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Abstract. �is short note shows that NTRU in NIST PQC Round 3 �nalist is anonymous in the QROM if the
underlying NTRU PKE is strongly disjoint-simulatable and a hybrid PKE scheme constructed from NTRU as KEM
and appropriate DEM is anonymous and robust.
�is solves the open problem to investigate the anonymity and robustness of NTRU posed by Grubbs, Maram,
and Paterson (Cryptography ePrint Archive 2021/708).
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1 Introduction

Roughly speaking, PKE is anonymous [BBDP01] if a ciphertext hides the receiver’s information. Intuitively speak-
ing, PKE is robust [ABN10] if only the intended receiver can obtain a meaningful plaintext from a ciphertext.
Grubbs, Maram, and Paterson [GMP21] discussed anonymity and robustness of post-quantum KEM schemes in
NIST PQC Standardization �nalists, which is an extended version of Mohassel [Moh10]. Grubbs et al. le� several
open problems. One of them is the case of NTRU and they wrote in [GMP21, Section 6]:

Important questions remain about the anonymity and robustness of the NIST �nalists and alternate
candidates. For example, the status of NTRU is open, and it is plausible that the anonymity of CM could
be proven by a direct approach.

Our contribution: In this short note, we solve this open problem: We show that NTRU is anonymous in the
QROM starting from NTRU’s pseudorandomness and the hybrid PKE using NTRU is strongly robust by showing
NTRU is strongly collision-free in the QROM.

2 De�nitions

Notations: A security parameter is denoted by ^. We use the standard $-notations. DPT, PPT, and QPT stand
for deterministic polynomial time, probabilistic polynomial time, and quantum polynomial time, respectively. A
function 5 (^) is said to be negligible if 5 (^) = ^−l (1) . We denote a set of negligible functions by negl(^). For a
distribution j, we o�en write “G ← j,” which indicates that we take a sample G according to j. For a �nite set
(, * (() denotes the uniform distribution over (. We o�en write “G ← (” instead of “G ← * (().” For a set ( and
a deterministic algorithm A, A(() denotes the set {A(G) | G ∈ (}. If inp is a string, then “out ← A(inp)” denotes
the output of algorithm A when run on input inp. If A is deterministic, then out is a �xed value and we write
“out := A(inp).” We also use the notation “out := A(inp; A)” to make the randomness A explicit.
For a statement % (e.g., A ∈ [0, 1]), we de�ne boole(%) = 1 if % is satis�ed and 0 otherwise.

�antum Random Oracle Model:

Lemma 2.1. Let ℓ be a positive integer. Let X and Y be �nite sets. Let H0 : {0, 1}ℓ × X → Y and H@ : X → Y be
two independent random oracles. If an unbounded time quantum adversary A makes a query to H at most & times,
then we have ���Pr[B← {0, 1}ℓ : AH0 ,H0 (B, ·) () → 1] − Pr[AH0 ,H@ () → 1]

��� ≤ & · 2−(ℓ−1)/2,

where all oracle accesses of A can be quantum.

See [SXY18] and [JZC+18] for the proof.



Lemma 2.2 (QRO is collision-resistant [Zha15, �eorem 3.1]). �ere is a universal constant � such that the fol-
lowing holds: LetX andY be �nite sets. LetH : X → Y be a random oracle. If an unbounded time quantum adversary
A makes a query to H at most & times, then we have

Pr
H,A
[(G, G′) ← AH : G ≠ G′ ∧ H(G) = H(G′)] ≤ � (& + 1)3/|Y|,

where all oracle accesses of A can be quantum.

Remark 2.1. We implicitly assume that |X| = S( |X|), because of the birthday bound.

Lemma 2.3 (QRO is claw-free).�ere is a universal constant � such that the following holds: Let X0 and X1 andY
be �nite sets. Let #0 = |X0 | and #1 = |X1 |. Without loss of generality, we assume #0 ≤ #1. Let H0 : X0 → Y and
H1 : X1 → Y be two random oracles.
If an unbounded time quantum adversary A makes a query to H0 and H1 at most &0 and &1 times, then we have

Pr[(G0, G1) ← AH0 ,H1 : H0 (G0) = H1 (G1)] ≤ � (&0 +&1 + 1)3/|Y|,

where all oracle accesses of A can be quantum.

�e following proof is due to Hosoyamada [Hos20].

Proof. Let us reduce the problem to collision-�nding problem as follows: We assume that X0 and X1 are enu-
merable. Given H : [#0 + #1] → Y, we de�ne H0 : X0 → Y and H0 : X1 → Y by H0 (G) = H(index0 (G)) and
H1 (G) = H(index1 (G) + #0), where index8 : X8 → [#8] is an index function which returns the index of G in X8 .
H0 and H1 are random since H is a randomly chosen. If A �nds the claw (G0, G1) for H0 and H1 with &0 and &1
queries, then we can �nd a collision (index0 (G0), index1 (G1) + #0) for H with &0 +&1 queries. Using Lemma 2.3,
we obtain the bound as we wanted. ut

�e best upper bound for the claw-�nding problem is given by Tani [Tan09]. His algorithm runs in$
(
(#0#1)1/3

)
if #0 ≤ #1 < #2

0 and $
(
#

1/2
1

)
if #1 ≥ #2

0 , which match the lower bound by Buhrman et al. [BDH+05] and
Zhang [Zha05]. While there may be a gap, the above upper bound of the success probability is enough for cryp-
tography.

2.1 Public-Key Encryption (PKE)

�e model for PKE schemes is summarized as follows:

De�nition 2.1. A PKE scheme PKE consists of the following triple of PPT algorithms (Gen, Enc,Dec).
– Gen(1^ ; A6) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter, and

randomness A6 ∈ RGen, outputs a pair of keys (ek, dk). ek and dk are called the encryption key and decryption
key, respectively.

– Enc(ek, <; A4) → 2: an encryption algorithm that takes as input encryption key ek, message < ∈ M, and
randomness A4 ∈ REnc, and outputs ciphertext 2 ∈ C.

– Dec(dk, 2) → </⊥: a decryption algorithm that takes as input decryption key dk and ciphertext 2 and outputs
message < ∈ M or a rejection symbol ⊥ ∉M.

We review X-correctness in Ho�einz, Hövelmanns, and Kiltz [HHK17].

De�nition 2.2 (X-Correctness). Let X = X(^). We say PKE = (Gen, Enc,Dec) is X-correctness if

Exp(ek,dk)←Gen(1^ )

[
max
<∈M

Pr[2 ← Enc(ek, <) : Dec(dk, 2) ≠ <]
]
≤ X.

In particular, we say that PKE is perfectly correct if X = 0.

We also de�ne a key pair’s accuracy.

De�nition 2.3 (Accuracy [XY19]).We say that a key pair (ek, dk) is accurate if for any < ∈ M,

Pr
2←Enc(ek,<)

[Dec(dk, 2) = <] = 1.

Remark 2.2. Xagawa and Yamakawa [XY19] observed that if PKE is deterministic, then X-correctness implies that

Exp(ek,dk)←Gen(1^ ) [(ek, dk) is inaccurate] ≤ X.
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Security Notions: We review onewayness under chosen-plaintext a�acks (OW-CPA), indistinguishability un-
der chosen-plaintext a�acks (IND-CPA), indistinguishability under chosen-ciphertext a�acks (IND-CCA) [RS92,
BDPR98], pseudorandom under chosen-ciphertext a�acks (PR-CCA), and its strong version (SPR-CCA) for PKE.
We de�ne PRCCA with simulator S as a generalization of IND$-CCA-security in [vH04, Hop05]. We also review
anonymity (ANON-CCA) [BBDP01], robustness (WROB-CCA and SROB-CCA) [Moh10], and collision-freeness
(WCFR-CCA and SCFR-CCA) [Moh10].
De�nition 2.4 (Security notions for PKE). Let PKE = (Gen, Enc,Dec) be a PKE scheme. LetDM be a distribution
over the message spaceM.
For any A and goal-atk ∈ {ind-cpa, ind-cca, pr-cca, anon-cca}, we de�ne its goal-atk advantage against PKE as
follows:

Advgoal-atk
PKE,A (^) :=

���Pr[Exptgoal-atk
PKE,A (^) = 1] − 1/2

���,
where Exptgoal-atk

PKE,A (^) is an experiment described in Figure 1.
For anyA and goal-atk ∈ {ow-cpa, srob-cca, scfr-cca,wrob-cca,wcfr-cca}, we de�ne its goal-atk advantage against
PKE as follows:

Advgoal-atk
PKE[,DM ],A

(^) := Pr[Exptgoal-atk
PKE[,DM ],A

(^) = 1],

where Exptgoal-atk
PKE[,DM ],A

(^) is an experiment described in Figure 1.
For GOAL-ATK ∈ {OW-CPA, IND-CPA, IND-CCA, PR-CCA,ANON-CCA, SROB-CCA, SCFR-CCA,WROB-CCA,
WCFR-CCA}, we say that PKE is GOAL-ATK-secure if Advgoal-atk

PKE[,DM ],A
(^) is negligible for any QPT adversary A.

We also say that PKE is SPR-CCA-secure if it is PR-CCA-secure and its simulator ignores ek.

Disjoint simulatability:
De�nition 2.5 (Disjoint simulatability [SXY18]). Let DM denote an e�ciently sampleable distribution on a set
M. A deterministic PKE scheme PKE = (Gen, Enc,Dec) with plaintext and ciphertext spaces M and C is DM -
disjoint-simulatable if there exists a PPT algorithm S that satis�es the followings:
– (Statistical disjointness:)

DisjPKE,S (^) := max
(ek,dk) ∈Gen(1^ ;RGen

Pr[2 ← S(1^ , ek) : 2 ∈ Enc(ek,M)]

is negligible.
– (Ciphertext-indistinguishability:) For any QPT adversary A,

Advds-ind
PKE,DM ,A,S (^) :=

����Pr[(ek, dk) ← Gen(1^ ), <∗ ← DM , 2∗ := Enc(ek, <∗) : A(ek, 2∗) → 1]
− Pr[(ek, dk) ← Gen(1^ ), 2← S(1^ , ek) : A(ek, 2∗) → 1]

����
Liu and Wang gave a slightly modi�ed version of DS in [LW21]. As they noted, their de�nition below is enough
to show the security proof.

DisjPKE,S (^) := Pr[(ek, dk) ∈ Gen(1^ ), 2← S(1^ , ek) : 2 ∈ Enc(ek,M)]
De�nition 2.6 (strong disjoint-simulatability).We call PKE has strong disjoint-simulatability if S ignores ek.

Remark 2.3. We note that a deterministic PKE scheme produced by TPunc [SXY18] and Punc [HKSU20] is not
special, because their simulator will output a random ciphertext with special plaintext, Enc(ek, <̂).

2.2 Key Encapsulation Me�anism (KEM)
�e model for KEM schemes is summarized as follows:
De�nition 2.7. A KEM scheme KEM consists of the following triple of polynomial-time algorithms (Gen, Enc,Dec):
– Gen(1^ ) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter, outputs a

pair of keys (ek, dk). ek and dk are called the encapsulation key and decapsulation key, respectively.
– Enc(ek) → (2,  ): an encapsulation algorithm that takes as input encapsulation key ek and outputs ciphertext
2 ∈ C and key  ∈ K .

– Dec(dk, 2) →  /⊥: a decapsulation algorithm that takes as input decapsulation key dk and ciphertext 2 and
outputs key  or a rejection symbol ⊥ ∉ K .

De�nition 2.8 (X-Correctness). Let X = X(^). We say that KEM = (Gen, Enc,Dec) is X-correct if

Pr[(ek, dk) ← Gen(1^ ), (2,  ) ← Enc(ek) : Dec(dk, 2) ≠  ] ≤ X(^).
In particular, we say that KEM is perfectly correct if X = 0.
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Exptow-cpa
PKE,DM ,A (^)

(ek, dk) ← Gen(1^ )
<∗ ← DM
2∗ ← Enc(ek, <∗)
<′ ← A(ek, 2∗)

return boole(<′ ?
= Dec(dk, 2∗))

Exptind-cpa
PKE,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )
(<0, <1, state) ← A1 (ek)
2∗ ← Enc(ek, <1)
1′ ← A2 (2∗, state)
return boole(1 = 1′)

Dec0 (2)

if 2 = 0, return ⊥
< := Dec(dk, 2)
return <

Dec0 (id, 2)

if 2 = 0, return ⊥
< := Dec(dkid , 2)
return <

Exptind-cca
PKE,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )

(<0, <1, state) ← ADec⊥ ( ·)
1 (ek)

2∗ ← Enc(ek, <1)

1′ ← ADec2∗ ( ·)
2 (2∗, state)

return boole(1 = 1′)

Exptpr-cca
PKE,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )

(<, state) ← ADec⊥ ( ·)
1 (ek)

2∗0 ← Enc(ek, <)
2∗1 ← S(1

^ , ek)

1′ ← A
Dec2∗

1
( ·)

2 (2∗
1
, state)

return boole(1 = 1′)

Exptanon-cca
PKE,A (^)

1 ← {0, 1}
(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

(<, state) ← ADec⊥ ( ·, ·)
1 (ek0, ek1)

2∗ ← Enc(ek1 , <)

1′ ← ADec2∗ ( ·, ·)
2 (2∗, state)

return boole(1 = 1′)

Exptsrob-cca
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

2 ← ADec⊥ ( ·, ·) (ek0, ek1)
<0 ← Dec(dk0, 2)
<1 ← Dec(dk1, 2)
return boole(<0 ≠ ⊥ ∧ <1 ≠ ⊥)

Exptscfr-cca
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

2 ← ADec⊥ ( ·, ·) (ek0, ek1)
<0 ← Dec(dk0, 2)
<1 ← Dec(dk1, 2)
return boole(<0 = <1 ≠ ⊥)

Exptwrob-cca
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

(<, 1) ← ADec⊥ ( ·, ·) (ek0, ek1)
2 ← Enc(ek1 , <)
<′ ← Dec(dk1−1 , 2)
return boole(<′ ≠ ⊥)

Exptwcfr-cca
PKE,A (^)

(ek0, dk0) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

(<, 1) ← ADec⊥ ( ·, ·) (ek0, ek1)
2 ← Enc(ek1 , <)
<′ ← Dec(dk1−1 , 2)
return boole(< = <′ ≠ ⊥)

Fig. 1. Games for PKE schemes
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Security: We review onewayness under chosen-plaintext a�acks (OW-CPA), indistinguishability under chosen-
plaintext a�acks (IND-CPA), indistinguishability under chosen-ciphertext a�acks (IND-CCA) [RS92, BDPR98],
pseudorandom under chosen-ciphertext a�acks (PR-CCA), and its strong version (SPR-CCA) for KEM. We de�ne
PRCCA with simulator S as a generalization of IND$-CCA-security in [vH04, Hop05]. We also review anonymity
(ANON-CCA), robustness (WROB-CCA and SROB-CCA), and collision-freeness (WCFR-CCA and SCFR-CCA) [GMP21].

De�nition 2.9 (Security notions for KEM). Let KEM = (Gen, Enc,Dec) be a KEM scheme.
For any A and goal-atk ∈ {ind-cpa, ind-cca, pr-cca, pr2-cca, anon-cca, srob-cca, scfr-cca}, we de�ne its goal-atk
advantage against KEM as follows:

Advgoal-atk
KEM,A (^) :=

���Pr[Exptgoal-atk
KEM,A (^) = 1] − 1/2

���,
where Exptgoal-atk

KEM,A (^) is an experiment described in Figure 1.
For anyA and goal-atk ∈ {srob-cca, scfr-ccawrob-cca,wcfr-cca}, we de�ne its goal-atk advantage against KEM as
follows:

Advgoal-atk
KEM,A (^) := Pr[Exptgoal-atk

KEM,A (^) = 1],

where Exptgoal-atk
KEM,A (^) is an experiment described in Figure 1.

For GOAL-ATK ∈ {IND-CPA, IND-CCA, PR-CCA, PR2-CCA,ANON-CCA, SROB-CCA, SCFR-CCA,WROB-CCA,
WCFR-CCA}, we say that KEM is GOAL-ATK-secure if Advgoal-atk

KEM,A (^) is negligible for any QPT adversary A. We
also say that KEM is SPR-CCA-secure (or SPR2-CCA-secure) if it is PR-CCA-secure (or PR2-CCA-secure) and its
simulator ignores ek, respectively.

2.3 Data Encapsulation

�e model for DEM schemes is summarized as follows:

De�nition 2.10. A DEM scheme DEM consists of the following triple of polynomial-time algorithms (E,D) with key
space K and message spaceM:
– E( , <) → 3: an encapsulation algorithm that takes as input key  and data < and outputs ciphertext 3.
– D( , 3) → </⊥: a decapsulation algorithm that takes as input key  and ciphertext 2 and outputs data < or

a rejection symbol ⊥ ∉M.

De�nition 2.11 (Correctness). We say DEM = (E,D) has perfect correctness if for any  ∈ K and any < ∈ M,
we have

Pr[D( , 2) = < : 3 ← E( , <)] = 1.

Robustness of DEM (FROB and XROB) are taken from Farshim, Orlandi, and Roşi [FOR17].

De�nition 2.12 (Security notions for DEM). Let DEM = (E,D) be a DEM scheme whose key space is K .
For any A and goal-atk ∈ {ind-cca, pr-cca, pr-otcca}, we de�ne its goal-atk advantage against DEM as follows:

Advgoal-atk
DEM,A (^) :=

���Pr[Exptgoal-atk
DEM,A (^) = 1] − 1/2

���,
where Exptgoal-atk

DEM,A (^) is an experiment described in Figure 1.
For any A and goal-atk ∈ {frob, xrob}, we de�ne its goal-atk advantage against DEM as follows:

Advgoal-atk
DEM,A (^) := Pr[Exptgoal-atk

DEM,A (^) = 1],

where Exptgoal-atk
DEM,A (^) is an experiment described in Figure 1.

ForGOAL-ATK ∈ {IND-CCA, PR-CCA, PR-otCCA, FROB,XROB}, we say thatDEM isGOAL-ATK-secure ifAdvgoal-atk
DEM,A (^)

is negligible for any QPT adversary A.
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Exptind-cpa
KEM,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )
(2∗,  ∗0 ) ← Enc(ek);
 ∗1 ← K
1′ ← A(ek, 2∗,  ∗

1
)

return boole(1 = 1′)

Exptind-cca
KEM,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )
(2∗,  ∗0 ) ← Enc(ek);
 ∗1 ← K

1′ ← ADec2∗ ( ·) (ek, 2∗,  ∗
1
)

return boole(1 = 1′)

Dec0 (2)

if 2 = 0, return ⊥
 := Dec(dk, 2)
return  

Dec0 (id, 2)

if 2 = 0, return ⊥
 := Dec(dkid, 2)
return  

Exptpr-cca
KEM,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )
(2∗0,  

∗
0 ) ← Enc(ek);

(2∗1,  
∗
1 ) ← S(1

^ , ek) × K

1′ ← ADec2∗
1
( ·) (ek, 2∗

1
,  ∗
1
)

return boole(1 = 1′)

Exptpr2-cca
KEM,A (^)

1 ← {0, 1}
(ek, dk) ← Gen(1^ )
(2∗,  ∗0 ) ← S(1

^ , ek) × K
 ∗1 ← Dec(dk, 2∗)

1′ ← ADec2∗ ( ·) (ek, 2∗,  ∗
1
)

return boole(1 = 1′)

Exptanon-cca
KEM,A (^)

1 ← {0, 1}
(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )
(2∗,  ∗) ← Enc(ek);

1′ ← ADec2∗ ( ·, ·) (ek, 2∗,  ∗)
return boole(1 = 1′)

Exptsrob-cca
KEM,A (^)

(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

2 ← ADec⊥ ( ·, ·) (ek0, ek1)
 0 ← Dec(dk0, 2)
 1 ← Dec(dk1, 2)
return boole( 0 ≠ ⊥ ∧  1 ≠ ⊥)

Exptscfr-cca
KEM,A (^)

(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

2 ← ADec⊥ ( ·, ·) (ek0, ek1)
 0 ← Dec(dk0, 2)
 1 ← Dec(dk1, 2)
return boole( 0 =  1 ≠ ⊥)

Exptwrob-cca
KEM,A (^)

(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

1 ← ADec⊥ ( ·, ·) (ek0, ek1)
(2,  1) ← Dec(ek1)
 1−1 ← Dec(dk1−1 , 2)
return boole( 1−1 ≠ ⊥)

Exptwcfr-cca
KEM,A (^)

(ek0, dk1) ← Gen(1^ )
(ek1, dk1) ← Gen(1^ )

1 ← ADec⊥ ( ·, ·) (ek0, ek1)
(2,  1) ← Dec(ek1)
 1−1 ← Dec(dk1−1 , 2)
return boole( 0 =  1 ≠ ⊥)

Fig. 2. Games for KEM schemes

6



Exptind-cca
DEM,A (^)

1 ← {0, 1}
 ← K

(<0, <1, state) ← AEnc( ·) ,Dec⊥ ( ·) (1^ )
2∗ ← E( , <1)

1′ ← AEnc( ·) ,Dec2∗ ( ·) (2∗, state)
return boole(1 = 1′)

Enc(<)

2 ← E(:, <)
return 2

Dec0 (2)

if 2 = 0, return ⊥
< ← D(:, 2)
return <

Exptpr-cca
DEM,A (^)

1 ← {0, 1}
 ← K

(<, state) ← AEnc( ·) ,Dec⊥ ( ·) (1^ )
2∗0 ← E( , <)
2∗1 ← C|< |

1′ ← AEnc( ·) ,Dec2∗
1
( ·) (2∗

1
, state)

return boole(1 = 1′)

Exptpr-otcca
DEM,A (^)

1 ← {0, 1}
 ← K
(<, state) ← A(1^ )
2∗0 ← E( , <)
2∗1 ← C|< |

1′ ← ADec2∗
1
( ·) (2∗

1
, state)

return boole(1 = 1′)

Exptfrob
DEM,A (^)

(2, :0, :1) ← A(1^ )
<0 ← D(:0, 2)
<1 ← D(:1, 2)
1 ← boole(<0 ≠ ⊥ ∧ <1 ≠ ⊥)
1: ← boole(:0 ≠ :1)
return boole(1 ∧ 1: )

Exptxrob
DEM,A (^)

(<0, :0, '0, :1, 21) ← A(1^ )
20 ← E(:0, <0; '0)
<1 ← D(:1, 21)
1 ← boole(<0 ≠ ⊥ ∧ <1 ≠ ⊥)
1: ← boole(:0 ≠ :1)
12 ← boole(20 = 21 ≠ ⊥)
return boole(1 ∧ 1: ∧ 12)

Fig. 3. Games for DEM schemes

2.4 Review of Grubbs et al. [GMP21]

Grubbs et al. studied KEM’s anonymity and hybrid PKE’s anonymity and robustness, which is an extension of
Mohassel [Moh10]. �e main di�erence of Grubbs et al. [GMP21] from Mohassel [Moh10] is they treat KEM with
implicit rejection, which is used in all NIST PQC Round 3 KEM candidates except HQC.
Roughly speaking, they showed that

�eorem 2.1 ([GMP21, �eorem 2]). If KEM is SCFR-CCA-secure and WCFR-CCA-secure and DEM is FROB-
secure andXROB-secure, then a hybrid PKE scheme PKE obtained by composing KEM andDEM is SROB-CCA-secure
and WROB-CCA-secure, respectively.

�ey also showed that

�eorem 2.2 ([GMP21, �eorem 7]). If KEM is obtained by FO6⊥ with PKE1, KEM is ANON-CCA-secure and
IND-CCA-secure, PKE1 is WCFR-CPA-secure, X-correct, and W-spreading, DEM is INT-CTXT-secure, then a hybrid
PKE scheme PKE obtained by composing KEM and DEM is ANON-CCA-secure.

3 Strong Pseudorandomness implies Anonymity

We observe that strong pseudorandomness immediately implies anonymity, which may be folklore. For complete-
ness, we include the proof for PKE.

�eorem 3.1. IfPKE is SPR-CCA-secure, then it isANON-CCA-secure. IfKEM is SPR-CCA-secure, then it isANON-CCA-
secure.

Proof: Let us de�ne four games Game8,1 for 8, 1 ∈ {0, 1}. Let (8,1 be the event that the adversary outputs 1 in
Game8,1 .
– Game0,1 for 1 ∈ {0, 1}: �is is the original game Exptanon-cca

PKE,A (^) with 1 = 0 and 1.
– Game1,1 for 1 ∈ {0, 1}: �is game is the same as Game0,1 except that the target ciphertext is randomly taken

from S(1^ ) × CDEM, |< | .
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Table 1. Summary of Games for the Proof of �eorem 4.1

Game 2∗ and  ∗ 3∗ Decryption oracle justi�cation

Game0 Enc(ek) E( ∗, <∗) reject if (2, 3) = (2∗, 3∗)
Game1 Enc(ek) at �rst E( ∗, <∗) reject if (2, 3) = (2∗, 3∗) conceptual change
Game2 Enc(ek) at �rst E( ∗, <∗) reject if (2, 3) = (2∗, 3∗); use  ∗ if 2 = 2∗ X-correctness
Game3 S(1^ ) × K at �rst E( ∗, <∗) reject if (2, 3) = (2∗, 3∗); use  ∗ if 2 = 2∗ SPR-CCA security of KEM
Game4 S(1^ ) × K at �rst * (CDEM, |<∗ |) reject if (2, 3) = (2∗, 3∗); use  ∗ if 2 = 2∗ SPR-otCCA security of DEM
Game5 S(1^ ) × K at �rst * (CDEM, |<∗ |) reject if (2, 3) = (2∗, 3∗) SPR2-CCA security of KEM
Game6 S(1^ ) × K * (CDEM, |<∗ |) reject if (2, 3) = (2∗, 3∗) conceptual change

It is easy to see that there exist two adversaries A10 and A11 whose running times are the same as that of A
satisfying

1
2
��Pr[(0,1] − Pr[(1,1]

�� ≤ Advspr-cca
PKE,A11

(^) and Pr[(1,0] = Pr[(1,1] .

Hence, we have

Advanon-cca
PKE,A (^) =

1
2
��Pr[(0,0] − Pr[(0,1]

�� ≤ Advspr-cca
PKE,A10

(^) + Advspr-cca
PKE,A11

(^).

�is completes the proof. ut

4 Strong Pseudorandomness of Hybrid PKE

�e hybrid PKE PKE = (Gen, Enc,Dec) constructed from KEM = (Gen, Enc,Dec) and DEM = (E,D) is summa-
rized as follows:

Gen(1^ )

(ek, dk) ← Gen(1^ )
return (ek, dk)

Enc(ek, <)

(2,  ) ← Enc(ek)
3 ← E( , <)
return (2, 3)

Dec(dk, (2, 3))

 ′ ← Dec(dk, 2)
if  ′ = ⊥ then return ⊥
<′ ← D( ′, 3)
if <′ = ⊥ then return ⊥
return <′

�eorem 4.1. Let PKE = (Gen, Enc,Dec) be a hybrid encryption scheme obtained by composing a KEM scheme
KEM = (Gen, Enc,Dec) and a DEM scheme DEM = (E,D) that share key space K . If KEM is SPR-CCA-secure,
SPR2-CCA-secure, and X-correct with negligible X and DEM is PR-otCCA-secure, then PKE is SPR-CCA-secure.

�e security proof is similar to the security proof of IND-CCA-security of KEM/DEM [CS03]. However, we need
to take care of pseudorandom ciphertexts.

Proof: In the following, we consider Game8 for 8 = 0, . . . , 6. We summarize the games in Table 1. Let (8 denote
the event that the adversary outputs 1′ = 1 in Game8 .

Game0: �is is the original game Exptspr-cca
PKE,A (^) with 1 = 0. �e target ciphertext is computed as follows:

(2∗0,  
∗
0 ) ← Enc(ek); 3∗0 ← E( ∗0 , <

∗); return ct∗ = (2∗0, 3
∗
0).

We have
Pr[(0] = 1 − Pr[Exptspr-cca

PKE,A (^) = 1 | 1 = 0] .
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Game1: In this game, 2∗0 and  ∗0 are generated before invokingA with ek. �is is just conceptual change and we
have

Pr[(0] = Pr[(1] .

Game2: In this game, the decryption oracle uses  ∗ is 2 = 2∗ instead of  = Dec(sk, 2∗). Game1 and Game2
di�er if correctly generated ciphertext 2∗ with  ∗ is decapsulated into di�erent  ≠  ∗ or ⊥, which occurs with
probability at most X. Hence, the di�erence of Game1 and Game2 is bounded by X and we have

|Pr[(1] − Pr[(2] | ≤ X.

�is is corresponding to the event BadKeyPair in [CS03].

Game3: In this game, the challenger uses random (2∗,  ∗) and uses  ∗ in DEM. �e challenge ciphertext is
generated as follows:

(2∗1,  
∗
1 ) ← S(1

^ ) × K ; 3+ ← E( ∗1 , <
∗); return ct∗ = (2∗1, 3

+).

�e di�erence is bounded by SPR-CCA security of KEM: �ere is an adversary A23 whose running time is ap-
proximately the same as that of A satisfying

1
2 |Pr[(2] − Pr[(3] | ≤ Advspr-cca

KEM,A23
(^).

(We omit the detail of A23, since it is straightforward.)

Game4: In this game, the challenger uses random 3∗. �e challenge ciphertext is generated as follows:

(2∗1,  
∗
1 ) ← S(1

^ ) × K ; 3∗1 ← CDEM, |< | ; return ct∗ = (2∗1, 3
∗
1).

�e di�erence is bounded by SPR-otCCA security of DEM: �ere is an adversary A34 whose running time is
approximately the same as that of A satisfying

1
2 |Pr[(3] − Pr[(4] | ≤ Advspr-otcca

DEM,A34
(^).

(We omit the detail of A34, since it is straightforward.)

Game5: We replace the decryption oracle. If given ct = (2∗, 3), the decryption oracle uses  = Dec(sk, 2∗)
instead of  ∗.
�e di�erence is bounded by SPR2-CCA security of KEM: �ere is an adversary A45 whose running time is
approximately the same as that of A satisfying

1
2 |Pr[(4] − Pr[(5] | ≤ Advspr2-cca

DEM,A45
(^).

(We omit the detail of A45 since it is straightforward.)

Game6: We change the timing of the generation of (2∗1,  
∗
1 ). �is is just conceptual change and we have

Pr[(5] = Pr[(6] .

Notice that this is the original game Exptspr-cca
PKE,A (^) with 1 = 1, thus, we have

Pr[(6] = Pr[Exptspr-cca
PKE,A (^) = 1 | 1 = 1]

Summarizing the (in)equalities, we obtain the bound in the statement. ut
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Table 2. Summary of Games for the Proof of �eorem 5.1

Decryption
Game H 2∗  ∗ valid 2 invalid 2 justi�cation

Game0 H(·) Enc(ek, <∗) H(<∗) H(<) H0 (B, 2)
Game1 H(·) Enc(ek, <∗) H(<∗) H(<) H@ (2) Lemma 2.1
Game1.5 H′@ (Enc(ek, ·)) Enc(ek, <∗) H(<∗) H(<) H@ (2) if key is accurate
Game2 H@ (Enc(ek, ·)) Enc(ek, <∗) H(<∗) H(<) H@ (2) if key is accurate
Game3 H@ (Enc(ek, ·)) Enc(ek, <∗) H@ (2∗) H@ (2) H@ (2) if key is accurate
Game4 H@ (Enc(ek, ·)) S(1^ ) H@ (2∗) H@ (2) H@ (2) DS-IND
Game5 H@ (Enc(ek, ·)) S(1^ ) random H@ (2) H@ (2) statistical disjointness
Game6 H@ (Enc(ek, ·)) S(1^ ) random H(<) H@ (2) if key is accurate
Game6.5 H′@ (Enc(ek, ·)) S(1^ ) random H(<) H@ (2) if key is accurate
Game7 H(·) S(1^ ) random H(<) H@ (2) if key is accurate
Game8 H(·) S(1^ ) random H(<) H0 (B, 2) Lemma 2.1

5 SXY may be Strongly Pseudorandom in the QROM

Let us review SXY [SXY18] as known as U 6⊥< [HHK17]. (We note that SXY requires the re-encryption check but
U⊥< does not.)
Let PKE = (Gen, Enc,Dec) be a PKE scheme whose plaintext space is M. Let C and K be a ciphertext and
key space. Let H : M → K and H′ : {0, 1}ℓ × C → K be hash functions modeled by random oracles. KEM =

(Gen, Enc,Dec) = SXY[PKE,H,H0] is de�ned as follows:

Gen(1^ )

(ek, dk) ← Gen(1^ )

B← {0, 1}ℓ

dk := (dk, ek, B)

return (ek, dk)

Enc(ek)

< ←M
2 := Enc(ek, <)
 := H(<)
return (2,  )

Dec(dk, 2), where dk = (dk, ek, B)

<′ ← Dec(dk, 2)
if <′ = ⊥ then return  := H0 (B, 2)
if 2 ≠ Enc(pk, <′)return  := H0 (B, 2)
else return  := H(<′)

SPR-CCA security:

�eorem 5.1. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then PKE is SPR-CCA-secure.

Proof Sketch: We use the game-hopping proof. We consider Game8 for 8 = 0, . . . , 8. We summarize the games in
Table 2. Let (8 denote the event that the adversary outputs 1′ = 1 in game Game8 . Let Acc and Acc denote the
event that the key pair (ek, dk) is accurate and inaccurate, respectively.
We mainly follow the security proof in [XY19].

Game0: �is game is the original game Exptspr-cca
KEM,A (^) with 1 = 0. �us, we have

Pr[(0] = 1 − Pr[Exptspr-cca
KEM,A (^) = 1 | 1 = 0] .

Game1: �is game is the same as Game0 except that H0 (B, 2) in the decapsulation oracle is replace with H@ (2)
where H@ : C → K is another random oracle. We remark that A is not given direct access to H@ .
As in [XY19, Lemmas 4.1], from Lemma 2.1 we have the bound

|Pr[(0] − Pr[(1] | ≤ @H0 · 2
−(ℓ−1)/2,

where @H0 denote the number of queries to H0 the adversary makes.
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Game1.5: �is game is the same as Game1 except that the random oracle H(·) is simulated by H′@ (Enc(ek, ·))
where H′@ : C → K is yet another random oracle. We remark that the decapsulation oracle and the generation of
 ∗ also use H′@ (Enc(ek, ·)) as H(·).
If a key pair is accurate, the two gamesGame1 andGame1.5 are equivalent because Enc(ek, ·) is injective. See [XY19,
Lemma 4.3] for the detail.

Game2: �is game is the same as Game1 except that the random oracle H(·) is simulated by H@ (Enc(ek, ·))
instead of H@ (Enc(ek, ·)).
If a key pair is accurate, the two games Game1.5 and Game2 are equivalent as in the proof of [XY19, Lemma 4.4].

Game3: �is game is the same as Game2 except that  ∗ is set as H@ (2∗) and the decapsulation oracle always
returns H′@ (2) as long as 2 ≠ 2∗. �is decapsulation oracle will denoted by Dec’.
If a key pair is accurate, the two games Game2 and Game3 are equivalent as in the proof of [XY19, Lemma 4.5].

Game4: �is game is the same as Game3 except that 2∗ is generated by S(1^ ).
�e di�erence between two games Game3 and Game4 is bounded by the advantage of ciphertext indistinguisha-
bility in disjoint simulatability as in [XY19, Lemma 4.7].

Game5: �is game is the same as Game4 except that  ∗ ← K instead of  ∗ ← H@ (2∗).
In Game4, if 2∗ ← S(1^ ) is not in Enc(ek,M), then the adversary has no information about  ∗ = H@ (2∗) and
thus,  ∗ looks uniformly at random. Hence, the di�erence between two games Game4 and Game5 is bounded by
the statistical disjointness in disjoint simulatability as in [XY19, Lemma 4.8].

Game6: �is game is the same as Game5 except that the decapsulation oracle is reset as Dec.
If a key pair is accurate, the two games Game5 and Game6 are equivalent as in the proof of [XY19, Lemma 4.5].

Game6.5: �is game is the same as Game6 except that the random oracle H(·) is simulated by H′@ (Enc(ek, ·))
where H′@ : C → K is yet another random oracle as in Game1.5.
If a key pair is accurate, the two games Game6 and Game6.5 are equivalent as in the proof of [XY19, Lemma 4.4].

Game7: �is game is the same as Game6.5 except that the random oracle H is chosen from {H : M → K}.
If a key pair is accurate, the two gamesGame6.5 andGame7 are equivalent because Enc(ek, ·) is injective. See [XY19,
Lemma 4.3] for the detail.

Game8: �is game is the same as Game7 except that H@ (2) in the decapsulation is replaced by H0 (B, 2).
As in [XY19, Lemmas 4.1], from Lemma 2.1 we have the bound

|Pr[(7] − Pr[(8] | ≤ @H0 · 2
−(ℓ−1)/2.

We note that �is game is the original game Exptspr-cca
KEM,A (^) with 1 = 1. �us, we have

Pr[(8] = Pr[Exptspr-cca
KEM,A (^) = 1 | 1 = 1] .

SPR2-CCA security:

�eorem 5.2. Suppose that a ciphertext space C of PKE depends on the public parameter only. If PKE is strongly
disjoint-simulatable, then PKE is SPR2-CCA-secure.

Proof Sketch: We use the game-hopping proof. We consider Game8 for 8 = 0, . . . , 6. We summarize the games in
Table 3. Let (8 denote the event that the adversary outputs 1′ = 1 in game Game8 . Let Acc and Acc denote the
event that the key pair (ek, dk) is accurate and inaccurate, respectively.

Game0: �is game is the original game Exptspr2-cca
KEM,A (^) with 1 = 0. �e challenge is generated as

(2∗,  ∗0 ) ← S(1
^ ) × K .

We have
Pr[(0] = 1 − Pr[Exptspr-cca

KEM,A (^) = 1 | 1 = 0] .
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Table 3. Summary of Games for the Proof of �eorem 5.1: ‘S(1^ ) \Enc(ek,M)’ implies that the challenger generates 2∗ ← S(1^ )
and returns ⊥ if 2∗ ∈ Enc(ek,M).

Decryption
Game H 2∗  ∗ valid 2 invalid 2 justi�cation

Game0 H(·) S(1^ ) random H(<) H0 (B, 2)
Game1 H(·) S(1^ ) \ Enc(ek,M) random H(<) H0 (B, 2) statistical disjointness
Game2 H(·) S(1^ ) \ Enc(ek,M) random H(<) H@ (2) Lemma 2.1
Game3 H(·) S(1^ ) \ Enc(ek,M) H@ (2∗) H(<) H@ (2) H@ (2∗) is hidden
Game4 H(·) S(1^ ) \ Enc(ek,M) H0 (B, 2∗) H(<) H0 (B, 2) Lemma 2.1
Game5 H(·) S(1^ ) \ Enc(ek,M) Dec(dk, 2∗) H(<) H0 (B, 2) re-encryption check and key’s accuracy
Game6 H(·) S(1^ ) Dec(dk, 2∗) H(<) H0 (B, 2) statistical disjointness

Game1: In this game, the ciphertext is set as ⊥ if 2∗ is in Enc(ek,M). �e di�erence between two games Game0
and Game1 is bounded by statistical disjointness.

Game2: �is game is the same as Game1 except that H0 (B, 2) in the decapsulation oracle is replace with H@ (2)
where H@ : C → K is another random oracle.
As in [XY19, Lemmas 4.1], from Lemma 2.1 we have the bound

|Pr[(1] − Pr[(2] | ≤ @H0 · 2
−(ℓ−1)/2,

where @H0 denote the number of queries to H0 the adversary makes.

Game3: �is game is the same as Game2 except that  ∗ := H@ (2∗) instead of chosen random. Since 2∗ is always
outside of Enc(ek,M),A cannot obtain any information about H@ (2∗). Hence, the two games Game2 and Game3
are equivalent.

Game4: �is game is the same as Game3 except that H@ (·) is replaced by H0 (B, ·). As in [XY19, Lemmas 4.1],
from Lemma 2.1 we have the bound

|Pr[(3] − Pr[(4] | ≤ @H0 · 2
−(ℓ−1)/2,

where @H0 denote the number of queries to H0 the adversary makes.

Game5: �is game is the same as Game4 except that  ∗ := Dec(dk, 2∗) instead of H0 (B, 2∗). Recall that 2∗ is
always outside of Enc(ek,M). If a key pair is accurate, then Enc(ek,Dec(2∗)) ≠ 2∗ and  ∗ = H0 (B, 2∗). Hence,
the two games are equivalent if a key pair is accurate.

Game6: We �nally replace how to compute 2∗. In this game, the ciphertext is chosen by S(1^ ) as in Game0.
�e di�erence between two games Game5 and Game6 is bounded by statistical disjointness.
Moreover, this game Game6 is the original game Exptspr2-cca

KEM,A (^) with 1 = 1.
Summarizing the (in)equalities, we obtain �eorem 5.2

6 Review of NTRU

Let us brie�y review NTRU [CDH+20]. Q1 denotes the polynomial G − 1 and Q= denotes (G= − 1)/(G − 1) =
G=−1 + G=−2 + · · · + 1. We say a polynomial ternary if its coe�cients are in {−1, 0, +1}.
We have G= − 1 = Q1Q=. ', '/3, and '/@ denotes Z[G]/(Q1Q=), Z[G]/(3,Q1Q=), and Z[G]/(@,Q1Q=), respec-
tively. (, (/3, and (/@ denotesZ[G]/(Q=),Z[G]/(3,Q=), andZ[G]/(@,Q=), respectively.. S3(0) returns a canonical
(/3-representative of I ∈ Z[G], that is, 1 ∈ Z[G] of degree at most = − 2 with ternary coe�cients in {−1, 0, +1}
such that 0 ≡ 1 (mod (3,Q=)). Let T be a set of non-zero ternary polynomials of degree at most = − 2, that is,
T = {0 =

∑=−2
8=0 08G

8 | 0 ≠ 0 ∧ 08 ∈ {−1, 0, +1}}. We say a ternary polynomial E =
∑
8 E8G

8 has the non-negative
correlation property if

∑
8 E8E8+1 ≥ 0. T+ is a set of non-zero ternary polynomials of degree at most = − 2 with

non-negative correlation property. T (3) is a set of non-zero balanced ternary polynomials of degree at most = − 2
with Hamming weight 3, that is, {0 ∈ T | #{08 : 08 = 1} = #{08 : 08 = −1} = 3/2}.
�e following lemma is due to Schanck [Sch20]. (See e.g. for [CDH+20, p.22] for this design choice.)
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Lemma 6.1. Suppose that (=, @) = (509, 2048), (677, 2048), (821, 4096), and (701, 8192). If A ∈ T , then A has an
inverse in (/@.

Proof. Q= is irreducible over F2 if and only if = is prime and 2 is primitive element inF×= (See e.g., Cohen et al. [CFA05]).
�e conditions are satis�ed by all = = 509, 677, 701, and 821. Hence, Z[G]/(2,Q=) is �nite �eld and every polyno-
mial A in T has an inverse in Z[G]/(2,Q=). Such A is also invertible in (/@ = Z[G]/(@,Q=) with @ = 2: for some
: . One can �nd it using the Newton method/the Hensel li�ing. ut

Gen(1^ )

( 5 , 6) ← Sample fg()
5@ ← (1/ 5 ) mod (@,Q=)
ℎ← (3 · 6 · 5@) mod (@,Q1Q=)
ℎ@ ← (1/ℎ) mod (@,Q=)
5? ← (1/ 5 ) mod (3,Q=)
ek := ℎ, dk := ( 5 , 5? , ℎ@)
return (ek, dk)

Enc(ℎ, (A, <) ∈ LA × L<)

<′ ← Li�(<)
2 ← (ℎ · A + <′) mod (@,Q1Q=)
return 2

Dec(( 5 , 5? , ℎ@), 2)

if 2 . 0 mod (@,Q1) then return (0, 0, 1)
0 ← (2 · 5 ) mod (@,Q1Q=)
< ← (0 · 5?) mod (3,Q=)
<′ ← Li�(<)
A ← ((2 − <′) · ℎ@) mod (@,Q=)
if (A, <) ∈ LA × L< then return (A, <, 0)
else return (0, 0, 1)

Fig. 4. �e DPKE for NTRU

NTRU-HPS: �e parameters are de�ned as follows:

L 5 = T ,L6 = T (@/8 − 2),LA = T ,L< = T (@/8 − 2),

and Li�(<) = <. We note that ℎ ≡ 0 (mod (@,Q1)), ℎ is invertible in (/@, and ℎA + < ≡ 0 (mod (@,Q1)).
(See [CDH+20, Section2.3].)

NTRU-HRSS-KEM: �e parameters are de�ned as follows:

L 5 = T+,L6 = {Q1 · E | E ∈ T+},LA = T ,L< = T ,

and Li�(<) = Q1 · (3(</Q1). We note that ℎ ≡ 0 (mod (@,Q1)), ℎ is invertible in (/@, and ℎA + < ≡ 0
(mod (@,Q1)). (See [CDH+20, Section2.3].)

Rigidity: Notice that we implicitly check ℎA + Li�(<) = 2 by checking if (A, <) ∈ LA × LA . See [CDH+20] for
the details.

7 NTRU is SPR-CCA and SPR2-CCA in the QROM

We have known that the NTRU PKE is disjointly simulatable ([SXY18]) if the decisional small polynomial ratio
(DSPR) assumption [LTV12] and the polynomial learning with errors (PLWE) assumption [] hold. See [SXY18,
Section 3.3 of the ePrint version.]. Adapting their argument to NTRU in Round 3, the simulator S will output a
random polynomial 2 ← '/@ such that 2 ≡ 0 (mod (@,Q1)).
Combining this property with previous theorems, we conclude that NTRU-HPS and NTRU-HRSS are SPR-CCA-
secure and SPR2-CCA-secure using appropriate assumptions.

8 NTRU is Strongly Collision-Free

In order to show the strong robustness of the hybrid PKE, we use �eorem 2.1 ([GMP21, �eorem 2]). We show
NTRU’s SCFR-CCA-security by using the collision-resistant property of H0 and H and the claw-free property of
H0 and H.
�eorem 8.1 (SCFR-CCA-security of NTRU). NTRU isSCFR-CCA-secure in the QROM.
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Proof: Suppose that an adversary outputs a ciphertext 2 which is decapsulated into : ≠ ⊥ by dk0 and dk1, that
is, Dec(dk0, 2) = Dec(dk1, 2). Let us de�ne <0 = Dec(dk0, 2) and <1 = PKE(dk1, 2). We have four cases de�ned
as follows:

1. Case 1 (<0 ≠ ⊥ ∧ <1 ≠ ⊥): We have two sub-cases:
– <0 = <1: Let<0 = <1 = (A, <) ∈ LA ×L<. We have ℎ0 ·A +Li�(<) ≡ ℎ1 ·A +Li�(<) (mod @). �us, we

have A (ℎ0 − ℎ1) ≡ 0 (mod (@,Q=)). However, for any A ∈ LA = T , we have A ≠ 0 ∈ (/@ (Lemma 6.1).
In addition, we have ℎ0 ≡ ℎ1 ∈ (/@ with negligible probability. �us, the probability that the adversary
wins as this case is negligible.

– <0 ≠ <1: In this case, we succeed to �nd a collision for H, which is negligible for any QPT adversary
(Lemma 2.2).

2. <0 = ⊥ ∧ <1 ≠ ⊥: In this case, we �nd a claw ((B0, 2), <1) of H0 and H1. �e probability that we �nd such
claw is negligible for any QPT adversary (Lemma 2.3).

3. <0 ≠ ⊥ ∧ <1 = ⊥: In this case, we �nd a claw (<0, (B1, 2)) of H0 and H1. �e probability that we �nd such
claw is negligible for any QPT adversary (Lemma 2.3).

4. <0 = <1 = ⊥: In this case, we �nd a collision ((B0, 2), (B1, 2)) of H0, which is a collision if B0 ≠ B1. �e
probability that we �nd such collision is negligible for any QPT adversary (Lemma 2.2).

We conclude that the advantage of the adversary is negligible in any cases. ut

9 Conclusion

We have shown that NTRU in NIST PQC Round 3 �nalist is anonymous in the QROM if the underlying NTRU
PKE is strongly disjoint-simulatable and a hybrid PKE scheme constructed from NTRU as KEM and appropriate
DEM is anonymous and robust.
We show that
– SPR-CCA-secure KEM and PKE is ANON-CCA-secure (section 3).
– SPR-CCA-secure and SPR2-CCA-secure KEM and SPR-otCCA-secure DEM lead to SPR-CCA-secure PKE

(section 4).
– KEM obtained by the SXY transformation is SPR-CCA-secure and SPR2-CCA-secure if the underlying PKE

is strongly disjoint-simulatable in the QROM.(section 5).
– NTRU is SPR-CCA-secure and SPR2-CCA-secure if the underlying NTRU OWF is strongly disjoint-simulatable(section 6

and section 7).
– NTRU is also SCFR-CCA-secure (section 8).
– Hence, NTRU leads to ANON-CCA-secure hybrid PKE and SROB-CCA-secure hybrid PKE.

Grubbs et al. [GMP21] discussed the barrier to show anonymity of NTRU, which stems from the design choice
 = H(<) instead of  = H(<, 2). �e former choice make their simulation di�cult. We avoid this technical
barrier by using SPR-CCAsecurity.
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