
Manta: a Plug and Play Private DeFi Stack

Shumo Chu1,2, Yu Xia3, and Zhenfei Zhang2 ?

1 UC Santa Barbara
2 Manta Network

{shumo,zhenfei}@manta.network
3 MIT CSAIL
yuxia@mit.edu

June 3, 2021

Abstract. We propose Manta, a plug and play private DeFi stack that consists of MantaDAP, a
multi-asset decentralized anonymous payment scheme and MantaDAX, an automated market maker
(AMM) based decentralized anonymous exchange scheme. Compared with existing privacy preserving
cryptocurrencies such as Zcash and Monero, Manta supports multiple base assets and allows the priva-
tized assets to be exchanged anonymously via MantaDAX. We think this is a major step forward towards
building a privacy preserving DeFi stack. Thanks to the efficiency of modern NIZKs (non-interactive
zero-knowledge proof systems) and our carefully crafted design, Manta is efficient: our benchmarks
reports a 15 second, off-line zero-knowledge proof (ZKP) generation time, and a 6 millisecond, on-line
proof verification time.

1 Introduction

In an ideal world, cryptocurrencies create a decentralized token economy that protects user privacy. The
popular cryptocurrencies that use permissionless consensus protocols, such as Bitcoin [Nak], Ethereum [Woo],
and Polkadot [dot], are pseudo-anonymous: although public keys are not explicitly attached to real-world
identities, the transaction history is public, which means any leakage of the link between users’ identities
and public addresses are permanent and can be revealed by link analysis on transaction history. [KYMM18,
YKM19, TBP20, GKRN18].

To solve this privacy issue, several privacy-preserving protocols have been propose to solve this privacy
issue, most notably ring signature based Monero [vS13], and non-interactive zero-knowledge proof (NIZK)
based Zcash [BCG+14]. While these cryptocurrencies provide various degrees of privacy to end users, there are
two remaining issues of these protocols. First, they are mono-asset private cryptocurrencies: they have either
a single kind of fungible tokens (Monero) or can only privatize a single kind of fungible tokens (Zcash). These
protocols cannot provide privacy off-the-shelf for the wide range of emerging cryptocurrencies. Second, these
protocols lack the extension to decentralized finance (DeFi) [def21], an ever popular application of cryptocur-
rencies. DeFi brings innovative permissionless financial tools to end users who don’t have access to typical
Wall Street tools and assets. Most significant DeFi applications include decentralized exchanges [AZR20],
synthetic assets [BJSW18], and crypto loan [LH19].

In this paper, we propose Manta, a protocol for private DeFi stack that solves both the issues of sup-
porting arbitrary private assets and supporting DeFi infrastructure. At its core, Manta contains two layers:
MantaDAP, a multi-asset anonymous payment protocol, and MantaDAX, an automated market maker (AMM)
styled anonymous exchange protocol built on top of MantaDAP. Manta protocols can be implemented in
any multi-asset blockchain systems, or implemented as a parachain in a Polkadot like relay-chain/parachain
systems. Figure 1 shows the architecture of MantaDAX when implemented as a parachain.

To achieve provable privacy for end-users, both MantaDAP and MantaDAX use various cryptographic
primitives such as authenticated encryption, efficient commitment schemes for group elements, in conjunction
with non-interactive zero-knowledge proof systems (NIZKs) [GGPR13, PHGR13, BCG+13, Gro16]. We
formalize the privacy guarantee and prove both the soundness and privacy of Manta.

? Authors are ordered alphabetically.

2

Manta

 MantaDAP
- pACoin
- pBCoin

 MantaDAX
<pACoin,
 pBCoin>

Relay Chain
BCoin

ACoin

Mint BCoin to
pBCoin

Mint ACoin to
pACoin

claim pACoin to
ACoin

claim pBCoin to
BCoin

Fig. 1: Manta architecture (implemented as a parachain)

1.1 Our Contributions

– We propose Manta, the first privacy preserving DeFi stack based on NIZK. Manta consists of two
layers: MantaDAP, which allows users to mint and transfer assets of their choice to private tokens, and
MantaDAX, which allows users to exchange the private tokens anonymously.

– We propose MantaDAP, a multi-asset decentralized anonymous payment protocol that hides addresses,
transaction amounts, and asset types. Compared with existing solutions such as ZCash, MantaDAP’s
major innovation is the support of multiple, “bring-your-own" assets and the design of hidding asset IDs
during the transactions. Since MantaDAP aggregates the transaction volumes of all assets, every asset
transaction receives better privacy, especially the long tailed ones.

– We propose MantaDAX, an AMM [But18] based decentralized anonymous exchange protocol. We choose
AMM due to its simplicity: this simplicity leads to high gas efficiency and high capital efficiency both
in theory and practice [AC20, AZR20, AEC20]. MantaDAX guarantees the privacy of both traders and
liquidity providers. Additionally, the liquidity token that the liquidity provider gains is also private and
tradable. This could further increase MantaDAX’s capital efficiency [AEC21].

– We give a formal definition of the soundness, completeness, and privacy of both MantaDAP and MantaDAX,
and prove the security of our scheme.

1.2 How does Manta work?

We use a toy example to demonstrate a typical Manta workflow. Figure 2 shows the workflow of using
Manta for private payment and exchange. In this example, Alice starts with a wallet, which holds 20
CoinA under a public address PAddr1, and a private coin pCoin0, with a face value of 30 CoinA.

Mint. Now, Alice wants to mint her public coin CoinA1, under a public address PAddr1, to a private
coin pCoin1. Alice generates a private coin pCoin1 in her wallet. pCoin1 consists of the following parts:

– SAddr1, a secretive address that is never revealed. This is similar to “Shielded Address” in ZCash.
– cm1 , a commitment to asset identifier (CoinA), amount (20), void number (vn1 , see the description next),

and some auxiliary data.
– vn1 , a void number that is unique to pCoin1 and is only revealed when the pCoin1 is spent (either

transferred, reclaimed to public coin, or exchanged).
– CoinA, the asset identifier of this private coin.
– 20, the nomination of this private coin.

Then, Alice sends a txmint that contains the public address (PAddrA1
), the commitment to the private coin

(cm
1
), and the mint amount (20). Upon receiving txmint, the ledger will update its state by including the

commitment cm
1
to its CMList, and increase the pool size by 20.

3

Wallet Chain

CoinA1 : (PAddrA1 , 20)
pCoin0 : (“CoinA”, SAddr0 , cm0 , vn0 , 30)
pCoin1 : (“CoinA”, SAddr1 , cm1 , vn1 , 20)

State1
CMList: [..., cm0]; VNList: [...]
#pCoinA: 1000; #pCoinB: 10000
#pCoinDex (A): 100; #pCoinDex (B): 200

txmint: (PAddrA1 , cm1 , “CoinA”, 20)

OK

State2
CMList: [..., cm0 , cm1];
VNList: [...]
#pCoinA: 1020; #pCoinB: 10000
#pCoinDex (A): 100; #pCoinDex (B): 200

CoinA1 (PAddrA1 , 20)
pCoin0 : (“CoinA”, SAddr0 , cm0 , vn0 , 30)
pCoin1 : (“CoinA”, SAddr1 , cm1 , vn1 , 20)
pCoin2 : (“CoinA”, SAddr2 , cm2 , vn2 , 40)
pCoin3 : (“CoinA”, SAddr3 , cm3 , vn3 , 10)

txtransfer:
(cm2 , cm3 , vn0 , vn1 ,
π{A0,A1}→{A2,A3})

OK

State3
CMList: [..., cm0 , cm1 , cm2 , cm3]
VNList: [..., vn0 , vn1]
#pCoinA: 1020; #pCoinB: 10000
#pCoinDex (A): 100; #pCoinDex (B): 200

pCoin0 : (“CoinA”, SAddr0 , cm0 , vn0 , 30)
pCoin1 : (“CoinA”, SAddr1 , cm1 , vn1 , 20)
pCoin2 : (“CoinA”, SAddr2 , cm2 , vn2 , 10)
pCoin3 : (“CoinA”, SAddr3 , cm3 , vn3 , 40)
pCoin4 : (“CoinB”, SAddr4, cm4 , vn4 , 8)
pCoin5 : (“CoinB”, SAddr5, cm5 , vn5 , 10)

txexchange:
(cm4, cm5, vn2 , φ, π{A2,φ}→{B4,B5},

“CoinA”, 10, “CoinB”, 18)

OK

State4
CMList: [..., cm0 , cm1 , cm2 , cm3 ,

cm1 , cm2]
VNList: [..., vn0 , vn1 , vn2]
#pCoinA: 1020; #pCoinB: 10000
#pCoinDex (A): 110; #pCoinDex (B): 182

pCoin2 : (“CoinA”, SAddr2, cm2 , vn2 , 10)
pCoin3 : (“CoinA”, SAddr3, cm3 , vn3 , 40)
pCoin4 : (“CoinB”, SAddr4, cm4 , vn4, 8)
pCoin5 : (“CoinB”, SAddr5, cm5 , vn5 , 10)
pCoin6 : (“CoinB”, SAddr6, cm6 , vn6 , 13)

txreclaim:
(cm6 , φ, vn4 , vn5 ,
π{B4,B5}→{B6,B7},

PAddrB7 , “CoinB”, 5)

OK

State5
CMList: [..., cm0 , cm1 , cm2 , cm3 ,

cm4 , cm5 , cm6]
VNList: [..., vn0 , vn1 , vn2 ,

vn4, vn5]
#pCoinA: 1020; #pCoinB: 9995
#pCoinDex (A): 110; #pCoinDex (B): 182

pCoin3 : (“CoinA”, SAddr3, cm3 , vn3 , 40)
pCoin4 : (“CoinB”, SAddr4, cm4 , vn4 , 8)
pCoin5 : (“CoinB”, SAddr5, cm5 , vn5 , 10)
pCoin6 : (“CoinB”, SAddr6, cm5 , vn6 , 13)
CoinB7: (PAddrB7 , 5)

Legend:
Stroked: discarded;
gray: generating;
red: private information;
blue: public information.

mint

transfer

exchange

reclaim

Fig. 2: Manta overview

4

We remark that it is computationally impossible to link pCoin0 and pCoin1 in the above example.

Transfer. Next, suppose Alice wishes to conduct a private transfer with her private coins, for example,
pCoin0 and pCoin1. Alice pours these private coins to new private addresses. For simplicity, in this example,
we assume that these new secretive addresses are till owned by herself. A transfer transaction takes two
private coins and will produce two new private coins with new addresses. More specifically, she sends txtransfer
to Manta ledger that contains:

– cm2 and cm3 , the commitments to the new coins.
– vn

0
and vn

1
, the void numbers of the old coins. Now, these void numbers are revealed and the tokens

are voided.
– π{A0,A1}→{A2,A3}, a zero-knowledge proof that proves the transaction is valid and authenticated (more

details will be given later).

Upon the recipient of the transaction, Manta ledger checks validity of the zero-knowledge proof (π{A0,A1}→{A2,A3})
and ensures that vn0 and vn1 have never been revealed before. Note, since we have revealed only vn0 and
vn1 (instead of cm0 and cm1), and a ZKP (π{A0,A1}→{A2,A3}), the adversary cannot link the revealed void
numbers (vn

0
and vn

1
) with the commitments of the old coins (cm

0
and cm

1
).

Exchange. Exchange works similarly as transfer. The main difference is that, in an exchange, the output
pCoin is for a different asset type, and the ZKP includes a statement of the total number of assets for both
CoinA and CoinB. This transaction is accepted if the ZKP verifies and the total amounts preserves the
AMM ledger invariant, i.e., #pCoinDex (A) × #pCoinDex (B) = k.

Concretely, in our case, k = 2 × 104. Alice wants to exchange 10 CoinA to CoinB. To maintain the
constant invariant, Alice is expecting 18 CoinBs in return (rounding to integers for simplicity), for which
she will split into two coins, denoted by pCoinB1 and pCoinB2.

Note that the result from [AEC21, Whi20] claimed that privacy preserving AMM is impossible. Therefore
we assume that the attacker learns that the value of pCoin2 is 10; that of pCoin4 and pCoin5 combined is
18. Nonetheless, pCoin2 remains anonymous, since only vn

2
is revealed. On the other hand, both face values

and the addresses of pCoin4 and pCoin5 remain private.
Reclaim. Reclaim is a process through which the user claims back the base coin from the private coin.

In our example, Alice wants to reclaim 5 CoinBs, and put the reminder of pCoin4 and pCoin5 to pCoin6.
The workflow is identical to a transfer workflow, with the only different that one of the output coins CoinB7

is public.
Provide Liquidity. Manta allows for both public and private liquidity providing. Private liquidity

providing will hide the identity of the liquidity provider; while leaking the amount of the asset that the
provider injects to the pool. In particular, the liquid share are present by the so-called LP tokens, which
itself is a fungible token, and can therefore be privatized via the MantaDAP protocol. This additional step
allows us to hide both the identity and the amount the provider provides to a liquid pool. This functionality
is absent in Figure 2. We will give more details in section 5.

Auditability and Regulation Compliance. Auditablity and regulation compliance is a legit concern
of any decentralized exchange, especially privacy preserving ones. Manta offers a self audit feature that
allows an user to demonstrate the transaction records to IRS or other government agencies by providing the
zero-knowledge proof. In the future, we plan to incorporate selective disclosure functionality to the auditing
feature so that a finer granularity’s of control can be achieved while keeping regulation compliance.

1.3 Related Works

Privacy Preserving Decentralized Payment Protocols. Two most notable privacy preserving crytpocurrency
is Zcash [BCG+14] and Monero [vS13]. The security and privacy guarantee of them are based on different
cryptographic primitives: Zcash is based on NIZK (or zkSNARK), and Monero is based on ring signature.
MantaDAP’s protocol is similar to Zcash, but with two major differences: First, MantaDAP supports multiple
assets as base tokens and hides the identities of tokens as well. This gives strong privacy guarantee even for
long tail assets. Second, MantaDAP’s implementation leverages sharded accumulator design that improves
the protocol’s performance under concurrent transactions. Besides clean sheet designs, Solidus [CZJ+17]
and Zether [BAZB20] builds decentralized payment system leveraging existing permissionless ledgers such as

5

ethereum. Due to the design constraints, account based decentralized anonymous payment protocol cannot
provide the same level of privacy as UTXO based design like MantaDAP and Zcash. Besides permissionless,
layer-1 solutions, Chiesa et al. [CGL+17] proposed a anonymous micro-payment (offline) protocol with-
out cryptographic non-double-spending guarantee. Green and Miers proposed Bolt [GM17], a anonymous
payment channel protocol for processing anonymous payment in Layer 2. zkLedger [NVV18] present a per-
missioned decentralized ledger design with auditability. These works are orthogonal to Manta, and explored
different design spaces.

Other Privacy Preserving Decentralized Protocols. Beyond payment, many work explores privacy preserving
applications on decentralized ledgers. For example, Ekiden [ZHC+20] proposed a privacy preserving smart
contract framework that leverages trusted execution environment. Despite the limitation of relying on hard-
ware security assumptions, it still can provide privacy guarantee to many meaningful applications. Ouroboros
Crypsinous [KKKZ19] and Anonymous lottery [BMSZ20] proposed changes to Proof of Stake (PoS) consensus
protocols that can make validators’ stakes confidential. However, Kohlweiss et al. [KMNS21] demonstrates
that the privacy guarantee will break if the network delays can be leveraged by the attackers and also proved
the impossibility result. There are also domain specific protocols that build on top of NIZK and decentralized
ledgers, such as ZebraLancer [LTW20], a privacy preserving decentralized crowd sourcing protocol.

Decentralized Exchanges and Automated Market Makers. Centralize exchanges bring back counter-party
risk that cryptocurrencies try to eliminate and also naturally prone to front-running [Gra21] 4. Due to the
high on-chain computation cost, implementing a traditional order-book styled exchange in the decentralized
setting could cause prohibitive gas cost. As a result, exchanges like IDEX [ide21] still keep the order-books
and order-matching off-chain, and only do the settlement on chain. The aforehand mentioned issues of
centralized exchanges mostly remains. An elegant solution to this problem is a scheme named automated
market maker (AMM) [But18] from Vitalik Buterin. Instead of trading against counter-parties, a trader is
trading against a convex curve of exchange ratio. For each trading pair, the exchange keeps the ratio of the
two assets according to the curve. For superb gas efficiency and good capital efficiency, this design gains many
attractions and results in billion dollar day trading volumes [AZR20, cur21]. To the authors best knowledge,
MantaDAX is the first privacy preserving decentralized exchange protocol based on AMM. AMM’s simplicity
and gas efficiency could naturally result in cheap prover cost in NIZK. Compared with privacy preserving
decentralized proposals like ZEXE [BCG+20], MantaDAX leaks slightly more information (the AMM position
on the curve is leaked, but the trader and liqudity provider’s identity is still confidential) and and trade for
simplicity and constraints size of the circuits (hence the prover time).

2 Background

We briefly recall blockchain related notions in this section. We defer to section A for the introduction for
zk-SNARKs and other related cryptographic primitives.

Blockchain and Decentralized Ledger. We model a blockchain as a byzantine fault tolerance replicated state
machine with append only state, a.k.a ledger. When interacting with the blockchain, we call the entity who
initiates the interaction (e.g., sending a transfer request) the user; the entity who verifies the interaction and
logs it into the blockchain the validator (also known as miner in other contents). Users interact with the
blockchain by sending amendment requests to the ledger. The amendment is appended to the database once
validators approve the request. For simplicity, we assume 1) the ledger is synchronized, and the block finality
is instant; 2) the validators are trusted for liveness and completeness. The underlying consensus protocol
that validators employ is indeed orthogonal to this paper. What is also of out the scope of this paper is
the governance token for the underlying blockchain. We nonetheless assume that the senders of our protocol
holds enough governance tokens to send the transactions.

4 Decentralized exchanges also suffer (a different set of) front-running issues [DGK+19].

6

Public/Private Assets and Asset Models. The focus of this paper are the customized assets issued over the
blockchain. Throughout the paper, we will be dealing with two assets, with asset-ids CoinA and CoinB, as
an example. Extension to asset types beyond two is straightforward. We assume that those two assets are
stored on a blockchain ledger in an account model. Denoted by pCoin-s the private coin of the assets. Those
pCoin-s are stored on chain in an unspent transaction output (UTXO) model that is adopted by Bitcoin,
and is essential to privacy-preserving ledgers. The ledger also maintains a public information on how many
assets are converted into private, for example #pCoinA.

Automated Market Maker and Liquidity Pool Our AMM based exchange employs a liquidity pool for a
trading pair, instantiated with two parameters: #pCoinDex(A) and #pCoinDex(B), which are the current
number of assets that the pool holds. Any exchange against this pool needs to maintain the invariant, denoted
by T := #pCoinDex(A)×#pCoinDex(B). On the other hand, when a liquidity provider injects or withdraws
liquidity to/from the pool, the operation needs to preserve the ratio: #pCoinDex(A) : #pCoinDex(B). Under
this content, the entity who trades against the pool is a user; and that who provides liquidity to the pool is
a liquidity provider.

When dealing with a two party interactive protocol, we refer to the user who sends/initiates the transfer
as Alice, and counterpart as Bob.

3 Manta Security Model

3.1 Manta’s security intuition

Now, we briefly explain why Manta’s payment and exchange is private. We can make following observations
in Figure 2:

– The secretive addresses (this is similar to shielded address in ZCash), e.g. SAddri are never revealed.
– The public information, e.g., cm-s and vn-s cannot be linked.
– All operations (except for mint) consume two old coins (UTXOs) and generate two new coins (UTXOs).

Under the assumption that mint leaks the value of a single commitment, and exchange leaks the values
of the summation of the two commitment (exchange have to leak the value of the trade otherwise the
participant would be blind on the exchange ratio), the overall scheme remains private. Even more so,
when conducting a transfer, exchange, or reclaim, user does not identify which commitment is been
used; instead, she proves that “ I own a certain commitment that was submitted to the ledger earlier,
whose the void number is vn”. Thus, knowing the face value of a commitment does not help the attacker
de-anonymize the sender.

– For txtransfer, an attacker cannot identify the asset identifier of the transfer. This allows us to mix transfers
for all asset types, providing significantly better privacy for long-tail assets while improving the overall
privacy for every asset.

This also explains why Manta’s privacy guarantee is not contradict with the negative theoretical results
of private AMM [AEC21]. In a nutshell, Manta guards the privacy despite the leak of trading price.

3.2 Formal Definition of Decentralized Anonymous Payment

A decentralized anonymous payment scheme is a tuple of algorithms (Setup, GenMint, Mint, GenTransfer,
Transfer, GenReclaim, Reclaim).

(a) Setup(1λ) → (σ, τ) takes place before the protocol starts. It sets up the parameters for the underlying
NIZK system and grabs the common reference string and the simulator trapdoor τ .

(b) GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux) is called by the user to initiate a mint transaction.
It takes in the current ledger state LS, a public coin CoinA, a public and private key pair apk and ask, the
asset identifier δ, the proposed value of the private coin v, and randomness. It outputs a mint transaction
txmint and an auxiliary information aux that the user keeps private.

(c) Mint(LS, txmint)→ (LS′, {>,⊥}) is called by the validator to verify and execute the mint transaction. It
outputs a bit indicating whether the verification and execution succeed. Upon successful execution, the
ledger state will be updated from LS to LS′.

7

(d) GenTransfer(LS, cold1 , cold2 , ask, bsk, dpk, epk, σ, aux, 1λ)
→ (txtransfer, aux) is called by the user to create a transfer transaction. It takes in the current ledger state
LS, two private coins cold1 , cold2 , two private keys ask and bsk, the recipient public keys dpk and epk, the
common reference string σ, and the auxiliary information aux. It outputs a transfer transaction txtransfer.

(e) Transfer(LS, txtransfer) → (LS′, {>,⊥}) is called by the validator to verify and execute the transfer
transaction. It outputs a bit indicating whether the verification and execution succeed. Upon successful
execution, the ledger state will be updated from LS to LS′.

(f) GenReclaim(LS, cold1 , cold2 , ask, bsk, dpk, PAddr, δ, v, σ, aux, 1λ)
→ (txreclaim, aux) is called by the user to create a reclaim transaction. It takes in the current ledger state
LS, two private coin cold1 and cold2 , the private keys ask and bsk, the recipient public key dpk, public key
PAddr of the public coin, the asset identifier δ, the value v of the public coin, the common reference
string σ, and the auxiliary information aux. It outputs a transfer transaction txreclaim.

(g) Reclaim(LS, txreclaim)→ (LS′, {>,⊥}) is called by the validator to verify and execute the reclaim trans-
action. It outputs a bit indicating whether the verification and execution succeed. Upon successful
execution, the ledger state will be updated from LS to LS′.

Now we formally define the privacy property of Decentralized Anonymous Payment.

Definition 1 (Decentralized Anonymous Payment Privacy). Definition deferred to Definition 16.

We also require the completeness of the decentralized anonymous payment scheme. If a coin has not
been spent before, it can be spent. Specifically, for any correctly minted coin pCoin, it is transferrable and
reclaimable. The same holds for a correctly received coin.

Definition 2 (Decentralized Anonymous Payment Completeness). Definition deferred to Defini-
tion 17.

Then we define the security of the decentralized anonymous payment scheme. The guarantee is similar
to that of zerocash [BCG+14]. Namely, assuming the underlying consensus protocol is ideal, a user is not
able to double-spend a private coin, or double-reclaim a private coin. More formally, we have

Definition 3 (Decentralized Anonymous Payment Security). Definition deferred to Definition 18.

3.3 Formal Definition of DAX with Public liquidity provider

A decentralized anonymous exchange with public liquidity provider is a tuple of algorithms πDAX = (Setup,
GenExchange, Exchange, LP) with an oracle access to a decentralized anonymous payment scheme πDAP.

(h) Setup(1λ) → (σ, τ) takes place before the protocol starts. It sets up the parameters for the underlying
NIZK system and grabs the common reference string and the simulator trapdoor τ . Besides, it also calls
πDAP.Setup to set up the DAP scheme.

(i) LP is an interface for a public liquidity pool used for every pair of supported assets.
(j) GenExchange(LS, cold1 , cold2 , δ′, v′, ask, bsk, dpk, epk, σ, aux, 1λ)
→ (txexchange, pCoinB) is called by the user to create an exchange transaction. It takes in two private coin
cold1 , cold2 , a target coin type δ′, the combined value of the new coin v′, the related keys ask, bsk, dpk, epk,
the common reference string σ, and the auxiliary information aux. It outputs an exchange transaction
txexchange and a private coin of type δ′ pCoinB.

(k) Exchange(LS, txexchange) → (LS′, {>,⊥}) is called by the validator to verify and execute the exchange
transaction. It outputs a bit indicating whether the verification and execution succeed.

Now we formally define the privacy property of a Decentralized Anonymous Exchange (DAX).

Definition 4 (Decentralized Anonymous Exchange Privacy with Public Liquidity Provider).
Definition deferred to Definition 15.

8

3.4 Formal Definition of DAX with Private liquidity provider

A decentralized anonymous exchange with private liquidity provider is a tuple of algorithms πDAX* = (Setup,
GenPrivInit, ApplyPrivInit, GenPrivProvide, ApplyPrivProvide, GenPrivWithdraw,
ApplyPrivWithdraw) with an oracle access to a decentralized anonymous payment scheme πDAP, and a DAX
scheme with public liquidity providers.

(l) Setup(1λ) → (σ, τ) takes place before the protocol starts. It sets up the parameters for the underlying
zkSNARK system and grabs the common reference string and the simulator trapdoor τ . Besides, it
also calls πDAP.Setup to set up the DAP scheme; πDAX to set up the DAX scheme with public liquidity
providers.

(m) GenPrivInit(cold1 , δ1, c
old
2 , δ2, ask, bsk, dpk) → (txPrivInit, aux) is called by a private liquidity provider to

privately initialize the pool.
(n) ApplyPrivInit(txPrivInit, x, y)→ P is called by the validator to verify and apply a private initialization

transaction, and update the pool.
(o) GenPrivProvide(cold1 , δ1, c

old
2 , δ2, ask, bsk, dpk)→

(txPrivProvide, aux) is called by a private liquidity provider to privately provide liquidity to the pool. It
operates similarly to GenPrivInit

(p) ApplyPrivProvide(txPrivProvide, x, y,P) → P ′ is called by the validator to verify and apply a private
provide transaction, and update the pool.

(q) GenPrivWithdraw(cold1 , vold1 , ask, bpk, dpk,P)→
(txPrivWithdraw, aux1, aux2): is called by a liquidity provider to privately withdraw the liquidity from the
pool.

(r) ApplyPrivWithdraw(txPrivWithdraw,P) → P ′: is called from the validator to verify and apply a private
withdraw transaction, and update the pool.

Now we formally define the privacy property of Decentralized Anonymous Exchange.

Definition 5 (Decentralized Anonymous Exchange Privacy with Private Liquidity Provider).
Definition deferred to Definition 16.

We also require the completeness of the decentralized anonymous exchange scheme. Besides the com-
pleteness of the underlying decentralized anonymous payment scheme, we further require that if a coin has
not been exchanged before, it can be exchanged. Specifically, for any correctly minted coin pCoinA, it is ex-
changeable. For a private exchange scheme with private liquidity provider, we require that an honest private
liquidity provider is able to withdraw the liquidity after successfully providing the liquidity.

Definition 6 (Decentralized Anonymous Exchange Completeness). Definition deferred to Defini-
tion 17.

Informally, the soundness properties of the exchange scheme covers all the soundness properties of de-
centralized anonymous payment scheme, and that any adversary is not able to double-exchange the same
private coin. For the exchange scheme with private liquidity provider, we further require that any adversary
is not able to act as the private liquidity provider and double-withdraw with a single liquidity coin pCoinLP.

Definition 7 (Decentralized Anonymous Exchange Security). Definition deferred to Definition 18.

4 MantaDAP: Decentralized Anonymous Payment

In this section, we present MantaDAP, a decentralized anonymous payment (DAP). As alluded earlier, our
payment protocol hides the asset identifiers so that an attacker will not be able to link a base asset type
with a private transfer. Mixing all private transactions into a single transaction pool gives better privacy
guarantees to those long-tail assets whose trading volume may be low on its own. This DAP scheme supports
both minting and reclaim, therefore, allows for bidirectional transfers between private coins and base coins.

9

Addresses A user u generates an address key pair (apk, ask). The coins of u can be only spent with the

knowledge of ask. To generate a key pair, u randomly samples a secret from the domain ask
$← 1λ, and sets

apk := PRFaddrask (0). A user could generate and use any number of key pairs; each key pair produces a UTXO
and shall only be used once.

4.1 Mint private assets

(b) GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, pCoin)

To mint a private asset with a type δ and a face value v, a user u needs to initiate a coin minting transaction
txmint with a deposit of the public asset of value v 5. A user generates and submits txmint to the ledger as
the following:

– u samples a random number ρ $← 1λ, which is a secret string that determines the coins void number 6

vn := PRFvnask(ρ). Note that neither ρ nor vn is included in txmint.
– u commits to the triple (apk, v, ρ) in two phases:
• sample a random r, and compute k := COMMr(apk||ρ); then,
• sample a random s, and compute cm := COMMs(δ||v||k).

– u thus mints a private coin c := (apk, v, ρ, r, s, cm) and a mint transaction txmint := (δ, v, k, s, cm).

This design allows validators to verify cm in txmint with asset id δ and value v but doesn’t disclose the
address of the owner (apk) or the void number.

A private coin consists of a tuple pCoin = (apk, δ, v, ρ, r, s, cm), where apk is the public key of the owner,
δ is the asset id of the coin, and v is the value of the private coin. They collectively form the aux that the
user needs to spend this coin at a later stage.

(c) Mint(LS, txmint)→ (LS′, {>,⊥})

Upon receiving txmint, the validator

– checks that the sender of txmint has v assets of δ;
– checks cm = COMMs(δ||v||k);
– deducts v assets of δ from sender’s account;
– adds cm to the accumulator that represents the ledger state acc.

The on-chain cost of the mint operation is dominated by the commitment scheme. It does not involve
any zero-knowledge proof operations.

4.2 Transfer private coins

(d) GenTransfer(LS, cold1 , cold2 , ask, bsk, dpk, epk, σ, aux, 1λ)
→ (txtransfer, cnew3 , cnew4)

Private coins can be transferred and spent using the transfer operation, which takes a set of input private
coins to be consumed, and transfers their total value into a set of new output coins: the total value of output
coins equals the total value of the input coins. To be consistent with Figure 2, in the following, we will use
two input coins and two output coins.

For example, suppose a user u, with address key pairs (aoldpk , a
old
sk) and (boldpk , b

old
sk), tries to transfer his old

coins

cold1 = (aoldpk , δ
old
1 , vold1 , ρold1 , rold1 , sold1 , cmold1)

cold2 = (boldpk , δ
old
2 , vold2 , ρold2 , rold2 , sold2 , cmold2)

5 For simplicity, here we assume a 1 : 1 exchange ratio. A customized transaction fee may be charged during this
process.

6 Also known as the serial number in Zcash [BCG+14]; and nullifier in other contexts.

10

to two new coins cnew3 and cnew4 of type δnew3 and δnew4 , under two new public keys dnewpk and enewpk . Note that
those two keys are not present in transfer. This implies that the addresses could belong to u (i.e., a
self-transaction), or someone else. For the sake of simplicity, we assume the receiver is also u.

To create such a transfer transaction, u samples trapdoors ρnew3 and ρnew4 , and compute

knew3 := COMMrnew3
(dnewpk , ||ρnew3),

knew4 := COMMrnew4
(enewpk , ||ρnew4),

cmnew3 := COMMsnew3
(δnew3 ||vnew3 ||knew3)

cmnew4 := COMMsnew4
(δnew4 ||vnew4 ||knew4)

This creates new coins

cnew3 := (dnewpk , v
new
3 , ρnew3 , rnew3 , snew3 , cmnew3)

cnew4 := (enewpk , v
new
4 , ρnew4 , rnew4 , snew4 , cmnew4)

The user u also produces a NIZK proof πtransfer for the following NP statement, which will be called by
transfer:

Definition 8 (NP Statement of transfer). Given an accumulator acc that represents the ledger state,
void numbers vnold1 and vnold2 ; and coin commitments cmnew3 and cmnew4 , “I” know coins cold1 , cold2 , cnew3 , cnew4 ,
and secret keys aoldsk and boldsk , such that:

1. The address and the secret key derive the public key: aoldpk = PRFaddraskold
(0), and boldpk = PRFaddrbskold

(0).
2. The old coins cold1 and cold2 are well-formed:

kold1 = COMMrold1
(aoldpk ||ρold1),

kold2 = COMMrold2
(boldpk ||ρold2),

cmold1 = COMMsold1
(δold1 ||vold1 ||kold1),

cmold2 = COMMsold2
(δold2 ||vold2 ||kold2).

3. The old coin’s commitments, although not presented in transfer, are members of acc, i.e., cmold
1 , cmold

2 ∈
acc.

4. The new coins cnew3 and cnew4 are also well-formed:

cmnew3 = COMMsnew3
(δnew3 ||vnew3 ||knew3),

cmnew4 = COMMsnew4
(δnew4 ||vnew4 ||knew4).

5. The old and new coins have a same asset identifier δ.
6. The old and new coins have a same combined value: vnew3 + vnew4 = vold1 + vold2 .
7. The new values are non-negative: vnew3 ≥ 0 and vnew4 ≥ 0.

To complete the transaction, the user u sends a txtransfer := (acc, vnold1 , vnold2 , cmnew3 , cmnew4 , πtransfer) to
the ledger.

(e) Transfer(LS, txtransfer)→ (LS′, {>,⊥})

Upon receiving such a txtransfer, the validators check the validity of the transaction:

– vnold1 and vnold2 has never been used in a previous transaction in the ledger (otherwise it is a double
spend)

– the NIZK verifier verifies the validity of πtransfer.

11

Upon successful validation, the validators will append vnold1 , vnold2 , cmnew3 , and cmnew4 to the ledger, and update
the accumulator accordingly.

We make the follow remarks. From the sender’s point of view, the proof does not specify which cmold1

cmold2 the coins are transferred from. Instead, it proves the existences of such coins. This breaks the link
between old and new commitments, and is a key requirement for anonymity.

From the receiver’s point of view, when the receiver is a different entity than u, the receiver needs to
share with u, in an offline manner, the following quantities: {snewi , knewi }i∈{3,4}, dnewpk and enewpk . Those are one-
time, none personal identifiable information (PII); and therefore do not leak the information of the receiver
regardless if transfer goes through or not. On the other hand, the corresponding dnewsk and enewsk are not
shared with u. This guarantees that the receiver is the sole entity who is able to spend the coin later.

Stop double spending Manta prevents double spending by binding the void numbers with commitments
and enforcing that transfer transaction reals the void numbers of the input coins. Concretely, the ledger
maintains two lists, represented by two accumulators, namely, accall and accspend. accall contains all com-
mitments that have ever appeared; while accspend contains vns for all spend tokens. When generating a new
transfer, the sender needs to prove that (the commitments of) the coins it is about to spend are in accall,
in zero-knowledge; and (the vns of) the coin is not in accspend. When the transfer is accepted, vnold will
be revealed and added to accspend.

Note that this creates a link between new commitment cmnews and vnolds since they all appear in a same
transfer. This, however, does not break the anonymity, since cms hide vn-s so one cannot link cms with
their corresponding vns.

4.3 Reclaim public coins from private coins.

(f) GenReclaim(LS, cold1 , cold2 , ask, bsk, dpk, PAddr, δ, v, σ, aux, 1λ)
→ (txreclaim, cnew3)

One can reuse the GenTransfer interface with a simple modification: making one of the output coins public.
More concretely, the output coins include a private coin cnew3 , a public address PAddr4 the asset identifier δ,
and a value v4.

Definition 9 (NP Statement of reclaim). Given an accumulator acc that represents the ledger state, void
numbers vnold1 and vnold2 ; and coin commitment cmnew3 and a public coin (PAddr4, v4) for an asset identifier
δ, “I” know coins cold1 , cold2 , cnew3 , and secret keys aoldsk and boldsk , such that:

1. The address and the secret key derive the public key: aoldpk = PRFaddraskold
(0), and boldpk = PRFaddrbskold

(0).
2. The old coins cold1 and cold2 are well-formed, identical to Definition 8.
3. The new coins cnew3 is also well-formed:

cmnew3 = COMMsnew3
(δnew3 ||vnew3 ||knew3).

4. The old and new coins share a same asset identifier δ.
5. The old and new coins have a same combined value: vnew3 + v4 = vold1 + vold2 .
6. The new value in cnew3 is non-negative: vnew3 ≥ 0.

Finally, the user sends txreclaim = (LS, vn1, vn2, cm3, π, PAddr, v4) to the ledger.

(g) Reclaim(LS, txreclaim)→ (LS′, {>,⊥})

Upon receiving such a txreclaim, the validators check the validity of the transaction:

– vnold1 and vnold2 has never been used in a previous transaction in the ledger (otherwise it is a double
spend)

– the zkSNARK verifier verifies the validity of πreclaim.

Upon successful validation, the validators will append vnold1 , vnold2 and cmnew3 to the ledger, and update the
accumulator accordingly. It will also credit the PAddr the reclaimed amount of Asset.

12

4.4 Security Proof

Theorem 1. Assume COMM is computationally hiding and binding, the zkSNARK scheme is zero-knowledge,
and PRF is pseudorandom, the proposed decentralized anonymous payment scheme is private.

Proof. We prove by first constructing a simulator that satisfies definition 12. Then we prove that for any
computationally efficient adversary Adv, it cannot distinguish between the view in the real world and the
view from the ideal world.

The simulator is shown in Figure 3. Before proving the desired privacy argument, we first prove a lemma
that specially looks at the games with the same initial configurations and transaction op-codes, namely, with
equal σ, τ,N,M, {ski}, {pki}, auxi and a sequence of transactions types 〈op1, . . . , opM 〉.

Lemma 1. Assume COMM is computationally hiding and binding, the zkSNARK scheme is zero-knowledge,
and PRF is pseudorandom, for any σ, τ ← Setup(1λ), N = poly(λ),M = poly(λ), any sampled set of
N user identities {pki, ski}i∈[N], N private string {auxi}i∈[N], and any sequence of transaction op-codes
〈op1, . . . , opM 〉, for an instance of RealAdv(1

λ) and IdealAdv(1
λ), we have∣∣Pr[RealAdv(1

λ) = 1|σ, τ,N,M, {ski}, {pki}, auxi, 〈op1, . . . , opM 〉]
−Pr[IdealAdv,Sim(1

λ) = 1|σ, τ,N,M, {ski}, {pki}, auxi, 〈op1, . . . , opM 〉]
∣∣

≤ negl(λ)

Now we prove by a hybrid argument that, for any computationally adversary Adv, it cannot distinguish
with a non-negligible probability an instance of RealAdv(1

λ) and an instance of IdealAdv(1
λ).

Without loss of generality, denote the view from RealAdv(1
λ) as view(R) := [σ, τ,N,M, {pki}, {(tx(R)

i , LS(R)
i)}Mi=1],

and denote by view(I) := [σ, τ,N,M, {pki}, {(tx(I)i , LS(I)i)}Mi=1] the view from IdealAdv(1
λ).

Formally, we construct a series of intermediate states of the view viewi, i ∈ 0, 1, . . . ,M .
viewi := [σ, τ,N,M, {pki}, (tx(R)

1 , LS(R)
1), . . . , (tx(R)

i , LS(R)
i), (tx(I)i+1, LS

(I)
i+1), . . . , (tx

(I)
M , LS(I)M)]. Note that

view(R) = view0 and view(I) = viewM .
Assume there is an adversary Adv that can distinguish view(R) and view(I) with advantage poly0(λ) for

some polynomial poly0: ∣∣Pr[Adv(view(R)) = 1]− Pr[Adv(view(I)) = 1]
∣∣ = poly0(λ)

Then we have ∣∣Pr[Adv(view0) = 1]− Pr[Adv(viewM) = 1]
∣∣

=
∣∣ M∑
i=1

(Pr[Adv(viewi−1) = 1]− Pr[Adv(viewi) = 1])
∣∣

= poly0(λ)

which is
M∑
i=1

∣∣Pr[Adv(viewi−1) = 1]− Pr[Adv(viewi) = 1]
∣∣ ≥ poly0(λ)

Therefore, there must be an i0 ∈ [M] s.t.
∣∣Pr[Adv(viewi0−1) = 1]−Pr[Adv(viewi0) = 1]

∣∣ ≥ poly0(λ)/M .
Now we discuss the transaction type of txi0 :

– If txi0 is a mint transaction, we can construct an adversary Adv′ based on Adv to challenge the hiding
property of COMM:
Given a pair of commitments cm0 = COMM(m0), cm1 = COMM(m1), m0 6= m1. we replace tx(R)

i0
with

(δ, v, k, s, cm0) and replace tx(I)i0
with (δ, v, k, s, cm0), where δ, v, s are sampled accordingly, and k is

sampled from the space of COMM. Calling Adv on viewi0−1 and viewi0 will yield a distinguishing advantage
of at least poly0(λ)/M , which contradicts with the assumption of computational hiding property of COMM.

13

– If txi0 is a transfer transaction, we can construct an adversary Adv′ based on Adv to challenge either
the hiding properties of COMM, or the zero-knowledge property of the zkSNARK:
Given two pair of commitments cm0 = COMM(m0), cm1 = COMM(m1), cm2 = COMM(m2), cm3 = COMM(m3)
and a pair of zkSNARK proofs π0 = Simzk(R, τ, φ), π1 = Provezk(R, τ, φ, w), where R is an arbitrary
relation, τ is the simulator backdoor, φ is the statement, and w is the hidden witness, we replace tx(R)

i0

with (LS, vn1, vn2, cm0, cm2, π1) and replace tx(I)i0
with (LS, vn1, vn2, cm1, cm3, π0), where LS is a random

group element, vn1 and vn2 are sampled accordingly. Calling Adv on viewi0−1 and viewi0 will yield a
distinguishing advantage of at least poly0(λ)/M , which indicates that either the computational hiding
property of COMM or the zero-knowledge property of zkSNARK is broken.

– If txi0 is a reclaim transaction, we break the property similarly as the transfer transaction case.

In any of these cases, we have a contradiction with the assumptions. Therefore, the lemma is proved.
Given Lemma 1, it is easy to see that, since the initial parameters are sampled in the same way in both

RealAdv(1
λ) and IdealAdv(1

λ), the theorem holds due to Equation 1.

∣∣Pr[RealAdv(1
λ) = 1]− Pr[IdealAdv,Sim(1λ) = 1]

∣∣
=
∣∣ ∑
σ,τ,N,M,{ski},{pki},auxi,〈op1,...,opM 〉

Pr[RealAdv(1
λ) = 1|σ, τ,N,M, {ski}, {pki}, auxi, 〈op1, . . . , opM 〉]

−
∑

σ,τ,N,M,{ski},{pki},auxi,〈op1,...,opM 〉

Pr[IdealAdv,Sim(1λ) = 1|σ, τ,N,M, {ski}, {pki}, auxi, 〈op1, . . . , opM 〉]
∣∣

≤ ‖{σ, τ,N,M, {ski}, {pki}, auxi, 〈op1, . . . , opM 〉}‖ · negl(λ) = negl(λ).

(1)

The proofs for the completeness and soundness of the decentralized anonymous payment scheme follow
from [BCG+14].

5 MantaDAX: Decentralized Anonymous Exchange

In this section, we describe MantaDAX, a Decentralized Anonymous eXchange (DAX) scheme that extends
the DAP scheme (section 4) to support AMM 7 style swap. In principle, our idea is applicable to other types
of decentralized exchange. We use AMM in this paper for its elegant simplicity. In a decentralized exchange,
there are three entities:

– The users who participate the exchange;
– The pool of trading pairs, which determines the ratio of the trading;
– liquidity provider who supply equal values to the pool.

Without loss of generality, we assume that there already exist two types of coins, denoted by CoinA
and CoinB, privatized through our MantaDAP protocol in section 4. We also have a pool, denoted by P :=
(#pCoinDex(A),#pCoinDex(B),D), consists of a pair of values (#pCoinDex(A),#pCoinDex(B)), and a key-
value store D. The key-value store D is yet another ledger that stores the address of the liquidity providers
and their shares of the pool.

We start with a simple construction where the liquidity providers are public; and omit the method of
liquidity providing. Then we will proceed to a more complex version that ensures liquidity providers’ privacy.
Those two methods are compatible with each other. In a real world deployment, one may provide the liquidity
through either public or private channel.

In both cases, #pCoinDex(A) and #pCoinDex(B) log the current number of CoinA and CoinB in
the pool. In the public setting, the key-value store records the identity of the liquidity provider, and its
7 AMM can be viewed as a trading pair that always maintains an invariant on the balances of the assets. Please
refer [But18] for a detailed explanation.

14

Sim(op, τ, σ, arg, 1λ):

– If op is opMint:
Extract < LS,CoinA, δ, v >← arg
Sample k uniformly from the domain of COMM.
Sample s randomly, and compute cm ← COMMs(δ‖v‖k).
Return txmint = (δ, v, k, s, cm), aux = (pCoin := (apk, δ, v, ρ, r, s, cm), vn).

– If op is opTransfer:
Extract < LS >← arg
Sample v3, v4, δ3, δ4, r3, r4, ρ3, ρ4, pk3, pk4 randomly.
Compute k3 = COMMr(pk3‖ρ3), k4 = COMMr(pk4‖ρ4)
Sample s3, s4 randomly, and compute cm3 ← COMMs3(δ3‖v3‖k3), cm4 ← COMMs4(δ4‖v4‖k4).
Sample uniquely vn1, vn2.
Compute π ← Simzk(τ, LS, vn1, vn2, cm3, cm4).
Return txtransfer = (LS, vn1, vn2, cm3, cm4, π), aux = (cnew3 := (pk3, δ3, v3, ρ3, r3, s3, cm3), cnew4 :=
(pk4, δ4, v4, ρ4, r4, s4, cm4)).

– If op is opReclaim:
Extract < LS, PAddr, v >← arg
Sample v3, δ3, r3, ρ3, pk3 randomly.
Compute k3 = COMMr(pk3‖ρ3).
Sample s3 randomly, and compute cm3 ← COMMs3(δ3‖v3‖k3).
Sample uniquely vn1 and vn2.
Compute π ← Simzk(τ, LS, vn1, vn2, cm3, PAddr, v).
Return txreclaim = (LS, vn1, vn2, cm3, π, PAddr, v), aux = (cnew3 := (pk3, δ3, v3, ρ3, r3, s3, cm3)).

Fig. 3: Simulator Sim for the decentralized anonymous payment scheme.

contribution to the pool. In the private setting, the key-value store records a one-time address from the
liquidity provider (the liquidity provider’s ID remains hidden, nonetheless), and its contribution to the pool.
This pool is operated by the validators. In other words, users and liquidity providers can only interact with
the pool through blockchain transactions.

The ledger state of MantaDAX can therefore be defined as a tuple S = (LS,P):

– LS,: the ledger state of private coins, i.e., the accumulators that store all the cm-s and vn-s.
– P: the ledger state of the exchange pair of CoinA and CoinB. Here, we adopted a simplified design,

with “#pCoinDex(A)×#pCoinDex(B) = T ” market maker scheme [But18].

Similar to a normal automated market maker setting, P needs to maintain the invariant T a constant before
and after an exchange. P also needs to allow for liquidity supplying and withdrawal, which change the
invariant T while maintaining the ratio “#pCoinDex(A) : #pCoinDex(B)”.

5.1 DAX with public liquidity providers

liquidity pool In a nutshell, the liquidity pool can be viewed as a ledger, with many account entries (liquidity
providers), in the form of a key value store, where the key is the address of the liquidity provider, and the
value is the share, for instance, in terms of percentage, of the pool. For our purpose, we may quantify the
share percentage, and use yet another token, i.e., LPCoin to represent the share. More concretely, a liquidity
provider, Luis, who holds ` number of LPCoin owns `

LPCointotal
fraction of the pool. Looking ahead, now that

we have tokenized the shares, we will be able to use the MantaDAP protocol to shield the liquidity providers’
identities, as well as the number of LPCoins they hold.

Let us now formalize some notations.

– We stick with a trading pair of CoinA and CoinB, where the trading ratio is denoted by R; the pool
invariant is denote by T .

15

– An exchange will take in x number of CoinA, and outputs y := Rx number of CoinB (or vise versa). This
procedure will preserve the invariant T , while updating the trading ratio R.

– A liquidity providing(withdrawn) will take input (or output, respectively) x number of CoinA, and
y := Rx number of CoinB, and add (subtract) them to the pool. This procedure will preserve the trading
ratio R, while updating the invariant T .

It is therefore sufficient to view the liquidity pool as a tuple P = (R, T, LPtotal, LLP).

(i) LP interfaces.

A public liquidity provider interacts with the pool through the following interfaces.

– LP.init(id, x, y)→ P: this function initialize the pool with x number of CoinA and y number of CoinB.
It then sets R = y/x, T = xy, amount =

√
T ; build a ledger LLP with an entry (id : amount) and set

LPtotal = amount. It finally output P = (x, y,R, T, LPtotal, LLP).
– LP.provide(id0, x0, y0,P)→ P ′: this function firstly checks that x0/y0 = P.R. It then sets
• P.x += x0;
• P.y += y0;
• amount0 =

√
x0y0;

• P.LPtotal += amount0;
It also adds the entry (id0 : amount0) to the ledger LLP if id0 does not exist; or increase its balance by
amount0 if it exists. It finally outputs the updated P as P ′.

– LP.withdraw(id1, amount1,P) → P ′: this function firstly checks that id1’s balance is no less than
amount1. It then sets
• x1 = amount1

P.LPtotal
· P.x;

• y1 = amount1
P.LPtotal

· P.y;
• P.x −= x1;
• P.y −= y1;
• P.LPtotal −= amount1;

It reduces the balance of id1 by amount0 on the ledger LLP. It finally outputs the updated P as P ′.
– LP.exchange(cold1 , cold2 ,Pδold,δ) → (vnew,P ′): this function updates the states of the liquidity pool by

exchanging two coins cold1 , cold2 with asset type δold to asset type δ. It returns the sum of the values of
the new coins and the updated liquidity pool state.

5.2 Exchange

To deal with public liquidity providers, from the user’s point of view, it is sufficient to assume that T is a
constant, and ignore the liquidity supplying and withdraw for simplicity. Without losing of generality, we
show how to privately exchange a single CoinA for a single CoinB.

(j) GenExchange(LS, cold1 , cold2 , δ′, v′, ask, bsk, dpk, epk, σ, aux, 1λ)
→ (txexchange, pCoinB)

At a high level, suppose a user u, with address key pairs (aoldpk , a
old
sk), (boldpk , b

old
sk), wants to exchange its

old pCoins
cold1 := (aoldpk , δ

old, vold1 , ρold1 , rold1 , sold1 , cmold1)

cold2 := (boldpk , δ
old, vold2 , ρold2 , rold2 , sold2 , cmold2)

with δold = “CoinA”, for new pCoins of type δnew, denoted by cnew3 and cnew4 , at address dnewpk and enewpk
8. The

user then creates the new coins

cnew3 := (dnewpk , δ
new, vnew3 , ρnew3 , rnew3 , snew3 , cmnew3)

cnew4 := (enewpk , δ
new, vnew4 , ρnew4 , rnew4 , snew4 , cmnew4)

with δnew = “CoinB”. The rest input field follows those of a transfer protocol. The user u also produces a
zero-knowledge proof πexchange for the following NP statement:

8 u does not need the corresponding secret key to complete the exchange. In fact, the address may be owned by
another entity, which makes the exchange protocol simultaneously a transfer protocol.

16

Definition 10 (NP Statement of πexchange). Given an accumulator of ledger acc, serial numbers vnold1

and vnold2 , two coin types δold and δnew, two values vold and vnew, and coin commitments cmnew3 and cmnew4 , “I”
know coins cold1 , cold2 , cnew3 cnew4 , and secret keys aoldsk and boldsk such that:

1. Knowledge of the secret key, identical to Definition 8.
2. cold1 and cold2 are well formed, also identical to Definition 8.
3. cmold1 ∈ acc and cmold2 ∈ acc.
4. cnew3 and cnew4 are well formed, identical to Definition 8.
5. vold = vold1 + vold2 and vnew = vnew3 + vnew4 .

The user u then sends an exchange transaction txexchange := (acc, vnold1 , vnold2 , cmnew3 , cmnew4 , πexchange, δ
old, vold, δnew, vnew)

to the ledger.

(k) Exchange(LS, txexchange)→ (LS′, {>,⊥})

Upon receiving a txexchange, the validator checks the validity of the transaction: the transaction is valid
only if vnold1 and vnold2 have never been used in a previous transaction (otherwise it is a double spend); the
zkSNARK verifier verifies the validity of πexchange; and vnew : vold = R. In addition to adding vn-s and cm-s
to the accumulators, the validator also updates P’s state with new #pCoinDex(A) and #pCoinDex(B) as
follows:

– P.x += vold;
– P.y −= vnew;
– P.R = P.x/P.y;

As stated in subsection 3.1, in our DAX the values of the exchange is public. This is the requirement
of AMM, or else, P is not able to update its state and maintains functional. Our solution to bypass this
issue is similar to our DAP protocol. In analogue, one may relate to the mint function, which also publicly
reveals the face values for commitments. By itself we already get good anonymity, since even the face value is
leaked, the identity of the owner of the coin remains hidden. In addition, as shown in Figure 2, our exchange
protocol, similar to transfer protocol, takes a set of input coins and output a set of output coins. Only the
combined value for input coins and that of output coins is leaked, while the face value for individual coin
remains hidden.

5.3 Private Liquidity Provider

Now we are ready to present the private liquidity providing protocol.

(m) GenPrivInit(cold1 , δ1, c
old
2 , δ2, ask, bsk, dpk)→ (txPrivInit, aux)

A liquid provider, with cold1 of δ1 and cold2 of δ2 contributes her tokens to the liquidity pool for a trading
pair δ1 and δ2. In return, she is expecting a new liquidity token cnew3 with δnew = pCoinLP, and some aux
information that allows her to spend this coin once it is finalized on chain.

The liquid provider first generate the new token

cnew3 := (dnewpk , δ
new, vnew3 , ρnew3 , rnew3 , snew3 , cmnew3),

where vnew3 =
√
vold1 vold2 ; v1 and v2 are the amount of assets in cold1 and cold2 , respectively. She then generate

a zero-knowledge proof πPrivInit for the following statements:

1. Knowledge of the secret key, identical to Definition 8.
2. cold1 and cold2 are well formed, also identical to Definition 8.
3. cnew3 is well formed, identical to Definition 8.
4. vnew3 =

√
vold1 vold2 .

The liquidity provider then sends an transaction txPrivInit :=
(acc, vnold1 , vnold2 , cmnew3 , πPrivInit, δ

old
1 , δold2 , vold1 , vold2 , vnew3) to the validator.

17

(n) ApplyPrivInit(txPrivInit, x, y)→ P

This function firstly checks that cold1 and cold2 contains vold1 and vold2 number of CoinA and CoinB, respectively.
Then it initializes the pool with vold1 number of CoinA and vold2 number of CoinB and sets R = vold2 /vold1 ,
T = vold1 vold2 , amount =

√
T . It also checks that cold3 contains exactly vnew3 number of CoinLP. It finally build

a private liquidity pool via outputing P = (vold1 , vold2 ,R, T, LP*total, LLP*).

(o) GenPrivProvide(cold1 , δ1, c
old
2 , δ2, ask, bsk, dpk)

→ (txPrivProvide, aux)

This function is identical to the GenPrivInit function.

(p) ApplyPrivProvide(txPrivProvide, x, y,P)→ P ′

Upon receiving a txPrivProvide transaction, this function firstly checks that cold1 and cold2 contains vold1 and
vold2 number of CoinA and CoinB, respectively. Then it checks that vold1 /vold2 = P.R, and injects the liquidity
to the pool with vold1 number of CoinA and vold2 number of CoinB as follows:

– P.x += vold1 ;
– P.y += vold2 ;
– amount0 =

√
vold1 vold2 ;

– P.LP*total += amount0;

and add pCoinLP0 to LLP*. It finally outputs the updated P as P ′.

(q) GenPrivWithdraw(cold1 , vold1 , ask,P)→ (txPrivWithdraw, aux1, aux2)

A liquid provider, with cold1 of pCoinLP, withdraws her tokens from the liquidity pool for a trading pair δ1
and δ2. In return, she is expecting two new token cnew2 and cnew3 with δnew2 = pCoinA and δnew3 = pCoinB,
respectively; and some aux information that allows her to spend these coins once it is finalized on chain.

The liquid provider first generate the new token

cnew2 := (bnewpk , δ
new
2 , vnew2 , ρnew2 , rnew2 , snew2 , cmnew2),

cnew3 := (dnewpk , δ
new
3 , vnew3 , ρnew3 , rnew3 , snew3 , cmnew3).

She then generates a zero-knowledge proof πPrivWithdraw for the following statements

1. Knowledge of the secret key, identical to Definition 8.
2. cold1 is well formed, also identical to Definition 8.
3. cnew2 and cnew3 are well formed, identical to Definition 8.
4. vold1 =

√
vmew2 vmew3 .

and send a transaction txPrivWithdraw :=
(acc, vnold1 , cmnew2 , cmnew3 , πPrivWithdraw, δ

new
2 , δnew3 , vold1 , vnew2 , vnew3) to the validators.

(r) ApplyPrivWithdraw(txPrivWithdraw,P)→ P ′

Upon receiving a txPrivWithdraw transaction, this function firstly checks that cold1 contains vold1 number of
pCoinLP. Then it checks that vnew2 /vnew3 = P.R, and removes the liquidity to the pool with vnew2 number of
CoinA and vnew3 number of CoinB as follows:

– x1 =
vold1

P.LP*total
· P.x;

– y1 =
vold1

P.LP*total
· P.y;

– P.x −= x1;
– P.y −= y1;
– P.LP*total −= vold1 ;

and remove pCoinLP0 to LLP*. It finally outputs the updated P as P ′.

(s) Exchange(cold1 , cold2 ,Pδold,δ)→ (vnew,P ′): this function is the same as the exchange function of the public
liquidity pool.

18

Component Payload breakup Bytes
Mint δ, v, cm, k, s 2× u64+ 3× u256 112

k1, vn1, acc1 3× u256
k2, vn2, acc2

Transfer k3, cm3, cipher3 2× u256+ 1× u384
608

k4, cm4, cipher4
πtransfer 2×G1 + 1×G2

Exchange

k1, vn1, acc1 3× u256

640

k2, vn2, acc2
k3, cm3, cipher3 2× u256+ 1× u384
k4, cm4, cipher4

πtransfer 2×G1 + 1×G2

δold, vold, δnew, vnew 4 ×u64

Reclaim

δ, v 2× u64
k1, vn1, acc1 3× u256
k2, vn2, acc2 512

k3, cm3, cipher3 2× u256+ 1× u384
πreclaim 2×G1 + 1×G2

Table 1: Communication cost

5.4 Security Proof

Proof deferred to section C.

6 Empirical Evaluation

CRS Cost
PK size VK size Proving Verifying

transfer 226 MB 2312 bytes 14.97 s 5.86 ms
exchange 226 MB 2504 bytes 14.95 s 6.06 ms
reclaim 224 MB 2312 bytes 14.88 s 5.44 ms

Table 2: Unit benchmark

x86 Native WASM e. TPS (N) e. TPS (W)
Null Trans. 12 µs 28 µs

Init. 0.7 ms 2.9 ms
Mint 3.1 ms 20 ms 107.5 16.7

Transfer 10.9 ms 109 ms 30.6 3
Exchange 11 ms 110 ms 30.3 3
Reclaim 8.3 ms 89 ms 40.2 3.75

Table 3: Integrated benchmark

System Implementation. We implement our scheme in Rust, using the Arkworks library [Tea21] and the
Substrate framework [Tec21]. We deploy our code to a publicly accessible testnet 9. Our code is release to the
public domain under the GPL license. The underlying cryptographic library allows users to develop their own
Substrate based blockchain applications with zero-knowledge proofs, and therefore may be of independent
interest. The data reported in this section use BLS12-381 [Bow17] and Jubjub curves [HBHW21, 5.4.8.3],
Pedersen commitment [HBHW21, 5.4.1.7] and Groth16 proof systems [Gro16]. However, thanks to Arkworks,
our code is configurable with other curves, commitments and provers.

9 https://github.com/manta-network

https://github.com/manta-network

19

Concrete Performance. We first report the payload one needs to send for each type of transactions. Mint
always build one tokens, at a cost of 112 bytes of payload. Transfer and exchange each consumes two old
tokens and produces two new tokens, at a cost of over 600 bytes of payload. Reclaim consumes two old
tokens, and produces one new token, at a cost of 512 bytes of payload. Table 1 gives the break down cost of
each payload.

Then we report our benchmark results. We benchmark Manta over an AMD 5900x CPU, 32 GBytes of
memory and an Ubuntu 20.04 system. We disabled Rust’s standard library, as well as instructions such as
AVX-2s, in order to be compatible with the WASM runtimes.

There are two sets of benchmarks. The first one is unit benchmarks, in which we measure the cost of
generating and verifying zero-knowledge proofs for each set of statements. We uses Rust’s Criterion crate
to conduct this benchmark, and the result are presented in Table 2. Overall, the proving time and verification
time are around 15 seconds and 6 milliseconds, respectively.

The second benchmark is to integrate our protocol to the blockchain, deploy the test network, and
benchmark the end-to-end latency. For this benchmark, we use frame-benchmark toolchain from Substrate.
The data are collected from a local node. This helps us to remove the network latency and have a better
view of the zk-SNARK related latency.

As shown in Table 3, to set up the base line, a null transfer on our network is almost instant: it takes 12
µs and 28 µs when compiled to the x86-64 native executable and webassembly (WASM) [Ros21] executable,
respectively. In general, ZKP related transactions, such as Transfer and Exchange, takes around 10 ms to
complete with Rust compiler. This result agrees with the unit benchmark, in that the integrated benchmark
indeed takes additional time for various operations such as I/O of the ledger state and verification key dese-
rialization, etc. For WASM compiler, our benchmark shows a 10x slowdown. We leave WASM optimization
to future work.

With those data, we estimate the transaction per second (TPS) on both native runtime and WASM
runtime. We have configured our block finality time to 6 seconds, within which, 2 seconds is dedicated to
validation operations. We follow this configuration from Polkadot. Nonetheless, customized setting will give
different performance. Under this setting, within a block, we can stretch 2 second/3.1 ms = 645.2 Mint
transactions. In other words, 645.2/6 seconds = 107.5 TPS. The TPS for other operations are estimated in
a similar fashion.

7 Acknowledgement

We would like to thank Qiudong Xia for his help on the performance benchmark and Gabriela Brown for
her suggestions on improving the paper.

References

AC20. Guillermo Angeris and Tarun Chitra. Improved price oracles: Constant function market makers. In AFT,
pages 80–91. ACM, 2020.

AEC20. Guillermo Angeris, Alex Evans, and Tarun Chitra. When does the tail wag the dog? curvature and market
making, 2020.

AEC21. Guillermo Angeris, Alex Evans, and Tarun Chitra. A note on privacy in constant function market makers,
2021.

AZR20. Hayden Adams, Noah Zinsmeister, and Dan Robinson. Uniswap v2 core. https://uniswap.org/
whitepaper.pdf, 2020.

BAZB20. Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy in a smart
contract world. In Financial Cryptography, volume 12059 of Lecture Notes in Computer Science, pages
423–443. Springer, 2020.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for C:
verifying program executions succinctly and in zero knowledge. In CRYPTO (2), volume 8043 of Lecture
Notes in Computer Science, pages 90–108. Springer, 2013.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and
Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In IEEE Symposium on
Security and Privacy, pages 459–474. IEEE Computer Society, 2014.

https://uniswap.org/whitepaper.pdf
https://uniswap.org/whitepaper.pdf

20

BCG+20. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and Howard Wu. ZEXE:
enabling decentralized private computation. In IEEE Symposium on Security and Privacy, pages 947–964.
IEEE, 2020.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. Succinct non-
interactive arguments via linear interactive proofs. In TCC, volume 7785 of Lecture Notes in Computer
Science, pages 315–333. Springer, 2013.

BJSW18. Samuel Brooks, Anton Jurisevic, Michael Spain, and Kain Warwick. A decentralised payment network
and stablecoin. https://synthetix.io/uploads/synthetix_whitepaper.pdf, 2018.

BMSZ20. Foteini Baldimtsi, Varun Madathil, Alessandra Scafuro, and Linfeng Zhou. Anonymous lottery in the
proof-of-stake setting. In CSF, pages 318–333. IEEE, 2020.

Bow17. Sean Bowe. Bls12-381: New zk-snark elliptic curve construction. https://electriccoin.co/blog/
new-snark-curve/, 2017.

But18. Vitalik Buterin. Improving front running resistance of x*y=k market makers. https://ethresear.ch/
t/improving-front-running-resistance-of-x-y-k-market-makers/1281, 2018.

CGL+17. Alessandro Chiesa, Matthew Green, Jingcheng Liu, Peihan Miao, Ian Miers, and Pratyush Mishra. Decen-
tralized anonymous micropayments. In EUROCRYPT (2), volume 10211 of Lecture Notes in Computer
Science, pages 609–642, 2017.

cur21. curve. Curve.fi. https://curve.fi/, 2021.
CZJ+17. Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed E. Kosba, Ari Juels, and Elaine Shi. Solidus: Confidential

distributed ledger transactions via PVORM. In CCS, pages 701–717. ACM, 2017.
def21. Decentralized finance. https://en.wikipedia.org/wiki/Decentralized_finance, 2021.
DGK+19. Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach,

and Ari Juels. Flash boys 2.0: Frontrunning, transaction reordering, and consensus instability in decen-
tralized exchanges, 2019.

dot. Polkadot: Decentralized web 3.0 blockchain interoperability platform. https://polkadot.network/.
GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and

succinct nizks without pcps. In EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
626–645, 2013.

GKRN18. Steven Goldfeder, Harry A. Kalodner, Dillon Reisman, and Arvind Narayanan. When the cookie meets
the blockchain: Privacy risks of web payments via cryptocurrencies. Proc. Priv. Enhancing Technol.,
2018(4):179–199, 2018.

GM17. Matthew Green and Ian Miers. Bolt: Anonymous payment channels for decentralized currencies. In CCS,
pages 473–489. ACM, 2017.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-
systems (extended abstract). In STOC, pages 291–304. ACM, 1985.

Gra21. Steve Graves. Sec chair gensler: Crypto exchanges need ’protections’ from front-running. https://
decrypt.co/72088/sec-chair-gensler-crypto-exchanges-need-protections-front-running, 2021.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT (2), volume 9666
of Lecture Notes in Computer Science, pages 305–326. Springer, 2016.

HBHW21. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol specification version
2021.2.2 [overwinter+sapling+blossom+heartwood+canopy]. https://github.com/zcash/zips/blob/
master/protocol/protocol.pdf, 2021.

ide21. idex. Idex high performance decentralized exchange. https://idex.io/, 2021.
KKKZ19. Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboros crypsinous: Privacy-

preserving proof-of-stake. In IEEE Symposium on Security and Privacy, pages 157–174. IEEE, 2019.
KMNS21. Markulf Kohlweiss, Varun Madathil, Kartik Nayak, and Alessandra Scafuro. On the anonymity guarantees

of anonymous proof-of-stake protocols. IACR Cryptol. ePrint Arch., 2021:409, 2021.
KYMM18. George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn. An empirical analysis of anonymity

in zcash. In USENIX Security Symposium, pages 463–477. USENIX Association, 2018.
LH19. Robert Leshner and Geoffrey Hayes. Compound: The money market protocol. https://compound.

finance/documents/Compound.Whitepaper.pdf, 2019.
LTW20. Yuan Lu, Qiang Tang, and Guiling Wang. Zebralancer: Decentralized crowdsourcing of human knowledge

atop open blockchain, 2020.
Nak. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.org/bitcoin.pdf.
NVV18. Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving auditing for distributed

ledgers. In NSDI, pages 65–80. USENIX Association, 2018.
PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical verifiable

computation. In IEEE Symposium on Security and Privacy, pages 238–252. IEEE Computer Society,
2013.

https://synthetix.io/uploads/synthetix_whitepaper.pdf
 https://electriccoin.co/blog/new-snark-curve/
 https://electriccoin.co/blog/new-snark-curve/
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281
https://ethresear.ch/t/improving-front-running-resistance-of-x-y-k-market-makers/1281
https://curve.fi/
https://en.wikipedia.org/wiki/Decentralized_finance
https://polkadot.network/
https://decrypt.co/72088/sec-chair-gensler-crypto-exchanges-need-protections-front-running
https://decrypt.co/72088/sec-chair-gensler-crypto-exchanges-need-protections-front-running
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://idex.io/
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
http://bitcoin.org/bitcoin.pdf

21

Ros21. Andreas Rossberg. Webassembly specification release 1.1 (draft 2021-05-17). https://webassembly.
github.io/spec/core/, 2021.

TBP20. Florian Tramèr, Dan Boneh, and Kenny Paterson. Remote side-channel attacks on anonymous transac-
tions. In 29th USENIX Security Symposium (USENIX Security 20), pages 2739–2756. USENIX Associa-
tion, August 2020.

Tea21. Arkworks Team. arkworks:an ecosystem for developing and programming with zksnarks. https://
github.com/arkworks-rs, 2021.

Tec21. Parity Technologies. Substrate developer hub: Blockchain development for innovators. https://
substrate.dev/, 2021.

vS13. Nicolas van Saberhagen. Cryptonote v 2.0. https://github.com/monero-project/research-lab/blob/
master/whitepaper/whitepaper.pdf, 2013.

Whi20. Barry WhiteHat. Why you can’t build a private uniswap with zkps., 2020.
Woo. Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.
YKM19. Haaroon Yousaf, George Kappos, and Sarah Meiklejohn. Tracing transactions across cryptocurrency

ledgers. In USENIX Security Symposium, pages 837–850. USENIX Association, 2019.
ZHC+20. Fan Zhang, Warren He, Raymond Cheng, Jernej Kos, Nicholas Hynes, Noah M. Johnson, Ari Juels,

Andrew Miller, and Dawn Song. The ekiden platform for confidentiality-preserving, trustworthy, and
performant smart contracts. IEEE Secur. Priv., 18(3):17–27, 2020.

https://webassembly.github.io/spec/core/
https://webassembly.github.io/spec/core/
https://github.com/arkworks-rs
https://github.com/arkworks-rs
https://substrate.dev/
https://substrate.dev/
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf

22

A Background: cryptography

A.1 Zero knowledge proofs

In cryptography, a zero-knowledge proof protocol is a proof system, in which one party, a.k.a Alice (the
prover), proves to another party, a.k.a Bob (the verifier), that she knows a value x, without conveying any
information apart from the fact she knows x. By the seminal work from Goldwasser, Micali, and Rack-
off [GMR85], we know that this notion of knowledge can be generalized to any NP statement.

In recent years, emerging from a pure theoretical concept, zero-knowledge proof systems have become
practical, thanks to many great work in this space [Gro16, GGPR13, BCG+13, PHGR13]. The major cryp-
tographic primitive used in this paper is a special kind of NIZK: publicly-verifiable preprocessing zero-
knowledge Succinct Non-interactive ARgument of Knowledge or zkSNARK for short. We informally define
zkSNARK as follows.

For a finite field F, an F-arithmetic circuit, where the inputs, outputs and intermediate values are all in
F. We consider circuits that have an input x ∈ Fn and an auxiliary input a ∈ Fh, namely a witness. We
define arithmetic circuit satisfiability as follows:

Definition 11. The arithmetic circuit satisfiability problem of an F-arithmetic circuit C: Fn×Fh → F l is
captured by the relation RC = {(x, a) ∈ Fn × Fh : C(x, a) = 0l}, where the language LC = {x ∈ Fn : ∃a ∈
Fh s.t. C(x, a) = 0l}.

Given a field F , a zkSNARK for F−arithmetic circuit satisfiability is defined by a triple of a polynomial-
time algorithms (KeyGen, Prove, Verify):

1. KeyGen(1λ, C) →(pk, vk). Taken a security parameter λ (e.g. 128 bits) and an F-arithmetic circuit C,
KeyGen probabilistically samples a proving key pk and a verification key vk. Both keys are published as
public parameters and can be used for any number of times, to prove/verify the memberships in LC .

2. Prove(pk, x, a)→ π. Taken a proving key pk and any (x, a) ∈ RC as input, the prover Prove outputs a
non-interactive proof π for the statement x ∈ LC .

3. Verify(vk, x, π)→ b. Taken a verification key vk, x , and a proof π as input, the verifier Verify outputs
1 if it is convinced that x ∈ LC , and outputs 0 otherwise.

A zkSNARK satisfies the following properties:
Completeness. For every security parameter λ, any F−arithmetic circuit C, and any (x, a) ∈ RC , an

honest prover must convince the verifier. Namely, output 1 with probability 1− negl(λ) with the following:
(pk, vk)← KeyGen(1λ, C), π ← Prove(pk, x, a), b← Verify(vk, x, π).

Soundness. If the verifier accepts a proof from a bounded prover, then the prover must know the secret
input corresponding to the witness of the given instance 10.

Succinctness. An honestly-generated proof π has Oλ(1) bits and Verify(vk, x, π) runs in time Oλ(|x|)
(Oλ hides a fixed polynomial factor in λ).

Zero knowledge. An honestly-generated proof is perfect zero knowledge: there exists a poly(λ)−size
simulator Sim, who has no access to the secret inputs, can generate a simulated proof, such that all stateful
poly(λ)−bounded distinguishers D cannot distinguish this proof from an honest proof.

A.2 Other cryptographic primitives

In addition to zkSNARK, we use the following cryptographic primitives:

– COMM, a non-interactive commitment scheme that is both hiding and binding. For example, given a
random seed r and a message m, the commitment is c := COMMr(m). c can be opened by revealing r and
m, which verifies the commitment.

– pseudorandom functions. More specifically, we use three labeled pseudorandom functions that may be
instantiated from a same core function. For a seed x, we derive PRFaddrx (·), PRFvnx (·), and PRFpkx (·), which
will be used to generate addresses, void numbers and public keys, accordingly.

10 The formal definition of soundness is based on the concept of extractor, which can be found in [BCI+13].

23

– Cryptographic accumulators, which support efficient, zero-knowledge, membership proofs. Looking ahead,
we will be using Merkle tree based constructions.

– an (elliptic curve) integrated encryption scheme (ECIES), which is build on top of (elliptic curve) Diffie-
Hellman key exchange, a key derivation function and a blockcipher such as AES. This primitive is useful
when the senders encrypt the face values of the tokens under receivers public keys.

B Additional Definitions

B.1 DAP

We first describe two experiments, involving a challenger, an adversary Adv, and a simulator Sim.

Definition 12 (Decentralized Anonymous Payment Privacy). A decentralized anonymous payment
scheme is private if and only if for any p.p.t. adversary Adv, we have∣∣Pr[RealπDAP

Adv(1
λ) = 1]− Pr[IdealπDAP

Adv,Sim(1
λ) = 1]

∣∣ ≤ negl(λ)

RealπDAPAdv(1
λ) :

– The challenger runs the setup: σ, τ ← Setup(1λ).
– The challenger samples N,M,A← poly(λ), and a set of N user identities {pki, ski}i∈[N], a set of asset IDs
{δi}, and N private string {auxi}i∈[N].

– Initialize view← [σ, τ,N,M, {pki}], and initial ledger state LS.
– Repeat the following for M times:
• Sample user index u← [N].
• The challenger samples an op code op from {opMint, opTransfer, opReclaim}.
• If op is opMint:

Sample a coin value v, an asset ID δ, and a public coin Coin.
Let (txmint, aux) ← GenMint(LS,CoinA, pku, sku, δ, v, 1λ).
Let (LS′, b)← Mint(LS, txmint)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txmint, LS′) to view, and append aux to auxu.
• If op is opTransfer:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, and target addresses pkd, pke.
Let (txtransfer, aux) ← GenTransfer(LS, cold1 , cold2 , ska, skb, pkd, pke, σ, aux, 1λ).
Let (LS′, b)← Transfer(LS, txtransfer)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opReclaim:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, a target public key pkd, a public
address PAddr, and a public coin value v
Let (txreclaim, aux) ← GenReclaim(LS, cold1 , cold2 , ska, skb, pkd, PAddr, δ, v, σ, aux, 1λ).
Let (LS′, b)← Reclaim(LS, txreclaim)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
– The challenger returns Adv(view).

Fig. 4: Experiments RealπDAP
A (1λ)

24

IdealπDAPAdv,Sim(1λ) :

– The challenger runs the setup: σ, τ ← Setup(1λ).
– The challenger samples N,M,A← poly(λ), and a set of N user identities {pki, ski}i∈[N], a set of asset IDs
{δi}, and N private string {auxi}i∈[N].

– Initialize view← [σ, τ,N,M, {pki}], and initial ledger state LS.
– Repeat the following for M times:
• Sample user index u← [N].
• The challenger samples an op code op from {opMint, opTransfer, opReclaim}.
• If op is opMint:

Sample a coin value v, an asset ID δ, and a public coin Coin.
Let (txmint, aux) ← Sim(op, τ, σ,< LS,CoinA, δ, v >, 1λ)).
Let (LS′, b)← Mint(LS, txmint)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txmint, LS′) to view, and append aux to auxu.
• If op is opTransfer:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, and target addresses pkd, pke.
Let (txtransfer, aux) ← Sim(op, τ, σ,< LS >, σ, 1λ).
Let (LS′, b)← Transfer(LS, txtransfer)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opReclaim:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, a target public key pkd, a public
address PAddr, and a public coin value v
Let (txreclaim, aux) ← Sim(op, τ, σ,< LS, PAddr, δ, v >, 1λ).
Let (LS′, b)← Reclaim(LS, txreclaim)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
– The challenger returns Adv(view).

Fig. 5: Experiments IdealπDAP
Adv,Sim(1

λ)

Pr

Transfer(LS, txtransfer)→ (LS′,>) :

Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

GenTransfer(LS, pCoinA, apk, ask, bpk, σ, aux, 1λ)→ (txtransfer)

 = 1 (2)

Pr

Reclaim(LS, txreclaim)→ (LS′,>) :

Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

GenReclaim(LS, pCoinA, apk, ask, PAddr, v, σ, aux, 1λ)→ (txreclaim)

 = 1 (3)

Pr

Transfer(LS, txtransfer)→ (LS′,>) :

Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

GenTransfer(LS, pCoinA, apk, ask, bpk, σ, aux, 1λ)→ (txtransfer)
Transfer(LS, txtransfer)→ (LS′,>)

GenTransfer(LS, pCoinA, bpk, bsk, cpk, σ, aux, 1λ)→ (txtransfer)

 = 1 (4)

25

Pr

Reclaim(LS, txreclaim)→ (LS′,>) :

Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

GenTransfer(LS, pCoinA, apk, ask, bpk, σ, aux, 1λ)→ (txtransfer)
Transfer(LS, txtransfer)→ (LS′,>)

GenReclaim(LS, pCoinA, bpk, bsk, PAddr, v, σ, aux, 1λ)→ (txreclaim)

 = 1 (5)

Definition 13 (Decentralized Anonymous Payment Completeness). A decentralized anonymous
payment scheme is complete if and only if for any keypairs apk, ask, bpk, bsk, cpk, any valid asset id δ and
value v, the following probabilities are 1.

– Correctly minted coin is transferrable, i.e. Equation 2.
– Correctly minted coin is reclaimable, i.e., Equation 3.
– Correctly received coin is transferrable, i.e., Equation 4.
– Correctly received coin is reclaimable, i.e., Equation 5.

Pr


txtransfer transfers pCoinA to bpk
tx′transfer transfers pCoinA to b′pk

bpk 6= b′pk
Transfer(LS, txtransfer)→ (LS′,>)
Transfer(LS′, tx′transfer)→ (LS′′,>)

:

Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

Adv(pCoinA, apk, ask, 1λ)→ bpk, b
′
pk, txtransfer, tx

′
transfer

 ≤ negl(λ) (6)

Pr


txreclaim Reclaims pCoinA to bpk
tx′reclaim Reclaims pCoinA to b′pk

bpk 6= b′pk
Reclaim(LS, txreclaim)→ (LS′,>)
Reclaim(LS′, tx′reclaim)→ (LS′′,>)

:

Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

Adv(pCoinA, apk, ask, 1λ)→ bpk, b
′
pk, txreclaim, tx

′
reclaim

 ≤ negl(λ) (7)

Definition 14 (Decentralized Anonymous Payment Security). A decentralized anonymous payment
scheme is secure if and only if for any computationally bounded adversary Adv, given oracle access to the
scheme, the probabilities in Equation 6 and Equation 7 are negligible.

B.2 DAX with public Liquidity provider

Similar to DAP privacy, we construct two experiments, involving a challenger, an adversary Adv, and a
simulator Sim. For simplicity, our definition only captures a single exchange pair pCoinA and pCoinB.

Definition 15 (Decentralized Anonymous Exchange Privacy with Public Liquidity Provider).
A decentralized anonymous exchange scheme with public liquidity provider is private if and only if for any
p.p.t. adversary Adv, we have∣∣Pr[RealπDAX

Adv(1
λ) = 1]− Pr[IdealπDAX

Adv,Sim(1
λ) = 1]

∣∣ ≤ negl(λ)

B.3 DAX with private Liquidity provider

Similar to DAP privacy, we construct two experiments, involving a challenger, an adversary Adv, and a
simulator Sim. For simplicity, our definition only captures a single exchange pair pCoinA and pCoinB.

26

Definition 16 (Decentralized Anonymous Exchange Privacy with Private Liquidity Provider).

A decentralized anonymous exchange scheme is private if and only if for any p.p.t. adversary Adv, we
have ∣∣Pr[RealπDAX*

Adv (1
λ) = 1]− Pr[IdealπDAX*

Adv,Sim(1
λ) = 1]

∣∣ ≤ negl(λ)

Definition 17 (Decentralized Anonymous Exchange Completeness). A decentralized anonymous
payment scheme (with public/private liquidity provider) is complete if and only if for any user with keypair
apk, ask and any target a′pk with valid asset ids δand δ′, and value v, Equation 8 holds; for a private exchange
scheme with private liquidity provider, Equation 9 also holds;

Definition 18 (Decentralized Anonymous Exchange Security). A decentralized exchange payment
scheme is secure if and only if for any computationally bounded adversary Adv, any asset id δ, δ′, any value
x, y, given oracle access to the scheme, the probabilities in Equation 10 and Equation 11 are negligible.

C Security Proof for Private Liquidity Provider

Figure 10 shows a feasible simulator for the private decentralized exchange protocol with private liquidity
provider. The simulator for the private decentralized exchange protocol with public liquidity provider is
exactly the same. We can show that our private decentralized exchange protocol with private liquidity
provider and that with public liquidity provider are private. Both of the proofs are similar to theorem 1.

The proofs for the completeness and soundness of the decentralized anonymous payment scheme are
similar to [BCG+14].

27

RealπDAXAdv(1
λ) :

– The challenger runs the setup: σ, τ ← Setup(1λ).
– The challenger samples N,M, x, y ← poly(λ), a set of N user identities {pki, ski}i∈[N], a set of asset IDs
{δi}, and N private string {auxi}i∈[N].

– Initialize the liquidity pool Pδi,δj ← LP.init(0, x, y) for every asset pair (δi, δj), adversary view view ←
[σ, τ,N,M, {pki}, (LPδi,δj)i,j], and initial ledger state LS.

– Repeat the following for M times:
• Sample user index u← [N].
• Sample an asset id δ ∈ {δi}.
• The challenger samples an op code op from {opMint, opTransfer, opReclaim, opExchange,

opProvide, opWithdraw}.
• If op is opMint:

Sample a public coin Coin and a coin value v. Let (txmint, aux)← GenMint(LS,CoinA, pku, sku, δ, v, 1λ).
Let (LS′, b)← Mint(LS, txmint)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txmint, LS′) to view, and append aux to auxu.
• If op is opTransfer:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, and target addresses pkd, pke.
Let (txtransfer, aux) ← GenTransfer(LS, cold1 , cold2 , ska, skb, pkd, pke, σ, aux, 1λ).
Let (LS′, b)← Transfer(LS, txtransfer)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opReclaim:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, a target public key pkd, a public
address PAddr, and a public coin value v
Let (txreclaim, aux) ← GenReclaim(LS, cold1 , cold2 , ska, skb, pkd, PAddr, δ, v, σ, aux, 1λ).
Let (LS′, b)← Reclaim(LS, txreclaim)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opExchange:

Sample a private coin cold1 , cold2 with private key ska, skb from auxu. Determine the coin type δold. Sample
the target public key pkd, pke.
Let (vnew,Pδold,δ)← LP.exchange(cold1 , cold2 ,Pδold,δ).
Let (txexchange, aux) ← GenExchange(LS, cold1 , cold2 , δ, vnew, ska, skb, pkd, pke, σ, aux, 1

λ).
Let (LS′, b)← Exchange(LS, txexchange)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′ and the coin counters Pδold,δ.x and Pδold,δ.y
Append (txexchange, LS′,Pδold,δ) to view, and append aux to auxu.

• If op is opProvide:
Sample id← poly(λ), x, y ← poly(λ).
Let P ← LP.provide(id, x, y,P). Append Pδold,δ to view.

• If op is opWithdraw:
Sample id← poly(λ), a← poly(λ).
Let P ← LP.withdraw(id, a,P). Append Pδold,δ to view.

– The challenger returns Adv(view).

Fig. 6: Experiments RealπDAX
A (1λ)

28

IdealπDAXAdv,Sim(1λ) :

– The challenger runs the setup: σ, τ ← Setup(1λ).
– The challenger samples N,M, x, y ← poly(λ), a set of N user identities {pki, ski}i∈[N], a set of asset IDs
{δi}, and N private string {auxi}i∈[N].

– Initialize the liquidity pool Pδi,δj ← LP.init(0, x, y) for every asset pair (δi, δj), adversary view view ←
[σ, τ,N,M, {pki}, (LPδi,δj)i,j], and initial ledger state LS.

– Repeat the following for M times:
• Sample user index u← [N].
• Sample an asset id δ ∈ {δi}.
• The challenger samples an op code op from {opMint, opTransfer, opReclaim, opExchange,

opProvide, opWithdraw}.
• If op is opMint:

Sample a public coin Coin and a coin value v.
Let (txmint, aux) ← Sim(op, τ, σ,< LS,CoinA, δ, v >, 1λ)).
Let (LS′, b)← Mint(LS, txmint)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txmint, LS′) to view, and append aux to auxu.
• If op is opTransfer:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, and target addresses pkd, pke.
Let (txtransfer, aux) ← Sim(op, τ, σ,< LS >, σ, 1λ).
Let (LS′, b)← Transfer(LS, txtransfer)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opReclaim:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, a target public key pkd, a public
address PAddr, and a public coin value v
Let (txreclaim, aux) ← Sim(op, τ, σ,< LS, PAddr, δ, v >, 1λ).
Let (LS′, b)← Reclaim(LS, txreclaim)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opExchange:

Sample a private coin cold1 , cold2 with private key ska, skb from auxu. Determine the coin type δold. Sample
the target public key pkd, pke.
Let (vnew,Pδold,δ)← LP.exchange(cold1 , cold2 ,Pδold,δ).
Let (txexchange, aux) ← Sim(op, τ, σ,< LS, (Pδold,δ) >, σ, 1λ).
Let (LS′, b)← Transfer(LS, txexchange)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′ and the coin counters #pCoinA and $pCoinB
Append (txexchange, LS′,Pδold,δ) to view, and append aux to auxu.

• If op is opProvide:
Sample id← poly(λ), x, y ← poly(λ).
Let P ← LP.provide(id, x, y,P).
Append Pδold,δ to view.

• If op is opWithdraw:
Sample id← poly(λ), a← poly(λ).
Let P ← LP.withdraw(id, a,P).
Append Pδold,δ to view.

– The challenger returns Adv(view).

Fig. 7: Experiments IdealπDAX
Adv,Sim(1

λ)

29

RealπDAX*Adv (1λ) :

– The challenger runs the setup: σ, τ ← Setup(1λ).
– The challenger samples N,N ′, D,M, x, y ← poly(λ), a set of N user identities {pki, ski}i∈[N], a set of asset

IDs {δi}i∈[D], and N private string {auxi}i∈[N].
– Run the DAP scheme for N ′ steps.
– For every asset pair (δi, δj):
• Sample a user id id ∈ [N] for the liquidity pool initialization.
• If auxid does not contain asset type δi and δj at the same time, stop the game.
• Sample pCoinA, pCoinB of type δi and δj , with value x, y from auxid.
• (txPrivInit, pCoinLP)← LP*.GenPrivInit(pCoinA, pCoinB), x, y, pCoinLP, πinit).
• Initialize the liquidity pool Pδi,δj ← LP*.ApplyPrivInit(txPrivInit, x, y).

– Initialize the adversary view view← [σ, τ,N,M, {pki}, (Pδi,δj)i,j], and the initial ledger state LS.
– Repeat the following for M times:
• Sample user index u← [N].
• Sample private liquidity provider id← [N].
• Sample an asset id δ ∈ {δi}i∈[D].
• The challenger samples an op code op from {opMint, opTransfer, opReclaim, opExchange,

opProvide, opWithdraw}.
• If op is opMint:

Sample a public coin Coin and a coin value v.
Let (txmint, aux) ← GenMint(LS,CoinA, pku, sku, δ, v, 1λ).
Let (LS′, b)← Mint(LS, txmint)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txmint, LS′) to view, and append aux to auxu.
• If op is opTransfer:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, and target addresses pkd, pke.
Let (txtransfer, aux) ← GenTransfer(LS, cold1 , cold2 , ska, skb, pkd, pke, σ, aux, 1λ).
Let (LS′, b)← Transfer(LS, txtransfer)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opReclaim:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, a target public key pkd, a public
address PAddr, and a public coin value v
Let (txreclaim, aux) ← GenReclaim(LS, cold1 , cold2 , ska, skb, pkd, PAddr, δ, v, σ, aux, 1λ).
Let (LS′, b)← Reclaim(LS, txreclaim)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opExchange:

Sample a private coin cold1 , cold2 with private key ska, skb from auxu. Determine the coin type δold. Sample
the target public key pkd, pke.
Let (vnew,Pδold,δ)← LP*.Exchange(cold1 , cold2 ,Pδold,δ).
Let (txexchange, aux) ← GenExchange(LS, cold1 , cold2 , δ, vnew, ska, skb, pkd, pke, σ, aux, 1

λ).
Let (LS′, b)← Exchange(LS, txexchange)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′ and the coin counters Pδold,δ.x and Pδold,δ.y
Append (txexchange, LS′,Pδold,δ) to view, and append aux to auxu.

• If op is opProvide:
If auxid has smaller than 2 types of coin, stop the game.
Sample pCoinA, pCoinB with value x and y, and type δ and δ′ from auxid.
txPrivProvide, pCoinLP← LP*.GenPrivProvide(pCoinA, pCoinB,P).
Let Pδ,δ′ ← LP.ApplyPrivProvide(txPrivProvide, x, y,P). Update the ledger state LS← LS′

Append (txexchange, LS′, (Pδ,δ′)) to view, and append pCoinLP to auxid.
• If op is opWithdraw:

Sample a private coin pCoinLP with value t from auxid, and determine the corresponding asset pair δ
and δ′.
(txPrivWithdraw, pCoinA1, pCoinB1)← LP*.GenPrivWithdraw(pCoinLP1, t,P).
Let Pδ,δ′ ← LP.ApplyPrivWithdraw(txPrivWithdraw, t,P). Append (txexchange, LS′,Pδ,δ′) to view, and ap-
pend pCoinA, pCoinB to auxid.

– The challenger returns Adv(view).

Fig. 8: Experiments RealπDAX*
A (1λ)

30

IdealπDAX*Adv,Sim(1λ) :

– The challenger runs the setup: σ, τ ← Setup(1λ).
– The challenger samples N,N ′, D,M, x, y ← poly(λ), a set of N user identities {pki, ski}i∈[N], a set of asset

IDs {δi}i∈[D], and N private string {auxi}i∈[N].
– Run the DAP scheme for N ′ steps.
– For every asset pair (δi, δj):
• Sample a user id id ∈ [N] for the liquidity pool initialization.
• If auxid does not contain asset type δi and δj at the same time, stop the game.
• Sample pCoinA, pCoinB of type δi and δj , with value x, y from auxid.
• (txPrivInit, pCoinLP)← Sim(opPrivInit, τ, σ,< x, y, δi, δj >), 1λ).
• Initialize the liquidity pool Pδi,δj ← LP*.ApplyPrivInit(txPrivInit, x, y).

– Initialize the adversary view view← [σ, τ,N,M, {pki}, (Pδi,δj)i,j], and the initial ledger state LS.
– Repeat the following for M times:
• Sample user index u← [N].
• Sample private liquidity provider id← [N].
• Sample an asset id δ ∈ {δi}i∈[D].
• The challenger samples an op code op from {opMint, opTransfer, opReclaim, opExchange,

opProvide, opWithdraw}.
• If op is opMint:

Sample a public coin Coin, a coin value v, and a coin type CoinType ∈ {A,B}.
Let (txmint, aux) ← Sim(op, τ, σ,< LS,CoinA, δ, v >, 1λ)).
Let (LS′, b)← Mint(LS, txmint)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txmint, LS′) to view, and append aux to auxu.
• If op is opTransfer:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, and target addresses pkd, pke.
Let (txtransfer, aux) ← Sim(op, τ, σ,< LS >, σ, 1λ).
Let (LS′, b)← Transfer(LS, txtransfer)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opReclaim:

Sample private coins cold1 and cold2 with private key ska, skb from auxu, a target public key pkd, a public
address PAddr, and a public coin value v
Let (txreclaim, aux) ← Sim(op, τ, σ,< LS, PAddr, δ, v >, 1λ).
Let (LS′, b)← Reclaim(LS, txreclaim)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′

Append (txtransfer, LS′) to view, and append aux to auxu.
• If op is opExchange:

Sample a private coin cold1 , cold2 with private key ska, skb from auxu. Determine the coin type δold. Sample
the target public key pkd, pke.
Let (vnew,Pδold,δ)← LP*.Exchange(cold1 , cold2 ,Pδold,δ).
Let (txexchange, aux) ← Sim(op, τ, σ,< LS, (Pδold,δ) >, σ, 1λ).
Let (LS′, b)← Transfer(LS, txexchange)
If b = ⊥, stop the game and return Adv(view, 1λ).
Update the ledger state LS← LS′ and the coin counters #pCoinA and $pCoinB
Append (txexchange, LS′,Pδold,δ) to view, and append aux to auxu.

• If op is opProvide:
If auxid has smaller than 2 types of coin, stop the game. Sample pCoinA, pCoinB with value x and y,
and type δ and δ′ from auxid.
txPrivProvide, pCoinLP← Sim(op, τ, σ,< x, y,Pδ,δ′ >, 1λ)).
Let Pδ,δ′ ← LP.ApplyPrivProvide(txPrivProvide, x, y,Pδ,δ′). Update the ledger state LS← LS′

Append (txexchange, LS′,Pδ,δ′) to view, and append pCoinLP to auxid.
• If op is opWithdraw:

Sample a private coin pCoinLP with value t from auxid, and determine the corresponding asset pair δ
and δ′

(txPrivWithdraw, pCoinA1, pCoinB1)← Sim(op, τ, σ,< t,Pδ,δ′ >, 1λ).
Let P ← LP.ApplyPrivWithdraw(txPrivWithdraw, t,Pδ,δ′). Append (txexchange, LS′,Pδ,δ′) to view, and ap-
pend pCoinA, pCoinB to auxid.

– The challenger returns Adv(view).

Fig. 9: Experiments IdealπDAX*
Adv,Sim(1

λ)

31

Pr

Exchange(LS, txexchange)→ (LS′,>)

∣∣∣∣∣∣∣∣
Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

GenExchange(LS, pCoinA, δ′, v′, apk, ask, a′pk, σ, aux, 1
λ)→ (txexchange, pCoinB)

 = 1

(8)

Pr


LP*.ApplyPrivWithdraw(LS, txPrivWithdraw)

→ (LS′,>)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, x, 1λ)→ (txmint, pCoinA),
Mint(LS, txmint)→ (LS′,>),

GenMint(LS,CoinA, apk, ask, δ, y, 1λ)→ (txmint, pCoinB),
Mint(LS, txmint)→ (LS′,>),

LP*.GenPrivProvide(pCoinA, pCoinB,P)→ (txPrivProvide, pCoinLP)
LP*.ApplyPrivProvide(txPrivProvide, x, y,P)→ P ′

LP*.GenPrivWithdraw(pCoinLP,
√
xy,P ′)→ (txPrivWithdraw, pCoinA1, pCoinB1)


= 1

(9)

Pr


txexchange exchanges pCoinA to pCoinB
tx′exchange exchanges pCoinA to pCoinB’

pCoinB 6= pCoinB′

Transfer(LS, txexchange)→ (LS′,>)
Transfer(LS′, tx′exchange)→ (LS′′,>)

∣∣∣∣∣∣∣∣
Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, v, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

Adv(pCoinA, apk, ask, 1λ)→ pCoinB, pCoinB′, txexchange, tx′exchange

 ≤ negl(λ)

(10)

Pr


txPrivWithdraw Withdraws pCoinLP to pCoinA and pCoinB
tx′PrivWithdraw Withdraws pCoinLP to pCoinA’ to pCoinB’

bpk 6= b′pk
LP*.ApplyPrivWithdraw(txPrivWithdraw, t,P)→ (P ′,>)
LP*.ApplyPrivWithdraw(tx′PrivWithdraw, t,P)→ (P ′′,>)

(11)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Setup(1λ)→ (σ, τ),

GenMint(LS,CoinA, apk, ask, δ, x, 1λ)→ (txmint, aux),
Mint(LS, txmint)→ (LS′,>),

GenMint(LS,CoinB, apk, ask, δ′, y, 1λ)→ (txmint, aux),
Mint(LS′, txmint)→ (LS′′,>),

LP*.GenPrivProvide(pCoinA, pCoinB,P)→ (txPrivProvide, pCoinLP)
LP*.ApplyPrivProvide(txPrivProvide, x, y,P)

Adv(pCoinLP, apk, ask, 1λ)→ pCoinA, pCoinB, pCoinA′, pCoinB′, txPrivWithdraw, tx′PrivWithdraw


≤ negl(λ) (12)

32

Sim(op, τ, σ, arg, 1λ):

– If op is opMint:
Extract < LS,CoinA, δ, v >← arg
Sample k uniformly from the domain of COMM.
Sample s randomly, and compute cm ← COMMs(δ‖v‖k).
Return txmint = (δ, v, k, s, cm), aux = (pCoin := (apk, δ, v, ρ, r, s, cm), vn).

– If op is opTransfer:
Extract < LS >← arg
Sample v3, v4, δ3, δ4, r3, r4, ρ3, ρ4, pk3, pk4 randomly.
Compute k3 = COMMr(pk3‖ρ3), k4 = COMMr(pk4‖ρ4)
Sample s3, s4 randomly, and compute cm3 ← COMMs3(δ3‖v3‖k3), cm4 ← COMMs4(δ4‖v4‖k4).
Sample uniquely vn1, vn2.
Compute π ← Simzk(τ, LS, vn1, vn2, cm3, cm4).
Return txtransfer = (LS, vn1, vn2, cm3, cm4, π), aux = (cnew3 := (pk3, δ3, v3, ρ3, r3, s3, cm3), cnew4 :=
(pk4, δ4, v4, ρ4, r4, s4, cm4)).

– If op is opReclaim:
Extract < LS, PAddr, v >← arg
Sample v3, δ3, r3, ρ3, pk3 randomly.
Compute k3 = COMMr(pk3‖ρ3).
Sample s3 randomly, and compute cm3 ← COMMs3(δ3‖v3‖k3).
Sample uniquely vn1 and vn2.
Compute π ← Simzk(τ, LS, vn1, vn2, cm3, PAddr, v).
Return txreclaim = (LS, vn1, vn2, cm3, π, PAddr, v), aux = (cnew3 := (pk3, δ3, v3, ρ3, r3, s3, cm3)).

– If op is opExchange:
Extract < LS,Pδold,δ >← arg
Get the coin numbers #pCoinDex(δold) and #pCoinDex(δ) from Pδold,δ.
Sample v1, v2 randomly such that #pCoinDex(δold) > v1 + v2, and solve v3 + v4 from (#pCoinDex(δold) −
v1 − v2)× (pCoinDex(δ) + v3 + v4) = T .
Sample r3, ρ3, pk3, r4, ρ4, pk4 randomly. Compute k3 = COMMr(pk3‖ρ3), k4 = COMMr(pk4‖ρ4).
Sample s3, s4 randomly, and compute cm3 ← COMMs3(δ‖v3‖k3), cm4 ← COMMs4(δ‖v4‖k4).
Sample uniquely vn1, vn2.
Compute π ← Simzk(τ, LS, vn1, vn2, cm3, cm4, δold, δ).
Return txexchange = (LS, vn1, vn2, cm3, cm4, π, δold, v1 + v2, δ, v3 + v4).

– If op is opPrivInit:
Extract < x, y, δi, δj >← arg. Sample private coins pCoinA and pCoinB with values x and y, and type δi
and δj .
Sample a private pCoinLP with value √xy. Compute π ← Simzk(τ, LS, vnA, vnB , x, y, δi, δj). Return
txPrivInit = (LS, vnA, vnB , x, y, π).

– If op is opProvide:
Extract < x, y,Pδ,δ′ >← arg. Extract δ, δ′ from Pδ,δ′ . Sample private coins pCoinA and pCoinB with values
x and y, and type δi and δj .
Sample a private pCoinLP with value √xy. Compute π ← Simzk(τ, LS, vnA, vnB , x, y, cmLP , δi, δj ,Pδ,δ′).
Return txPrivProvide = (LS, vnA, vnB , x, y,Pδ,δ′ , π).

– If op is opWithdraw:
Extract < t,Pδ,δ′ >← arg. Extract δ, δ′ from Pδ,δ′ . Sample a private pCoinLP with value t.
Sample private coins pCoinA and pCoinB with values x and y s.t. xy = t2. Compute π ←
Simzk(τ, LS, vnLP , cmA, cmB , t, x, y, δi, δj ,Pδ,δ′). Return txPrivWithdraw = (LS, vnLP , cmA, cmB , t, x, y,Pδ,δ′ , π).

Fig. 10: Simulator Sim for the decentralized anonymous exchange scheme.

	Manta: a Plug and Play Private DeFi Stack

