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Abstract. Proof-of-Stake (PoS) distributed ledgers are the most com-
mon alternative to Bitcoin’s Proof-of-Work (PoW) paradigm, replacing
the hardware dependency with stake, i.e., assets that a party controls.
Similar to PoW’s mining pools, PoS’s stake pools, i.e., collaborative en-
tities comprising of multiple stakeholders, allow a party to earn rewards
more regularly, compared to participating on an individual basis. How-
ever, stake pools tend to increase centralization, since they are typically
managed by a single party that acts on behalf of the pool’s members. In
this work we propose Conclave, a formal design of a Collective Stake Pool,
i.e., a decentralized pool with no single point of authority. We formalize
Conclave as an ideal functionality and implement it as a distributed pro-
tocol, based on standard cryptographic primitives. Among Conclave’s
building blocks is a weighted threshold signature scheme (WTSS); to
that end, we define a WTSS ideal functionality — which might be of in-
dependent interest — and propose two constructions based on threshold
ECDSA, which enable (1) fast trustless setup and (2) identifiable aborts.

1 Introduction

A major innovation of Bitcoin [39] was combining Proof-of-Work (PoW), to
prevent sybil attacks, with financial rewards, to incentivize participation.

Regarding sybil resilience, Bitcoin’s PoW depends on the collective network’s
ability to compute hashes. Thus, PoW limits each party’s power and also deter-
mines how the distributed ledger is updated, i.e., which blocks can extend its
blockchain. However, PoW’s deficiencies, particularly its egregious environmen-
tal cost,4 have driven research on alternative designs, most prominently Proof-
of-Stake (PoS). PoS removes hardware requirements altogether and internalizes
sybil resilience by relying on parties’ stake, i.e., the assets that they own. These
assets are managed by the distributed ledger and serve as both the system’s
internal currency and consensus participation tokens. PoS systems are almost
energy-free, but often rely on complex cryptographic primitives, e.g., secure Mul-
tiparty Computation [33], Byzantine Agreement [12,23,34], or Verifiable Random
Functions (VRFs) [13,23].
4 The carbon footprint of: i) a single Bitcoin transaction is equivalent to 1, 202, 422
VISA transactions; ii) the total Bitcoin network is comparable to Sweden. (https:
//digiconomist.net/bitcoin-energy-consumption; May 2021)
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Regarding rewards, blockchain-based financial systems, like Bitcoin, aim to
incentivize participation in the consensus mechanism. The rewards comprise of
newly-issued assets and of transaction fees, i.e., assets paid by parties for using
the system. Interestingly, both PoW and PoS ledgers are economies of scale, who
favor parties with large amounts of participating power. One reason is poorly-
designed incentives, resulting in disproportionate power accumulation [29,17].
Another is temporal discounting, i.e., the tendency to disfavor rare or delayed
rewards [44]. Specifically, in Bitcoin, a party is rewarded for every block it pro-
duces, so parties with insignificant amounts of power are rarely rewarded. In
contrast, accumulating the power of multiple small parties in “pools” yields a
steadier reward. As a result, PoW systems see the formation of mining pools,5
while PoS systems usually favor delegation to stake pools [10,28] over “pure”
PoS, where parties act independently. Finally, the ledger’s performance and se-
curity is often better under fewer participants. For instance, PoS systems require
participants to be constantly online, since abstaining is a security hazard; this
requirement is more easily guaranteed within a small set of dedicated delegates.

A major drawback of existing stake pools is that they are typically managed
by a single party, the operator. This party participates in consensus, claims
the rewards offered by the system, and then distributes them among the pool’s
members (after subtracting a fee). However, the operator is a single point of
failure. In this work, we explore a more desirable design, which allows players
to jointly form a collective pool, i.e., a conclave. This design assumes no single
operator, minimizing excess fees, and trust and security concerns, altogether.
Collective stake pools also promote a more fair and decentralized environment.
In existing incentive schemes [4], operators who can pledge large amounts of
stake to the pool are preferred. Consequently, the system favors a few major
pool operators and, in the long run, its wealth is concentrated around them,
resulting in a “rich get richer” situation. Although this problem is inherent in
all decentralized financial systems [29], a well-designed collective pool may offset
the stakeholder imbalance and slightly decelerate this tendency. Especially in
PoS systems, a well-designed pool mechanism can prevent attacks observed on
PoW [27,46,36].

Desiderata. Our design assumes a group of stakeholders who jointly create a
stake pool without a single operator. Since large stakeholders typically form pools
on their own, our protocol concerns smaller stakeholders, who could otherwise
not participate directly. Therefore, our design could e.g., be appealing to a group
of friends or colleagues, who aim for a more steady reward ratio without relying
on a third party. Importantly, it should operate in a trustless environment as,
unfortunately, even in these scenarios, trust is not a given. Notably, our targeted
audience is parties who wish to actively participate, i.e., always be online to
perform the required consensus actions; parties who wish to remain offline may
instead opt for delegation schemes [10,28].

5 86% of Bitcoin’s hashing power and 83% of Ethereum’s hashing power are controlled
by 5 entities each. (https://miningpools.com; May 2021)
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In the absence of a central party, the responsibility of running the pool is
shared among all pool’s members, requiring some level of coordination which
may be cumbersome. For instance, if the protocol requires unanimous actions,
a single member could halt the pool’s operation. To ensure good performance,
the pool should allow a subset (of a carefully chosen size) to act on behalf of
the whole group. The choice of such subsets depends on each party’s “weight”,
which is in proportion to their stake. In summary, we have the following initial
assumptions, which form the basis for outlining our work’s desiderata:
• small number of parties: a collective pool is operated by a small group

of players;
• small stake disparity: the profiles of the collective pool’s members are
similar, i.e., they contribute a similar amount of stake to the pool;

• stake proportion as “weight”: each party is assigned a weight for partic-
ipating in the pool’s actions, relative to their part of the pool’s total stake.

Next, we provide an exhaustive list of basic requirements of a collective stake
pool. We note that an admissible party set is a set of parties with enough stake,
i.e., above a threshold of the total pool’s stake which is agreed upon during
the pool’s initialization. To the extent that some desiderata are conflicting, our
design will aim to satify as many requirements as possible:

• Proportional Rewards: the claim of each member on the entire pool’s
protocol rewards should be proportional to their individual contribution.

• Joint Control of Rewards: the members of a pool should jointly control
the access to its funds.

• Unilateral Reward Withdrawal: at any point in time, a stakeholder
should be able to claim their reward, accumulated up to that point, without
necessarily interacting with other members of the pool.

• Permissioned Access: new users can join the pool following agreement by
an admissible set of pool members.

• Robustness against Aborting: the pool should not fail to participate in
consensus, unless an admissible set of members aborts or is corrupted.

• Public Verifiability: stake pool formation and operation should be publicly
verifiable (s.t. consensus could take into account the aggregate pool’s stake).

• Stake Reallocation: users should freely change their personal stake allo-
cated to the pool, without interacting with other members of the pool.

• Parameter Updates: an admissible set of parties should be able to update
the stake pool’s parameters.

• Force Removal: an admissible set of parties should be able to remove a
member from the pool.

• Pool Closing: an admissible set of parties should be able to permanently
close the stake pool.

• Prevention of Double Stake Allocation: a party should not simultane-
ously commit the same stake to two different stake pools.

Our Contributions and Roadmap. We propose Conclave, a collectively man-
aged stake pool protocol that aims to satisfy the listed desiderata. Our first
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contribution is the ideal functionality Fpool, a simulation-based security defini-
tion of collective stake pools, which captures the core security properties that
our collective pool scheme should possess. We then describe πpool, a distributed
protocol executed by a set of n parties P which realizes Fpool. πpool employs
certificates, which are published on the ledger, to announce its formation and
closing. A major consideration and performance enhancement of our design is
load balancing of transaction verification. Each transaction is verified by a (de-
terministically elected) committee of parties, whose size is a tradeoff between
balancing workload, i.e., not requiring each party to verify every transaction,
and reducing trust on the chosen validator(s). We thus construct a distributed
mempool, i.e., a collectively managed set of unpublished transactions, s.t. if a
majority of the committee’s members are honest, transaction verification is se-
cure. Our scheme uses a weighted threshold signature scheme (WTSS), to share
the pool’s key among its members, and a smart contract to manage the rewards.
To that end, we provide a WTSS Universally Composable ideal functionality
Section 3), which may be of independent interest, and construct an ECDSA
WTSS, based on [21,22], s.t. each party has as many shares as “units” of weight.
The scheme’s complexity, which depends on the relative differences between each
party’s weight, is discussed in detail in Section 5.4.

Related Work. In the past years a multitude of PoS protocols have been pro-
posed. The Ouroboros family [2,13,32,33] offers, like Bitcoin, eventual guarantees
of liveness and persistence. Subselection has been employed in systems like Al-
gorand [23], which employs Byzantine Agreement to achieve transaction finality
in (expected) constant time, and Snow White [12,41], which uses the notion of
“robustly reconfigurable consensus” to address potential lack of participation.
Our work is complementary to these protocols and can be composed with them,
as it is agnostic to the underlying PoS ledger’s consensus mechanism.

Real-world PoS implementations often opt for stake representation and dele-
gation. Systems like Cardano6, EOS [10], and (to some extent) Tezos [25], employ
different consensus protocols, but all enforce that a (relatively small) subset of
representatives is elected to participate. Decred [14] takes a somewhat different
approach, where stakeholders buy a ticket for participation, akin to PoS with op-
tional participation. However, these systems typically assume single parties that
act as delegates, either individually or as pool operators; our design directly aims
at relaxing this restriction without requiring changes to the consensus protocol.

In cryptographic literature, stake pools are mostly treated from an engineer-
ing perspective. Ouroboros [33] offers a brief description of how delegation can be
used within the protocol. This idea is expanded in [28], which provides a formal
definition of PoS wallets and includes stake pool formation method via certifi-
cates. However, the pool’s management is again centralized around the operator;
our work extends this line of work by enabling the formation of a collective pool.
Another work, orthogonal to ours, by Brünjes et al. [4] considers the incentives
of distributing rewards among stake pools and aims to incentivize the creation
6 https://cardano.org
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of a (pre-defined) number of pools. However, it assumes that the pool opera-
tor commits part of their stake to make the pool more appealing, thus favoring
larger pool operators. Our work eases such wealth concentration tendencies by
enabling a collective pool to be equally competitive to a centralized one.

2 Preliminaries

2.1 The Execution Model of the Protocol

Our work is based on Canetti’s Universal Composability (UC) formulation of
the “hybrid world” [6], i.e., our protocol is defined with respect to auxiliary
functionalities later to be described in Section 4.1. In this setting, briefly, the
environment Z spawns an instance of an Interactive Turing Machine (ITM)
which runs the defined protocol. Our system is locally polynomial-bounded, en-
suring polynomial-time execution. The adversary A is also an ITM which may
corrupt a number of parties on the environment’s instructions.

We assume that the execution is organized in time slots. Each time slot corre-
sponds to a single round, during which the parties are sequentially activated and
exchange messages. The adversary is adaptive, i.e., can corrupt parties dynam-
ically, and rushing, i.e., can decide its strategy after receiving, and possibly de-
laying, the honest parties’ messages. At each round a party is elected to produce
a block, and thus extend the distributed ledger, with probability proportional to
its stake. Each block is a collection of valid transactions chosen by the elected
party; a transaction is valid as long as it adheres to the ledger’s rules as defined
in its validation predicate.

In our setting, the ledger’s maintainers are the stake pools. An adversary
can break the ledger’s properties by corrupting a set of stake pools which are
allocated a majority of the total stake. Consequently, since we assume that the
majority of stake is owned by honest stakeholders, the adversary needs to corrupt
at least one pool to which honest players delegate. Especially in the collective
setting, the adversary may control a subset of the pool’s members, although
not a majority of them. Therefore, our work considers adversaries who attempt
to violate the security of a collectively-owned stake pool while controlling a
minority of its members. Security violations include producing invalid blocks or
transactions, as well as abstaining from join the consensus protocol.

2.2 Transactions, Blocks, and the Global Ledger

Our protocol utilizes two features of the Kachina [31] framework: first, the for-
malization of the ledger and, second, smart contracts.

The Simple Ledger Functionality. Our collective pool protocol interacts
with a ledger functionality in a hybrid execution. A secure ledger, in the litera-
ture, is described as follows.

Definition 1. A secure distributed ledger [19] satisfies the following properties:
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• Persistence: A transaction which is part of a block at least k blocks away
from the ledger’s head, i.e., a block which is part of the chain which results
from removing the last k blocks of the current chain, is stable, i.e., every
honest party reports it in the same position in the ledger.

• Liveness: A transaction which is provided continuously as input to the par-
ties is stable after u rounds.

One option is Bitcoin’s formalization from [3]. However, this functionality
is local, while we would prefer a global functionality, following the Global UC
Framework [8], hence we will use the GsimpleLedger functionality from Kachina [31].
The functionality is available in Figure 1, where ≺ defines the prefix operation,
i.e., Ω ≺ Ω′ means the state Ω is included in Ω′, and, for readability and con-
sistency purposes, we rename transaction (τ) to block (b).

The functionality keeps a state Ω and a mapping M of parties to states, both
initially empty.

• When receiving a message (SUBMIT, b) from a party p, query A with
(BLOCK, b).

• When receiving a message READ from a party p, return M(p); if p is A,
it returns Ω.

• When receiving a message (EXTEND, Ω′) from A, set Ω ← Ω||Ω′.
• When receiving a message (ADVANCE, p, Ω′) from A, if M(p) ≺ Ω′ ≺ Ω

then set M(p)← Ω′.

Global Ledger Functionality GsimpleLedger

Fig. 1. The Simple Global Ledger Ideal Functionality.

The GsimpleLedger Functionality is generic enough to abstract transactions
and blocks, focusing on the ledger’s properties. However, in our setting we need
to define these objects, in order to better formulate a real-world blockchain. A
transaction is the following object: τ = 〈αs, αr, v, f〉, where i) αs, αr ∈ {0, 1}∗
are the sender’s and receiver’s addresses respectively, ii) v ∈ R is the value
transferred from αs to αr, and iii) f ∈ R is the fees of the transaction. A block
consists of an ordered list of transactions. In order to organize transaction in
blocks, we assume a function blockify which, given a set of transactions and
a chain, returns a block which can extend the chain, i.e., satisfies the validity
requirements of the system.

Reward Management via Smart Contracts. We also employ the formal
model of smart contracts from [31]. This model considers smart contracts from a
privacy-preserving perspective, which is out of the scope of this paper. However,
it also provides a UC definition of standard smart contracts, consisting of the
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universal machine U , which acts as the oracle over the ledger’s state, and the
core contract Γ , as illustrated by Figure 3 adapted to our stake pool design.
In our setting, the latter relates directly to the management of the rewards for
the members of the pool, and therefore it is presented as an auxiliary (reward)
functionality Γreward in Section 4.2.

2.3 Delegation and Stake Pools

The UC Model for delegated PoS systems was proposed in [28]. This framework
formalizes the core of a PoS wallet, including operations like payment, delega-
tion, and the formation of (centralized) stake pools. Specifically, each address
corresponds to two keys, responsible for payments and staking. To perform an
action, such as delegation or stake pool formation, a user creates a certificate,
signed by the staking key, and publishes it on the ledger. Hence, any staking-
related actions are public and parties can act accordingly when executing the
consensus protocol. A user can re-delegate the stake of an address α in two
ways: i) via a new delegation certificate signed by the staking key of α; ii) via
a payment which moves the funds to an address α′ with a different staking key,
which issues a new delegation certificate. A user can also delegate its stake to
multiple pools, by splitting its funds to multiple addresses, each with a different
staking key. When a user moves funds from an address, its stake is automatically
un-delegated, providing an easy way to withdraw from a stake pool.

To form a stake pool, a set of stakeholders pledge their stake to the pool.
Following, the pool’s registration certificate is signed by the stakeholders and
the pool’s managing key, which is managed solely by the pool’s operator, and
is published on the ledger. Among other parameters, the certificate defines the
address which receives the rewards awarded for the pool’s participation in con-
sensus. Finally, the revocation certificate, also signed by the pool’s managing key,
is published on the ledger to halt the pool’s operation.

This framework partially fulfills our earlier desiderata. In particular, Pre-
vention of Double Stake Allocation and Public Verifiabilitty are addressed by
the certificate-based registration and revocation mechanisms. However, the re-
maining items do not seem immediately solved without further assumptions.
For instance, if the members have the same proportion of shares, a standard
threshold signature scheme could address more of our desiderata, e.g., Offline
and Online Participation, Pool Proportional Rewards, Joint Control of Rewards,
and Robustness against Aborting. Following, reconfiguration of the pool is ac-
complished by regenerating the registration certificate and the pool’s threshold
key. Other desiderata can be approached in a similar fashion. Thus, our idea
is to generalize the access structure of an efficient threshold signature scheme
to add “weight” capabilities, such that the weights capture the pledged stake
distribution among the pool’s members.
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2.4 Weighted Threshold Digital Signatures

Each pool member is given a share of the pool’s private key, weighted by its stake.
Every message produced by the pool, e.g., certificates or new blocks, is signed
using a weighted threshold scheme. In a weighted threshold digital signature
scheme [38,45], each player p is associated with a (integer) weight ω[p] ≥ 0,
where ω is a mapping of players to weights. A signature can be produced by any
set of keys, the aggregate weight of which is above the defined threshold. The
weighted threshold signature scheme (Definition 4) is constructed by combining
a digital signature scheme (Definition 2) with a weighted threshold secret sharing
scheme (Definition 3). Additionally, standard threshold signatures is a special
case of the weighted variant, with ω[p] = 1 for every party p.

Definition 2 (Digital Signature). For a security parameter λ, a digital sig-
nature scheme Σ is a tuple (Gen,Sign,Verify):

• Gen(1λ)→ (vk, sk): a randomized algorithm that, given the security parame-
ter λ, outputs a pair of keys, the verification key vk and the λ-bit long private
key sk;
• Sign(m, sk) → σ: (possibly) randomized algorithm that, given a message m
and the private key sk, outputs a signature σ;
• Verify(m, vk, σ)→ {0, 1}: a deterministic algorithm that, given a message m,
a public key vk, and a signature σ outputs 1 if a signature is valid w.r.t.
message m and verification key vk (respectively 0 if the signature is invalid).

A digital signature scheme Σ is Existentially Unforgeable under Adaptive
Chosen Message Attacks (EUF-CMA) if it presents the following properties:

Completeness: For any message m, it holds:

Pr[(vk, sk)← Gen(1λ), σ ← Sign(m, sk) : 0← Verify(m, vk, σ)] ≤ negl(λ)

where all the probabilities are computed over the random coins of the generation
and sign algorithms.

Consistency: For any message m, the probability that two independent exe-
cutions of Verify(m, vk, σ) for a key pair (vk, sk)← Gen(1λ), output two different
outcomes is smaller than negl(λ).

Unforgeability: For any PPT algorithm Aforger, which can query the sig-
nature oracle Sign(·, sk) for signatures on a polynomial number of messages mi,
it holds:

Pr[(vk, sk)← Gen(1λ) : (m, σ)← ASign(·,sk)
forge ∧m 6= mi

∧Verify(m, vk, σ) = 1] < negl(λ)

where all the probabilities are computed over the random coins of the generation
algorithm and the adversary.

Definition 3 (Weighted Threshold Secret Sharing). A (T, n, ω)-threshold
secret sharing of a secret x consists of n shares x1, . . . , xn, each associated with
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a weight w1, . . . , wn, such that an efficient algorithm exists, that takes as input
a set of shares B, with

∑
i∈B wi > T , and outputs the secret value x. Any set of

shares B with
∑
i∈B wi ≤ T cannot obtain any information about the secret x.

Definition 4 (Weighted Threshold Signature). Let Σ be a signature scheme.
A (T, n, ω)-threshold signature scheme Σthresh for Σ is a triple of algorithms
(Thresh-Key-Gen,Thresh-Sign,Thresh-Verify) for the players p1, . . . , pn ∈ P s.t.:
• Thresh-Key-Gen(1λ, ω) → (vk, sk1, . . . , skn): given the security parameter λ,
outputs a public key vk and a list of private keys K = [sk1, . . . , skn] which
form a (T, n, ω)-threshold secret sharing of sk; the pair (vk, sk) has the same
distribution as the keys output by Gen of Definition 2;
• Thresh-Sign(m, B) → σ: given a message m and a set of private keys B,
B ⊆ K, outputs a signature σ;
• Thresh-Verify(m, vk, σ)→ {0, 1}: a deterministic algorithm that, given a mes-
sage m, a public key vk, and a signature σ outputs 1 if a signature is valid
w.r.t. message m and verification key vk (resp. 0 if the signature is invalid).

A (T, n, ω)-threshold signature scheme Σthresh is EUF-CMA if it presents the
properties of Definition 2 and the following:

Threshold Completeness: For any message m, it holds:

Pr[(vk,K)← Thresh-Key-Gen(1λ, ω), σ ← Thresh-Sign(m, B),∑
k∈B

wk > T : 0← Verify(m, σ, vk)] ≤ negl(λ)

and

Pr[(vk,K)← Thresh-Key-Gen(1λ, ω), σ ← Thresh-Sign(m, B),∑
k∈B

wk ≤ T : 1← Verify(m, σ, vk)] ≤ negl(λ)

where all the probabilities are computed over the random coins of the key gener-
ation and sign algorithms.

2.5 Standalone Consensus

Apart from distributed ledgers, we consider standalone consensus where a set of
parties need to reach agreement. To reach agreement on a transaction’s validity,
the committee members run a consensus sub-protocol. With hindsight, in Sec-
tion 4.3 we use a consensus sub-protocol to increase performance by assuming a
committee of pool members that verify each transaction.

Definition 5 (Consensus). A consensus protocol πconsensus, which is performed
among n processes pi each with input vi, satisfies [11]:
• Termination: eventually each correct process outputs a single value
• Agreement: all correct processes output the same value
• Validity: if all correct processes start πconsensus with the same input v, then
every correct process outputs v
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2.6 WTSS Building Blocks

The threshold signature scheme of [21] relies on ECDSA [18], as well as a Homo-
morphic Encryption Scheme, a Non-Malleable Equivocal Commitment Scheme,
and a Multiplier to Addition (MtA) Share conversion Protocol, presented next.

Non-Malleable Equivocal Commitments A non-interactive trapdoor com-
mitment scheme consists of four algorithms gen, com, ver, and equiv:

• gen(λ) → (pk, tk): On the input of the security parameter λ, it outputs the
public key associated with the commitment scheme and the trapdoor.

• com(pk,m, r) → [C(m), D(m)]: on input of the message, commitment key,
and coin tosses r, it outputs the commitment string C(m) and the secret
decommitment string D(m) for later opening.

• ver(C,D, pk)→ {m,⊥}: On the input of the key and the commitment infor-
mation, it outputs the original message or it fails to verify.

• equiv(pk,m, r,m′, T ) → D′: On input of the values, respectively, for key,
message and coin tosses, and a message m 6= m′ and a string T , if T = tk,
then cver(C(m), D′, pk)→ m′.

In practice, as pointed in [21], a hash function is used for a more efficient con-
struction of the outlined commitment scheme; a thorough discussion of concur-
rent uses and non-malleability properties of commitments is provided in [21].

The Additively Homomorphic Encryption Let the encryption scheme E
be is additively homomorphic module a large integer N . Therefore EPK(·) is
the encryption algorithm for public key PK. Given ciphertexts c1 = EPK(a)
and c2 = EPK(b), there is an efficiently computable function +E such that
c1 +E c2 = EPK(a + b mod N). This operation implies that an escalar as the
following, assume k ∈ N, k ×E c = E(km mod N). A concrete instantiation of
such protocol is Pailllier’s [40].

The Multiplier to Addition Conversion In [21], the authors introduced an
adapted version for a protocol to convert multiplier shares to additive shares.
Denote it the MtA protocol. More concretely, if two players respectively hold
secrets a, b ∈ Zq, such that x = ab mod q. They can convert the values a and b
to multiplicative shares for x. That is, compute α and β, such that x = α + β,
such way that each party holds α and β.

The MtA protocol assumes that one of the parties have a public key for an
additive homomorphic encryption scheme. Furthermore, regarding the share b,
the value gb may be public, therefore in some cases a checking should be done
in order to assure the use of the correct value for b. The version of MtA with
checks is denoted by MtAwc. We refer the reader to [21] for the full description
of both MtA and MtAwc protocols.
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3 UC Weighted Threshold Signature

In this section we present the weighted threshold signature ideal functionality
Fwtss (Figure 2). This functionality is used in the Collective Pool Protocol πpool,
which employs weighted threshold signatures for collectively signing certificates
and new blocks. The functionality Fwtss is inspired by Almansa et al. [1], which
is in turn inspired by Canetti [7]. However, unlike Almansa et al. and similar to
Canetti, during signature verification we consider the case of a corrupted signer,
i.e., a set of parties such that the majority (of weights) is corrupted.
Fwtss interacts with a set of n parties. Each party Pi is associated with an

integer wi, i.e., its weight. Fwtss also keeps the following, initially empty, tables:
i) pubkeys: tuples 〈sid, vk〉 of sid and a public key vk; ii) sigs: tuples (m,σ, vk, f)
of message m, a signature σ, a public key vk, and a verification bit f . The
mapping ω[p] → wp denotes the weight of a party p, while the term ω also
denotes the set of keys the participating parties.

Each message is associated with sid = 〈P, ω, T, sid′〉, where P is the set of
parties, ω is a mapping of parties to weights, T is the collective signature
weight threshold, and sid′ is a unique identifier.
Key Generation: Upon receiving (KeyGen, sid) from every honest
party P ∈ P, send (KeyGen, sid, P ) to S. Upon receiving a re-
sponse (KeyGen, sid, vk) from S, record 〈sid, vk〉 to pubkeys and send
(KeyGen, sid, vk) to every party in P. Following, all messages that do not
contain the established sid are ignored.
Signature Generation: Upon receiving (Sign, sid,m) from a party p, for-
ward it to S. After a subset of parties P ′ ⊆ P has submitted a Sign mes-
sage for the same m, and upon receiving (Sign, sid,m, σ) from S, check that∑

p∈P′ ω[p] > T (Note: This condition guarantees threshold completeness.)
Next, if (m,σ, vk, 0) 6∈ sigs (for the key vk that corresponds to sid in pubkeys),
record (m,σ, vk, 1) to sigs and reply with (Sign, sid,m, σ).
Signature Verification: Upon receiving (Verify, sid,m, σ, vk′) from P , for-
ward it to S. Upon receiving (Verified, sid,m, σ, φ) from S, set f as next:

1. If vk′ = vk and (m,σ, vk, 1) ∈ sigs, f = 1. (This guarantees completeness.)
2. Else, if vk′ = vk, the aggregate weight of the corrupted parties in P is

strictly less than T , and (m,σ, vk, 1) 6∈ sigs, f = 0 and record (m,σ, vk, 0)
to sigs. (This guarantees unforgeability, if the aggregate weight of the cor-
rupted parties is below the threshold.)

3. Else, if (m,σ, vk′, b) ∈ sigs, f = b. (This guarantees consistency.)
4. Else, f = φ and record (m,σ, vk′, f) to sigs.

Finally, send (Verified, sid,m, σ, vk′, f) to P .

Weighted Threshold Signature Functionality Fwtss

Fig. 2. Weighted Threshold Signature Ideal Functionality
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As highlighted in the definition, completeness, consistency, and unforgeability
are enforced upon verification, whereas threshold completeness is enforced upon
signature generation. Hence, it should be infeasible to issue a signature unless
using keys with enough weight, i.e., above the threshold, say, a value T .

4 The Collective Stake Pool

Our analysis is based on the UC Framework, following Canetti’s formulation of
the “real world” [5]. Specifically, we define the collective pool ideal functionality
Fpool, which distills the required (operational and security) properties; for read-
ability, Fpool is divided in two parts, management and consensus participation.
The ideal functionality is realized – in the “real world” – by the distributed
protocol πpool, which employs various established cryptographic primitives, and,
therefore, πpool can described with auxiliary functionalities. Before proceeding
with the functionality’s definition, we first describe the hybrid execution of πpool
and its building blocks.

4.1 Hybrid Protocol Execution
The protocol πpool is performed by n parties, where each party pi holds two
pairs of keys: (vkpi , skpi) for issuing transactions, and (vksi , sksi) for staking
operations, e.g., issuing delegation certificates (cf. [28]). The public key vki is
also used to generate an address αi. Each pool member pi pledges the funds of
an address αi (which it owns) to the pool. These funds are the player’s stake in
the pool and form the player’s weight in the weight distribution mapping ω.

We assume the members’ stake, i.e., their weight wi in the pool, is public.
Therefore, the weight distribution mapping ω is also public. Furthermore, each
member of the pool has its own signature key, and can issue standard signa-
tures through a standard signature scheme. A weighted version for a threshold
signature scheme follows by having each party holding as many shares, of the
original threshold scheme, as its weight. This approach has the extra advantage
that security guarantees of the original scheme are carried straightforwardly into
the weighted version. The full description of the WTSS Σthresh based on ECDSA
is presented in Section 5.

Additionally, our construction relies on the consensus sub-protocol πconsensus
to validate a transaction by the elected committee. Specifically, the collective
stake pool protocol is parameterized by: i) the validation predicate Validate,
ii) the permutation algorithm πperm, and iii) a consensus sub-protocol πconsensus.

Finally, our (modular) protocol is described in a hybrid world whith auxiliary
functionalities for established primitives. The functionality FBC [26] provides a
broadcast channel to all parties; Fcorewallet [28] enables delegation to the pool;
Fwtss (cf. Section 3) is used for weighted threshold signature operations; the
Smart Contract Functionality Γreward realizes the reward distribution mecha-
nism; GsimpleLedger is a global Ledger Functionality [31]. Let HYBRIDpoolπpool,A,Z
denote the {GsimpleLedger,FBC ,Fcorewallet,Fwtss, Γreward}-hybrid execution of
πpool in the (global) UC Framework.
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4.2 Part 1: Stake Pool Management

The functionality’s first part (Figure 4) includes all operations that are not
consensus-oriented. First, establishing a stake pool consists of two parts, defined
as corresponding interfaces in the ideal functionality. The pool’s members gather
and jointly decide to create a staking pool; they contact each other, e.g., via
off-chain direct channels, agree on the pool’s parameters, and generate its key.
Importantly, the participants are aware of the total number of participants in
the pool, as well as their weights. Then, the members of the pool perform a
setup protocol and register the new pool via a registration certificate, which is
signed by the pool’s key and published on the ledger. Following, the pool receives
rewards for participating in the consensus protocol. The rewards are managed
by a smart contract and, at any point, each each party can withdraw their part,
which is proportional to the internal stake distribution. Finally, to close the pool,
the members sign and publish a revocation certificate.

In more detail, the functionality Fpool interacts with n parties p1, . . . , pn and
is parameterized by:

• the validation predicate Validate(·, ·) which, given a transaction τ and a chain
C, defines whether τ can be appended to C (as part of a block);
• the algorithm blockify which, given a set of transactions, serializes them
(deterministically) in a block;
• the probability Πθ,t,n that the elected committee, responsible for a transac-
tion’s verification, is corrupted, dependent on the subselection parameter θ
and the number of corrupted parties t out of n total parties.

It also keeps the (initially empty) variables: i) the signature threshold T ;
ii) the public key vkpool; iii) the reward address αreward; iv) the set of valid and
unpublished transactions mempool; v) a mapping of parties to weights W ; vi) a
table of signatures sigs.

Gathering and Registration. The first step in creating a pool is the gathering
of parties, in order to collectively create the pool’s public key vkpool. Following,
the parties create and publish on the ledger the registration certificate certreg,
which contains the following:

• ω: a mapping identifying each member’s weight;
• αreward: the address which accumulates the pool’s rewards;
• vkpool: the pool’s threshold public key;
• σpool: the signature of 〈ω, αreward〉 created by vkpool.

Reward Withdrawal. During the life cycle of the pool, a member may want
to withdraw the rewards received up to that point. As per the desiderata of
Section 1, any party should be able to do so, without the explicit permission
of the other pool’s members. Additionally, the rewards that each party receives
should be proportional to its stake, i.e., its weight within the collective pool.
Reward withdrawal is implemented as the smart contract functionality Γreward.
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The contract is initialized with the weight distribution of the pool’s members
and each member’s public key. We assume that the contract is associated with
an address and can receive funds, similar to real-world smart contract systems
like Ethereum [47]. The state transition functionality Γreward is defined in Fig-
ure 3(following the ledger formalization of Section 2.2).

Γreward maintains a mapping ω, of parties to weights, and a variable b.
Initialization: Upon receiving (init, sid, ω′), forward it to S. Upon receiving
a response (init-ok, sid, αsc), set ω ← ω′ and return (init-ok, sid, αsc).
Balance Update: On receiving (transaction, sid, τ) from U , such that τ =
〈αs, αr, v, f〉, if αs = αsc set b := b− v, else if αr = αsc set b := b+ v.
Withdrawal: Upon receiving (withdraw, sid, α, f) from the party p, set r =

wp∑
p′∈ω

wp′
· b and return (transaction, sid, 〈αsc, α, r, f〉).

Reward Smart Contract Functionality Γreward

Fig. 3. The pool’s Reward Smart Contract Functionality.

Closing. Eventually, the members halt the operation of the pool. In order
to do so, they revoke the pool’s registration by jointly producing a revocation
certificate certrev. The certificate is relatively simple, containing a timestamp x
announcing the end of the pool and signed by the pool’s public key vkpool.

The first part of our functionality definition is given by Figure 4, whereas
the management routines, i.e., the first part of the description, of our protocol
construction is given by Figure 5.

4.3 Part 2: Participation in Consensus

After a pool is set up, the functionality’s second part (Figure 7) considers partic-
ipation in the system, i.e., validating transactions and issuing blocks. The pool
members continuously monitor the network for new transactions, which they
collect, validate, and organize in a mempool. As mentioned in the introduction,
the pool members remain online for the entirety of the execution to perform
the pool’s operations. Specifically, when the pool is elected to participate, the
mempool’s transactions are serialized and published in a block. Under PoS, the
pool participates proportionally to its aggregated member and delegated stake.

To improve performance, we define a distributed mechanism for transaction
verification, i.e., a distributed mempool. Such load balancing mechanism increases
efficiency by requiring only a subset of the pool’s members to verify each trans-
action. Notably, this is in contrast to the standard practice of Bitcoin mining
pools, where the pool’s operator decides the transactions to be mined by its
members; instead, our approach further reduces these trust requirements.
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Gathering: Upon receiving (gather, sid) from p, forward it to S. Af-
ter every party pi, i ∈ [1, n] has submitted gather, upon receiving from S
(gather-ok, sid, vkpool), store T and vkpool, add all party-weight pairs (pi, ωi)
to W , and reply with (gather-ok, sid, vkpool) to all parties.
Pool Registration: Upon receiving (register, sid,W ) from p, forward it to
S. After all parties pi, i ∈ [1, n] have submitted register, upon receiving from S
(register-ok, sid, αreward, σpool), set certreg = 〈(W,αreward, vkpool, σpool)〉.
Then check if ∀(m,σ, b′) ∈ sigs : σ 6= σpool, (certreg, σpool, 0) 6∈ sigs; if the
checks hold, insert (certreg, σpool, 1) to sigs. Finally, store αreward and reply
with (register-ok, sid, certreg).
Reward Withdrawal: Upon receiving the message (withdraw, sid, α, f)
from pi, forward it to S. Then, compute r = wpi∑n

j=1
wpj
· rpool, where

rpool is the funds of address αsc as defined in GsimpleLedger. Finally, return
(transaction, sid, 〈αsc, α, r, f〉).
Closing: Upon receiving (close, sid, x) from p, forward it to S. After a set
of parties B has submitted close for the same x, if

∑
p∈B wp > T , upon

receiving (close-ok, sid, σpool) from S, check if ∀(m,σ, b′) ∈ sigs : σ 6=
σpool, (x, σpool, 0) 6∈ sigs; if the checks hold, insert (x, σpool, 1) to sigs. Finally,
return to all parties (close-ok, sid, certrev), with certrev = 〈x, σpool〉.

Collective Pool Functionality FT,ωpool (first part)

Fig. 4. The first part of the Collective Pool Functionality, parameterized with thresh-
old T and weight mapping ω, refers to the creation and management of the pool (the
second part is given by Figure 7).

Gathering: Upon receiving (gather, sid), send (KeyGen, sid) to Fwtss, with
sid containing the weight mapping ω and the threshold T . Upon receiving the
reply (KeyGen, sid, vkpool), return (gather-ok, sid, vkpool).
Pool Registration: Upon receiving (register, sid,W ), send (init, sid,W )
to Γreward and wait for the reply (init-ok, sid, αreward). Then, set m =
(W,αreward) and send (Sign, sid,m) to Fwtss. Upon receiving a reply
(Sign, sid,m, σpool), return (register-ok, sid, certreg), where certreg =
〈(W,αreward, vkpool, σpool)〉.
Reward Withdrawal: Upon receiving (withdraw, sid, α, f), forward it to
Γreward. Upon receiving a response (transaction, sid, 〈αsc, α, r, f〉) return it.
Closing: Upon receiving (close, sid, x), send (Sign, sid, x) to Fwtss. Upon
receiving a reply (Sign, sid, x, σpool), return (close-ok, sid, certrev) with
certrev = 〈x, σpool〉.

Collective Pool Protocol πT,ωpool (first part)

Fig. 5. The first part of the Collective Pool Protocol, which describes the set of
management operations (the second part is given by Figure 8).
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To construct a distributed mempool, we consider a subselection mechanism
to identify the parties that verify each transaction. This mechanism should be:
a) non-interactive b) deterministic, c) balanced, i.e., every party should be chosen
with the same probability. Subselection is secure if a majority of the elected com-
mittee is honest. However, since the adversary may corrupt some pool members,
this may not always be the case. We model this uncertainty via the probabil-
ity Πθ,t,n, which depends on the size of the committee and the power of the
adversary among the pool’s members.

A straightforward way to implement subselection is to assume that the pool’s
members are ordered in a well-defined manner, e.g., lexicographically. Given the
ordered list L = [p1, p2, . . . , pn] of the pool’s members, we use a permutation
algorithm πperm(·, ·, ·), which takes two arguments, i) a transaction τ , ii) a chain
C, and iii) the ordered list of pool members L, and outputs a pseudorandom
permuted list Lτ . For every transaction τ and a given chain C, the committee
responsible for verification consists of the θ first members in Lτ . Naturally, this
proposal is rather simple, so alternative, e.g., VRF-based, mechanisms could be
proposed to improve performance.

We note that using C during the subselection mechanism is important to
avoid adaptive attacks. Specifically, the chain C simulates a randomness beacon,
such that at least one of its last u blocks is honest, for some parameter u. If
C was not used, the adversary could construct a malicious transaction in such
way that the subselected committee would also be malicious. By using C as a
seed to the pseudorandom permutation, the adversary’s ability to construct such
malicious transaction is limited. Alternatively, cryptographic sortition [23] could
be employed to fully handle adaptive adversaries.

The (honest) members need to always have the same view of the distributed
mempool; this is achieved via authenticated broadcast. Assuming a Public Key
Infrastracture, as is our setting, it is possible to achieve deterministic authenti-
cated broadcast in t+ 1 rounds for t adversarial parties [35,42,16]. Each time a
party adds a transaction to its mempool, it broadcasts it, such that, at any point
in time, the honest members of the pool have the same view of the network w.r.t.
the canonical chain and the mempool of unconfirmed transactions. We remind
that, as shown by Garay et al. [20], FBC can be implemented to ensure adaptive
corruptions using commitments. We note that, in existing distributed ledgers,
the order with which transactions are added to the mempool does not affect
the choice when creating a new block; for instance, transactions of a new block
are typically chosen based on a fee-per-byte score. If the order of transactions is
pertinent, a stronger primitive like Atomic Broadcast [15] could be employed.

Following, the committee employs a consensus sub-protocol to agree on the
transaction’s validity. When a party p retrieves a new transaction τ from the
network, it broadcasts it as above. Then, each party computes the permuted
list Lτ . Each party, which is in the validation committee for τ , computes locally
the validation predicate and submits its output to the consensus protocol. The
consensus protocol should offer strong validity, i.e., if all honest parties should
have the same input bit, they should output this bit. Finally, the output of the
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consensus protocol is broadcast to the rest of the pool. To verify the committee’s
actions, a party may request the transcript of the consensus sub-protocol.

Finally, to compute the probability of electing an honest committee, we have
a hypergeometric distribution, with population size n and n− t honest parties,
where a sample of parties of size θ is chosen without replacement. Thus, the
probability of honest committee majority is: Πθ,t,n = 1 −

∑min(θ,t)
v=b θ+1

2 c
(tv)·(n−tθ−v)

(nθ)
.

Figure 6 provides further intuition on the probability w.r.t. the subselection
parameter θ.

1 3 5 7 9 11 13 15
Subselected committee size

0.500

0.625

0.750

0.875

1.000

Ho
ne

st
co

m
m

itt
ee

pr
ob

ab
ilit

y Adversarial
parties

4
7

Fig. 6. The probability of subselecting an honest committee w.r.t. the committee size
θ, n = 15 total parties and bn−1

3 c and b
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2 c adversarial parties.

Following, Figure 7 defines the second part of our functionality, while Figure 8
presents the second part of our protocol.

4.4 The Security of the Conclave Collective Stake Pool

Theorem 1. The protocol πpool, parameterized by a validation predicate Validate,
a permutation algorithm πperm, and a consensus protocol πconsensus (cf. Defi-
nition 5) securely realizes Fpool with the hybrid execution HYBRIDpoolπpool,A,Z in

the global GsimpleLedger model, and Πθ,t,n = 1 −
∑min(θ,t)
v=b θ+1

2 c
(tv)·(n−tθ−v)

(nθ)
, assuming∑

p∈PA wp < T , where θ is the subselection parameter for transaction verifica-
tion, PA is the set of t corrupted parties out of n total parties, ω is the weight
distribution of the n parties, and T is the signature threshold.

Proof. The proof is constructed in the UC Framework, therefore it is simulation-
based. As such, we will show that the environment Z cannot efficiently distin-
guish between two executions, the ideal and the real. The simulator S interacts
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Transaction Verification: Upon receiving (transaction, sid, τ, θ) from pi,
forward it to S. Then send READ to GsimpleLedger on behalf of pi and
wait for the reply C. Following, set t as the number of corrupted par-
ties; with probability Πθ,t,n set b := Validate(τ, C), otherwise (with prob-
ability 1 − Πθ,t,n), send (transaction-ver, sid, τ) to S, wait for a reply
(transaction-ok, sid, C, τ, f), and set b := f . Finally, if b = 1, insert τ to
mempool and send (transaction, sid, C, τ, b) to all parties.
Mempool Update: Upon receiving (transaction, sid, C′, τ, 1) from pi, for-
ward it to S. Then send READ to GsimpleLedger on behalf of pi and wait
for the reply C. If C′ ≺ C and pi is honest, insert τ to mempool and return
(mempool-updated, sid, τ).
Block issuing: Upon receiving (issue-block, sid) from a party p, for-
ward it to S. When a set of parties P has submitted (issue-block, sid), if∑

j∈[1,m] W [pj ] > T , then for every party pi ∈ P, send READ to GsimpleLedger
on behalf of pi and wait for the reply Ci. If all received chains equal, i.e., are
the same chain C, remove every τ in mempool that also exists in C. Then,
set b = blockify(mempool), send (issue-block, sid, b) to S, and wait for the
reply (issue-block, sid, b, σpool). Following, check if ∀(m,σ, b′) ∈ T : σ 6=
σpool, (b, σpool, 0) 6∈ T ; if the checks hold, insert (b, σpool, 1) to T . Finally, reply
with (block, sid, b, σpool).

Collective Pool Functionality FT,ωpool (second part)

Fig. 7. The second part of the proposed Pool Functionality, which defines the consen-
sus participation operations.

Transaction Verification: Upon receiving (transaction, sid, τ, θ), send
READ to GsimpleLedger and wait for the reply C. Then, set b = Validate(C, τ),
compute L′ = πperm(τ, C, L) and initiate protocol πconsensus with the θ first
parties in L′ with input b. Upon computing the output of πconsensus, β, send
(transaction, sid, C, τ, β) to FBC and return it.
Mempool Update: Upon receiving (transaction, sid, C′, τ, 1), pi, send
READ to GsimpleLedger and wait for the reply C. If C′ ≺ C, insert τ to mempool
and return (mempool-updated, sid, τ).
Block Issuing: Upon receiving (issue-block, sid), send READ to
GsimpleLedger and wait for the reply C. For every τ in mempool, if τ is also
in C, then remove τ from mempool. Next, set b = blockify(mempool) and
send (Sign, sid, b) to Fwtss. Upon receiving a reply (Sign, sid, b, σpool), return
(block, sid, b, σpool).

Collective Pool Protocol πT,ωpool (second part)

Fig. 8. The second part of our protocol, which describes the set of operations for
consensus participation.
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with the ideal functionality Fpool in the ideal execution, whereas A interacts with
πpool in the real execution. We will show that, if πpool does not securely realize
the ideal functionality Fpool, when instantiated with the parameters defined in
the theorem, then at least one of the conditions is violated.

First, we provide the construction for the simulator. S runs internally a copy
of the adversary A. S forwards any inputs received from the environment Z to
the internal copy of A, and vice versa.

Gathering: Upon receiving the message (gather, sid) for all parties pi, i ∈ [1, n]
from Fpool, send (KeyGen, sid) to Fwtss with the appropriate sid. Upon receiv-
ing the reply (KeyGen, sid, vkpool), record vk, and return (gather-ok, sid, vk)
to Fpool.

Pool Registration: Upon receiving from Fpool the nmessages (register, sid,members),
send (init, sid,members) to Γreward and wait for the reply (init-ok, sid, αreward).
Then send (Sign, sid,m) to Fwtss with m = (members, αreward). Upon re-
ceiving a reply (Sign, sid,m, σpool), register (m,σpool) and return the message
(register-ok, sid, αreward, σpool) to Fpool.

Closing: Upon receiving (close, sid, x) from Fpool, on behalf of a set of parties
P, send the message (Sign, sid, x) to Fwtss on behalf of each party in P. Upon re-
ceiving a reply (Sign, sid, x, σpool), record σpool and return (close-ok, sid, σpool)
to Fpool.

Transaction Verification: Upon receiving (transaction-ver, sid, τ) from Fpool,
forward it to the internal copy ofA, wait for the output (transaction-ok, sid, C, τ, f)
from A and forward it to Fpool.

Block issuing: Upon receiving (issue-block, sid, b) from Fpool, send (Sign, sid, b)
to Fwtss. Upon receiving a reply (Sign, sid, b, σpool) and record (b, σpool). Finally,
return (issue-block, sid, b, σpool) to Fpool.

Party corruption: When the adversary A corrupts a party p, S corrupts the
same party in the ideal process and hands to A its internal state.

Global ledger update: When A sends (ADVANCE, p,Σ) to the global ledger
GsimpleLedger, S also does so in the ideal world; similarly, whenA sends (EXTEND, b)
to GsimpleLedger, so does S.

Signature generation: When the adversary A requests a signature on some mes-
sagem, S sends (Sign, sid,m) to Fwtss; upon receiving the reply (Sign, sid,m, σ),
it returns σ to A.

The first observation is that S needs to ensure that a party p has the same
view of the ledger as in the real world. Therefore, it advances parties only when
the real world adversary A does so.
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To prove the theorem, we assume that πpool does not realize Fpool, i.e., there
exists adversary A such that, for every simulator S, there exists environment Z
that can distinguish between the ideal world (of Fpool and S) and the real world
(of πpool and A). Following, we show that S violates the security of one of the
primitives used by πpool, i.e., the consensus protocol πconsensus and the weighted
threshold signature scheme Σthresh.

We build an algorithm D that breaks the security of the cryptographic prim-
itives as follows. D runs a simulated copy of Z and simulates for Z the ideal
environment, i.e., D acts both as Fpool and S on Z’s messages.

Similar to S, D runs a simulated copy of A. When running Gathering to
obtain the threshold keys, instead of running Thresh-Key-Gen, D hands A the
public key vk which is obtained as the input from S. To obtain a signature σ
on a message m, D hands m to its oracle, instead of using Thresh-Sign. When
A advances the state of party p in the global ledger GsimpleLedger, D does so as
well.

Regarding the consensus subprotocol πconsensus, we consider the case when
Z activates an uncorrupted party p with input a transaction τ via the interface
Transaction Verification. At that point, D computes b = Validate(C, τ), where
C is the state of party p in the global ledger GsimpleLedger. Next, D checks the
output b′ in the real world (where A operates). If the majority of the committee
elected to validate τ is honest and b 6= b′, then D retrieves the transcript of
πconsensus, run for the validation of τ by A, and outputs it (observe that this
transcript is represents an execution of πconsensus where its security breaks).

To analyze the success probability of D, we consider the event E, where
b 6= b′, as defined above. Since πconsensus is secure as long as a majority of
participants is honest, the executions of the real world, i.e., the interaction of Z
with A and πpool, and the ideal world (resp. S and Fpool) are statistically close.
If we are guaranteed that Z distinguishes between the two executions, then E
occurs with non-negligible probability. Finally, from the point of view of A and
Z, the interaction with D is the same as with an interaction with protocol πpool
in the real world.

Regarding the weighted threshold signatures, we note that the functionality
Fpool performs the same checks regarding signature issuing as Fwtss. In fact, only
signature generation is performed by the collective pool; signature verification
should be employed when advancing the ledger state, i.e., upon adopting new
blocks, or when validating a certificate. Therefore, the security of Fwtss ensures
that Z cannot distinguish the two executions (real vs. ideal world) w.r.t. the
weighted threshold signatures.

Regarding block issuing we consider the event E′, where a set of parties
controlling a majority of the pool’s stake initiate block issuing, but no signed
block is output. In that case, either the signature issuing of Σthresh fails or the
parties locally produce a different block b, i.e., their mempool is not synchronized.
Regarding the former, the same analysis on signature issuing as above applies.
Regarding the latter, if two honest parties hold a different mempool at the point
when blockify is used, either their ledger state C is different or their mempool is
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different. This implies that FBC fails for at least one transaction τ , i.e., an honest
party inserts τ in its mempool and, after τ is sent to FBC , at least one other
honest party fails to also insert it to its mempool. However, this is impossible,
since the simulator ensures the former and FBC ensures the latter.

Finally, the permutation algorithm πperm is executed locally by each party,
therefore the adversary cannot affect its output. Additionally, the probability
Πθ,t,n is computed following the analysis of Section 4.3. ut

4.5 Incentives of the Collective Pool

Although, as shown in Theorem 1, πpool is secure, it is unclear whether rational
users will opt for using it. In this section, we discuss the incentive compatibility
of πpool. We identify its shortcomings and propose a minor change, such that
rational members cannot gain more rewards by deviating from it.

First, we consider the cost of each operation performed in πpool. Signing
operations does not incur any cost, thus pool registration and revocation are
cost-free. Block production depends on the internal workings of blockify. For
instance, solving the Knapsack problem can be expensive, while a greedy algo-
rithm that prioritizes high-fee transactions is typically not. Therefore, without
loss of generality, we also assume that block production is cost-free. However,
both mempool update and transaction verification incur costs cmu and ctv re-
spectively. A mempool consists of millions of transactions and verifying them
requires an accurate view of the ledger. Thus, both objects may require signifi-
cant amounts of computation complexity and storage.7

We focus on the profit of each member, i.e., the rewards subtracted by the
cost of executing πpool. The core observation is that a member p receives rp =

wp∑
p′∈ω

wp′
of the total pool’s rewards regardless of its performance. For instance,

if p acts only on the pool’s creation, it still receives its proportional share of
rewards for the blocks produced by the rest of the pool. Therefore, as long as
a member believes that the other members act honestly, it is incentivized to
abstain and minimize its cost, thus maximizing its profit. Naturally, if all parties
follow this strategy, the pool produces no blocks and receives no rewards.

A possible solution is to the Free Rider problem above is to penalize a party
for misbehaving. However, identifying misbehavior is not straightforward. For
instance, a party p who inputs 0 to πconsensus for a transaction τ may do so
either because the transaction is invalid or because it didn’t perform validation
and input 0 by default. Our approach is to penalize a party when diverging from
the rest of the pool. In the previous example, if the output of πconsensus is 1,
then p incurs a fixed penalty ĉtv. Similarly, if a party fails to sign a new block
then it incurs a (fixed) penalty ĉmu. The penalty amount, which is withheld from
p, is then distributed equally among the other pool members. To incentivize p
to follow πpool the penalties should be high enough; specifically, it should hold

7 As of January 2021, the Bitcoin chain is roughly 320GB and increases linearly over
time. (https://www.blockchain.com/charts/blocks-size)
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ĉtv > ctv and ĉmu > cmu. If all parties follow πpool, diverting incurs a cost
ĉmu − cmu > 0 (resp. ĉtv − ctv > 0), thus the new protocol is an equilibrium.

Finally, penalties can be automatically enforced via an interface to the smart
contract Γreward which, given a proof of misbehavior, reduces the misbehaving
party’s rewards accordingly. For transaction verification, a proof of misbehav-
ior is the transcript of πconsensus, which describes the consensus sub-protocol’s
execution. For block issuing, we can use a threshold signature scheme with iden-
tifiable abort [22], which allows to identify the parties that do not participate
in the signing of a block. In the next section, we construct such WTSS with
identifiable abort, which can be used in an incentive-compatible collective pool.

5 Weighted Threshold ECDSA

Our final contribution is a weighted threshold signature construction, which can
be used in the implementation of πpool. Our scheme is based on [21]; specifically,
we introduce weights, with each party having as many shares as “units” of weight.
The preliminaries of key generation and signing are available at Section 2.6.

Our construction is a (t, n, ω)-weighted threshold ECDSA. We assume that
each player pi has a associated a weight wi, identified by the (publicly available)
weight function ω such that ω[pi] = wi; ω is a parameter in the following two
algorithms(cf. Section 2.4). Furthermore, we assume an index function I(i, w)
in the secret sharing scheme, which assigns a unique index to each pair (pi, wi).

Following, we instantiate the algorithms Thresh-Key-Gen and Thresh-Sign. We
outline the changes of our constructions to obtain identifiable abort capability
based on [22], to make it suitable for an incentive-compatible pool. We note that
some PoS protocols employ a Verifiable Random Function (VRF) [13,23]. Thus,
this section’s secret sharing techniques can also be used to distribute the VRF
key in a weighted manner.

5.1 Key Generation Protocol Thresh-Key-Genω

Each party pi is associated with a public key for the homomorphic encryption
Ei and the weight wi.

• Phase 1: Each party pi picks its share proportionally to its weight, i.e.,
wi shares. Then it commits to them and broadcast them together with its
homomorphic encryption key Ei.
− Pick uniformly random local values u(1)

i , . . . , u
(wi)
i ∈ Zp

− Compute y(w)
i = com(gu

(w)
i ) = [C(w)

i , D
(w)
i ], for ∀w = {1, . . . , wi}

− Broadcast C(1)
i , . . . , C

(wi)
i

− Broadcast Ei
• Phase 2: The confirmation of the values is done through opening of com-
mitments, and each value for each weight is secretly shared among all the
players. Therefore each player executes as many secret-sharing instance as
weight “units” it has, resulting in its combined shares for the secret key
(x(1)
i , . . . , x

(wi)
i ) proportionally to its weight wi.
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− Broadcast D(1)
i , . . . , D

(wi)
i

− Receive the decommitments for (y(1)
j , . . . , y

(wj)
j ), ∀j ∈ {1, . . . , n}, j 6= i

− Perform secret-sharing for each share u(1)
i , . . . , u

(wi)
i , s.t. for each value

u
(w)
i compute the shares u(w)

i,I(j,w′) and secretly send to pj , with respect to
weight 1 ≤ w′ ≤ wj and index I(j, w′), receiving back the share u(w)

I(j,w′),i
− Each player pi compute its respective set of shares

x
(1)
i =

∑
1≤j≤n

1≤w′≤wj

u
(1)
I(j,w′),i , . . . , x

(wi)
i =

∑
1≤j≤n

1≤w′≤wj

u
(wi)
I(j,w′),i

with the values received from other parties pj .
• Phase 3: For the public key Ei, the module Ni = pi · qi for primes pi and qi
provide zero-knowledge proof for:
− for pi and qi (Proof of knowledge for factoring [43])
− and x(1)

i , . . . , x
(wi)
i (Schnorr based)

Note that the joint public-key is vk =
∏i=n
i=1

∏w=wi
w=1 y

(w)
i , whereas the joint

secret-key is tsk =
∑i=n
i=1

∑w=wi
w=1 x

(w)
i .

5.2 Signing Protocol Thresh-Signω

We assume a set B of parties pi that jointly compute a signature.

• Phase 1: Each party selects two tuples of values, each with wi values, and
broadcasts wi commitments to one of the sets.
− Pick random values k(1)

i , . . . , k
(wi)
i ∈R Zp

− Pick random values γ(1)
i , . . . , γ

(wi)
i ∈R Zp

− Define k =
∑
i∈B

∑w=wi
w=1 k

(w)
i and γ =

∑
i∈B

∑w=wi
w=1 γ

(w)
i

− Compute wi commitments com(gγ
(w)
i ) = [C(w)

i , D
(w)
i ] for ∀w = {1, . . . , wi}

− Broadcast C(1)
i , . . . , C

(wI)
i

• Phase 2: Each party computes the interpolation coefficients λ(w)
i for each

share it keeps, that is the shares for weights w = {1, . . . , wi}, taking into
account its indexes I(i, w).
− For w = {1, . . . , wi} and w′ = {1, . . . , wj}, compute the Lagrangian

coefficients λ(w)
i,B =

∏w′=wj
j∈B,w′=1

−I(j,w′)
I(i,w)−I(j,w′)

− Compute the values

x(1)
i = (λ(1)

i ) · (x(1)
i ) , . . . , x(wi)

i = (λ(wi)
i ) · (x(wi)

i ).

• Phase 2A - Local Shares: The party pi executes locally the MtA protocol with
the local shares, which are (k(1)

i , . . . , k
(wi)
i ) and (γ(1)

i , . . . , γ
(wi)
i ) to compute

α and β such that k(w)
i γ

(w′)
i = α

(w)(w′)
i,i + β

(w)(w′)
i,i for pi and 1 ≤ w,w′ ≤ wi.

Note that both values of the pair k(w)
i and γ(w)

i are used which means MtA
is executed twice for a given party pi and weight w.
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• Phase 2B - Online Shares: Party pi executes MtA protocol between its local
shares (k(1)

i , . . . , k
(wi)
i ) and shares of the remaining parties, other than pi:

p1, . . . , p(i−1) p(i+1), . . . , pn

(γ(1)
1 , . . . , γ

(w1)
1 )

...
(γ(1)
i−1, . . . , γ

(wi−1)
i−1 )

(γ(1)
i+1, . . . , γ

(wi+1)
i+1 )

...
(γ(1)
n , . . . , γ

(wn)
n )

Like Local Shares, there will be two MtA executions for each pair k(w)
i and

γ
(w)
i , i.e., k(w)

i γ
(w′)
j = α

(w)(w′)
i,j + β

(w)(w′)
j,i .

• Phase 2C - Compute δ(w)
i , for 1 ≤ w ≤ wi and 1 ≤ i ≤ n the following values

by summing the produced values from steps 2A and 2B. Second and third
terms from 2A, and the remaining terms from 2B:

δ
(w)
i = k

(w)
i γ

(w)
i +

w′=wi∑
w′=1
w 6=w′

α
(w)(w′)
i,i +

w′=wi∑
w′=1
w 6=w′

β
(w)(w′)
i,i

+
∑

1≤`≤i−1
1≤w′≤w`
j∈B

(
α

(w)(w′)
i,j + β

(w)(w′)
j,i

)
+

∑
i+1≤`≤n
1≤w′≤w`
j∈B

(
α

(w)(w′)
i,j + β

(w)(w′)
j,i

)
.

• Phase 2D - Local Shares: Party pi executes locally the MtA protocol wi the
local shares which are (k(1)

i , . . . , k
(wi)
i ) and (x(1)

i , . . . ,x(wi)
i ) to compute µ

and ν such that k(w)
i x(w′)

i = µ
(w)(w′)
i,i + ν

(w)(w′)
i,i for pi and 1 ≤ w,w′ ≤ wi.

• Phase 2E - Online Shares: Party pi executes MtAwc protocol between its
local shares (k(1)

i , . . . , k
(wi)
i ) and shares of the remaining parties except pi:

p1, . . . , p(i−1) p(i+1), . . . , pn

(x(1)
1 , . . . ,x(w1)

1 )
...

(x(1)
i−1, . . . ,x

(wi−1)
i−1 )

(x(1)
i+1, . . . ,x

(wi+1)
i+1 )

...
(x(1)
n , . . . ,x(wn)

n )

Likewise the Local Shares, there will be two executions of the MtAwc pro-
tocol for each pair k(w)

i and x(w)
i , that is k(w)

i x(w′)
j = µ

(w)(w′)
i,j + ν

(w)(w′)
j,i .

• Phase 2F: Compute σ(w)
i , for 1 ≤ w ≤ wi and 1 ≤ i ≤ n the following values

by summing the produced values from Steps 2D and 2E. Second and third
terms from 2D, and the remaining terms from 2E:

σ
(w)
i = k

(w)
i x(w)

i +
w′=wi∑
w′=1
w 6=w′

µ
(w)(w′)
i,i +

w′=wi∑
w′=1
w 6=w′

ν
(w)(w′)
i,i
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+
∑

1≤`≤i−1
1≤w′≤w`
j∈B

(
µ

(w)(w′)
i,j + ν

(w)(w′)
j,i

)
+

∑
i+1≤`≤n
1≤w′≤w`
j∈B

(
µ

(w)(w′)
i,j + ν

(w)(w′)
j,i

)
.

• Phase 3: At this point each party pi has two sets of values (δ(1)
i , . . . , δ

(wi)
i ) and

(σ(1)
i , . . . , σ

(wi)
i ) from, respectively, Steps 2C and 2F. The party pi broadcasts

the former set, and all parties reconstruct the value δ =
∑w=wi
w=1
i∈B

δ
(w)
i = k · γ

(as defined in Step 1).
• Phase 4: Release wi commitments computed in Step 1, and use them to
compute the r as the first part of the signature.
− Broadcast the valuesD(w)

i which open the commitments for Γ (w)
i = gγ

(w)
i

− pi proves in ZK the knowledge of γ(w)
i for 1 ≤ w ≤ wi

− All compute

R =

 ∏
i∈B

1≤w≤wi

Γ
(w)
i


δ−1

= g

(∑
i∈B

1≤w≤wi
γ

(w)
i

)
k−1γ−1

= gγk
−1γ−1

= gk
−1

− Compute the first half of the signature as r=R mod p
• Phase 5: Each player pi computes s(w)

i = mk
(w)
i + rσ

(w)
i , so each player pi

holds the set (s(1)
i , . . . , s

(wi)
i ) of shares of the second part of the signature.

• Phase 5A: To build the second half of the signature it is necessary to ran-
domly sample and commit to two value sets:
− Choose two sets of random values (`(1)

i , . . . , `
(wi)
i ) and (ρ(1)

i , . . . , ρ
(wi)
i )

such that `(w)
i ∈ Zp and ρ(w)

i ∈ Zp.
− Compute the set (V (1)

i , . . . , V
(w)
i ) such that V (w)

i = rs
(w)
i g`

(w)
i

− Compute (A(1)
i , . . . , A(w)i) such that A(w)

i = gρ
(w)
i

− Compute the commitments ([Ĉ(1)
i , D̂

(1)
i ], . . . , [Ĉ(wi)

i , D̂
(wi)
i ]), such that

com(V (w)
i , A

(w)
i ) = [Ĉ(w)

i , D̂
(w)
i ]

− Broadcast (Ĉ(1)
i , . . . , Ĉ

(wi)
i )

• Phase 5B: Once all committed values were received, open the commits in
order to joint compute V and A:
− Broadcast (D̂(1)

i , . . . , D̂
(wi)
i )

− Prove in ZK, for each value w, such that 1 ≤ w ≤ wi, the knowledge of
`

(w)
i , ρ(w)

i and s(w)
i such that V (w)

i = Rs
(w)
i g`

(w)
i and A(w)

i = gρ
(w)
i

− Compute:

V = g−m · (vk)−r ·
∏
i∈B

1≤w≤wi

V
(w)
i , A =

∏
i∈B

1≤w≤wi

V
(w)
i

• Phase 5C: Like Step 5A, compute two sets of values U (w)
i and T (w)

i and prove
the knowledge of them via ZK proofs. These values are used to guarantee
consistency of the shares:
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− Compute the set (U (1)
i , . . . , U

(wi)
i ) such that U (w)

i = V ρ
w
i

− Compute the set (T (1)
i , . . . , T

(wi)
i ) such that T (w)

i = A`
w
i

− Compute the commitments ([C̃(1)
i , D̃

(1)
i ], . . . , [C̃(wi)

i , D̃
(wi)
i ]), such that

com(U (w)
i , T

(w)
i ) = [C̃(w)

i , D̃
(w)
i ]

− Broadcast (C̃(1)
i , . . . , C̃

(wi)
i )

• Phase 5D: Once the commitments are received, broadcasts their openings
and verify the consistency of the shares:
− Broadcast (D̃(1)

i , . . . , D̃
(wi)
i )

− If
∏

i∈B
1≤w≤wi

T
(w)
i 6=

∏
i∈B

1≤w≤wi
U

(w)
i , then abort

• Phase 5E: Broadcast the shares of the second half of the signature, and
reconstruct it:
− Broadcast the set (s(1)

i , . . . , s
(wi)
i )

− Compute the second signature share as s =
∑

i∈B
1≤w≤wi

si. If (r, s) is not
a valid signature, then abort.

5.3 Identifiable Abort

Here we describe the changes required to provide identifiable abort capability
considering weights as it is used in our proposed construction. As mentioned
earlier, weights can be also introduced in the extended version of [22]; we note
that weights can be similarly applied to the scheme of [9], which extends [22].
The changes yield a similar construction as the one presented earlier, and affect
only Phase 3, and the substitution of the Phases 5, 5A, 5B, 5C, 5D and 5E, to
new Phases 5, 6 and 7. Identification follows similarly to [22], therefore we refer
the reader to that work for a fully description of the procedure.

Concretely, for the new phases with weights below, consider w ∈ {1, . . . , wi}:

• Phase 3:
− All parties reconstruct δ =

∑w=wi
w=1
i∈B

δ
(w)
i = k · γ and compute δ−1 mod p

− Compute (T (1)
i , . . . , T

(wi)
i ) such that T (w)

i = gσ
(w)
i h`

(w)
i , and provide a

ZK proof of knowledge of (`(1)
i , . . . , `

(wi)
i ) and (σ(1)

i , . . . , σ
(wi)
i )

• Phase 5: All players broadcast R̃(w)
i = Rk

(w)
i and a ZK proof of range (as

the ones sent in the MtA on Phase 2) between R
(w)
i and Ei(k(w)

i ). If g 6=∏
i∈B

1≤w≤wi
R̃

(w)
i , the protocol aborts.

• Phase 6: All parties broadcast S(w)
i = Rσ

(w)
i and a ZK knowledge proof (as in

Phase 3) between S(w)
i and T (w)

i . If y 6=
∏

i∈B
1≤w≤wi

S
(w)
i , the protocol aborts.

• Phase 7: Each player broadcasts s(w)
i = mk

(w)
i +rσ(w)

i and sets s =
∑

i∈B
1≤w≤wi

si.

If (r, s) is not a valid signature, abort.
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5.4 Weighted Threshold ECDSA Complexity Estimation

Here we present communication and computation complexity of the weighted
threshold signature scheme. As recommended in [21] the construction is based
on the Random Oracle Heuristic as the choice for the hash function with size
λ used for Non-Malleable Equivocable Commitment Scheme, with a decommit-
ment string size of r bits and a group element.

Also in [21], two zero-knowledge schemes are considered: (1) Proof of knowl-
edge for factoring [43], used in the homomorphic scheme, and (2) Schnorr based
Proof of knowledge for the regular shares of the threshold signature scheme.
Both can be made non-interactive with the Fiat-Shamir Technique, yielding in
case of (1), very short proofs. The complexities are summarized in the Tables 1
and 3 for respectively, key generation and signing messages.

Communication Computational

Phase 1 Wλ bits,
2n ZN2

wi O

Phase 2

W G,
Wr bits,

wi(W − wi) Zp,
wi(W − wi)(T + 1) G

(W − wi) O,
wi(T + 1) exp G,

(T − wi)(T + 1) exp G

Phase 3 wi(λ bits+ Zp + G)
wi exp G,
wi O,

2(W − wi) exp G
Table 1. Key Generation with security parameter λ complexities: communication com-
plexity is given in terms of group elements G and ring elements Zp and ZN2 for party
pi with weight wi, the sum of all weights is W and the signature scheme threshold is
T . Moreover computational complexity is defined by group exponentiations, random
oracle queries O, and modular multiplication.

For the signing procedure, the construction, as defined in [21], relies in mul-
tiple executions of the conversion protocol MtA and MtAwc, the version with
checks. In the following Table 3 let MtAcomm and MtAcomp be the communica-
tion and computational complexities for MtA, and analogously for MtAwccomm
and MtAwccomp. The extra check is a zero knowledge proof of knowledge which
requires one extra group exponentiation and a query for the random oracle to
produce. The verification requires 2 exponentiation for group G and a random
oracle query. Regarding the size, it is composed by a λ-bit string, and a group
G and ring Zp elements.

MtAcomm 4ZN2 + 4Z
Ñ

+ 2Zp
MtAcomp 4 mult Z

Ñ
+ 4 mult ZN2 + 6 exp Z

Ñ
+ 6 exp ZN2

Table 2. Complexity of conversion from multiple shares to Additive shares.
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Communication Computational
Phase 1 wi(WB − wi)λ bits wi exp G
Phase 2 wi(WB + 1− wi) mult Zp
Phase 2A wi(wi − 1) MtAcomp
Phase 2B wi(WB − wi − 1) MtAcomm wi(WB − wi − 1) MtAcomp
Phase 2C wi mult Zp
Phase 2D wi(wi − 1) MtAcomp
Phase 2E wi(WB − wi − 1) MtAwccomm wi(WB − wi − 1) MtAwccomm
Phase 2F wi mult Zp
Phase 3 wi(WB − wi) Zp

Phase 4 wi(WB − wi + 1)G + wi(WB − wi)r bits
wi(λ bits+ Zp)

(2WB − wi + 1) exp G
+(WB − wi)O

Phase 5 2wi mult Zp

Phase 5A wiλ bits
wi(2 mult Zp + 2 exp G

+ exp Zp +O)

Phase 5B wi(G + rbits)
at least

(2WB − wi)(O + exp G)
+2WB mult Zp

Phase 5C wi λ bits wi O
Phase 5D wi(G + r bits) at least 2WB mult Zp
Phase 5E wi Zp

Table 3. Complexities of sign protocol; Phases 5A and 5D depend on the size of the
stake of the signing set WB , which may contain more than the threshold T .

Identifiable Abort. Table 4 illustrates the communication and computational
complexities for the signing protocol of [22]. Note that again we take into account
the weight of the set B, namely WB , which can be larger than the threshold T .

6 Conclusion

Our work explores a novel design for collective stake pools for Proof-of-Stake
ledgers, i.e., pools without a central operator. Our first contribution is a se-
curity definition for collective stake pools, which takes the form of the ideal
functionality Fpool that articulates the security properties and functions that a
collective pool should offer. Following, we propose the concrete protocol Conclave
which UC-realizes Fpool. Our construction incorporates a load balancing mech-
anism for transaction verification, to boost performance, as well as a Weighted
Threshold Signature Scheme (WTSS). Regarding the latter, we present the ideal
functionality Fwtss (Appendix 3) that formalizes this new definition and might
be of independent interest, and propose two constructions based on threshold
ECDSA. We stress that the collective pool is modular and agnostic to the WTSS
implementation, so any scheme that securely realizes Fwtss suffices.

Our design satisfies most of the desiderata outlined in Section 1. Some (e.g.,
pool proportional rewards or stake reallocation) are dependent on the underly-
ing ledger system’s details, therefore are outside of our scope; nevertheless, our
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Communication Computational
Phase 3 WB(2 G + 5 Zp) WB mult Zp + 2(WB + wi exp G) + 2WB O

Phase 5 WB (2 Zp + 2 Z
Ñ

+ ZN2 ) WB (mult G + 2 mult Z
Ñ

+ 3 exp Z
Ñ

)
+(2WB − wi) mult ZN2 + (3WB − wi) exp ZN2

Phase 6 WB(2 G + 5 Zp)
WB mult Zp

+2(WB + wi exp G)
+2WB O

Phase 7 WB(2 G + 5 Zp) (WB + 2wi) mult Zp
Table 4. Complexities of sign protocol with identifiable abort.

design does not pose restrictions in capturing them. The reward functionality
Γreward handles the reward-specific desiderata, while Fpool’s first part (Figure 4)
covers the requirements for permissioned access and closing of the pool. How-
ever, Fpool’s handling of stake reallocation and updating of the pool’s parameters
could be more dynamic, as it currently requires closing and re-creating a pool
with the new parameters; a more efficient design is an interesting direction for
future research. Additionally, an improvement to the WTSS scheme of Section 5,
which would be directly applicable by πpool, could assign a single weighted share
to each party, instead of using multiple shares depending on each party’s weight.
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