
Grain-128AEADv2: Strengthening the
Initialization Against Key Reconstruction

Martin Hell1, Thomas Johansson1, Alexander Maximov2, Willi Meier3, and
Hirotaka Yoshida4

1 Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
{martin,thomas}@eit.lth.se
2 Ericsson AB, Lund, Sweden

alexander.maximov@ericsson.com
3 FHNW, Windisch, Switzerland

willimeier48@gmail.com
4 Cyber Physical Security Research Center (CPSEC), National Institute of Advanced

Industrial Science and Technology (AIST), Tokyo, Japan
hirotaka.yoshida@aist.go.jp

Abstract. Properties of the Grain-128AEAD key re-introduction, as
part of the cipher initialization, are analyzed and discussed. We con-
sider and analyze several possible alternatives for key re-introduction
and identify weaknesses, or potential weaknesses, in them. Our results
show that it seems favorable to separate the state initialization, the key
re-introduction, and the A/R register initialization into three separate
phases. Based on this, we propose a new cipher initialization and update
the cipher version to Grain-128AEADv2. It can be noted that previously
reported and published analysis of the cipher remains valid also for this
new version.

1 Introduction

Grain-128AEAD is a member of the Grain family of stream ciphers and was
submitted to the NIST lightweight cryptography standardization process. In this
process, NIST aims to standardize cryptographic algorithms that are suitable
for constrained environments. Grain-128AEAD is a stream cipher supporting
authenticated encryption with associated data [16] and was selected as one out of
ten finalists from an initial pool of 57 algorithms. It has so far shown competitive
performance in both hardware [17] and software [14].

The Grain family of stream ciphers have been extensively analyzed since
its introduction in the eSTREAM process, where the 80-bit key variant Grain
v1 [12], together with MICKEY 2.0 [4] and Trivium [6], was selected into the
final portfolio of algorithms (hardware category). Since then, also Grain-128 [11]
and Grain-128a [1], both with 128-bit key and the latter with optional message
authentication, have been proposed. Grain-128 is considered broken by the dy-
namic cube attacks proposed in [7, 8], and it has been shown that for Grain-128a
without authentication, there are also attacks more efficient than brute force.



The design approach, combining one linear and one non-linear shift regis-
ter, has inspired also other lightweight ciphers, aiming at resource constrained
environments, e.g., Fruit-80 [2], Sprout [3] and its successor Plantlet [15], and
Lizard [9].

Compared to the previous variants, Grain-128AEAD modifies the cipher ini-
tialization such that the key is re-introduced at the end of the initialization. The
purpose of this key re-introduction is to not allow the secret key to be immedi-
ately reconstructed in case the states of the LFSR and NFSR are known. This
is a feature inspired by the Lizard stream cipher [9].

Even though any stream cipher would be considered broken if the state can be
recovered in less than 2K computations, where K is the keysize, such additional
precautions provide some practical security in certain cases since only the current
instantiation is broken in case of a state recovery. For a lightweight cipher, it is
important that this key re-introduction is very resource efficient.

Since a key-from-state recovery assumes an already broken cipher, it is not
crucial that the key reconstruction requires 2K computations, but a too efficient
key reconstruction limits the value of this additional precaution.

In [5], Chang and Turan noted that with knowledge of the LFSR and NFSR
states, a message tag, and the corresponding message, it is possible to recon-
struct the secret key with complexity 262. This complexity is probably less than
one would expect from a state-of-the-art cipher and it seems that the Grain-
128AEAD key re-introduction does not provide much added security. Indeed,
any state recovery attack would now only require an additional 262 computa-
tional steps to reconstruct the key.

In this paper, we first briefly outline and discuss the analysis by Chang
and Turan. After analyzing the main issue with the key re-introduction, we
present and discuss a few different main strategies for protecting against key
reconstruction from a known state. In addition to the strategy from [5], we
also analyze differential biases that could be used to reconstruct the key. Our
analysis shows that (1) the key re-introduction should be separated from the
initialization of the A and R registers, and (2) the existence of differentials in
high initialization rounds requires an increased number of initialization clocks
in order to protect a key-from-state reconstruction. From this we conclude that
an increased number of initialization steps are needed in order to avoid key
information leakage, resulting in an updated algorithm specification, denoted
Grain-128AEADv2.

The paper is outlined as follows. In Section 2 we specify the key and nonce
initialization of Grain-128AEAD. Then, we outline the key reconstruction pro-
posed by Chang and Turan in Section 3. In Section 4, we discuss several options
for avoiding similar and more advanced key reconstruction algorithms and show
that they are inadequate. Then, in Section 5 we provide a generic initialization
approach and use the derived differentials in order to motivate suitable parame-
ters for the initialization. These parameters are then derived in Section 6, before
the paper is concluded in Section 7.



2 Grain-128AEAD initialization

Similar to all previous versions, Grain-128AEAD uses three main functions to-
gether with an LFSR and an NFSR. If authentication is used, which is optional
in Grain-128a and mandatory in Grain-128AEAD, there are also two additional
registers for supporting this, denoted A and R. A schematic overview of the
initializations is given in Fig. 1. We will adopt the notation as used in [5] for the
shift register bits, i.e., let (Bt, St, At, Rt) be the full state of Grain-128AEAD in
time t, where,

Bt = (bt, . . . , bt+127) denotes NFSR state at t ≥ 0,

St = (st, . . . , st+127) denotes LFSR state at t ≥ 0,

At = (at0, . . . , a
t
63) denotes the Accumulator bits at t ≥ 384,

Rt = (rt0, . . . , r
t
63) denotes the Register bits at t ≥ 384.

The functions for updating the LFSR and NFSR are given by

st+128 = st + st+7 + st+38 + st+70 + st+81 + st+96

= st + f ′(st+7..t+96), (1)

bt+128 = st + bt + bt+26 + bt+56 + bt+91 + bt+96 + bt+3bt+67 + bt+11bt+13

+ bt+17bt+18 + bt+27bt+59 + bt+40bt+48 + bt+61bt+65 + bt+68bt+84

+ bt+22bt+24bt+25 + bt+70bt+78bt+82 + bt+88bt+92bt+93bt+95

= st + bt + g′(bt+3..t+96), (2)

where the functions f ′() and g′() are introduced in order to simplify notation in
our analysis in later sections. The output of Grain-128AEAD is given by

yt = st+93 + bt+2 + bt+15 + bt+36 + bt+45 + bt+64 + bt+73 + bt+89 (3)

+ h(bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79, st+94)

= bt+2 + h′(bt+12..t+95, st+8..t+94), (4)

where, again, h′() is introduced for later convenience. The key and nonce (IV) are
128 and 96 bits respectively and we denote them as k0, . . . , k127 and IV0, . . . , IV95.
To initialize the cipher, let

B0 = (k0, . . . , k127), (5)

S0 = (IV0, . . . , IV95, 1, 1, . . . , 1, 0). (6)

Then, for 256 clocks, the LFSR and NFSR are updated according to

st+128 = st + f ′(st+7..t+96) + yt, 0 ≤ t ≤ 255, (7)

bt+128 = st + bt + g′(bt+3..t+96) + yt, 0 ≤ t ≤ 255. (8)



Fig. 1: Overview of the initialisation of Grain-128AEAD

Then, in the next 128 clocks, the key is re-introduced into the LFSR while the
NFSR is updated as in regular keystream mode,

st+128 = st + f ′(st+7..t+96) + kt−256, 256 ≤ t ≤ 383, (9)

bt+128 = st + bt + g′(bt+3..t+96), 256 ≤ t ≤ 383. (10)

In parallel to this key re-introduction, the A and R registers are initialized with
the generated yt. At the end of the initialization, we thus have

S384 = (s384, . . . , s511),

B384 = (b384, . . . , s511),

A384 = (y256, . . . , y319),

R384 = (y320, . . . , y384).

Note that this notation is slightly different from the design document, but con-
sistent with [5]. Starting at t = 384, the generated yt is used for encryption
and message authentication. The details here are left out as we will only be
considering the cipher initialization.

3 Reconstructing the key

In this section, we outline the key reconstruction approach proposed by Chang
and Turan in [5]. We use the term reconstruct in order to distinguish the approach
from key recovery, which is a well established attack goal. Key recovery typically
uses information known to an attacker, such as keystream or some side channel
information. In the approaches considered in this paper, we additionally assume



that the internal state is known, but not the key. Thus, the reconstruction attacks
discussed in this paper are always preceded by a state recovery attack. This is
implicit in the paper and, in this context, the key recovery attack consists of a
state recovery attack followed by a key reconstruction. This does, however, not
imply that all key recovery attacks must start with a state recovery.

For Grain-128AEAD (and similarly for the other ciphers in the Grain family),
the LFSR/NFSR can always be clocked backward during the running phase
(t ≥ 384). Thus, if the state is recovered at any time t ≥ 384, it is straightforward
to obtain the state B384 and S384. Thus, knowing one state, we can assume that
the attacker has knowledge of bt, t ≥ 384 and st, t ≥ 384. However, finding B383

and S383, which includes b383 and s383 requires knowing the key bit k127, as

s511 = s383 + s390 + s421 + s453 + s464 + s479 + k127. (11)

Thus, we have two unknowns. Combining this with the update for b511, we have

b511 =s383 + b383 + b409 + b439 + b474 + b479 + b386b450 + b394b396

+ b400b401 + b410b442 + b423b431 + b444b448 + b451b467

+ b405b407b408 + b453b461b465 + b471b475b476b478.

(12)

Adding this equation gives another unknown, b383. However, if we assume that
also the register R is known at time t = 384, i.e., R384 = [y320, . . . y383] is known,
then we can add the expression

y381 =h(b393, s389, s394, s401, b476, s423, s441, s460, s475) + s474 + b383

+ b396 + b417 + b426 + b445 + b454 + b470,
(13)

which includes the unknown term b383. Thus, we now have 3 equations and 3
unknown variables that are linearly added in this equation. All key bits can
now be recovered by continuing to clock backwards. The pre-output bits in the
accumulator

A384 = [y256, y257, . . . , y319]

can be computed as

A384 = T +

L−1∑
i=0

mi ·R2i+384, (14)

where mi,mi+1, . . . ,mL is a known message with the corresponding authentica-
tion tag T . With both the state (S384 and B384) and the register contents known,
we can easily reconstruct the secret key. Since the keystream does not depend
on the registers A and R, a state recovery attack is more likely to recover only
the LFSR and NFSR states. Then, as y382 and y383 can be directly determined
from S384 and B384, a key reconstruction requires 262 computational steps, i.e.,
guessing the bits y320, . . . , y381.



4 Basic attempts to make the key re-introduction
stronger

In this section, we analyze alternative approaches for key re-introduction in
parallel with the initialization of A/R registers while maintaining 384 clocks for
initialization. We take a conservative approach and assume that the contents of
all four registers (B,S,A,R) are known to an adversary at time t = 384. As will
be shown, virtually any solution in this model fails to protect the key if the state
is recovered.

4.1 Group 1: push key bits into NFSR instead of LFSR

There are a number of initialization options that fall into the same category,
where the derivation of unknown bits is immediately possible without any extra
effort.

Let us first consider what happens if we XOR the key bits into the NFSR
instead of the LFSR, i.e., the updates given by Eq. (9) and (10) are replaced by

st+128 = st + f ′(st+7..t+96), (15)

bt+128 = st + bt + g′(bt+3..t+96) + kt−256. (16)

Considering the equations for computing the same bits as before (y381, s511 and
b511), we have

s511 = s383 + f ′(s390..479), (17)

b511 = s383 + b383 + g′(b386..479) + k127, (18)

y381 = b383 + h′(b393..476, s389..475). (19)

As seen, we end up in the same situation with three equations and three un-
knowns that can easily be solved explicitly.

Summary: Any initialization option that leads to a linearly independent
system of 3 equations on 3 unknowns is easily broken.

4.2 Group 2: push key bits into both NFSR and LFSR

Another approach could be to make the above vulnerable system of 3 equations
linearly dependent. There are also several options in this category, but we give
just one example where we XOR the key bits into both the LFSR and the NFSR,
i.e., the update given by Eq. (10) is replaced by

bt+128 = st + bt + g′(bt+3..t+96) + kt−256. (20)

The corresponding expressions for y381, s511 and b511 are then

s511 = s383 + k127 + f ′(s390..479), (21)

b511 = s383 + b383 + k127 + g′(b386..479), (22)

y381 = b383 + h′(b393..476, s389..475), (23)



which is a linearly dependent system of equations. At first glance, this seems
to be a better key re-introduction, as it is not possible to determine both s383
and k127, but only their sum s383 + k127. However, this does leak information,
and it is possible to guess the value of s383 and verify this guess in a time offset
manner as follows.

Let us first generalize Eq. (21-23),

st+128 = (st + kt−256) + f ′(st+7..t+96), (24)

bt+128 = (st + kt−256) + bt + g′(bt+3..t+96), (25)

yt−8 = bt−6 + bt+4st + e′(bt+4..t+87, st+5..t+88). (26)

As for the key reconstruction algorithm, we will run a recursion starting from
t = 383 and clocking the cipher backward. On each step of the recursion we
assume that all values st+1.., bt+1.. are known (or guessed), and we want to
recover the three new bits of st, bt, kt−256.

From Eq. (24-25) we can derive bt and (st + kt−256). Then, we can guess st
and from that derive kt−256. This guess can then be verified just only 6 recursion
steps later at time (t− 6) by using Eq. (26) since it involves the guessed bit st,
and the newly derived bit bt−6, while yt−8 here serves as a known value taken
from the A/R states and is used as the verification value for the guessing paths
along the recursion. Note that the derived bt is also correct only if all previous
guesses of the involved bits were correct.

Summary: Re-introduction of the key bits such that the 3 equations become
linearly dependent does not help, since the previous guesses may be verified at
a later stage of a recursion backtracing algorithm.

4.3 Generic recursive backtracing attack

An even simpler and generic backtracing recursion that covers attacks on any
tweak from both groups listed above, would be to just guess the st in each step
t, derive bt, kt−256, and simply compute the value of yt and verify it against the
known correct value taken from the A/R state. In this case, we do not even
need to go deeper into the structure of the Boolean functions involved, and
the recursion will automatically return one step backward once it detects that
some previous guess was wrong. The complexity of the key reconstruction can
be summarized in Theorem 1.

Theorem 1 (Backtracing complexity). For all considered initializations from
the groups 1 and 2, one can organize a recursion starting from t = 383 and go-
ing down to t = 256, where the expressions on bt+128, st+128 involve 3 unknowns
st, bt, kt−256. At every step of recursion, the attacker guesses the value of st (or
bt) and directly derives the other two unknowns, then clocks the cipher backward
by 1 step and decrements the time instance t by 1.

In the above recursion, if the guessed value st can be verified (against some
other equation or a new constraint, e.g., y-values) only after the recursion depth
d (i.e., in time t− d), then the overall backtracing complexity will be O(2d).



Proof. The depth of the recursion is 128, and if every guess would be correct, then
the complexity of each node would be O(1) resulting in O(1) overall. However,
in each node of the recursion, we have to make O(2d) other guesses before the
current node can be verified and resolved. Therefore, the overall complexity is
multiplied by O(2d).

Simulation results. We implemented the above backtracing recursion al-
gorithm and applied it on two different initialization options that belong to the
second group of initializations (see Section 4.2). We were able to reconstruct
the whole 128-bit key quite efficiently within some milliseconds, and the time
complexity matched well the results of Theorem 1.

Summary: The main problem with these approaches is that the key is re-
introduced while initializing the registers A and R. Thus, it is possible to use
the values of y in these registers for verification in the reconstruction algorithm.

4.4 The parallel option: parallel XOR of the whole key at the end
of initialization

A straightforward approach, and the one that most closely mimics the FP(1)
mode, is to simply XOR all key bits into one of the registers as a final step in
the initialization. This is also a tweak that was suggested in [5].

First of all, this has a significant drawback of adding to the hardware foot-
print, since, for 128 register cells, we need to add one XOR gate and one mul-
tiplexer, i.e., at least 256 new gates. This makes the hardware footprint much
larger and we would still prefer to explore options where the key is serially in-
serted into one or both registers.

Secondly, this approach seems also vulnerable to the generic backtracing
recursion or similar, since y-values stored in A/R can again be used for verifi-
cation at some backward time instances of the recursion against the guessing
paths. Moreover, the order of guessing in this scenario can be chosen freely by
an attacker.

Conclusions: Any tweak where the A/R bits are initialized in parallel or
before the key re-introduction can be broken. From this, we conclude that the
initialization of the registers A and R must be done after the key re-introduction.
In the next section, we will consider new approaches for initialization that are
more resistant to key reconstruction when the state is known.

5 Re-introducing the key before A/R register
initialization

Separating key re-introduction and A/R initialization removes the possibility to
verify guesses against the A/R content. In this section, we will consider various
options for a new tweak in initialization that meet these new requirements.



5.1 New generic initialization steps

Considering the above analysis, it becomes clear that the initialization should
consist of 3 clearly separated phases. We believe these phases should be as fol-
lows:

– Cn standard initialization clocks, like in Grain-128a, where the pre-output
yt is added to both LFSR and NFSR, i.e., for t = [0, . . . , Cn − 1]:

st+128 = st + f ′(st+7..t+96) + yt, (27)

bt+128 = st + bt + g′(bt+3..t+96) + yt; (28)

– Ck clocks where the key is re-introduced (to be defined later);
– Cm clocks where the pre-output yt is used to initialize the registers A/R,

while the LFSR and NFSR are updated in the standard keystream mode,
i.e., for t = [Cn + Ck, . . . , Cn + Ck + Cm − 1]:

st+128 = st + f ′(st+7..t+96), (29)

bt+128 = st + bt + g′(bt+3..t+96), (30)

A/R← yt. (31)

In a straightforward approach, one could select Ck = 128 to re-introduce the
key bits serially in 128 clocks into either (or both) the LFSR and/or NFSR.
However, we can compress this stage to Ck = 64 clocks by splitting the key into
two parts, adding each part to one of the registers,

st+128 = st + f ′(st+7..t+96) + yt + kt−Cn+64, (32)

bt+128 = st + bt + g′(bt+3..t+96) + yt + kt−Cn
, (33)

for 64 time instances t = [Cn, . . . , Cn + 63]. This solution is efficient in both
hardware and software. We fix the two initialization parameters to Ck = 64 and
Cm = 128, and it remains to decide Cn, i.e., the duration of the initial phase.

5.2 An attempt to keep 384 clocks in total, Cn = 192

To keep the original 384 initialization clocks, we explore the possibility to re-
introduce the key bits in clocks [192, . . . , 255]. Assume a state recovery attack,
where the state B384, S384 after initialization is recovered. Since the key is in-
troduced earlier, we can clock backward and recover B256, S256. The content of
A/R can be recovered immediately since they are initialized at 256 ≤ t ≤ 383
using y256, . . . , y383. However, now these bits cannot be used for verification of
the guessing paths. The last key bits, k63 and k127 are introduced through

s383 = s255 + f ′(s262..351) + y255 + k127, (34)

b383 = s255 + b255 + g′(b258..351) + y255 + k63, (35)



where s255, b255, k63, k127 are unknowns, and other terms can be derived; there-
fore, the pre-outputs yt in time t ≥ 256 are now useless for key reconstruction
(unlike the approaches in Section 4).

The only remaining possibility for an attacker to verify the guesses, or to
recover key bits, it to link somehow the known state B256, S256 to the initial
state B0, S0, i.e., to the original Key, IV values.

Differential analysis We now show that if Cn is too small, then the initializa-
tion as defined by Eq. (32) and (33) leaks key information through a differential
attack. Consider the following sum of variables, denoted by z,

zt+128 = bt+128 + st+128 + g′(bt+3..t+96) + f ′(st+7..t+96)

= (st + bt + g′(bt+3..t+96) + yt + kt−192) + f ′(st+7..t+96))

+ (st + f ′(st+7..t+96) + yt + kt−128)

+ g′(bt+3..t+96) + f ′(st+7..t+96)

= bt + kt−192 + kt−128.

(36)

Since we know bt and st for t ≥ 256, we can compute zt+128 for t ≥ 253. Thus,
we can find a differential

∆zt+128 = ∆(bt + kt−256 + kt−192) = ∆bt, for t ≥ 253. (37)

A possible scenario for key bit reconstruction with conditional dif-
ferentials In a simple scenario we would like to recover some key bit kx,
based on the conditional differential distributions D0 = (∆bt|kx = 0) and
D1 = (∆bt|kx = 1), for some ∆IV . If these distributions have different biases,
then by collecting many samples ∆bt, we can determine the key bit kx. This
way, we can recover one key bit. The differential should be introduced, ideally,
by some ∆IV while keeping the same Key, and we would then collect r pairs of
the form (Key, IVi) and (Key, IVi+∆IV ), for i = 1, . . . , r, some fixed Key and
random IVis. Then, for each pair ∆zt+128 (that is equal to ∆bt) is computed and
the empirical distribution D is constructed. Finally, we compute the distances
from D to both D0 and D1, and the shorter distance decides on the key bit value
kx.

Of course, the above procedure for recovering kx requires applying a state
recovery attack on 2r keystreams, recovering 2r states of (B256, S256). These
states are used for collecting the zt+128 samples and the construction of the
empirical distribution D. However, when, for example, the two key bits k63, k127
are recovered, it is possible to clock further backward, and all those recovered
states can be used to collect differential samples to recover some other key bit.

One approach could be to collect many samples with a number of differentials
∆IV0, . . . ,∆IV127 – one for each key bit, not necessarily to be used at the same
time instance t. Then, depending on the time instance t and the target key bit
kx, we could derive differential samples from one of the ith group of the recovered
states. As soon as it becomes possible (i.e., when certain key bits are recovered),



the attacker clocks all states backward by one or more clocks, which opens up
for applying other ∆is and thus to recover other key bits.

Differential probabilistic model In order to study closer conditional and/or
differential probabilities, we have adopted the following model for a binary signal
x, where the signal x is associated with two probabilities:

px = Pr{x = 1},
p∆x = Pr{x⊕ x′ = 1},

where x′ is the same signal but may have a different value, i.e., ∆x = x⊕ x′.
For two independent signals x and y we derive expressions for the resulting

probabilities of XOR and AND gates:

px⊕y = px + py − 2pxpy,

p∆(x⊕y) = p∆x + p∆y − 2p∆xp∆y,

px&y = pxpy,

p∆(x&y) = p∆xp∆y(2(1− px)(1− py)− 1) + pxp∆y + pyp∆x.

By this, we can configure the initial state of Grain with these signals, where
some of the signals will be random values, constants 0 or 1, or differential bits.
Then we clock the cipher and derive probabilities for the resulting signals. In
the end, we check if some bit of the state or its differential has a detectable bias
and if yes then we can try to use it in an attack.

Note that this method is expected, in most cases, to give a lower bound for
these biases since above we consider x and y as independent. In reality, many of
those signals will be dependent. For example, x = abc and y = bcd are dependent
as they share b and c signals. Also, if some term a is added in a Boolean expression
twice then it should be canceled out, while in this model it will be treated as two
different independent signals, thus making the resulting biases smaller than in
reality. Therefore, this method is suitable for first searching statistical anomalies,
but the actual bias can be verified and refined through, e.g., real simulations.

The state of Grain is thus initialized as follows:

Constant 0 → p0 = 0, p∆0 = 0,

Constant 1 → p1 = 1, p∆1 = 0,

Key bits → pk = 0.5, p∆k = 0,

Fixed random IV bits → piv = 0.5, p∆iv = 0,

Differential ∆IV bits → piv = 0 or 1, p∆iv = 1.

Examples of conditional differentials We have not managed to find a com-
plete path for the sketched conditional differential attack, but we have found at
least some examples where some of the key bits can be recovered by looking into
∆z255+128.



The best approach found is to initialize the cipher with a difference in a single
IV-bit. If Pr(∆z383) = Pr(∆b255) = 1/2 + ε we can distinguish the cipher from
random using about ε−2 such samples. By utilizing the differential probabilistic
model, we find that such a difference can be observed with a differential in IV56,
whenever all other Key and IV bits are random:

∆IV56|Key109 = 0→ ε(∆b255) = 2−7.73,

∆IV56|Key109 = 1→ ε(∆b255) = 0.
(38)

The above biases were refined through real simulations by collecting 224 samples,
resulting in:

∆IV56|Key109 = 0→ ε(∆b255) = 2−4.23,

∆IV56|Key109 = 1→ ε(∆b255) = 0.
(39)

It is hard to say exactly how these distributions will behave for a concrete
fixed key, but let us assume that for all or most keys the above is true. Then,
recovering k109 would proceed as follows. Collect differential samples ∆z383 for
∆IV56, i.e., the cipher is initialized with many random IV pairs where we flip only
the bit IV56. Then, based on the empirical distribution of∆z383 we can determine
the value of k109. This will require around 2 · 28.46 = 29.46 initializations, each
followed by a state recovery attack. Recovering all key bits in this way requires
finding biases similar to Eq. (39) (where we can also utilize any other t ≥ 253).
While this might not be feasible for all key bits, recovering some key bits in this
way could be followed by an exhaustive search for the rest. We stress that this
requires a state recovery for each initialization and is thus always more expensive
than a state recovery attack. Still, the relatively large biases found here question
the suitability of re-introducing the key in this way as early as t = 192 since a
state recovery attack gives information about the state already at t = 256.

Conclusion: In the presented example we only show that such a conditional
differential exists to some extent. This approach for key reconstruction can be
investigated further, and we leave it for future research. What is clear is that for
Cn = 192 there is at least some leakage of information about the key, although
the exact attack scenario is not easy to find.

Other differentials detected The differential probabilistic model was also
used to detect some other biases. For example, we were fixing the key to a
random state and were running the model to see how far we can get a bias
with that model. We found that in ∼ 9.4% of random keys, where we also set
IV48..96 = 0 while IV0..47 are random, we get for ∆IV69 the differential ∆b288 to
have the bias around 2−10.9..−13.9.

Through real simulations, we collected 230 samples for each random key, and
received the refined bias in the range 2−10..−12, but with a higher success rate of
∼ 12.5% for 2600 random keys tested. For these simulations we used a PRNG
with high entropy. Simulation results are given in Fig. 2.



-25 -24 -23 -22 -21 -20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8

re
la

tiv
e 

pr
ob

ab
ili

tie
s 

pe
r q

ua
nt

ile

log2(ε(Δb288)) with quantization=0.2

Distribution of the differential bias log2(ε(Δb288)) 
for a random key and 230 IVs 

random

biased

Fig. 2: Refining simulation results for the bias of ∆b288.

I.e., for about one key out of 8 random keys, we can distinguish ∆z288+128

from random by collecting around 220..24 IV-differential samples. However, the
result of the distinguisher may leak up to 5 bits of information about the key
in connection to 4 possible answers: random, or one of the 3 biased peaks. To
be more precise, reverse-engineering of the random keys led to the four different
answers resulting in the following key information:

if ∆b288 is biased then k73 = k122 = 0, k109 = 1,

if ε(∆b288) ≈ 2−10 then k77 = k112 = 0,

if ε(∆b288) ≈ 2−11 then k77 + k112 = 1,

if ε(∆b288) ≈ 2−12 then k77 = k112 = 1,

which means that ∆z416 can be used to get some information about the key.

5.3 What would be the minimum Cn?

From differential attacks perspectives Recall the previously derived ex-
pression for ∆zt+128,

∆zt+128 =∆(bt+128 + st+128 + g′(bt+3..t+96) + f ′(st+7..t+96)) = ∆bt,

and the first (smallest) t for which the above differential is available, right after
the set of state recovery attacks, is t = Cn+Ck−3 (see Eq. (36)), where Ck = 64
but Cn is not yet known. Thus, if there is a weakness in ∆bt then the lower bound
for Cn to mitigate such a weakness would be

Cn ≥ t− 60.



In [13], the authors managed to recover 18 key bits after 169 clocks of ini-
tialization, but there they were looking at yt values instead of the state bits. In
a näıve approximation, this would translate to having some (differential) bias in
at most s169+94, b169+95 state bits, where 169 + 95 = 264 is the highest index
of the state bits involved in y169. Thinking purely theoretically one could, per-
haps, collect some statistics on up to ∆b264. This leads to the first lower bound
Cn ≥ 204. Clearly, Cn = 192 looks too low – the case we first considered in
Section 5.2 in order to keep 384 clocks of initialization.

However, in our simulations, we were able to find highly biased differentials
up to around ∆b288 (see Section 5.2), which means that Cn must be at least
Cn ≥ 228 in order to prevent these differentials as well.

Finally, we would like to note that the mentioned paper [13] also provides
a distinguishing attack after 195 initialization rounds, by again looking into yt.
Note that in the case of a state recovery attack a distinguishing attack is not
relevant at all – if the attacker can recover the state of a given keystream then,
certainly, we have a distinguisher. What only matters for this type of analysis is
the possibility to reconstruct at least some key bits given available expressions
and values. Nevertheless, if we could anyways get some biased conditional dis-
tribution on ∆b195+95 then that assumption translates into the hardest lower
bound Cn ≥ 230.

Although we make here a very strong assumption that some key bits can
still be recovered by looking at ∆b290, there is great uncertainty about how
large the bias would be, and therefore how many samples one has to collect.
The complexity of such an attack is then at least the number of samples needed
multiplied by the complexity of a single state recovery attack. There is also
uncertainty about how many and which key bits can be statistically detected,
and whether this leads to any additional backward clocks of the collected states.
The order of determining key bits is important for the backtracing ability.

Summary: Given the current state-of-the-art analysis of Grain, and making
the most strict (and, perhaps, unrealistic) assumptions, we conclude that we
have a lower bound Cn ≥ 230. This means that we cannot really stay with 384
clocks for the initialization (starting to re-introduce the key at t = 192), but
should increase it by at least 38 (plus some added margin), even if these strong
attack models are hard to achieve.

Combining state recovery, guess-and-determine, and distinguishing
attacks Let us again consider the distinguishing attack in [13] using y-terms
after 195 initialization clocks. This means that there could also exist a distin-
guisher on ∆b195+95, since y195 involves b195+95. So, if Cn = 229 then we can
sample ∆z418 = ∆b290 and distinguish that from random. Though a pure distin-
guishing attack itself is not interesting in key reconstruction, such a distinguisher
can be used for verifying guessed key bits.

Assume that, based on the previous discussion, we adopt Cn = 256. Then, we
can collect r pairs of keystreams, each pair with one keystream generated with
some random IV , and one using a differential IV + ∆IV for some fixed ∆IV .



Then we apply a state recovery attack on each of the 2r keystreams, recovering

r pairs of states (B
(i)
320, S

(i)
320) and (B

′(i)
320, S

′(i)
320), for i = 1, . . . , r.

Then, by guessing the first 54 key bits, we can reverse 27 initialization steps,

recovering (B
(i)
293, S

(i)
293) and (B

′(i)
293, S

′(i)
293). Thus, we reach Cn = 229. At this point,

for each pair of states in time t = 293, we compute r samples ∆z
(i)
290+128, i.e.,

∆b
(i)
290, see Eq. (37). With many states, we can use the empirical distribution for

∆b290 and distinguish it from random. If the 54 key bits were correctly guessed,
we get a biased empirical distribution, otherwise, the guess was incorrect. Note
that, for every key guess we can use the same set of the recovered states for
sampling.

Example. Let us give an example of the complexity of this attack. Assume
that there is a ∆IV that makes ∆b290 being biased with ε = 2−10. With 254

distributions, to distinguish the correct key guess, we need about (54·2 ln 2)·220 =
226.2 samples, i.e., 227.2 keystreams are needed (see e.g., [10] for a derivation of
this expression). If the state recovery attack has complexity 2e then the total
attack complexity would be O(2e · 227.2 + 254 · 227.2) = O(2e+27.2 + 281.2). Note
also, if the bias of ∆b290 would be too small, the attacker can guess a few more
key bits and reach a lower index of ∆bt where the bias is larger. For example,
guessing 2 more key bits makes it possible to backtrace one more step.

Conclusion: At this point we do not have further details, the sketched attack
is purely theoretical at the moment, and we leave further investigations for future
research. However, to mitigate such kinds of more advanced attacks, the lower
bound on Cn should be increased by 64, i.e., Cn ≥ 294. In this case, all key bits
need to be guessed in order to reach the time instance where one can collect
biased samples and use them for verification. And, of course, future research
might reveal biases in ∆bt with t > 290. For these reasons, Cn = 256 also looks
too low in the context of key reconstruction from known states.

6 A modified key re-introduction

From the analysis in the previous sections, we can conclude:

1. The key should not be re-introduced while also initializing the A and R
register, or in parallel after;

2. Introducing the key as early as t = 256 is questionable due to rather large
biases found in some differentials.

Based on our analysis done in the previous sections, we propose to increase
the initialization by 128 extra clocks and to adopt Cn = 320, Ck = 64, Cm = 128
in the generic description given in Section 5.1. We believe that this tweak makes
the key re-introduction secure against the attacks discussed in this paper. The
cipher using this new initialization is denoted Grain-128AEADv2. To summarize
the result of this new initialization, we highlight the following aspects.

– Both Grain-128a and Grain-128AEAD have 256 clocks of initialization, and
no attack was found on that so far. In the proposed tweak we do Cn = 320



initialization clocks, in order to protect the key re-introduction phase in case
the whole state is recovered from the keystream. After that we re-introduce
the key, followed by the A/R initialization. This amounts to a total of 512
initialization steps, adding 33% to the 384 steps in Grain-128AEAD. In the
proposed design we have security not worse than in the previous instances
of Grain, which in turn were analyzed for many years;

– We use only 64 clocks for the key re-introduction phase, which is a compro-
mise between a parallel XOR of the key (that is more expensive in hardware)
and the introduction of the key bits in 128 clocks (that is more expensive in
time). Moreover, we believe that serialized key re-introduction is more secure
than the parallel, since then an attacker has much less freedom to exploit
available Boolean expressions;

– The attacks on the key re-introduction, similar to the one in [5] are no longer
possible. The three initialization phases are now clearly separated;

– With the proposed tweak we prevent key reconstruction from known states
also with more advanced and comprehensive types of attacks, though some
of them currently are theoretical and speculative, and also under strong
assumptions.

As noted, we believe that the choice of Cn = 320 provides a good security
margin against key reconstruction from conditional differentials.

7 Conclusions

The security property found in [5] of the key re-introduction of Grain-128AEAD
shows that the key can be reconstructed with low complexity if the state is
known. In this paper, we analyze the initialization, and in particular the key re-
introduction further by considering several different possible approaches for key
reconstruction. We also analyze these approaches, both in relation to a previously
published reconstruction technique, but also by considering more sophisticated
methods. As a result, we suggest a modification to the cipher initialization that
is both more secure, but also maintains the validity of previous analysis of the
initialization algorithm. The new cipher version is denoted Grain-128AEADv2.

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. International Journal of Wireless and Mobile
Computing 5(1), 48–59 (2011)

2. Amin Ghafari, V., Hu, H.: Fruit-80: A secure ultra-lightweight stream cipher for
constrained environments. Entropy 20(3) (2018), https://www.mdpi.com/1099-
4300/20/3/180

3. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal
states. In: Leander, G. (ed.) Fast Software Encryption. pp. 451–470. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015)



4. Babbage, S., Dodd, M.: The stream cipher mickey 2.0. eSTREAM: the ECRYPT
Stream Cipher Project (2006)

5. Chang, D., Turan, M.S.: Recovering the key from the internal state
of grain-128aead. Cryptology ePrint Archive, Report 2021/439 (2021),
https://eprint.iacr.org/2021/439

6. De Cannière, C.: Trivium: A stream cipher construction inspired by block cipher
design principles. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) Information Security. pp. 171–186. Springer Berlin Heidelberg (2006)

7. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
verified attack on full grain-128 using dedicated reconfigurable hardware. In: Lee,
D.H., Wang, X. (eds.) Advances in Cryptology – ASIACRYPT 2011. pp. 327–343.
Springer Berlin Heidelberg (2011)

8. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux, A.
(ed.) Fast Software Encryption. pp. 167–187. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

9. Hamann, M., Krause, M., Meier, W.: Lizard – a lightweight stream cipher for
power-constrained devices. IACR Transactions on Symmetric Cryptology 2017(1),
45–79 (Mar 2017)

10. Hell, M., Johansson, T., Brynielsson, L.: An overview of distinguishing attacks on
stream ciphers. Cryptography and Communications 1(1), 71–94 (2009)

11. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: Information Theory, 2006 IEEE International Symposium on. pp. 1614–
1618. IEEE (2006)

12. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. International Journal of Wireless and Mobile Computing 2(1), 86–93
(2007)

13. Ma, Z., Tian, T., Qi, W.F.: Conditional differential attacks on grain-128a stream
cipher. IET Information Security 11(3), 139–145 (2017)

14. Maximov, A., Hell, M.: Software evaluation of grain-128aead for em-
bedded platforms. Cryptology ePrint Archive, Report 2020/659 (2020),
https://eprint.iacr.org/2020/659

15. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. IACR Transactions on Symmetric Cryptology 2016(2), 52–79 (Feb
2017)

16. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security. p. 98–107.
CCS ’02, Association for Computing Machinery (2002)

17. Sönnerup, J., Hell, M., Sönnerup, M., Khattar, R.: Efficient hardware implemen-
tations of Grain-128AEAD. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) Progress in
Cryptology – INDOCRYPT 2019. pp. 495–513. Springer International Publishing
(2019)


