
Elmo: Recursive Virtual Payment Channels for
Bitcoin

Aggelos Kiayias1,2 and Orfeas Stefanos Thyfronitis Litos1

1 University of Edinburgh
2 IOHK

akiayias@inf.ed.ac.uk, o.thyfronitis@ed.ac.uk

Abstract. A dominant approach towards the solution of the scalabil-
ity problem in blockchain systems has been the development of layer
2 protocols and specifically payment channel networks (PCNs) such as
the Lightning Network (LN) over Bitcoin. Routing payments over LN
requires the coordination of all path intermediaries in a multi-hop round
trip that encumbers the layer 2 solution both in terms of responsiveness
as well as privacy. The issue is resolved by “virtual channel” protocols
that, capitalizing on a suitable setup operation, enable the two endpoints
to engage as if they had a direct payment channel between them.
Apart from communication efficiency, virtual channel constructions have
three natural desiderata. A virtual channel constructor is recursive if it
can also be applied on pre-existing virtual channels, variadic if it can
be applied on any number of pre-existing channels and symmetric if it
encumbers in an egalitarian fashion all channel participants both in op-
timistic and pessimistic execution paths. We put forth the first Bitcoin-
suitable recursive variadic virtual channel construction. Furthermore our
virtual channel constructor is symmetric and offers optimal round com-
plexity both in the optimistic and pessimistic execution paths. Our vir-
tual channels can be implemented over Bitcoin assuming the ANYPREVOUT
signature type, a feature that we prove necessary for any efficient pro-
tocol that has parties maintain a set of Bitcoin transactions in their
local state. We express and prove the security of our construction in the
universal composition setting.

1 Introduction

The popularity of blockchain protocols in recent years has stretched their perfor-
mance exposing a number of scalability considerations. In particular, Bitcoin and
related blockchain protocols exhibit very high latency (e.g. Bitcoin has a latency
of 1h [1]) and a very low throughput (e.g., Bitcoin can handle at most 7 trans-
actions per second [2]), both significant shortcomings that jeopardize wider use
and adoption and are to a certain extent inherent [2]. To address these consid-
erations a prominent approach is to optimistically handle transactions off-chain
via a “Payment Channel Network” (PCN) (see, e.g., [3] for a survey) and only
use the underlying blockchain protocol as an arbiter in case of dispute.

The key primitive of PCN protocols is a payment (or more generally, state)
channel. Two parties initiate the channel by locking some funds on-chain and
subsequently exchange direct messages to update the state of the channel. The
key feature is that state updates are not posted on-chain and hence they remain
unencumbered by the performance limitations of the underlying blockchain pro-
tocol. Given this primitive, multiple overlapping payment channels can be com-
bined and form the PCN.

Closing a channel is an operation that involves posting the state of the chan-
nel on-chain; it is essential that any party individually can close a channel as
otherwise a malicious counterparty could prevent an honest party from accessing
their funds. This functionality however raises an important design consideration:
how to prevent malicious parties from posting old states of the channel. Address-
ing this issue can be done with some suitable use of transaction “timelocks”, a
feature that prevents a transaction or a specific script from being processed
on-chain prior to a specific time. For instance, diminishing transaction time-
locks facilitated the Duplex Micropayment Channels (DMC) [4] at the expense
of bounding the overall lifetime of a channel. Using script timelocks, the Light-
ning Network (LN) [5] provided a better solution that enabled channels staying
open for an arbitrary length of time: the key idea was to duplicate the state of
the channel between the two counterparties, say Alice and Bob, and facilitate a
punishment mechanism that can be triggered by Bob whenever Alice posts an
old state update and vice-versa. The script timelocking is essential to allow an
honest counterparty some time to act.

Interconnecting state channels in LN enables any two parties to transmit
funds to each other as long as they can find a route of payment channels that
connects them. The downside of this mechanism is that it requires the direct
involvement of all the parties along the path for each payment. Instead, “virtual
payment channels”, suggest the more attractive approach of putting a one-time
initialization step to set up a virtual payment channel, which subsequently can be
used for direct payments with complexity —in the optimistic case— independent
of the length of the path. Initial constructions for virtual channels essentially cap-
italized on the extended functionality of Ethereum, e.g., Perun [6] and GSCN [7],
while more recent work [8] brought them closer to Bitcoin-compatibility (by
leveraging adaptor signatures [9]).

A virtual channel constructor can be thought of as an operator over the
underlying primitive of a state channel. We can identify three natural desiderata
for this operator.

– Recursive. A recursive virtual channel constructor can operate over channels
that themselves could be the results of previous applications of the operator.
This is important in the context of PCNs since it allows building virtual
channels on top of pre-existing virtual channels.

– Variadic. A variadic virtual channel constructor can virtualize any number
of input state channels. This is important in the context of PCNs since it
enables applying the operator to build virtual channels of arbitrary length.

2

– Symmetric. A symmetric virtual channel constructor offers setup and closing
operations that are symmetric in terms of cost between the two endpoints or
the intermediaries (but not a mix of both) for the optimistic and pessimistic
execution paths. This is important in the context of PCNs since it ensures
that no party is worse-off or better-off after an application of the operator
in terms of accessing the basic functionality of the channel.

We note that recursiveness, while identified already as an important de-
sign property (e.g., see [7]) it has not been achieved in the context of Bitcoin-
compatible channels (it was achieved only for DCN-like fixed lifetime channels
in [10] and left as an open question for LN-type channels in [8]). The reason
behind this are the severe limitations imposed in the design by the scripting
language of Bitcoin-compatible systems. With respect to the other two proper-
ties, observe that successive applications of a recursive binary virtual channel
operator to make it variadic will break symmetry (since the sequence of op-
erator applications will impact the participants’ functions with respect to the
resulting channel). This is of particular concern since all previous virtual channel
constructors proposed are binary, cf. [7,8,10].

Our Contributions. We present the first Bitcoin-suitable recursive virtual
channel constructor that is recursive and supports channels with an indefinite
lifetime. In addition, our constructor, Elmo (named after St. Elmo’s fire), is
variadic and symmetric. In our constructor, both optimistic and pessimistic exe-
cution paths are optimal in terms of round complexity: issuing payments between
the two endpoints requires just three messages of size independent of the length
of the channel while closing the channel requires up to two on-chain transac-
tions for any involved party (endpoint or intermediary) also independent of the
channel’s length.

We achieve the above by leveraging on a sophisticated virtual channel setup
protocol which, on the one hand, enables endpoints to use an interface that is
invariant between base and virtual channels, while on the other, intermediaries
can act following any arbitrary activation sequence when the channel is closed.
The latter is achieved by making it feasible for anyone becoming an initiator
towards closing the channel, while subsequent respondents, following the activa-
tion sequence, can choose the right action to successfully complete the closure
process by posting a single transaction each.

We formally prove the security of the constructor protocol in the UC [11]
setting. The construction relies on the ANYPREVOUT signature type, which does
not sign the hash of the transaction it spends, therefore allowing for a single pre-
signed transaction to spend any output with a suitable script. We further discuss
the limitations of any constructor primitive that does not rely on ANYPREVOUT
in Section 6. In particular in Theorem 3, we prove that any virtual channel
constructor protocol that has participants store transactions in their local state
and offers an efficient closing operation via O(1) transactions will have an ex-
ponentially large state in the number of intermediaries, unless ANYPREVOUT is
available.

3

Related work The first proposal for PCNs was due to [12] which only enabled
unidirectional payment channels. As mentioned previously, DMCs [4] with their
decrementing timelocks have the shortcoming of limited channel lifetime. This
was ameliorated by LN [5] which as become the dominant paradigm for designing
PCNs for Bitcoin-compatible systems. LN is currently implemented and opera-
tional for Bitcoin. It has also been adapted for Ethereum [13], where it is known
as the Raiden Network [14].

A number of attacks have been identified against LN. The wormhole at-
tack [15] against LN allows colluding parties in a multi-hop payment to steal
the fees of the intermediaries between them and Flood & Loot [16] analyses the
feasibility of an attack in which too many channels are forced to close in a short
amount of time, reducing the blockchain liveness and enabling a malicious party
to steal off-chain funds.

Payment routing [17,18,19] is another research area that aims to improve the
network efficiency without sacrificing privacy. Actively rebalancing channels [20]
can further increase network efficiency by preventing routes from becoming un-
available due to lack of well-balanced funds.

An alternantive payment channel construction that aspires to be the succes-
sor of Lightning is eltoo [21]. It has a conceptually simpler construction, smaller
on-chain footprint and a more forgiving attitude towards submitting an old chan-
nel state than Lightning, but it needs the ANYPREVOUT sighash flag to be added
to Bitcoin. Generalized Bitcoin-Compatible Channels [9] enable the creation of
state channels on Bitcoin, extending channel functionality from simple payments
to arbitrary Bitcoin scripts.

Sprites [22] leverages the scripting language of Ethereum to decrease the time
collateral is locked up compared to Lightning. Perun [6] and GSCN [7] exploit
the Turing-complete scripting language of Ethereum to provide virtual state
channels, i.e. channels that can open without an on-chain transaction and that
allow for arbitrary scripts to be executed off-chain. Similar features are provided
by Celer [23]. Hydra [24] provides state channels for the Cardano [25] blockchain
which combines a UTXO type of model with general purpose smart contract
functionality that are also isomorphic, i.e. Hydra channels can accommodate
any script that is compatible with the underlying blockchain.

BDW [26] shows how pairwise channels over Bitcoin can be funded with no
on-chain transactions by allowing parties to form groups that can pool their
funds together off-chain and then use those funds to open channels. ACMU [27]
allows for multi-path atomic payments with reduced collateral, enabling new
applications such as crowdfunding conditional on reaching a funding target.

TEE-based [28] solutions [29,30,31,19] improve the throughput and efficiency
of PCNs by an order of magnitude or more, at the cost of having to trust TEEs.
Brick [32] uses a partially trusted committee to extend PCNs to fully asyn-
chronous networks.

Solutions alternative to PCNs include sidechains (e.g., [33,34,35]), non-custo-
dial chains (e.g., [36,37,38,39]), and partially centralised payment networks that
entirely avoid using a blockchain [40,41,42,43].

4

Last but not least, a number of works propose virtual channel constructions
for Bitcoin. Lightweight Virtual Payment Channels [10] enables a virtual channel
to be opened on top of two preexisting channels and uses a technique similar to
DMC. Bitcoin-Compatible Virtual Channels [8] also enables virtual channels on
top of two preexisting simple (i.e. non-virtual) channels and offers two protocols,
the first of which guarantees that the channel will stay off-chain for an agreed
period, while the second allows the single intermediary to turn the virtual into
a simple channel. We remark that the above strategy has the shortcoming that
even if it is made recursive (a direction left open in [8]) after k applications of
the constructor the virtual channel participant will have to publish on-chain k
transactions in order to close the channel if all intermediaries actively monitor
the blockchain. We refer the reader to Table 1 for a comparison of the features
and limitations of virtual channel protocols, including the one put forth in the
current work.

Table 1. Comparison of virtual channel protocols

Unlimited lifetime Recursive Variadic Script requirements
LVPC [10] 7 G#a 7 Bitcoin
BCVC [8] 3 7 7 Bitcoin
Perun [6] 3 7 7 Ethereum
GSCN [7] 3 3 7 Ethereum
this work 3 3 3 Bitcoin + ANYPREVOUT

a lacks security analysis

2 High Level Explanation

Conceptually, Elmo is split into three main actions: channel opening, payments
and closing. A channel (P1, Pn) between parties P1 and Pn may be opened di-
rectly on-chain, in which case the two parties follow an opening procedure simi-
lar to that of LN, or it can be opened on top of a path of preexisting channels
(P2, P3), (P3, P4), . . . , (Pn−3, Pn−2), (Pn−2, Pn−1). In the latter case all parties
Pi on the path follow our novel protocol, setting aside funds in their channels
as collateral for the new virtual channel that is being opened. Once all inter-
mediaries are committed, P1 and Pn finally create (and keep off-chain) their
“commitment” transaction, following a logic similar to Lightning and thus their
channel is open.

A payment over an established channel follows a procedure heavily inspired
by LN, but without the use of HTLCs. To be completed, a payment needs three
messages to be exchanged by the two parties.

Finally, the closing procedure of a channel C can be completed unilaterally
and consists of signing and publishing a number of transactions on-chain. As we

5

will discuss later, the exact transactions that a party will publish vary depending
on the actions of the parties controlling the channels that form the “base” of C
and the channels that are based on C. Our protocol can be augmented with a
more efficient optimistic collaborative closing procedure, which however is left
as future work.

In more detail, to open a channel (c.f. Figure 28) the two counterparties
(a.k.a. “endpoints”) first create new keypairs and exchange the resulting public
keys (2 messages), then prepare the underlying base channels if the new channel
is virtual (12·(n−1) total messages, i.e. 6 outgoing messages per endpoint and 12
outgoing messages per intermediary, for n−2 intermediaries), next they exchange
signatures for their respective initial commitment transactions (2 messages) and
lastly, if the channel is simple (i.e. not virtual), the “funder” signs and publishes
the “funding” transaction on-chain. We here note that like LN, only one of the two
parties, the funder, provides coins for a new channel. This limitation simplifies
the execution model and the analysis, but can be lifted at the cost of additional
protocol complexity.

2.1 Simple Channels

In a similar vein to earlier PCN proposals, having an open channel essentially
means having very specific keys, transactions and signatures at hand, as well as
checking the ledger periodically and being ready to take action if misbehaviour
is detected. Let us first consider a simple channel that has been established
between Alice and Bob where the former owns cA and the latter cB coins. There
are three sets of transactions at play: A “funding” transaction that is put on-
chain, off-chain “commitment” transactions that spend the funding output on
channel closure and off-chain “revocation” transactions that spend commitment
outputs in case of misbehaviour (c.f. Figure 1).

F CA,i

RB,i2/{pkA,F , pkB,F }
2/{pkA,R, pkB,R} ∨ (pkA,out + t)

pkB,out

pkB,out

Fig. 1. Funding, commitment and revocation transactions

In particular, there is a single on-chain funding transaction that spends
cA + cB coins (originally belonging to the funder), with a single output that
is encumbered with a 2/{pkA,F , pkB,F } multisig and carries cA + cB coins.

Next, there are two commitment transactions, one for each party, each of
which can spend the funding tx and produce two outputs with cA and cB coins
each. The two txs differ in the outputs’ spending conditions: The cA output
in Alice’s commitment tx can be spent either by Alice after it has been on-
chain for a pre-agreed period (i.e. it is encumbered with a “timelock”), or by

6

a “revocation” transaction (discussed below) via a 2-of-2 multisig between the
counterparties, whereas the cB output can be spent only by Bob without a
timelock. Bob’s commitment tx is symmetric: the cA output can be spent only
by Alice without timelock and the cB output can be spent either by Bob after
the timelock expiration or by a revocation tx. When a new pair of commitment
txs are created (either during channel opening or on each update) Alice signs
Bob’s commitment tx and sends him the signature (and vice-versa), therefore
Alice can later unilaterally sign and publish her commitment tx but not Bob’s
(and vice-versa).

Last, there are 2m revocation transactions, where m is the total number
of updates of the channel. The jth revocation tx held by an endpoint spends
the output carrying the counterparty’s funds in the counterparty’s jth commit-
ment tx. It has a single output spendable immediately by the aforementioned
endpoint. Each endpoint stores m revocation txs, one for each superseded com-
mitment tx. This creates a disincentive for an endpoint to cheat by using any
other commitment transaction than its most recent one to close the channel: the
timelock on the commitment output permits its counterparty to use the corre-
sponding revocation transaction and thus claim the cheater’s funds. Endpoints
do not have a revocation tx for the last commitment transaction, therefore these
can be safely published. For a channel update to be completed, the endpoints
must exchange the signatures for the revocation txs that spend the commitment
txs that just became obsolete.

Observe that the above logic is essentially a simplification of LN.

2.2 Virtual Channels

In order to gain intuition on how virtual channels function, consider n−1 simple
channels established between n honest parties as before. P1 (the funder) and Pn
want to open a virtual channel over these base channels. Before opening the
virtual, each base channel is entirely independent, having different unique keys,
separate on-chain funding outputs, a possibly different balance and number of
updates. After the n parties follow our novel virtual channel opening protocol,
they will all hold off-chain a number of new, “virtual” transactions that spend
their respective funding transactions and can themselves be spent by new com-
mitment transactions in a manner that ensures fair funds allocation for all honest
parties.

In particular, apart from the transactions of simple channels, each of the two
endpoints also has an “initiator” transaction that spends the funding output of
its only base channel and produces two outputs: one new funding output for
the base channel and one “virtual” output (c.f. Figures 2, 44). If the initiator
transaction ends up on-chain, the latter output carries coins that will directly or
indirectly fund the funding output of the virtual channel. This virtual funding
output can in turn be spent by a commitment transaction that is negotiated and
updated with direct communication between the two endpoints in exactly the
same manner as the payments of simple channels.

7

V
cA + cB

σA,F ∧ σB,F

cA + cB − cvirt

2/{pkA,F ′ , pkB,F ′}

cvirt

n/{pk[1],j}j∈[n] ∨ (2/{pkA,V , pkE,V }+ t)

Fig. 2. A - E virtual channel: A’s initiator transaction. Spends the funding output of
the A-B channel. Can be used if B has not published a virtual transaction yet.

Intermediaries on the other hand store three sets of virtual transactions (Fig-
ure 43): “initiator” (Figure 3), “extend-interval” (Figure 4) and “merge-intervals”
(Figure 5). Each intermediary has one initiator tx, which spends the party’s two
funding outputs and produces four: one funding output for each base channel,
one output that directly pays the intermediary coins equal to the total value
in the virtual channel, and one virtual output. If both funding outputs are still
unspent, publishing its initiator tx is the only way for an intermediary to close
either of its channels.

V

cA + cB

σA,F ∧ σB,F

cB + cC

σB,F ∧ σC,F

cA + cB − cvirt

2/{pkA,F ′ , pkBl,F
′}

cvirt

pkB,out

cvirt

n/{pk{A,B},j}j∈[n] ∨ (2/{pkA,V , pkE,V }+ t)

cB + cC − cvirt

2/{pkBr,F ′ , pkCl,F
′}

Fig. 3. A - E virtual channel: B’s initiator transaction. Spends the funding outputs of
the A-B and B-C channels. Can be used if neither A nor C have published a virtual
transaction yet.

Furthermore, each intermediary has O(n) extend-interval transactions. If ex-
actly one of the party’s two base channels’ funding outputs is unspent, publishing
an extend-interval transaction is the only way for the party to close that base
channel. Such a transaction consumes two outputs: the only available funding
output and a suitable virtual output, as discussed below. An extend-interval tx
has three outputs: A funding output replacing the one just spent, one output

8

V

cvirt∧n
j=1 σ{A},j

cB + cC

σB,F ∧ σC,F

cvirt

pkB,out

cvirt

n/{pk{A,B},j}j∈[n] ∨ (2/{pkA,V , pkE,V }+ t)

cB + cC − cvirt

2/{pkBr,F ′ , pkCl,F
′}

Fig. 4.A - E virtual channel: One ofB’s extend interval transactions. σ is the signature.
Spends the virtual output of A’s initiator transaction and the funding output of the
B-C channel. Can be used if A has already published its initiator transaction and C
has not published a virtual transaction yet.

V

cvirt∧n
j=1 σ{A},j

cvirt∧n
j=1 σ{C},j

cvirt

pkB,out

cvirt

n/{pk{A,B,C},j}j∈[n] ∨ (2/{pkA,V , pkE,V }+ t)

Fig. 5. A - E virtual channel: One of B’s merge intervals transactions. Spends the
virtual outputs of A’s and C’s virtual transactions. Can be used if both A and C have
already published their initiator transactions. Notice that the interval of C’s virtual
output only contains C, which can only happen if C has published its initiator and not
any other of its virtual transactions.

9

that directly pays the intermediary coins equal to the total value of the virtual
channel, and one virtual output.

Last, each intermediary has O(n2) merge-intervals transactions. If both base
channels’ funding outputs of the party are spent, publishing a merge-intervals
transaction is the only way for the party to close either base channel. Such a
transaction consumes two suitable virtual outputs, as discussed below. It has
two outputs: One that directly pays the intermediary coins equal to the total
value of the virtual channel, and one virtual output.

To understand why this multitude of virtual transactions is needed, we now
zoom out from the individual party and discuss the dynamic of the system as
a whole. The first party Pi that wishes to close a base channel observes that
its funding output(s) remain(s) unspent and publishes its initiator transaction.
First, this allows Pi to use its commitment transaction to close the base channel.
Second, in case Pi is an intermediary, it directly regains the coins it has locked
for the virtual channel. Third, it produces a virtual output that can only be
consumed by Pi−1 and Pi+1, the parties adjacent to Pi (if any) with specific
extend-interval transactions. The virtual output of this extend-interval trans-
action can in turn be spent by specific extend-interval transactions of Pi−2 or
Pi+2 that have not published a transaction yet (if any) and so on for the next
neighbours. The idea is that each party only needs to publish a single virtual
transaction to “collapse” the virtual layer and each virtual output uniquely de-
fines the continuous interval of parties that have already published a virtual
transaction and only allow parties at the edges of this interval to extend it. This
prevents malicious parties from indefinitely replacing a virtual output with a
new one. As the name suggests, merge-intervals transactions are published by
parties that are adjacent to two parties that have already published their virtual
transactions an in effect joins the two intervals into one.

Each virtual output can also be used as the funding output for the virtual
channel after a timelock, to protect from unresponsive parties blocking the vir-
tual channel indefinitely. This in turn means that if an intermediary observes
either of its funding outputs being spent, it has to publish its suitable virtual
transaction before the timelock expires to avoid losing funds. What is more, all
virtual outputs need the signature of all parties to be spent before the timelock
(i.e. they have an n-of-n multisig) in order to prevent colluding parties from
faking the intervals progression. To ensure that parties have enough time to
react, the timelock of a virtual output is the maximum of the required time-
locks of the intermediaries that can spend it, where the required timelock of
a party is p + s if its channel is simple (p being a global constant represent-
ing the maximum number of blocks between activations of non-negligent parties
and s = (2 + q)windowSize, stemming from Proposition 1 of Section 11; note
windowSize is the maximum number of blocks a party may be missing from the

latest blockchain state at any given time), or p+
n−1∑
j=2

(s− 1 + tj) if the channel is

virtual, where tj is the required timelock of the jth base channel of the interme-
diary’s channel. The only exception are virtual outputs that correspond to an

10

interval that includes all parties, which can only be used as funding outputs for
the virtual channel as its interval cannot be further extended, therefore the two
separate spending methods and the associated timelock are dropped.

Many extend-interval and merge-intervals transactions have to be able to
spend different outputs, depending on the order other base parties publish their
virtual transactions. For example, P3’s extend-interval tx that extends the in-
terval {P1, P2} to {P1, P2, P3} must be able to spend both the virtual output of
P2’s initiator transaction and P2’s extend-interval transaction which has spent
P1’s initiator transaction. The same issue is faced by commitment transactions
of a virtual channel, as any virtual output can potentially be used as the fund-
ing ouput for the channel. In order for the received signatures for virtual and
commitment txs to be valid for multiple previous outputs, the previously pro-
posed ANYPREVOUT sighash flag [44] is needed to be added to Bitcoin. We show
in Theorem 3 that variadic recursive virtual channels with O(1) on-chain and
subexponential number of off-chain transactions for each party cannot be con-
structed in Bitcoin without this flag. We hope this work provides additional
motivation for this flag to be included in the future.

Note also that the newly established virtual channel can itself act as a base
for further virtual channels, as its funding output can be unilaterally put on-
chain in a pre-agreed maximum number of blocks. This in turn means that, as
we discussed above, a further virtual channel must take the delay of its virtual
base channels into account to determine the timelocks needed for its own virtual
outputs.

As for the actual protocol needed to establish a virtual channel, 6 rounds
of communication are needed, each starting from the funder and hop by hop
reaching the fundee and back (c.f. Figure 24). The first communicates parties’
identities, their funding keys and their neighbours’ channel balances, the second
creates new commitment transactions, the third circulates virtual keys, all par-
ties’ coins and desired timelocks, the fourth and the fifth circulate signatures
for the virtual transactions (signatures for virtual outputs and funding outputs
respectively) and the sixth circulates revocation signatures for the old channel
states.

In order to better grasp the manner in which the construction described
achieves its intended goals, let us now turn to an example. Consider an estab-
lished virtual channel on top of 4 preexisting simple base channels. Let A, B,
C, D and E the relevant parties, which control the (A,B), (B,C), (C,D) and
(D,E) base channels, along with the (A,E) virtual channel. After carrying out
some payments, A decides to close the virtual channel. It therefore publishes its
initiator transaction, thus consuming the funding output of (A,B) and producing
(among others) a virtual output with the interval {A}. B notices this before the
timelock of the virtual output expires and publishes its extend-interval transac-
tion that consumes the aforementioned virtual output and the funding output of
(B,C), producing a virtual output with the interval {A,B}. C in turn publishes
the corresponding extend-interval transaction, consuming the virtual output of
B and the funding output of (C,D) while producing a virtual output with the

11

interval {A,B,C}. Finally D publishes the last extend-interval transaction, thus
producing an interval with all players. Instead of a virtual output, it produces
the funding output for the virtual channel (A,E). Now A can spend this funding
output with its latest commitment transaction. The entire process is depicted
schematically in Figure 6. Note that if any of B, C or D do not act within the
timelock prescribed in their consumed virtual output, then A or E can spend
the virtual output with their latest commitment transaction, thus eventually A
can close its virtual channel in all cases.

A

B

C

D

2/{pkA,F , pkB,F } 2/{pkB,F , pkC,F } 2/{pkC,F , pkD,F } 2/{pkD,F , pkE,F }

2/{pkA,F ′ , pkB,F ′}
{A}

2/{pkB,F ′ , pkC,F ′}
pkB,out

{A,B}

2/{pkC,F ′ , pkD,F ′}pkC,out

{A,B,C}

2/{pkD,F ′ , pkE,F ′}
pkD,out

2/{pkA,V , pkE,V }

Fig. 6. 4 simple channels supporting a virtual. A initiates the closing procedure and
no party is negligent.

12

3 Preliminaries

In this work we embrace the Universal Composition (UC) framework [11] to
model parties, network interactions, adversarial influence and corruptions, as
well as formalise and prove security.

UC closely follows and expands upon the paradigm of simulation-based se-
curity [45]. For a particular real world protocol, the main goal of UC is allow
us to provide a simple “interface”, the ideal world functionality, that describes
what the protocol achieves in an ideal way. The functionality takes the inputs
of all protocol parties and knows which parties are corrupted, therefore it nor-
mally can achieve the intention of the protocol in a much more straightforward
manner. At a high level, once we have the protocol and the functionality de-
fined, our goal is to prove that no probabilistic polynomial-time (PPT) ITM can
distinguish whether it is interacting with the real world protocol or the ideal
world functionality. If this is true we then say that the protocol UC-realises the
functionality.

The principal contribution of UC is the following: Once a functionality that
corresponds to a particular protocol is found, any other higher level protocol
that internally uses the former protocol can instead use the functionality. This
allows cryptographic proofs to compose and obviates the need for re-proving the
security of every underlying primitive in every new application that uses it, there-
fore vastly improving the efficiency and scalability of the effort of cryptographic
proofs.

In UC, a number of Interactive Turing Machines (ITMs) execute and send
messages to each other. At each moment only one ITM is executing (has the
“execution token”) and when it sends a message to another ITM, it transfers
the execution token to the receiver. Messages can be sent either locally (inputs,
outputs) or over the network.

The first ITM to be activated is the environment E . This can be any PPT
ITM. This ITM encompasses everything that happens around the protocol under
scrutiny, including the players that send instructions to the protocol. It also is
the ITM that tries to distinguish whether it is in the real or the ideal world. Put
otherwise, it plays the role of the distinguisher.

After activating and executing some code, E may input a message to any
party. If this execution is in the real world, then each party is an ITM running
the protocol Π. Otherwise if the execution takes place in the ideal world, then
each party is a dummy that simply relays messages to the functionality F . An
activated real world party then follows its code, which may instruct it to parse
its input and send a message to another party via the network.

In UC the network is fully controlled by the so called adversary A, which may
be any PPT ITM. Once activated by any network message, this machine can read
the message contents and act adaptively, freely communicate with E bidirection-
ally, choose to deliver the message right away, delay its delivery arbitrarily long,
even corrupt it or drop it entirely. Crucially, it can also choose to corrupt any
protocol party (in other words, UC allows adaptive corruptions). Once a party
is corrupted, its internal state, inputs, outputs and execution comes under the

13

full control of A for the rest of the execution. Corruptions take place covertly,
so other parties do not necessarily learn which parties are corrupt. Furthermore,
a corrupted party cannot become honest again.

The fact that A controls the network in the real world is modelled by pro-
viding direct communication channels between A and every other machine. This
however poses an issue for the ideal world, as F is a single party that replaces all
real world parties, so the interface has to be adapted accordingly. Furthermore,
if F is to be as simple as possible, simulating internally all real world parties is
not the way forward. This however may prove necessary in order to faithfully
simulate the messages that the adversary expects to see in the real world. To
solve these issues an ideal world adversary, also known as simulator S, is intro-
duced. This party can communicate freely with F and completely engulfs the
real world A. It can therefore internally simulate real world parties and generate
suitable messages so that A remains oblivious to the fact that this is the ideal
world. Normally it just relays messages between A and E .

From the point of view of the functionality, S is untrusted, therefore any
information that F leaks to S has to be carefully monitored by the designer.
Ideally it has to be as little as possible so that S does not learn more than what
is needed to simulate the real world. This facilitates modelling privacy.

At any point during one of its activations, E may return a binary value (either
0 or 1). The entire execution then halts. Informally, we say that Π UC-realises
F , or equivalently that the ideal and the real worlds are indistinguishable, if
∀ PPT A,∃ PPT S : ∀ PPT E , the distance of the distributions over the ma-
chines’ random tapes of the outputs of E in the two worlds is negligibly small.
Note the order of quantifiers: S depends on A, but not on E .

4 Model & Construction

In this section we will examine the architecture and the details of our model,
along with possible attacks and their mitigations. We follow the UC frame-
work [11] to formulate the protocol and its security. We list the ideal-world
functionality FChan in Section 9 (Figures 7-11) and a simulator S (Figures 19-
20), along with a real-world protocol ΠChan (Figures 21-55) that UC-realizes
FChan (Theorem 1). We give a self-contained description in this section, while
pointing to figures in Sections 9 and 10, in case the reader is interested in a
pseudocode style specification.

As in previous formulations, (e.g., [46]), the role of E corresponds to two
distinct actors in a real world implementation. On the one hand E passes inputs
that correspond to the desires of end-users (e.g. open a channel, pay, close), on
the other hand E is responsible with periodically waking up parties to check
the ledger and act upon any detected counterparty misbehaviour, similar to
an always-on “daemon” that periodically nudges the implementation to per-
form these checks. Since it is possible that E fails to wake up a party often
enough, ΠChan explicitly checks whether it has become “negligent” every time it

14

is activated and all security guarantees are conditioned on the party not being
negligent.

Our ideal world functionality FChan represents a single channel, either simple
or virtual. It acts as a relay betweenA and E , leaking all messages. This simplifies
the functionality and facilitates the indistinguishability argument by having S
simply running internally the real world protocols of the channel parties ΠChan

with no modifications. FChan internally maintains two state machines, one per
channel party (c.f. Figures 12, 13, 14, 15, 16, 17, 18) that keep track of which
internal parties are corrupted or negligent, whether the channel has opened,
whether a payment is underway, which external parties are to be considered
kindred (as they correspond to other channels owned by the same user, discussed
below) and whether the channel has closed. The single security check performed
is whether the on-chain coins are at least equal to the expected balance once the
channel closes. If this check fails, FChan halts.

Observe that an actual user may participate in various channels, therefore
it corresponds to more than one ITMs. This is the case for example for the
funder of a virtual channel and the corresponding party of the first base channel.
Such parties are called kindred. They communicate locally (i.e. via inputs and
outputs, without using the adversarially controlled network), they get corrupted
as a group and balance guarantees concern their aggregate coins.

Our real world protocol ΠChan, ran by party P , consists of two subprotocols:
the Lightning-inspired part, dubbed ln (Figures 21-40) and the novel virtual
layer subprotocol, named virt (Figures 41-55).

4.1 ln subprotocol

The ln subprotocol has two variations depending on whether P is the channel
funder (Alice) or the fundee (Bob). It performs a number of tasks: Initialisation
takes a single step for fundees and two steps for funders. ln first receives a
public key pkP,out from E . This is the public key that should eventually own all
P ’s coins after the channel is closed. ln also initialises its internal variables. If
P is a funder, ln waits for a second activation to generate a keypair and then
waits for E to endow it with some coins, which will be subsequently used to open
the channel (Figure 21).

After initialisation, the funder Alice is ready to open the channel. Once it is
given by E Bob’s identity, the initial channel balance c and, in case it is a virtual,
the identities of the base channel owners (Figure 28), Alice generates and sends
Bob her funding and revocation public keys (pkA,F , pkA,R) along with c, pkA,out,
and the base channel identities (if any). Given that Bob has been initialised, it
generates funding and revocation keys and replies to Alice with pkB,F , pkB,R,
and pkB,out (Figure 23).

The next step prepares the base channels (Figure 24). If our channel is a
simple one, then Alice simply generates the funding tx. If it is a virtual and
assuming all base parties (running ln) cooperate, a chain of messages from
Alice to Bob and back via all base parties is initiated (Figures 30 and 31). These
messages let each successive neighbour know the identities of all the base parties.

15

Furthermore each party instantiates a new “host” party that runs virt. It also
generates new funding keys and communicates them, along with its out key and
its leftward and rightward balances. If this circuit of messages completes, Alice
delegates the creation of the new virtual layer transactions to its new virt host,
which will be discussed later in detail. If the virtual layer is successful, each base
party is informed by its host accordingly, intermediaries return to the open
state and Alice and Bob continue the opening procedure. In particular, Alice
and Bob exchange signatures on the initial commitment transactions, therefore
ensuring that the funding output can be spent (Figure 25). After that, in case
the channel is simple the funding transaction is put on-chain (Figure 26) and
finally E is informed of the successful channel opening.

There are two facts that should be noted: Firstly, in case the opened channel
is virtual, each intermediary base party necessarily partakes in two channels.
However each protocol instance only represents a party in a single channel,
therefore each intermediary is in practice realised by two kindred ΠChan in-
stances that communicate locally, called “siblings”. Secondly, our protocol is not
designed to gracefully recover if other parties do not send an expected message
at any point in the opening or payment procedure. Such anti-Denial-of-Service
measures would greatly complicate the protocol and are left as a task for a real
world implementation. It should be however stressed that an honest party with
an open channel that has fallen victim to such an attack can still unilaterally
close the channel, therefore no coins are lost in any case.

Once the channel is open, Alice and Bob can carry out an unlimited number
of payments in either direction with a speed that is bounded only by network
delay. The payment procedure is identical for simple and virtual channels and
crucially it does not implicate the intermediaries. For a payment to be carried
out, the payee is first notified by E (Figure 35) and subsequently the payer is
instructed by E to commence the payment (Figure 34).

If the channel is virtual, each party also checks that its upcoming balance
is lower than the balance of its sibling’s counterparty and that the upcoming
balance of the counterparty is higher than the balance of its own sibling, oth-
erwise it rejects the payment. This is to mitigate a “griefing” attack (i.e. one
that does not lead to financial gain) where a malicious counterparty uses an old
commitment transaction to spend the base funding output, therefore blocking
the honest party from using its initiator virtual transaction. This check ensures
that the coins gained by the punishment are sufficient to cover the losses from
the blocked initiator transaction. If the attack takes place, other local channels
based directly or indirectly on it are informed and they moved to a failed state.
Note that this does not bring a risk of losing any of the total coins of all local
channels. We conjecture that this balance constraint can be lifted if the current
Lightning-based payment method is replaced with an eltoo-based one [21].

Subsequently each of the two parties builds the new commitment transaction
of its counterparty, signs it and sends over the signature, then the revocation
transactions for the previously valid commitment transactions are generated,
signed and the signatures are exchanged. To reduce the number of messages,

16

the payee sends the two signatures in one message. This does not put it at
risk of losing funds, since the new commitment transaction (for which it has
already received a signature and therefore can spend) gives it more funds than
the previous one.

ΠChan also monitors the chain for outdated commitment transactions by the
counterparty and publishes the corresponding revocation transaction in case one
is found (Figure 37). It also monitors whether the party is activated often enough
and marks it as negligent otherwise (Figure 21). The need for explicit negligence
marking stems from the fact that party activation is entirely controlled by E ,
therefore it can happen that an otherwise honest party is not activated in time
to prevent a malicious counterparty from successfully using an old commitment
transaction. Therefore at the beginning of every activation while the channel is
open, ln checks if the party has been activated within the last p blocks (where p is
an implementation-dependent global constant). If a party is marked as negligent,
no balance security guarantees are given (cf. Lemma 1). Note that this does not
affect indistinguishability with the ideal world, as FChan is notified by our S if
a party becomes negligent and does not perform the balance security check.

When either party is instructed by E to close the channel (Figure 39), it first
asks its host to close (details on the exact steps are discussed later) and once that
is done, the ledger is checked for any transaction spending the funding output.
In case the latest remote commitment tx is on-chain, then the channel is already
closed and no further action is necessary. If an old committment transaction
is on-chain, the corresponding revocation transaction is used for punishment.
If the funding output is still unspent, the party attempts to publish the latest
commitment transaction after waiting for any relevant timelock to expire. Until
the funding output is irrevocably spent, the party still has to periodically check
the blockchain and again be ready to use a revocation transaction if an old
commitment transaction spends the funding output after all (Figure 37).

4.2 virt subprotocol

This subprotocol acts as a mediator between the base channels and the Lightning-
based logic. Put otherwise, its responsibility is putting on-chain the funding
output of the channel when needed. When first initialised by a machine that
executes the ln subprotocol (Figure 41), it learns and stores the identities, keys,
and balances of various relevant parties, along with the required timelock and
other useful data regarding the base channels. It then generates a number of keys
as needed for the rest of the base preparation. If the initialiser is also the chan-
nel funder, then the virt machine initiates 4 “circuits” of messages. Each circuit
consists of one message from the funder P1 to its neighbour P2, one message
from each intermediary Pi to the “next” neighbour Pi+1, one message from the
fundee Pn to its neighbour Pn−1 and one more message from each intermediary
Pi to the “previous” neighbour Pi−1, for a total of 2 ·(n−1) messages per circuit.

The first circuit (Figure 42) communicates all “out”, virtual and funding
keys (both old and new), all balances and all timelocks among all parties. In
the second circuit (Figure 49) every party receives and verifies all signatures

17

for all inputs of its virtual transactions that spend a virtual output. It also
produces and sends its own such signatures to the other parties. Each party

generates and circulates S =
n−2∑
i=2

(n − 3 + χi=2 + χi=n−1 + 2(i − 2 + χi=2)(n −

i − 1 + χi=n−1)) ∈ O(n3) signatures (where χA is the characteristic function
that equals 1 if A is true and 0 else). On a related note, the number of virtual
transactions stored by each party is 1 for the two endpoints (Figure 44) and
n − 2 + χi=2 + χi=n−1 + (i − 2 + χi=2)(n − i − 1 + χi=n−1) ∈ O(n2) for each
intermediary (Figure 43). The third circuit concerns sharing signatures for the
funding outputs (Figure 50). Each party signs all transactions that spend a
funding output relevant to the party, i.e. the initiator transaction and some of
the extend-interval transactions of its neighbours. The two endpoints send 2
signatures each when n = 3 and n−2 signatures each when n > 3, whereas each
intermediary sends 2 + χi+1<n(n− 2 + χi=n−2) + χi−1>1(n− 2 + χi=3) ∈ O(n)
signatures each. The last circuit of messages (Figure 51) carries the revocations
of the previous states of all base channels. After this, base parties can only use
the newly created virtual transactions to spend their funding outputs. In this
step each party exchanges a single signature with each of its neighbours.

When virt is instructed to close (Figure 53), it first notifies its virt host (if
any) and waits for it to close. After that, it signs and publishes the unique valid
virtual transaction. It then repeatedly checks the chain to see if the transaction is
included (Figure 54). If it is included, the virtual layer is closed and virt informs
its higher layer. The instruction to close has to be received potentially many
times, because a number of virtual transactions (the ones that spend the same
output) are mutually exclusive and therefore if another base party publishes an
incompatible virtual transaction contemporaneously and that remote transaction
enters the chain, then our virt party has to try again with another, compatible
virtual transaction.

5 Security

The first step to formally arguing about the security of Elmo is to clearly delin-
eate the exact security guarantees it provides. To that end, we first prove two
similar claims regarding the conservation of funds in the real and ideal world,
Lemmas 1 and 2 respectively. Informally, the first establishes that an honest,
non-negligent party which was implicated in an already closed channel on which
a number of payments took place will have at least the expected funds on-chain.

Lemma 1 (Real world balance security). Consider a real world execution
with P ∈ {Alice,Bob} honest ln ITI and P̄ the counterparty ITI. Assume that
all of the following are true:

– the internal variable negligent of P has value “False”,
– P has transitioned to the open State for the first time after having received

(open, c, . . .) by either E or P̄ ,

18

– P [has received (fund me, fi, . . .) as input by another ln ITI while State
was open and subsequently P transitioned to open State] n times,

– P [has received (pay, di) by E while State was open and P subsequently
transitioned to open State] m times,

– P [has received (get paid, ei) by E while State was open and P subsequently
transitioned to open State] l times.

Let φ = 1 if P = Alice, or φ = 0 if P = Bob. If P receives (close) by E and,
if hostP 6= GLedger the output of hostP is (closed), then eventually the state
obtained when P inputs (read) to GLedger will contain h outputs each of value
ci and that has been spent or is exclusively spendable by pkR,out such that

h∑
i=1

ci ≥ φ · c−
n∑
i=1

fi −
m∑
i=1

di +

l∑
i=1

ei (1)

with overwhelming probability in the security parameter, where R is a local, kin-
dred machine (i.e. either P , P ’s sibling, the party to which P sent fund me
if such a message has been sent, or the sibling of one of the transitive closure
of hosts of P).

The second lemma states that for an ideal party in a similar situation, the
balance that FChan has stored for it is at least equal to the expected funds.

Lemma 2 (Ideal world balance). Consider an ideal world execution with
functionality FChan and simulator S. Let P ∈ {Alice,Bob} one of the two parties
of FChan. Assume that all of the following are true:

– StateP 6= ignored,
– P has transitioned to the open State at least once. Additionally, if P =

Alice, it has received (open, c, . . .) by E prior to transitioning to the open
State,

– P [has received (fund me, fi, . . .) as input by another FChan/ ln ITI while
StateP = open and P subsequently transitioned to open State] n ≥ 0 times,

– P [has received (pay, di) by E while StateP = open and P subsequently
transitioned to open State] m ≥ 0 times,

– P [has received (get paid, ei) by E while StateP = open and P subsequently
transitioned to open State] l ≥ 0 times.

Let φ = 1 if P = Alice, or φ = 0 if P = Bob. If FChan receives (close, P) by S,
then the following holds with overwhelming probability on the security parameter:

balanceP = φ · c−
n∑
i=1

fi −
m∑
i=1

di +

l∑
i=1

ei (2)

In both cases the expected funds are (initial balance - funds for supported
virtuals - outbound payments + inbound payments). Note that the funds for
supported virtuals only refer to those funds used by the funder of the virtual
channel, not the rest of the base parties.

19

Both proofs follow the various possible execution paths, keeping track of the
resulting balance in each case and coming to the conclusion that balance is secure
in all cases, except if signatures are forged.

It is important to note that in fact ΠChan provides a stronger guarantee,
namely that an honest, non-negligent party with an open channel can unilaterally
close it and obtain the expected funds on-chain within a known time frame,
given that E sends the necessary “daemon” messages. This stronger guarantee is
sufficient to make this construction reliable enough for real-world applications.
However a corresponding ideal world functionality with such guarantees would
have to be aware of the specific transactions and signatures, therefore it would
be essentially as complicated as the protocol, thus violating the spirit of the
simulation-based security paradigm.

Subsequently we prove Lemma 3, which informally states that if an ideal
party and all its kindred parties are honest, then FChan does not halt with
overwhelming probability.

Lemma 3 (No halt). In an ideal execution with FChan and S, if the kindred
parties of the honest parties of FChan are themselves honest, then the functional-
ity halts with negligible probability in the security parameter (i.e. l. 21 of Fig. 11
is executed negligibly often).

This is proven by first arguing that if the conditions of Lemma 2 for the ideal
world hold, then the conditions of Lemma 1 also hold for the equivalent real
world execution, therefore in this case FChan does not halt. We then argue that
also in case the conditions of Lemma 2 do not hold, FChan may never halt as
well, therefore concluding the proof.

We then formulate and prove Theorem 1, which states thatΠChan UC-realises
FChan.

Theorem 1 (Recursive Virtual Payment Channel Security). The proto-
col ΠChan UC-realises FChan given a global functionality GLedger and assuming
the security of the underlying digital signature. Specifically,

∀ PPT A,∃ PPT S : ∀ PPT E it is execGLedger

ΠChan,A,E ≈ execFChan,GLedger

S,E

The corresponding proof is a simple application of Lemma 3, the fact that
FChan is a simple relay and that S faithfully simulates ΠChan internally.

Proof (Proof of Theorem 1). By inspection of Figures 7 and 19 we can de-
duce that for a particular E , in the ideal world execution execFChan,GLedger

SA,E ,
SA simulates internally the two ΠChan parties exactly as they would execute
in execGLedger

ΠChan,A,E , the real world execution, in case FChan does not halt. Indeed,
FChan only halts with negligible probability according to Lemma 3, therefore the
two executions are computationally indistinguishable.

Lastly we construct a “multi-session extension” [47] of FChan and of ΠChan

and prove Theorem 2, which claims that the real-world multi-session extension
protocol UC-realises the ideal-world multi-session extension functionality. The
proof is straightforward and utilises the transitivity of UC-emulation.

20

Definition 1 (Multi-Session Extension of a Protocol). Let protocol π. Its
multi-session extension π̂ has the same code as π and has 2 session ids: the
“sub-session id” ssid which replaces the session id of π and the usual session
id sid which has no further function apart from what is prescribed by the UC
framework.

Theorem 2 (Indistinguishability of multiple sessions). Let F̂Chan be the
multi-session extension of FChan and Π̂Chan the protocol-multi-session extension
of ΠChan.

∀ PPT A,∃ PPT S : ∀ PPT E it is execGLedger

Π̂Chan,A,E
≈ execF̂Chan,GLedger

S,E

Proof (Proof of Theorem 2). We observe that F̂Chan uses FChan internally. Ac-
cording to the UC theorem [11] and given that ΠChan UC-realises FChan (Theo-
rem 1), F̂FChan→ΠChan

Chan UC-emulates F̂Chan. We now observe that F̂FChan→ΠChan

Chan

behaves identically to a session with Π̂Chan protocols, as the former routes each
message to the same internal ΠChan instance that would handle the same mes-
sage in the latter case, therefore F̂FChan→ΠChan

Chan UC-emulates Π̂Chan. By the
transitivity of UC-emulation, we deduce that F̂Chan UC-emulates Π̂Chan.

Formal proofs for the three lemmas can be found in Section 12.

6 On the necessity of ANYPREVOUT

As our protocol relies on the ANYPREVOUT sighash flag, it cannot be deployed
on Bitcoin until it is introduced. We here argue that any efficient protocol that
achieves goals similar to ours and has parties maintain Bitcoin transactions in
their local state requires the proposed sighash flag.

Theorem 3 (ANYPREVOUT is necessary). Consider n independent ordered off-
chain “base” protocols over Bitcoin (i.e. generalisations of pairwise channels to
more than 2 participants) such that every pair of consecutive protocols (Πi−1, Πi)
for i ∈ {2, . . . , n− 1} has a common party Pi. Also consider a protocol that es-
tablishes a virtual channel (i.e. a payment channel without any on-chain txs
when opening) between two parties P1, Pn that take part in the first and last off-
chain protocols respectively. If this protocol guarantees that each honest protocol
party (both endpoints and intermediaries) needs to put at most O(1) transac-
tions on-chain for unilateral closure and needs to have at most a subexponential
(in n) number of transactions available off-chain, then the protocol needs the
ANYPREVOUT sighash flag.

Proof (Proof of Theorem 3). When an off-chain protocol is closed, there has to
be some form of information and coin flow to its neighbouring protocols in order
to ensure that the virtual channel will be funded exactly once if at least one of
its participants is honest and that no honest intermediary will be charged. Such

21

flow can happen either with simultaneous closures (e.g. our initiator txs) or with
special outputs that will be consumed when neighbours close (e.g. our virtual
outputs). There is no other possible manner of on-chain enforceable information
and coin flow that is compatible with the theorem requirements. This includes
adaptor signatures [9], as they facilitate coin exchange only if the parties and
all base protocols for this particular virtual channel were known when the off-
chain protocols were opened (contradicting off-chain protocol independence) or
if new on-chain transactions are introduced when opening the virtual channel
(contradicting off-chain opening).

Therefore each party must have different transactions available to close its
off-chain protocol(s), each corresponding to a different order of actions taken by
participants of other off-chain protocols. This is true because if a party could
close its protocol in an identical way whether one of its neighbouring protocols
had already closed or not, it would then fail to make use of and possibly propa-
gate to the other side the relevant coins and information. We will now prove by
induction in the number m = n − 1 of base protocols that the number of these
transactions Tm is exponential if ANYPREVOUT is not available, by calculating a
lower bound, specifically, that Tm ≥ 2m−1.

If m = 2, then there is a single intermediary P2. It needs at least 2 different
transactions: one if it moves first and one if it moves second, after a member in
the off-chain protocol to its right, e.g. P3. From this it follows immediately that
T2 ≥ 2.

If m = k > 2, then assume that P2 needs to have f ≥ 2m−1 transactions
available to be able to unilaterally close its protocols in all scenarios in which
all parties Pi for i ∈ {3, . . . , k + 1} act before P2. Each of those transactions
corresponds to one or more orderings of the closing actions of the parties of the
other base protocols. No two transactions correspond to the same ordering.

For the induction step, consider a virtual channel over m = k + 1 base
protocols. P2 would still need f different transactions, each corresponding to
the same orderings of parties’ actions as in the induction hypothesis. These
transactions are possibly different to the ones they correspond to in the case of
the induction hypothesis, but their total number is the same. For each of these
orderings we produce two new orderings: one in which the new party Pk+2 acts
right before and one in which it acts right after Pk+1. Given such an ordering o,
consider the neighbor relation between the set of parties that have been activated
and take its reflexive and transitive closure ∼o. Now consider any party Pi with
the following properties: (i) it acts after Pk+2 and Pk+1 (e.g., P2 is such a party),
and (ii) at least one of its neighbours belongs to the equivalence class of ∼o that
contains Pk+1. Observe that such party Pi is always well defined. Since Pk+1

must necessarily use a different transaction for each of the two orderings with
Pk+2, and since there is a continuous chain of parties between Pk+1 and Pi that
have already acted, it is the case that Pi must have a different transaction for
each of these two cases as well, as without ANYPREVOUT, an input of a transaction
can only spend a specific output of a specific transaction. Finally, given that P2

will have to act in response to at least as many of the above options, we deduce

22

that P2 needs to have at least 2f ≥ 2m transactions available. This completes
the induction step.

As a result, we conclude that party P2 needs at least 2m−1 ∈ O(2n) transac-
tions to be able to unilaterally close its protocol.

Note that in case of a protocol that resembles ours but does not make use
of ANYPREVOUT, the situation is further complicated in two distinct ways: First,
virtual channel parties would have to generate and sign an at least exponential
number of new commitment transactions on each update, one for each possible
virtual output, therefore making virtual channel payments unrealistic. Second, if
one of the base channels of a virtual channel is itself virtual, then the new channel
needs a different set of virtual transactions for each of the (exponentially many)
possible funding outputs of the base virtual channel, thus further compounding
the issue.

7 Discussion and Future work

A number of features can be added to our protocol for additional efficiency,
usability and flexibility. First of all, a new subprotocol for cooperatively closing
a virtual channel can be created. In the optimistic case, a virtual channel would
then be closed with no on-chain transactions and its base channels would become
independent once again. To achieve this goal, cooperation is needed between all
base parties of the virtual channel and possibly parties implicated in other virtual
channels that use the same base channels.

In our current construction, each time a particular channel C acts as a base
channel for a new virtual channel, one more “virtualisation layer” is added. When
one of its owners wants to close C, it has to put on-chain as many transactions as
there are virtualisation layers. Also the timelocks associated with closing a virtual
channel increase with the number of virtualisation layers of its base channels.
Both these issues can be alleviated by extending the opening subprotocol with
the ability to cooperatively open multiple virtual channels in the same layer,
either simultaneously or as an amendment to an existing virtualisation layer.

Due to the possibility of the griefing attack discussed in Subection 4.1, the
range of balances a virtual channel can support is limited by the balances of
neighbouring channels. We believe that this limitation can be lifted if instead of
using a Lightning-based construction for the payment layer, we instead replace
it with an eltoo-based [21] construction. Since in eltoo a maliciously published
old state can be simply re-spent by the honest latest state, the griefing attack
is completely avoided. What is more, our protocol shares with eltoo the need
for the ANYPREVOUT sighash flag, therefore no additional requirements from the
Bitcoin protocol would be added by this change. Lastly, due to the separation of
intermediate layers with the payment layer in our pseudocode implementation as
found in Section 10 (i.e. the distinction between the ln and the virt protocols),
this change should in principle not need extensive changes in all parts of the
protocol.

23

As it currently stands, the timelocks calculated for the virtual channels are
based on p (Figure 21) and s (Figure 25), which are global constants that are
immutable and common to all parties. The parameter s stems from the liveness
guarantees of Bitcoin, as discussed in Proposition 1 and therefore cannot be
tweaked. However, p represents the maximum time between two activations of
a non-negligent party, so in principle it is possible for the parties to explicitly
negotiate this value when opening a new channel and even renegotiate it after the
channel has been opened if need be. We leave this usability-augmenting protocol
feature as future work.

As we mentioned earlier, our protocol is not designed to “gracefully” recover
from a situation in which halfway through a subprotocol, one of the counterpar-
ties starts misbehaving. Currently the only solution is to unilaterally close the
channel. This however means that DoS attacks (that still do not lead to financial
losses) are possible. A practical implementation of our protocol would need to
expand the available actions and states to be able to transparently and grace-
fully recover from such problems, avoiding closing the channel where possible,
especially when the problem stems from network issues and not from malicious
behaviour.

Furthermore, any deployment of the protocol has to explicitly handle the
issue of transaction fees. These include miner fees for on-chain transactions and
intermediary fees for the parties that own base channels and facilitate opening
virtual channels. Our protocol is compatible with any such fee parameterization
and we leave for future work the incentive analyses that can determine concrete
values for such intermediary fees.

In order to increase readability and to keep focus on the salient points of the
construction, our protocol does not exploit a number of possible optimisations.
These include a number of techniques employed in Lightning that drastically
reduce storage requirements, along with a variety of possible improvements to
our novel virtual subprotocol. Most notably, the Taproot [48] update that is
planned for Bitcoin will allow for a drastic reduction in the size of transactions,
as in the optimistic case only the hash of the Script has to be added to the
blockchain and the n signatures needed to spend a virtual output can be replaced
with their aggregate, resulting in constant size storage. As this work is mainly a
proof of feasibility, we leave these optimisations as future work.

Additionally, our protocol does not feature one-off multi-hop payments like
those possible in Lightning. This however is a useful feature in case two parties
know that they will only transact once, as opening a virtual channel needs sub-
stantially more network communication than performing an one-off multi-hop
payment. It would be therefore fruitful to also enable the multi-hop payment
technique used in Lightning and allow users to choose which method to use in
each case.

Moreover, the result of Theorem 3 excludes a large class of variadic recursive
protocols that do not make use of ANYPREVOUT from achieving practical per-
formance, but it does not preclude the existence of such protocols. Specifically,
there may be some as of yet unknown protocol technique that allows parties to

24

generate only the transactions that they need to put on-chain during the clos-
ing procedure, from a master secret-key that has been received when opening.
This would permit parties to circumvent the need for exchanging and storing an
exponential number of signatures and transactions even without ANYPREVOUT;
we note that the theorem is not invalidated: there are still exponentially many
signatures that are required to be accessible. It is just that there is a way to
compress the information needed to generate them in the state of each party.
The existence of such state compression techniques is left as an interesting future
direction.

Last but not least, the current analysis gives no privacy guarantees for the
protocol, as it does not employ onion packets [49] like Lightning. Furthermore,
FChan leaks all messages to the ideal adversary therefore theoretically no privacy
is offered at all. Nevertheless, onion packets can be incorporated in the current
construction and intuitively our construction leaks less data than Lightning for
the same multi-hop payments, as intermediaries in our case do not learn the
new balance after every payment, contrary to Lightning. Therefore a future
extension can improve the privacy of the construction and formally demonstrate
exact privacy guarantees.

8 Conclusion

In this work we presented Recursive Virtual Payment Channels for Bitcoin,
a construction which enables the establishment of pairwise payment channels
without the need for posting on-chain transactions. Such a channel can be opened
over a path of consecutive base channels of arbitrary length, i.e., the virtual
channel constructor is variadic.

The base channels themselves can be virtual, therefore the novel recursive
nature of the construction. A key performance characteristic of our construction
is that it has optimal round complexity for channel closing: a single transaction
is required by any participant to turn the virtual channel into a simple one and
one more transaction is needed to close it, be it an end-point or an intermediary.

We formally described the protocol in the UC setting, provided a correspond-
ing ideal functionality and simulator and finally proved the indistinguishability of
the protocol and functionality, along with the balance security property that en-
sures no loss of funds for honest, non-negligent parties. This is achieved through
the use of the ANYPREVOUT sighash flag, which is a proposed feature for Bitcoin,
also required by the eltoo improvement to lightning, [21].

We also proved that any construction as efficient as ours will require from
channel intermediaries to access an exponential number of different transactions
in the number of base channels, unless a sighash flag such as ANYPREVOUT is
available. Barring the existence of a state compression method that manages
to compress this exponentially large set of transactions into a polynomial size
private state of some form, our work serves as further evidence for the usefulness
of including this flag into the Bitcoin protocol.

25

9 Functionality & Simulator

– On receiving (msg) by party R to P ∈ {Alice,Bob} by means of
mode ∈ {input, output, network}, handle it according to the corresponding rule
in Fig. 8, 9, 11, or 10 (if any) and subsequently send (relay, msg, P , E , input)
A. // all messages are relayed to A

– On receiving (relay, msg, P , R, mode) by A (mode ∈ {input, output,network},
P ∈ {Alice,Bob}), relay msg to R as P by means of mode. // A fully controls
outgoing messages by FChan

– On receiving (info, msg) by A, handle (msg) according to the corresponding
rule in Fig. 8, 9, 11, or 10 (if any). After handling the message or after an
“ensure” fails, send (handled, msg) to A. // (info, msg) messages by S always
return control to S without any side-effect to any other ITI, except if FChan

halts
– FChan keeps track of two state machines, one for each of Alice, Bob. If there are

more than one suitable rules for a particular message, or if a rule matches the
message for both parties, then both rule versions are executed. // the two rules
act on different state machines, so the order of execution does not matter

Functionality FChan – general message handling rules

Fig. 7.

1: On first activation: // before handing the message
2: pkP ← ⊥; hostP ← ⊥; enablerP ← ⊥; balanceP ← 0;
3: StateP ← uninit

4: On (became corrupted or negligent, P) by A or on output (enabler
used revocation) by hostP when in any state:

5: StateP ← ignored

6: On (init, pk) to P by E when StateP = uninit:
7: pkP ← pk
8: StateP ← init

9: On (open, x, GLedger, . . .) to Alice by E when StateA = init:
10: store x
11: StateA ← tentative base open

Functionality FChan – open state machine, P ∈ {Alice,Bob}

26

12: On (base open) by A when StateA = tentative base open:
13: balanceA ← x
14: StateA ← open

15: On (base open) by A when StateB = init:
16: StateB ← open

17: On (open, x, hops 6= GLedger, . . .) to Alice by E when StateA = init:
18: store x
19: enablerA ← hops[0].left
20: add enablerA to Alice’s kindred parties
21: StateA ← pending virtual open

22: On output (funded, host, . . .) to Alice by enablerA when
StateA = pending virtual open:

23: hostA ← host[0].left
24: StateA ← tentative virtual open

25: On output (funded, host, . . .) to Bob by ITI R ∈ {FChan, ln} when
StateB = init:

26: enablerB ← R
27: add enablerB to Bob’s kindred parties
28: hostB ← host
29: StateB ← tentative virtual open

30: On (virtual open) by A when StateP = tentative virtual open:
31: if P = Alice then balanceP ← x
32: StateP ← open

Fig. 8.

1: On (pay, x) by E when StateP = open: // P pays P̄
2: store x
3: StateP ← tentative pay

4: On (pay) by A when StateP = tentative pay: // P pays P̄
5: StateP ← (sync pay, x)

6: On (get paid, y) by E when StateP = open: // P̄ pays P
7: store y

Functionality FChan – payment state machine, P ∈ {Alice,Bob}

27

8: StateP ← tentative get paid

9: On (pay) by A when StateP = tentative get paid: // P̄ pays P
10: StateP ← (sync get paid, x)

11: When StateP = (sync pay, x):
12: if StateP̄ ∈ {ignored, (sync get paid, x)} then
13: balanceP ← balanceP − x
14: // if P̄ honest, this state transition happens simultaneously with l. 21
15: StateP ← open
16: end if

17: When StateP = (sync get paid, x):
18: if StateP̄ ∈ {ignored, (sync pay, x)} then
19: balanceP ← balanceP + x
20: // if P̄ honest, this state transition happens simultaneously with l. 15
21: StateP ← open
22: end if

Fig. 9.

1: On input (fund me, x, . . .) by ITI R ∈ {FChan, ln} when StateP = open:
2: store x
3: add R to P ’s kindred parties
4: StateP ← pending fund

5: When StateP = pending fund:
6: if we intercept the command “define new virt ITI host” by A, routed

through P then
7: store host
8: StateP ← tentative fund
9: continue executing A’s command
10: end if

11: On (fund) by A when StateP = tentative fund:
12: StateP ← sync fund

13: When StateP = open:
14: if we intercept the command “define new virt ITI host” by A, routed

through P then
15: store host

Functionality FChan – funding state machine, P ∈ {Alice,Bob}

28

16: StateP ← tentative help fund
17: continue executing A’s command
18: end if
19: if we receive a relay message with msg = (init, . . . , fundee) addressed

from P by A then
20: add fundee to P ’s kindred parties
21: continue executing A’s command
22: end if

23: On (fund) by A when StateP = tentative help fund:
24: StateP ← sync help fund

25: When StateP = sync fund:
26: if StateP̄ ∈ {ignored, sync help fund} then
27: balanceP ← balanceP − x
28: hostP ← host
29: // if P̄ honest, this state transition happens simultaneously with l. 36
30: StateP ← open
31: end if

32: When StateP = sync help fund:
33: if StateP̄ ∈ {ignored, sync fund} then
34: hostP ← host
35: // if P̄ honest, this state transition happens simultaneously with l. 30
36: StateP ← open
37: end if

Fig. 10.

1: On (close) by E when StateP = open:
2: StateP ← closing

3: On input (balance) to P by R where R is kindred with P :
4: if StateP /∈ {uninit, init, pending virtual open, tentative virtual

open, tentative base open, ignored, closed} then
5: reply (my balance, balanceP , pkP , balanceP̄ , pkP̄)
6: else
7: reply (my balance, 0, pkP , 0, pkP̄)
8: end if

Functionality FChan – close state machine, P ∈ {Alice,Bob}

29

9: On (close, P) by A when StateP /∈ {uninit, init, pending virtual open,
tentative virtual open, tentative base open, ignored}:

10: input (read) to GLedger as P and assign ouput to Σ
11: coins ← sum of values of outputs exclusively spendable or spent by pkP in

Σ
12: balance ← balanceP
13: for all P ’s kindred parties R do
14: input (balance) to R as P and extract balanceR, pkR from response
15: balance ← balance + balanceR
16: coins ← coins + sum of values of outputs exclusively spendable or

spent by pkR in Σ
17: end for
18: if coins ≥ balance then
19: StateP ← closed
20: else // balance security is broken
21: halt
22: end if

Fig. 11.

1st activation

uninit

init

E

(init, pk)

Fig. 12. FChan state machine up to init (both parties)

30

init

pending virtual open

tentative base open

tentative virtual open

open

E : (open,balA, enablerA) E : (open, balA,GLedger)

enablerA : (funded, hostA)

S : (base open)

S : (virtual open)

Fig. 13. FChan state machine from init up to open (funder)

init

tentative virtual open

open

enablerB : (funded,hostB)

S : (base open), balB ← 0

S : (virtual open),balB ← 0

Fig. 14. FChan state machine from init up to open (fundee)

31

open

tentative help fund pending fund

sync help fund

StateP̄
?
∈ {ignore, sync fund}

tentative fund

sync fund

StateP̄
?
∈ {ignore, sync help fund}

intercept “define virt ITI ‘hostP ’” R : (fund me, f)

S : (fund)

E

True

False

intercept “define virt ITI ‘hostP ’”

S : (fund)

E

True; balP ← balP − f

False

Fig. 15. FChan state machine for funding new virtuals (both parties)

32

open

tentative pay tentative get paid

sync pay

StateP̄
?
∈ {ignore, sync get paid}

sync get paid, d

StateP̄
?
∈ {ignore, (sync pay, d)}

E : (pay, d) E : (get paid, d)

S : (pay)

E

True; balP ← balP − d

False

S : (pay)

E

True; balP ← balP + f

False

Fig. 16. FChan state machine for payments (both parties)

33

open

closing

balP
?

≥ coinsGLedger

P

closed halt

E : close

S : (close, P)

S : (close, P)

True False

Fig. 17. FChan state machine for channel closure (both parties)

<any state>

ignored

S : ignore or hostP : (enabler punished)

Fig. 18. FChan state machine for corruption, negligence or punishment of the counter-
party of a lower layer (both parties)

34

– On receiving (relay, in_msg, P , R, in_mode) by FChan (in_mode ∈ {input,
output, network}, P ∈ {Alice,Bob}), handle (in_msg) with the simulated party
P as if it was received from R by means of in_mode. In case simulated P does
not exist yet, initialise it as an ln ITI. If there is a resulting message out_msg
that is to be sent by simulated P to R′ by means of out_mode ∈ {input,
output, network}, send (relay, out_msg, P , R′, out_mode) to FChan.

– On receiving by FChan a message to be sent by P to R via the network, carry
on with this action (i.e. send this message via the internal A).

– Relay any other incoming message to the internal A unmodified.
– On receiving a message (msg) by the internal A, if it is addressed to one of the

parties that correspond to FChan, handle the message internally with the
corresponding simulated party. Otherwise relay the message to its intended
recipient unmodified. // Other recipients are E , GLedger or parties unrelated to
FChan

Given that FChan relays all messages and that we simulate the real-world machines
that correspond to FChan, the simulation is perfectly indistinguishable from the
real world.

Simulator S – general message handling rules

Fig. 19.

– “P ” refers one of the parties that correspond to FChan.
– When an action in this Figure interrupts an ITI simulation, continue simulating

from the interruption location once action is over/FChan hands control back.

1: On (corrupt) by A, addresed to P :
2: // After executing this code and getting control back from FChan (which

always happens, c.f. Fig. 7), deliver (corrupt) to simulated P (c.f. Fig. 19.
3: send (info, became corrupted or negligent, P) to FChan

4: When simulated P sets variable negligent to True (Fig. 21, l. 7/Fig. 22,
l. 26):

5: send (info, became corrupted or negligent, P) to FChan

6: When simulated honest Alice receives (open, x, hops, . . .) by E :
7: store hops // will be used to inform FChan once the channel is open

8: When simulated honest Bob receives (open, x, hops, . . .) by Alice:
9: if Alice is corrupted then store hops // if Alice is honest, we already have

hops. If Alice became corrupted after receiving (open, . . .), overwrite hops

Simulator S – notifications to FChan

35

10: When the last of the honest simulated FChan’s parties moves to the open
State for the first time (Fig. 25, l. 19/Fig. 27, l. 5/Fig. 28, l. 18):

11: if hops = GLedger then
12: send (info, base open) to FChan

13: else
14: send (info, virtual open) to FChan

15: end if

16: When (both FChan’s simulated parties are honest and complete sending and
receiving a payment (Fig. 33, ll. 6 and 21 respectively), or (when only one
party is honest and (completes either receiving or sending a payment)): // also
send this message if both parties are honest when Fig. 33, l. 6 is executed by
one party, but its counterparty is corrupted before executing Fig. 33, l. 21

17: send (info, pay) to FChan

18: When honest P executes Fig. 30, l. 20 or (when honest P executes Fig. 30,
l. 18 and P̄ is corrupted): // in the first case if P̄ is honest, it has already
moved to the new host, (Fig 51, ll. 7, 23): lifting to next layer is done

19: send (info, fund) to FChan

20: When one of the honest simulated FChan’s parties P moves to the closed
state (Fig. 37, l. 8 or l. 11):

21: send (info, close, P) to FChan

Fig. 20.

10 Protocol

1: // When not specified, input comes from and output goes to E .
2: // The ITI knows whether it is Alice (funder) or Bob (fundee). The activated

party is P and the counterparty is P̄ .
3: On every activation, before handling the message:
4: if last_poll 6= ⊥ ∧ State 6= closed then // channel is open
5: input (read) to GLedger and assign ouput to Σ
6: if last_poll + p < |Σ| then // p is a global parameter
7: negligent← True
8: end if
9: end if

Process ln – init

36

10: On (init, pkP,out):

11: ensure State = ⊥
12: State← init
13: store pkP,out

14: (cA, cB , lockedA, lockedB)← (0, 0, 0, 0)
15: (paid_out, paid_in)← (∅, ∅)
16: negligent← False
17: last_poll← ⊥
18: output (init ok)

19: On (top up):
20: ensure P = Alice // activated party is the funder
21: ensure State = init
22: (skP,chain, pkP,chain)← keyGen()
23: input (read) to GLedger and assign ouput to Σ
24: output (top up to, pkP,chain)
25: while ¬∃tx ∈ Σ, cP,chain : (cP,chain, pkP,chain) ∈ tx.outputs do
26: // while waiting, all other messages by P are ignored
27: wait for input (check top up)
28: input (read) to GLedger and assign ouput to Σ
29: end while
30: State← topped up
31: output (top up ok, cP,chain)

32: On (balance):
33: ensure StateP ∈ {open,closed}
34: output (balance, cA, pkA,out, cB , pkB,out, lockedA, lockedB)

Fig. 21.

1: revokePrevious():
2: ensure State ∈ waiting for (outbound) revocation
3: RP̄ ,i ← TX {input: CP,i.outputs.P , output: (CP,i.outputs.P .value,
pkP̄ ,out)}

4: sigA,R,i ← sign(RP̄ ,i, skP,R)
5: if State = waiting for revocation then
6: State← waiting for inbound revocation
7: else // State = waiting for outbound revocation
8: i← i+ 1
9: State← waiting for hosts ready
10: end if

Process ln – methods used by virt

37

11: hostP ← host′P // forget old host, use new host instead
12: layer← layer + 1
13: return sigP,R,i

14: processRemoteRevocation(sigP̄ ,R,i):

15: ensure State = waiting for (inbound) revocation
16: RP,i ← TX {input: CP̄ ,i.outputs.P , output: (CP̄ ,i.outputs.P̄ .value,

pkP,out)}
17: ensure verify(RP,i, sigP̄ ,R,i, pkP̄ ,R) = True
18: if State = waiting for revocation then
19: State← waiting for outbound revocation
20: else // State = waiting for inbound revocation
21: i← i+ 1
22: State← waiting for hosts ready
23: end if
24: return (ok)

25: negligent():
26: negligent← True
27: return (ok)

Fig. 22.

1: (skA,F , pkA,F)← keyGen(); (skA,R, pkA,R)← keyGen()
2: State← waiting for opening keys
3: send (open, c, hops, pkA,F , pkA,R, pkA,out) to fundee
4: // colored code is run by honest fundee. Validation is implicit
5: ensure we run the code of Bob
6: ensure State = init
7: store pkA,F , pkA,R, pkA,out

8: (skB,F , pkB,F)← keyGen(); (skB,R, pkB,R)← keyGen()
9: if hops = GLedger then // opening base channel
10: layer← 0
11: tP ← s+ p // s is the upper bound of η from Lemma 7.19 of [50]
12: State← waiting for comm sig
13: else // opening virtual channel
14: State← waiting for check keys
15: end if
16: reply (accept channel, pkB,F , pkB,R, pkB,out)
17: ensure State = waiting for opening keys
18: store pkB,F , pkB,R, pkB,out

19: State← opening keys ok

Process ln.exchangeOpenKeys()

38

Fig. 23.

1: if hops = GLedger then // opening base channel
2: F ← TX {input: (c, pkA,chain), output: (c, 2/{pkA,F , pkB,F })}
3: hostP ← GLedger

4: layer← 0
5: tP ← s+ p
6: else // opening virtual channel
7: input (fund me, Alice, Bob, hops, c, pkA,F , pkB,F) to hops[0].left and

expect output (funded, hostP , funder_layer, tP) // ignore any other
message

8: layer← funder_layer
9: end if

Process ln.prepareBase()

Fig. 24.

1: // s = (2 + q)windowSize, where q and windowSize are defined in
Proposition 1

2: CA,0 ← TX {input: (c, 2/{pkA,F , pkB,F }), outputs: (c, (pkA,out + (p+ s)) ∨
2/{pkA,R, pkB,R}), (0, pkB,out)}

3: CB,0 ← TX {input: (c, 2/{pkA,F , pkB,F }), outputs: (c, pkA,out), (0,
(pkB,out + (p+ s)) ∨ 2/{pkA,R, pkB,R})}

4: sigA,C,0 ← sign(CB,0, skA,F)
5: State← waiting for comm sig
6: send (funding created, (c, pkA,chain), sigA,C,0) to fundee
7: ensure State = waiting for comm sig // if opening virtual channel, we have

received (funded, host_fundee) by hops[-1].right (Fig 27, l. 10)
8: if hops = GLedger then // opening base channel
9: F ← TX {input: (c, pkA,chain), output: (c, 2/{pkA,F , pkB,F })}
10: end if
11: CB,0 ← TX {input: (c, 2/{pkA,F , pkB,F }), outputs: (c, pkA,out), (0,

(pkB,out + (p+ s)) ∨ 2/{pkA,R, pkB,R})}
12: ensure verify(CB,0, sigA,C,0, pkA,F) = True
13: CA,0 ← TX {input: (c, 2/{pkA,F , pkB,F }), outputs: (c, (pkA,out + (p+ s)) ∨

2/{pkA,R, pkB,R}), (0, pkB,out)}
14: sigB,C,0 ← sign(CA,0, skB,F)
15: if hops = GLedger then // opening base channel
16: State← waiting to check funding
17: else // opening virtual channel
18: cA ← c; cB ← 0; i← 0

Process ln.exchangeOpenSigs()

39

19: State← open
20: end if
21: reply (funding signed, sigB,C,0)
22: ensure State = waiting for comm sig
23: ensure verify(CA,0, sigB,C,0, pkB,F) = True

Fig. 25.

1: sigF ← sign(F, skA,chain)
2: input (submit, (F, sigF)) to GLedger // enter “while” below before sending
3: while F /∈ Σ do
4: wait for input (check funding) // ignore all other messages
5: input (read) to GLedger and assign output to Σ
6: end while

Process ln.commitBase()

Fig. 26.

1: On input (check funding):
2: ensure State = waiting to check funding
3: input (read) to GLedger and assign output to Σ
4: if F ∈ Σ then
5: State← open
6: reply (open ok)
7: end if

8: On output (funded, hostP , funder_layer, tP) by hops[-1].right:
9: ensure State = waiting for funded
10: store hostP // we will talk directly to hostP
11: layer← funder_layer
12: State← waiting for comm sig
13: reply (fund ack)

14: On output (check keys, (pk1, pk2)) by hops[-1].right:
15: ensure State = waiting for check keys
16: ensure pk1 = pkA,F ∧ pk2 = pkB,F

17: State← waiting for fudned
18: reply (keys ok)

Process ln – external open messages for Bob

40

Fig. 27.

1: // fundee is Bob
2: ensure we run the code of Alice // activated party is the funder
3: if hops = GLedger then // opening base channel
4: ensure State = topped up
5: ensure c = cA,chain

6: else // opening virtual channel
7: ensure len(hops) ≥ 2 // cannot open a virtual over 1 channel
8: end if
9: ln.exchangeOpenKeys()
10: ln.prepareBase()
11: ln.exchangeOpenSigs()
12: if hops = GLedger then
13: ln.commitBase()
14: end if
15: input (read) to GLedger and assign output to Σ
16: last_poll← |Σ|
17: cA ← c; cB ← 0; i← 0
18: State← open
19: output (open ok, c, fundee, hops)

Process ln – On (open, c, hops, fundee):

Fig. 28.

1: CP̄ ,i+1 ← CP̄ ,i with pk′P,F and pk′P̄ ,F instead of pkP,F and pkP̄ ,F respectively,
reducing the input and P ’s output by cvirt

2: sigP,C,i+1 ← sign(CP̄ ,i+1) // kept by P̄
3: send (update forward, sigP,C,i+1) to P̄
4: // P refers to payer and P̄ to payee both in local and remote code
5: CP̄ ,i+1 ← CP̄ ,i with pk′P,F and pk′P̄ ,F instead of pkP,F and pkP̄ ,F respectively,

reducing the input and P ’s output by cvirt

6: ensure verify(CP̄ ,i+1, sigP,C,i+1, pk′P,F) = True
7: CP,i+1 ← CP,i with pk′P̄ ,F and pk′P,F instead of pkP̄ ,F and pkP,F respectively,

reducing the input and P ’s output by cvirt

8: sigP̄ ,C,i+1 ← sign(CP,i+1, sk
′
P̄ ,F) // kept by P

9: reply (update back, sigP̄ ,C,i+1)
10: CP,i+1 ← CP,i with pk′P̄ ,F and pk′P,F instead of pkP̄ ,F and pkP,F respectively,

reducing the input and P ’s output by cvirt

11: ensure verify(CP,i+1, sigP̄ ,C,i+1, pk′P̄ ,F) = True

Process ln.updateForVirtual()

41

Fig. 29.

1: On input (fund me, cvirt, fundee, hops, pkA,V , pkB,V) by funder:

2: ensure State = open
3: ensure cP − lockedP ≥ cvirt

4: State← virtualising
5: (sk′P,F , pk′P,F)← keyGen()
6: define new virt ITI host′P
7: send (virtualising, host′P , pk′P,F , hops, fundee, cvirt, 2, len(hops)) to P̄

and expect reply (virtualising ack, host′P̄ , pk′P̄ ,F)
8: ensure pk′P̄ ,F is different from pkP̄ ,F and all older P̄ ’s funding public keys
9: ln.updateForVirtual()
10: State← waiting for revocation
11: input (host me, funder, fundee, host′P̄ , hostP , cP , cP̄ , cvirt, pkA,V , pkB,V ,

(sk′P,F , pk′P,F), (skP,F , pkP,F), pkP̄ ,F , pk′P̄ ,F , pkP,out, len(hops)) to host′P

12: On output (hosts ready, tP) by hostP : // hostP is the new host, renamed
in Fig. 22, l. 12

13: ensure State = waiting for hosts ready
14: State← open
15: move pkP,F , pkP̄ ,F to list of old funding keys
16: (skP,F , pkP,F)← (sk′P,F , pk′P,F); pkP̄ ,F ← pk′P̄ ,F

17: if len(hops) = 1 then // we are the last hop
18: output (funded, hostP , layer, tP) to fundee and expect reply (fund

ack)
19: else if we have received input fund me just before we moved to the

virtualising state then // we are the first hop
20: cP ← cP − cvirt

21: output (funded, hostP , layer, tP) to funder // do not expect reply
by funder

22: end if
23: reply (host ack)

Process ln – virtualise start and end

Fig. 30.

1: On (virtualising, host′P̄ , pk′P̄ ,F , hops, fundee, cvirt, i, n) by P̄ :

2: ensure State = open
3: ensure cP̄ − lockedP̄ ≥ c; 1 ≤ i ≤ n
4: ensure pk′P̄ ,F is different from pkP̄ ,F and all older P̄ ’s funding public keys

Process ln – virtualise hops

42

5: State← virtualising
6: lockedP̄ ← lockedP̄ + c // if P̄ is hosting the funder, P̄ will transfer cvirt

coins instead of locking them, but the end result is the same
7: (sk′P,F , pk′P,F)← keyGen()
8: if len(hops) > 1 then // we are not the last hop
9: define new virt ITI host′P
10: input (virtualising, host′P , (sk′P,F , pk′P,F), pk′P̄ ,F , pkP,out, hops[1:],

fundee, cvirt, cP̄ , cP , i, n) to hops[1].left and expect reply (virtualising
ack, host_sibling, pksib,P̄ ,F)

11: input (init, hostP , host′P̄ , host_sibling, (sk
′
P,F , pk′P,F), pk′P̄ ,F ,

pksib,P̄ ,F , (skP,F , pkP,F), pkP̄ ,F , pkP,out, cP , cP̄ , cvirt, i, tP , “left”, n) to host′P
and expect reply (host init ok)

12: else // we are the last hop
13: input (init, hostP , host′P̄ , fundee=fundee, (sk′P,F , pk′P,F), pk′P̄ ,F ,

(skP,F , pkP,F), pkP̄ ,F , pkP,out, cP , cP̄ , cvirt, tP , i, “left”, n) to new virt ITI
host′P and expect reply (host init ok)

14: end if
15: State← waiting for revocation
16: send (virtualising ack, host′P , pk′P,F) to P̄

17: On input (virtualising, host_sibling, (sk′P,F , pk′P,F), pksib,P̄ ,F , pksib,out,
hops, fundee, cvirt, csib,rem, csib, i, n) by sibling:

18: ensure State = open
19: ensure cP − lockedP ≥ c
20: ensure csib,rem ≥ cP ∧ cP̄ ≥ csib // avoid value loss by griefing attack: one

counterparty closes with old version, the other stays idle forever
21: State← virtualising
22: lockedP ← lockedP + c
23: define new virt ITI host′P
24: send (virtualising, host′P , pk′P,F , hops, fundee, cvirt, i+ 1, n) to

hops[0].right and expect reply (virtualising ack, host′P̄ , pk′P̄ ,F)
25: ensure pk′P̄ ,F is different from pkP̄ ,F and all older P̄ ’s funding public keys
26: ln.updateForVirtual()
27: input (init, hostP , host′P̄ , host_sibling, (sk

′
P,F , pk′P,F), pk′P̄ ,F , pksib,P̄ ,F ,

(skP,F , pkP,F), pkP̄ ,F , pksib,out, cP , cP̄ , cvirt, i, “right”, n) to host′P and expect
reply (host init ok)

28: State← waiting for revocation
29: output (virtualising ack, host′P , pk′P̄ ,F) to sibling

Fig. 31.

1: CP̄ ,i+1 ← CP̄ ,i with x coins moved from P ’s to P̄ ’s output

Process ln.signaturesRoundTrip()

43

2: sigP,C,i+1 ← sign(CP̄ ,i+1, skP,F) // kept by P̄
3: State← waiting for commitment signed
4: send (pay, x, sigP,C,i+1) to P̄
5: // P refers to payer and P̄ to payee both in local and remote code
6: ensure State = waiting to get paid ∧ x = y
7: CP̄ ,i+1 ← CP̄ ,i with x coins moved from P ’s to P̄ ’s output
8: ensure verify(CP̄ ,i+1, sigP,C,i+1, pkP,F) = True
9: CP,i+1 ← CP,i with x coins moved from P ’s to P̄ ’s output
10: sigP̄ ,C,i+1 ← sign(CP,i+1, skP̄ ,F) // kept by P
11: RP,i ← TX {input: CP̄ ,i.outputs.P , output: (cP̄ , pkP,out)}
12: sigP̄ ,R,i ← sign(RP,i, skP̄ ,R)
13: State← waiting for pay revocation
14: reply (commitment signed, sigP̄ ,C,i+1, sigP̄ ,R,i)
15: ensure State = waiting for commitment signed
16: CP,i+1 ← CP,i with x coins moved from P ’s to P̄ ’s output

Fig. 32.

1: ensure verify(CP,i+1, sigP̄ ,C,i+1, pkP̄ ,F) = True
2: RP,i ← TX {input: CP̄ ,i.outputs.P̄ , output: (cP̄ , pkP,out)}
3: ensure verify(RP,i, sigP̄ ,R,i, pkP̄ ,R) = True
4: RP̄ ,i ← TX {input: CP,i.outputs.P , output: (cP , pkP̄ ,out)}
5: sigP,R,i ← sign(RP̄ ,i, skP,R)
6: add x to paid_out
7: cP ← cP − x; cP̄ ← cP̄ + x; i← i+ 1
8: State← open
9: if hostP 6= GLedger ∧ we have a host_sibling then // we are intermediary

channel
10: input (new balance, cP , cP̄) to hostP
11: relay message as input to sibling // run by virt
12: relay message as output to guest // run by virt
13: store new sibling balance and reply (new balance ok)
14: output (new balance ok) to sibling // run by virt
15: output (new balance ok) to guest // run by virt
16: end if
17: send (revoke and ack, sigP,R,i) to P̄
18: ensure State = waiting for pay revocation
19: RP̄ ,i ← TX {input: CP,i.outputs.P̄ , output: (cP , pkP̄ ,out)}
20: ensure verify(RP̄ ,i, sigP,R,i, pkP,R) = True
21: add x to paid_in
22: cP ← cP − x; cP̄ ← cP̄ + x; i← i+ 1
23: State← open

Process ln.revocationsTrip()

44

24: if hostP 6= GLedger ∧ P̄ has a host_sibling then // we are intermediary
channel

25: input (new balance, cP̄ , cP) to hostP̄
26: relay message as input to sibling // run by virt
27: relay message as output to guest // run by virt
28: store new sibling balance and reply (new balance ok)
29: output (new balance ok) to sibling // run by virt
30: output (new balance ok) to guest // run by virt
31: end if

Fig. 33.

1: ensure State = open ∧ cP ≥ x
2: if hostP 6= GLedger ∧ P has a host_sibling then // we are intermediary

channel
3: ensure csib,rem ≥ cP − x ∧ cP̄ + x ≥ csib // avoid value loss by griefing

attack: one counterparty closes with old version, the other stays idle forever
4: end if
5: ln.signaturesRoundTrip()
6: ln.revocationsTrip()
7: // No output is given to the caller, this is intentional

Process ln – On (pay, x):

Fig. 34.

1: ensure State = open ∧ cP̄ ≥ y
2: if hostP 6= GLedger ∧ P has a host_sibling then // we are intermediary

channel
3: ensure cP + y ≤ csib,rem ∧ csib ≤ cP̄ − y // avoid value loss by griefing attack
4: end if
5: store y
6: State← waiting to get paid

Process ln – On (get paid, y):

Fig. 35.

45

1: if hostP 6= GLedger then
2: input (check for lateral close) to hostP
3: end if

Process ln – On (check for lateral close):

Fig. 36.

1: ensure State /∈ {⊥, init,topped up} // channel open
2: // even virtual channels check GLedger directly. This is intentional
3: input (read) to GLedger and assign reply to Σ
4: last_poll← |Σ|
5: if ∃0 ≤ j < i : CP̄ ,j ∈ Σ then // counterparty has closed maliciously
6: State← closing
7: ln.submitAndCheckRevocation(j)
8: State← closed
9: output (closed)
10: else if CP,i ∈ Σ ∨ CP̄ ,i ∈ Σ then
11: State← closed
12: output (closed)
13: end if

Process ln – On (check chain for closed):

Fig. 37.

1: sigP,R,j ← sign(RP,j , skP,R)
2: input (submit, (RP,j , sigP,R,j , sigP̄ ,R,j)) to GLedger

3: while ¬∃RP,j ∈ Σ do
4: wait for input (check revocation) // ignore other messages
5: input (read) to GLedger and assign output to Σ
6: end while
7: cP ← cP + cP̄
8: if hostP 6= GLedger then
9: input (used revocation) to hostP
10: end if

Process ln.submitAndCheckRevocation(j)

Fig. 38.

46

1: ensure State /∈ {⊥, init,topped up,closed,base punished} // channel open
2: if hostP 6= GLedger then // we have a virtual channel
3: State← host closing
4: input (close) to hostP and keep relaying any (check if closing) or

(close) input to hostP until receiving output (closed) by hostP
5: hostP ← GLedger

6: end if
7: State← closing
8: input (read) to GLedger and assign output to Σ
9: if CP̄ ,i ∈ Σ then // counterparty has closed honestly
10: no-op // do nothing
11: else if ∃0 ≤ j < i : CP̄ ,j ∈ Σ then // counterparty has closed maliciously
12: ln.submitAndCheckRevocation(j)
13: else // counterparty is idle
14: while 6 ∃ unspent output ∈ Σ that CP,i can spend do // possibly due to

an active timelock
15: wait for input (check virtual) // ignore other messages
16: input (read) to GLedger and assign output to Σ
17: end while
18: sig′P,C,i ← sign(CP,i, skP,F)
19: input (submit, (CP,i, sigP,C,i, sig

′
P,C,i)) to GLedger

20: end if

Process ln – On (close):

Fig. 39.

1: State← base punished

Process ln – On output (enabler used revocation) by hostP :

Fig. 40.

1: On every activation, before handling the message:
2: if last_poll 6= ⊥ then // virtual layer is ready
3: input (read) to GLedger and assign ouput to Σ
4: if last_poll + p < |Σ| then
5: for P ∈ {guest, funder, fundee} do // at most 1 of funder, fundee

is defined
6: ensure P .negligent() returns (ok)
7: end for
8: end if

Process virt

47

9: end if

10: // guest is trusted to give sane inputs, therefore a state machine and input
verification are redundant

11: On input (init, hostP , P̄ , sibling, fundee, (skloc,fund,new, pkloc,fund,new),
pkrem,fund,new, pksib,rem,fund,new, (skloc,fund,old, pkloc,fund,old), pkrem,fund,old,
pkloc,out, cP , cP̄ , cvirt, tP , i, side, n) by guest:

12: ensure 1 < i ≤ n // host_funder (i = 1) is initialised with host me
13: ensure side ∈ {“left”, “right”}
14: store message contents and guest // sibling, pksib,P̄ ,F are missing for

endpoints, fundee is present only in last node
15: (ski,fund,new, pki,fund,new)← (skloc,fund,new, pkloc,fund,new)
16: pkmyRem,fund,new ← pkrem,fund,new

17: if i < n then // we are not last hop
18: pksibRem,fund,new ← pksib,rem,fund,new

19: end if
20: if side = “left” then
21: side′ ← “right”; myRem← i− 1; sibRem← i+ 1
22: else // side = “right”
23: side′ ← “left”; myRem← i+ 1; sibRem← i− 1
24: end if
25: (ski,side,fund,old, pki,side,fund,old)← (skloc,fund,old, pkloc,fund,old)
26: pkmyRem,side′,fund,old ← pkrem,fund,old

27: if side = “left” then
28: pki,out ← pkloc,out

29: end if // otherwise sibling will send pki,out in keys and coins forward
30: (ci,side, cmyRem,side′ , ti,side)← (cP , cP̄ , tP)
31: last_poll← ⊥
32: if side = “left” ∧ i 6= n then
33: (ski,j,k, pki,j,k)j∈{2,...,n−1},k∈[n]\{j} ← keyGen()(n−2)(n−1)

34: end if
35: output (host init ok) to guest

36: On input (host me, funder, fundee, P̄ , hostP , cP , cP̄ , cvirt, pkleft,virt,
pkright,virt, (sk1,fund,new, pk1,fund,new), (sk1,right,fund,old, pk1,right,fund,old),
pk2,left,fund,old, pk2,left,fund,new, pk1,out, n) by guest:

37: last_poll← ⊥
38: i← 1
39: c1,right ← cP ; c2,left ← cP̄
40: (sk1,j,k, pk1,j,k)j∈{2,...,n−1},k∈[n]\{j} ← keyGen()(n−2)(n−1)

41: ensure virt.circulateKeysCoinsTimes() returns (ok)
42: ensure virt.circulateVirtualSigs() returns (ok)
43: ensure virt.circulateFundingSigs() returns (ok)
44: ensure virt.circulateRevocations() returns (ok)

45: output (hosts ready, p+
n−1∑
j=2

(s− 1 + tj)) to guest // p is every how

many blocks we have to check the chain

48

Fig. 41.

1: if left_data is given as argument then // we are not host_funder
2: parse left_data as ((pkj,fund,new)j∈[i−1], (pkj,left,fund,old)j∈{2,...,i−1},

(pkj,right,fund,old)j∈[i−1], (pkj,out)j∈[i−1], (cj,left)j∈{2,...,i−1}, (cj,right)j∈[i−1],
(tj)j∈[i−1], pkleft,virt, pkright,virt, (pkh,j,k)h∈[i−1],j∈{2,...,n−1},k∈[n]\{j})

3: if we have a sibling then // we are not host_fundee
4: input (keys and coins forward, (left_data, (ski,left,fund,old,

pki,left,fund,old), pki,out, ci,left, ti,left, (ski,j,k, pki,j,k)j∈{2,...,n−1},k∈[n]\{j}) to
sibling

5: store input as left_data and parse it as ((pkj,fund,new)j∈[i−1],
(pkj,left,fund,old)j∈{2,...,i}, (pkj,right,fund,old)j∈[i−1], (pkj,out)j∈[i], (cj,left)j∈{2,...,i},
(cj,right)j∈[i−1], (tj)j∈[i−1], ski,left,fund,old, ti,left, pkleft,virt, pkright,virt,
(pkh,j,k)h∈[i],j∈{2,...,n−1},k∈[n]\{j}, (ski,j,k)j∈{2,...,n−1},k∈[n]\{j}

6: ti ← max (ti,left, ti,right)
7: replace ti,left in left_data with ti
8: remove ski,left,fund,old and (ski,j,k)j∈{2,...,n−1},k∈[n]\{j} from left_data
9: call virt.circulateKeysCoinsTimes(left_data) of P̄ and assign

returned value to right_data
10: parse right_data as ((pkj,fund,new)j∈{i+1,...,n},

(pkj,left,fund,old)j∈{i+1,...,n}, (pkj,right,fund,old)j∈{i+1,...,n−1}, (pkj,out)j∈{i+1,...,n},
(cj,left)j∈{i+1,...,n}, (cj,right)j∈{i+1,...,n−1}, (tj)j∈{i+1,...,n},
(pkh,j,k)h∈{i+1,...,n},j∈{2,...,n−1},k∈[n]\{j}

11: output (keys and coins back, right_data, (ski,right,fund,old,
pki,right,fund,old), ci,right, ti)

12: store output as right_data and parse it as ((pkj,fund,new)j∈{i+1,...,n},
(pkj,left,fund,old)j∈{i+1,...,n}, (pkj,right,fund,old)j∈{i,...,n−1}, (pkj,out)j∈{i+1,...,n},
(cj,left)j∈{i+1,...,n}, (cj,right)j∈{i,...,n−1}, (tj)j∈{i,...,n},
(pkh,j,k)h∈{i+1,...,n},j∈{2,...,n−1},k∈[n]\{j}, ski,right,fund,old)

13: remove ski,right,fund,old from right_data
14: return (right_data, pki,fund,new, pki,left,fund,old, pki,out, ci,left)
15: else // we are host_fundee
16: output (check keys, (pkleft,virt, pkright,virt)) to fundee and expect

reply (keys ok)
17: return (pkn,fund,new, pkn,left,fund,old, pkn,out, cn,left, tn)
18: end if
19: else // we are host_funder
20: call virt.circulateKeysCoinsTimes(pk1,fund,new, pk1,right,fund,old, pk1,out,

c1,right, t1, pkleft,virt, pkright,virt, (pk1,j,k)j∈{2,...,n−1},k∈[n]\{j}) of P̄ and assign
returned value to right_data

21: parse right_data as ((pkj,fund,new)j∈{2,...,n}, (pkj,left,fund,old)j∈{2,...,n},
(pkj,right,fund,old)j∈{2,...,n−1}, (pkj,out)j∈{2,...,n}, (cj,left)j∈{2,...,n},
(cj,right)j∈{2,...,n−1}, (tj)j∈{2,...,n}, (pkh,j,k)h∈{2,...,n},j∈{2,...,n−1},k∈[n]\{j})

22: return (ok)
23: end if

Process virt.circulateKeysCoinsTimes(left_data):

49

Fig. 42.

1: getMidTXs(i, n, cvirt, crem,left, cloc,left, cloc,right, crem,right, pkrem,left,fund,old,
pkloc,left,fund,old, pkloc,right,fund,old, pkrem,right,fund,old, pkrem,left,fund,new,
pkloc,left,fund,new, pkloc,right,fund,new, pkrem,right,fund,new, pkleft,virt, pkright,virt,
pkloc,out, (pkp,j,k)p∈[n],j∈[n−1]\{1},k∈[n−1]\{1,j}, (pkp,2,1)p∈[n], (pkp,n−1,n)p∈[n],
(tj)j∈[n−1]\{1}):

2: ensure 1 < i < n
3: ensure crem,left ≥ cvirt ∧ cloc,left ≥ cvirt // left parties fund virtual channel
4: ensure crem,left ≥ cloc,right ∧ crem,right ≥ cloc,left // avoid griefing attack
5: cleft ← crem,left + cloc,left; cright ← cloc,right + crem,right

6: left_old_fund← 2/{pkrem,left,fund,old, pkloc,left,fund,old}
7: right_old_fund← 2/{pkloc,right,fund,old, pkrem,right,fund,old}
8: left_new_fund← 2/{pkrem,left,fund,new, pkloc,left,fund,new}
9: right_new_fund← 2/{pkloc,right,fund,new, pkrem,right,fund,new}
10: virt_fund← 2/{pkleft,virt, pkright,virt}
11: for all j ∈ [n− 1] \ {1}, k ∈ [n− 1] \ {1, j} do
12: all j,k ← n/{pk1,j,k, . . . , pkn,j,k} ∧ "k"
13: end for
14: if i = 2 then
15: all2,1 ← n/{pk1,2,1, . . . , pkn,2,1} ∧ "1"
16: end if
17: if i = n− 1 then
18: alln−1,n ← n/{pk1,n−1,n, . . . , pkn,n−1,n} ∧ "n"
19: end if
20: // After funding is complete, Aj has the signature of all other parties for

all allj,k inputs, but other parties do not have Aj ’s signature for this input,
therefore only Aj can publish it.

21: // TXi,j,k := i-th move, j, k input interval start and end. j, k unneeded for
i = 1, k unneeded for i = 2.

22: TX1 ← TX:
23: inputs:
24: (cleft, left_old_fund),
25: (cright, right_old_fund)
26: outputs:
27: (cleft − cvirt, left_new_fund),
28: (cright − cvirt, right_new_fund),
29: (cvirt, pkloc,out),
30: (cvirt,
31: (if (i− 1 > 1) then all i−1,i else False)
32: ∨ (if (i+ 1 < n) then all i+1,i else False)
33: ∨ (
34: if (i− 1 = 1 ∧ i+ 1 = n) then virt_fund

Process virt

50

35: else if (i− 1 > 1 ∧ i+ 1 = n) then virt_fund + ti−1

36: else if (i− 1 = 1 ∧ i+ 1 < n) then virt_fund + ti+1

37: else /*i− 1 > 1 ∧ i+ 1 < n*/ virt_fund + max (ti−1, ti+1)

38:)
39:)
40: if i = 2 then
41: TX2,1 ← TX:
42: inputs:
43: (cvirt, all2,1),
44: (cright, right_old_fund)
45: outputs:
46: (cright − cvirt, right_new_fund),
47: (cvirt, pkloc,out),
48: (cvirt,
49: if (n > 3) then (all3,2 ∨ (virt_fund + t3))
50: else virt_fund
51:)
52: end if
53: if i = n− 1 then
54: TX2,n ← TX:
55: inputs:
56: (cleft, left_old_fund),
57: (cvirt, alln−1,n)
58: outputs:
59: (cleft − cvirt, left_new_fund),
60: (cvirt, pkloc,out),
61: (cvirt,
62: if (n− 2 > 1) then (alln−2,n−1 ∨ (virt_fund + tn−2))
63: else virt_fund
64:)
65: end if
66: for all k ∈ {2, . . . , i− 1} do // i− 2 txs
67: TX2,k ← TX:
68: inputs:
69: (cvirt, all i,k),
70: (cright, right_old_fund)
71: outputs:
72: (cright − cvirt, right_new_fund),
73: (cvirt, pkloc,out),
74: (cvirt,
75: (if (k − 1 > 1) then allk−1,i else False)
76: ∨ (if (i+ 1 < n) then all i+1,k else False)
77: ∨ (

51

78: if (k − 1 = 1 ∧ i+ 1 = n) then virt_fund
79: else if (k − 1 > 1 ∧ i+ 1 = n) then virt_fund + tk−1

80: else if (k − 1 = 1 ∧ i+ 1 < n) then virt_fund + ti+1

81: else /*k−1 > 1∧ i+ 1 < n*/ virt_fund+ max (tk−1, ti+1)

82:)
83:)
84: end for
85: for all k ∈ {i+ 1, . . . , n− 1} do // n− i− 1 txs
86: TX2,k ← TX:
87: inputs:
88: (cleft, left_old_fund)
89: (cvirt, all i,k),
90: outputs:
91: (cleft − cvirt, left_new_fund),
92: (cvirt, pkloc,out),
93: (cvirt,
94: (if (i− 1 > 1) then all i−1,k else False)
95: ∨ (if (k + 1 < n) then allk+1,i else False)
96: ∨ (
97: if (i− 1 = 1 ∧ k + 1 = n) then virt_fund
98: else if (i− 1 > 1 ∧ k + 1 = n) then virt_fund + ti−1

99: else if (i− 1 = 1 ∧ k + 1 < n) then virt_fund + tk+1

100: else /*i− 1 > 1 ∧ k + 1 < n*/
virt_fund + max (ti−1, tk+1)

101:)
102:)
103: end for
104: if i = 2 then m← 1 else m← 2
105: if i = n− 1 then l← n else l← n− 1
106: for all (k1, k2) ∈ {m, . . . , i− 1} × {i+ 1, . . . , l} do // (i−m) · (l − i) txs
107: TX3,k1,k2 ← TX:
108: inputs:
109: (cvirt, all i,k1),
110: (cvirt, all i,k2)
111: outputs:
112: (cvirt, pkloc,out),
113: (cvirt,
114: (if (k1 − 1 > 1) then allk1−1,min (k2,n−1) else False)
115: ∨ (if (k2 + 1 < n) then allk2+1,max (k1,2) else False)
116: ∨ (
117: if (k1 − 1 ≤ 1 ∧ k2 + 1 ≥ n) then virt_fund
118: else if (k1 − 1 > 1 ∧ k2 + 1 ≥ n) then virt_fund + tk1−1

119: else if (k1 − 1 ≤ 1 ∧ k2 + 1 < n) then virt_fund + tk2+1

120: else /*k1 − 1 > 1 ∧ k2 + 1 < n*/

52

121: virt_fund + max (tk1−1, tk2+1)

122:)
123:)
124: end for
125: return (
126: TX1,
127: (TX2,k)k∈{m,...,l}\{i},
128: (TX3,k1,k2)(k1,k2)∈{m,...,i−1}×{i+1,...,l}

129:)

Fig. 43.

1: // left and right refer to the two counterparties, with left being the one closer
to the funder. Note difference with left/right meaning in virt.getMidTXs.

2: getEndpointTX(i, n, cvirt, cleft, cright, pkleft,fund,old, pkright,fund,old,
pkleft,fund,new, pkright,fund,new pkleft,virt, pkright,virt, (pkall,j)j∈[n], t):

3: ensure i ∈ {1, n}
4: ensure cleft ≥ cvirt // left party funds virtual channel
5: ctot ← cleft + cright

6: old_fund← 2/{pkleft,fund,old, pkright,fund,old}
7: new_fund← 2/{pkleft,fund,new, pkright,fund,new}
8: virt_fund← 2/{pkleft,virt, pkright,virt}
9: if i = 1 then // funder’s tx
10: all ← n/{pkall,1, . . . , pkall,n} ∧ "1"
11: else // fundee’s tx
12: all ← n/{pkall,1, . . . , pkall,n} ∧ "n"
13: end if
14: TX1 ← TX: // endpoints only have an “initiator” tx
15: inputs:
16: (ctot, old_fund)

17: outputs:
18: (ctot − cvirt, new_fund),
19: (cvirt, all ∨ (virt_fund + t))

20: return TX1

Process virt

Fig. 44.

53

1: parse input as sigsbyLeft

2: if i = 2 then m← 1 else m← 2
3: if i = n− 1 then l← n else l← n− 1
4: (TXi,1, (TXi,2,k)k∈{m,...,l}\{i}, (TXi,3,k1,k2)(k1,k2)∈{m,...,i−1}{i+1,...,l}) ←

virt.getMidTXs(i, n, cvirt, ci−1,right, ci,left, ci,right, ci+1,left,
pki−1,right,fund,old, pki,left,fund,old, pki,right,fund,old, pki+1,left,fund,old,
pki−1,fund,new, pki,fund,new, pki,fund,new, pki+1,fund,new, pkleft,virt, pkright,virt,
pki,out, (pki,j,k)i∈[n],j∈[n−1]\{1},k∈[n−1]\{1,j}, (pki,2,1)i∈[n], (pki,n−1,n)i∈[n],
(ti)i∈[n−1]\{1})

5: // notation: sig(TX, pk) := sig with ANYPREVOUT flag such that
verify(TX, sig, pk) = True

6: ensure that the following signatures are present in sigsbyLeft and store them:
– // (l −m) · (i− 1) signatures

7: ∀k ∈ {m, . . . , l} \ {i},∀j ∈ [i− 1] :

8: sig(TXi,2,k, pkj,i,k)

– // 2 · (i−m) · (l − i) · (i− 1) signatures
9: ∀k1 ∈ {m, . . . , i− 1}, ∀k2 ∈ {i+ 1, . . . , l},∀j ∈ [i− 1] :

10: sig(TXi,3,k1,k2 , pkj,i,k1
), sig(TXi,3,k1,k2 , pkj,i,k2

)

11: sigstoRight ← sigsbyLeft

12: for all j ∈ {2, . . . , n− 1} \ {i} do
13: if j = 2 then m′ ← 1 else m′ ← 2
14: if j = n− 1 then l′ ← n else l′ ← n− 1
15: (TXj,1, (TXj,2,k)k∈{m′,...,l′}\{i}, (TXj,3,k1,k2)(k1,k2)∈{m′,...,i−1}{i+1,...,l′}) ←

getMidTXs(j, n, cvirt, cj−1,right, cj,left, cj,right, cj+1,left, pkj−1,right,fund,old,
pkj,left,fund,old, pkj,right,fund,old, pkj+1,left,fund,old, pkj−1,fund,new, pkj,fund,new,
pkj,fund,new, pkj+1,fund,new, pkleft,virt, pkright,virt, pkj,out,
(pkk,p,s)k∈[n],p∈[n−1]\{1},s∈[n−1]\{1,p}, (pkk,2,1)k∈[n], (pkk,n−1,n)k∈[n],
(tk)k∈[n−1]\{1})

16: if j < i then sigs← sigstoLeft else sigs← sigstoRight

17: for all k ∈ {m′, . . . , l′} \ {j} do
18: add sign(TXj,2,k, ski,j,k, ANYPREVOUT) to sigs
19: end for
20: for all k1 ∈ {m′, . . . , j − 1}, k2 ∈ {j + 1, . . . , l′} do
21: add sign(TXj,3,k1,k2 , ski,j,k1 , ANYPREVOUT) to sigs
22: add sign(TXj,3,k1,k2 , ski,j,k2 , ANYPREVOUT) to sigs
23: end for
24: end for
25: if i+ 1 = n then // next hop is host_fundee
26: TXn,1 ← virt.getEndpointTX(n, n, cvirt, cn−1,right, cn,left,

pkn−1,right,fund,old, pkn,left,fund,old, pkn−1,fund,new, pkn,fund,new, pkleft,virt,
pkright,virt, (pkj,n−1,n)j∈[n], tn−1)

27: end if

Process virt.siblingSigs()

54

28: call P̄ .circulateVirtualSigs(sigstoRight) and assign returned value to
sigsbyRight

29: ensure that the following signatures are present in sigsbyRight and store them:
– // (l −m) · (n− i) signatures

30: ∀k ∈ {m, . . . , l} \ {i}, ∀j ∈ {i+ 1, . . . , n} :

31: sig(TXi,2,k, pkj,i,k)

– // 2 · (i−m) · (l − i) · (n− i) signatures
32: ∀k1 ∈ {m, . . . , i− 1},∀k2 ∈ {i+ 1, . . . , l},∀j ∈ {i+ 1, . . . , n} :

33: sig(TXi,3,k1,k2 , pkj,i,k1
), sig(TXi,3,k1,k2 , pkj,i,k2

)

34: output (virtualSigsBack, sigstoLeft, sigsbyRight)

Fig. 45.

1: if i = 2 then m← 1 else m← 2
2: if i = n− 1 then l← n else l← n− 1
3: (TXi,1, (TXi,2,k)k∈{m,...,l}\{i}, (TXi,3,k1,k2)(k1,k2)∈{m,...,i−1}{i+1,...,l}) ←

virt.getMidTXs(i, n, cvirt, ci−1,right, ci,left, ci,right, ci+1,left,
pki−1,right,fund,old, pki,left,fund,old, pki,right,fund,old, pki+1,left,fund,old,
pki−1,fund,new, pki,fund,new, pki,fund,new, pki+1,fund,new, pkleft,virt, pkright,virt,
pki,out, (pki,j,k)i∈[n],j∈[n−1]\{1},k∈[n−1]\{1,j}, (pki,2,1)i∈[n], (pki,n−1,n)i∈[n],
(ti)i∈[n−1]\{1})

4: // not verifying our signatures in sigsbyLeft, our (trusted) sibling will do that
5: input (virtual sigs forward, sigsbyLeft) to sibling
6: virt.siblingSigs()
7: sigstoLeft ← sigsbyRight + sigstoLeft

8: if i = 2 then // previous hop is host_funder
9: TX1,1 ← virt.getEndpointTX(1, n, cvirt, c1,right, c2,left, pk1,right,fund,old,

pk2,left,fund,old, pk1,fund,new, pk2,fund,new, pkleft,virt, pkright,virt, (pkj,2,1)j∈[n], t2)
10: end if
11: return sigstoLeft

Process virt.intermediarySigs()

Fig. 46.

1: TXn,1 ← virt.getEndpointTX(n, n, cvirt, cn−1,right, cn,left,
pkn−1,right,fund,old, pkn,right,fund,old, pkn−1,fund,new, pkn,fund,new, pkleft,virt,
pkright,virt, (pkj,n−1,n)j∈[n], tn−1)

2: for all j ∈ [n− 1] \ {1} do

Process virt.hostFundeeSigs()

55

3: if j = 2 then m← 1 else m← 2
4: if j = n− 1 then l← n else l← n− 1
5: (TXj,1, (TXj,2,k)k∈{m,...,l}\{j}, (TXi,3,k1,k2)(k1,k2)∈{m,...,i−1}{i+1,...,l}) ←

virt.getMidTXs(j, n, cvirt, cj−1,right, cj,left, cj,right, cj+1,left,
pkj−1,right,fund,old, pkj,left,fund,old, pkj,right,fund,old, pkj+1,left,fund,old,
pkj−1,fund,new, pkj,fund,new, pkj,fund,new, pkj+1,fund,new, pkleft,virt, pkright,virt,
pkj,out, (pkj,s,k)j∈[n],s∈[n−1]\{1},k∈[n−1]\{1,s}, (pkj,2,1)j∈[n], (pkj,n−1,n)j∈[n],
(tj)j∈[n−1]\{1})

6: sigstoLeft ← ∅
7: for all k ∈ {m, . . . , l} \ {j} do
8: add sign(TXj,2,k, skn,j,k, ANYPREVOUT) to sigstoLeft

9: end for
10: for all k1 ∈ {m, . . . , j − 1}, k2 ∈ {j + 1, . . . , l} do
11: add sign(TXj,3,k1,k2 , skn,j,k1 , ANYPREVOUT) to sigstoLeft

12: add sign(TXj,3,k1,k2 , skn,j,k2 , ANYPREVOUT) to sigstoLeft

13: end for
14: end for
15: return sigstoLeft

Fig. 47.

1: for all j ∈ [n− 1] \ {1} do
2: if j = 2 then m← 1 else m← 2
3: if j = n− 1 then l← n else l← n− 1
4: (TXj,1, (TXj,2,k)k∈{m,...,l}\{j}, (TXi,3,k1,k2)(k1,k2)∈{m,...,i−1}{i+1,...,l}) ←

virt.getMidTXs(j, n, cvirt, cj−1,right, cj,left, cj,right, cj+1,left,
pkj−1,right,fund,old, pkj,left,fund,old, pkj,right,fund,old, pkj+1,left,fund,old,
pkj−1,fund,new, pkj,fund,new, pkj,fund,new, pkj+1,fund,new, pkleft,virt, pkright,virt,
pkj,out, (pkj,s,k)j∈[n],s∈[n−1]\{1},k∈[n−1]\{1,s}, (pkj,2,1)j∈[n], (pkj,n−1,n)j∈[n],
(tj)j∈[n−1]\{1})

5: sigstoRight ← ∅
6: for all k ∈ {m, . . . , l} \ {j} do
7: add sign(TXj,2,k, sk1,j,k, ANYPREVOUT) to sigstoRight

8: end for
9: for all k1 ∈ {m, . . . , j − 1}, k2 ∈ {j + 1, . . . , l} do
10: add sign(TXj,3,k1,k2 , sk1,j,k1 , ANYPREVOUT) to sigstoRight

11: add sign(TXj,3,k1,k2 , sk1,j,k2 , ANYPREVOUT) to sigstoRight

12: end for
13: end for
14: call virt.circulateVirtualSigs(sigstoRight) of P̄ and assign output to

sigsbyRight

15: TX1,1 ← virt.getEndpointTX(1, n, cvirt, c1,right, c2,left, pk1,right,fund,old,
pk2,left,fund,old, pk1,fund,new, pk2,fund,new, pkleft,virt, pkright,virt, (pkj,2,1)j∈[n], t2)

Process virt.hostFunderSigs()

56

16: return (ok)

Fig. 48.

1: if 1 < i < n then // we are not host_funder nor host_fundee
2: return virt.intermediarySigs()
3: else if i = 1 then // we are host_funder
4: return virt.hostFunderSigs()
5: else if i = n then // we are host_fundee
6: return virt.hostFundeeSigs()
7: end if // it is always 1 ≤ i ≤ n – c.f. Fig. 41, l. 12 and l. 39

Process virt.circulateVirtualSigs(sigsbyLeft)

Fig. 49.

1: if 1 < i < n then // we are not endpoint
2: if i = 2 then m← 1 else m← 2
3: if i = n− 1 then l← n else l← n− 1
4: ensure that the following signatures are present in sigsbyLeft and store them:

– // 1 signature
5: sig(TXi,1, pki−1,right,fund,old)

– // n− 3 + χi=2 + χi=n−1 signatures
6: ∀k ∈ {m, . . . , l} \ {i}
7: sig(TXi,2,k, pki−1,right,fund,old)

8: input (virtual base sig forward, sigsbyLeft) to sibling
9: extract and store sig(TXi,1, pki−1,right,fund,old) and ∀k ∈ {m, . . . , l} \ {i}

sig(TXi,2,k, pki−1,right,fund,old) from sigsbyLeft // same signatures as sibling
10: sigstoRight ← {sign(TXi+1,1, ski,right,fund,old, ANYPREVOUT)}
11: if i+ 1 < n then
12: if i+ 1 = n− 1 then l′ ← n else l′ ← n− 1
13: for all k ∈ {2, . . . , l′} do
14: add sign(TXi+1,2,k, ski,right,fund,old, ANYPREVOUT) to sigstoRight

15: end for
16: end if
17: call virt.circulateFundingSigs(sigstoRight) of P̄ and assign returned

values to sigsbyRight

18: ensure that the following signatures are present in sigsbyRight and store
them:

Process virt.circulateFundingSigs(sigsbyLeft)

57

– // 1 signature
19: sig(TXi,1, pki+1,left,fund,old)

– // n− 3 + χi=2 + χi=n−1 signatures
20: ∀k ∈ {m, . . . , l} \ {i}
21: sig(TXi,2,k, pki+1,right,fund,old)

22: output (virtual base sig back, sigsbyRight)
23: extract and store sig(TXi,1, pki+1,right,fund,old) and ∀k ∈ {m, . . . , l} \ {i}

sig(TXi,2,k, pki+1,right,fund,old) from sigsbyRight // same signatures as sibling
24: sigtoLeft ← {sign(TXi−1,1, ski,left,fund,old, ANYPREVOUT)}
25: if i− 1 > 1 then
26: if i− 1 = 2 then m′ ← 1 else m′ ← 2
27: for all k ∈ {m′, . . . , n− 1} do
28: add sign(TXi−1,2,k, ski,left,fund,old, ANYPREVOUT) to sigstoLeft

29: end for
30: end if
31: return sigstoLeft

32: else if i = 1 then // we are host_funder
33: sigstoRight ← {sign(TX2,1, sk1,right,fund,old, ANYPREVOUT)}
34: if 2 = n− 1 then l′ ← n else l′ ← n− 1
35: for all k ∈ {3, . . . , l′} do
36: add sign(TX2,2,k, sk1,right,fund,old, ANYPREVOUT) to sigstoRight

37: end for
38: call virt.circulateFundingSigs(sigstoRight) of P̄ and assign returned

value to sigsbyRight

39: ensure that sig(TX1,1, pk2,left,fund,old) is present in sigsbyRight and store it
40: return (ok)
41: else if i = n then // we are host_fundee
42: ensure sig(TXn,1, pkn−1,right,fund,old) is present in sigsbyLeft and store it
43: sigstoLeft ← {sign(TXn−1,1, skn,left,fund,old, ANYPREVOUT)}
44: if n− 1 = 2 then m′ ← 1 else m′ ← 2
45: for all k ∈ {m′, . . . , n− 2} do
46: add sign(TXn−1,2,k, skn,left,fund,old, ANYPREVOUT) to sigstoLeft

47: end for
48: return sigstoLeft

49: end if // it is always 1 ≤ i ≤ n – c.f. Fig. 41, l. 12 and l. 39

Fig. 50.

1: if revoc_by_prev is given as argument then // we are not host_funder
2: ensure guest.processRemoteRevocation(revoc_by_prev) returns (ok)
3: else // we are host_funder
4: revoc_for_next← guest.revokePrevious()

Process virt.circulateRevocations(revoc_by_prev)

58

5: input (read) to GLedger and assign ouput to Σ
6: last_poll← |Σ|
7: call virt.circulateRevocations(revoc_for_next) of P̄ and assign

returned value to revoc_by_next
8: ensure guest.processRemoteRevocation(revoc_by_next) returns (ok)

// If the “ensure” fails, the opening process freezes, this is intentional. The
channel can still close via (close)

9: return (ok)
10: end if
11: if we have a sibling then // we are not host_fundee nor host_funder
12: input (virtual revocation forward) to sibling
13: revoc_for_next← guest.revokePrevious()
14: input (read) to GLedger and assign ouput to Σ
15: last_poll← |Σ|
16: call virt.circulateRevocations(revoc_for_next) of P̄ and assign

output to revoc_by_next
17: ensure guest.processRemoteRevocation(revoc_by_next) returns (ok)
18: output (hosts ready, ti) to guest and expect reply (host ack)
19: output (virtual revocation back)
20: end if
21: revoc_for_prev← guest.revokePrevious()
22: if 1 < i < n then // we are intermediary
23: output (hosts ready, ti) to guest and expect reply (host ack) // p is

every how many blocks we have to check the chain
24: else // we are host_fundee, case of host_funder covered earlier

25: output (hosts ready, p+
n−1∑
j=2

(s− 1 + tj)) to guest and expect reply

(host ack)
26: end if
27: return revoc_for_prev

Fig. 51.

1: On input (check for lateral close) by R ∈ {guest, funder, fundee}:
2: input (read) to GLedger and assign output to Σ
3: k1 ← 0
4: if TXi−1,1 is defined and TXi−1,1 ∈ Σ then
5: k1 ← i− 1
6: end if
7: for all k ∈ [i− 2] do
8: if TXi−1,2,k is defined and TXi−1,2,k ∈ Σ then
9: k1 ← k
10: end if

Process virt – poll

59

11: end for
12: k2 ← 0
13: if TXi+1,1 is defined and TXi+1,1 ∈ Σ then
14: k2 ← i+ 1
15: end if
16: for all k ∈ {i+ 2, . . . , n} do
17: if TXi+1,2,k is defined and TXi+1,2,k ∈ Σ then
18: k2 ← k
19: end if
20: end for
21: last_poll← |Σ|
22: if k1 > 0 ∨ k2 > 0 then // at least one neighbour has published its TX
23: ignore all messages except for (check if closing) by R
24: State← closing
25: sigs← ∅
26: end if
27: if k1 > 0 ∧ k2 > 0 then // both neighbours have published their TXs
28: add (sig(TXi,3,k1,k2 , pkp,i,k1

))p∈[n]\{i} to sigs
29: add (sig(TXi,3,k1,k2 , pkp,i,k2

))p∈[n]\{i} to sigs
30: add sign(TXi,3,k1,k2 , ski,i,k1 , ANYPREVOUT) to sigs
31: add sign(TXi,3,k1,k2 , ski,i,k2 , ANYPREVOUT) to sigs
32: input (submit, TXi,3,k1,k2 , sigs) to GLedger

33: else if k1 > 0 then // only left neighbour has published its TX
34: add (sig(TXi,2,k1 , pkp,i,k1

))p∈[n]\{i} to sigs
35: add sign(TXi,2,k1 , ski,i,k1 , ANYPREVOUT) to sigs
36: add sign(TXi,2,k1 , ski,left,fund,old, ANYPREVOUT) to sigs
37: input (submit, TXi,2,k1 , sigs) to GLedger

38: else if k2 > 0 then // only right neighbour has published its TX
39: add (sig(TXi,2,k2 , pkp,i,k2

))p∈[n]\{i} to sigs
40: add sign(TXi,2,k2 , ski,i,k2 , ANYPREVOUT) to sigs
41: add sign(TXi,2,k2 , ski,right,fund,old, ANYPREVOUT) to sigs
42: input (submit, TXi,2,k2 , sigs) to GLedger

43: end if

Fig. 52.

1: // At most one of funder, fundee is defined
2: ensure R ∈ {guest, funder, fundee}
3: if State = closed then output (closed) to R
4: if State = guest punished then output (guest punished) to R
5: ensure State ∈ {open,closing}
6: if hostP 6= GLedger then // hostP is a virt

Process virt – On input (close) by R:

60

7: ignore all messages except for output (closed) by hostP . Also relay to
hostP any (check if closing) or (close) input received

8: input (close) to hostP
9: end if
10: // if we have a hostP , continue from here on output (closed) by it
11: send (read) to GLedger as R and assign reply to Σ
12: if i ∈ {1, n} ∧ (TX(i−1)+ 2

n−1
(n−i),1 ∈ Σ ∨ ∃k ∈ [n] : TX(i−1)+ 2

n−1
(n−i),2,k ∈ Σ)

then // we are an endpoint and our counterparty has closed – 1st subscript of
TX is 2 if i = 1 and n− 1 if i = n

13: ignore all messages except for (check if closing) and (close) by R
14: State← closing
15: give up execution token // control goes to E
16: end if
17: let tx be the unique TX among TXi,1, (TXi,2,k)k∈[n], (TXi,3,k1,k2)k1,k2∈[n]

that can be appended to Σ in a valid way // ignore invalid subscript
combinations

18: let sigs be the set of stored signatures that sign tx
19: add sign(tx, ski,left,fund,old, ANYPREVOUT), sign(tx, ski,right,fund,old,

ANYPREVOUT), (sign(tx, ski,j,k, ANYPREVOUT))j,k∈[n] to sigs // ignore invalid
signatures

20: ignore all messages except for (check if closing) by R
21: State← closing
22: send (submit, tx, sigs) to GLedger

Fig. 53.

1: ensure State = closing
2: ensure R ∈ {guest, funder, fundee}
3: send (read) to GLedger as R and assign reply to Σ
4: if i = 1 then // we are host_funder
5: ensure that there exists an output with cP + cP̄ − cvirt coins and a

2/{pk1,fund,new, pk2,fund,new} spending method with expired/non-existent
timelock in Σ // new base funding output

6: ensure that there exists an output with cvirt coins and a
2/{pkleft,virt, pkright,virt} spending method with expired/non-existent timelock
in Σ // virtual funding output

7: else if i = n then // we are host_fundee
8: ensure that there exists an output with cP + cP̄ − cvirt coins and a

2/{pkn−1,fund,new, pkn,fund,new} spending method with expired/non-existent
timelock in Σ // new base funding output

9: ensure that there exists an output with cvirt coins and a
2/{pkleft,virt, pkright,virt} spending method with expired/non-existent timelock
in Σ // virtual funding output

Process virt – On input (check if closing) by R:

61

10: else // we are intermediary
11: if side = “left” then j ← i− 1 else j ← i+ 1 // side is defined for all

intermediaries – c.f. Fig. 41, l. 11
12: ensure that there exists an output with cP + cP̄ − cvirt coins and a

2/{pki,fund,new, pkj,fund,new} spending method with expired/non-existent
timelock and an output with cvirt coins and a pki,out spending method with
expired/non-existent timelock in Σ

13: end if
14: State← closed
15: output (closed) to R

Fig. 54.

1: On input (used revocation) by guest: // (used revocation) by
funder/fundee is ignored

2: State← guest punished
3: input (used revocation) to hostP , expect reply (used revocation ok)
4: if funder or fundee is defined then
5: output (enabler used revocation) to it
6: else // sibling is defined
7: output (enabler used revocation) to sibling
8: end if

9: On input (enabler used revocation) by sibling:
10: State← guest punished
11: output (enabler used revocation) to guest

12: On output (used revocation) by hostP :
13: State← guest punished
14: if funder or fundee is defined then
15: output (enabler used revocation) to it
16: else // sibling is defined
17: output (enabler used revocation) to sibling
18: end if

Process virt – punishment handling

Fig. 55.

11 Liveness

62

Proposition 1. Consider a synchronised honest party that submits a transac-
tion tx to the ledger functionality [51] by the time the block indexed by h is added
to state in its view. Then tx is guaranteed to be included in the block range
[h+1, h+(2+q)windowSize], where q = d(maxTimewindow+ Delay

2)/minTimewindowe.

The proof can be found in [46].

12 Omitted Proofs

Proof (Proof of Lemma 1). We first note that, as signature forgeries only happen
with negligible probability and only a polynomial number of signatures are ver-
ified by honest parties throughout an execution, the event in which any forged
signature passes the verification of an honest party or of GLedger happens only
with negligible probability. We can therefore ignore this event throughout this
proof and simply add a computationally negligible distance between E ’s outputs
in the real and the ideal world at the end.

We also note that pkP,out has been provided by E , therefore it can freely use
coins spendable by this key. This is why we allow for any of the pkP,out outputs
to have been spent.

Define the history of a channel as H = (F,C), where each of F,C is a list of
lists of integers. A party P which satisfies the Lemma conditions has a unique,
unambiguously and recursively defined history: If the value hops in the (open,
c, hops, . . .) message was equal to GLedger, then F is the empty list, otherwise
F is the concatenation of the F and C lists of the party that sent (funded, . . .)
to P , as they were at the moment the latter message was sent. After initialised,
F remains immutable. Observe that, if hops 6= GLedger, both aforementioned
messages must have been received before P transitions to the open state.

The list C of party P is initialised to [[g]] when P ’s State transitions for the
first time to open, where g = c if P = Alice, or g = 0 if P = Bob; this represents
the initial channel balance. The value x or −x is appended to the last list in C
when a payment is received (Fig. 33, l. 21) or sent (Fig. 33, l. 6) respectively
by P . Moving on to the funding of new virtual channels, whenever P funds a
new virtual channel (Fig. 30, l. 20), [−cvirt] is appended to C and whenever P
helps with the opening of a new virutal channel, but does not fund it (Fig. 30,
l. 23), [0] is appended to C. Therefore C consists of one list of integers for each
sequence of inbound and outbound payments that have not been interrupted
by a virtualisation step and a new list is added for every new virtual layer. We
also observe that a non-negligent party with history (F,C) satisfies the Lemma
conditions and that the value of the right hand side of the inequality (1) is equal
to

∑
s∈C

∑
x∈s

x, as all inbound and outbound payment values and new channel

funding values that appear in the Lemma conditions are recorded in C.
Let party P with a particular history. We will inductively prove that P

satisfies the Lemma. The base case is when a channel is opened with hops =

63

GLedger and is closed right away, therefore H = ([], [g]), where g = c if P = Alice
and g = 0 if P = Bob. P can transition to the open State for the first time only
if all of the following have taken place:

– It has received (open, c, . . .) while in the init State. In case P = Alice,
this message must have been received as input by E (Fig. 28, l. 1), or in
case P = Bob, this message must have been received via the network by P̄
(Fig. 23, l. 3).

– It has received pkP̄ ,F . In case P = Bob, pkP̄ ,F must have been contained in
the (open, . . .) message by P̄ (Fig. 23, l. 3), otherwise if P = Alice pkP̄ ,F
must have been contained in the (accept channel, . . .) message by P̄
(Fig. 23, l. 16).

– It internally holds a signature on the commitment transaction CP,0 that is
valid when verified with public key pkP̄ ,F (Fig. 25, ll. 12 and 23).

– It has the transaction F in the GLedger state (Fig. 26, l. 3 or Fig. 27, l. 5).

We observe that P satisfies the Lemma conditions withm = n = l = 0. Before
transitioning to the open State, P has produced only one valid signature for the
“funding” output (c, 2/{pkP,F , pkP̄ ,F }) of F with skP,F , namely for CP̄ ,0 (Fig. 25,
ll. 4 or 14), and sent it to P̄ (Fig. 25, ll. 6 or 21), therefore the only two ways
to spend (c, 2/{pkP,F , pkP̄ ,F }) are by either publishing CP,0 or CP̄ ,0. We observe
that CP,0 has a (g, (pkP,out+(t+s)) ∨ 2/{pkP,R, pkP̄ ,R}) output (Fig. 25, l. 2 or 3).
The spending method 2/{pkP,R, pkP̄ ,R} cannot be used since P has not produced
a signature for it with skP,R, therefore the alternative spending method, pkP,out+
(t+ s), is the only one that will be spendable if CP,0 is included in GLedger, thus
contributing g to the sum of outputs that contribute to inequality (1). Likewise,
if CP̄ ,0 is included in GLedger, it will contribute at least one (g, pkP,out) output to
this inequality, as CP̄ ,0 has a (g, pkP,out) output (Fig. 25, l. 2 or 3). Additionally,
if P receives (close) by E whileH = ([], [g]), it attempts to publish CP,0 (Fig. 39,
l. 19), and will either succeed or CP̄ ,0 will be published instead. We therefore
conclude that in every case GLedger will eventually have a state Σ that contains
at least one (g, pkP,out) output, therefore satisfying the Lemma consequence.

Let P with history H = (F,C). The induction hypothesis is that the Lemma
holds for P . Let cP the sum in the right hand side of inequality (1). In order to
perform the induction step, assume that P is in the open state. We will prove
all the following (the facts to be proven are shown with emphasis for clarity):

– If P receives (fund me, f , . . .) by a (local, kindred) ln ITI R, subsequently
transitions back to the open state (therefore moving to history (F,C ′) where
C ′ = C + [−f]) and finally receives (close) by E and (closed) by hostP
before any further change to its history, then eventually P ’s GLedger state
will contain h transaction outputs each of value ci exclusively spendable or
already spent by pkP,out) that are descendants of an output with spending

method 2/{pkP,F , pkP̄ ,F } such that
h∑
i=1

ci ≥
∑
s∈C′

∑
x∈s

x. Furthermore, given

that P moves to the open state after the (fund me, . . .) message, it also

64

sends (funded, . . .) to R (Fig. 30, l. 21). If subsequently the state of R
transitions to open (therefore obtaining history (FR, CR) where FR = F +
C and CR = [[f]]), and finally receives (close) by E and (closed) by
hostR (hostR = hostP – Fig. 27, l. 10) before any further change to its
history, then eventually R’s GLedger state will contain k transaction outputs
each of value cRi exclusively spendable or already spent by pkR,out) that are
descendants of an output with spending method 2/{pkR,F , pkR̄,F } such that
k∑
i=1

cRi ≥
∑
s∈CR

∑
x∈s

x.

– If P receives (virtualising, . . .) by P̄ , subsequently transitions back to
open (therefore moving to history (F,C ′) where C ′ = C + [0]) and finally
receives close by E and (closed) by hostP before any further change to its
history, then eventually P ’s GLedger state will contain h transaction outputs
each of value ci exclusively spendable or already spent by pkP,out) that are
descendants of an output with spending method 2/{pkP,F , pkP̄ ,F } such that
h∑
i=1

ci ≥
∑
s∈C

∑
x∈s

x. Furthermore, given that P moves to the open state after

the (virtualising, . . .) message and in case it sends (funded, . . .) to some
party R (Fig. 30, l. 18), the latter party is the (local, kindred) fundee of
a new virtual channel. If subsequently the state of R transitions to open
(therefore obtaining history (FR, CR) where FR = F + C and CR = [[0]]),
and finally receives (close) by E and (closed) by hostR (hostR = hostP
– Fig. 27, l. 10) before any further change to its history, then eventually
R’s GLedger state will contain an output with a 2/{pkR,F , pkR̄,F } spending
method.

– If P receives (pay, d) by E , subsequently transitions back to open (therefore
moving to history (F,C ′) where C ′ is C with −d appended to the last list of
C) and finally receives close by E and (closed) by hostP (the latter only
if hostP 6= GLedger or equivalently F 6= []) before any further change to its
history, then eventually P ’s GLedger state will contain h transaction outputs
each of value ci exclusively spendable or already spent by pkP,out) that are
descendants of an output with a 2/{pkP,F , pkP̄ ,F } spending method such that
h∑
i=1

ci ≥
∑
s∈C′

∑
x∈s

x.

– If P receives (get paid, e) by E , subsequently transitions back to open
(therefore moving to history (F,C ′) where C ′ is C with e appended to the last
list of C) and finally receives close by E and (closed) by hostP (the latter
only if hostP 6= GLedger or equivalently F = []) before any further change
to its history, then eventually P ’s GLedger state will contain h transaction
outputs each of value ci exclusively spendable or already spent by pkP,out)
that are descendants of an output with a 2/{pkP,F , pkP̄ ,F } spending method

such that
h∑
i=1

ci ≥
∑
s∈C′

∑
x∈s

x.

65

By the induction hypothesis, before the funding procedure started P could
close the channel and end up with on-chain transaction outputs exclusively
spendable or already spent by pkP,out with a sum value of cP . When P is in
the open state and receives (fund me, f , . . .), it can only move again to the
open state after doing the following state transitions: open→ virtualising→
waiting for revocation → waiting for inbound revocation → wait-
ing for hosts ready → open. During this sequence of events, a new hostP
is defined (Fig. 30, l. 6), new commitment transactions are negotiated with P̄
(Fig. 30, l. 9), control of the old funding output is handed over to hostP (Fig. 30,
l. 11), hostP negotiates with its counterparty a new set of transactions and sig-
natures that spend the aforementioned funding output and make available a new
funding output with the keys pk′P,F , pk

′
P̄ ,F as P instructed (Fig. 48 and 50) and

the previous valid commitment transactions of both P and P̄ are invalidated
(Fig. 22, l. 1 and l. 14 respectively). We note that the use of the ANYPREVOUT
flag in all signatures that correspond to transaction inputs that may spend var-
ious different transaction outputs ensures that this is possible, as it avoids tying
each input to a specific, predefined output. When P receives (close) by E , it
inputs (close) to hostP (Fig. 39, l. 4). As per the Lemma conditions, hostP
will output (closed). This can happen only when GLedger contains a suitable
output for both P ’s and R’s channel (Fig. 54, and 5 ll. 6 respectively).

If the host of hostP is GLedger, then the funding output o1,2 = (cP +
cP̄ , 2/{pkP,F , pkP̄ ,F }) for the P, P̄ channel is already on-chain. Regarding the
case in which hostP 6= GLedger, after the funding procedure is complete, the
new hostP will have as its host the old hostP of P . If the (close) sequence is
initiated, the new hostP will follow the same steps that will be described below
once the old hostP succeeds in closing the lower layer (Fig. 53, l. 6). The old
hostP however will see no difference in its interface compared to what would
happen if P had received (close) before the funding procedure, therefore it will
successfully close by the induction hypothesis. Thereafter the process is identical
to the one when the old hostP = GLedger.

Moving on, hostP is either able to publish its TX1,1 (it has necessarily re-
ceived a valid signature sig(TX1,1, pkP̄ ,F) (Fig. 50, l. 39) by its counterparty
before it moved to the open state for the first time), or the output (cP +
cP̄ , 2/{pkP,F , pkP̄ ,F }) needed to spend TX1,1 has already been spent. The only
other transactions that can spend it are TX2,1 and any of (TX2,2,k)k>2, since
these are the only transactions that spend the aforementioned output and that
hostP has signed with skP,F (Fig. 50, ll. 33-37). The output can be also spent by
old, revoked commitment transactions, but in that case hostP would not have
output (closed); P would have instead detected this triggered by a (check
chain for closed) message by E (Fig. 37) and would have moved to the
closed state on its own accord (lack of such a message by E would lead P to
become negligent, something that cannot happen according to the Lemma con-
ditions). Every transaction among TX1,1, TX2,1, (TX2,2,k)k>2 has a (cP +cP̄−f ,
2/{pk′P,F , pk

′
P̄ ,F }) output (Fig. 44, l. 18 and Fig. 43, ll. 27 and 91) which will end

66

up in GLedger – call this output oP . We will prove that at most
n−1∑
i=2

(ti+p+s−1)

blocks after (close) is received by P , an output oR with cvirt coins and a
2/{pkR,F , pkR̄,F } spending condition without or with an expired timelock will be
included in GLedger. In case party P̄ is idle, then o1,2 is consumed by TX1,1 and
the timelock on its virtual output expires, therefore the required output oR is on-
chain. In case P̄ is active, exactly one of TX2,1, (TX2,2,k)k>2 or (TX2,3,1,k)k>2 is
a descendant of o1,2; if the transaction belongs to one of the two last transaction
groups then necessarily TX1,1 is on-chain in some block height h and given the
timelock on the virtual output of TX1,1, P̄ ’s transaction can be at most at block
height h+ t2 + p+ s− 1. If n = 3 or k = n− 1, then P̄ ’s unique transaction has
the required output oR (without a timelock). The rest of the cases are covered
by the following sequence of events:

1: maxDel← t2 + p+ s− 1 // A2 is active and the virtual output of TX1,1 has a
timelock of t2

2: i← 3
3: loop
4: if Ai is idle then
5: The timelock on the virtual output of the transaction published by
Ai−1 expires and therefore the required oR is on-chain

6: else // Ai publishes a transaction that is a descendant of o1,2

7: maxDel← maxDel + ti + p+ s− 1
8: The published transaction can be of the form TXi,2,2 or (TXi,3,2,k)k>i

as it spends the virtual output which is encumbered with a public key
controlled by R and R has only signed these transactions

9: if i = n− 1 or k ≥ n− 1 then // The interval contains all
intermediaries

10: The virtual output of the transaction is not timelocked and has only
a 2/{pkR,F , pkR̄,F } spending method, therefore it is the required oR

11: else // At least one intermediary is not in the interval
12: if the transaction is TXi,3,2,k then i← k else i← i+ 1
13: end if
14: end if
15: end loop

16: // maxDel ≤
n−1∑
i=2

(ti + p+ s− 1)

Closing sequence

Fig. 56.

In every case oP and oR end up on-chain in at most s and
n−1∑
i=2

(ti + p+ s− 1)

blocks respectively from the moment (close) is received. The output oP an be

67

spent either by CP,i or CP̄ ,i. Both these transactions have a (cP − f, pkP,out)
output. This output of CP,i is timelocked, but the alternative spending method
cannot be used as P never signed a transaction that uses it (as it is reserved for
revocation, which has not taken place yet in this virtualisation layer). We have
now proven that if P completes the funding of a new channel then it can close
its channel for a (cP − f , pkP,out) output that is a descendant of an output with
spending method 2/{pkP,F , pkP̄ ,F } and that lower bound of value holds for the
duration of the funding procedure, i.e. we have proven the first claim of the first
bullet.

We will now prove that the newly funded party R can close its channel
securely. After R receives (funded, hostP , . . .) by P and before moving to the
open state, it receives sigR̄,C,0 = sig(CR,0, pkR̄,F) and sends sigR,C,0 = sig(CR̄,0,
pkR,F). Both these transactions spend oR. As we showed before, if R receives
(close) by E then oR eventually ends up on-chain. After receiving (closed)
from hostP , R attempts to add CR,0 to GLedger, which may only fail if CR̄,0
ends up on-chain instead. Similar to the case of P , both these transactions have
an (f, pkR,out) output. This output of CR,0 is timelocked, but the alternative
spending method cannot be used as R never signed a transaction that uses it (as
it is reserved for revocation, which has not taken place yet) so the timelock will
expire and the desired spending method will be available. We have now proven
that if R’s channel is funded to completion (i.e. R moves to the open state for
the first time) then it can close its channel for a (f , pkR,out) output that is a
descendant of oR. We have therefore proven the first bullet.

We now move on to the second bullet. In case P is the funder (i.e. i = n),
then the same arguments as in the previous bullet hold here with “waiting
for inbound revocation” replaced with “waiting for outbound revoca-
tion”, o1,2 with on−1,n, TX1,1 with TXn,1, TX2,1 with TXn−1,1, (TX2,2,k)k>2

with (TXn−1,2,k)k<n−1, (TX2,3,1,k)k>2 with (TXn−1,3,n,k)k<n−1, t2 with tn−1,
TXi,3,2,k with TXi,3,n−1,k, i is initialized to n − 2 in l. 2 of Fig. 56, i is decre-
mented instead of incremented in l. 12 of the same Figure and f is replaced with
0. This is so because these two cases are symmetric.

In case P is not the funder (1 < i < n), then we only need to prove the first
statement of the second bullet. By the induction hypothesis and since sibling
is kindred, we know that both P ’s and sibling’s funding outputs either are
or can be eventually put on-chain and that P ’s funding output has at least
cP =

∑
s∈C

∑
x∈s

x coins. If P is on the “left” of its sibling (i.e. there is an un-

trusted party that sent the (virtualising, . . .) message to P which triggered
the latter to move to the virtualising state and to send a (virtualising, . . .)
message to its own sibling), the “left” funding output oleft (the one held with the
untrusted party to the left) can be spent by one of TXi,1, (TXi,2,k)k>i, TXi−1,1,
or (TXi−1,2,k)k<i−1, as these are the only transactions that P has signed with
skP,F . All these transactions have a (cP + cP̄ − f , 2/{pkP,F ′ , pkP̄ ,F ′}) output
that can in turn be spent by either CP,0 or CP̄ ,0, both of which have an output
of value cP and a pkP,out spending method and no other spending method can
be used (as P has not signed the “revocation” spending method of CP,0).

68

In the case that P is to the right of its sibling (i.e. P receives by sibling
the (virtualising, . . .) message that causes P ’s transition to the virutalis-
ing state), the “right” funding output oright (the one held with the untrusted
party to the right) can be spent by one of TXi,1, (TXi,2,k)k<i, TXi+1,1, or
(TXi+1,2,k)k>i+1, as these are the only transactions that P has signed with
skP,F . All these transactions have a (cP + cP̄ − f , 2/{pkP,F ′ , pkP̄ ,F ′}) output
that can in turn be spent by either CP,0 or CP̄ ,0, both of which have an output
of value cP−f and a pkP,out spending method and no other spending method can
be used (as P has not signed the “revocation” spending method of CP,0). P can
get the remaining f coins as follows: TXi,1 and all of (TXi,2,k)k<i already have an
(f , pkP,out) output. If instead TXi+1,1 or one of (TXi+1,2,k2)k2>i+1 spends oright,
then P will publish TXi,2,i+1 or TXi,2,k2 respectively if oleft is unspent, other-
wise oleft is spent by one of TXi−1,1 or (TXi−1,2,k1)k1<i−1 in which case P will
publish one of TXi,3,k1,i+1, TXi,3,i−1,k2 , TXi,3,i−1,i+1 or TXi,3,k1,k2 . In particu-
lar, TXi,3,k1,i+1 is published if TXi−1,2,k1 and TXi+1,1 are on-chain, TXi,3,i−1,k2

is published if TXi−1,1 and TXi+1,2,k2 are on-chain, TXi,3,i−1,i+1 is published if
TXi−1,1 and TXi+1,1 are on-chain, or TXi,3,k1,k2 is published if TXi−1,2,k1 and
TXi+1,2,k2 are on-chain. All these transactions include an (f , pkP,out) output.
We have therefore covered all cases and proven the second bullet.

Regarding now the third bullet, once again the induction hypothesis guar-
antees that before (pay, d) was received, P could close the channel resulting
in on-chain outputs exclusively spendable or already spent by pkP,out that are
descendants of an output with a 2/{pkP,F , pkP̄ ,F } spending method that have
a sum value of cP =

∑
s∈C

∑
x∈s

x. (Note that
∑
s∈C′

∑
x∈s

x = d +
∑
s∈C

∑
x∈s

x.) When P

receives (pay, d) while in the open state, it moves to the waiting for com-
mitment signed state before returning to the open state. It signs (Fig. 32,
l. 2) the new commitment transaction CP̄ ,i+1 in which the counterparty owns
d more coins than before that moment (Fig. 32, l. 1), sends the signature to
the counterparty (Fig. 32, l. 4) and expects valid signatures on its own updated
commitment transaction (Fig. 33, l. 1) and the revocation transaction for the
old commitment transaction of the counterparty (Fig. 33, l. 3). Note that if the
counterparty does not respond or if it responds with missing/invalid signatures,
either P can close the channel with the old commitment transaction CP,i exactly
like before the update started (as it has not yet sent the signature for the old
revocation transaction), or the counterparty will close the channel either with
the new or with the old commitment transaction. In all cases in which validation
fails and the channel closes, there is an output with a pkP,out spending method
and no other useable spending method that carries at least cP − d coins. Only if
the verification succeeds does P sign (Fig. 33, l. 5) and send (Fig. 33, l. 17) the
counterparty’s revocation transaction for P ’s previous commitment transaction.

Similarly to previous bullets, if hostP 6= GLedger the funding output can be
put on-chain, otherwise the funding output is already on-chain. In both cases,
since the closing procedure continues, one of CP,i+1 (CP̄ ,j)0≤j≤i+1 will end up
on-chain. If CP̄ ,j for some j < i+1 is on-chain, then P submits RP,j (we discussed
how P obtained RP,i and the rest of the cases are covered by induction) and

69

takes the entire value of the channel which is at least cP−d. If CP̄ ,i+1 is on-chain,
it has a (cP − d, pkP,out) output. If CP,i+1 is on-chain, it has an output of value
cP − d, a timelocked pkP,out spending method and a non-timelocked spending
method that needs the signature made with skP,R on RP̄ ,i+1. P however has not
generated that signature, therefore this spending method cannot be used and
the timelock will expire, therefore in all cases outputs that descend from the
funding output, can be spent exclusively by pkP,out and carry at least cP − d
coins are put on-chain. We have proven the third bullet.

For the fourth and last bullet, again by the induction hypothesis, before (get
paid, e) was received P could close the channel resulting in on-chain outputs
exclusively spendable or already spent by pkP,out that are descendants of an
output oF with a 2/{pkP,F , pkP̄ ,F } spending method and have a sum value of
cP =

∑
s∈C

∑
x∈s

x. (Note that e+
∑
s∈C′

∑
x∈s

x =
∑
s∈C

∑
x∈s

x and that oF either is already

on-chain or can be eventually put on-chain as we have argued in the previous
bullets by the induction hypothesis.) When P receives (get paid, e) while in the
open state, if the balance of the counterparty is enough it moves to the waiting
to get paid state (Fig. 35, l. 6). If subsequently it receives a valid signature
for CP,i+1 (Fig. 32, l. 8) which is a commitment transaction that can spend the
oF output and gives to P an additional e coins compared to CP,i. Subsequently
P ’s state transitions to waiting for pay revocation and sends signatures for
CP̄ ,i+1 and RP̄ ,i to P̄ . If the oF output is spent while P is in the latter state, it
can be spent by one of CP,i+1 or (CP̄ ,j)0≤j≤i+1. If it is spent by CP,i+1 or CP̄ ,i+1,
then these two transactions have a (cP +e, pkP,out) output. (Note that the former
is encumbered with a timelock, but the alternative spending method cannot be
used as P has not signed RP̄ ,i+1.) If it is spent by CP̄ ,i then a (cP , pkP,out)
output becomes available instead, therefore P can still get the cP coins that
correspond to the previous state. If any of (CP̄ ,j)0≤j<i spends oF then it makes
available a pkP,out output with the coins that P had at state j and additionally
P can publish RP,j that spends P̄ ’s output of CP̄ ,j and obtain the entirety of
P̄ ’s coins at state j for a total of cP + cP̄ coins. Therefore in every case P can
claim at least cP coins. In the case that P instead subsequently receives a valid
signature to RP,i (Fig. 33, l. 20) it finally moves to the open state once again.
In this state the above analysis of what can happen when oF holds similarly,
with the difference that if P̄ spends oF with CP̄ ,i now P can publish RP,i which
gives P the coins of P̄ . Therefore with this difference P is now guaranteed to
gain at least cP + e coins upon channel closure. We have therefore proven the
fourth bullet.

Proof (Proof of Lemma 2). We will prove the Lemma by following the evolution
of the balanceP variable.

– When FChan is activated for the first time, it sets balanceP ← 0 (Fig. 8,
l. 1).

– If P = Alice and it receives (open, c, . . .) by E , it stores c (Fig. 8, l. 10). If
later StateP becomes open, FChan sets balanceP ← c (Fig. 8, ll. 13 or 31).

70

In contrast, if P = Bob, it is balanceP = 0 until at least the first transition
of StateP to open (Fig. 8).

– Every time that P receives input (fund me, fi, . . .) by another party while
StateP = open, P stores fi (Fig. 10, l. 1). The next time StateP transi-
tions to open (if such a transition happens), balanceP is decremented by
fi (Fig. 10, l. 27). Therefore, if this cycle happens n ≥ 0 times, balanceP
will be decremented by

n∑
i=1

fi in total.

– Every time P receives input (pay, di) by E while StateP = open, di is stored
(Fig. 9, l. 2). The next time StateP transitions to open (if such a transition
happens), balanceP is decremented by di (Fig. 9, l. 13). Therefore, if this

cycle happens m ≥ 0 times, balanceP will be decremented by
m∑
i=1

di in total.

– Every time P receives input (get paid, ei) by E while StateP = open, ei
is stored (Fig. 9, l. 7). The next time StateP transitions to open (if such a
transition happens) balanceP is incremented by ei (Fig. 9, l. 19). Therefore,

if this cycle happens l ≥ 0 times, balanceP will be incremented by
l∑
i=1

ei in

total.

On aggregate, after the above are completed and then FChan receives (close,

P) by S, it is balanceP = c −
n∑
i=1

fi −
m∑
i=1

di +
l∑
i=1

ei if P = Alice, or else if

P = Bob, balanceP = −
n∑
i=1

fi −
m∑
i=1

di +
l∑
i=1

ei.

Proof (Proof of Lemma 3). We prove the Lemma in two steps. We first show
that if the conditions of Lemma 2 hold, then the conditions of Lemma 1 for the
real world execution with protocol ln and the same E and A hold as well for the
same m,n and l values.

For StateP to become ignored, either S has to send (became corrupted
or negligent, P) or hostP must output (enabler used revocation) to
FChan (Fig. 8, l. 4). The first case only happens when either P receives (corrupt)
by A (Fig. 20, l. 1), which means that the simulated P is not honest anymore, or
when P becomes negligent (Fig. 20, l. 4), which means that the first condition
of Lemma 1 is violated. In the second case, it is hostP 6= GLedger and the state
of hostP is guest punished (Fig. 55, ll. 1 or 12), so in case P receives (close)
by E the output of hostP will be (guest punished) (Fig. 53, l. 4). In all cases,
some condition of Lemma 1 is violated.

For StateP to become open at least once, the following sequence of events
must take place (Fig. 8): If P = Alice, it must receive (init, pk) by E when
StateP = uninit, then either receive (open, c, GLedger, . . .) by E and (base
open) by S or (open, c, hops (6= GLedger), . . .) by E , (funded, host, . . .) by
hops[0].left and (virtual open) by S. In either case, S only sends its message
only if all its simulated honest parties move to the open state (Fig. 20, l. 10),
therefore if the second condition of Lemma 2 holds and P = Alice, then the

71

second condition of Lemma 1 holds as well. The same line of reasoning can be
used to deduce that if P = Bob, then StateP will become open for the first
time only if all honest simulated parties move to the open state, therefore once
more the second condition of Lemma 2 holds only if the second condition of
Lemma 1 holds as well. We also observe that, if both parties are honest, they
will transition to the open state simultaneously.

Regarding the third Lemma 2 condition, we assume (and will later show)
that if both parties are honest and the state of one is open, then the state
of the other is also open. Each time P receives input (fund me, f , . . .) by
R ∈ {FChan, ln}, StateP transitions to pending fund, subsequently when a
command to define a new virt ITI through P is intercepted by FChan, StateP
transitions to tentative fund and afterwards when S sends (fund) to FChan,
StateP transitions to sync fund. In parallel, if StateP̄ = ignored, then StateP
transitions directly back to open. If on the other hand StateP̄ = open and FChan

intercepts a similar virt ITI definition command through P̄ , StateP̄ transitions
to tentative help fund. On receiving the aforementioned (fund) message
by S and given that StateP̄ = tentative help fund, FChan also sets StateP̄
to sync help fund. Then both StateP̄ and StateP transition simultaneously
to open (Fig. 10). This sequence of events may repeat any n ≥ 0 times. We
observe that throughout these steps, honest simulated P has received (fund
me, f , . . .) and that S only sends (fund) when all honest simulated parties
have transitioned to the open state (Fig. 20, l. 18 and Fig. 30, l. 12), so the
third condition of Lemma 1 holds with the same n as that of Lemma 2.

Regarding the fourth Lemma 2 condition, we again assume that if both par-
ties are honest and the state of one is open, then the state of the other is also
open. Each time P receives input (pay, d) by E , StateP tranisitions to ten-
tative pay and subsequently when S sends (pay) to FChan, StateP transitions
to (sync pay, d). In parallel, if StateP̄ = ignored, then StateP transitions
directly back to open. If on the other hand StateP̄ = open and FChan re-
ceives (get paid, d) by E addressed to P̄ , StateP̄ transitions to tentative
get paid. On receiving the aforementioned (pay) message by S and given that
StateP̄ = tentative get paid, FChan also sets StateP̄ to sync get paid. Then
both StateP and StateP̄ transition simultaneously to open (Fig. 9). This se-
quence of events may repeat any m ≥ 0 times. We observe that throughout
these steps, honest simulated P has received (pay, d) and that S only sends
(pay) when all honest simulated parties have completed sending or receiving the
payment (Fig. 20, l. 16), so the fourth condition of Lemma 1 holds with the same
m as that of Lemma 2. As far as the fifth condition of Lemma 2 goes, we observe
that this case is symmetric to the one discussed for its fourth condition above if
we swap P and P̄ , therefore we deduce that if Lemma 2 holds with some l, then
Lemma 1 holds with the same l.

As promised, we here argue that if both parties are honest and one party
moves to the open state, then the other party will move to the open state as
well. We already saw that the first time one party moves to the open state, it
will happen simultaneously with the same transition for the other party. We also

72

saw that, when a party transitions from the sync help fund or the sync fund
state to the open state, then the other party will also transition to the open
state simultaneously. Furthermore, we saw that if one party transitions from
the sync pay or the sync get paid state to the open state, the other party
will also transition to the open state simultaneously. Lastly we notice that we
have exhausted all manners in which a party can transition to the open state,
therefore we have proven that transitions of honest parties to the open state
happen simultaneously.

Now, given that S internally simulates faithfully both ln parties and that
FChan relinquishes to S complete control of the external communication of the
parties as long as it does not halt, we deduce that S replicates the behaviour of
the aforementioned real world. By combining these facts with the consequences
of the two Lemmas and the check that leads FChan to halt if it fails (Fig. 11,
l. 18), we deduce that if the conditions of Lemma 2 hold for the honest parties of
FChan and their kindred parties, then the functionality halts only with negligible
probability.

In the second proof step, we show that if the conditions of Lemma 2 do not
hold, then the check of Fig. 11, l. 18 never takes place. We first discuss the
StateP = ignored case. We observe that the ignored State is a sink state, as
there is no way to leave it once in. Additionally, for the balance check to happen,
FChan must receive (closed, P) by S when StateP 6= ignored (Fig. 11, l. 9).
We deduce that, once StateP = ignored, the balance check will not happen.
Moving to the case where StateP has never been open, we observe that it is
impossible to move to any of the states required by l. 9 of Fig. 11 without first
having been in the open state. Moreover if P = Alice, it is impossible to reach
the open state without receiving input (open, c, . . .) by E . Lastly, as we have
observed already, the three last conditions of Lemma 2 are always satisfied. We
conclude that if the conditions to Lemma 2 do not hold, then the check of Fig. 11,
l. 18 does not happen and therefore FChan does not halt.

On aggregate, FChan may only halt with negligible probability in the security
parameter.

Acknowledgements: Research partly supported by PRIVILEDGE: EU Project
No. 780477 and the Blockchain Technology Laboratory – University of Edin-
burgh.

References

1. Nakamoto S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
2. Croman K., Decker C., Eyal I., Gencer A. E., Juels A., Kosba A., Miller A., Saxena

P., Shi E., Sirer E. G., et al.: On scaling decentralized blockchains. In International
Conference on Financial Cryptography and Data Security: pp. 106–125: Springer
(2016)

3. Gudgeon L., Moreno-Sanchez P., Roos S., McCorry P., Gervais A.: SoK: Layer-
Two Blockchain Protocols. In Financial Cryptography and Data Security - 24th

73

International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020
Revised Selected Papers: pp. 201–226: doi:10.1007/978-3-030-51280-4_12: URL
https://doi.org/10.1007/978-3-030-51280-4_12 (2020)

4. Decker C., Wattenhofer R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In Symposium on Self-Stabilizing Systems: pp.
3–18: Springer (2015)

5. Poon J., Dryja T.: The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments. https://lightning.network/lightning-network-paper.pdf (2016)

6. Dziembowski S., Eckey L., Faust S., Malinowski D.: Perun: Virtual Payment Hubs
over Cryptocurrencies. In 2019 2019 IEEE Symposium on Security and Privacy
(SP): pp. 344–361: IEEE Computer Society, Los Alamitos, CA, USA: ISSN 2375–
1207: doi:10.1109/SP.2019.00020: URL https://doi.ieeecomputersociety.org/
10.1109/SP.2019.00020 (2019)

7. Dziembowski S., Faust S., Hostáková K.: General State Channel Networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018: pp. 949–966:
doi:10.1145/3243734.3243856: URL https://doi.org/10.1145/3243734.3243856
(2018)

8. Aumayr L., Ersoy O., Erwig A., Faust S., Hostáková K., Maffei M., Moreno-
Sanchez P., Riahi S.: Bitcoin-Compatible Virtual Channels. In IEEE Sympo-
sium on Security and Privacy, Oakland, USA; 2021-05-23 - 2021-05-27: https:
//eprint.iacr.org/2020/554.pdf (2021)

9. Aumayr L., Ersoy O., Erwig A., Faust S., Hostakova K., Maffei M., Moreno-Sanchez
P., Riahi S.: Generalized Bitcoin-Compatible Channels. Cryptology ePrint Archive,
Report 2020/476: https://eprint.iacr.org/2020/476 (2020)

10. Jourenko M., Larangeira M., Tanaka K.: Lightweight Virtual Payment Channels. In
S. Krenn, H. Shulman, S. Vaudenay (editors), Cryptology and Network Security:
pp. 365–384: Springer International Publishing, Cham: ISBN 978-3-030-65411-5
(2020)

11. Canetti R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA: pp. 136–145: doi:10.1109/
SFCS.2001.959888: URL https://eprint.iacr.org/2000/067.pdf (2001)

12. Spilman J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html (2013)

13. Wood G.: Ethereum: A secure decentralised generalised transaction ledger
14. Raiden Network. https://raiden.network/
15. Malavolta G., Moreno-Sanchez P., Schneidewind C., Kate A., Maffei M.: Anony-

mous Multi-Hop Locks for Blockchain Scalability and Interoperability. In 26th
Annual Network and Distributed System Security Symposium, NDSS 2019, San
Diego, California, USA, February 24-27, 2019 (2019)

16. Harris J., Zohar A.: Flood & Loot: A Systemic Attack on The Lightning Network.
In Proceedings of the 2nd ACM Conference on Advances in Financial Technologies:
AFT ’20: pp. 202–213: Association for Computing Machinery, New York, NY, USA:
ISBN 9781450381390: doi:10.1145/3419614.3423248: URL https://doi.org/10.
1145/3419614.3423248 (2020)

17. Sivaraman V., Venkatakrishnan S. B., Alizadeh M., Fanti G. C., Viswanath P.:
Routing Cryptocurrency with the Spider Network. CoRR: vol. abs/1809.05088:
URL http://arxiv.org/abs/1809.05088 (2018)

18. Prihodko P., Zhigulin S., Sahno M., Ostrovskiy A., Osuntokun O.: Flare: An ap-
proach to routing in lightning network. White Paper (2016)

74

https://doi.org/10.1007/978-3-030-51280-4_12
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00020
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00020
https://doi.org/10.1145/3243734.3243856
https://eprint.iacr.org/2020/554.pdf
https://eprint.iacr.org/2020/554.pdf
https://eprint.iacr.org/2020/476
https://eprint.iacr.org/2000/067.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://raiden.network/
https://doi.org/10.1145/3419614.3423248
https://doi.org/10.1145/3419614.3423248
http://arxiv.org/abs/1809.05088

19. Lee J., Kim S., Park S., Moon S. M.: RouTEE: A Secure Payment Network Routing
Hub using Trusted Execution Environments (2020)

20. Khalil R., Gervais A.: Revive: Rebalancing Off-Blockchain Payment Networks.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017: pp. 439–453: doi:10.1145/3133956.3134033: URL https://doi.org/10.
1145/3133956.3134033 (2017)

21. Decker C., Russell R., Osuntokun O.: eltoo: A Simple Layer2 Protocol for Bitcoin.
https://blockstream.com/eltoo.pdf

22. Miller A., Bentov I., Kumaresan R., Cordi C., McCorry P.: Sprites and State
Channels: Payment Networks that Go Faster than Lightning. ArXiv preprint
arXiv:1702.05812 (2017)

23. Dong M., Liang Q., Li X., Liu J.: Celer Network: Bring Internet Scale to Every
Blockchain (2018)

24. Chakravarty M. M. T., Coretti S., Fitzi M., Gazi P., Kant P., Kiayias A., Russell
A.: Hydra: Fast Isomorphic State Channels. Cryptology ePrint Archive, Report
2020/299: https://eprint.iacr.org/2020/299 (2020)

25. Chakravarty M. M. T., Kireev R., MacKenzie K., McHale V., Müller J., Ne-
mish A., Nester C., Peyton Jones M., Thompson S., Valentine R., Wadler
P.: Functional blockchain contracts. https://iohk.io/en/research/library/
papers/functional-blockchain-contracts/ (2019)

26. Burchert C., Decker C., Wattenhofer R.: Scalable funding of Bitcoin micropayment
channel networks. In The Royal Society: doi:10.1098/rsos.180089 (2018)

27. Egger C., Moreno-Sanchez P., Maffei M.: Atomic Multi-Channel Updates with
Constant Collateral in Bitcoin-Compatible Payment-Channel Networks. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security: CCS ’19: pp. 801–815: Association for Computing Machinery,
New York, NY, USA: ISBN 9781450367479: doi:10.1145/3319535.3345666: URL
https://doi.org/10.1145/3319535.3345666 (2019)

28. Zhao L., Shuang H., Xu S., Huang W., Cui R., Bettadpur P., Lie D.: SoK: Hardware
Security Support for Trustworthy Execution (2019)

29. Lind J., Eyal I., Pietzuch P. R., Sirer E. G.: Teechan: Payment Channels Us-
ing Trusted Execution Environments. CoRR: vol. abs/1612.07766: URL http:
//arxiv.org/abs/1612.07766 (2016)

30. Lind J., Naor O., Eyal I., Kelbert F., Sirer E. G., Pietzuch P.: Teechain: A Secure
Payment Network with Asynchronous Blockchain Access. In Proceedings of the
27th ACM Symposium on Operating Systems Principles: SOSP ’19: pp. 63–79:
Association for Computing Machinery, New York, NY, USA: ISBN 9781450368735:
doi:10.1145/3341301.3359627: URL https://doi.org/10.1145/3341301.3359627
(2019)

31. Liao J., Zhang F., Sun W., Shi W.: Speedster: A TEE-assisted State Channel
System (2021)

32. Avarikioti G., Kogias E. K., Wattenhofer R., Zindros D.: Brick: Asynchronous
Payment Channels (2020)

33. Back A., Corallo M., Dashjr L., Friedenbach M., Maxwell G., Miller A., Poelstra
A., Timón J., Wuille P.: Enabling blockchain innovations with pegged sidechains.
URL http://web.archive.org/save/https://pdfs.semanticscholar.org/
1b23/cd2050d5000c05e1da3c9997b308ad5b7903.pdf (2014)

34. Gaži P., Kiayias A., Zindros D.: Proof-of-Stake Sidechains. In 2019 2019 IEEE
Symposium on Security and Privacy (SP): pp. 677–694: IEEE Computer Society,

75

https://doi.org/10.1145/3133956.3134033
https://doi.org/10.1145/3133956.3134033
https://eprint.iacr.org/2020/299
https://iohk.io/en/research/library/papers/functional-blockchain-contracts/
https://iohk.io/en/research/library/papers/functional-blockchain-contracts/
https://doi.org/10.1145/3319535.3345666
http://arxiv.org/abs/1612.07766
http://arxiv.org/abs/1612.07766
https://doi.org/10.1145/3341301.3359627
http://web.archive.org/save/https://pdfs.semanticscholar.org/1b23/cd2050d5000c05e1da3c9997b308ad5b7903.pdf
http://web.archive.org/save/https://pdfs.semanticscholar.org/1b23/cd2050d5000c05e1da3c9997b308ad5b7903.pdf

Los Alamitos, CA, USA: ISSN 2375-1207: doi:10.1109/SP.2019.00040: URL https:
//doi.ieeecomputersociety.org/10.1109/SP.2019.00040 (2019)

35. Kiayias A., Zindros D.: Proof-of-Work Sidechains. IACR Cryptology ePrint
Archive: vol. 2018, p. 1048 (2018)

36. Poon J., Buterin V.: Plasma: Scalable Autonomous Smart Contracts. http://
plasma.io/plasma.pdf

37. Konstantopoulos G.: Plasma Cash: Towards more efficient Plasma constructions
(2019)

38. Dziembowski S., Fabiański G., Faust S., Riahi S.: Lower Bounds for Off-Chain
Protocols: Exploring the Limits of Plasma. Cryptology ePrint Archive, Report
2020/175: https://eprint.iacr.org/2020/175 (2020)

39. Adler J.: The Why’s of Optimistic Rollup. https://medium.com/@adlerjohn/
the-why-s-of-optimistic-rollup-7c6a22cbb61a (2019)

40. Armknecht F., Karame G. O., Mandal A., Youssef F., Zenner E.: Ripple: Overview
and Outlook. In Trust and Trustworthy Computing - 8th International Con-
ference, TRUST 2015, Heraklion, Greece, August 24-26, 2015, Proceedings: pp.
163–180: doi:10.1007/978-3-319-22846-4_10: URL https://doi.org/10.1007/
978-3-319-22846-4_10 (2015)

41. Mazieres D.: The stellar consensus protocol: A federated model for internet-level
consensus. Stellar Development Foundation (2015)

42. Malavolta G., Moreno-Sanchez P., Kate A., Maffei M.: SilentWhispers: Enforcing
Security and Privacy in Decentralized Credit Networks (2016)

43. Roos S., Moreno-Sanchez P., Kate A., Goldberg I.: Settling Payments Fast and Pri-
vate: Efficient Decentralized Routing for Path-Based Transactions. In 25th Annual
Network and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018: URL http://wp.internetsociety.org/
ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
(2018)

44. Decker C., Towns A.: SIGHASH_ANYPREVOUT for Taproot Scripts.
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki

45. Lindell Y.: How to Simulate It - A Tutorial on the Simulation Proof Tech-
nique. In Tutorials on the Foundations of Cryptography: pp. 277–346: doi:10.1007/
978-3-319-57048-8_6: URL https://doi.org/10.1007/978-3-319-57048-8_6
(2017)

46. Kiayias A., Litos O. S. T.: A Composable Security Treatment of the Lightning
Network. In 33rd IEEE Computer Security Foundations Symposium, CSF 2020,
Boston, MA, USA, June 22-26, 2020: pp. 334–349: doi:10.1109/CSF49147.2020.
00031: URL https://doi.org/10.1109/CSF49147.2020.00031 (2020)

47. Canetti R., Rabin T.: Universal Composition with Joint State. In Advances
in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings: pp.
265–281: doi:10.1007/978-3-540-45146-4_16: URL https://doi.org/10.1007/
978-3-540-45146-4_16 (2003)

48. Wuille P., Nick J., Towns A.: Taproot: SegWit version 1 spending rules.
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

49. Danezis G., Goldberg I.: Sphinx: A compact and provably secure mix format. In
Security and Privacy, 2009 30th IEEE Symposium on: pp. 269–282: IEEE (2009)

50. Badertscher C., Maurer U., Tschudi D., Zikas V.: Bitcoin as a transaction ledger: A
composable treatment. In Annual International Cryptology Conference: pp. 324–
356: Springer (2017)

76

https://doi.ieeecomputersociety.org/10.1109/SP.2019.00040
https://doi.ieeecomputersociety.org/10.1109/SP.2019.00040
http://plasma.io/plasma.pdf
http://plasma.io/plasma.pdf
https://eprint.iacr.org/2020/175
https://medium.com/@adlerjohn/the-why-s-of-optimistic-rollup-7c6a22cbb61a
https://medium.com/@adlerjohn/the-why-s-of-optimistic-rollup-7c6a22cbb61a
https://doi.org/10.1007/978-3-319-22846-4_10
https://doi.org/10.1007/978-3-319-22846-4_10
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_09-3_Roos_paper.pdf
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1109/CSF49147.2020.00031
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-540-45146-4_16

51. Badertscher C., Gaži P., Kiayias A., Russell A., Zikas V.: Ouroboros genesis: Com-
posable proof-of-stake blockchains with dynamic availability. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security: pp.
913–930: ACM (2018)

77

	Elmo: Recursive Virtual Payment Channels for Bitcoin

