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Abstract. In this paper, we introduce a new method to prove the knowl-
edge of an isogeny of given degree between two supersingular elliptic
curves. Our approach can be extended to verify the evaluation of the
secret isogeny on some points of the domain. The main advantage of
this new proof of knowledge is its compactness which is orders of magni-
tude better than existing proofs of isogeny knowledge. The principle of
our method is to reveal some well-chosen endomorphisms and does not
constitute a zero-knowledge proof. However, when the degree is a large
prime, we can introduce a new hardness assumption upon which we build
the first verifiable random function (VRF) based on isogenies. Our pro-
tocol can be seen as a generalization of the BLS-style classical construc-
tion from elliptic curves and achieves one-time pseudo-randomness in
the random oracle model. We propose concrete parameters for this new
scheme which reach post-quantum NIST-1 level of security. Our VRF
has an overall cost (proof size, key size and output size) of roughly 1KB,
which is shorter than all the other post-quantum instantiations based
on lattices. In the process, we also develop several algorithmic tools to
solve norm equations over quaternion orders that may be of independent
interest.

1 Introduction

Isogeny-based cryptography has received an increasing amount of interest due
to its presumed resistance to quantum computers. As the variety of primitive
achievable from isogeny is expanding, new problems are arising. The problem
of proving the knowledge of an isogeny or verify an isogeny’s evaluation is ap-
pearing in various contexts such as SIDH [28] key validation, several signatures
[43,17,6,29], VDFs [19] and the recent oblivious PRF protocol from [8]. The ex-
isting proof techniques are only working in the SIDH [28] or CSIDH [10] setting
and are neither compact nor efficient as they are built from low-soundness sub-
protocols. The spirit of our approach rather follows the recent SQISign construc-
tion from [18], a very compact and relatively efficient signature scheme based on
a high-soundness identification protocol. The principle behind SQISign is to re-
veal some well-chosen isogeny to prove the knowledge of the endomorphism ring
of the public key curve. We extend this idea and propose to reveal some well-
chosen endomorphisms to prove the knowledge of an isogeny between two curves.



While it has been shown [31,20,21] that computing random endomorphisms of
supersingular curves breaks the security of any isogeny-based scheme, we argue
that this is not necessarily the case if the endomorphisms are selected carefully.
The key ingredient in SQISign is the generalized KLPT algorithm which allows
the signer to compute a smooth isogeny between two given curves. Similarly,
for our new proof technique we need to reveal endomorphisms of smooth norm
inside a specific order. To that end, we develop a new algorithm to solve norm
equations in a large class of quaternion orders. These types of equations and the
necessity to find small solutions efficiently has appeared in several recent works
[32,18,20,24,37,36,33]. We expand the range of known algorithms to a larger
variety of quaternion orders.

Building upon our new proof technique, we introduce the first isogeny Veri-
fiable Random Function (VRF) scheme. A verifiable random function is a way
to generate authenticated randomness in a verifiable manner. This notion was
introduced in [34] and has recently found concrete applications in blockchain con-
sensus [12,25,16]. The two main VRF constructions are based on classical ECC
(ECVRF [35]) and pairing-based cryptography (BLS-VRF [7]). Both are vulner-
able to quantum computers. This weakness is a major concern for blockchain
applications as it gives the possibility to a quantum attacker to rewrite history,
thus violating one of the most important principles of blockchain. The impact
of such an attack on long-term security is described more precisely in the intro-
duction of [22].

VRFs are often constructed from unique signatures, and the additional unique-
ness property is what makes the VRF construction difficult compared to digital
signatures. Until this work, the only post-quantum VRFs were constructed from
lattices, which proves to be quite a challenge given the inherently noisy nature of
lattices. This explains why the resulting constructions have either very large size
[26,42] or are restricted to a limited number of signatures under the same key
[22]. For blockchain applications, the size is particularly crucial as VRF keys,
outputs and proofs must fit into a block of fixed length. In this regard, the only
practical protocol is the recent one introduced in [22].

These two constraints explain why isogenies are a good fit for VRFs as they
provide the most-compact post-quantum protocols, and their algebraic nature
makes exact and unique computation easier. Unfortunately, isogenies are also
less flexible than lattices, and achieving a one-time construction already raises
several technical challenges. We introduce different new ideas and algorithms to
overcome these obstacles.

The main difficulty in translating existing Diffie-Hellman-based VRFs to the
SIDH [28] or CSIDH [10] setting is the lack of an efficient hash into the set of
supersingular curves (i.e. a way to produce a random supersingular elliptic curve
without any additional information on it, such as its endomorphism ring) as can
be done for elliptic curve points (see for instance [5]). We build a VRF scheme
upon our compact proof of isogeny knowledge applied to a seemingly natural
generalisation of the BLS-VRF protocol.

Our contributions can be summarized in the following manner:
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– A new compact proof of isogeny knowledge and proof of evaluation by re-
vealing a special suborder of the endomorphism ring.

– A new one-time VRF protocol from isogenies based on a new hardness as-
sumption (Problem 1) in the random oracle model.

– New algorithms to find elements of smooth norm in these quaternion subor-
ders.

This paper is organized as follows. Section 2 introduces preliminaries on
VRFs and the Deuring correspondence. In Section 3, we outline a new proof
method for isogeny knowledge and evaluation. Our VRF construction is intro-
duced in Section 4 and analyzed in Section 5. In Section 6, we present new
algorithms to find smooth elements in a large class of quaternion orders along
with several other technical sub-algorithms and proofs. In Section 7 we look at
parameters, size and efficiency for the proposed VRF construction. Finally, in
Section 8, we sketch ideas to remove the one-time restriction and open some
prospects for other applications of our new proof method.

Acknowledgements We thank Benjamin Smith and Luca De Feo for valuable
feedback and proofreading an earlier version of this work.

2 Background material

We call negligible a function f : Z>0 → R>0 if it is asymptotically dominated by
O(x−n) for all n > 0. In the analysis of a probabilistic algorithm, we say that
an event happens with overwhelming probability if its probability of failure is a
negligible function of the length of the input.

In a distinguishing problem, the advantage of an attacker is the improvement
in success probability over a random guess. The efficiency of a distinguisher can
be estimated by its advantage. When all polynomial-time distinguishers have
negligible advantage, we say that the problem is hard.

2.1 Verifiable Random Function

A Verifiable Random Function (VRF) is a way to generate authenticated ran-
domness that can be verified. It constist of the following protocols:

– SetUp(1λ), returns a set of public parameters pp (see Definition 5).
– KeyGen(pp), returns a pair (pk, sk) of public key and secret key from the

public parameters.
– VRFEval(sk, x) = (v, π), takes the secret key sk and an input x and computes

the output y along with a proof π.
– Verif(pk, π, x, v) takes the VRF public key, proof, input and output and

returns 0 or 1.

In this article, we construct a VRF satisfying the following properties:
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– Provability: The verification always returns 1 on correctly generated proof
and output from a given input.

– One-time pseudo-randomness: With one access to an oracle comput-
ing VRFEval(sk, x) for x 6= x0, an adversary cannot distinguish between
VRFEval(sk, x0) and a random value (see Definition 1).

– Uniqueness: There does not exist a key and input and two pairs (v1, π1)
and (v2, π2) with v1 6= v2 both passing the verification (see Definition 2).

– Unbiasability: An adversary that can choose the key, cannot bias the out-
put of the VRF when the input is uniformly random (see Definition 6).

The usual pseudo-randomness property allows the adversary to make a poly-
nomial number of queries. The k-times variant was introduced recently in [22].

The uniqueness property can be relaxed in computational uniqueness (see
Definition 3) where we assume that it is hard to find two (output,proof) pairs
with different outputs passing the verification as opposed to unconditional unique-
ness where there does not exist any such pairs (see Definition 2).

Classical instantiation with ECC and natural extensions to isogenies
We outline briefly an efficient instantiation of VRF using classical ECC. More
precise references can be found at [7,35]. As usual in ECC, the key pair is (s, [s]P )
for some point P on a curve E. To evaluate the VRF, one uses a hash function
h : {0, 1}? → E(k) to hash into the curve and then output [s]h(x) on input x. A
proof can be computed with the usual tools of ECC. In BLS-VRF [7], pairings
are used to verify the correctness of the computation.

The analog of this style of construction in the Diffie-Hellman settings of
SIDH and CSIDH would require a way to hash into the set of supersingular
curves. More precisely, the hash function into E(k) allows one to generate a
point P in some group G without knowing its discrete logarithm with respect
to some generator. The generalization of this in the context of supersingular
elliptic curves would be a way to generate a curve of unknown endomorphism
ring or without knowing a path to some base curve E0. This is a notoriously
hard problem. For instance, it is not achieved by the CGL hash function [11].

Another way of generalizing these BLS-style protocols for isogenies is ex-
plored in [19,9] for verifiable delay functions and delay encryption, where the
scalar multiplication by s is replaced with evaluation through some secret isogeny.
This is a framework that we also use in this work, as the VRF secret key is going
to be an isogeny. However, the verification in [19,9] is not post-quantum secure,
as it is based on pairings. We will make use of the new ideas presented in Sec-
tion 3 to verify the correctness of isogeny evaluation in a post-quantum manner.
However, there is a second challenge brought by the post-quantum setting: once
the evaluation of a basis through the secret isogeny is known, computing the
image of any point is as hard as breaking discrete logs. We don’t really have
a way to deal with this problem, and that is why our construction is only a
one-time VRF. Potential fixes are proposed in Section 8.1 but several technical
obstacles are still standing in the way of a non-restricted VRF from isogenies.
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2.2 Elliptic curves, quaternion algebras and the Deuring
correspondence

Below, we briefly expose the main features of the Deuring correspondence. For a
more complete treatment of supersingular elliptic curves and quaternion algebras
see [27,31,39].

The Deuring correspondence is an equivalence of categories between iso-
genies of supersingular elliptic curves and the left ideals over maximal order
O of Bp,∞, inducing a bijection between conjugacy classes of supersingular j-
invariants and maximal orders (up to equivalence) [31]. Moreover, this bijection
is explicitly constructed as E → End(E). Hence, given a supersingular curve
E0 with endomorphism ring O0, the pair (E1, ϕ), where E1 is another super-
singular elliptic curve and ϕ : E0 → E1 is an isogeny, is sent to a left integral
O0-ideal. The right order of this ideal is isomorphic to End(E1). One way of
realizing this correspondence is obtained through the kernel ideals defined in
[40]. Given an integral left-O0-ideal I, we define the kernel of I as the subgroup
E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I}. To I, we associate the isogeny
ϕI : E0 → E0/E0[I]. Conversely, given an isogeny ϕ, the corresponding kernel
ideal is Iϕ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(ϕ)}. Sometimes, when the
kernel of ϕ is given as a group G, we also write IG for this ideal. When G is
cyclic and generated by a point P we abuse notations by writing IP . Two ideals
I, J are said to be equivalent if I = Jβ for some β ∈ B×p,∞ and we write I ∼ J .

The main properties of the Deuring correspondence are summarized in Ta-
ble 1.

Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, ϕ) with ϕ : E → E1 Iϕ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(ϕ) n(Iϕ)

ϕ̂ Iϕ
ϕ : E → E1, ψ : E → E1 Equivalent Ideals Iϕ ∼ Iψ
Supersingular j-invariants over Fp2 Cl(O)

τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ
Table 1. The Deuring correspondence, a summary from [18].

Effective Deuring correspondence For the concrete instantiation of our
construction, we rely on the effective correspondence algorithms introduced in
[18]. In particular, for the evaluation of our VRF, we will use the IdealToIsogeny`•
sub-algorithm to translate ideals of norm `f to the corresponding isogenies for
some small prime `. This algorithm works by cutting the `f -isogeny in smaller
pieces of degree `2e+ε (for some small e and ε) which can be translated into an
isogeny using a good representation of the endomorphism ring of the successive
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domains. This representation is obtained through an equivalent isogeny of degree
T 2 coprime with `. This technique can be made efficient when both `e and T
divide p2−1, which underlies the requirement on p that we impose in Section 7.1.

3 Proof of isogeny knowledge and proof of evaluation

In this section, we provide a high-level description of our new method of proof.
The goal is to provide some insight into the general principle of the proof. The
reader solely interested in the VRF description can jump straight to Section 4.

We start with the proof of knowledge of an isogeny of given degree D in Sec-
tion 3.1, before looking at an adaptation of this method to verify the evaluation
of an isogeny one some torsion points in Section 3.2.

3.1 Proof of D-isogeny knowledge

We target the following problem: given two supersingular curves E0, E and an
integer D, prove the knowledge of an isogeny of degree D between E0 and E.
The idea is to apply the method to the case where E0 is a fixed curve with
publicly known endomorphism ring and we want to retain some kind of secrecy
on the endomorphism ring of E.

We base our proof system on an interesting property of endomorphism rings:
given O0

∼= End(E0) and O ∼= End(E), there is an embedding of O = Z +DO0

in O if and only if there is an isogeny of degree D connecting E0 and E. The
indirect implication comes easily from the map [d] + [D]α0 7→ [d] + ϕ ◦ α0 ◦ ϕ̂
naturally defined from Z +DO0 to O for any isogeny ϕ : E0 → E of degree D.
The other direction is more subtle, and we prove it in Lemma 9.

Thus, by exhibiting some endomorphisms of Z + DO0 in O, one can prove
the existence of an isogeny of degree D between E0 and E. The main limitation
of this principle is due to the fact that the embedding Z + DO0 ⊂ O is closely
related to ϕ (as can be easily be seen from the concrete embedding map described
above). In fact, this observation is at the heart of the attacks [36,33] on the SIDH
key exchange and underlies the decryption process of the encryption scheme from
[37]. Indeed, the knowledge of an element θ of Z + DO0 is sufficient to recover
the isogeny ϕ. Thus, when D-isogeny computations are efficient, our proof is
equivalent to revealing the isogeny ϕ. Given this, one may wonder what the
interest of our method is. The crucial point is that our proof system always
has polynomial complexity in both log(p) and log(D) (see the size estimates of
Section 6.3). On the other hand when D is a prime number, the best algorithms
to compute and evaluate D-isogenies run in O(

√
D) operations over the field of

definition of the D-torsion (see [4]). Hence, there is an exponential gap between
the two methods when D is prime. In Section 4, we use our new proof method
in this setting of large prime degree to construct a VRF.
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3.2 Proving correctness of isogeny evaluation

From the method of Section 3.1, we can derive more powerful applications by
specializing the endomorphisms of Z+DO0 that we reveal. In particular, we can
verify that a given cyclic subgroup H is the image under ϕ of another subgroup
G. This follows from two standard results:

Lemma 1. Let E be a supersingular elliptic curve with endomorphism ring O
and let N be a prime. For α ∈ O of norm coprime with N , exactly one of the
following is true:

1. There are no cyclic subgroups of order N stabilized by α.
2. There is exactly one cyclic subgroup of order N stabilized by α, and tr(α)2 =

4n(α) mod N .
3. There are exactly two cyclic subgroups of order N stabilized by α and, α is

contained in Z + I rZ +NO where I is an integral left O-ideal of norm N .
4. All cyclic subgroups of order N are stabilized by α, and α acts as a scalar

on E[N ] and is contained in Z +NEnd(E).

Proof. If G = 〈P 〉 is an eigenspace of α, then there exists λ ∈ Z such that
α(P ) = [λ]P . Thus, (α− λ)P = 0 and α− λ is contained in IG by definition of
kernel ideals and we have α ∈ Z + IG. In terms of the number of eigenspaces,
since E[N ] ∼= Z/NZ2, it is quite clear that we have four possible situations: no
eigenspaces, exactly one eigen space, exactly two distinct eigenspaces or all E[N ]
depending on the degree and the number of solutions to the minimal polynomial.
The last case where all cyclic subgroups of E[N ] are stabilized by α happens
when the minimal polynomial has degree 1. In that case, E[N ] is in the kernel
of α−λ. The kernel ideal of E[N ] is NEnd(E) and so α ∈ Z+NEnd(E). When
there is exactly one eigen space the minimal polynomial of α has degree 2 but
only one roots. Since the minimal polynomial is X2 + tr(α)X+n(α) we get that
this situation happens when 4n(α) = tr(α)2 mod N . From there, it is easy to
deduce that α = tr(α)/2 + α0 and tr(α0) = n(α0) = 0 mod N .

Lemma 2. Let E0, E be two supersingular ellitpic curves with respective endo-
morphism rings O0,O and let ϕ : E0 → E be a D-isogeny, when α0 ∈ O0 satisi-
fies α0(G) = G for G a cyclic subgroup of order N , then α = [d] +ϕ◦α0 ◦ ϕ̂ ∈ O
stabilizes H = ϕ(G) for any d ∈ Z.

Proof. Let us write P a generator of G and Q = ϕ(P ). If α0(G) = G, there
exists λ ∈ Z such that α0(P ) = [λ]P . In that case, we have α(Q) = [d]Q + ϕ ◦
α0 ◦ ϕ̂(ϕ(P )) = [d]Q+ [D]ϕ((α0(P )) = [d]Q+ [λD]ϕ(P ) = [d+ λD]Q.

If we write IG for the kernel ideal corresponding to G, then the set of en-
domorphisms stabilizing G is precisely Z + IG. From Lemma 2, we obtain that
Z + D(Z + IG) ⊂ Z + IH when H = ϕ(G). Additionally, by Lemma 1, when
α0 ∈ (Z + IG) r (Z + NO0) and tr(α0)2 6= 4n(α0) we are in the case where α0

has exactly two eigenspaces. When D is coprime with N this is also the case for
the endomorphisms α = [d] + ϕ ◦ α0 ◦ ϕ̂. Thus, given concrete endomorphisms
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α ∈ O r (Z + DNO0), one can identify the two eigenspaces H1, H2 of α and
determine (using the eigenvalues for instance) which one satisfies Hi = ϕ(G).

More generally, we can do the same for any suborder O0 ⊂ O0. Exploring
the different kinds of suborders might lead to interesting new applications.

4 New post-quantum VRF from isogenies

We start by an informal description of our VRF in the next section before giving
more details in Section 4.2.

4.1 VRF notations and global description

The notations introduced below are kept throughout the paper.

Parameters We start by taking a prime p. All elliptic curves considered are
supersingular over Fp2 . We do not give any constraint on the choice of p now, but
some requirements are going to appear (mainly for efficiency reasons). There are
two additional prime numbers D,N respectively the degree of the secret isogeny
ϕ and the order of the points sent through ϕ. We complete the set of parameters
by a supersingular curve E0 over Fp2 of known endomorphism ringO0 and several
other parameters that we detail in Section 4.2.

Keys The secret key is an integral left O0-ideal I of norm D, and the public key
is a supersingular curve E = E0/E0[I] together with a basis (PE , QE) of E[N ].
This curve is D-isogenous to E0 through the isogeny ϕ corresponding to I.

Evaluation Mechanism On input x, we evaluate the VRF as follows: hash x
into two subgroups G1, G2 of order N and compute H1 = ϕ(G1), H2 = ϕ(G2).
Then, hash these two groups into a final value y that will be the output. In
practice, we will represent these groups using projective points and the bijection
Ψ to avoid computing discrete logs over E[N ].

Proof and Verification Protocol Following Section 3.2, we prove correctness
of the computation by revealing the embedding of the order O = Z + D((Z +
IG1

) ∩ (Z + IG2
)) in End(E). The proof is constituted of a representation of a

generating family (see Definition 4) of O. We represent these endomorphisms as
isogenies (expressed as bitstrings as for the signature in [18]) and compute these
isogenies from the quaternions using the IdealToIsogeny algorithm from [18].
As explained in Section 3.2, to verify the output it suffices to check that the
embedding is correct and that the two subgroups H1 and H2 are stable under
the elements of O. The important part for uniqueness is that all the curves
admitting an embedding of O are D-isogenous to E0 (see Proposition 2).
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Remark 1. One might wonder why we bother with two groups. Why not build
the construction with only one subgroupG? The reason is simple: it would breach
security. Indeed, doing the same construction with one subgroup would imply
revealing the embedding of O = Z+D(Z+ IG) and verifying that ϕ(G) is stable
under the endomorphisms of O. Unfortunately, this method reveals too much
information. As pointed out in Section 3.2, most elements in O have exactly
two eigenspaces. One of those eigenspaces is always going to be G, by definition
of O, but the second one will change for different endomorphisms of O. Hence,
as soon as one endomorphism of O is revealed to validate ϕ(G), the adversary
learns the image of another subgroup through ϕ which is already enough to
break pseudo-randomness as defined in Definition 1. That is why we must take
a pair of distinct subgroups G1, G2 as input of our VRF.

4.2 Formal description

In this section, we give a formal description of the different protocols that com-
pose our VRF. We leave some sub-protocols as black boxes for now and detail
their descriptions in Section 6. We also omit the parameter generation; it will
be discussed later in Section 7.1. For now, let us assume that there are four
distinct primes p,D, `,N such that `eN divides p2−1, N and D respective sizes
depend on p and the level of security. There is also a curve E0 over Fp2 of known
endomorphism ring O0. The public parameters also include a basis (P0, Q0) of
E0[N ] and the related kernel ideal IP0 together with an endomorphism ι ∈ O0

such that ι(P0) = Q0. We write pp = (p,N,D, `, E0, P0, Q0, IP0 , ι).
There is one small caveat to the construction outlined in Section 4.1: since

N is a large prime, computing discrete logarithms is very inefficient over the N
torsion. This fact makes hashing cyclic subgroups of order N into a final output
(as suggested in the description of the evaluation mechanism above) very difficult
because there is no way to agree efficiently on one compact representation of the
subgroup. We overcome this obstacle by making use of a bijection between the
set of cyclic subgroups of order N and the projective line of Z/NZ. We remind
the reader that the projective line P1(Z/NZ) is the set of pairs (z : w) ∈ Z/NZ
up to multiplication by a common scalar. We can make this bijection explicit by
fixing a basis P,Q of E[N ] and sending (z : w) to 〈[w]P + [z]Q〉. Conversely, a
group G = 〈R〉 is mapped to (w : z) where R = [w]P + [z]Q. For any given basis
P,Q, we write ΨP,Q for this bijection.

Contrary to the set of cyclic subgroups, it is easy to hash out of P1(Z/NZ).
Indeed, any element (w : z) admits the canonical representation: (w/z : 1) if
z 6= 0 and (1 : 0) otherwise. A hash function from P1(Z/NZ) to {0, 1}n2(λ) is
obtained by extracting a bit-string from this representation and applying any
standard hash function from {0, 1}? to {0, 1}n2(λ).

Thus, replacing cyclic subgroups by projective points with the bijection Ψ ,
our VRF construction produces a function from P1(Z/NZ)2 r∆ to {0, 1}n2(λ)

where ∆ is the diagonal (pairs of the form (x, x)) subset of P1(Z/NZ)2 (the
diagonal is removed for the security reasons explained in Remark 1). This VRF
map can be seen as the composition of a permutation of P1(Z/NZ)2 r∆ with a
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hash function H : P1(Z/NZ)2 r∆ → {0, 1}n2(λ). The core of our construction
is really this permutation of P1(Z/NZ)2 r∆ that we obtain by composing the
permutation on cyclic subgroups induced by ϕ with the bijection Ψ .

We write H : P1(Z/NZ)2 r ∆ → {0, 1}n2(λ) for the aforementioned hash
function.

Key generation We describe the KeyGen(pp) algorithm:

1. Generate a random O0-ideal I of norm D, corresponding to an isogeny ϕ of
degree D.

2. Compute J ∼ I, an ideal of norm `f .
3. Compute ϕJ : E0 → E, the isogeny of degree `f corresponding to J .
4. Use ϕJ to compute ϕ(P0), ϕ(Q0).
5. Sample a random matrix B ∈ GL2(Z/NZ) and set PE = [B1,1]ϕ(P0) +

[B2,1]ϕ(Q0), QE = [B1,2]ϕ(P0) + [B2,2]ϕ(Q0).
6. Output (sk, pk) = (〈I, J, ϕJ , E,B〉, 〈E,PE , QE〉).

VRF evaluation VRFEval(sk, (x1, x2)):

1. Parse sk as I, J, ϕJ , E,B.
2. For i ∈ {1, 2}:

(a) Compute Gi = ΨP0,Q0
(xi).

(b) Compute IGi = ProjectivePointToIdeal(IP0 , ι, xi).
(c) Select a representative (xi,1 : xi,2) of xi and compute[

wi
zi

]
= B−1

[
xi,1
xi,2

]
3. Compute ω1, ω2, . . . , ωn = SmoothGen`•(D, IG1 , IG2).
4. Use IdealToIsogenies`• to compute θ1, . . . , θn as representatives of ω1, . . . , ωn

in End(E).
5. Compute yi = (wi : zi) for i ∈ {1, 2}. Set π = θ1, . . . , θn, y1, y2.
6. output H(y1, y2), π.

VRF verification Verif(pk, π, (x1, x2), y):

1. Compute G1 = ΨP0,Q0
(x1), G2 = ΨP0,Q0

(x2).
2. Compute IGi = ProjectivePointToIdeal(N, IP0 , ι, xi) for i = 1, 2.
3. Compute ω1, ω2, . . . , ωn = SmoothGen(D, IG1 , IG2).
4. Parse π as the representation of n isogenies θ1, . . . , θn of respective degrees
n(ω1), . . . , n(ωn) and two elements y1, y2 of P1(Z/NZ).

5. Verify that y = H(y1, y2). If not, output 0.
6. Verify that each θj is an endomorphism of E. If not, output 0.
7. Perform CheckTraceM (E, θ1, . . . , θn, ω1, . . . , ωn) and obtain a bit b as output.

If b = 0, output 0.
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8. Compute a representative (wi : zi) for yi for i = 1, 2 and use it to compute
Hi = ΨPE ,QE

(yi) for each i = 1, 2 and verify that θj(Hi) = Hi for all
j ∈ [1, n] and i ∈ [1, 2]. If not, abort and output 0.

9. Output 1.

About the algorithms left as black boxes in the above description:

– IdealToIsogeny`• is introduced in [18].
– ProjectivePointToIdeal takes an ideal IP0

of norm N corresponding to the
cyclic subgroup of order N generated by a point P0, an endomorphism ι of
norm coprime with N and a projective point x = (w : z) ∈ P1(Z/NZ) to
output the kernel ideal generated by [w]P0 + [z]ι(P0). This sub-algorithm is
detailed in Section 6.1.

– SmoothGen takes two ideals I1, I2 of norm N and a prime D, and outputs a
generating family (see Definition 4) ω1, . . . , ωn of O = Z+D((Z+ I1)∩ (Z+
I2)). We postpone the description of this algorithm to Section 6.3.

– CheckTraceM is parametrized by a value M . In Section 6.4, we introduce
precisely this algorithm. In Section 7.1 we compute bounds on the size of M
for which our VRF reaches different levels of uniqueness.

Remark 2. It is possible to validate the public keys. There are two things to
verify: E is supersingular, PE , QE is a basis of E[N ]. Checking that a curve
is supersingular can be done by computing its number of points. Then, we can
check that PE , QE ∈ E[N ] by computing the scalar multiplication by N . Finally,
to make sure that PE , QE is a basis, it suffices to compute the Weil pairing and
verify that the result is not trivial. All these operations are standard in ECC
and can be done efficiently.

5 Security Analysis

In this section, we treat the pseudo-randomness and uniqueness security prop-
erties. Provability and unbiasability are easier to obtain and are treated in Ap-
pendix B.

5.1 Pseudo-randomness

We state here more formally the one-time pseudo-randomness problem.

Definition 1. Let A = (A1,A2,A3) be a polynomial time adversary playing the
following experiment:

1. pp← ParamGen(1λ)
2. (pk, sk)← KeyGen(pp).
3. (x, st1)← A1(pk).
4. (v, π) = VRFEval(sk, x).
5. (x0, st2)← A2(v, π, st1).
6. (v0, π0)← VRFEval(sk, x0).
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7. v1
$←− {0, 1}n2(λ).

8. b
$←− {0, 1}.

9. b′ ← A3(vb, st2).

The VRF is one-time pseudo-random if

Pr(b = b′ ∧ x0 6= x) ≤ 1/2 + negl(λ)

The pseudo-randomness property of our VRF is based on the hardness of
Problem 1 that we introduce below. Before getting into the concrete formulation
of the problem, we start with a small result that will prove useful for the proof
of Proposition 1. It motivates the fact that our VRF is only one-time.

Lemma 3. Let E,E0 two supersingular elliptic curves such that there exists
ϕ : E0 → E of degree D coprime with N , another prime. Let G1, G2, G3 be
three different cyclic subgroups in E0[N ]. Given D, an algorithm to solve discrete
logarithms in E[N ], and H1, H2, H3 ⊂ E[N ] such that ϕ(Gi) = Hi for i = 1, 2, 3,
there exists a polynomial-time algorithm to compute ϕ(G) for any G ⊂ E0[N ].

Proof. Let Pi, Qi be the respective generators of Gi, Hi for i = 1, 2, 3. We know
there exists λi such that ϕ(Pi) = [λi]Qi. The two points Q1, Q2 form a basis of
E[N ]. With D we can find µ1, µ2 such that Q3 = [µ1]Q1 + [µ2]Q2. Doing the
same on E0, we obtain P3 = [ν1]P1 +[ν2]P2. Then, we get that λi/λ3 = µi/νi for
i = 1, 2 (νi 6= 0 since G3 6= G1, G3 6= G2). Thus, we know the values λ1, λ2 up to
a scalar, which is enough the compute the image of subgroups of order N . Given
R = [η1]P1 +[η2]P2, we can easily verify that ϕ(〈R〉) = 〈[λ1/λ3]Q1 +[λ2/λ3]Q2〉.
Apart from the computation of the coefficients µi, νi, ηi for all i, all the operations
can be made in polynomial time in log(D), log(N).

A crucial point for the hardness of Problem 1 below is that it does not seem
possible to replicate the proof of Lemma 3 when the image of only two subgroups
through ϕ is revealed.

Problem 1. Let E be a supersingular elliptic curve such that there exists ϕ :
E0 → E of degree D and PE , QE a random basis of E[N ]. The problem is for
an adversary A = (A1,A2,A3) to win the following game :

1. pp = (∗, P0, Q0)← ParamGen(1λ)
2. ((E,PE , QE), sk)← KeyGen(pp).
3. (x, st1)← A1(pk).
4. (v, π) = VRFEval(sk, x).
5. (x0, st2)← A2(v, π, st1).
6. (y0)← Ψ−1PE ,QE

(ϕ(ΨP0,Q0
(x0))).

7. y1
$←− P1(Z/NZ).

8. b
$←− {0, 1}.

9. b′ ← A3(yb, st2).

12



The problem is to obtain b′ = b with non-negligible advantage when x = (x1, x2)
and x0 6= x1, x0 6= x2.

The hardness of Problem 1 underlies the pseudo-randomness of our VRF
when the DLP can be solved in E[N ]. Since we place ourselves in a quantum
setting, we can assume the existence of such an algorithm.

Proposition 1. Assuming the existence of an algorithm D to efficiently solve
the DLP in E0[N ] and E[N ], our VRF construction is pseudo-random under the
hardness of Problem 1 in the random oracle model.

Proof. Given the existence of A1,A2,A3 we are going to describe an adversary
B = (B1,B2,B3) breaking Problem 1. B1 mimicks the behavior of A1. Upon,
receiving v, π, st1, B2 computes x0, x

′
0, st2 = A2(v, π, st1) and outputs x0, st2.

Upon receiving yb, B3 uses D and yb, z1, z2, x0, x1, x2 (where v = z1, z2, and
x = x1, x2) to compute y′b from x′0 (as explained in the proof of Lemma 3). Then,
B3 sets vb = H(yb, y

′
b) and outputs A3(vb, st2). By design, when ϕ(ΨP0,Q0(xi)) =

ΨPE ,QE
(yi) for all i ∈ {0, 1, 2}, we have ϕ(ΨP0,Q0(x′0)) = ΨPE ,QE

(y′b) which proves
that vb is a valid VRF output for (x0, x

′
0) when b = 0. Whereas, when yb is a

random element in P1(Z/NZ), the value H(yb, y
′
b) is distributed as a random

element in {0, 1}n2(λ) in the random oracle model.

Anaysis of Problem 1

About key recovery: It is a well-established fact that revealing non-trivial (i.e.
non-scalars) endomorphisms of an elliptic curve is basically equivalent to re-
vealing its endomorphism ring. Once the knowledge of the endomorphism ring
is leaked, an adversary is able to perform very powerful algorithms over the
quaternions which usually allows one to break the standard isogeny problems.
This kind of result has been the focus of an extensive line of work in isogeny-
based cryptography [31,20,3,21]. In particular, the general method to compute
the endomorphism ring of a given curve is to gather several endomorphisms until
they generate an order that is either the desired maximal order, or an order that
is contained in only a few maximal orders (thus making it possible to enumer-
ate the solutions). However, this method cannot be applied in our case. Indeed,
we reveal endomorphisms that are contained in the suborder Z +DO0 which is
expressly contained in an exponential number of maximal orders. Moreover, the
adversary already has the knowledge that Z+DO0 is a suborder of End(E): the
embedding is a consequence of the existence of ϕ : E0 → E of degree D, a fact
well-known to an adversary trying to break Problem 1.

However, we do more than just revealing the existence of this suborder. In-
deed, we reveal a concrete embedding of a suborder of Z + DO0 in End(E).
This is done with the endomorphisms θ1, . . . , θn. Revealing this embedding may
seem a troublesome thing to do at first glance. Indeed, the torsion points attacks
[36,33] on SIDH are obtained precisely by computing one of the endomorphisms
of Z + DO0. In these attacks, the knowledge of such endomorphisms is enough
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to compute the secret isogeny ϕ. However, an important part of making this
attack work in polynomial time is that D is smooth. In our case, D is a prime
number which makes the computation of isogenies of degree D hard without the
knowledge of the endomorphism ring. Thus, even if the knowledge θi is enough
to uniquely define ϕ, the best algorithms to perform this computation have ex-
ponential complexity.

Concrete Pseudo-Randomness Problem: The above reasoning justifies why we
believe that recovering the secret isogeny ϕ is hard. But this is far from enough
to argue that our VRF is pseudo-random. Of course, recovering the secret key
is one way to break pseudo-randomness but it is definitely not the only one. In
particular, reformulating the problem through the bijections ΨP0,Q0 and ΨPE ,QE

,
it is clear that the task at hand is to distinguish between the random subgroup
ΨQE ,PE

(y0) and the image through ϕ of the subgroup G0 = ΨP0,Q0
(x0). This

computation must remain difficult, even after revealing the image through φ of
two subgroups G1, G2 (computed as Gi = ΨP0,Q0

(xi) for x = (x1, x2)). A first
easy remark is that when x0 6= x1, x2 we have G0 6= G1, G2 which means that
we cannot extract the answer directly. However, a generator of G0 can always
be expressed as a linear combination of generators of G1 and G2. The question
is: can the adversary exploit this decomposition to break the problem ?

An important ingredient seems to be the ability to break the DLP in E[N ].
As we are claiming post-quantum security, we can just assume that the adversary
has access to a DLP oracle D. In particular, given a basis of E[N ] and a third
point R, the adversary can find the coordinates of R with respect to this basis.
Thus, taking generators Pi of Gi for i = 0, 1, 2, an adversary can express P0

as a linear combination of P1 and P2. Writing Hi = ΨPE ,QE
(zi) for i = 1, 2

when v = z1, z2 and H0 = ΨPE ,QE
(yb), we can also find generators Q0, Q1, Q2

of H0, H1, H2 and write similar decompositions. Let us introduce more formal
notation. Let µi be the scalars such that [µi]Qi = ϕ(Pi) for i = 1, 2. Since the
Pi and Qi are computed independently as generators of the two subgroups, it
is clear that these scalars are random. Recovering these scalars trivially allows
the adversary to solve the problem since the decomposition P0 = [a1]P1 + [a2]P2

gives 〈ϕ(Q0)〉 = 〈[a1µ1]Q1+[a2µ2]Q2〉. However, it does not seem easy to recover
these scalars. The Weil pairing allows the adversary to extract the value of µ1µ2,
but no more than that. This information does not seem to be enough to solve
the distinguishing problem. Indeed, for any cyclic subgroup H ⊂ E[N ], it is
easy to verify that we can find values µ1(H), µ2(H) satisfying the multiplicative
condition and such that H = ϕ(G0) if [µi(H)]Qi = ϕ(Pi) for i = 1, 2.

Without further information, it seems hard to solve the distinguishing prob-
lem with good probability. However, the story is not over in our case. We have a
lot of additional information, as the prover reveals the endomorphisms θ1, . . . , θn.
We explained that the degree D being a large prime prevents the adversary from
exploiting the knowledge of θ1, · · · , θn to compute directly ϕ̂. However, the θi are
related to ϕ and it is possible to evaluate them. We want to verify that this does
not help to solve Problem 1. Indeed, for each j ∈ [1, n], there exist dj ∈ Z and
αj ∈ (Z+IG1)∩Z+(IG2) such that θj = [dj ]+ϕ◦αj◦ϕ̂. Thus, the evaluation of θj
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on points of E[N ] is related to the evaluation of ϕ̂ on E[N ]. However, we are go-
ing to show that the evaluation of each θj on any point of E[N ] is independent of
the values µ1, µ2 that we introduced above. This proves that evaluating the θj on
E[N ] cannot help to recover µ1, µ2. The main fact (which stems from Lemmas 2
and 10) is that if θj ∈ Z+D((Z+IG1

)∩(Z+IG2
))rZ+DNO0, then each αi has

two eigenspaces in E0[N ], which are exactly G1, G2. Then, there exist eigenval-
ues λi,j such that αj(Pi) = [λi,j ]Pi and θj(Qi) = [dj +Dλi,j ]Qi for i = 1, 2 and
j ∈ [n]. If we take any point R ∈ E[N ], then we can express it as [b1]Q1 +[b2]Q2.
A simple computation shows that θj(R) = [dj ]R + [D]([b1λ1,j ]Q1 + [b2λ2,j ]Q2).
As we announced, this expression is completely independent of µ1, µ2.

Remark 3. Finally, we highlight that it seems important to take N prime to
ensure the hardness of Problem 1. We are going to explain a way to break the
problem when N = N1N2 with N1 coprime with N2 (a similar method can be
applied when N is a prime power). If we take P2 a point of order N2 and P1, Q1

a basis of E0[N1], then the points R = P1 +P2 and S = P2 +Q1 do not generate
the same subgroups of order N , but they satisfy 〈[N1]R〉 = 〈[N1]S〉. Pushing
these subgroups under a D-isogeny ϕ will conserve this property. This gives us
a way to construct distinct subgroups whose image under ϕ satisfies a specific
property. Of course, two random subgroups will have a very low probability of
satisfying this same property, so a distinguisher can be easily obtained from this
idea. Fixing this problem would imply imposing some limitations on the choices
of VRF input, and it is not clear how one would do that in a clean way. In any
case, it appears both simpler and more secure to take a prime N .

5.2 Uniqueness

We have two flavours of uniqueness: unconditional and computational. The first
one is harder to reach, and that is why we are going to present two versions of
our VRF, providing a tradeoff between security and efficiency of the verification.

We start by introducing the relevant security definitions.

Definition 2. A VRF is said to satisfy unconditional full uniqueness when no
values pk, v, v′, x, π, π′ can satisfy Verif(pk, π, x, v) = 1 and Verif(pk, π′, x, v′) = 1
with v 6= v′.

Definition 3. Let pp← ParamGen(1λ). A VRF is said to satisfy computational
full uniqueness if for every polynomial-time adversary A, (x, pk, v, v′, π, π′) ←
A(pp) we have:

Pr(Verif(pk, π, x, v) = Verif(pk, π′, x, v′) = 1 ∧ v 6= v′) ≤ negl(λ).

The key part behind uniqueness is the following result, whose proof we post-
pone until Appendix A.

Proposition 2. Take IG1
and IG2

two O0-ideals of prime norm N , correspond-
ing to the kernel ideals of two subgroups G1, G2 of order N in E0[N ]. Let D be a
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prime number different from N . Given a supersingular curve E not isomorphic
to E0, if there exists an embedding of O = Z + D((Z + IG1

) ∩ (Z + IG2
)) in

End(E) and there exist two different subgroups H1, H2 ⊂ E[N ] stable under any
endomorphism of O, there exists an isogeny ϕ of degree D between E0 and E,
and Hi = ϕ(Gi) for i = 1, 2.

Proposition 2 suggests that the verifier must be able to check that the endo-
morphisms given as proof are elements of O. As showed in Lemma 4, it suffices
to check some traces and norms for that. Norms are easy but traces are harder.
To do that we rely on the CheckTraceM protocol. This algorithm verifies cor-
rectness of the traces mod M by evaluating tr(θ) = θ + θ̂ on E[M ]. We will
see in Lemma 5 that if we take M big enough, then we obtain unconditional
uniqueness.

Unconditional Uniqueness We start with the definition of a generating fam-
ily.

Definition 4. A generating family θ1, · · · , θn for an order O is a set of elements
in O such that any element ρ ∈ O can be written as a linear combination of 1 and
products

∏
j∈I θj for all I ⊂ [1, n]. In that case, we write O = Order(θ1, . . . , θn).

The following lemma shows that unconditional uniqueness can be obtained
by checking the norm and traces of at most 2n endomorphisms when given a
generating family of size n.

Lemma 4. Two orders O1 = Order(θ1, . . . , θn) and O2 = Order(ω1, . . . , ωn) of
rank 4 in a quaternion algebra are isomorphic if tr(

∏
j∈I θj) = tr(

∏
j∈I ωj) for

all I ⊂ [1, n].

Proof. An isomorphism of quaternion orders is a bijection α : O1 → O2 such that
for all θ ∈ O1, n(α(θ)) = n(θ) and tr(α(θ)) = tr(θ). We label θ′1, . . . , θ

′
m (resp.

ω′1, . . . , ω
′
m) with m = 2n the set of multi-products obtained from θ1, . . . , θn

(resp. ω1, . . . , ωn). By the definition of a generating family, any element α ∈ O1

(resp.O2) can be written as a linear combination of θ′1, . . . , θ
′
m (resp. ω′1, . . . , ω

′
m).

We claim that the map α :
∑m
i=1 xiθ

′
i 7→

∑m
i=1 xiω

′
i is an isomorphism of quater-

nion orders. It is easy to verify that this map is bijective and linear. It remains
to check that it preserves the trace and the norm.

The trace being linear, its clear that tr(α(θ)) = tr(θ) for all θ ∈ O1. For

any θ =
∑m
i=1 xiθ

′
i, we have n(θ) =

∑
1≤i<j≤m xixjtr(θ

′
iθ̂
′
j) + 1

2

∑m
i=1 x

2
i tr(θ

′
iθ̂
′
i).

Thus, we need to prove that we have equality of traces for all θ′iθ̂
′
j and ω′iω̂

′
j . Since

tr(ab) = tr(ba) = tr(âb̂) and 2tr(a)tr(b) = tr(ab) + tr(âb) for all a, b ∈ Bp,∞, it
suffices to verify the equality tr(

∏
j∈I θj) = tr(

∏
j∈I ωj) to get the desired result.

This also proves that we have equality of norms between θ and α(θ).

Lemma 5. Given any θ ∈ End(E), if tr(θ) = t mod M for M > 4
√
n(θ) and

|t| ≤M/2, then tr(θ) = t.
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Proof. Over Bp,∞, the norm form is n : (x, y, z, w) 7→ x2+qy2+pz2+qpw2 where
q > 0, p > 0. Since tr : (x, y, z, w) 7→ 2x, we can easily verify that tr(θ)2 < 4n(θ).
This gives a bound of 2

√
n(θ) on the absolute value of tr(θ). The result follows.

Combining our three lemmas, we deduce that if M is bigger than 2
√
n(θj)n

for all j ∈ [n], then we obtain unconditional uniqueness by checking O(2n) traces
mod M .

Theorem 1. Assuming that SmoothGen outputs a generating family whose el-
ements have norm smaller than M2/n/4 and the parameters E0, p,D are such
that there does not exist a curve E with two distinct D-isogenies between E0 and
E, the VRF scheme introduced in Section 4.2 satisfies unconditional uniqueness.

Proof. By Lemma 4 and Lemma 5, the verification performed by applying CheckTraceM
implies that Z + D((Z + IG1

) ∩ (Z + IG2
)) is embedded in End(E). Then, the

next step in Verif guarantees that H1 and H2 are eigenspaces for each θj . This
proves that these two subgroups are the respective images of G1, G2 through
an isogeny ϕ of degree D by Proposition 2. Since by hypothesis there exists at
most one isogeny of degree D between E0 and E, there can be only one cor-
rect pair of subgroups H1, H2 passing the verification, and one correct output
v = H(Ψ−1PE ,QE

(H1), Ψ−1PE ,QE
(H2)).

Computational Uniqueness In Section 6.3 we show that we can take n =
3 and prove an heuristic upper bound on the norm of the elements given in
output of SmoothGen. The minimal value of M to reach the inequality given in
Theorem 1 is quite high, and checking the traces modulo this M will not prove
very efficient. An idea is to check equality of traces modulo a smaller integer
to gain efficiency. In this case, we cannot show unconditional uniqueness, and
that is why we introduce a new problem upon which we base the computational
uniqueness of our construction.

Problem 2. Let p,N,D,E0, P0, Q0,M be the parameters of the VRF. The prob-
lem is to find E,PE , QE and G1, G2, H1, H2 and θ1, . . . , θn ∈ End(E) such that
if ω1, . . . , ωn = SmoothGen(Z+D((Z+IG1)∩(Z+IG2))), then θj is an endomor-
phism of E with n(θj) = n(ωj) and tr(

∏
j∈I θj) = tr(

∏
j∈I ωj) for all I ⊂ [1, n]

and H1, H2 are common eigenspaces of θj for all j ∈ [1, n] and there does not
exists ϕ of degree D such that Hi = ϕ(Gi) for i = 1, 2.

Theorem 2. Under the hardness of Problem 2 for the parameter M , the VRF
scheme introduced in Section 4.2 satisfies computational uniqueness if the pa-
rameters E0, p,D are such that there does not exists a curve E with two distinct
D-isogenies between E0 and E.

Proof. To prove Theorem 2, we are going to show how to solve Problem 2 us-
ing an algorithm A that can break uniqueness. It is easy to see that the two
problems have the same input: the parameters of the VRF. Thus, we can feed
an instance of Problem 2 to A and obtain an output. We parse this output as
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x,E, PE , QE , v, v
′, π, π′. We parse x as x1, x2 and π (resp. π′) as θ1, . . . , θn, y1, y2

(resp. θ′1, . . . , θ
′
n, y
′
1, y
′
2). Since v 6= v′, and there are no two distinct isogenies of

degree D between E0 and E, we can assume wlog that y1 is such that there are
no isogenies of degree D sending ΨP0,Q0(x1) to ΨPE ,QE

(y1). By construction, if
Verif(pk, π, x, v) = 1, then the tuple E,PE , QE), ΨP0,Q0

(x1), ΨP0,Q0
(x2), ΨPE ,QE

(y1),ΨPE ,QE
(y2),

θ1, . . . , θn is a correct output to Problem 2. In practice, we don’t know which
one among (y1, y2) and (y′1, y

′
2) will provide a correct output. Thus, by selecting

a random one among the two, we obtain an algorithm with a success probability
of at least 1/2.

In practice, we propose to base the computational uniqueness of our VRF under
the hardness of Problem 2 when M = (p2 − 1)/2. This value appears to be a
good compromise between efficiency and security.

Analysis of Problem 2 First, we would like to highlight that the hardness of
Problem 2 is a type of assumption quite unusual in isogeny-based cryptography.
Contrary to Problem 1 (which is new but remains related to computation and
evaluation of isogenies, two very classical problems), the hardness of Problem 2
is related to the resolution of some set of quadratic equations.

Problem 2 is difficult to analyze. Indeed, in Theorem 1 we give an upper
bound on the value of M for which there are no solutions to the problem.
However, it is not clear what is the optimal such value. It may be that when
M = (p2 − 1)/2, as we intend to take, the problem is already unsolvable. How-
ever, since we were unable to prove that, the conservative approach is to assume
that there may be some solutions. In that case, finding a solution amounts to
finding an input x = (x1, x2) and an order in End(E) satisfying some con-
straint on norm and traces depending on x, but that is not constructed as
Z + D((Z + IG1

) ∩ (Z + IG2
)) where Gi = ΨP0,Q0

(xi). The trace and norm
equations can be seen as quadratic equations that can be solved mod M , but
since we also need equality of the norms over Z, it is not clear whether there are
solutions and if they are easy to find. The usual tools used to solve equations
over quaternion orders (for instance in [32,18]) are not sufficient to address our
problem.

Let us look at the simple example where n = 2. Then, the order is O =
Order(θ1, θ2) = 〈1, θ1, θ2, θ1θ2〉. The goal is to find θ1, θ2 with a precise constraint
on their norm, and a constraint modM for the three traces tr(θ1), tr(θ2), tr(θ1θ2).
While it is easy to find θ1 and θ2 with the correct norm and trace, it seems
difficult to ensure the additional constraint on tr(θ1θ2). Let us look at that
constraint when θ1 = a+ ib+ jc+ kd and θ2 = e+ if + jg+ kh, then tr(θ1θ2) =
ae − (qbf + p(cg + qdh)). Thus, the problem is: given n1, n2, t1, t2, t3,M find
a, b, c, d, e, f, g, h such that a2 +qb2 +pc2 +qpd2 = n1, e

2 +qf2 +pg2 +pqh2 = n2
and 2a = t1 mod M , 2e = t2 mod M and ae−(qbf+p(cg+qdh)) = t3 mod M .
This appears to be hard when M is big enough for the constraints mod M to
have a good probability to be respected by luck. In practice, as explained in
Section 6.3, we take n = 3 and O has an even more complicated structure which
only increases the number of equations to be verified, as highlighted in Lemma 4.
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Remark 4. Additionally, we highlight that progress toward solving the kind of
equations above, would probably allow us to devise an algorithm SmoothGen
finding solutions of smaller norm, which would make Problem 2 more difficult.

6 Sub-algorithms over the quaternion algebra

In this section, we fill the blanks left in Section 4.2, and dive into the more com-
plicated sub-algorithms of our VRF construction. We provide precise descrip-
tions of the algorithms ProjectivePointToIdeal, SmoothGen, and CheckTraceM in
Sections 6.1, 6.3 and 6.4 respectively.

Following the classical approach in the literature [32,18], we take Bp,∞ to
be the quaternion order generated by 1, i, j, k where i2 = −q, j2 = −p and
k = ij = −ji for some small integer q (when p = 3 mod 4 we can take q = 1).
Then, we assume that O0 ⊂ Bp,∞ is a special extremal order containing a
suborder with orthogonal basis 〈1, ω, j, ωj〉 where Z[ω] ⊂ Q[i] is a quadratic
order of small discriminant.

6.1 Kernel ideal computation from projective point

Here, we describe the algorithm ProjectivePointToIdeal that is used in both
VRFEval and Verif to compute the two kernel ideals IG1

, IG2
.

This procedure is not entirely trivial from existing techniques. Even though
computing kernel ideals is now standard in isogeny-based cryptography [24,18,20],
it is not an efficient operation in the generic case due to the necessity to com-
pute some discrete logarithms. This is prohibitive in our case where the order
is the large prime number N . To overcome this obstacle, we use the ideal IP0

and the endomorphism ι given as public parameters of the scheme. We define
ProjectivePointToIdeal(N, IP0 , ι, (w : z)) = [O0(w+ zι)]∗IP0 using the ideal push-
forward notation [K]∗J introduced in [18].

When P = [w]P0 +[z]Q0 and Q0 = ι(P0), we obtain P = (w+zι)(P0). Then,
by definition of the push-forward ideal, we have IP = [O0(w + zι)]∗IP0 and it
can be easily computed from (w : z), ι, IP0 using the formulas described in [18].

Given the explanations above, one might wonder how to efficiently generate
the ideal IP0 . The answer is that there are some choices of P0 where the ideal can
be computed easily. This is the case when P0 is an eigenvector of the Frobenius
morphism. As we explain in Section 7.1, our choice of E0 allows us to select
exactly such a P0.

6.2 Algorithms from previous works

In Section 6.3 below, we introduce the algorithm SmoothGen that produces a
generating family of smooth norm in some special class of quaternion orders.
The resolution of norm equations in quaternion ideals and orders has been the
focus of [32,18,37] (respectively targeting ideals, Eichler orders and orders of the
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form Z + DO0). The purpose of Algorithm 2 below is to extend to the case
Z +DO0 where O0 can cover a large class of orders (see Remark 6).

In Section 6.3, we rely upon several algorithms existing in the literature. The
full version of [18] is a good reference for all these algorithms. We briefly recall
their purpose.

– EquivalentPrimeIdeal(I), given a left O0-ideal I, finds an equivalent left O0-
ideal of prime norm.

– EichlerModConstraint(I, γ), given an ideal I of norm N , and γ ∈ O0 of norm
n coprime with N , finds (C0 : D0) ∈ P1(Z/NZ) such that µ0 = j(C0 +ωD0)
satisfies γµ0 ∈ Z + I.

– StrongApproximationF(N,C0, D0), given a prime N and C0, D0 ∈ Z, finds
µ = λµ0 +Nµ1 ∈ O0 of norm dividing F , with µ0 = j(C0 +ωD0). We write
StrongApproximation`• when the expected norm is a power of `.

Remark 5. The StrongApproximation`• algorithm was originally introduced for a
prime number N in [32]. When we add the additional constraint that ` is not
a square mod N , it can be shown with heuristic arguments to succeed in poly-
nomial time with overwhelming probability. Without this residuosity constraint
the success probability is 1/2. We can easily extend StrongApproximation to the
case of composite N (and this is the version that we use for Algorithm 1) if
we allow the success probability to decrease. The case where N has two large
primes divisors is treated in [18], and they show that the success probability is
1/4. In general, it is easy to see that the success probability is 1/2k where k
is the number of distinct prime divisors of N . Below, we are going to use the
algorithm with N having three large prime divisors. When all the prime factors
Ni are such that ` is not a square mod Ni, the probability can be increased to
1/2k−1 as is done in [32].

6.3 Computing a smooth generating family

In this section, we describe how to perform the SmoothGen protocol. The overall
idea is to generate several random elements and hope they form a generating
family. Thus, we mainly focus on how to sample an element of smooth norm with
some randomization. We discuss how many such elements we need to sample in
the end of this section.

The goal is a randomized algorithm to solve norm equations in an order of
the form O = Z + D((Z + I1) ∩ (Z + I2)), where I1 and I2 are integral O0-
ideals of norm N . In the next paragraph, we introduce Algorithm 1 to solve a
norm equation in Z + DI for I some integral O0-ideal. From there, we derive
Algorithm 2 which applies Algorithm 1 to solve norm equations in O.

Solving norm equations in Z + DI. The recent paper [18] introduced a
method to solve norm equations in orders of the form Z + I for some ideal I of
norm N . We briefly present their approach before explaining how to modify it
in order to obtain a method to solve norm equations in Z+DI for a large prime

20



D. Given an element γ ∈ O0 of norm coprime with N , the idea of the algorithm
from [18] is that there always exists C0, D0 such that γj(C0 + D0ω) ∈ Z + I.
After that, it suffices to do a strong approximation ([32,24,18]) mod N to find
µ0 ∈ O0 so that j(C0 + D0ω) + Nµ0 has smooth norm. If γ has also smooth
norm, then it can be shown that γ(j(C0 +D0ω) +Nµ0) is an element of Z + I
of smooth norm.

In our case, if γ is such that there exists a solution C1, D1 with γj(C1+D1ω) ∈
Z +DI, then we can follow the same method and do the strong approximation
mod ND to find an element j(C1 +D1ω) +NDµ1 of the good norm in Z+DI.
However, unlike for Z + I, this is not always possible when working in Z +DI.
To ensure that we are in this good situation, we need an additional condition on
γ. Fortunately this condition is exactly what allow us to find γ of smooth norm.
We give a precise statement in the following proposition:

Proposition 3. Let I be an integral left O0-ideal of norm N and let D be a
distinct prime number. If γ ∈ O0 can be written as j(C2 + ωD2) + Dµ2 with
µ2 ∈ O0 and γ has norm coprime with N , then there exists C1, D1 ∈ Z such that
γj(C1 + ωD1) ∈ Z +DI.

Proof. If γ has norm coprime with N , we know from [18] that there exists
C0, D0 such that γj(C0 + ωD0) ∈ Z + I. Then, if we set C ′2 = −D′2C2(D2)−1

mod D for any D′2, it is easy to verify that γj(C ′2 + ωD′2) ∈ Z + DO0. Hence,
if C1, D1 satisfies C1, D1 = C0, D0 mod N , C1, D1 = C ′2, D

′
2 mod D we have

that γj(C1 + ωD1) ∈ Z +DI. By the CRT, we know we can find such C1, D1.

Algorithm 1 ExtendedEichlerNormEquation`•(D, I)

Require: I a left O0-ideal of norm N coprime with D.
Ensure: β ∈ Z +DI of norm `e.
1: Select a random class (C2 : D2) ∈ P1(Z/DZ).
2: Compute µ2 = StrongApproximation`•(D,C2, D2)) and set γ = j(C2 +ωD2)+Dµ2.

If the computation fails, go back to Step 1.
3: Compute (C0 : D0) = EichlerModConstraint(γ, I).
4: Sample a random D′2 in Z/N2Z, compute C′2 = −D′2C2(D2)−1 mod D.
5: Compute C1 = CRTN,D(C0, C

′
2), D1 = CRTN,D(D0, D

′
2).

6: Compute µ1 = StrongApproximation`•(ND,C1, D1)). If it fails, go back to step 1.
7: return β = (j(C2 + ωD2) +Dµ2)(j(C1 + ωD1) +NDµ1).

Proposition 4. When N has a constant number k of prime divisors and is
coprime with D, Algorithm 1 terminates in probabilistic polynomial time and
outputs an element of Z +DI of norm `e for some integer e.

Proof. As mentioned in Remark 5, the algorithm StrongApproximation`•(D, ·)
finds a solution of norm `e2 with probability 1/2 in heuristic polynomial time.
This probability can even be brought to 1 when ` is not a quadratic residue mod
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D. As a result of Proposition 3, EichlerModConstraint always succeeds in finding
a solution (C0 : D0). Then, as pointed out in Remark 5, when k is constant the
strong approximation mod ND succeeds with constant probability. Assuming
that a new choice of (C2 : D2) randomizes (C1 : D1) sufficiently we can show
that a solution can be found with overwhelming probability after a logarithmic
number of repetitions. This proves the algorithm’s termination.

For correctness, we can verify easily that j(C2+D2ω)j(C ′2+ωD′2) ∈ Z+DO0.
Since β − j(C2 + D2ω)j(C ′2 + ωD′2) ∈ DO0 this proves that β ∈ Z + DO0. By
the correctness of EichlerModConstraint and the fact that NO0 is contained in I
we can also show that β ∈ Z + I. Hence, β ∈ (Z +DO0) ∩ (Z + I) = Z +DI.

The estimates provided in [18] allow us to predict that we can find a solution
β of norm `e where e ∼ 2 log`(p)+6 log`(D)+3 log`(N). This comes from the fact
that a strong approximation mod N ′ can find solutions of norm approximately
equal to pN ′3.

Solving norm equations over O Algorithm 1 is not enough to solve our
problem as the order O = Z+D((Z+I1)∩(Z+I2)) cannot be directly expressed
in the form Z+DI where I is a left integral O0-ideal. Nonetheless, it is possible
to sample ideals J such that Z + DJ ⊂ O, thus allowing us to circumvent this
limitation.

Our method to find this ideal J comes from the decomposition O = Z +
DI1I2 = Z+D((Z+I1)∩(Z+I2)) that we already used in the proof of Lemma 3.
The left order of the ideal I1I2 is not O0, but if we take J1 ∼ I1 we obtain an
O0-ideal as J = J1I1I2. Then, we can apply the above algorithm to solve norm
equations in Z + JD ⊂ O. In reality, the previous ideal J is not well-defined
because OR(J1) 6= OR(I1), but it conveys the idea. The precise formulation is
used in Algorithm 2 and is proven in Lemma 6.

Algorithm 2 SpecialOrderNormEquation`•(I1, I2, D)

Require: I1, I2 two distinct left O0-ideals of norm N coprime with D.
Ensure: β ∈ Z +D((Z + I1) ∩ (Z + I2)) of norm `e.
1: Compute J1 = EquivalentPrimeIdeal(I1) and α1 such that J1 = I1α1.
2: Compute β = ExtendedEichlerNormEquation`•(D, J) on J = J1α

−1
1 I1I2α1.

3: return α1βα
−1
1 .

The correctness of SpecialOrderNormEquation relies on the following result:

Lemma 6. Given I1, I2 two left O0-ideals of same norm and J1 = I1α1 for
some α1 ∈ B×p,∞, if β ∈ Z +DJ where J is the integral left O0-ideal defined as

J1α
−1
1 I1I2α1, then α1βα1p

−1 ∈ Z +D((Z + I1) ∩ (Z + I2)).

Proof. If we take J1 = I1α1, then OR(J1) = α−11 OR(I1)α1 which is why the
product J = J1α

−1
1 I1I2α1 is well-defined. It is clear that OL(J) = O0. Finally,

since J ⊂ α−11 I1I2α1 when β ∈ Z+DJ , the conjugate α1βα
−1
1 ∈ Z+DI1I2 = O.
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Proposition 5. When the norm N of I1 and I2 is coprime to D, the algorithm
SpecialOrderNormEquation terminates in heuristic polynomial time and compute
β ∈ Z +D((Z + I1) ∩ (Z + I2)) of norm `e.

Proof. With overwhelming probability, the norm of J1 will be coprime with D.
As shown in Lemma 6, the input J satsifies the condition of Proposition 4 and
so the algorithm terminates in heuristic polynomial time. Correctness follows
from Lemma 6 and it is easy to verify that α−11 βα1 has same norm as β, which
proves that the norm of β is a power of `.

The norm of the ideal J is N1N
2 where N1 = n(J1). Bounds given in [32]

allow us to argue that NN1 = O(p), an estimate quite accurate in practice. By
the length estimate on the size of the solution of ExtendedEichlerNormEquation
given above, we see that we can find solutions of norm `e where e ∼ 5 log(p) +
6 log(D) + 3 log(N).

Remark 6. In Algorithm 2, we treat the special case of O = Z + D((Z + I1) ∩
(Z + I2)) as this is what is required for our VRF application. However, we
can derive an algorithm to solve norm equations in a very large class of or-
ders from Algorithm 1. Indeed, any quaternion order O can be decomposed
as O = Z + fGor(O) where Gor(O) is the Gorenstein closure of O (and is a
Gorenstein order) and f ∈ Z is the conductor. More details on the topic of
Gorenstein orders can be found in [39]. It is possible to design a generalization
of SpecialOrderNormEquation which can solve norm equations in any quaternion
order as soon as its Gorenstein closure are Eichler orders (i.e orders that can be
expressed as an intersection of orders of the form Z + I).

Finding a basis of O. The idea to find a basis is just to repeat the above
algorithm for several J1 (if we keep the same, then J1 we obtain a basis of
Z+Dα1J1α

−1
1 I1I2, which a strict suborder of O) until we have enough elements

to make a generating family. Experimental results show that taking three such
elements is already enough.

Conjecture 1. If θ1, θ2, θ3 are random outputs of SpecialOrderNormEquation(I1, I2,D),
then O = Order(θ1, θ2, θ3) with good probability.

Algorithm 3 SmoothGen`•(I1, I2, D)

Require: I1, I2 two distinct left O0-ideals of norm N coprime with D.
Ensure: A generating family θ1, . . . , θn for Z +D((Z + I1) ∩ (Z + I2)) where each θj

has norm `ej .
1: Set L = ∅ and O = Z +D((Z + I1) ∩ (Z + I2)).
2: Repeat α = SpecialOrderNormEquation`•(I1, I2, D) and L = L ∪ {α} until there

exists θ1, θ2, θ3 ∈ L such that O = Order(θ1, θ2, θ3).
3: return θ1, θ2, θ3.
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Proposition 6. When the norm N of I1 and I2 is coprime to D and assuming
Conjecture 1, SmoothGen terminates in probabilistic polynomial time and outputs
a generating family of O.

Proof. By Conjecture 1, we need only to repeat a polynomial number of times
the algorithm SpecialOrderNormEquation which terminates in polynomial time by
Proposition 5. By the termination condition, the output is a generating family
of O.

A deterministic algorithm for computing the generating family For
the VRF, we actually need SmoothGen to be a deterministic algorithm. As
explained in [18], the sub-algorithm StrongApproximation can be made deter-
ministic. With that in mind, it is easy to see that the two sources of random-
ness in SmoothGen come from the first steps of SpecialOrderNormEquation and
ExtendedEichlerNormEquation, respectively. The EquivalentPrimeIdeal algorithm
used in SpecialOrderNormEquation can be modified to run in a deterministic man-
ner but we need to use a randomized version to obtain a generating family of
O. The deterministic variant is obtained by defining an ordering on solutions
and selecting the smallest one with respect to that ordering. With that idea,
we can rerandomize consecutive executions by selecting solutions in increasing
order. The same can be done in the random choice of (C2 : D2) in the first step
of ExtendedEichlerNormEquation by fixing an ordering on P1(Z/DZ).

6.4 Checking traces

In this section, we present an algorithm CheckTraceM such that our VRF will
achieve unconditional or computational uniqueness depending on the choice of
M .

Computing the trace of an endomorphism is a well-studied problem, as it
is the primary tool of the point counting algorithms such as SEA [38]. For our
application the task is even simpler as we merely have to verify the correctness
of the alleged trace value and not compute it.

The goal of CheckTraceM is to verify the value of the traces mod M . We
achieve this verification by using the formula tr(θ) = θ + θ̂. Thus, it suffices to

evaluate θ and θ̂ on a basis of the M -torsion, and then verify the relation. In
particular, we do not need M to be smooth.

The above protocol runs in polynomial time when E[M ] is defined in a field
extension of degree O(log(p)).

7 Parameters and Efficiency Analysis

In this section we discuss the choice of parameters to instantiate our VRF scheme
at a given level of security λ with the best possible efficiency. Then, we propose a
concrete set of parameters for λ = 128 and NIST level 1 post-quantum security
and assess the features of our construction.
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Algorithm 4 CheckTraceM (E, θ1, . . . , θn, ω1, . . . , ωn)

Require: θ1, . . . , θn, n endomorphisms of E and n elements of Bp,∞ ω1, . . . , ωn.
Ensure: A bit b equal to 1 if and only if tr(θi) = tr(ωi) mod M for all i ∈ [1, n].
1: Compute P,Q a basis of E[M ] over the appropriate field extension. Set b = 1.
2: for I ⊂ [1, n] do
3: Set θI =

∏
j∈I θj and ωI =

∏
j∈I ωj .

4: Verify θI(R) + θ̂I(R) = [tr(ωI)]R for R ∈ {P,Q}. If not, set b = 0.
5: end for
6: return b.

7.1 Choice of parameters

Choosing the prime p. Generic attacks against the endomorphism ring com-
putation problem imply that we must take log(p) ≥ 2λ and this is the only real
requirement for security. However, for efficiency’s sake we need a prime of a very
special form. Indeed, we must be able to apply the algorithms from [18] to com-
pute the proof π of our VRF. Thus, we look for p such that p2 − 1 = `eTf+f−
where ` is a small prime, T is smooth and coprime with `, T 2 ∼ p3, and f±
divides p ± 1. Then, we choose the parameter N as a prime divisor of the re-
maining factor f+ (for reasons explained at the end of this section when we treat
the generation of the additional public parameters P0, IP0

). Hence we have the
bound logN ≤ λ when log p ∼ 2λ. As a consequence, for obvious reasons, we
cannot have an output space of size bigger than 2 logN ≤ 2λ.

The choice of E0 The base curve E0 must also be chosen very carefully. For
efficiency, the endomorphism ring of E0 must be a special-extremal order as de-
fined in [32] (otherwise we cannot apply the algorithm introduced in Section 6.3).
This imply two things: E0 is defined over Fp, and End(E0) contains a quadratic
suborder R of small discriminant that is orthogonal to j. Several examples of
such maximal orders are given in [32]. The second constraint concerns both E0

and D and is necessary to obtain uniqueness. As stated in Theorems 1 and 2,
there must not be any pair of distinct D-isogenies between E0 and any other
curve E. In fact, we can state a very concrete condition on E0 and D to ensure
that.

Proposition 7. Let E0 be a special extremal curve as described above. Let us
write R for the quadratic order of small discriminant ∆ embedded in O0. If
End(E0) does not contain any non-trivial endomorphism of norm 1, D is inert
in R and D2 < p/∆, then there cannot be two distinct isogenies of degree D
between E0 and a curve E.

Proof. Two distinct D-isogenies between E0 and E would imply the existence
of a non-trivial endomorphism α of norm D2 in E0. There are two possibilities:
either α ∈ R or α 6∈ R. Since D is inert in R and R does not contain any
element of norm 1 apart from ±1, the only endomorphisms of norm D2 are the
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trivial scalars ±D. Thus, α must not be contained in R, and Z[α] is a distinct
quadratic order embedded in End(E0). By a classical theorem from Kaneko [30],
we know that |∆∆′| ≥ 4p where ∆′ = disc Z[α]. The formula ∆′ = tr(α)2−4n(α)
gives the bound |∆′| ≤ 4D2. Injecting this inequality into the bound above we
obtain that D2 must be bigger than p/∆. This contradicts our assumption on
D, and proves that there cannot be any non-trivial endomorphisms of norm D2

in End(E0).

The prime D. The choice of prime D is only mildly dependent on the value
of p. As such, there are a lot of possibilities for D when p has been fixed. The
constraints on this prime are mainly derived from security requirements. First,
by Proposition 7 and Theorems 1 and 2, uniqueness requires that D <

√
p/∆.

Also, for security against key recovery attacks, we need logD ≥ λ. Indeed, since
D is prime, the brute-force attack to find the ideal of the secret isogeny ϕ has
complexity O(D) (see the analysis of key recovery in [18]). The two bounds above
suggest D must have exactly λ bits (since we are going to choose log p as close
as possible to the lower-bound 2λ). However, as pointed out in Section 5.1, this
is not the only requirement. Indeed, for pseudo-randomness we need also that
computing an isogeny of degree D is hard. The recent work [4] has introduced a
method to compute an isogeny ϕ of large prime degree D in O(

√
D) operations

over the field of definition of kerϕ. Thus, we cannot merely rely on the size
of D to ensure the hardness of Problem 1 (as pointed out above, we must have
logD = λ, which would give an attack in O(2λ/2)). Thus, the only other solution
is to choose D such that kerϕ is defined over a field extension of very high degree.
In particular, let us write kD for the smallest integer such that there exists a
supersingular curve E over FpkD with E[D] ⊂ E(FpkD ). If we can ensure that
log kD ∼ λ, then the complexity to compute an isogeny of degree D should be
bigger than 2λ. The following result can be derived from [40, Theorem 4.1] and
gives us a method to choose such a D.

Lemma 7. If p = 1 mod 3 and E is a supersingular elliptic curve over Fp2
then:

– k is odd and #E(Fpk) = pk + 1.

– k is even and #E(Fpk) = pk + 1 or #E(Fpk) = (pk/2 ± 1)2.

For kerϕ to be defined over Fpk we must have D|#E(Fpk). Thus, kD is (pos-
sibly up to a factor 2), the smallest integer k such that pk = 1 mod D. The
multiplicative group Z/DZ× has D − 1 elements. If D = 2D′ + 1 where D′ is
a also prime number then, unless p2 = 1 mod D, we have that kD ≥ D′. More
generally, if D− 1 is equal to a large prime D′ multiplied by a few small factors,
then with good probability we will have kD ≥ D′. To summarize: we need a
prime D of exactly λ-bits such that D is inert in the quadratic order R and
that D′, the biggest prime factor of D − 1, is approximately equal to 2λ. Under
standard results on prime distribution, we can find such a D in polynomial time.
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The parameter M We indicate two choices of M , one for unconditional
uniqueness and one for efficient verification under computational uniqueness.
We label Mu the former, and Mc the latter. A lower bound on Mu is dic-
tated by Theorem 1. The norms of the endomorphisms whose traces we need
to check must be smaller than (1/4)M2/3. From Section 6.3 and Lemma 4,
we need to verify the traces of: θ1, θ2, θ3, θ1θ2, θ1θ3, θ2θ3, θ1θ2θ3 where θ1, θ2, θ3
are obtained from the SpecialOrderNormEquation algorithm. Estimates from Sec-
tion 6.3 predict that we can find with good probability endomorphisms of norm
`e where e ∼ 5 log(p) + 6 log(D) + 3 log(N) and the choices of p,D,N give
e ∼ 16λ+ 3 log(N). This is the best we can say in full generality, as the value of
logN cannot be predicted for sure. From there, we can derive that logMu must
be bigger than 24λ+ 9/2 log(N). At most, we will have log(N) ∼ λ, thus giving
a range of [24λ, 57/2λ] for logMu. For the concrete value Mu, we recommend to
find the smallest field extension Fpk such that there exists an integer Mu of size
above the desired bound with E[Mu] ⊂ E(Fpk).

For efficiency, we choose Mc = lcm(p − 1, p + 1) = (p2 − 1)/2. Indeed, we
can find isomorphic models E and E′ over Fp2 such that #E(Fp2) = (p − 1)2

and #E′(Fp2) = (p + 1)2 (this idea is used in both [18,14]). Thus, we can
compute the traces mod Mc by evaluating the endomorphisms twice over Fp2 .
Since logMc = 4λ, this seems like an acceptable compromise between security
and efficiency.

Computation of remaining public parameters Now that we have specified
the choices of all the integral parameters, we need to explain how to compute
the remaining public parameters of our scheme. In particular, we need to find a
basis P0, Q0 of E0[N ], an endomorphism ι such that ι(P0) = Q0 and the kernel
ideal IP0 . As we outlined in Section 6.1, this operation is not trivial as N is
a large prime number. This is where the specific choice of N will come into
play. Since N divides p + 1, there exists a subgroup 〈P0〉 of order N in E0(Fp)
and it can be easily computed. These points are left invariant by the Frobenius
endomorphism π of E0. Thus, 〈P0〉 ⊂ kerπ − 1 and IP0

= O0〈j − 1, N〉. For ι,
any element of End(E0) not sending P0 to 〈P0〉 can be used (it suffices to take
any ι ∈ O0 r (Z + IP0) and from there Q0 can be easily computed.

7.2 Concrete values for λ = 128 with efficiency and size estimates.

Example parameters We now describe concrete parameters for λ = 128 to
reach NIST level-1 post-quantum security. We follow [18] and take the 256-bits
prime p to be:

p+ 1 = 233 · 521 · 72 · 11 · 31 · 83 · 107 · 137 · 751 · 827 · 3691 · 4019 · 6983

· 517434778561 · 26602537156291 ,

p− 1 = 2 · 353 · 43 · 1032 · 109 · 199 · 227 · 419 · 491 · 569 · 631 · 677 · 857 · 859

· 883 · 1019 · 1171 · 1879 · 2713 · 4283 .
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More details on the search of primes of this form are given in [18,14,15]. Then,
we can take ` = 2 and the smooth integer T to be the product of all odd divisors
of (p− 1)(p+ 1) that are smaller than 6983.

Since p2 − 1 = 234 · T · 517434778561 · 26602537156291 and 517434778561 ·
26602537156291 divides p + 1, we have two possibilities for N . We choose the
biggest one in order to have the larger output space and fixN = 26602537156291,
a 44-bit prime.

Our chosen prime p satisfies p = 3 mod 4 and p = 1 mod 3. We can choose
the quaternion algebra to be Bp,∞ = H(−1,−p). In this case, we have a very
nice example of extremal order 〈1, i, 1+j2 , i+k2 〉 which is the endomorphism ring
of the curve y2 = x3 + x of j-invariant 1728. Unfortunately we cannot use this
curve as E0 as there is a non-trivial automorphism corresponding to the ele-
ment i. When p = 1 mod 3, this is the only such problematic curve so this
leaves several other suitable choices for E0. The most natural one is proba-
bly the curve of j-invariant 287496. This curve is 2-isogenous to y2 = x3 + x
and is defined over Fp, which means that End(E0) contains the nice suborder
〈1, 2i, j, 2k〉. To choose D inert in Z[2i], it suffices to take D = 3 mod 4. Then,
we look for D such that (D − 1)/2 is prime as well. For instance we can take
D = 25797454696162961402746680774409828307, but there are a lot of other
possibilities.

With these choices, our heuristic estimates predicts that we can find endomor-
phisms θ1, θ2, θ3 with degree `e where the exponents are around 16×128+3×44 =
2180.

Finally, we must have logMu ≥ 24 · 128 + 9/2 · 44 = 3270. Then, we can take
Mu = p13 + 1 which satisfies logM = 3319. It can easily be verified that the Mu

torsion is defined over Fp26 for the supersingular elliptic curves of characteristic
p. This is an extension of constant degree 13 over Fp2 the field of definition of
all our curves.

In comparison, when taking Mc = lcm(p−1, p+1) = 233 ·T ·N ·517434778561,
we can get all the relevant torsion points defined over Fp2 (but on two distinct
models). Should Mc = (p2 − 1)/2 prove to be too small of a bound to retain
reasonable security, there is a wide range of choices between p2−1/2 and p13+1.

Efficiency analysis

Evaluation The main cost in VRFEval is clearly the computation of the repre-
sentations of θ1, . . . , θn. As conjectured in Section 6.3, we only need 3 endomor-
phisms θ1, θ2, θ3 to describe a basis of the order O. We achieve the computation
of the representation of an endomorphism θ by considering it as an ideal and
then apply the IdealToIsogeny`• algorithm from [18]. It is easy to see that the
complexity of this algorithm grows linearly in the exponent of the ideal in input.
In the signature from [18], this computation is performed on ideals of norm 21000,
whereas for our VRF we need to do this for three endomorphisms of norm 22200.
Hence, the computation should be roughly 6 times slower.

However, we stress out that in our case, the computation can be easily par-
allelized. Indeed, the three computations corresponding to θ1, θ2, θ3 are totally

28



independent and can be performed at the same time. Furthermore, for each
θi we can divide the task into 2 independant subtasks of half the size. Indeed
θi : E → E can be written as the composition of two isogenies σ̂i ◦ ρi where
σi : E → Ei and ρ : E → Ei for some middle curve Ei. Representations of θi as
σi, ρi are completely sufficient to do what we want. Thus, our main computation
for VRFEval can be divided into 6 independant executions of IdealToIsogeny on
ideals of norm roughly 21100. Hence, depending on the amount of parallelization
accessible to the prover, the VRF evaluation’s efficiency should be approximately
ranging from 1 to 6 SQISign signatures. The C implementation of SQISign pre-
sented in [18] runs in roughly 2 seconds for signature.

Verification For the verification, the significant steps are:

1. Checking that the representations given by the prover are valid endomor-
phisms.

2. Performing CheckTraceM .

3. Verifying that the subgroups Hi are stable under the endomorphisms.

The first item can be done by computing the isogeny from the representation
provided in π. This is similar to the signature verification performed in [18],
but for several isogenies (as explained above we can divide the task into the
computation of 6 independent isogenies of size roughly equal to the signature
isogeny from SQISign). In [18], the verification process takes around 40ms. The
second and third item can be achieved by evaluating the given endomorphisms
θ1, θ2, θ3 and the corresponding duals on a basis of E[M ]. The cost of evaluating
an isogeny of degree 2e on a point is approximately equivalent to computing this
isogeny when the points are defined over Fp2 which is the case when M = Mc,
the bound for computation uniqueness.

The overhead for verification when opting for unconditional rather than com-
putational uniqueness is proportional to the slow-down caused by performing
operations over Fp26 rather than Fp2 . The cost of multiplications, in particular,
is increased by a factor between 13 to 132 depending on the method used to
perform arithmetic operations over Fp26 .

Key Generation Given that our construction is only one-time, the cost of key
generation has to be taken into consideration for the overall efficiency of the
scheme. The main operation is to compute the isogeny ϕJ of degree `f . This
isogeny is computed from the ideal J ∼ I where I is the ideal of norm D
corresponding to the secret isogeny ϕ. The ideal J is found from I by applying
the KLPT algorithm from [32]. The best version of this algorithm finds J of norm
`f where f ∼ 3 log(p). Thus, key generation is essentially the translation of an
ideal of norm 2768 to the corresponding isogeny. We can estimate, it takes 75%
of one SQISign signature. Pushing the points P0, Q0 through ϕJ can be done at
the same time as the computation of ϕJ at very small additional cost.
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Size estimates Our VRF public key is made of a curve E and two points
PE , QE . The representation of E can be compacted to one element of Fp2 , and
a point can be described by an element of Fp2 and a bit. Thus, the size of our
public key is 770 bits or 97 bytes.

The proof π is made of the representation of three endomorphisms and two
elements of P1(Z/NZ). The projective elements can be represented by logN = 44
bits and we estimate the norm of each endomorphism to be around 22200. Hence,
the proof size of our VRF is 6688 bits or 836 bytes.

The output space has size n2(λ) which is at most 2 log(N) = 88 bits or 11
bytes.

Public Key (bytes) Proof (bytes) Post-quantum Few-times

EC - VRF [2] 32 80 No No

BLS - VRF [1] 96 48 No No

LB - VRF [22] 3.29K 4.66K Yes Yes

This work 96 836 Yes Yes
Table 2. Size of our one-time VRF compared to several classical schemes and a post-
quantum few-times VRF based on lattices.

We can now illustrate (see Table 3) the advantage of our construction with
respect to the lattice scheme from [22]. Indeed, it is clear that in terms of ef-
ficiency, our solution is not competitive at all with solutions based on lattices.
However, isogenies offer key and proof sizes much closer to those obtained from
classical solutions. In this regard, our VRF may be better suited to be integrated
in blockchain applications such as Algorand [12]. In these types of applications,
the number of transaction per second (TPS) for a given number of nodes is
limited by the blocksize, which is a fixed parameter of the blockchain. Thus,
if the size of VRF keys and proofs are too big, the throughput is going to be
seriously reduced. The most-compact post-quantum VRF based on lattices is
LB-VRF which was introduced in [22] where they estimated that their current
sizes could not allow Algorand to reach 1000 nodes. Our VRF cost being signif-
icantly smaller than the one from LB-VRF, we see that using our VRF would
allow to reach 1000 nodes with several hundred TPS.

The article [22] introduces a model to use a one-time VRF in Algorand. The
following formula gives the number of transaction per second in this model:

TPS =
payload− (VRF cost + digest + signature)×#nodes

(transaction size + signature size)× blocktime

Following the parameters used in [22], we take blocktime as 5 seconds, transac-
tion size as 1KB, digest as 32B and payload to be 5.4MB. Each transaction also
contains a signature. The signature size will depend on the scheme used in the
instantiation. This signature scheme need not be related to the VRF scheme we
use.
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For comparison, we use three different signature schemes: the classical sig-
nature Ed2559 of size 64 bytes and two post-quantum protocols: Falcon [23] a
700B signature based on lattices and SQISign [18], a 200B post-quantum signa-
ture built from isogenies. Given the many similarities between our construction
and SQISign, this seems like a natural match.

We estimate the VRF cost as the size of key, proof and output. In our exam-
ple, we get 943 = 836 + 96 + 11.

Post- 10 100 500 1000
VRF + sign. Assumptions quantum nodes nodes nodes nodes

ECVRF + Ed25519 ECC No 1000 1000 1000 1000

LBVRF + Ed25519 Lattice + ECC Hybrid 1000 882 246 —

LBVRF + SQISign Lattice + Isog. Yes 910 781 208 —

LBVRF + Falcon Lattice Yes 646 549 118 —

This work + Ed25519 Isogenies + ECC Hybrid 1000 1000 945 849

This work + SQISign Isogenies Yes 923 906 829 733

This work + Falcon Isogenies + Latt. Yes 654 637 559 462
Table 3. Projected performance comparison in terms of Transactions per seconds
(TPS) for the Algorand blockchain using the model from [22] with different-sized sig-
natures and VRF schemes. The symbol — indicates that the block size is too small to
make one transaction.

8 Prospects and open questions

8.1 On the question of removing the one-time restriction

In this section, we discuss the prospects of removing the one-time restriction
from our construction and present some ideas to do so. We are also going to
illustrate the new technical challenges raised by these potential changes and
why we chose to leave them for future work.

As explained in Section 4.2, our VRF function is the composition of a secret
isogeny (through the bijection between the projective line over Z/NZ and cyclic
subgroups of order N) and a hash function. Even though the final output is
derived from elements of the projective line, the bijection with the subgroups is
explicit and can be computed by anyone. This fact is actually important since
the subgroups are required to verify the computation’s correctness. Indeed, the
verification is done by checking that these subgroups are stable by endomor-
phisms inside a well-chosen suborder of the endomorphism ring. Unfortunately,
these subgroups are also the cause for our scheme’s one-timeness. Indeed, isoge-
nies are morphisms over the N torsion which is isomorphic to Z/NZ2. Thus, as
shown in Lemma 3, as soon as one knows the image of three subgroups of order
N through the secret isogeny, one can compute the image of any other subgroups
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by solving a few DLPs. Hence, to remove the one-time restriction, we need to
find a way to derive a random output (and verify it) without having to reveal
the related subgroups. The first idea that comes to mind is to replace the sub-
groups by isogenies using the classic correspondence between cyclic subgroups
of order N and cyclic isogenies of degree N . Given a subgroup G, let us write
ϕG : E → E/G for the associated isogeny. The natural idea is then to compute
the final output from the j-invariant of the codomain E/G as in the CGL hash
function [11] or the KDM based on SIDH [29]. We can develop this idea in two
directions with distinct verification mechanisms: either we reveal the isogeny ϕG
in the proof or we don’t.

In the first case, we must take the order N to be smooth (to make ϕG
efficiently computable and representable) and such that the elements of the N -
torsion are not efficiently representable (otherwise it is easy to compute G from
ϕG and our variant is equivalent to the one-time construction). Then, we can
verify the computation quite similarly to the one-time construction. Indeed,
when G is left stable by an endomorphism θ, the pushforward [θ]∗ϕG is equal to
ϕG. Thus, it suffices to compute [θ]∗ϕG. The usual method uses the kernels as
in SIDH, but in can be done without it by forming an isogeny ladder as in [13].
This is much less efficient but can still be done in reasonable time.

In the second case (where we want to avoid revealing the isogeny ϕG in the
proof) we can keep N as a prime. However, verification becomes more com-
plicated. We can use the following fundamental property: when G is stable
under the action of ϕG, θ is also embedded in End(E/G). Thus, if the proof
include a curve E1 together with the embedding of our well-chosen suborder
inside End(E1) we could hope to verify that E1 was correctly computed. Un-
fortunately this is not enough. Indeed, a curve E1 with the embedding of the
correct suborder Z + DO0 could have been computed from any curve E′ that
is D-isogenous to E0. Thus, we need an additional information to tie the curve
E1 with the public key E. The only plausible solution seems to be to reveal an
isogeny between E and E1 and show that it ties together the embeddings of
Z+DO0 inside both End(E1) and End(E). However, it is not exactly clear how
one would compute this isogeny and we leave this for future work.

Additionally, these two variants raise the issue of security and pseudo-randomness
in particular. If we remove the few-times restriction, the adversary has access to
a polynomial number of calls to the evaluation oracle. In the variant where ϕG is
included in the proof, the pseudo-randomness would rely on the difficulty to do
the analog of Lemma 3 when subgroups have been replaced by the corresponding
isogenies. As we explained, a necessary condition for this problem to be difficult
is that the N -torsion must not be efficiently representable (otherwise it is easy to
recover G from ϕG as in Lemma 3). Even in that case, arguing about the hard-
ness of the pseudo-randomness problem would require yet-another assumption,
and one that appears to be far more dubious than the ones we already intro-
duced for the one-time construction. For this reason, we leave further analysis
of this non-restricted variant to future work in hope to build more confidence
about this potential new security problem.

32



For the second non-restricted variant, pseudo-randomness could be easier to
argue. By essence, we do not reveal ϕG in this variant and so applying some-
thing analog to Lemma 3 seems a lot more difficult. However, without a detailed
description of the verification mechanism we cannot even formulate the precise
pseudo-randomness problem so it is still too early to draw any meaningful con-
clusions about its hardness.

8.2 Potential for other cryptographic applications

We introduced our VRF construction as a mean to illustrate the possibilities
offered by the new isogeny proof of knowledge mechanism outlined in Section 3.
In this section, we discuss two other potential applications. As in Section 8.1,
we propose directions to explore for future work rather than concrete protocols.

Verifiable Delay Functions (VDF) are similar to VRF in the sense that a VDF
is made of a function f whose evaluation at a given x must be verified efficiently.
The security properties are quite different though, as the main feature of a VDF
is sequentiality : given a prescribed time T , evaluating the VDF should not be
possible in less time than T . In comparison, verification should run in O(log(T ))
or even constant time (depending only of the security parameter). The first ideas

of VDF where based on the computation of T repeated squarings (x 7→ x2
T

in
groups of unknown order [41]). We mentioned already in Section 2 that there is
a VDF construction based on isogenies [19]. This scheme share some similarities
with our VRF construction as the VDF function is an isogeny. Sequentiality
comes from the degree of this isogeny which is 2T (adapting the idea of repeated
squaring to the case of isogenies). However, their scheme is not post-quantum
as pairings are used to verify the correctness of the computation.

The natural idea is to try and see if we could use our new proof ideas to
verify the computation of this VDF. If we keep the degree of the isogeny to be
evaluated as 2T , then our proof technique will not fit the VDF framework as
the norm of the endomorphisms given in the proof would be in O(T ) and so the
proof would not be efficient to verify However, if the size of the degree of the
VDF isogeny is fixed, then we can obtain an efficient verification. In this setting,
we would need to use the smoothness of the degree to play on the difficulty to
evaluate the isogeny: the bigger the prime factors in the degree are, the longer
the computation will take. Sequentiality could be proven by assuming a lower
bound on the asymptotic complexity to compute an isogeny of a given prime
degree `. Given the recent advances [4] in the problem of evaluating isogenies of
prime degree it is hard to estimate how much confidence we can put on the fact
that the best currently known algorithms are essentially optimal.

Trapdoor mechanism from endomorphisms revelation Our second potential ap-
plication is rather a generic mechanism than a precise protocol. The goal is to
try and exploit the idea that revealing some endomorphisms of a supersingular
curve is not necessarily problematic. The encryption scheme Séta from [37] is a
good example of a protocol where the trapdoor is some endomorphism of the
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public key curve. In this protocol, the participant can usually compute the en-
domorphism ring of the public key curve during key generation. But we could
imagine a situation where one participant P1 generates a curve E (and compute
its endomorphism ring along the way) before revealing a well-chosen endomor-
phism of E to another participant P2. Then, P2 could use this endomorphism
to perform some protocol (for instance the Séta encryption scheme) without
knowing anything else on the curve E.

It seems tempting to try to build IBE from this setting. For instance, the
master public key could be a curve E with the master secret key as End(E),
identities would be isogenies from E to Eid and the corresponding secret key,
an endomorphism of Eid that can be used as a Séta secret key. Unfortunately,
it seems hard to choose these secret keys in a way that would prevent an ad-
versary who has access to several such secret endomorphisms to recover enough
information to generate secret keys for himself and break the IBE security. Even
though IBE appears to be out of reach from this idea, lesser primitive could still
be achievable.

8.3 Conclusion

We have introduced the first post-quantum VRF construction based on isogenies.
Our protocol is only one-time, and relies on a new security assumption, but
it offers the best sizes among post-quantum solutions. In terms of efficiency,
our solution is not competitive with lattices-based schemes but it is reasonably
efficient in the isogeny-based landscape. To obtain unconditional uniqueness,
the performances of the verification protocol are not satisfying, and we offer a
security/efficiency tradeoff at the cost of an additional security assumption.

This new protocol is built upon two blocks that may be of independent
interest: a new compact proof of isogeny knowledge method, and a new algorithm
to solve norm equations in a large class of quaternion orders. In particular, our
proof of isogeny knowledge is the first protocol based on the explicit revelation
of endomorphisms. A new security assumption stems from this principle. Works
needs to be done to understand this new assumption.

Among the prospects for efficiency improvements, we can list: reducing the
norm of the elements given in output of our new norm equation algorithm,
improving the efficiency of the ideal to isogeny algorithm from [18] and improving
the efficiency of unconditional uniqueness either by finding a new algorithm
to compute traces exactly or by reducing the theoretical bound on the trace
modulus required to perform the verification.

Finally, we have exposed several directions to explore in order to either re-
move the one-time restriction from our construction or construct new applica-
tions from our isogeny proof of knowledge framework. More analysis is required
to assess if concrete schemes could be derived from these ideas.
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16. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. pp. 66–98.
Springer (2018)

17. De Feo, L., Galbraith, S.D.: Seasign: Compact isogeny signatures from class group
actions. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 759–789. Springer (2019)

18. De Feo, L., Kohel, D., Leroux, A., Petit, C., Wesolowski, B.: Sqisign: compact post-
quantum signatures from quaternions and isogenies. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 64–93.
Springer (2020)

19. De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from su-
persingular isogenies and pairings. In: International Conference on the Theory and
Application of Cryptology and Information Security. pp. 248–277. Springer (2019)

35

https://github.com/algorand/libsodium
https://eprint.iacr.org/2020/638
https://eprint.iacr.org/2018/377
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A Proof of Proposition 2

The result stems from two preliminary results presented in Lemmas 8 and 9

Lemma 8. Let O be a maximal order of Bp,∞ and I1, I2 two integral left-O
ideals of prime norm N . There exists at most three j-invariants (up to Galois
conjugacy) such that the corresponding elliptic curves admit an embedding of
(Z+I1)∩(Z+I2) in their endomorphisms rings. Among those three curves, there
is only one such that the endomorphisms of O stabilize two cyclic subgroups of
order N .

Proof. The Deuring correspondence puts in bijection isomorphism classes of
maximal orders and supersingular j-invariants over Fp2 up to Galois conju-
gacy (i.e action of the Frobenius). Thus, to prove our result, we will show that
(Z + I1) ∩ (Z + I2) is embedded in at most three maximal orders up to isomor-
phism.

Given O an Eichler order of level `e, it is a classical result (see [21]) that
it is contained in e + 1 maximal orders. If we write O = Z + J where J is
an integral ideal of norm `e, then O is an eichler order of level `e [18]. The
factorization J = J1 · · · Je allows us to compute these e+ 1 maximal orders and
the corresponding embeddings. Writing Oi = OL(Ji+1) for i ∈ [0, e − 1] and
Oe = OR(Je), we get that O = (Z + J0 . . . Ji) ∩ (Z + Ji+1) · · · Je ⊂ Oi where
J0 = O0 and Je+1 = J−1e . Now we can assign curves Ei to each maximal order
Oi through the Deuring correspondence. Each ideal Ji represents an `-isogeny
ϕi between Ei−1 and Ei. If we write ψi,1 = ϕ̂0 ◦ · · · ◦ ϕ̂i and ψi,2 = ϕe ◦ · · · ◦ϕi+1

then the endomorphisms of the embedding of O in each End(Ei) stabilize the
two subgroups kerψi,1 and kerψi,2 and no other subgroups.

Now it is easily verified that (Z+I1)∩ (Z+I2) can be written as Z+J where
J = I1I2 has norm N2. Then, if we apply the above reasoning we obtain the
desired result with O = O1. The two cyclic subgroups of order N are kerψ1,1 and
kerψ1,2. The other stable subgroups have either order 0 (kerψ0,1

and kerψ2,2) or
order N2 (kerψ0,2 and kerψ2,1).
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Lemma 9. Let D be a prime number different from p. When O = Z +DO0 is
embedded in a maximal order O, either O contains O0 or there exists a left-O
integral ideal of norm D whose right order O0 contains O0.

Proof. Let us assume that O0 is not contained in O. Then we set I = {x ∈
O, xO0 ⊂ O}. First, it is easy to verify that I is an integral left O-ideal. Then,
we are going to see that it has norm D. It suffices to show that DO ( I ( O.
To see that I 6= O, it suffices to note that 1 6∈ I since O0 6⊂ O. Then, with
DO0 ⊂ O we have DxO0 = xDO0 ⊂ O for every x ∈ O, which proves that
DO ⊂ I. Finally, to prove that DO 6= I, we take x0 ∈ O0 and not contained in
O. It is clear that Dx0 ∈ I, but Dx0 6∈ DO. Finally, from the definition of I it
is quite clear that O0 is contained in OR(I). This concludes the proof.

We are now ready to prove Proposition 2, that we recall here for the reader’s
convenience.

Proposition 2 Let D and N be distinct prime number different from p. Let
E0 be a supersingular curve defined over Fp. Take IG1

and IG2
two O0-ideals

of prime norm N , corresponding to the kernel ideals of two subgroups G1, G2 of
order N in E0[N ]. Given a supersingular curve E not isomorphic to E0, if there
exists an embedding of O = Z +D((Z + IG1

) ∩ (Z + IG2
)) in End(E) and there

exists two different subgroups H1, H2 ⊂ E[N ] stable under any endomorphism
of O, there exists an isogeny ϕ of degree D between E0 and E and Hi = ϕ(Gi)
for i = 1, 2.

Proof. First, we show that we can apply Lemma 9, by proving that O0 = (Z +
IG1

) ∩ (Z + IG2
) cannot be embedded in End(E). If it were, since E and E0

are not isomorphic, then by Lemma 8 we would have that the only non-trivial
subgroup stable under the endomorphisms of O0 would be a cyclic subgroup of
order N2. The induced embedding of O = Z +DO0 would trivially respect the
same property. This contradicts the assumption on H1 and H2, and thus proves
that O0 is not contained in O. Then, by Lemma 9, there exists a maximal
order O′0 connected to O through an ideal of norm D. We write ϕ for the
corresponding isogeny of degree D. We take E′0 to be a supersingular elliptic
curve with End(E′0) = O′0. As explained in Section 3.1, every endomorphism
α ∈ O can be decomposed as [d] + ϕα0ϕ̂, where α0 ⊂ O0. It is easily verified
that if H is stable under O, then ϕ̂(H) is stable under O0. Thus, E′0 possesses
two subgroups ϕ̂(Hi) for i = 1, 2 of order N that are stable under the elements
of O. By Lemma 8, E′0 is isomorphic (up to Galois conjugacy) to E0. Since E0 is
defined over Fp, the Galois group of Fp2/Fp acts trivially on E0 and E′0 is in fact
isomorphic to E0. This isomorphism must send ϕ̂(Hi) to Gi (up to reordering).
This is exactly the result we want to prove.
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B Provability and unbiasability

B.1 Provability

Definition 5. The VRF is provable if Verif(pk, π, x, v) = 1 when (pk, sk) =
KeyGen(pp) and (v, π) = VRFEval(sk, x).

We show provability of our VRF computation in Proposition 8. Before that,
we start with a simple preliminary result.

Lemma 10. Given G1, G2 two cyclic subgroups of order N in a supersingular
curve E0, the endomorphisms of norm coprime with N contained in (Z+ IG1

)∩
(Z + IG2

) are exactly the endomorphisms stabilizing both G1 and G2.

Proof. It was proven in [18] that for I an ideal of norm N , the elements of the
Eichler order Z + I of norm coprime with N are exactly the elements α such
that α(G) = G for the kernel subgroup G = E[I] associated to I. Applying this
result to IG1

and IG2
at the same time proves the result.

Proposition 8. The VRF introduced in Section 4.2 is provable.

Proof. The order Z + DO0 is contained in O0 ∩ OR(I) = Z + I for any I of
norm D (this is easy to see, since we can always decompose I = O0αI + DO0

for some αI ∈ O0). This proves that for any ω ∈ Z + DO0, there exists θ ∈
End(E) with deg θ = n(ω) and tr(θ) = tr(ω). As in VRFEval and Verif, we set
ω1, . . . , ωn = SmoothGen(D, IG1 , IG2). Thus, when the θi are honestly computed
from the ωj , it is clear that all the tests on the norm and traces of θj are
performed successfully. It remains to show that H1, H2 are stable under each
θj . By Lemmas 2 and 10, we know that the only two subgroups stable under
each of the ωj are G1 and G2. By the construction of y1 and y2, we know there
exist w1, z1, w2, z2 such that xi,1 = B1,1wi + B2,1zi and xi,2 = B1,2wi + B2,2zi.
In this case, from the definition of B and PE , QE it can be verified easily that
Hi = ΨPE ,QE

(yi) = ϕ(Gi) for all i ∈ {1, 2}.

B.2 Unbiasability

The final property to prove is unbiasability. This is a less common property for
VRFs, but is necessary for some applications such as [16]. In any case, we achieve
unbiasability quite easily from our existing assumptions.

Definition 6. Let A = (A1,A2) be a polynomial-time adversary playing the
following experiment:

1. pp←: ParamGen(1λ)
2. (st, pk, v∗) = A1(pp).

3. x
$←− {0, 1}n1(λ).

4. (π, v)← A2(x, st).
5. b← Verif(pk, π, x, v).
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The VRF is unbiasable if

Pr(b = 1 ∧ v∗ = v) ≤ 2−n2(λ) + negl(λ).

After we proved uniqueness, the unbiasability of our proposed VRF follows
directly from the decomposition of our VRF function (see Section 4.2) as a
permutation composed with a hash function.

Theorem 3. Under the hardness of Problem 2 for the parameter M , the VRF
scheme introduced in Section 4.2 is unbiasable in the random oracle model, if
the parameters E0, p,D are such that there does not exist a curve E with two
distinct D-isogenies between E0 and E.

Proof. By the computational uniqueness of our VRF scheme proved under the
same hypotheses in Theorem 2, we know that a pair (π, v) of proof and output
passing the verification for a given input (x1, x2) must be such that v = H(y1, y2)
where ΨPE ,QE

(yi) = ϕ(ΨP0,Q0
(xi)) for i ∈ {1, 2} with overwhelming probabil-

ity. The map (x1, x2) 7→ (Ψ−1PE ,QE
(ϕ(ΨP0,Q0(x1))), Ψ−1PE ,QE

(ϕ(ΨP0,Q0(x2)))) is a

permutation of P1(Z/NZ)2 r ∆, when x1, x2 is a uniformly random element
of P1(Z/NZ)2 r ∆, the output is v = H(y1, y2) where (y1, y2) is a uniformly
random element of P1(Z/NZ)2 r∆. This proves that v is uniformly random in
{0, 1}n2(λ) in the random oracle model.
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