 0 0 0 0
11 1 0 1 1 0 0 0 0 0
12 1 1 0 0 0 0 0 0 0
13 1 1 0 1 0 0 0 0 0
14 1 1 1 0 1 1 1 1 0
15 1 1 1 1 1 1 1 1 1

and returns a sequence d that would allow the evaluator to map them back from
the encrypted domain to the plain domain; see Algorithm 4. Here we denote by
lsb(·) the least significant bit of a string. This function also employs a random
oracle RO2(·) that takes a 2ℓ-bit input. We do not fix its output domain, though
it could be of any length greater than 1.

Algorithm 4 DecodingInfo(Y)

1: initialize d = []
2: for output wire j ∈ [n+ q −m+ 1, n+ q] do
3: Lj

0 = Y [j][0]
4: Lj

1 = Y [j][1]
5: repeat
6: Sample dj ∈R {0, 1}ℓ
7: until lsb(RO2(L

j
0, d

j)) = 0 and lsb(RO2(L
j
1, d

j)) = 1
8: d← dj

9: end for
10: Return d

3.2 Evaluator

Evaluating a garbled circuit that was created as in Algorithms 1-4 is straight-
forward. For completeness, we describe the three algorithms that the evalua-
tor employs for this purpose: Encode, Evaluate, and Decode. The interfaces and

14

Table 2. For a gate index i and j ∈ [ℓ], this table defines ∇i
⊕[j] as a function in

Xi
00[j], X

i
01[j], X

i
10[j], X

i
11[j]. In addition, the right side demonstrates how combining

Xi
ab[j]&∇i[j] collapses into only two distinct key values Ki

0 = K00 = K11 and Ki
1 =

K01 = K10. Each row in the table corresponds to one bit-slice of the values Xi
ab[j] for

a, b ∈ {0, 1}.

Xi
00 Xi

01 Xi
10 Xi

11 ∇⊕ K00 K01 K10 K11

0 0 0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
3 0 0 1 1 0 0 0 0 0
4 0 1 0 0 0 0 0 0 0
5 0 1 0 1 0 0 0 0 0
6 0 1 1 0 1 0 1 1 0
7 0 1 1 1 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0
9 1 0 0 1 1 1 0 0 1
10 1 0 1 0 0 0 0 0 0
11 1 0 1 1 0 0 0 0 0
12 1 1 0 0 0 0 0 0 0
13 1 1 0 1 0 0 0 0 0
14 1 1 1 0 0 0 0 0 0
15 1 1 1 1 1 1 1 1 1

purpose of these are respectively the same as En, Ev, and De in standard gar-
bling [BHR12]. For brevity we only describe them in algorithmic form in Algo-
rithms 5–7. Note that the evaluator also has access to the same random oracles
RO0, RO1, and RO2 as in the garbling algorithms and at the time of evaluation,
their input to output mapping for the queries made by the garbler are fixed.
This is what yields correct evaluation.

Algorithm 5 Algorithm En(e, x)

1: initialize X = []
2: for every j ∈ [n] do
3: extract Lj

xj
= ej [xj]

4: set X[j] = Lj
xj

5: end for
6: Return X

3.3 Properties

Correctness. The correctness of the scheme follows from Algorithms 2–4 and the
definition of ∇∧ and ∇⊕ in Tables 1–2.

In Algorithm 2 the garbler iterates over the gates. For each gate i, it calls
Algorithm 3 with two pairs of labels corresponding the the gate’s input labels,
and the gate’s type. Algorithm 3 calls the random oracle with pairs of input

15

Algorithm 6 Algorithm Ev(F,X)

1: initialize Y = []
2: for each gate i ∈ [q] in a topological order do
3: LA, LB ← active labels associated with the input wires of gate i
4: extract ∇i ← F [i]
5: LC ← ROi

1(ROi
0(L

A, LB)&∇i)
6: if i is a circuit output wire then
7: Y [i]← LC

8: end if
9: end for
10: Return Y

Algorithm 7 Algorithm De(Y, d)

1: initialize y = []
2: for j ∈ [n+ q −m+ 1, n+ q] do
3: y[j − (n+ q −m+ 1)]← lsb(RO2(Y [j], dj))
4: end for
5: Return y

labels such that

ROi
0(L

A
0 , L

B
0) 7→ Xi

00;

ROi
0(L

A
0 , L

B
1) 7→ Xi

01;

ROi
0(L

A
1 , L

B
0) 7→ Xi

10;

ROi
0(L

A
1 , L

B
1) 7→ Xi

11.

(1)

Then, it uses either Table 1 or Table 2 to form a ∇i capturing the bitwise
difference between the Xi

ab values, such that

Xi
00&∇i 7→ Ki

00;

Xi
01&∇i 7→ Ki

01;

Xi
10&∇i 7→ Ki

10;

Xi
11&∇i 7→ Ki

11,

(2)

preserves the plain gate’s logic. Consequently,

|{Ki
00,K

i
01,K

i
10,K

i
11}| = 2.

Composing (1)–(2) we obtain for an AND gate

ROi
0(L

A
0 , L

B
0)&∇i 7→ Ki

0;

ROi
0(L

A
0 , L

B
1)&∇i 7→ Ki

0;

ROi
0(L

A
1 , L

B
0)&∇i 7→ Ki

0;

ROi
0(L

A
1 , L

B
1)&∇i 7→ Ki

1,

16

and for an XOR gate

ROi
0(L

A
0 , L

B
0)&∇i 7→ Ki

0;

ROi
0(L

A
0 , L

B
1)&∇i 7→ Ki

1;

ROi
0(L

A
1 , L

B
0)&∇i 7→ Ki

1;

ROi
0(L

A
1 , L

B
1)&∇i 7→ Ki

0.

Correctness can be verified in a bit-wise manner.

Complexity. Compared to a classical Yao’s garbled circuit [Yao86], which im-
plies four calls to the cryptographic primitive for each gate, our scheme requires
six primitive calls per gate in Algorithm 3. On the other hand, the amount
of randomness required by our scheme is linear in the the label length ℓ and
the number of circuit input wires n whereas all follow ups from [LP09] require
randomness that is linear in ℓ and the overall number of wires q + n.

As an interesting consequence of using lesser randomness and deriving subse-
quent values deterministically is that the garbled circuit has fewer redundancies,
enabling in Section 3.4 a privacy proof against a computationally and memory
unbounded adversary, i.e., statistical security, that is stronger than the standard
computational security. Note that since that statistical distance is measured only
in terms of e irrespective of F and d, |∇i| and therefore |F | can be made arbi-
trarily small without affecting security. For brevity we set |∇| = ℓ for our proof
in Section 3.4 (thus improving over the state of the art, cf. [RR21]) and leave
further investigation of how small F and d can be made to future research.

3.4 Privacy

Adversary. For our proof, we consider an adversary A that is computationally
unbounded, but can only make an (exponentially) bounded number of queries
to the random oracles (RO). Letting ρ be a statistical security parameter, and
ℓ be the length of each wire label, the number of queries that A is allowed to
make to the RO is bounded by an exponent in ρ and ℓ. Our main claim, which
we formalize later in Theorem 1 is stated informally in Proposition 1.

Proposition 1. The garbling scheme described in Algorithms 1–4 achieves in-
put privacy (Algorithm 8) against any oracle adversary A with f(ρ, ℓ) = ℓ−ρ−1
(Definition 3).

When an adversary is given a garbling (F, d) and input labels X, we make a
separation between the notion of honest and adversarial queries. We say that an
RO query is honest when it is necessary for evaluating F on inputs X. Let H
be this set of honest queries that the adversary is allowed. For a garbled circuit
with q gates and m output wires, |H| = 2q+m. We term any additional queries
made to the RO as adversarial. Let Q be the set of adversarial queries that A
makes to the RO.

17

Definition 4. A set of adversarial queries Q that an adversary A makes to the
random oracle is permissible if it holds that for a statistical security parameter
ρ, and label length ℓ,

|Q| < 2ℓ−ρ−1

Security Game. We re-define privacy to a game better suited in the presence
of the adversary described above. However, before looking at the game itself, it
would be instructive to first understand some relevant terminology:

For a function f , let its input domain be {0, 1}n. We denote by x0, x1 ∈
{0, 1}n two valid inputs to f , of the choice of A, under the constraint that
f(x0) = f(x1). We denote by F a garbled circuit for f ; by d its decoding in-
formation; and by X the active input labels for F . Let e be the input encoding
set for F . Let us denote by Circuit(f, e) the garbling subroutine that given an
input encoding set e derives the complete garbling (F, d) for a function f (i.e.,
Algorithm 2 and Algorithm 4). For b ∈ {0, 1}, we denote by ε(X,xb) the set of
all e such that X = En(e, xb).

The security game takes place between an adversaryA and a challenger C and
breaks the usual order in which garbling is done. First, A samples (f, x0, x1) and
gives it to C. Then, C samples X from a uniform distribution. Next, it samples
a bit b ∈ {0, 1} uniformly at random and samples the input encoding set eb

uniformly from ε(X,xb). This is used to derive the garbling F, d. Finally, C sends
the challenge (F,X, d) to the adversary A and the latter is tasked with guessing
the bit b used internally by C. Algorithm 8 describes formally the actions of the
challenger C.
Algorithm 8 Input Privacy

1: proc Garble(f, x0, x1)
2: if x0, x1 ̸∈ {0, 1}n return ⊥
3: if f(x0) ̸= f(x1) return ⊥
4: X ← {0, 1}nℓ

5: b← {0, 1}
6: eb ← ε(X,xb)
7: (F, d)← Circuit(f, eb)
8: Return (F,X, d)

Distinguishing Advantage. In the privacy game, A has in its view (f, x1, x0)
of its own choice, (F,X, d) that it receives as the challenge, the set of honest
queries H and Q, the set of adversarial RO query responses that it receives. We
define a function V(·) that represents the information learnt by A. For instance,
V(F,X, d) refers to the information A can deduce from the challenge (F,X, d).
In particular, by V(F,X, d,H,Q) we denote all the information learnt by the
adversary10.

10 We omit writing (f, x0, x1) for brevity but it is assumed to be always included.

18

Definition 5. For any unbounded adversary A, for any (f, x0, x1) of its choice,
(F,X, d) as output from Algorithm 8, honest evaluation RO queries H, and a
permissible set of adversarial queries Q (Definition 4), we define the adversary’s
advantage to be,

Adv =

∣∣∣∣Pr[A(V(F,X, d,H,Q)) = 0]− Pr[A(V(F,X, d,H,Q)) = 1]

∣∣∣∣
The probability distribution is taken over the secrets of the challenger C

(random choices of X ← {0, 1}nℓ, b← {0, 1}, and eb ← ε(X,xb)), and the choice
of the adversarial query set Q. The values (F, d) are determined by eb and the
contents of the honest query set H are fixed for a choice of (F,X, d).

The adversary’s task is to distinguish between the case that the challenger
chooses b = 0 and b = 1 given V(F,X, d,H,Q). This boils down to the probability
that eb comes from ε(X,x0) or from ε(X,x1). Therefore, the advantage as in
Definition 5 can be rewritten as,

Adv =

∣∣∣∣Pr[eb ∈ ε(X,x0)|V(F,X, d,H,Q)]− Pr[eb ∈ ε(X,x1)|V(F,X, d,H,Q)]

∣∣∣∣
(3)

Proof Outline. The aim is to show that for an execution of Algorithm 8, over all
possible permissible Q, the adversary A’s advantage is bounded by Adv < 2−ρ.
We open by first arguing that A’s a-priori advantage when it chooses (f, x0, x1)
is 0.
Next, we show that since X is chosen by the challenger independent of b, A’s
advantage on knowing (f, x0, x1, X) is also 0. We do this by first showing in
Lemma 2 that for all (X,x), the set ε(X,x) has the same size. Next, through
Lemma 3 we show that for all X, the sets ε(X,x0) and ε(X,x1) are disjoint.
Note that for x0 and x1, a computationally unbounded A can reconstruct the
sets ε(X,x0) and ε(X,x1). We use the lemmas to argue that for every input
encoding set e0 ∈ ε(X,x0), there exists an e1 ∈ ε(X,x1). Therefore knowing
(f, x0, x1, X) yields no advantage.
Now we consider the case that the adversary sees the complete challenge (F,X, d)
but doesn’t make any random oracle queries. We show through Lemma 4 that
A’s advantage given V(F,X, d) is 0. This is because there is no way to link (F, d)
to an input encoding set e without making random oracle queries.
We then consider the case where RO queries are made. Note that certain query
and response mappings in the RO have already been determined when the chal-
lenger C creates the garbling in Algorithm 8. In fact, to avoid confusion, we
consider the random oracle to be fixed from this point onward.

For smooth treatment of this case, we first prove the following relevant results.
First, looking at the RO in isolation, we recall in Lemma 1 that when an RO is

queried, it’s response reveals no additional information about values that are not
yet queried. Therefore, limiting the size of Q to that of permissible (Definition 8)
sets, no further information about the random oracle can be learnt. Also, all the
queries in H reveal no more information than the active path in the circuit F .

19

Next, in the context of garbling, Lemma 5 bounds the probbility that any
input encoding set e, that is not the eb used by the challenger C, would be
compatible with (F, d) (Definition 12) for a random choice of the RO. This helps
us determine the a-priori statistical distance between an e ∈ ε(X,xb) being
compatible with (F, d) and e ∈ ε(X,x1−b) being compatible.

Now we consider the case where all honest queries in H are made but Q = ϕ.
For both cases b = 0 and b = 1 the active labels X are the same. Starting
from X, all RO queries would reveal the active path in both cases. Also, since
f(x0) = f(x1), decoding gives the same result. So we argue that A’s advantage
given (F,X, d,H) is also 0.

Finally, we get down to the case where A makes dishonest queries: a query
that is not an honest query. It is here that we use the proof of Lemma 5 to
bound the information revealed about b, when a single query is made. This is
extended to the case of multiple queries using Lemma 1 to conclude that for any
permissible Q, A’s advantage cannot exceed 2−ρ. This concludes the proof.

We next define certain terms and notations that are used throughout the
proof before laying out the proof itself.

3.4.1 Preliminaries In this section, we define certain terms that we use
within our proof. In particular, these definitions also enumerate the possible
checks that an adversary can perform as part of its strategy. Note that the
adversary’s goal given (F,X, d) is to distinguish whether (F, d) were created
from an e0 ← ε(X,x0) or from an e1 ← ε(X,x1).

We begin by defining input encoding compatibility for projective garbling
schemes.

Definition 6 ((x,X, e)-compatibility). For a projective garbling scheme, we
say that a tuple (x,X, e) ∈ {0, 1}n × {0, 1}nℓ × {0, 1}2nℓ is encoding compatible
if and only if X = En(e, x).

Our garbling scheme is indeed a projective garbling scheme. Typically, dur-
ing garbling, the input encoding set e and the function input x are first fixed
before En(e, x) = X gives the active input labels. However, in Algorithm 8, the
challenger C first samples X and then eb is sampled from ε(X,xb), that is the
set of all e such that (xb, X, e) are compatible (Definition 6). Looking ahead, our
proof will show that given (X, f, x0, x1), when no RO queries are made, for every
encoding compatible triplet (x0, X, e0) there exists an equally likely compatible
triplet (x1, X, e1). As a consequence, for a secret eb, it becomes impossible to
say from the given information V(F,X, d) whether it is e1 or e0.

Our next definition is about random oracle (RO) compatibility for our
construction for a single garbled gate.

Definition 7 ((W i, ti)-compatibility). For a gate indexed i, let the tuple of
labels W i = ((LA

0 , L
A
1), (L

B
0 , L

B
1)) ∈ {0, 1}2ℓ × {0, 1}2ℓ be its input labels. Then

for a tuple of intermediate values ti = (Xi
00, X

i
01, X

i
10, X

i
11) ∈ {0, 1}4ℓ we say

that W i and ti are RO-compatible for a fixed random oracle RO0 if and only if

20

it holds that,

Xi
00 = ROi

0(L
A
0 , L

B
0)

Xi
01 = ROi

0(L
A
0 , L

B
1)

Xi
10 = ROi

0(L
A
1 , L

B
0)

Xi
11 = ROi

0(L
A
1 , L

B
1)

Definition 7 points to the necessity of making RO calls in order to check
if certain wire labels were indeed used to create the garbled gate. In order to
extend Definition 7 from the case of a single gate, to that of all the gates of a
complete garbled circuit, it is first necessary to define what would be a set of
compatible internal wires.

Definition 8 ((e,W)-compatibility). For a garbled circuit, let e ∈ {0, 1}2nℓ
be the set of labels for the input wires. Letting q be the number of gates, let
W ∈ {0, 1}4qℓ be the set of labels for wires that are input to all the gates of the
circuit where W = [W 1, . . . ,W q] and each W i ∈ {0, 1}2ℓ × {0, 1}2ℓ is the set of
input labels to the gate indexed i. We say that e and W are compatible if for
a fixed choice of random oracles RO0 and RO1 for each gate, it holds that W
is derived from running Circuit(f, e) as in Algorithm 8. For this set of random
oracles (RO0, RO1), we say that e extends to W .

We now use this to define circuit RO compatibility for all the gates in a
circuit.

Definition 9 ((e, t)-compatibility). For a garbled circuit, let e ∈ {0, 1}2nℓ
be the set of labels for the input wires. Letting q be the number of gates, for a
sequence of tuples t = [t1, . . . , tq] we say that e and t are compatible if and only
if there exists a set of wire labels W = [W 1, . . . ,W q] such that e and W are wire
compatible as in Definition 8, and for every gate i ∈ [q] the pair (W i, ti) is RO
compatible according to Definition 7.

Note that for any set (e, t) with the correct dimensions, there exists some
random oracles RO0 and RO1 that make these compatible as in Definition 9.
However, when running Circuit(·) (Algorithm 8) the random oracle has been fixed
to exactly one instance by the garbler. This post-hoc nature is an important
aspect of Definitions 7–9. Our proof will show that the adversary cannot exploit
the fact that the random oracle has been fixed, and that information can only
be learnt through querying it as if it were not.

The next definition is about gate logic compatibility.

Definition 10 ((ti,∇i)-compatibility). For a gate indexed i, a tuple of inter-
mediate values ti = (Xi

00, X
i
01, X

i
10, X

i
11) ∈ {0, 1}4ℓ and a string ∇i ∈ {0, 1}ℓ are

said to be ∧-compatible (resp., ⊕-compatible) if and only if for every bit position
j ∈ [ℓ], the string (Xi

00[j], X
i
01[j], X

i
10[j], X

i
11[j],∇i[j]) ∈ {0, 1}5 is consistent

with a row in (the first 5 columns of) Table 1 (resp., Table 2).

21

Recall that the random oracles are fixed by the challenger during garbling.
We show in our proofs that from the adversary’s point of view, while examining
a particular gate, the only way for it to create a compatible (W i, ti) pair (Defini-
tion 7) is by querying the RO. Then, the only way for it to verify if this candidate
for ti is valid, is to check for (ti,∇i) compatibility (Definition 10). Therefore,
after the challenger fixes a garbled circuit F , for an adversary to narrow down
an e from which it was created, the above checks become necessary.

Definition 10 can be extended from a single gate case to a definition for logic
compatibility.

Definition 11 ((t, F)-compatibility). Letting q be the number of gates in the
garbled circuit F , for a sequence of tuples t = [t1, . . . , tq], and the sequence of
garbled gates F = [∇1, . . . ,∇q], we say that (t, F) are logically compatible if and
only if for every gate i ∈ [q] it holds that (ti,∇i) are compatible according to
Definition 10.

Finally, Definitions 8-11 can be compiled to the definition below that charac-
terizes a compatible garbling and allows for correct decoding of the function
output.

Definition 12 ((e, F, d)-compatibility). For a garbled circuit F , let e be a se-
quence of input wire labels and q be the number of gates. Let F = [∇1, . . . ,∇q] be
the sequence of garbled gates and let d ∈ {0, 1}mℓ be a sequence of output decoding
labels. We say that (e, F, d) are compatible if and only if on fixing random ora-
cles (RO0, RO1, RO2) there exists a set of tuples t = [t1, . . . , tq] for which (e, t)
are compatible (Definition 9) and (t, F) are logically compatible (Definition 11).
The output decoding labels in d = [d1, . . . , dm] are of the form dj ∈ {0, 1}ℓ.
It additionally holds that for every output bit index j, and output wire labels
(Lj

0, L
j
1),

lsb(RO2(L
j
0, dj)) = 0 and lsb(RO2(L

j
1, dj)) = 1

The end goal of the adversary in the privacy game is to distinguish for a
given (F, d), whether the eb compatible (Definition 12) with it comes from the
set ε(X,x0) or ε(X,x1). We now proceed towards detailing the proof.

3.4.2 Proof We open with the observation that the only values depending
on b are eb, F , and d. Since (F, d) are computed deterministically from eb, it is
enough to consider how b affects the distribution of eb as a random variable.
Definition 5 and Equation 3 formalize this.

Adv with (f, x0, x1). We first look at the a-priori advantage of the adversary A
before the execution of Algorithm 8. Before analyzing the concrete advantage,
we show through Lemma 2 that for any (X,x0, x1) ∈ {0, 1}nℓ×{0, 1}n×{0, 1}n,
|ε(X,x0)| = |ε(X,x1)|.

Lemma 2. For any (X,x), |ε(X,x)| = (2ℓ − 1)n.

22

Proof: Consider e ∈ ε(X,x) ∈ {0, 1}2nℓ. In projective schemes we can decom-
pose e into its components

e = e1, . . . , en

such that ej is associated with an input wire j ∈ [n] and this can be further
decomposed into ej = [Lj

0, L
j
1] where Lj

0 is understood to be the label encoding

the 0-semantics of wire j and Lj
1 the wire’s 1-semantics. For fixed X and x, this

fixes n labels and their positions in e, one for each ej . Therefore, there remain
n labels to choose. Each label Lj

1−xj
∈ ej can be a string in {0, 1}ℓ. However, it

cannot be equal to the label Lj
xj
∈ X. This gives 2ℓ − 1 possibilities.

On considering the full set of n wires, this gives (2ℓ − 1)n possibilities. ⊓⊔

Therefore, for any choice of x0 and x1 of the adversary, A cannot bias the
distribution from which eb is selected.

Adv given (f, x0, x1, X). Now, consider the case that A is additionally given X.
Note that given this information, an unbounded adversary can enumerate over
all the elements of the set ε(X,x0) and ε(X,x1). From Lemma 2 it follows that
ε(X,x0) and ε(X,x1) are of the same size. We show in Lemma 3 below that for
any X, both these sets are disjoint.

Lemma 3. For any X and x1 ̸= x0, ε(X,x1) ∩ ε(X,x0) = ϕ.

Proof: Consider for the sake of contradiction that this is not the case and
ε(X,x1) ∩ ε(X,x0) ̸= ϕ. Then there exists some input wire labels set e such
that e ∈ ε(X,x1) and e ∈ ε(X,x0). Note that x1, x0 ∈ {0, 1}m and x1 ̸= x0. So
there exists an index i ∈ [m] such that x1[i] ̸= x0[i]. Without loss of generality
let x1[i] = 1. For the set of active labels X, let Li ∈ X be the label in the ith

position. Then, in e, for the ith input wire, both the 0-label (from x0) and the
1-label (from x1) would be Li. This yields a contradiction since both labels for
the same wire cannot have the same value. ⊓⊔

From Lemma 2 and Lemma 3 it follows that for a fixed X,x0, x1, and every
e0 compatible with (X,x0), there exists an e1 compatible with (X,x1).

Pr[eb ∈ ε(X,x0)|X,x0, x1, f] = Pr[eb ∈ ε(X,x1)|X,x0, x1, f] =
1

2
(4)

This holds since b ∈ {0, 1} is uniformly distributed, and ε(X,x0) and ε(X,x1)
are disjoint and of equal size.

Note that (xb, X, eb) are by construction encoding compatible (Definition 6).
It is also independent of the function f . Therefore, rewriting Equation (4) in
terms of Definition 5, we have that,

Adv =

∣∣∣∣Pr[eb ∈ ε(X,x0)|X,x0, x1, f]− Pr[eb ∈ ε(X,x1)|X,x0, x1, f]

∣∣∣∣ = 0

23

Adv given (f, x0, x1, F,X, d). Now consider the situation where the adversary
A is given the full challenge set (F,X, d) but is yet to make any queries to the
random oracle. The following lemma shows that when Q∪H = ∅ the advantage
is 0.

Lemma 4. Given Garble(f, x0, x1)→ (F,X, d) as in Algorithm 8, it holds that∣∣∣∣Pr[eb ∈ ε(X,x0)|V(F,X, d)]− Pr[eb ∈ ε(X,x1)|V(F,X, d)]

∣∣∣∣ = 0

Proof: For each gate, recall that by Definition 10 the pair of W i and ti values
are separated by a random oracle RO0. By the definition of the random oracle,
the only way to determine if W i and ti are compatible is by querying it. Since
no queries were made by assumption, the adversary has no way to identify the
event (eb, F, d) are compatible (Definition 12) for any choice of eb. The lemma
follows since without querying the random oracle (F, d) and e are independent
and we already had that the a-priori advantage is 0. ⊓⊔

Fixing the Random Oracles. Note that when the challenger C was garbling using
Circuit(·) in Algorithm 8, the random oracles (RO0, RO1, RO2) were fixed. Let Q
be the set of adversarial random oracle queries and without loss of generality, let
us consider queries to RO0. When we wish to discuss information the adversary
learns from queries made to the random oracle, we write V(Q).

We already know from Lemma 1 that when the random oracle is looked at in
isolation, a set of queries reveals no more information to the adversary beyond
the set of responses. Lemma 1 holds for both honest queries in H and adversarial
queries in Q alike. Let W be the wire labels set compatible with eb (Definition 8).
For a candidate label L ∈ Q that is queried, either L ∈W or L ̸∈W . If L ∈W ,
it follows that information about eb, beyond (F, d), is revealed. If, in the worst
case, eb ∈ Q then all the randomness used in garbling (F, d) ∈ V(Q) along with
the challenger’s bit b. In contrast, querying labels L ̸∈W eliminates all wire sets
W ′ that contain L, and their corresponding e, from being possible candidates
for eb.

We examine the a-priori statistical distance of the distribution of compatible
(e, F,X, d) when e ∈ ε(X,xb) and when e ∈ ε(X,x1−b) over a random choice of
the random oracles. Going forward, we term as a false positive, the event that
(e, F, d) is compatible (Definition 12) given that e ̸= eb, where eb is the input
encoding set that the challenger used to compute (F, d). The following lemmas
facilitate this calculation.

Lemma 5. In Algorithm 8, for every input encoding set e such that e ̸= eb and
over a random choice of the RO,

Pr[(e, F, d) is compatible (Definition 12)] ≤ 0.75qℓ

24

Proof: By definition, e ̸= eb. However, it could be the case that for some input
encoding set e ∈ ε(X,xb) ∪ ε(X,x1−b), the random oracle mapping is such that
(F, d) is also compatible with e even though e ̸= eb.

Let the circuit have q gates. For a particular garbling F = {∇1, . . . ,∇q}, let
us first consider one gate with the index i. Recall that a gate garbling ∇i is de-
rived according to either Table 1 or Table 2 given a set ti = (Xi

00, X
i
01, X

i
10, X

i
11).

Given ∇i, we count the number of possibles tuples ti =
(Xi

00, X
i
01, X

i
10, X

i
11) ∈ {0, 1}4ℓ that can be compatible with it (Defini-

tion 10). This corresponds to a uniformly random choice of random oracle
outputs from ROi

0.

∇i is an ℓ-bit string and each bit position ∇i[j] is created as a function
of the bits ti[j] = (Xi

00[j], X
i
01[j], X

i
10[j], X

i
11[j]). From the 16 columns in Ta-

bles 1 and 2, there are 4 possible combinations of ti[j] for which ∇i[j] = 1, and
12 combinations for which ∇i[j] = 0. Let us denote by Hw(∇i) the hamming
weight of ∇i (the number of 1s in ∇i). Then the number of possible compatible
choices of ti would be upper bounded as,

4Hw(∇i) · 12ℓ−Hw(∇i) = 4ℓ · 3ℓ−Hw(∇i) ≤ 12ℓ

Now, we count the number of t = {t1, . . . , tq} that are compatible (Defini-
tion 11) with the whole garbled circuit F = {∇1, . . . ,∇q}. This is bounded by
12qℓ. Note that for each of the q gates, the random oracles behave independently
for each gate due to the tweaks and we count over all possible RO0 responses.
The total number of possible sets, compatible and incompatible, t ∈ {0, 1}4qℓ is
24qℓ. So, for any input encoding set e ̸= eb (that extends to a unique W (Def-
inition 8) that gives a unique t), the probability that e is compatible is upper

bounded by 12qℓ

16qℓ
= 0.75qℓ. Ergo,

Pr[(e, F, d) is compatible|e ̸= eb chosen by challenger] ≤ 0.75qℓ,

which completes the proof of this lemma.

⊓⊔
Putting in plain words, the above corollary analyses the probability that

some input encoding set e is compatible with (F, d) when the challenger garbles
(F, d) from an eb ̸= e.

We now show that the number of false positives in ε(X,xb) and ε(X,x1−b)
is normally distributed and statistically close.

Lemma 6. In Algorithm 8, for b ∈ {0, 1}, the number of false positives in

ε(X,x1−b) is normally distributed with mean µfp
ε(X,x1−b)

= 0.75qℓ(2ℓ − 1)n and

variance σfp2

ε(X,x1−b)
= 0.75qℓ(1− 0.75qℓ)(2ℓ − 1)n, i.e.,

b1−b
fp ∼ N

(
0.75qℓ(2ℓ − 1)n, 0.75qℓ(1− 0.75qℓ)(2ℓ − 1)n

)

25

Proof: By construction, e ̸= eb thus any compatible e is a false positive by
definition and we know from Lemma 5 that

Pr[(e, F, d) is compatible] ≤ 0.75qℓ

where q is the number of gates in the circuit and ℓ is the length of the label. From
Lemma 2 there are N = (2ℓ − 1)n candidates e ∈ ε(X,x1). As the candidates
are independent due to the properties of the random oracle, we can model the
distribution of false positives in ε(X,x1−b) as a binomial random variable

bfp ∼ B((2ℓ − 1)n, 0.75qℓ)

Using the normal approximation to the binomial distribution we obtain

bfp ≈ N
(
0.75qℓ(2ℓ − 1)n, 0.75qℓ(1− 0.75qℓ)(2ℓ − 1)n

)
and the lemma follows. ⊓⊔

Lemma 7. In Algorithm 8, for b ∈ {0, 1}, the number of false positives in
ε(X,xb) is normally distributed with mean

µfp
ε(X,xb)

= 0.75qℓ((2ℓ − 1)n − 1) = µfp
ε(X,x1−b)

− 0.75qℓ

and variance

σfp2

ε(X,xb)
= 0.75qℓ(1− 0.75qℓ)((2ℓ − 1)n − 1) = σfp2

ε(X,x1−b)
− 0.75qℓ(1− 0.75qℓ)

i.e.,

bbfp ∼ N
(
0.75qℓ((2ℓ − 1)n − 1), 0.75qℓ(1− 0.75qℓ)((2ℓ − 1)n − 1)

)

Proof: The proof follows the same analysis as that of Lemma 6. ⊓⊔

Focusing only on false positive values, we see that the statistical distance between
b0fp and b1fp is rather small. Formally, it is bounded by the difference between the
two distributions,

bfp =

∣∣∣∣bbfp − b1−b
fp

∣∣∣∣
This variable is also normally distributed with mean,

µ = µfp
ε(X,xb)

− µfp
ε(X,x1−b)

= µfp
ε(X,x1−b)

− 0.75qℓ − µfp
ε(X,x1−b)

= −0.75qℓ

26

and variance,

σ2 = σfp2

ε(X,xb)
+ σfp2

ε(X,x1−b)

= σfp2

ε(X,x1−b)
− 0.75qℓ(1− 0.75qℓ) + σfp2

ε(X,x1−b)

= 2σfp2

ε(X,x1−b)
− 0.75qℓ(1− 0.75qℓ)

Therefore we have that, the random variable bfp counting the difference
between the distributions,

(
(e, F, d) compatible|e ̸= eb, e ∈ ε(X,x0)

)
and(

(e, F, d) compatible|e ̸= eb, e ∈ ε(X,x1)
)
, is distributed as,

bfp ∼ N
(
− 0.75qℓ, 2

(
0.75qℓ(1− 0.75qℓ)(2ℓ − 1)n

)
− 0.75qℓ(1− 0.75qℓ)

)
Now, when we take into account that eb ∈ ε(X,xb) chosen by the challenger is

compatible with (F, d), and that this is just one element in (2ℓ−1)n total, we have
the random variable diff that counts the difference between the distributions,(
(e, F, d) compatible|e ∈ ε(X,x0)

)
and

(
(e, F, d) compatible|e ∈ ε(X,x1)

)
. This

is distributed as,

diff ∼ N
(
(2ℓ − 1)−n − 0.75qℓ, 2

(
0.75qℓ(1− 0.75qℓ)(2ℓ − 1)n

)
− 0.75qℓ(1− 0.75qℓ)

)
(5)

Note again that the goal of the adversary is to identify which set, ε(X,x0)
or ε(X,x1) the challenger’s secret input encoding set eb came from, given only
(F,X, d). We calculate the a-priori statistical distance between the distributions
before any RO query is made. Over a random choice of the RO, given the chal-
lenge (F,X, d), and an arbitrary choice of e, for the secret choice bit b of the
challenger, the statistical distance can be compactly described by the mean of
the above random variable,∣∣∣∣Pr[(e, F, d) compatible|e ∈ ε(X,xb),V(F,X, d)]−

Pr[(e, F, d) compatible|e ∈ ε(X,x1−b),V(F,X, d)]

∣∣∣∣ ≤ (2ℓ − 1)−n − 0.75qℓ

Now, we need to show that if the access to the RO is limited only to honest
queries H and permissible sets Q (Definition 4), then the adversary’s advantage
in distinguishing between these distributions, e ∈ ε(X,x0) and e ∈ ε(X,x1), is
still bounded by 2−ρ for a statistical security parameter ρ. We require that this
bound hold for all choices of the set Q that the adversary can possibly make.
Let |Q| = s be the bound on the number of queries.

Honest Queries. Recall that H is the set of all honest queries. For m output
bits and q being the number of gates in F , |H| = 2q +m. It is easy to see that

27

given (F,X, d) making all the queries in H reveals the active path in F to the
adversary. That is, with the input labels in X, one can evaluate the garbled
circuit to find f(xb). Note that f(x0) = f(x1) so the output itself reveals no
information on b. This evaluation reveals for every wire wj , an active label Lj .
Let the set of wire labels WX ⊂ W be the ones that are revealed. Further, for
each gate j, one value Xj ∈ tj is revealed. Recall that we already establish from
Lemma 4 that given V(F,X, d) the adversary has 0 advantage. For both x0 and
x1, the same set X is the active input labels set. Given F , during the garbling,
the active path revealed was generated deterministically depending only on X.
Since for the cases b = 0 and b = 1, the garbling F is different, the active paths
will contain different values.

However, for any gate i, the adversary having two active input labels LA
X and

LB
X can query ROi

0 to derive only one active Xi. We know from the property of
the RO (Lemma 1) that this reveals no information about other query to response
mappings and so nothing about other candidate inactive labels. Given Xi and
∇i ∈ F , it is a property of how ∇ is constructed that it reveals no information
about the other Xi′ values in the tuple ti. Although one can compute the active
key Ki from this, it reveals nothing about the inactive Ki′ . Further, we know
(Lemma 1) that ROi

1 when queried with the active key reveals nothing beyond
the active output label LC

X . This holds, by induction, for every gate in the circuit.
We know from Lemma 1 that the queries in H will reveal no information

beyond this active path. So, the adversary’s view does not give it any advantage
in finding b.∣∣∣∣Pr[eb ∈ ε(X,x0)|V(F,X, d,H)]− Pr[eb ∈ ε(X,x1)|V(F,X, d,H)]

∣∣∣∣ = 0

Adversarial Queries. We are now considering the case where all honest queries
in H are already made and it only remains to make adversarial queries. This is
without loss of generality since making adversarial queries without making the
honest queries first gives the adversary strictly lesser information than making
them after all honest queries are made. Going forward, we analyse the advantage
of the adversary given it’s complete view,

Adv =

∣∣∣∣Pr[eb ∈ ε(X,x0)|V(F,X, d,H,Q)]− Pr[eb ∈ ε(X,x1)|V(F,X, d,H,Q)]

∣∣∣∣
Without loss of generality, consider the queries made to RO0. For a gate

indexed i with input wires A and B, let LA
X and LB

X be the active labels that
are already derived from X due to queries in H. The adversary can now select
candidate inactive labels LA′

and LB′
and test these with the active labels using

the random oracle. On compiling the random oracle responses, this would form a
candidate ti that can be checked for compatibility with ∇i ∈ F (Definition 10).
We already know from the analysis of the proof for Lemma 5 that up to 12ℓ out
of the total 16ℓ possible ti values are compatible.

We bound the adversary’s advantage on a single query. Consider just the wire
A. An adversary chooses a candidate inactive label LA′

for it. It performs one

28

random oracle query ROi
0(L

A′
, LB

X) → Xi′ . This Xi′ is part of a candidate ti

that has probability up to 12ℓ

16ℓ
= 0.75ℓ of being compatible with ∇i. Therefore,

the probability that the label LA′
leads to a compatibility is bounded by,

Pr[LA′
is compatible] ≤ 0.75ℓ

Next, we bound the information revealed when the candidate LA′
for an

input wire label is found to be incompatible. We know from Lemma 2 that the
total number of input encoding sets e fixed at the active labels X is (2ℓ − 1)n.
Disqualifying a candidate inactive label LA′

for the Ath input bit effectively
disqualifies all the input encoding sets e′ with LA′

at position A. Since the other
labels could take any value, the total number of disqualified input encoding sets
is (2ℓ − 1)n−1. Therefore, the advantage would be,

(Adv|LA′
is incompatible) =

(2ℓ − 1)n−1

(2ℓ − 1)n
=

1

2ℓ − 1

Note that considering the input wire labels only is good enough to hold with-
out loss of generality for any wire of the circuit. This is because any internal wire
is separated from the input encoding set by additional random oracle calls. An
adversary cannot query the RO for the inverse mapping of a label. Hence, dis-
qualifying candidate inactive labels for an internal wire without knowing which
input wire label it extends (Definition 8) from reveals no information.

Therefore, we have that a single RO call corresponding to the adversary’s
candidate inactive label LA′

for wire A bounds A’s advantage by,

Adv = (Adv|LA′
is compatible) · Pr[LA′

is compatible]

+ (Adv|LA′
is not compatible) · Pr[LA′

is not compatible]

≤ Pr[LA′
is compatible] + (Adv|LA′

is not compatible)

≤ 0.75ℓ +
1

2ℓ − 1

≤
(
3

4

)ℓ

+

(
1

2

)ℓ

=
3ℓ + 2ℓ

22ℓ

(6)

We are now ready to present our main theorem:

Theorem 1. Let Circuit be as in Algorithm 2. Then every oracle adversary A
with f(ρ, ℓ) = ℓ− ρ− 1 (Definition 3) has an advantage Adv < 2−ρ in the Input
Privacy game (Algorithm 8) where ρ is a statistical security parameter.

29

Proof: Let s be the number of queries made in Q. For statistical security
parameter ρ, keeping in mind that Adv < 2−ρ, we have from (6) that,

s · 3
ℓ + 2ℓ

22ℓ
< 2−ρ

s(3ℓ + 2ℓ) < 22ℓ−ρ

s < 2−ρ 22ℓ

(3ℓ + 2ℓ)

< 2−ρ 22ℓ

2ℓ+1

= 2ℓ−ρ−1

This matches the number of queries allowed in a permissible set Q (Definition 4).
Note that this number of queries allowed grows exponentially in ℓ. ⊓⊔

Acknowledgments Tomer Ashur is an FWO post-doctoral fellow under Grant
Number 12ZH420N. Anasuya Acharya, Efrat Cohen and Carmit Hazay were
supported by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office, and by ISF grant No. 1316/18.

References

BHR12. Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of gar-
bled circuits. In ACM CCS, pages 784–796, 2012.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity
of secure protocols (extended abstract). In ACM, pages 503–513, 1990.

CFIK03. Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient
multi-party computation over rings. In EUROCRYPT, pages 596–613, 2003.

HK20. David Heath and Vladimir Kolesnikov. Stacked garbling - garbled circuit
proportional to longest execution path. In CRYPTO, pages 763–792, 2020.

IK00. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new repre-
sentation with applications to round-efficient secure computation. In FOCS,
pages 294–304, 2000.

IK02. Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computa-
tion via perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

Ish13. Yuval Ishai. Randomization techniques for secure computation. In Secure
Multi-Party Computation, volume 10 of Cryptology and Information Security
Series, pages 222–248. 2013.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In ACM, pages
20–31, 1988.

KL14. Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. 2014.

KMR14. Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible
garbling for XOR gates that beats free-xor. In CRYPTO, pages 440–457,
2014.

30

Kol05. Vladimir Kolesnikov. Gate evaluation secret sharing and secure one-round
two-party computation. In ASIACRYPT, pages 136–155, 2005.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free
XOR gates and applications. In ICALP, pages 486–498, 2008.

LP09. Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for
two-party computation. J. Cryptol., 22(2):161–188, 2009.

NPS99. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions
and mechanism design. In ACM-EC, pages 129–139, 1999.

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.
Secure two-party computation is practical. In ASIACRYPT, pages 250–267,
2009.

RR21. Mike Rosulek and Lawrence Roy. Three halves make a whole? beating the
half-gates lower bound for garbled circuits. In CRYPTO, pages 94–124,
2021.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In FoCS, pages 162–167, 1986.

ZRE15. Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole -
reducing data transfer in garbled circuits using half gates. In EUROCRYPT,
pages 220–250, 2015.

31

	A New Approach to Garbled Circuits

