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Abstract. Garbled circuits are a fundamental cryptographic building
block to encode Boolean circuits as a sequence of encrypted values. This
sequence allows two parties to securely evaluate the circuit, e.g., without
revealing their respective inputs. At the heart of any garbling scheme lies
a randomized algorithm projecting the plain values into a larger domain.
Emerging from a large body of work, the common paradigm meets two
implicit properties: the circuit is garbled progressively gate-wise; and
all underlying algorithms are linear. In this setting, the communication
complexity is measured in the number of sent ciphertexts and shown to
be optimal with a scheme sending two ciphertexts per AND gate and no
ciphertexts per XOR gate (Zahur, Rosulek and Evans, Eurocrypt’15).
We revisit the common paradigm and extend the seminal work of Bellare,
Hoang, and Rogaway from CCS 2012 to present for the first time an
abstraction of the garbling algorithm itself. This abstraction highlights
how Yao’s work (Yao, FOCS’86) and all its optimizations focused on
improving just one aspect of the garbling. We then discuss how improving
the other aspects could provide new ways to overcome the limitations of
existing schemes. As a proof of concept we present a non-bijective scheme
avoiding Zahur et al.’s bound, achieving a communication complexity of
a single data item which is not a ciphertext.

Keywords: Garbling Schemes· Abstraction· Lower Bound

1 Introduction

The theory and practice of garbled circuits has been the focus of a long line
of research, starting from the seminal work of [Yao86]. The main application of
garbled circuits is constant round secure two-party computation protocol (2PC)
[LP09], where two parties perform a distributed computation, protecting to the
extent possible the secrecy of their inputs and the correctness of the outputs. This



protocol proceeds by having the sender randomly generate an encoded version of
the circuit, referred to as a garbled circuit, together with input labels.6 It sends the
garbled circuit to the receiver along with the input labels corresponding to the
sender’s input values, and allows the receiver to obtain the labels corresponding
to their own input values using oblivious transfer (OT). From the garbled circuit
and the input labels, the receiver can compute the output.

The common paradigm in garbled circuit operates at the gate level where
the truth table of each gate is encoded separately (this is also known as the
‘gate-by-gate paradigm’). The garbling procedure follows by choosing a pair
of labels for each wire and encrypting each gate using an encryption scheme
that takes a pair of input labels as a secret key, and an output label as plain-
text. The underlying cryptographic primitive is symmetric (e.g., a pseudorandom
function (PRF) or a correlation robust hash function) which yields extremely
fast algorithms. This paradigm led to a long sequence of successful optimiza-
tions that established garbled circuits as a practical tool for achieving 2PC, e.g.,
[BMR90,NPS99,KS08,PSSW09,KMR14,ZRE15].

The complexity of garbling schemes. Most of the effort in pushing the practical
limitations of garbling schemes has been devoted to reducing the communica-
tion complexity of the garbled circuit size, which is measured by the number
of ciphertexts sent per gate. By now, the communication complexity of garbled
circuits (in the random oracle model) requires two ciphertexts for each AND
gate and no ciphertexts for XOR gates [ZRE15], which has also been shown to
be optimal. On the other hand, all garbling algorithms require at least four calls
to the cryptographic object (i.e., a function or an oracle) per AND gate. We are
not aware of any previous works trying to reduce the computation complexity.

A property met by all garbling schemes is projectivity [BHR12]; in a projec-
tive scheme, each circuit wire is encrypted by one of two possible labels, where
one label corresponds to 0 and the other to 1. (this property is also known as de-
composability, see [App17]). Projective garbling schemes imply input encoding
size that grows with |x| · κ where κ is the security parameter.

The [ZRE15] lower bound. Towards explaining our new abstraction, it is in-
structive to examine the limitations imposed by the lower bound on the number
of ciphertexts per gate. In this paper, Zahur et al. considered a model captur-
ing all exiting techniques for practical garbling (including followup schemes),
proving that it is not possible to garble a single AND gate with a single cipher-
text. This proof only applies for linear garbling schemes, namely, when both the

6 The existing literature interchangeably uses the terms keys and labels (and some-
times also tokens which we do not use). In this paper we make a distinction between
keys and labels. We use the term keys when we want to stress that we speak of a
random input to a cryptographic primitive (e.g., the secret-key of a block cipher);
the term label is used when we want to stress that we speak of an encoded wire value
in an analogue way to a plaintext or a ciphertext. In previous works, these notions
converge since the wire labels are used as keys to e.g., a PRF. However, as this is
not the case in our scheme, making the distinction necessary.
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garbling and the evaluation algorithms only use linear operations outside the
cryptographic primitive, following the gate-by-gate paradigm.

This lower bound implies that any improvement over current schemes will
require a radically different approach to garbled circuits.

Prior related work. With the aim of circumventing [ZRE15]’s lower bound,
Kempka et al. [KKS16] introduced a new garbling scheme deviating from the
linear garbling model. Their scheme allows to encode an AND gate with fewer
than two κ-bit ciphertexts in cases where at least one of the gate’s input wires is
a circuit input wire. Similarly to ours, their proof also holds in the random or-
acle model. Nevertheless, our contributions are fundamentally different. Whilst
[KKS16] presented a new scheme, we provide a new abstraction which allows to
deviate from the standard garbling approach, offering a new scheme merely as
a proof of concept.

1.1 Our Contribution

Our starting point is the observation that all previous works focused on the input
domain: a gate is associated with four labels, each label encoding a single value
of one input wire. Each pair of labels (four in total) is used as a secret key to an
encryption scheme, hiding the output labels.7 Recalling the distinction between
keys and labels from Footnote 1, we suggest that since the goal is to hide the
output labels, of which there are only two, only two keys (and therefore only
two primitive calls) are required.

To provide a theoretical framework for this observation, we abstract the
garbling procedure and conclude that it is fully parameterized by three functions
(f0, f1, f2) and an ordering on the gates.

To show that this abstraction is meaningful, we first show that it captures
all previous work. In particular, we show that Yao’s approach garbled circuits
is but one instance of this abstraction influencing all subsequent optimizations.
Furthermore, the new abstraction facilitates a nuanced discussion of properties
associated with garbling schemes. For example, projectivity is a property of f0
while linearity is a property of f1.

Focosuing on f1, we generalize linearity and identify a new property: injec-
tivity. A garbling scheme is said to be injective if it maps the four input labels
into four distinct keys. Yao’s garbling, its extensions, and in particular, linear
schemes, are all injective garbling schemes.

Our observation that an output wire is associated with only two labels, and
therefore, requires a shorter source of randomness is addressed by the notion
of non-injective schemes. Non-injective schemes map the four initial labels into
fewer than four encryption keys. Non-injective schemes are by definition non-
linear, allowing them in principle to circumvent [ZRE15]’s lower bound. To show
that this is indeed the case, we instantiate such a scheme via what we call

7 In [BHR12], this encryption scheme was modeled as a dual-key encryption scheme.
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a compress-then-collapse garbling approach. We prove that this construction
satisfies the privacy and authenticity security definitions due to [BHR12]. The
scheme achieves a communication complexity of a single data item for both AND
and XOR gates. This data item does not encode a value, hence we do not consider
it to be a ciphertext (or a label).

Proving the security of this scheme requires new tools and proof techniques;
all of independent interest. As a by-product of our novel proof technique, we
achieve a new notion of authenticity, namely strong authenticity, which prevents
the evaluator from learning the inactive labels of any wire, not just circuit output
ones. Strong authenticity, which is of independent interest, is then used in our
privacy proof.

We stress that this new garbling scheme is not meant as a drop-in replacement
for existing garbling schemes, and in many ways it is inferior to the state of the
art. Instead, it serves to show the power of our new paradigm, hoping that
future work would be able to utilize the abstraction better, eventually pushing
the envelope with respect to linear schemes.

2 Our New Abstraction

In this section we present our new abstraction. After recalling some preliminaries
in Subsections 2.1, we present and explain our new abstraction in 2.2. Subsection
2.3 gives an overview of possible research directions arising naturally from this
abstraction.

2.1 Preliminaries

We provide te definitions and notations we use throughout the paper, and recall
the work of Bellare et al.

Basic notations. We denote the computational and statistical security param-
eters by κ and σ, respectively, ` is the labels’ length. We say that a function
µ : N → N is negligible if for any positive polynomial p(·) and any sufficiently
large κ it holds that µ(κ) < 1

p(κ) . We use the abbreviation PPT to denote

Probabilistic Polynomial-Time and denote by X
c
≈ Y computational indistin-

guishability between the two ensembles X and Y . We denote by [n] the set of
elements {1, . . . , n} for some n ∈ N. We use ∧ for the AND operation on two
bits and & for bitwise AND on strings. For a bit string X we denote by X[i] the
i-th bit of X.

Circuit syntax. A Boolean circuit C : {0, 1}n → {0, 1}m has n input wires
enumerated by the indices 1, . . . , n, and m output wires enumerated by n+ q −
m+ 1, . . . , n+ q, where q = |C| is the number Boolean gates.8 The output wire
of gate j (also denoted by gj) is n+ j, which also implies that the gates satisfy

8 The convention is to comprise the circuit out of XOR and AND gates with fan-in 2.
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a topological order, allowing to speak of gi > gj when i > j. On occasion, we
abuse notation and use g as a synonym for the binary function described by this
gate. Namely, gj(a, b) is the result of the binary function of gate gj on the binary
inputs a and b. For example, if gj is an XOR gate then gj(a, b) = a ⊕ b. The
interpretation would always be clear from the context.

The Abstraction due to Bellare et al. Our starting point is the abstraction
due to Bellare et al. from [BHR12] that formalized garbling schemes using four
algorithms (Gb,En,Ev,De).9 At the heart of every garbling scheme lies the ran-
domized garbling algorithm Gb. As stated above, the most common type of a
garbling algorithm Gb encodes the circuit gate-by-gate, returning a set of garbled
gates; each such gate is described by a set of ciphertexts, obtained by encrypting
the output labels using the input labels as an encryption key. [BHR12] refers to
this kind of encryption as a dual-key cipher).

The corresponding encoding algorithm En that is associated with the above
garbling algorithm, outputs a label Kj

xj
∈ {Kj

0 ,K
j
1} for every circuit input wire

j ∈ [n], where xj is the input value on wire j.
The evaluation algorithm Ev that is carried out by the evaluator (or the

receiver in the 2PC application) is defined as follows. For each gate g in some
topological order: letKA,KB be the labels associated with the input wires of g as
obtained by the evaluator. Then, if g is an XOR gate, compute Kc = KA⊕KB

(as stated by the free-XOR optimization [KS08]). Otherwise, if g is an AND
gate decrypt one of the ciphertexts within the garbled table of g. Namely, set
KC = Dec(KA,KB ; ci) for 0 ≤ i ≤ 3, where ci is chosen as stated by the
point-and-permute optimization [BMR90].

The decoding algorithm De outputs the plain value y = C(x). This mapping
translates the output label Kj , associated with an output wire j, to the bit b
that Kj encodes.
The algorithms above are captured formally by Definition 1.

Definition 1 (Garbling scheme; [BHR12]). A garbling scheme (Gb,En,De,Ev)
consists of four polynomial-time algorithms defined as follows:

– (F, e, d)← Gb(1κ,C): is a probabilistic algorithm that takes as input a circuit
C with n input wires and m output wires; and returns a garbled circuit F ,
a set of encoding labels e, and a set of decoding labels d.

– X := En(e, x) is a deterministic algorithm that takes as input an encoding
information e and a plain value x; and returns the value’s encoding X.

– {⊥, y} := De(Y, d): is a deterministic algorithm that takes as input a decoding
information d and an output label Y ; and returns either the failure symbol
⊥ or a plain value y.

– Y := Ev(F,X): is a deterministic algorithm that takes as input a garbled
circuit F and a set of input labels X; and returns an output label Y .

9 For simplicity we omit the fifth algorithm ev and implicitly assume that the parties
agree to a certain Boolean circuit as the function’s description.
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Properties of Garbled Circuits

Correctness. We say that a garbling scheme is correct if for any κ ∈ N, for any
polynomial-size circuit C, all inputs x in the domain of C, and for all (F, e, d)
outputs of Gb(1κ,C) such that X := En(e, x) and Y := Ev(F,X), it holds that
y = C(x) where y := De(Y, d).

Privacy. We say that a garbling scheme is secure if there exists a PPT algo-
rithm S such that for any family of polynomial-size circuits Cκ and sequence of
polynomial-size inputs {xκ}κ (polynomial in κ),

{(F, d, e)← Gb(1κ,Cκ);X := En(e, xκ) : (F,X, d)}κ
c
≈

{y = C(xκ) : S (1κ,Cκ, y)}κ.

Authenticity. In the authenticity game the adversary receives a set of garbled
circuits, input labels, and their corresponding output labels; and outputs a new
output label. Authenticity is achieved when the adversary’s label corresponds
to a valid output only with negligible probability. Namely, the probability that
there exists a PPT adversary A such that the following event occurs with non-
negligible probability, is negligible.

(F, d, e)← Gb(1κ,Cκ);X := En(e, xκ); y := De(Y, d); y 6= Cκ(xκ) : Y ← A(F,X);

That is, the adversary cannot output an incorrect, yet valid, decoding informa-
tion.

Strong authenticity. The definition above for authenticity is generic to any (pro-
jective) garbling scheme. In our proof we consider a stronger definition. Each
wire is associated with two labels and in an honest evaluation of the garbled
circuit the evaluator obtains one label per wire. The labels known to the evalu-
ator are said to be active labels, whereas the rest are said to be inactive. Strong
authenticity is achieved when the adversary can obtain an inactive label of any
wire (not necessarily an output wire) only with negligible probability.

2.2 Abstracting the Garbling Procedure Anew

Having established the garbling notation, we are now ready to discuss our new
abstraction. In this work we focus our attention on the garbling algorithm Gb.
As stated above, our first observation is that [BHR12]’s garbling algorithm can
be further abstracted using three functions (f0, f1, f2), for label sampling, key
extraction and output hiding, respectively (see Algorithm 1).

The Label Sampling Function f0 This function assigns an `-bit label Kj to
each possible value that wire j can take. Collectively, the set of labels associated
with the wire is denoted by {Kj}. In particular, Yao’s scheme and all subsequent
optimizations decompose the circuit’s input into bits and each bit is assigned a
label (See also [App17]).
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Algorithm 1 Abstraction of the Garbling Procedure

1: for each wire j do . Label sampling (Section 2.2)
2: {Kj} ← f0()
3: end for
4: for every gate gi do
5: The set of input labels is {Kgi}
6: {Sgi} ← f1({Kgi}) . Key Extraction (Section 2.2)

7: Gi ← f2({Sgi}, {KC}) . Output hiding (Section 2.2)
8: end for
9: Return (F, e, d) where F = {Gi}i∈[n+1,n+q], e = {{Ki}}i∈[n] and d =
{{Ki}}i∈[n+q−m+q,n+q]

The Key Extraction Function f1 Under the gate-by-gate paradigm, this
function is applied to each gate independently. When applied to gi it receives as
input the set of labels associated with gi’s input wires, which we denote hereafter
by {Kgi}; and outputs a set of keys, which we denote hereafter by {Sgi}. These
keys are later used by the cryptographic primitive in f2 to hide the output labels
contained in the set {KC}.

We say that a scheme is injective if it maps the input set {Kgi} to a key set
{Sgi} of the same size. More specifically, following Yao’s approach, all previous
works suggested injective schemes with |{Kgi}| = |{Sgi}| = 4, forcing four calls
to the cryptographic primitive in f2 (e.g., by means of a PRF; or more gener-
ally, by means of a dual-key cipher). Non-injective schemes deviate from this
formulation by reducing the size of the output set, i.e., |{Kgi}| > |{Xgi}|, thus
also reducing the number of primitive calls in f2 and motivating our distinction
between labels (i.e., the inputs to this function) and keys (i.e., its outputs).

The Output Hiding Function f2 This function uses the outputs of f1, i.e.,
the set {Sgi}, as keys to a cryptographic primitive hiding the set of output labels
{KC}. Optimizing this part was the focus of almost all prior work, including
finding more efficient primitives [BHKR13], fixing one of the ciphertexts to a
known value [NPS99], or treating linear and non-linear gates differently [KS08];
however, they all assumed that there are four different keys and therefore, four
calls to the cryptographic primitive are necessary.

2.3 A Promising Vision

In fact, all previous works have made three implicit assumptions: (i) that f0
maps F2 to F2` (see [App17]); (ii) that f0 operates in a gate-by-gate manner;
and (iii) that f1 is injective. Combining the three assumptions means that f1
outputs four different encryption keys. These encryption keys are then used in
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f2, forcing four calls to the cryptographic primitive, and resulting in a garbled
table with four rows; i.e., the size of the garbled gate is 4` (cf. [LP09]).10

The new abstraction offers several opportunities. A research direction which
we do not explore at all is trying to link the individual functions (f0, f1, f2) with
security properties e.g., authenticity, privacy, and obliviousness. Achieving this
would allow generic constructions, possibly reducing the work effort in coming
up with new optimizations.

Considering the individual functions (f0, f1, f2), we note that they have a
cascading effect: the output of fi is the input to fi+1 and therefore the output
size of the former drives the complexity of the latter. This motivates an approach
seeking to apply optimizations as early as possible.

While this paper focuses on f1, we cannot see a reason why such optimizations
would not apply for f0. For example, we can envision a garbling scheme which
does not necessarily decompose the input into bits, but into larger chunks, thus
resulting in a smaller encoding of the input space. A second idea to explore is
to use labels represented by sets. That is, instead of using bitstrings of length `,
the label now consists of a set of bitstrings, all interpreted as encoding the same
value. Allowing a plurality of encodings leads in turn to shifting away from the
gate-by-gate paradigm by offering garbling schemes operating on larger gadgets.

Another approach for garbling larger gadgets can be obtained from extending
our compress-then-collapse approach. Observing that the number of input labels
grows with the size of the gadget, but the number of output labels remains the
same, a non-injective f1 can be used to collapse a larger number of intermediate
values instead of the four we consider. Furthermore, the compress-then-collapse
approach we present in this paper suffers from a few limitations making it sub-
optimal for practical use. We do not claim it to be ideal, and in fact, we believe
that there are more natural ways to instantiate f1. Moreover, this work does
not try at all to investigate the required security properties of the potential
cryptographic primitives it may use, and just conveniently use random oracles
to draw attention to the bigger picture. However, it is not clear that such heavy
machinery is needed in f2, and we conjecture that a much weaker (and thus
more efficient) primitive would suffice and can be proven secure.

For f2 we observe that reducing the output size of f1 can be used to reduce
the number of primitive calls. Although intuitively we believe that a random
oracle is unavoidable here, future research should look into this in a similar
manner to f1. Finally, as we show in the sequel, the two encryption keys coming
out from f1 can be used directly as a random seed to derive the output label,
thus allowing, at least in principle, to reduce the communication complexity.

A Concrete Scheme Concretely, in this paper we use a non-injective function
for f1, resulting in a smaller input to f2. More specifically, f1 takes four input
labels KA

0 ,K
A
1 ,K

B
0 ,K

B
1 ; and returns two keys S0 and S1 to be used in f2.

10 We make a distinction between the actual garbled table size and the number of table
entries (ciphertexts) that are communicated. Therefore, optimizations like garbled
row reduction reduce the communication but not the table size.
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We achieve this by employing two sub-functions in f1. The first of which,
which we model as a random oracle, compresses a 2`-bit pair of labels into an
`-bit intermediate value X. The second function then collapses the four `-bit
intermediate values into two `-bit keys which are given, together with additional
information describing the collapsing function, to f2.

A second optimization we propose is to use the two `-bit keys as seeds for
sampling the output labels rather than as random material to an encryption
scheme. This second optimization reduces the communication complexity, al-
lowing to send only the information for collapsing the values, as everything else
can be computed directly by the evaluator from known values.

3 A New Approach: Compress-Then-Collapse

Motivated by the new abstraction, we offer a scheme that makes use of non-linear
operations. Our novelty is in the garbling and evaluation algorithms which can
be found in Algorithms 2–3, respectively. The encoding and decoding algorithms
are quite standard and are provided in Algorithms 4–5 for completeness.

Below, we provide an overview of the new scheme and an intuitive explana-
tion, deferring a formal proof to Sections 4–5.

3.1 Garbling

Key Extraction Similarly to the classical Yao’s garbled circuit, f1 first splits
the four inputs, namely KA

0 ,K
A
1 ,K

B
0 ,K

B
1 coming out from f0, into the pairs:

(KA
0 ,K

B
0 ), (KA

0 ,K
B
1 ), (KA

1 ,K
B
0 ), (KA

1 ,K
B
1 ).

Compress. The function f1,0, which we model as a random oracle, is used to
compress each pair into a random string of length `, i.e.,

X00 = f1,0(KA
0 ,K

B
0 ) = RO0(KA

0 ,K
B
0 );

X01 = f1,0(KA
0 ,K

B
1 ) = RO0(KA

0 ,K
B
1 );

X10 = f1,0(KA
1 ,K

B
0 ) = RO0(KA

1 ,K
B
0 );

X11 = f1,0(KA
1 ,K

B
1 ) = RO0(KA

1 ,K
B
1 ).

Collapse. These four outputs of the random oracle are given to f1,1 to produce
∇ (this is either ∇⊕ or ∇∧, depending on the gate type):

∇ ← f1,1(X00, X01, X10, X11)

which satisfies the following relation: let (x0, y0) ∈ {0, 1}2 and (x1, y1) ∈ {0, 1}2
be two possible inputs to the (ungrabled) gate gi, where (Kx0

,Ky0) and (Kx1
,Ky1)

denote their respective labels; then

gi(x0, y0) = gi(x1, y1)⇐⇒
f1,0(Kx0

,Ky0)&∇ = f1,0(Kx1
,Ky1)&∇.
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Algorithm 2 Algorithm Gb(1κ,C)

1: . Label sampling
2: for every circuit input wire j ∈ [n] do
3: Sample Kj

0 ,K
j
1 ∈R {0, 1}` uniformly at random

4: Set ej = (Kj
0 ,K

j
1) . Encoding information

5: Denote by ej [xj ] the value Kj
xj

6: end for
7: . Key Extraction (Section 3.1)
8: for each gate g of C in topological order do
9: Compress (f1,0): . See Section 3.1 (Compress)

10: X00 = RO0(KA
0 ,K

B
0 )

11: X01 = RO0(KA
0 ,K

B
1 )

12: X10 = RO0(KA
1 ,K

B
0 )

13: X11 = RO0(KA
1 ,K

B
1 )

14:
15: Collapse (f1,1): . See Section 3.1 (Collapse)
16: if g = ∧ then
17: ∇ = ∇∧ . See Table 1
18: else
19: ∇ = ∇⊕ . See Table 2
20: end if
21: S0 = X00&∇
22: if g = ⊕ then
23: S1 = X01&∇
24: else (g = ∧)
25: S1 = X11&∇
26: end if
27: . Output hiding (Section 3.1)
28: KC

0 = RO1(S0)
29: KC

1 = RO1(S1)
30: F [g]← ∇
31: end for
32: . Decoding information
33: for For every output wire j ∈ [n+ q −m+ 1, n+ q] do
34: Sample dj ∈R {0, 1}` s.t. lsb(RO2(Kj

0 , dj)) = 0 and lsb(RO2(Kj
1 , dj)) = 1

35: end for
36: Return (F, e, d) where e = {ej} and d = {dj}.

To generate ∇, we scan the bits of the four intermediate values {X00, X01, X10,
X11} to determine which bits preserve the ungarbled gate’s logic, and deactivate
the rest.

– AND gate. Set ∇[j] = 1 if and only if X00[j] = X01[j] = X10[j]. In Table
1 this corresponds to Rows 0–1 and Rows 14–15.

– XOR gate. Set ∇[j] = 1 if and only if (X00[j] = X11[j] and X01[j] =
X10[j]). It Table 2 this is captured by Rows 0, 6, 9, and 15.
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Other Boolean gates can similarly be obtained, see Appendix B for the de-
tails.

The output of f1,1 is ∇, which is a public value, accessible to other parts of
the garbling algorithm.

Output. Formally, the output of f1 are the two keys S0 and S1, which are
obtained by applying X&∇ on each of the four outputs of f1,0.

Output Hiding At this point, a naive extension of existing approaches would
use the keys S0 and S1 to encrypt the gate’s output labels using a single-key
encryption scheme, i.e.,

C0 = ES0(KC
0 );

C1 = ES1
(KC

1 ),

and send (C0, C1,∇) to the evaluator.
However, our second optimization shows that that this is unnecessary. Instead

of sampling new labels KC
0 and KC

1 , we can derive them directly from the values
S0 and S1, even if the later have fewer than ` bits of entropy (as long as they
have κ bits of entropy). We set

KC
0 = RO1(S0)

KC
1 = RO1(S1),

and send only ∇ to the evaluator.

3.2 Evaluation

The evaluation is presented in Algorithm 3 below. To intuitively understand how

Algorithm 3 Algorithm Ev(F,X)

1: for each gate gi in a topological order do
2: let KA,KB be the active labels associated with the input wires of gi and let
∇gi = F [g] (with ∇gi = ∇⊕ if gi is a XOR gate and ∇gi = ∇∧ if gi is an AND
gate)

3: Compute KC = RO1(RO0(KA,KB)&∇gi)
4: end for
5: for Each output wire j do
6: output Y j = Kj

7: end for

evaluation works, we focus on a single gate. The evaluator has received exactly
one value of the pair {KA

0 ,K
A
1 }, exactly one value of the pair {KB

0 ,K
A
1 }, and ∇.
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Table 1. This table defines ∇∧[j] as a function in X00[j], X01[j], X10[j], X11[j]. In
addition, the right side demonstrates how combining Xij [j]&∇ collapses into only two
distinct values S0 = S00 = S01 = S10 and S1 = S11. Each row in the table corresponds
to one bit-slice of the values Xij [j] for i, j ∈ {0, 1}.

X00 X01 X10 X11 ∇∧ S00 S01 S10 S11

0 0 0 0 0 1 0 0 0 0

1 0 0 0 1 1 0 0 0 1

2 0 0 1 0 0 0 0 0 0

3 0 0 1 1 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0

5 0 1 0 1 0 0 0 0 0

6 0 1 1 0 0 0 0 0 0

7 0 1 1 1 0 0 0 0 0

8 1 0 0 0 0 0 0 0 0

9 1 0 0 1 0 0 0 0 0

10 1 0 1 0 0 0 0 0 0

11 1 0 1 1 0 0 0 0 0

12 1 1 0 0 0 0 0 0 0

13 1 1 0 1 0 0 0 0 0

14 1 1 1 0 1 1 1 1 0

15 1 1 1 1 1 1 1 1 1

Without loss of generality, suppose the received labels are KA
0 and KB

0 . The
evaluator calls RO0 to obtain X00 = RO0(KA

0 ,K
B
0 ). Then, knowing ∇ they

compute S0 = X00&∇. Finally, they calls the second random oracle to obtain
KC

0 = RO1(S0) which they use as the output label.

3.3 Encoding and Decoding

The encoding and decoding algorithms are presented in Algorithms 4-5 below.

Algorithm 4 Algorithm En(e, x)

1: for every j ∈ [n] do
2: output Kj

xj
= ej [xj ]

3: end for

3.4 Properties

In this subsection we provide an intuitive discussion about the properties of the
new scheme. More formal treatment can be found in Sections 4–5.
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Table 2. This table defines ∇⊕[j] as a function in X00[j], X01[j], X10[j], X11[j]. In
addition, the right side demonstrates how combining Xij [j]&∇ collapses into only two
distinct values S0 = S00 = S11 and S1 = S01 = S10. Each row in the table corresponds
to one bit-slice of the values Xij [j] for i, j ∈ {0, 1}.

X00 X01 X10 X11 ∇⊕ S00 S01 S10 S11

0 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0

3 0 0 1 1 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0

5 0 1 0 1 0 0 0 0 0

6 0 1 1 0 1 0 1 1 0

7 0 1 1 1 0 0 0 0 0

8 1 0 0 0 0 0 0 0 0

9 1 0 0 1 1 1 0 0 1

10 1 0 1 0 0 0 0 0 0

11 1 0 1 1 0 0 0 0 0

12 1 1 0 0 0 0 0 0 0

13 1 1 0 1 0 0 0 0 0

14 1 1 1 0 0 0 0 0 0

15 1 1 1 1 1 1 1 1 1

Algorithm 5 Algorithm De(Y, d)

1: for j ∈ [n+ q −m+ 1, n+ q] do
2: output lsb(RO2(Y j , dj))
3: end for

Correctness The correctness of the scheme follows from the definition of ∇∧
and ∇⊕ in Tables 1–2. The ∇ value for each gate is obtained by mapping the
ungarbled gate’s truth table to the encoded values {X00, X01, X10, X11} (for the
exact procedure, see Section 3.1). Focusing on bit position j, given a gate and
two labels KA

a ,K
B
b , first computing Xab = RO0(KA

a ,K
B
b ), then Sab = Xab&∇⊕,

collapses the set |{X00, X01, X10, X11}| = 4 into the set |{S00, S01, S10, S11}| = 2
in a way that preserves the ungarbled gate’s output logic. Correctness can be
verified in a bit-wise manner.

Complexity Compared to a classical Yao circuit, which implies four calls to
the cryptographic primitive, our scheme requires six primitive calls: four calls
in f1 and two more calls in f2. Another caveat is that due to the entropy loss
of & (which we analyze separately), the length of labels must be longer than in
other schemes, such that they retain κ bits of entropy even after the entropy
loss. For example, with κ = 128;σ = 40 where κ, σ are the computational
and statistical security parameteres, the scheme requires ` = 842 bits. Other
parameter combinations can be found in Section 4.2.
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On the other hand, our scheme only requires sending one data item, namely
∇, breaking the bound introduced by [ZRE15] and demonstrating the potential
of the new approach. Importantly, while recent optimizations for garbled circuits
can achieve similar or even better communication complexity, we stress that these
are the result of over 30 years of optimization, while ours is the first proof-of-
concept of the new approach.

Security The security of our garbling intuitively follows via four claims. First,
modeling f1,0 as a random oracle and maintaining an invariant that the evaluator
sees only one label per wire. Second, due to correlation intractability of the ran-
dom oracle, the evaluator can obtain no more than one of {X00, X01, X10, X11}.
Third, choosing a sufficiently large ` can be used to compensate for the entropy
loss due to the bitwise AND. Finally, relying again on the unpredictability and
correlation intractability of the random oracle, this time in f2, full entropy is
restored for each of {KC

0 ,K
C
1 }; supporting an inductive argument gate-by-gate.

A formal analysis is provided in Sections 4-5.

Adversarial model. Our proof is shown in the presence of probabilistic polynomial-
time adversaries but can be extended against super-polynomial adversaries that
are restricted by the number of queries they make to the oracles. Namely, this
restriction limits the number of queries to a polynomial in the security parame-
ter.

Random orcale. Our proof is applied in the random oracle model. Specifically,
the properties we use from the random oracle are that it is hard to invert,
and its outputs are independent and have full entropy, regardless of the input
distribution. In particular, for a given input and output of the random oracle, x
and y, respectively, if the input has κ bits of entropy then with high probability,
the entropy in y is full (i.e., the oracle’s output length).

Strong authenticity. As a by-product of our new proof technique, we establish
a stronger notion of authenticity than the one suggested in [BHR12]. Whereas
they defined authenticity in terms of what the adversary (does not) learn about
inactive labels of output wires, our proof extends this to all wires, both internal
and output ones. We refer to this new notion as strong authenticity.

4 Strong Authenticity

Authenticity of a garbling scheme states that an adversary cannot obtain the
inactive labels of circuit output wires. We argue a stronger claim where the
adversary cannot obtain an inactive label of any (both internal and output)
wire. The formal definitions for authenticity and strong authenticity appear in
Section 2.1. We prove the following

Theorem 1. Our garbling scheme (Algorithms 2-5) satisfies the definition of
strong authenticity (from Section 2.1).
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4.1 Proof

We denote by H and h the random oracle objects RO0 and RO1 used in our
garbling scheme (see Algorithm 2). For each wire j we denote the active and
inactive labels by Kj and K̄j .

Let K be the set of inactive labels and Q be the set of queries made to the
random oracle by the adversary. We prove that the probability that K ∩ Q̂ 6= ∅
is negligible, where Q̂ = {H(q) : q ∈ Q}.

Our proof follows an inductive argument by measuring the entropy of inactive
labels, showing that given (F,X, d), the entropy is never smaller than κ and thus,
inactive labels cannot be (computationally) guessed.

We consider the apriori and posteriori entropy in K̄j , where the apriori
entropy of K̄j is calculated based on a modified garbled circuit, which is a
trimmed version of the garbled circuit corresponding to C, such that all gates
that depend on wire j are removed (and wire j becomes an output wire). The
posteriori entropy is calculated based on the unmodified garbled circuit. We
use the apriori entropy as a stepping stone to analyse the posteriori entropy.
Specifically, suppose that the apriori entropy of K̄j is r bits, we denote its
posteriori entropy by E(r) and prove that when r = `, for ` the length of the
labels; then E(r) ≥ κ.

Proof outline. The proof is done by induction. The induction’s base is that
circuit input wires have ` ≥ κ bits of entropy by definition. The induction
hypothesis is that if all inactive input labels to a gate gj have at least κ bits of
entropy, its output label has ` bits of entropy except with negligible probability.

The inductive argument. Let Qj be the event that the adversary queries the
random oracle on a preimage of the inactive label K̄j . In addition, let Q̄j be
its complement (i.e., the adversary does not query the oracle on a preimage of
K̄j). We are interested in the probability of the union

⋃
j∈[n+q]Qj . By the union

bound we have

Pr[

n+q⋃
j=1

Qj ] ≤
n+q∑
j=1

Pr[Qj ], (1)

and we show that this probability is negligible.
Induction basis. The basis of the induction consists of all circuit input wires

j ∈ [n]. Recall that the apriori entropy of wire j relates to a modified version of
the circuit in which j is an output wire and is not an input to any other gate.
It is obvious that the inactive labels of these wires have an apriori entropy of
` bits since they are chosen uniformly at random from {0, 1}` by the garbling
algorithm. Thus, we conclude that every circuit input wire j has a posteriori
entropy of E(`) bits.

hypothesis: For every wire j ∈ [n+ 1, n+ q] it holds that K̄j has a posteriori
entropy of E(`) bits.

Inductive step. We assume that the hypothesis holds for every wire j′ < j
and show that it holds for wire j.
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Fig. 1. Our notation

For a gate with input wires A,B and an output wire j (see Figure 1), by the
rule of total probability, the event Qj is conditioned on the two complementing
events: QA ∨ QB and QA ∨QB . The former means that the adversary queried
the oracle on a preimage leading to any of the inactive labels K̄A or K̄B ; the
latter means that it did not. Formally, set QA ∨QB = Q̄A ∧ Q̄B , then,

Pr[Qj ] = Pr[Qj | QA ∨QB ] · Pr[QA ∨QB ]

+ Pr[Qj | Q̄A ∧ Q̄B ] · Pr[Q̄A ∧ Q̄B ].
(2)

The probability Pr[Qj | QA∨QB ]·Pr[QA∨QB ] is upper bounded by Pr[QA]+
Pr[QB ] since Pr[Qj | QA ∨QB ] ≤ 1 and Pr[QA ∨QB ] ≤ Pr[QA] + Pr[QB ] by the
union bound. Thus, we can rewrite (2) as

Pr[Qj ] ≤ Pr[QA] + Pr[QB ] + Pr[Qj | Q̄A ∧ Q̄B ] · Pr[Q̄A ∧ Q̄B ]

We now show that Pr[Qj | Q̄A ∧ Q̄B ] is negligible. To see this, first observe that
the only data that may leak information about K̄j is ∇ and the output of the
random oracle, when queried on the active labels (i.e., X = h(KA,KB)). We
will now show that given this data the probability of Qj is negligible.
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Without loss of generality let the active labels be KA
a and KB

b . The proba-
bility that the adversary obtains any of the inactive intermediate values

Xa(1−b) = h(KA
a ,K

B
1−b);

X(1−a)b = h(KA
1−a,K

B
b );

X(1−a)(1−b) = h(KA
1−a,K

B
1−b),

is negligible since the posteriori entropy of the inactive labels KA
1−a and KB

1−b
is E(`) as their apriori entropy was `. We will show in Section 4.2 that E(`) ≥
κ. Thus, with high probability Xa(1−b), X(1−a)b and X(1−a)(1−b) have ` bits of
entropy.

Now, to have queried a preimage of K̄j the adversary had to query

q1 = Xa(1−b)&∇;

q2 = X(1−a)b&∇; or

q3 = X(1−a)(1−b)&∇.

On the other hand, since each of Xa(1−b), X(1−a)b, and X(1−a)(1−b) has ` bits
of entropy, the only source of leakage about q1, q2, q3 is ∇. In particular, for a
position i ∈ [`], having ∇[i] = 0 implies that q1[i] = q2[i] = q3[i] = 0; on the
other hand, ∇[i] = 1 masks the values q1[i], q2[i] and q3[i].

We note that the larger the number of 1’s in ∇ the harder it is for the
adversary to guess the preimages q1, q2, q3 of K̄j , as each position i with ∇[i] = 1
adds a single bit of entropy to q1, q2, q3. In particular, if the number of 1’s is κ,
then the adversary guesses q1, q2, q3 with only a negligible probability. In Section
4.2 we calculate the sufficient length ` for which the above condition holds. That
is, the minimal ` for which, with high probability, the number of 1’s in ∇ is
greater than κ.

We obtain that Pr[Qj | Q̄A ∧ Q̄B ] = neg(κ), and therefore we can rewrite (2)
as

Pr[Qj ] ≤ Pr[QA] + Pr[QB ] + neg(κ).

The probability of the adversary querying the preimage of the inactive label
associated with output wire j (i.e., Pr[Qj ]) is the sum of the probabilities that it
queried the preimage of the inactive labels associated with predecessor wires A
and B (i.e., Pr[QA] and Pr[QB ]), and a negligible probability. Following from the
induction’s assumption, both Pr[QA] and Pr[QB ] are negligible, and therefore
so is Pr[Qj ]. We conclude that the probability that the adversary queried the
preimage of K̄j is negligible and therefore its posteriori entropy is E(`). This
completes the induction.

We see that the union (1) is the sum of negligible events, and is therefore
neghligible. ut

4.2 Setting Labels’ Length

The authenticity of our construction relies on having at least κ positions i in
∇ such that ∇[i] = 1. This is required since these are the positions that mask
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q1[i], q2[i], and q3[i]. In this section we determine an appropriate length for `.
Concretely, we are looking for the minimal ` such that the number of positions
in which ∇ equals 1 is larger than κ in the worst case. We do so by inspecting
∇∧ and ∇⊕ as functions of X00, X01, X10, X11 (see Tables 1-2).

Note that the intermediate values X00, X01, X10, X11 in our garbling scheme
are the output of a random oracle call; therefore, they are uniformly distributed
and independent. Ergo, each entry in Tables 1-2 is accessed with probability
1/16.

We start by considering an AND gate. Given Xab = h(KA
a ,K

B
b ) and ∇∧

where KA
a ,K

B
b are the active labels associated with the input wires of that gate,

there are exactly four rows (in Table 1) that contribute to the entropy of the
inactive key S(1−c) = (X(1−c)(1−c)&∇∧) where c = a∧b.11 Similarly, for an XOR
gate, given Xab = h(KA

a ,K
B
b ) and ∇⊕ there are exactly four rows (in Table 2)

that contribute to the entropy of the inactive key S1−c = Xa(1−b)&∇⊕ where
c = a⊕ b. The above holds for every a, b ∈ {0, 1}.

Limiting our scope to those positions i for which∇∧[i] = 1 (resp., ∇⊕[i] = 1),
the probability that S(1−c)[i] is equal 0 is 1/2. That is, such positions contribute
a single bit of entropy. Since X00, X01, X10,and X11 are uniformly random values
we have that Pr[∇∧[i] = 1] = Pr[∇⊕[i] = 1] = 1/4 per the rows in Tables 1–2.

It remains to find what is the minimal ` for which, with high probability
(over a statistical security parameter σ), the number of positions i satisfying
∇∧[i] = 1 (similarly for ∇⊕[i] = 1) is greater than κ. Specifically, let N1 be a
random variable that counts the number of 1’s in ∇ (either ∇∧ or ∇⊕), we are
looking for

` = min
`′

: Pr[N1 < κ] =

κ−1∑
i=0

(
`′

i

)
0.25i · 0.75`

′−i ≤ 2−σ

That is, we consider it as a Bernoulli experiment repeated ` times with p = 0.25.

By means of the script provided in Appendix A, we obtain the values above,
where the minimal length ` is the intersection between the statistical and com-
putational security parameters, σ and κ, respectively.

κ/σ 40 60 80

128 842 944 1035

160 1003 1112 1209

256 1468 1597 1711

11 The intermediate value X(1−c)(1−c) is chosen arbitrarily among the inactive inter-
mediate values.
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5 Privacy

We follow the privacy definition of [BHR12] given in section 2.1. We first describe
the simulation and then show indistinguishability via a hybrid argument.

Theorem 2. Our garbling scheme (Algorithms 2-5) satisfies the definition of
privacy (from Section 2.1).

5.1 The simulation

As before, we use the term active labels to refer to the labels that are used by
the honest evaluator to evaluate the garbled circuit whereas inactive labels refer
to the rest. Note that given an input x ∈ {0, 1}n to the circuit, each wire j
is associated with one active and one inactive label, Kj and K̄j , respectively.
We denote by H, h and H̃ the random oracle objects RO0, RO1 and RO2,
respectively, used in our garbling scheme (see Algorithm 2).

The simulator S outputs the label Kj
0 as the garbled input for every circuit

input wire j (as it does not know the actual input to that wire). In addition,
for each gate, rather than using the actual inactive labels, the simulator uses a
uniformly random labels. Formally, given y = C(x) (where C and x picked by
the adversary) the simulator proceeds as follows:

Algorithm S(1κ,C, y)

1. For every circuit input wire j ∈ [n] sample independent labels Kj
0 ,K

j
1 ∈

{0, 1}` at uniform.
2. For each gate g of C in a topological order:

(a) Let A,B and C be g’s input wires and output wire.

i. X00 = h(KA
0 ,K

B
0 )

ii. X01 = h(KA
0 ,K

B
1 )

iii. X10 = h(KA
1 ,K

B
0 )

iv. X11 = h(KA
1 ,K

B
1 )

v. If g = ∧ set ∇ = ∇∧ and if g = ⊕ set ∇ = ∇⊕, where ∇∧ and ∇⊕
are defined in Tables 1-2, as a function of X00, X01, X10, X11.

vi. Let c be the bit carried by wire C when evaluating C(0n). Compute
KC
c as in Gb(1κ,C) (see Algorithm 2) and pick KC

(1−c) uniformly at
random.

(b) Set F [g]← ∇
3. For every output wire j ∈ [n+ q −m+ 1, n+ q]

(a) Let b be the bit carried by wire j when evaluating C(0n) and let yj be
the correct output bit on wire j.

(b) Sample dj ∈R {0, 1}` s.t. lsb(H̃(Kj
b , dj)) = yj and lsb(H̃(Kj

1−b, dj)) =
1− yj .

4. Output F,X, d, where X = {Kj
0}j for every circuit input wire j and d =

{dj}j for every circuit output wire j.
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5.2 Indistinguishability Under Correlated Randomness

We reduce the privacy of our construction to the problem of indistinguishability
under ∇-correlation, as defined below.

Experiment ExpA∇(1κ, b, type). The experiment is parameterized with a bit b and
a type ∈ {⊕,∧}.

1. The adversary A gives the labels KA
0 , KA

1 , KB
0 ,K

B
1 , and the bits a, b to the

experiment, where a, b indicate the active labels KA
a and KB

b , respectively.
2. The experiment computes Xαβ = h(KA

α ,K
B
β ) for every α, β ∈ {0, 1} and

∇ = f∇(X00, X01, X10, X11) where f∇ represent the function∇⊕ if type = ⊕
and ∇∧ if type = ∧, as defined in Tables 1-2.

3. The experiment computes an inactive output label K̄C

– If b = 0, pick K̄C ∈ {0, 1}κ uniformly at random.
– If b = 1, if type = ⊕ compute K̄C = H(∇&Xa(1−b)); otherwise (type =
∧) compute c = 1− (a ∧ b) and K̄C = H(∇&Xcc).

4. The experiment returns ∇ and K̄C to the adversary A.
5. A outputs the bit b′, which is also the output of the experiment.

The ∇-Correlation Assumption. For every PPT adversary A with an oracle
access to h,H and H̃, if the adversary does not query h(KA

a ,K
B
1−b), h(KA

1−a,K
B
b )

or h(KA
1−a,K

B
1−b) it holds that for any type ∈ {⊕,∧}

| Pr[ExpA∇(1κ, 0, type) = 1]− Pr[ExpA∇(1κ, 1, type) = 1] ≤ neg(κ).

The intuition behind the assumption is that it models an adversary who does not
query the random oracle on three combinations of labels, where each combination
contains at least one inactive label. Therefore, the adversary does not learn the
oracle result on these queries, and thus, the oracle’s output is indistinguishable
from a uniformly random string.

The premise of this assumption is in our proof for strong authenticity (Section
4.1) where it is guaranteed that the probability that the adversary queried a
preimage of an inactive label is negligible in κ. The three combinations mentioned
in the assumption, (KA

a ,K
B
1−b), (K

A
1−a,K

B
b ) or (KA

1−a,K
B
1−b) take the role of that

preimage.

5.3 Proof of Privacy

We define hybrid Hybi, for i ∈ [q], as the result of running the simulated garbling
up until the i-th gate (including), and then running the real garbling on the rest.
Formally, given a circuit C, and input x and an output y,12 Hybi is defined as
follows:

12 The output argument is redundant since it is possible to be computed by C(x),
however, we include it in order to match the description of the hybrid to that of the
simulation.
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Algorithm Hybi(1
κ,C, x, y)

1. For every circuit input wire j ∈ [n] sample independent labels Kj
0 ,K

j
1 ∈

{0, 1}` at uniform.
2. For each gate g in C in a topological order

(a) Let A,B and C be g’s input wires and output wire.
i. X00 = h(KA

0 ,K
B
0 )

ii. X01 = h(KA
0 ,K

B
1 )

iii. X10 = h(KA
1 ,K

B
0 )

iv. X11 = h(KA
1 ,K

B
1 )

v. If g = ∧ set ∇ = ∇∧ and if g = ⊕ set ∇ = ∇⊕, where ∇∧ and ∇⊕
are defined in Tables 1-2, as a function of X00, X01, X10, X11.

vi. Simulation: If g ∈ {1, . . . , i}. Let c be the bit carried by wire C when
evaluating C(x). Compute KC

c as in Gb(1κ,C) (Algorithm 2) and
pick KC

1−c uniformly at random.
vii. Real: If g ∈ {i+ 1, . . . , q}. Compute KC

0 ,K
C
1 as in Gb(1κ,C) (Algo-

rithm 2), namely,
A. Set S0 = X00&∇. If g = ⊕ then set S1 = X01&∇ and if g = ∧

then set S1 = X11&∇.
B. Set KC

0 = H(S0) and KC
1 = H(S1).

(b) Set F [g]← ∇
3. For every output wire j ∈ [n+ q −m+ 1, n+ q]

(a) Let bj be the bit carried by wire j when evaluating C(x) and let yj be
the j-th output bit.

(b) Sample dj ∈R {0, 1}` s.t. lsb(H(Kj
bj
, dj)) = yj and lsb(H(Kj

1−bj , dj)) =
1− yj .

4. Output F,X, d, where X = {Kj
xj
}j for every circuit input wire j (where xj

is the j-th bit in x) and d = {dj}j for every circuit output wire j.

Note that Hyb0(1κ,C, x, y) is distributed identically to (F,X, d) as out-
put from the real garbling (F, e, d) ← Gb(1κ,C) and X ← En(e, x) whereas
Hybq(1

κ,C, 0n, y) is distributed identically to (F,X, d) as output from the sim-
ulation S(1κ,C, y).

In the rest of this section we first show that for every x and y, Hyb0(1κ,C, x, y)
is indistinguishable from Hybq(1

κ,C, x, y) and then, we show that Hybq(1
κ,C, x, y)

is indistinguishable from a Hybq(1
κ,C, 0n, y). That is:

Hyb0(1κ,C, x, y)
c
≈ Hybq(1

κ,C, x, y)
c
≈ Hybq(1

κ,C, 0n, y)

Suppose there exits a distinguisher D such that for some circuit C, input
x ∈ {0, 1}n and output y ∈ {0, 1}m, distinguishes between Hyb0(1κ,C, x, y) and
Hybq(1

κ,C, x, y) with non-negligible probability p(κ), then, there must be some
i ∈ [q] such thatD distinguishes between Hybi(1

κ,C, x, y) and Hybi+1(1κ,C, x, y)
with non-negligible probability of at least p(κ)/q. As we show immediately, this
contradicts our assumption (in Section 5.2), as we can use D to construct an
adversary A with a non-negligible advantage in experiment ExpA∇(1κ, b, type),
as follows:
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Our adversary A first generates Hybi(1
κ,C, x, y). This means that the in-

active labels of output wires of gates 1, . . . , i are chosen randomly. Then, A
changes the i + 1-th garbled gate according to its interaction with experiment
ExpA∇(1κ, b, type), as follows: let the input wires and output wire of gate i + 1
be A,B and C, respectively, and let KA

0 ,K
A
1 ,K

B
0 ,K

B
1 be the associated labels

of A,B, as produced by Hybi(1
κ,C, x, y), with KA

a ,K
B
b being the active la-

bels. A sends KA
0 ,K

A
1 ,K

B
0 ,K

B
1 and a, b to the experiment and receives back

∇, K̄C . That K̄C accounts to the inactive label of the output wire C. A can
compute KC (the active key of wire C) on its own by Xab ← h(KA

a ,K
B
b ) and

then KC ← H(∇&Xab). At this point, A sets F [i+1] = ∇ and it has everything
needed to continue the garbling of gates i + 2, . . . , q according to the real gar-
bling scheme. In particular, it uses keys KC and K̄C as the active and inactive
labels for wire C. Now, A hands the resulting garbled circuit, garbled input and
decoding information (F,X, d) to D and outputs whatever D outputs.

Observe that if the experiment is parameterized with the bit b = 0 then
K̄C (the inactive key of wire C) is uniformly random and garbled gate i + 1 is
computed exactly as in Hybi+1(1κ,C, x, y) whereas in case b = 1 the keys K̄C

is computed exactly as in Hybi(1
κ,C, x, y). Therefore, the advantage of A is

greater than p(κ)/q, which implies that p(κ) is negligible.

Hybq(1
κ,C, x, y)

c
≈ Hybq(1

κ,C, 0n, y) We now show that for every x ∈
{0, 1}n it holds that the simulator’s output when the garbled input is an encoding
of x is indistinguishable from its output when the garbled input is an encoding
of 0n.

We rely on the strong authenticity property of the construction (see Sec-
tion 4), from which it is guaranteed that, with overwhelming probability, the
adversary does not obtain any inactive label (not even those of internal wires).

As before, note that labels Kj , K̄j , for every wire j, are uniformly random
and independent, as they are a direct output of the random oracle. Furthermore,
the intermediate values X00, X01, X10, X11 obtained in the garbling process are
uniformly random and independent as well. For each gate g with input wires A,B
and output wire C, the only value that depends on X00, X01, X10, X11 (where
Xα,β = h(KA

α ,K
B
β )) is the garbled gate ∇g. We have to show that for each gate

g, given the active labels KA
a ,K

B
b (where a, b are the active label indicators)

and ∇g, the adversary could not tell what are the values a, b (unless it has an
auxiliary information about them).

To this end, we show that the pairs (Xα,β ,∇g) are distributed identically for
all α, β ∈ {0, 1}. Table 1 shows that for each α, β ∈ {0, 1} we have

Pr[(Xα,β ,∇∧) = (0, 0)] = Pr[(Xα,β ,∇∧) = (1, 0)] = 6/16 and

Pr[(Xα,β ,∇∧) = (0, 1)] = Pr[(Xα,β ,∇∧) = (1, 1)] = 2/16

Concluding that the pairs (Xα,β ,∇∧) are identically distributed for all α, β ∈
{0, 1}. This means that the adversary can always expect (regardless the actual
bits a, b being carried on the wires) a pair of strings of length `, such that it is
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expected that in 6/16 of the positions the bits are (0, 0), in 6/16 of the positions
the bits are (1, 0), in 2/16 of the positions the bits are (0, 1) and in 2/16 of the
positions the bits are (1, 1).

Exactly the same argument and the same distributions hold for the pairs
(Xα,β ,∇⊕) for XOR gates, which concludes the proof.
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A Key Length Search

We present here the code for our exhaustive search that finds the minimal ` for
which the number of 1’s in ∇ is greater than κ with high probability (i.e. except
with a negligible probability in σ).

1 import math

2 from mpmath import *

3 mp.dps =1000 # set precision

4

5

6 SIGMA = 80.0 # statistical sec param

7 KAPPA = 256.0 # computational sec param

8

9 SEARCH_FROM = 1700 # minimal ell to begin search with

10 SEARCH_TO = 1800 # stop search when reaching ell

11

12 mpfsigma = mpf(SIGMA)

13 mpfkappa = mpf(KAPPA)

14 mpf1 = mpf (1)

15 mpf3 = mpf (3)

16 mpf4 = mpf (4)

17 mpf025 = mpf1/mpf4

18 mpf075 = mpf3/mpf4

19

20 mpfnegl = mpf (1)/mpf(int(math.pow(2,SIGMA)))

21

22 for ell in range(SEARCH_FROM ,SEARCH_TO):

23 mpfl = mpf(ell)

24 mpfbadprob = mpf(0)

25 for i in range(int(KAPPA) -1):

26 mpfi = mpf(i)

27 mpfbadprob = mpfbadprob + binomial(mpfl , mpfi) * math.pow

(0.25, mpfi) * math.pow (0.75, mpfl -mpfi)

28 print("ell= ", ell , ", " , "mpfbadprob =2^{%.3f}"%log(

mpfbadprob ,2))
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29 if mpfbadprob <= mpfnegl:

30 print("found ell = ", ell , " !")

31 break

B Garbling Other Gates

Other Boolean gates can similarly be obtained by applying the following proce-
dure: (i) Draw the truth table corresponding to the plain gate and its complement
(see e.g., Table 3 for the case of an OR gate); (ii) Transpose the output columns
such that they become row vectors (e.g., from Table 3, ∨ = [0, 1, 1, 1];∨ =
[1, 0, 0, 0]); (iii) With Table 1 as a template, initialize a new 16-row table T ,
whose index is the vector [X00, X01, X10, X11] and its value is ∇. Initialize all ∇
values to 0 (i.e., T [X00, X01, X10, X11] = 0 for all X00, X01, X10, and X11); (iv)
Set ∇ = 1 in the rows indexed by the vectors from Step (ii), as well as the first
and last rows. Completelting the example, in the case of an OR gate, set

T [0, 0, 0, 0] = 1;

T [1, 1, 1, 1] = 1;

T [∨] = 1;

T [∨] = 1.

Table 3. Truth table for an OR gate

x y ∨ ∨
0 0 0 1
0 1 1 0
1 0 1 0
1 1 1 0
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