
Tetrad: Actively Secure 4PC for Secure Training and Inference

Nishat Koti
Indian Institute of Science

Arpita Patra
Indian Institute of Science

Rahul Rachuri
Aarhus University

Ajith Suresh
Indian Institute of Science

Abstract
In this work, we design an efficient mixed-protocol frame-
work, Tetrad, with applications to privacy-preserving machine
learning. It is designed for the four-party setting with at most
one active corruption and supports rings.

Our fair multiplication protocol requires communicating
only 5 ring elements improving over the state-of-the-art pro-
tocol of Trident (Chaudhari et al. NDSS’20). The technical
highlights of Tetrad include efficient (a) truncation without
any overhead, (b) multi-input multiplication protocols for
arithmetic and boolean worlds, (c) garbled-world, tailor-made
for the mixed-protocol framework, and (d) conversion mech-
anisms to switch between the computation styles. The fair
framework is also extended to provide robustness without
inflating the costs.

The competence of Tetrad is tested with benchmarks for
deep neural networks such as LeNet and VGG16, and sup-
port vector machines. One variant of our framework aims at
minimizing the execution time, while the other focuses on
the monetary cost. We observe improvements up to 6× over
Trident across these parameters.

1 Introduction

Increased concerns about privacy coupled with policies such
as European Union General Data Protection Regulation
(GDPR) make it harder for multiple parties to collaborate
on machine learning computations. The emerging field of
privacy-preserving machine learning (PPML) addresses this
issue by offering tools to let parties perform computations
without sacrificing the privacy of the underlying data. PPML
can be deployed across various domains such as healthcare,
recommendation systems, text translation, etc., with works
like [4] demonstrating practicality.

One of the main ways in which PPML is realised is through
the paradigm of secure outsourced computation (SOC).
Clients can outsource the training/prediction computation
to powerful servers available on a ‘pay-per-use’ basis from

cloud service providers. Of late, secure multiparty computa-
tion (MPC) based techniques [11, 14, 15, 38, 41, 43, 46, 49, 55]
have been gaining interest, where a server enacts the role
of a party in the MPC protocol. MPC [25, 57] allows mutu-
ally distrusting parties to compute a function in a distributed
fashion while guaranteeing privacy of the parties’ inputs and
correctness of their outputs against any coalition of t parties.

The goal of PPML is practical deployment, making effi-
ciency a primary consideration. Functions such as comparison,
activation functions (e.g. ReLU), are heavily used in machine
learning. Instantiating these functions via MPC naively turns
out to be prohibitively inefficient due to their non-linearity.
Hence there is motivation to design specialised protocols that
can compute these functions efficiently. We work towards
this goal in the 4-party (4PC) setting, assuming honest ma-
jority [11, 15, 26, 33]. 4PC is interesting because it buys us
the following over 3PC (which is threshold optimal): (1) in-
dependence from broadcast: broadcast can be achieved by a
simple protocol in which the sender sends to everyone and
residual parties exchange and apply a majority rule (2) ef-
ficient dot-product with feature-size independence: 4PC of-
fers a simpler and more efficient dot-product protocol (which
is an important building block for several ML algorithms)
with communication complexity independent of feature size
(3) simplicity and efficiency: protocols are vastly more effi-
cient and simple in terms of design (as shown in this and
prior works). To enhance practical efficiency, many recent
works [15, 19, 30, 46] resort to the preprocessing paradigm,
which splits the computation into two phases; a preprocess-
ing phase where input-independent (but function-dependent),
computationally heavy tasks can be computed, followed by a
fast online phase. Since the same functions in ML are eval-
uated several times, this paradigm naturally fits the case of
PPML, where the ML algorithm is known beforehand. Fur-
ther, recent works [18–20] propose MPC protocols over 32 or
64 bit rings to leverage CPU optimizations.

MPC protocols can be categorized as high-throughput [2,5,
6,14,15,23,33,41,45,46] and low-latency [12,13], where the
former, based on secret-sharing, requires less communication

1

#Active
Parties

Dot Product Dot Product with Truncation

Parties Work Security Commpre Common Commpre Common Roundson Conversions

3
ABY3 [41] 3 Abort 12d` 9d` 12d`+84` 9d`+3` 2 A-B-G

BLAZE [46] 2 Fair 3` 3` 15` 3` 1 A-B
SWIFT (3PC) [33] 2 GOD 3` 3` 15` 3` 1 A-B

4

Mazloom et al. [39] 4 Abort 2` 4` 2` 4` 1 A-B
Trident [15] 3 Fair 3` 3` 6` 3` 1 A-B-G

Tetrad 2 Fair 2` 3` 2` 3` 1 A-B-G

SWIFT (4PC) [33] 2 GOD 3` 3` 4` 3` 1 A-B
Fantastic Four [17] 3 GOD - 6(`+κ) 76(`+κ)+54x+12 9`+6κ >1 A-B

Tetrad-RI 2 GOD 2` 3` 2` 3` 1 A-B-G
Tetrad-RII 2 GOD 3` 3` 3` 3` 1 A-B-G

` - size of ring in bits, κ - security parameter, d - length of the vectors, x - number of bits for the fractional part in FPA semantics.
‘Comm’ - communication, ‘pre’ - preprocessing, ‘on’ - online; A, B, G indicate support for arithmetic, boolean, and garbled worlds respectively.

Table 1: Comparison of actively-secure MPC frameworks (3PC and 4PC) for PPML

compared to the latter (garbled circuits). High-throughput
protocols typically work over the boolean ring Z2 or an arith-
metic ring Z2` and aim to minimize communication overhead
(bandwidth) at the expense of non-constant rounds. While
high-throughput protocols enable efficient computation of
functions such as addition, multiplication and dot-product,
other functions such as division are best performed using
garbled circuits. Activation functions such as ReLU used
in neural networks (NN) alternate between multiplication
and comparison, wherein multiplication is better suited to the
arithmetic world and comparison to the boolean world. Hence,
MPC protocols working over different representations (arith-
metic/boolean/garbled circuit based) can be mixed to achieve
better efficiency. This motivated mixed protocols where each
protocol is executed in a world where it performs best. Mixed-
protocol frameworks [15, 20, 21, 41, 43, 45, 49, 51] have sup-
port for efficient ways to switch between the worlds, thereby
getting the best from each of them. This work proposes a
mixed-protocol PPML framework via MPC with four parties
in an honest majority setting with active security.

Works such as [39, 41, 55] typically go for active security
with abort, where the adversary can act maliciously to obtain
the output and make honest parties abort. The stronger notion
of fairness guarantees that either all or none of the parties
obtain the output. This incentivizes the adversary to behave
honestly in resources-expensive tasks such as PPML, as caus-
ing an abort will waste its resources. Trident [15] showed
that the stronger notion of fairness can be achieved at the cost
of abort. In cases where the risk of failure for the system is
too high, for instance, when deploying PPML for healthcare
applications, participants might want to avoid the case when
none of them receive the output. The way to tackle this issue
is to modify protocols to guarantee that the correct output is
always delivered to the participants irrespective of an adver-
sary’s misbehaviour. This is provided by guaranteed output
delivery (GOD) or robustness. A robust protocol prevents
the adversary from repeatedly causing the computations to
rerun, thereby upholding the trust in the system. We propose
two variants of the framework – one with fairness and the

other with robustness. We detail the related work in §A and
continue with our contributions next.

1.1 Our Contributions
We make several contributions towards designing a practically
efficient 4PC mixed-protocol framework, tolerating at most
one active corruption. It operates over the ring Z2` and pro-
vides end-to-end conversions to switch between arithmetic,
boolean and garbled worlds. We assume a one-time key setup
phase and work in the (function-dependent) preprocessing
model which paves the way for a fast online phase.

Depending on the sensitivity of the application and the
underlying data, we may want different levels of security. For
this, we propose multiple variants of the framework, cover-
ing fairness (Tetrad) and robustness (Tetrad-RI, Tetrad-RII)
guarantees. This fair variant improves upon the state-of-the-
art fair framework of Trident [15]. Our robust frameworks
offer support for secure training, which was not supported in
previous works such as [33].

1.1.1 Improved Arithmetic/Boolean 4PC

In Tetrad, the multiplication protocol has a communication
cost of only 5 ring elements as opposed to 6 in the state-of-
the-art framework of Trident [15].

Robust multiplication in Tetrad-RI, retains the same (amor-
tized) communication cost as that of the fair protocol but uses
a verification check in the preprocessing over extended rings.
In fact, for large circuits (∼ 220 multiplications), the overhead
amortizes, making Tetrad-RI as efficient as its fair counterpart.
In other words, for large circuits, robustness comes for free
over fairness. On the other hand, multiplication in Tetrad-RII

does away with the computation over extended rings. It re-
quires a minimal overhead of 1 element communication in
the preprocessing for multiplication over Tetrad.

A notable contribution is the design of the multiplication
protocol. It gives the following benefits – i) support for on-
demand applications, ii) truncation without overhead and iii)
multi-input multiplication gates.

2

On-demand applications. The design allows us to support
on-demand applications where a preprocessing phase is not
available. This variant of the protocols (cf. §B) has a round
complexity that is the same as that of the online phases of
the protocols in the preprocessing model and retains the same
overall communication. These variants take advantage of
parallelization, which is often not possible in the function-
dependent preprocessing model, where the preprocessing and
the online phases must be executed sequentially.

Truncation without any overhead. Multiplication (and dot
product) with truncation forms an essential component to
retain the FPA semantics while performing PPML operations.
Inspired by [39] which provides protocols satisfying security
with abort, we demonstrate for the first time, in the fair and
robust settings, how multiplication (and dot-product) with
truncation can be performed without any extra cost.

Multi-input multiplication. Inspired by [44,45], we propose
new protocols for 3 and 4-input multiplication, allowing mul-
tiplication of 3 and 4 inputs in one shot. Naively, performing
a 4-input multiplication follows a tree-based approach, and
the required communication is that of three 2-input multipli-
cations and 2 online rounds.

Our contribution lies in keeping the communication and
the round of the online phase the same as that of 2-input
multiplication (i.e. invariant of the number of inputs). To
achieve this, we trade off the preprocessing cost. Looking
ahead, our multi-input multiplication, when coupled with the
optimized parallel prefix adder circuit from [45], brings in
a 2× improvement in online rounds. It also cuts down the
online communication of secure comparison, factoring into
improvements in PPML applications.

1.1.2 4PC Mixed-Protocol Framework

In addition to relying on the improved arithmetic/boolean
world, we observe that a large portion of the computation in
most MPC-based PPML frameworks is done over the arith-
metic and boolean worlds. They use the garbled world only
to perform the non-linear operations (e.g. softmax) that are
expensive in the arithmetic/boolean world and switch back
immediately after. Leveraging this observation we propose –
1) Tailor-made GC-based protocols and 2) end-to-end conver-
sion techniques.

1) Garbled world: The tailor-made GC-based (fair and ro-
bust) protocols, when deployed in the mixed framework, offer
the following impactful features – i) amortized round com-
plexity of 1, ii) no use of commitments for the inputs as
opposed to the work of [13, 29], and iii) no requirement of an
explicit input sharing and output reconstruction phase [13],
as the garbled protocol only forms an intermediate part of the
complete computation. The construction requires 2 GC com-
munication with just one online round. However, for applica-
tions where communication is a bottleneck, we demonstrate

how the protocol can be realized with 1 GC communication
at the expense of one additional online round.

2) End-to-end Conversions: Departing from existing meth-
ods we provide for the first time, end-to-end conversion tech-
niques such as Arithmetic-Garbled-Arithmetic. The standard
approach until now was to perform a piece-wise combination
of Arithmetic to Garbled followed by a Garbled to Arith-
metic conversion. End-to-end conversions benefit from not
having to generate a full-fledged garbled-shared output after
the computation. Instead, these conversions aim to produce
a “partial” garbled-shared output that is enough to lead to an
arithmetic sharing of the output. This results in end-to-end
conversions of the form “x-Garbled-x” where x can be either
arithmetic or boolean that need just a single round for our gar-
bled world (cf. Table 8) as opposed to the two in Trident [15].

Comparison of Tetrad with actively secure PPML frame-
works in 3PC and 4PC is presented in Table 1. The dot prod-
uct is chosen as a parameter as it is one of the most crucial
building blocks in PPML applications.

1.1.3 Benchmarking and PPML

We demonstrate the practicality of the framework, which com-
bines the arithmetic, boolean, garbled worlds via benchmark-
ing. The training and inference phases of deep neural net-
works such as LeNet [35] and VGG16 [53] and the inference
phase of Support Vector Machines are benchmarked.

The implementation section is presented through the lens of
deployment scenarios with different goals. Participants in the
first scenario are interested in the shortest online runtime for
the computation, whereas participants in the second one want
to minimize the deployment cost. Correspondingly, there are
variants of our framework that cater to the different scenarios.

Training & Inference Training Inference

Ref Timeon Comtot CTtot Cost* TPon

TetradT, Tetrad-RT G# G#

TetradC, Tetrad-RC G# G# G#

Trident # # # # #

- ‘Com’ - Communication, ‘Time‘ - Runtime, ‘CT’ - Cumulative Runtime,
‘Cost’ - Monetary Cost, ‘TPon’ - Throughput, on - online, tot - total.
- # - good, G# - better, - best, (w.r.t parameter considered).
- Cost of Trident is lower than Tetrad-RT.

Table 2: Comparison of Trident [15] with the versions of Tetrad for deep
neural networks (cf. NN-4 in §6).

Considering online runtime as the metric, TetradT,
Tetrad-RT are the time-optimized (T) variants, with the
fastest online phase of all. TetradC, Tetrad-RC are the cost-
optimized (C) variants, minimizing deployment cost. This is
measured via monetary cost [47], which helps to capture the
effect of the combined total runtime of the parties, and commu-
nication. All the variants are compared against Trident [15],
and their relative performance is indicated in Table 2. The

3

comparison is made over four main factors – run time, com-
munication, monetary cost (cf. Table 4), and throughput.

Trident requires 3 parties to be active for most of the online
phase, the 4th party coming in only towards the end of the
computation. In Tetrad, it is brought down to 2, having a
significant impact on the monetary cost.

Table 2 shows that Tetrad is better compared to Tri-
dent across all the parameters considered. Within Tetrad,
TetradT fare better when it comes to online run time for both
training and inference, while TetradC do better in terms of
communication. When it comes to inference, throughput is
more relevant than the cost, and here, the time-optimized vari-
ants fare the best. Robust variants follow the same trends, and
the reasons behind them are elaborated in §6.

2 Preliminaries and Definitions

We consider 4 parties denoted by P = {P0,P1,P2,P3} that are
connected by pair-wise private and authentic channels in a
synchronous network, and a static, active adversary that can
corrupt at most 1 party. In the secure outsourced computation
(SOC) setting, the 4 servers hired to carry out the computation
enact the role of the 4 parties mentioned above. In this setting,
the inputs, intermediate values, and outputs exist in a secret-
shared form. For ML training, data owners secret-share their
data to the servers, which train the model using MPC. The
trained model can then be reconstructed towards the data
owners. Our framework is secure even if the corrupt server
colludes with an arbitrary number of data owners. For ML
inference, the model owner secret-shares a pre-trained model
among the servers. A client secret-shares its query amongst
the servers, who carry out the inference via MPC. The output
is reconstructed towards the client. Security is guaranteed
against a corrupt server that colludes either with the model
owner or with the client. We do not guarantee the privacy of
the training data against attacks such as attribute inference,
membership inference, or model inversion [22, 52, 54]. This
is an orthogonal problem, and we consider it as out-of-scope
of this work.

In Tetrad, parties rely on a one-time shared key setup (cf.
§A for the ideal functionality) [11, 14, 15, 41, 46] to facilitate
generation of correlated randomness non-interactively. Our
protocols work over the arithmetic ring Z2` or boolean ring
Z21 . We use fixed-point arithmetic (FPA) [11, 14, 15, 41, 46]
representation to deal with floating-point values where a dec-
imal value is represented as an `-bit integer in signed 2’s
complement representation. The most significant bit (MSB)
represents the sign bit and x least significant bits are reserved
for the fractional part. The `-bit integer is then treated as an
element of Z2` and operations are performed modulo 2`. We
set `= 64, x = 13, with `− x−1 bits for the integral part.

Notation 2.1. For a vector~a, ai denotes the ith element in the
vector. For two vectors~a and~b of length d, the dot product

is given by,~a�~b = ∑
d
i=1 aibi. Given two matrices A,B, the

operation A◦B denotes the matrix multiplication.

Notation 2.2. For a bit b ∈ {0,1}, bR denotes the representa-
tion of the bit value b over the arithmetic ring Z2` . In detail,
all the bits of bR will be zero except for the least significant
bit, which is set to b.

Primitives: For our constructs we use two standard primi-
tives (cf. §A) (a) a collision-resistant hash function, denoted
as H(·); (b) a garbling scheme G = (Gb,En,Ev,De).

Sharing Semantics. To enforce security, we perform com-
putation on secret-shared data. For the arithmetic and
boolean sharing, we follow a (4,1) replicated secret shar-
ing (RSS) [15], where a value v ∈ Z2` is split into four shares.
To leverage the benefits of the preprocessing paradigm, we
associate meaning to the shares and demarcate the parties
in terms of their roles. Three of the shares of a (4,1) RSS
can be generated in the preprocessing phase independent of
the value to be shared, and their sum can be interpreted as
a mask. The fourth share, dependent on v, can be computed
in the online phase and can be treated as the masked value.
We denote the three preprocessed shares as λ1

v,λ
2
v,λ

3
v and the

mask as λv = λ1
v +λ2

v +λ3
v . The masked value is denoted as

mv, and mv = v+λv.

Type P0 P1 P2 P3

[·]-sharing − v1 v2 −
((·))-sharing − v1 v2 v3

〈·〉-sharing − (v1,v3) (v2,v3) (v1,v2)
J·K-sharing (λ1

v,λ
2
v,λ

3
v) (mv,λ

1
v,λ

3
v) (mv,λ

2
v,λ

3
v) (mv,λ

1
v,λ

2
v)

v = v1 +v2 (+v3) and mv = v+λv

Table 3: Sharing semantics for a value v ∈ Z2` in Tetrad. All the
shares are `-bit ring elements.

Next, we distinguish the four parties into two sets; the eval
set E = {P1,P2} which is assigned the task of carrying out
the computation, and is active throughout the online phase.
The helper set D = {P0,P3}, is used to assist E in verifica-
tion, and so it is only active towards the end of the computa-
tion. Complying with the roles and RSS format, the distribu-
tion is done as follows: P0 : {λ1

v,λ
2
v,λ

3
v},P1 : {λ1

v,λ
3
v,mv},P2 :

{λ2
v,λ

3
v,mv}, and P3 : {λ1

v,λ
2
v,mv}. The shares are distributed

among D such that P3 gets mv whereas P0 gets all the shares
of λv. In the preprocessing phase, P0 computes a part of the
data needed for verification (cf. Fig. 1) using its input inde-
pendent shares, which is communicated to P3. This enables a
verification in the online, without P0, for the fair protocols.

Exploiting the asymmetry of the roles allows for minimal
online participation, giving a huge improvement in the cu-
mulative runtime (sum of uptime of all the parties), thereby
saving in monetary costs (cf. §6). The RSS sharing seman-
tics is presented in Table 3, denoted by J·K, in a modular way
with the help of three intermediate sharing semantics [·] ,((·))
and 〈·〉. All the sharings used are linear i.e. given sharings of

4

values v1, . . . ,vm and public constants c1, . . . ,cm, sharing of
∑

m
i=1 civi can be computed non-interactively for an integer m.

Notation 2.3. (a) For the J·K-shares of n values a1, . . . ,an,

γa1...an =
n
∏
i=1

λai
and ma1...an =

n
∏
i=1

mai (b) We use superscripts

B, and G to denote sharing semantics in boolean, and garbled
world, respectively– J·KB, J·KG. We omit the superscript for
arithmetic world.

Sharing semantics for boolean sharing over Z2 is similar to
arithmetic sharing except that addition is replaced with XOR.
The semantics for garbled sharing are described in §4 with
the relevant context.

3 4PC Protocol

This section covers the details of our 4PC protocol over an
arithmetic ring Z2` . We begin by explaining the relevant prim-
itives in §3.1. The multiplication protocol with abort is pre-
sented in §3.2, followed by the details on elevating the se-
curity to fairness in §3.2.1. Lastly, in §3.2.2, we show how
to improve the security to robustness1. Formal details along
with cost analysis for the protocols has been deferred to §B.

3.1 Primitives

Joint-Send (jsnd). The Joint-Send (jsnd) primitive allows to
parties Pi,Pj to relay a message v to a third party Pk ensuring
either the delivery of the message or abort in case of incon-
sistency. Towards this, Pi sends v to Pk, while Pj sends a hash
of the same (H(v)) to Pk. Party Pk accepts the message if the
hash values are consistent and abort otherwise. Note that
the communication of the hash can be clubbed together for
several instances and be deferred to the end of the protocol,
amortizing the cost.

Joint-Send (jsnd) for robust protocols. To achieve robust-
ness, we instantiate jsnd using the joint-message passing (jmp)
primitive of [33]. The jsnd primitive (Fig. 9) allows two
senders Pi,Pj to relay a common message, v ∈ Z2` , to re-
cipient Pk, either by ensuring successful delivery of v, or by
establishing a Trusted Third Party (TTP) among the parties.
The instantiation of jmp can be viewed as consisting of two
phases (send, verify), where the send phase consists of Pi send-
ing v to Pk and the rest of the protocol steps go to verify phase
(which ensures correct send or TTP identification). This re-
quires 1 round of interaction and ` bits of communication. To
leverage amortization, verify will be executed only once, at
the end the computation, requiring 2 rounds.

Note that the appropriate instantiation of jsnd is used de-
pending on the security guarantee. For simplicity, protocols
where the fair and robust variants only differ in the instantia-
tion of jsnd used, we give a common construction for both.

1The classical notion of robustness is achieved

Notation 3.1. Protocol Πjsnd denotes the instantiation of
Joint-Send (jsnd) primitive. We say that Pi,Pj jsnd v to Pk
when they invoke Πjsnd(Pi,Pj,v,Pk).

Sharing. Protocol ΠSh (Fig. 10) enables Pi to generate J·K-
share of a value v. During the preprocessing phase, λ-shares
are sampled non-interactively using the pre-shared keys (cf.
§A.2) in a way that Pi will get the entire mask λv. During the
online phase, Pi computes mv = v+λv and sends to P1,P2,P3,
which exchange the hash values to check for consistency.
Parties abort in the fair protocol in case of inconsistency,
whereas for robust security, parties proceed with a default
value.

Joint Sharing. Protocol ΠJSh enables parties Pi,Pj to gener-
ate J·K-share of a value v. The protocol is similar to ΠSh except
that Pj ensures the correctness of the sharing performed by Pi.
During the preprocessing, λ-shares are sampled such that both
Pi,Pj will get the entire mask λv. During the online phase,
Pi,Pj compute and jsnd mv = v+λv to parties P1,P2,P3.

For joint-sharing a value v possessed by P0 along with
another party in the preprocessing, the communication can
be optimized further. The protocol steps based on the (Pi,Pj)
pair are summarised below:

– (P0,P1) : P \{P2} sample λ1
v ∈R Z2` ; Parties set λ2

v = mv = 0;
P0,P1 jsnd λ3

v =−v−λ1
v to P2.

– (P0,P2) : P \{P3} sample λ3
v ∈R Z2` ; Parties set λ1

v = mv = 0;
P0,P2 jsnd λ2

v =−v−λ3
v to P3.

– (P0,P3) : P \{P1} sample λ2
v ∈R Z2` ; Parties set λ3

v = mv = 0;
P0,P3 jsnd λ1

v =−v−λ1
v to P1.

Reconstruction. Protocol ΠRec(P ,v) (Fig. 11) enables par-
ties in P to compute v, given its J·K-share. Note that each party
misses one share to reconstruct the output, and the other 3
parties hold this share. 2 out of the 3 parties will jsnd the miss-
ing share to the party that lacks it. Reconstruction towards a
single party can be viewed as a special case.

3.2 Multiplication in Tetrad

Given the shares of a,b, the goal of the multiplication protocol
is to generate shares of z= ab. The protocol is designed such
that parties P1,P2 obtain a masked version of the output z, say
z− r in the online phase, and P0,P3 obtain the mask r in the
preprocessing phase. Parties then generate J·K-sharing of these
values by executing ΠJSh, and locally compute Jz− rK+ JrK
to obtain the final output.

Online. Note that,

z− r = ab− r = (ma−λa)(mb−λb)− r

=mab−maλb−mbλa+ γab− r (cf. notation 2.3) (1)

In Eq 1, P1,P2 can compute mab locally, and hence we
are interested in computing y = (z− r)−mab. Let as view

5

y as y = y1 + y2 + y3, where y1 and y2 can be computed re-
spectively by P1 and P2, and y3 consists of terms that can be
computed by both P1,P2.

P1 : y1 =−λ
1
amb−λ

1
bma+[γab− r]1

P2 : y2 =−λ
2
amb−λ

2
bma+[γab− r]2

P1,P2 : y3 =−λ
3
amb−λ

3
bma (2)

The preprocessing is set up such that P1,P2 receive an addi-
tive sharing ([·]) of γab− r. Parties P1,P2 mutually exchange
the missing share to reconstruct y and subsequently z− r.

Let isTr be a bit that denotes whether truncation is required
(isTr = 1) or not (isTr = 0).

Preprocessing:

1. Parties locally compute the following:

P0,P1 : γ
1
ab = λ

1
aλ

3
b+λ

3
aλ

1
b+λ

3
aλ

3
b

P0,P2 : γ
2
ab = λ

2
aλ

3
b+λ

3
aλ

2
b+λ

2
aλ

2
b

P0,P3 : γ
3
ab = λ

1
aλ

2
b+λ

2
aλ

1
b+λ

1
aλ

1
b

2. P0,P3 and Pj sample random u j ∈R Z2` for j ∈ {1,2}. Let
u1 +u2 = γ3

ab− r for a random r ∈R Z2` .

3. P0,P3 compute r = γ3
ab−u1−u2 and set q = rt if isTr = 1,

else set q = r. P0,P3 execute ΠJSh(P0,P3,q) to generate JqK.
4. P0,P1,P2 sample random s1,s2 ∈R Z2` and set s = s1 + s2

a.
P0 sends w = γ1

ab+ γ2
ab+ s to P3.

Online: Let y = (z− r)−mamb.

1. Parties locally compute the following:

P1 : y1 =−λ
1
amb−λ

1
bma+ γ

1
ab+u1

P2 : y2 =−λ
2
amb−λ

2
bma+ γ

2
ab+u2

P1,P2 : y3 =−λ
3
amb−λ

3
bma

2. P1 sends y1 to P2, while P2 sends y2 to P1, and they locally
compute z− r = (y1 +y2 +y3)+mamb.

3. If isTr = 1, P1,P2 set p=(z−r)t, else p= z−r. P1,P2 execute
ΠJSh(P1,P2,p) to generate JpK.

4. Parties locally compute JoK= JpK+JqK. Here o = zt if isTr =
1 and z otherwise.

5. Verification: P3 computes v =−(λ1
a+λ2

a)mb−(λ1
b+λ2

b)ma+
u1+u2+w and sends H(v) to P1 and P2. Parties P1,P2 abort

iff H(v) 6= H(y1 +y2 + s).

aFor the fair protocol, it is enough for P0,P1,P2 to sample s directly.

Protocol ΠMult(a,b, isTr)

Figure 1: Multiplication with / without truncation in Tetrad.

Verification. To ensure the correctness of the values ex-
changed, we use the assistance of P3. Concretely, P3 obtains
y1+y2+s, where s is a random mask known to P0,P1,P2. For
this P3 needs γab+ s, which it obtains from the preprocessing

phase. The mask s is used to prevent the leakage from γab to
P3. P3 computes a hash of y1 + y2 + s and sends it to P1,P2,
which abort if it is inconsistent.

Preprocessing. Parties should obtain the following values
from the preprocessing phase:

i) P1,P2 : [γab− r]
∣∣∣ ii) P0,P3 : r

∣∣∣ iii) P3 : γab+ s

For i) and ii), let γab = γ1
ab+ γ2

ab+ γ3
ab, where P0 along with

Pi can compute γi
ab for i ∈ {1,2,3}. For P1,P2, to form an

additive sharing of (γab− r), it suffices for them to define
their share as γi

ab+
[
γ3
ab− r

]
. Instead of sampling a random

r, P0,P3, along with Pi, sample the share for γ3
ab− r as ui for

i ∈ {1,2}. P0,P3 compute r as γ3
ab−u1−u2.

For iii), P3 needs w= γ1
ab+γ2

ab+s. To tackle this, P0,P1,P2
sample s1,s2, and set s = s1 + s2. P0,Pi, for i ∈ {1,2}, jsnd
γi
ab+ si to P3. This requires a communication of 2 elements.

As an optimization, P0 sends w to P3. If P0 is malicious, it
might send a wrong value to P3. However, in this case, every
party in the online phase would be honest. And since P1,P2
do not use w in their computation, any error in w is bound to
get caught in the verification phase.

Truncation. For a value v = v1 + v2, SecureML [43] showed
that the truncated value v/2x, denoted by vt , is equivalent to
vt

1 + vt
2, with very high probability. The design of our mul-

tiplication allows for truncation to be carried out this way
without any additional overhead in communication. Observe
that zt = (z− r)t + rt . Towards this, P1,P2 locally truncate
(z− r) and generate J·K-shares of it in the online phase. Simi-
larly, P0,P3 truncate r in the preprocessing phase and generate
its J·K-shares.

Multiplication by a constant in MPC is typically local:
given constant α and JvK, the product can be written as
αv= β1+β2 where β1 =α.(mv−λ3

v) and β2 =α.(−λ1
v−λ2

v).
However, in FPA, we need to perform a truncation on the out-
put. For this P1,P2 truncate β1 and execute ΠJSh, while P0,P3
do the same with β2.

3.2.1 Achieving Fairness

Here, we show how to extend the security of Tetrad from
abort to fairness using techniques from Trident [15]. Before
proceeding with the output reconstruction, we need to ensure
that all the honest parties are alive after the verification phase.
For this, all the parties maintain an aliveness bit, say b, which
is initialized to continue. If the verification phase is not
successful for a party, it sets b = abort. In the first round
of reconstruction, the parties mutually exchange their b bit
and accept the value that forms the majority. Since we have
only one corruption, it is guaranteed that all the honest parties
will be in agreement on b. If b= continue, then the parties
exchange their missing shares and accept the majority. As per
the sharing semantics, every missing share is possessed by

6

three parties, out of which there can be at most one corrup-
tion. As an optimization, for instances where many values are
reconstructed, two out of the three parties can send the share
while the third can send a hash of the same.

3.2.2 Achieving Robustness

In this section, we show how to extend the security of Tetrad
to robustness. We provide two variants with different trade-
offs in the communication for multiplication. i) Tetrad-RI: It
has the same amortised communication complexity as that
of Tetrad but requires verification in the preprocessing phase
over Galois rings. ii) Tetrad-RII: It avoids operating over Ga-
lois ring (and operates entirely over Z2`) as that in Tetrad-RI

but incurs a communication overhead of 1 element in the
preprocessing phase over Tetrad.

Tetrad-RI. On a high level, we make two modifications to the
multiplication protocol ΠMult (Fig. 1). In the preprocessing,
communication comes from a ΠJSh in step 3 of the protocol,
and the value w sent by P0 to P3, in step 4. To get robustness,
the robust variant of ΠJSh is used. To ensure the correctness
of w, we introduce ΠVrfyP0 (Fig. 2). If ΠVrfyP0 fails, parties
identify a TTP in the preprocessing phase itself. The second
modification is in the online phase, which proceeds as that
of ΠMult. If any abort happens, P0 is assigned as the TTP.
Since P0 does not participate in the online phase of the mul-
tiplication, and its communication in the preprocessing has
been verified via ΠVrfyP0, this assignment is safe.

Verifying the communication by P0: In ΠMult (Fig. 1) proto-
col, P0 computes and sends w= γ1

ab+ γ2
ab+ s1 + s2 to P3 with

P0,P1,P2 knowing s1,s2 in clear. Note that w = w1 +w2 for
w1 = γ1

ab+ s1 and w2 = γ2
ab+ s2. Also, P0 along with P1,P2

and P3 possess the values w1,w2 and w respectively. Checking
the correctness of w reduces to verifying w = w1 +w2.

To verify this relation for all M multiplication gates in
the circuit, i.e. {w j

?
= w1

j +w2
j} j∈[M], a naive solution (that

works over fields) is to compute a random linear combi-
nation and verify the relation on the sum. In detail, par-
ties sample M random values, τ1, . . . ,τM and compute the
following: P0,P1 : e1 = ∑

M
j=1 τ jw

1
j ; P0,P2 : e2 = ∑

M
j=1 τ jw

2
j ;

P0,P3 : e= ∑
M
j=1 τ jw j. Each of these pairs of parties can gen-

erate the respective J·K-sharing by executing ΠJSh. Then they
invoke a robust reconstruction on Je− e1− e2K and check
if it is 0. If not, one among P1,P2,P3 is assigned as a TTP.
However, this solution will not work over rings as not every
element in the ring has an inverse, as opposed to in fields.
Hence we perform the check over a Galois ring [1, 10].

To carry out the verification, the extended ring Z2`/ f (x) is
used, which is the ring of all polynomials with coefficients in
Z2` modulo an irreducible polynomial f of degree d over Z2 .
Here, each element in Z2` is lifted to a d-degree polynomial in
Z2` [x]/ f (x) (which results in blowing up the communication
by a factor d). Given this, to verify the M values, further

packing is performed. More concretely, assume that d divides
M and M = d ·q. For j = 1, . . . ,q, public polynomial g j and
shared polynomials g1

j and g2
j are defined for each set of d

values {w,w1,w2}, all of which are then combined to check

whether {w j
?
= w1

j +w2
j} j∈[M]. We describe the polynomial

with respect to j = 1 below.

g1 = w1 +X ·w2 + . . .+Xd−1 ·wd

g1
1 = w1

1 +X ·w1
2 + . . .+Xd−1 ·w1

d

g2
1 = w2

1 +X ·w2
2 + . . .+Xd−1 ·w2

d

Now, parties sample random values r1, . . . , rq ∈ Z2`/ f (x)
and compute g = ∑

q
j=1 r jg j, g1 = ∑

q
j=1 r jg1

j and g2 =

∑
q
j=1 r jg2

j . This is followed by robustly reconstructing g−
g1−g2 and verifying if this value is 0. If not, P0 is identified
to be a corrupt and computation is carried out by a TTP. The
formal verification protocol appears in Fig. 2.

1. Define the following polynomials over Z2`/ f (x) for j ∈ [q] .

g j = w1+(j−1)d +X ·w2+(j−1)d + . . .+Xd−1 ·wd+(j−1)d

g1
j = w1

1+(j−1)d +X ·w1
2+(j−1)d + . . .+Xd−1 ·w1

d+(j−1)d

g2
j = w2

1+(j−1)d +X ·w2
2+(j−1)d + . . .+Xd−1 ·w2

d+(j−1)d

2. Parties generate random values r1, . . . , rq ∈Z2`/ f (x), and com-
pute g = ∑

q
j=1 r jg j, g1 = ∑

q
j=1 r jg1

j and g2 = ∑
q
j=1 r jg2

j .

3. Parties execute ΠJSh(P0,P1,g1), ΠJSh(P0,P2,g2) and
ΠJSh(P0,P3,g) to generate Jg1K,Jg2K and JgK, respectively.

4. Parties robustly reconstruct g−g1−g2 and check equality to
0. If it is 0, then parties continue with rest of the computation.
Else, P0 is identified to be corrupt and TTP = P1.

Protocol ΠVrfyP0({
[
w j
]
}M

j=1)

Figure 2: Verification P0’s communication in the multiplication
protocol of Tetrad-RI

Tetrad-RII. This variant (Fig. 12) avoids computation over the
extended ring at the cost of communicating 1 extra ring ele-
ment in the preprocessing, compared to Tetrad-RI. Note that
the communication cost of this protocol is similar to that of
the one in SWIFT [33]. We were unable to extend the latter’s
efficiently to support multi-input multiplication. Hence, we
design Tetrad-RII that has the same communication complex-
ity as SWIFT but also supports multi-input multiplication,
as well as truncation without any overhead. In order to get
rid of ΠVrfyP0, the communication of w from P0 to P3 is split
into 2 parts. (P0,P1) and (P0,P2) compute w in parts, and send
them to P3 using jsnd. This modification allows P3 to compute
y1 + s1 and y2 + s2 separately in the online phase. In addition,
to enable P2 to obtain y1, P1,P3 can jsnd y1 + s1 to P2. P1
obtains y2 + s2 similarly.

7

3.3 Supporting on-demand computations
For on-demand applications where the underlying function
to be computed is not known in advance, the preprocessing
model is not desirable. We observe that the Tetrad protocol
can be modified by executing the preprocessing phase in the
online phase itself, keeping the same overall communication
cost. The formal protocol appears in Fig. 13.

4 Mixed Protocol Framework

Preliminary details about the garbling scheme are described
in §D.1, and elaborate details are given in §D.

Garbled world. In the applications we consider, the garbled
circuit is used as an intermediary to evaluate certain functions
where the input to the function as well as the output are in
J·K-shared (or J·KB-shared) form.

Instantiating the garbled world using existing 4PC GC-
based protocols [13, 29] turn out to be overkill, as they are
standalone protocols. For instance, [29] provides robust proto-
cols by communicating 12 GCs while [13] requires generating
and exchanging commitments on the inputs to ensure input
consistency. On the other hand, the inputs to our protocol are
consistent (due to J·K-sharing), and we do not need an explicit
reconstruction, making it lighter overall.

Towards this, we propose 2 GC protocols – one requiring
communication of 2 GC evaluations and 1 online round, and
the other one requiring 1 GC and 2 rounds. Moreover, these
protocols leverage the benefit of amortization which comes
from using jsnd. The 2 GC variant has two parallel executions,
each comprising of 3 garblers and 1 evaluator. P1,P2 act as
evaluators in two independent executions and the parties in
Φ1 = {P0,P2,P3}, Φ2 = {P0,P1,P3} act as garblers, respec-
tively. The 1 GC variant comprises of a single execution with
Φ1 acting as garblers and P1 as the evaluator.

Leveraging an honest majority among the garblers and
using jsnd, we only need semi-honest GC computation to
get active security. Moreover, the state-of-the-art GC opti-
mizations of free-XOR [31, 32], half gates [27, 58], and fixed
AES-key [7] are deployed in our protocol.

Garbled evaluation proceeds in three phases– i) Input phase,
ii) Evaluation, and iii) Output phase. The input phase involves
transferring the keys to the evaluators for every input to the
GC. Note here that the function (to be evaluated via the GC)
input is already J·KB-shared. Since each share of the function
input is available with two garblers in each garbling instance,
the correct key transfer is ensured via jsnd. The evaluation
consists of GC transfer followed by GC evaluation. Lastly, in
the output phase, evaluators obtain the encoded output.

Input Phase. Given that the function input x is already
available as JxKB, the boolean values mx,αx,λ

3
x , where αx =

λ1
x⊕λ2

x and x =mx⊕αx⊕λ3
x , act as the new inputs for the

garbled computation, and garbled sharing (J·KG) is generated

for each of these values. The semantics of J·KB-sharing en-
sures that each of these shares (mx,αx,λ

3
x) is available with

two garblers in each garbling instance. The keys for the shares
can either be sent (using jsnd) correctly to the evaluators or
the inconsistency is detected. This key delivery essentially
generates J·KG-sharing for each of these three values which
enables GC evaluation. Thus, the goal of our input phase is to
create the compound sharing, JxKC = (JmxKG,JαxKG,Jλ3

xK
G
)

for every input x to the function to be evaluated via the GC.
We first discuss the semantics for J·KG-sharing followed by
steps for generating J·KC-sharing.

Garbled sharing semantics. A value v ∈ Z2 is J·KG-shared
(garbled shared) amongst P if Pi ∈ {P0,P3} holds JvKG

i =

(K0,1
v ,K0,2

v), P1 holds JvKG
1 = (Kv,1

v ,K0,2
v) and P2 holds JvKG

2 =

(K0,1
v ,Kv,2

v). Here, Kv, j
v = K

0, j
v ⊕ v∆ j for j ∈ {1,2}, and ∆ j,

which is known only to the garblers in Φ j, denotes the global
offset with its least significant bit set to 1 and is same for
every wire in the circuit. A value x ∈ Z2 is said to be J·KC-
shared (compound shared) if each value from (mx,αx,λ

3
x),

which are as defined above, is J·KG-shared. We write JxKC =

(JmxKG,JαxKG,Jλ3
xK

G
).

Generation of JvKG and JxKC Protocol ΠG
Sh(P ,v) (Fig. 19)

enables generation of JvKG where two garblers in each gar-
bling instance hold v, and proceeds as follows. Consider the
first garbling instance with evaluator P1 where garblers Pk,Pl

hold v. Garblers in Φ1 generate {Kb,1
v }b∈{0,1} which denotes

the key for value b on wire v, following the free-XOR tech-
nique [31, 32]. Pk,Pl jsnd Kv,1

v to evaluator P1. Similar steps
carried out with respect to the second garbling instance, at
the end of which, garblers in Φ2 possess {Kb,2

v }b∈{0,1} while
the evaluator P2 holds Kv,2

v . Following this, the shares JvKG
s

held by Ps ∈ P are defined as JvKG
0 = JvKG

3 = (K0,1
v ,K0,2

v),
JvKG

1 = (Kv,1
v ,K0,2

v), JvKG
2 = (K0,1

v ,Kv,2
v).

To generate JxKC, we need a way to generate
(JmxKG,JαxKG,Jλ3

xK
G
), given JxKB. For this, ΠG

Sh is in-
voked for each of mx,αx,λ

3
x .

Conversions involving Garbled World. Assume the GC is
required to compute a function f on inputs x,y ∈ Z2` and
let the output be f (x,y). All the conversions described are
for the 2 GC variant. Conversions for the 1 GC variant are
straightforward, hence we omit the details.

Case I: Boolean-Garbled-Boolean. Since the inputs to the
GC are available in boolean form, say JxKB,JyKB, parties gen-
erate JxKC,JyKC by invoking the garbled sharing protocol ΠG

Sh.
Additionally, parties P0,P3 sample R ∈ Z2` to mask the func-
tion output, f (x,y), and generate JRKB (using the joint sharing
protocol) and JRKG. Garblers Pg ∈ {P0,P2,P3} garble the cir-
cuit which computes z= f (x,y)⊕R, and send the GC along
with the decoding information to evaluator P1. Analogous

8

steps are performed for evaluator P2. Upon GC evaluation
and output decoding, evaluators obtain z= f (x,y)⊕R, and
jointly boolean share z to generate JzKB. Parties then compute
J f (x,y)KB = JzKB⊕ JRKB.

Case II: Boolean-Garbled-Arithmetic. This is similar to
Case I except that the circuit which computes z = f (x,y)+
R is garbled instead. Boolean sharing of z is replaced with
arithmetic, followed by computing J f (x,y)K = JzK− JRK.

Cases III & IV: Input in Arithmetic Sharing. The
function to be computed f (x,y), is modified as
f ′(mx,αx,λ

3
x,my,αy,λ

3
y) = f (mx − αx − λ3

x,my − αy − λ3
y)

where inputs x,y are replaced by the triples
{mx,αx,λ

3
x},{my,αy,λ

3
y} and αx = λ1

x+λ2
x and αy = λ1

y+λ2
y .

The circuit to be garbled thus, corresponds to the function f ′.
Parties generate JmxKG,JαxKG,Jλ3

xK
G
,JmyKG,JαyKG,Jλ3

yK
G

via ΠG
Sh, following which, parties proceed with the rest of

the computation whose steps are similar to Case I, and II,
depending on the requirement on the output sharing.

Other Conversions.

Arithmetic to Boolean. To convert arithmetic sharing of v ∈
Z2` to boolean sharing, observe that v = v1 +v2 where v1 =
mv−λ3

v is possessed by parties P1,P2, while v2 =−(λ1
v+λ2

v)

is possessed by parties P0,P3. Thus, JvKB can be computed
as JvKB = Jv1KB + Jv2KB, where Jv2KB can be generated in
the preprocessing phase, and Jv1KB can be generated in the
online phase by the respective parties executing joint boolean
sharing protocol. The protocol appears in Fig. 22. Boolean
addition, when instantiated using the adder of ABY2.0 [45],
requires log4(`) rounds.

Boolean to Arithmetic. To convert a boolean sharing of v
into an arithmetic sharing, we use techniques from [15, 33].
For a value v ∈ Z2` , note that

v =
`−1

∑
i=0

2ivi =
`−1

∑
i=0

2i(λv i⊕mv i) =
`−1

∑
i=0

2i
(

mv
R
i +λv

R
i (1−2mv

R
i)
)

where λv
R
i ,mv

R
i denote the arithmetic value of bits λvi,mvi

over the ring Z2` . For each bit vi of v, parties generate the arith-
metic sharing of λv

R
i in the preprocessing, using techniques

from bit to arithmetic protocol (cf. §5). During the online
phase, additive shares for each bit vi is locally computed sim-
ilar to bit to arithmetic protocol. Parties then multiply the ith
share with 2i and locally add up to obtain an additive sharing
of v. The rest of the steps are similar to the bit to arithmetic
protocol, and the formal protocol appears in Fig. 23.

5 Building Blocks

We provide the details of the primitives needed for the appli-
cations in this section. Elaborate details appear in §C.

Dot Product (Scalar Product). Given J~aK,J~bK with |~a| =
|~b| = d, protocol Πdotp (Fig. 3) computes JzK such that z =
(~a�~b)t if truncation is enabled, else z=~a�~b. Following [15,
33], we combine the partial products from the multiplication
protocol across d multiplications and communicate them in
a single shot. This makes the communication cost of the dot
product independent of the vector size. The protocols for
robust setting follows similarly from Tetrad-RI and Tetrad-RII.

Let isTr be a bit that denotes whether truncation is required
(isTr = 1) or not (isTr = 0).

Preprocessing:

1. Parties locally compute the following:

P0,P1 : γ
1
~a~b =

d

∑
i=1

(λ1
ai

λ
3
bi
+λ

3
ai

λ
1
bi
+λ

3
ai

λ
3
bi
)

P0,P2 : γ
2
~a~b =

d

∑
i=1

(λ2
ai

λ
3
bi
+λ

3
ai

λ
2
bi
+λ

2
ai

λ
2
bi
)

P0,P3 : γ
3
~a~b =

d

∑
i=1

(λ1
ai

λ
2
bi
+λ

2
ai

λ
1
bi
+λ

1
ai

λ
1
bi
)

2. P0,P3 and Pj sample random u j ∈R Z2` for j ∈ {1,2}. Let
u1 +u2 = γ3

~a~b
+ r for a random r ∈R Z2` .

3. P0,P3 compute r = u1 +u2− γ3
~a~b

and set q = rt if isTr = 1,
else set q = r. P0,P3 execute ΠJSh(P0,P3,q) to generate JqK.

4. P0,P1,P2 sample random s1,s2 ∈R Z2` and set s = s1 + s2
a.

P0 sends w = γ1
~a~b

+ γ2
~a~b

+ s to P3.

Online: Let y = (z+ r)−∑
d
i=1 mai mbi .

1. Parties locally compute the following:

P1 : y1 =
d

∑
i=1

(−λ
1
ai

mbi −λ
1
bi

mai)+ γ
1
~a~b +u1

P2 : y2 =
d

∑
i=1

(−λ
2
ai

mbi −λ
2
bi

mai)+ γ
2
~a~b +u2

P1,P2 : y3 =
d

∑
i=1

(−λ
3
ai

mbi −λ
3
bi

mai)

2. P1 sends y1 to P2, while P2 sends y2 to P1, and they locally
compute z+ r = (y1 +y2 +y3)+∑

d
i=1 mai mbi .

3. If isTr = 1, P1,P2 set p=(z+r)t, else p= z+r. P1,P2 execute
ΠJSh(P1,P2,p) to generate JpK.

4. Parties locally compute JoK= JpK−JqK. Here o = zt if isTr =
1 and z otherwise.

5. Verification: P3 computes v = ∑
d
i=1(−(λ1

ai
+λ2

ai
)mbi − (λ1

bi
+

λ2
bi
)mai)+u1 +u2 +w and sends H(v) to P1 and P2. Parties

P1,P2 abort iff H(v) 6= H(y1 +y2 + s).

aFor the fair protocol, it is enough for P0,P1,P2 to sample s directly.

Protocol Πdotp(~a,~b, isTr)

Figure 3: Dot Product with / without Truncation.

9

Matrix multiplication is an extension of the dot product
protocol. We abuse notation and follow the J·K-sharing se-
mantics (ref. §2) for matrices as well. For Xu×v, we have
mX = X

⊕[
λ1

X
]⊕[

λ2
X
]⊕[

λ3
X
]
. Here mX,

[
λ1

X
]
,
[
λ2

X
]
, and[

λ3
X
]

are matrices of dimension u× v, and
⊕

denote the ma-
trix addition operation. Looking ahead 	,

⊙
will be used

to denote matrix subtraction and multiplication operation,
respectively. Multiplication of two matrices, Xu×v, Yv×w is
a collection of uw independent dot product operations over
vectors of length v.

Multi-input Multiplication. Inspired from ABY2.0 [45], we
design 3-input and 4-input multiplication protocols for our
setting. We remark that the multi-input multiplication, when
coupled with the optimized PPA circuit from [45], improves
the rounds as well as communication in the online phase.

The goal of 3-input multiplication is to generate J·K-sharing
of z= abc given JaK,JbK,JcK, without the need for performing
two sequential multiplications (i.e. first ab then abc). For this
parties proceed similar to the multiplication protocol (see
§3.2), where they compute JzK = Jz+ rK− JrK. Observe that

z+ r = abc+ r = (ma−λa)(mb−λb)(mc−λc)+ r

=mabc−macλb−mbcλa−mabλc+maγbc+mbγac

+mcγab− γabc+ r

Similar to the 2-input fair multiplication ΠMult (Fig. 1), the
goal of the preprocessing phase is to generate additive shares
of γab,γac,γbc,γabc among P1,P2.

Informally, the terms that P1,P2 cannot compute locally for
the aforementioned γ values, can be computed by P0,P3, as
evident from our sharing semantics. P0,P3 compute the miss-
ing terms and share them among P1,P2 in the preprocessing
phase. P1,P2 proceed with online phase similar to ΠMult, to
compute z+ r. Thus the online complexity is retained as that
of ΠMult while the preprocessing communication is increased
to 9 elements. The protocol appears in Fig. 14.

Analogously, ΠR
Mult can be extended to support 3-input

multiplication while costing 12 elements communication in
preprocessing. The protocol appears in Fig. 15. For the 4-input
case, the goal is to compute z= abcd for which the additive
shares of γab,γac,γad,γbc,γbd,γcd,γabc,γacd,γbcd,γabcd needs
to be generated in the preprocessing. The protocol is very
similar to the 3-input case, and the details are deferred to §C.

Secure Comparison. To compute a > b in the FPA repre-
sentation, given its J·K-sharing, Πbitext uses the technique
of extracting the most significant bit (msb) of the value
v = a−b [33, 41, 46].

To compute the msb, we use two variants - i) the commu-
nication optimized parallel prefix adder (PPA) circuit from
ABY3 [41] (2(`− 1) AND gates, log` depth), and ii) the
round optimized bit extraction circuit from ABY2 [45]. The
circuit of ABY2 uses multi-input AND gates and has a multi-
plicative depth of log4(`). Both these circuits take two `-bit

values in boolean sharing as the input and outputs the result in
boolean sharing form. Note that v = (mv−λ3

v)+(−λ1
v−λ2

v)
as per the sharing semantics (cf. Table 3). P0,P3 execute ΠB

JSh

on (−λ1
v−λ2

v) during the preprocessing, while P0,P3 execute
ΠB

JSh on (mv−λ3
v) during the online phase to generate the

respective boolean sharing.

Bit to Arithmetic. Protocol Πbit2A(JbKB) (Fig. 16) enables
computing JbK of a bit b given its boolean sharing JbKB. Let
bR denotes the value of b ∈ {0,1} over the arithmetic ring
Z2` . Then for b= b1⊕b2, note that bR = (bR1 −bR2)

2.
Let b1 =mb⊕λ3

v and b2 = λ1
v⊕λ2

v . To compute JbK, a pair
of parties can generate the arithmetic sharing corresponding
to bR1 and bR2 by executing ΠJSh. JbK can be computed by
invoking ΠMult once with inputs x= y = bR1 −bR2 .

Using the techniques from [15, 33], we obtain a
communication-optimized variant by trading off computation
in the preprocessing. For this, note that

bR = (mb⊕λb)
R =mR

b +(λb)
R(1−2mR

b) (3)

Let v = mR
b and u = (λb)

R. During the preprocessing, P0
generates 〈·〉-sharing of u and a check is executed to verify the
correctness. The online phase consists of each pair of parties
(P1,P3), (P2,P3) and (P1,P2) locally computing an additive
sharing of bR, generating the corresponding J·K-sharing using
ΠJSh, and locally adding the shares to obtain JbK.

Piecewise Polynomials. Piece-wise polynomial functions are
constructed as a series of constant polynomials f1, . . . , fm with
public coefficients and c1 < .. . < cm such that,

f (y) =


0, y < c1

f1, c1 ≤ y < c2

. . .

fm, cm ≤ y

For computing f , we first compute a set of bits b1, . . . ,bm
such that bi = 1 if y ≥ ci and 0 otherwise. f can be com-
puted as, f (y) =∑

m
i=1 bi ·(fi− fi−1), where f0 = 0 and fm = 1.

Given the J·K-shares of y, one can obtain the J·KB-shares of
the bits b1, . . . ,bm using secure comparison. The bit injection
protocol of [33] allows computing Jb · vK given JbKB and JvK.
f (y) can be viewed as a sum of m bit injections, which results
in the online communication being independent of m.

For ease of presentation, let z= ∑
m
i=1 b

R
i ·vi, where vi ∈Z2` ,

bi ∈ Z2 and bR ∈ Z2` denotes the value b in Z2` . Given JbiKB

and vi for i ∈ {1,2, . . . ,m}, (Πpiecewise, Fig. 17) generates JzK.
Consider one term, bRv in the expression for z. This can be
written as follows.

bRv = (mb⊕λb)
R(mv−λv) = (mR

b +λ
R
b −2mR

b λ
R
b)(mv−λv)

Thus, z= ∑
m
i=1 b

R
i ·vi can be written as

z =
m

∑
i=1

mR
bi

mvi −mR
bi

λvi +(2mR
bi
−1)(λR

bi
λvi −mviλ

R
bi
)

10

To compute JzK, we let P0 generate 〈·〉-sharing of λR
bi

λvi

and λR
bi

for i ∈ [m], where the correctness of the sharing is
verified, similar to Πbit2A. Note that the correctness for all
i ∈ [m] can be clubbed in a single check. Then, in the on-
line phase, each pair of parties (P1,P3), (P2,P3) and (P1,P2)
locally compute an additive sharing of z, generate the corre-
sponding J·K-sharing using ΠJSh, and locally add these shares
to obtain the J·K-sharing of z.

Non-linear activation functions, such as Rectified Linear
Unit and Sigmoid, can be viewed as instantiations of piece-
wise polynomial functions as shown in ABY3 [41].

Oblivious Selection: Given J·K-shares of x0,x1 ∈ Z2` and
JbKB where b ∈ {0,1}, oblivious selection (Πobv) enables
parties to generate re-randomized J·K-shares of z= xb. Note
that z= b(x1−x0)+x0 and can be computed using the piece-
wise polynomial protocol.

ArgMin/ ArgMax. Protocol Πargmin (Fig. 18) allows par-
ties to compute the index of the smallest element in a vector
~x= (x1, . . . ,xm) of m elements, where~x is J·K-shared, i.e. each
element xi ∈ Z2` of~x is J·K-shared. The protocol outputs a
J·KB-shared bit vector~b of size m which has a 1 at the index
associated with the minimum value in~x, and 0 elsewhere. We
follow the standard tree-based approach [18] to recursively
find the minimum value in~x while also updating~b to reflect
the index of this smallest element. Each bit of~b is initialized
to 1. The elements of~x are grouped into pairs and securely
compared to find their pairwise minimum. Using this infor-
mation,~b is updated such that b j’s are reset to 0 for x j’s ∈~x
which do not form the minimum in their respective pair; the
other bits in~b still equal 1. The protocol recurses on the re-
maining elements x j ∈~x, which were the pairwise minimums.
Eventually, only one b j ∈~b equals 1, indicating that x j is
the minimum, with index j. Computing Πargmax can be done
similarly.

6 Implementation and Benchmarking

We benchmark training and inference phases for deep NNs
with varying parameter sizes and the inference phase for Sup-
port Vector Machines (SVM) using MNIST [36] and CIFAR-
10 [34] dataset. Benchmarks of the protocols are against the
state-of-the-art 4PC of Trident [15] and SWIFT [33] 4PC
(supports only inference).

Benchmarking Environment Details. The protocols are
benchmarked over a Wide Area Network (WAN), instanti-
ated using n1-standard-64 instances of Google Cloud2, with
machines located in East Australia (P0), South Asia (P1),
South East Asia (P2), and West Europe (P3). The machines
are equipped with 2.0 GHz Intel (R) Xeon (R) (Skylake)

2https://cloud.google.com/

processors supporting hyper-threading, with 64 vCPUs, and
240 GB of RAM Memory. Parties are connected by pairwise
authenticated bidirectional synchronous channels (eg. instan-
tiated via TLS over TCP/IP). We use a bandwidth of 40 MBps
and the average round-trip time (rtt)3 values among P0-P1,
P0-P2, P0-P3, P1-P2, P1-P3, and P2-P3 are 153.74ms, 93.39ms,
274.84ms, 62.01ms, 174.15ms, and 219.46ms respectively.

For a fair comparison, we implemented and benchmarked
all the protocols, including the protocols of Trident and
SWIFT, building on the ENCRYPTO library [16] in C++17.
Primitives such as maxpool, which Trident and SWIFT do not
support, have been run using our building blocks. We would
like to clarify that our code is developed for benchmarking,
is not optimized for industry-grade use, and optimizations
like GPU support can enhance performance. Our protocols
are instantiated over a 64-bit ring (Z264), and the collision-
resistant hash function is instantiated using SHA-256. We use
multi-threading, and our machines are capable of handling a
total of 64 threads. Each experiment is run 10 times, and the
average values are reported. We use 1 KB = 8192 bits and use
a batch size of B = 128 for training.

Notation Description

Ton,i Online runtime of party Pi.
Ttot,i Total runtime of party Pi.
PTon Protocol online runtime; maxi{Ton,i} .
PTtot Protocol total runtime; maxi{Ttot,i} .
CTon Cumulative online runtime; ΣiTon,i .
CTtot Cumulative total runtime; ΣiTtot,i .
Common Online communication.
Commtot Total communication.
Cost Total monetary cost.

TP
Online throughput; higher = better
(#iterations / #queries per minute in online)

Table 4: Benchmarking parameters

Benchmarking Parameters. We evaluate the protocols
across a variety of parameters as given in Table 4. In addition
to parameters such as runtime, communication, and online
throughput (TP) [5,6,15,23,33,41,41], we report the cumula-
tive runtime (sum of the up-time of all the hired servers). The
reason behind doing so is that when deployed over third-party
cloud servers, one pays for them by the communication and
the uptime of the hired servers. To analyze the cost of deploy-
ment of the framework, monetary cost (Cost) [40] is reported.
This is done using the pricing of Google Cloud Platform4,
where for 1 GB and 1 hour of usage, the costs are USD 0.08
and USD 3.04, respectively. For protocols with an asymmet-
ric communication graph, communication load is unevenly
distributed among all the servers, leaving several communi-
cation channels underutilized. Load balancing improves the
performance by running several parallel execution threads,
each with roles of the servers changed. Load balancing has
been performed in all the protocols benchmarked.

3Time for communicating 1 KB of data between a pair of parties
4See https://cloud.google.com/vpc/network-pricing for network cost and

https://cloud.google.com/compute/vm-instance-pricing for computation cost.

11

Network Architectures. We consider the following networks
for benchmarking. These were chosen based on the different
range of model parameters and types of layers used in the
network. We refer readers to [43, 56] for the architecture and
a detailed description of the training and inference steps for
the ML algorithms.

– SVM: Consists of 10 categories for classification [18].

– NN-1: Fully connected network with 3 layers and around
118K parameters [41, 46].

– NN-2: Convolutional neural network comprising of 2
hidden layers, with 100 and 10 nodes [15, 41, 49].

– NN-3: LeNet [35], comprises of 2 convolutional and fully
connected layers, followed by maxpool for convolutional
layers. This has approximately 431K parameters.

– NN-4: VGG16 [53] has 16 layers in total and con-
tains fully-connected, convolutional, ReLU activation
and maxpool layers. This has ≈ 138 million parameters.

Datasets. We use the following datasets:

– MNIST [36] is a collection of 28×28 pixel, handwritten
digit images with a label between 0 and 9 for each. It has
60,000 and respectively, 10,000 images in training and
test set. We evaluate NN-1, NN-3, SVM on this dataset.

– CIFAR-10 [34] has 32×32 pixel images of 10 different
classes such as dogs, horses, etc. It has 50,000 images
for training and 10,000 for testing, with 6000 images in
each class. We evaluate NN-2, NN-4 on this dataset.

Discussion. Broadly speaking, we consider two deployment
scenarios – optimized for time (T), and for cost (C). In the
first one, participants want the result of the output as soon
as possible while maximizing the online throughput. In the
second one, they want the overall monetary cost of the system
to be minimal and are willing to tolerate an overhead in the
execution time. Usage of multi-input multiplication gates and
the 2 GC variant of the garbled make the online phase faster
but incur an increase in monetary cost. This is because they
cause an overhead in communication in the preprocessing
phase, and communication affects monetary cost more than
uptime (in our setting).

TetradT and Tetrad-RT make use of multi-input multipli-
cation gates and the 2 GC variant of the garbled world and
are the fastest variants of the framework. On the other hand,
TetradC and Tetrad-RC are variants with a minimal monetary
cost. For robustness, we report only the numbers for Tetrad-RII

and not Tetrad-RI. This is because the overhead of Tetrad-RI

over its fair counterpart Tetrad is very minimal for deep net-
works, like those considered in this work.

6.1 ML Training

For training we consider NN-1, NN-2, NN-3 and NN-4 net-
works. We report values corresponding to one iteration, that
comprises of a forward propagation followed by a backward
propagation. More details are provided in §F.

Algo Parameter Trident TetradT TetradC Tetrad-RT Tetrad-RC

NN-1

PTon 8.06 1.93 2.55 2.37 2.99
PTtot 10.76 5.05 5.27 5.84 6.26
CTtot 27.90 12.69 11.22 16.46 14.99

Commtot 0.16 0.30 0.16 0.31 0.16
Cost 49.33 58.51 34.29 62.27 37.77
TP 1904.79 3792.64 3725.49 3792.63 3725.49

NN-2

PTon 8.13 2.05 2.67 2.48 3.11
PTtot 11.47 5.79 6.14 6.58 7.13
CTtot 30.88 14.82 13.40 18.63 17.18

Commtot 0.28 0.39 0.24 0.42 0.26
Cost 70.00 75.67 49.16 81.93 54.31
TP 428.16 652.75 644.69 652.75 644.69

NN-3

PTon 21.79 5.67 8.40 6.11 8.84
PTtot 30.66 15.14 17.87 16.13 18.86
CTtot 91.68 40.01 42.76 43.78 46.53

Commtot 1.59 1.94 1.28 2.25 1.40
Cost 331.01 343.73 240.41 395.95 262.70
TP 53.62 55.71 54.13 55.71 54.13

NN-4

PTon 72.01 25.90 38.35 26.30 38.79
PTtot 283.89 182.13 194.58 183.08 195.57
CTtot 859.09 500.13 522.32 503.90 526.09

Commtot 31.59 29.52 22.24 35.01 25.16
Cost 5779.27 5146.10 3999.30 6025.79 4468.37
TP 2.55 2.61 2.56 2.61 2.56

Table 5: Benchmarking of the training phase of ML algorithms.
Time (in seconds) and communication (in GB) are reported for 1
iteration. Monetary cost (USD) is reported for 1000 iterations.

Starting with the time-optimized variants (TetradT,
Tetrad-RT) are 3− 4× faster than Trident in online run-
time. The primary factor is the reduction in online rounds
of our protocol due to multi-input gates. More precisely,
we use the depth-optimized bit extraction circuit while in-
stantiating ReLU activation function using multi-input AND
gates (cf. §5). Looking at the total communication (Commtot)
in Table 5, we observe that the gap in Commtot between
TetradT, Tetrad-RT vs. Trident decreases as the networks get
deeper. This is justified as the improvement in communication
of our dot product with truncation outpaces the overhead in
communication caused by multi-input gates. The impact of
this is more pronounced with NN-4, as observed by the lower
monetary cost of TetradT over Trident. Another reason is the
there are two active parties (P1,P2) in our framework, whereas
Trident has three. Given the allocation of servers, the best rtt
Trident can get with three parties (P0,P1,P2) is 153.74ms, as
compared to 62.01ms of Tetrad, contributing to Tetrad being
faster. However, if the rtt among all the parties were similar,
this gap would be closed.

The cost-optimized variants (TetradC, Tetrad-RC) on the
other hand, are 1.5× slower in the online phase compared to
TetradT,Tetrad-RT. However, they are still faster than Trident

12

Trident

TetradT

TetradC

NN-3 NN-4
0

20

40

60

Tetrad-RT

NN-3 NN-4
0

20

40

60

Tetrad-RC

(a) Online Execution Time (PTon)

Trident

TetradT

TetradC

NN-3 NN-4
0

200

400

600

800

Tetrad-RT

NN-3 NN-4
0

200

400

600

800

Tetrad-RC

(b) Cumulative Time (CTtot)

Trident

TetradT

TetradC

NN-3 NN-4
0

2,000

4,000

6,000

Tetrad-RT

NN-3 NN-4
0

2,000

4,000

6,000

Tetrad-RC

(c) Monetary Cost (Cost)

Figure 4: Training of NN-3 and NN-4: in terms of PTon, CTtot, and Cost (cf. Table 4)

owing to the rtt setup, as discussed above. When it comes
to monetary cost, these variants are up to 20−40% cheaper
than their time-optimized counterparts and cheaper by around
30% over Trident.

These trends can be better captured with a pictorial repre-
sentation as given in Figure 4 and Figure 24 (cf. §F).

6.2 ML Inference
We benchmark the inference phase of SVM and the aforemen-
tioned NNs. Training phase of SVM requires additional tools
and primitives, and is out of scope of this work.

Trident

TetradT

TetradC

SVM NN-3 NN-4
0

2,000

4,000

6,000

Tetrad-RT

SVM NN-3 NN-4
0

2,000

4,000

6,000

Tetrad-RC

Figure 5: Inference of SVM, NN-3 and NN-4: in terms of TP

Similar to training, the time-optimized variants for infer-
ence are faster when it comes to PTon, by 4−6× over Trident.
This is also reflected in the TP, where the improvement is
about 2.8−5.5×, as evident from Figure 5. In inference, the
communication is in the order of megabytes, while run time is
in the order of a few seconds. The key observation is that com-
munication is well suited for the bandwidth used (40 MBps).
So unlike training, the monetary cost in inference depends
more on run time rather than on communication. This is evi-
dent from Table 6 which shows that TetradT,Tetrad-RT save
on monetary cost up to a factor of 6 over Trident.

Algo Parameter Trident TetradT TetradC Tetrad-RT Tetrad-RC

SVM

PTon 17.09 2.91 4.77 3.35 5.21
PTtot 17.37 3.19 5.05 4.18 6.04
CTtot 47.02 6.99 10.70 10.76 14.47

Commtot 1.36 2.34 1.25 2.84 1.36
Cost 39.92 6.26 9.23 9.53 12.43
TP 898.80 5271.74 3221.29 4581.56 2949.76

NN-1

PTon 5.87 1.31 1.87 1.75 2.31
PTtot 6.15 1.58 2.14 2.57 3.13
CTtot 16.75 3.76 4.88 7.54 8.65

Commtot 0.06 0.09 0.05 0.11 0.06
Cost 14.15 3.19 4.13 6.38 7.32
TP 2615.35 11734.60 8226.93 8787.84 6661.00

NN-2

PTon 5.87 1.31 1.87 1.75 2.31
PTtot 6.15 1.58 2.14 2.57 3.13
CTtot 16.75 3.77 4.88 7.54 8.66

Commtot 0.26 0.37 0.22 0.45 0.24 (+0.01)
Cost 14.19 3.24 4.16 6.44 7.35
TP 2615.35 11734.60 8226.93 8787.84 6661.00

NN-3

PTon 14.42 2.61 4.10 3.05 4.54
PTtot 14.71 2.91 4.39 3.89 5.38 (+.01)
CTtot 39.92 6.43 9.40 10.20 13.18

Commtot 5.62 8.42 4.76 10.24 5.27 (+0.12)
Cost 34.59 6.74 8.68 10.21 11.95 (+0.02)
TP 1065.35 5882.44 3746.89 5035.93 3384.51

NN-4

PTon 47.05 7.85 12.69 8.29 13.13
PTtot 47.61 8.44 13.28 9.42 14.27 (+0.06)
CTtot 129.41 17.77 27.46 21.55 31.23 (+0.12)

Commtot 85.69 124.09 71.27 150.92 79.15 (+2.18)
Cost 122.66 34.40 34.32 41.77 38.74 (+0.44)
TP 326.46 934.34 891.19 934.34 891.19

Table 6: Benchmarking of the inference phase of ML algorithms.
Time (in seconds) and communication (in MB) are reported for 1
query. Monetary cost (USD) is reported for 1000 queries. Values
for Tetrad-RC and SWIFT are similar and the overhead, if any, is
indicated along with the values.

Note that the cost-optimized variants underperform in
terms of monetary cost compared to TetradT,Tetrad-RT. This
is because, as mentioned earlier, run time plays a bigger role
in monetary cost than communication. Hence for inference,
the time-optimized variants become the optimal choice.

13

References

[1] M. Abspoel, R. Cramer, I. Damgård, D. Escudero, and
C. Yuan. Efficient information-theoretic secure mul-
tiparty computation over Z/pkZ via galois rings. In
D. Hofheinz and A. Rosen, editors, TCC 2019, Part I,
volume 11891 of LNCS, pages 471–501. Springer, Hei-
delberg, Dec. 2019.

[2] M. Abspoel, A. Dalskov, D. Escudero, and A. Nof. An
efficient passive-to-active compiler for honest-majority
MPC over rings. Cryptology ePrint Archive, Report
2019/1298, 2019. https://eprint.iacr.org/2019/
1298.

[3] B. Alon, E. Omri, and A. Paskin-Cherniavsky. MPC
with friends and foes. In D. Micciancio and T. Risten-
part, editors, CRYPTO 2020, Part II, volume 12171 of
LNCS, pages 677–706. Springer, Heidelberg, Aug. 2020.

[4] J. Alvarez-Valle, P. Bhatu, N. Chandran, D. Gupta, A. V.
Nori, A. Rastogi, M. Rathee, R. Sharma, and S. Ugare.
Secure medical image analysis with cryptflow. CoRR,
abs/2012.05064, 2020.

[5] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell,
A. Nof, K. Ohara, A. Watzman, and O. Weinstein. Opti-
mized honest-majority MPC for malicious adversaries -
breaking the 1 billion-gate per second barrier. In 2017
IEEE Symposium on Security and Privacy, pages 843–
862. IEEE Computer Society Press, May 2017.

[6] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara.
High-throughput semi-honest secure three-party com-
putation with an honest majority. In E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi,
editors, ACM CCS 2016, pages 805–817. ACM Press,
Oct. 2016.

[7] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway.
Efficient garbling from a fixed-key blockcipher. In 2013
IEEE Symposium on Security and Privacy, pages 478–
492. IEEE Computer Society Press, May 2013.

[8] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations
of garbled circuits. In T. Yu, G. Danezis, and V. D.
Gligor, editors, ACM CCS 2012, pages 784–796. ACM
Press, Oct. 2012.

[9] D. Boneh, E. Boyle, H. Corrigan-Gibbs, N. Gilboa, and
Y. Ishai. Zero-knowledge proofs on secret-shared data
via fully linear PCPs. In A. Boldyreva and D. Miccian-
cio, editors, CRYPTO 2019, Part III, volume 11694 of
LNCS, pages 67–97. Springer, Heidelberg, Aug. 2019.

[10] E. Boyle, N. Gilboa, Y. Ishai, and A. Nof. Practical fully
secure three-party computation via sublinear distributed

zero-knowledge proofs. In L. Cavallaro, J. Kinder,
X. Wang, and J. Katz, editors, ACM CCS 2019, pages
869–886. ACM Press, Nov. 2019.

[11] M. Byali, H. Chaudhari, A. Patra, and A. Suresh.
FLASH: Fast and robust framework for privacy-
preserving machine learning. PoPETs, 2020(2):459–
480, Apr. 2020.

[12] M. Byali, C. Hazay, A. Patra, and S. Singla. Fast ac-
tively secure five-party computation with security be-
yond abort. In L. Cavallaro, J. Kinder, X. Wang, and
J. Katz, editors, ACM CCS 2019, pages 1573–1590.
ACM Press, Nov. 2019.

[13] M. Byali, A. Joseph, A. Patra, and D. Ravi. Fast secure
computation for small population over the internet. In
D. Lie, M. Mannan, M. Backes, and X. Wang, editors,
ACM CCS 2018, pages 677–694. ACM Press, Oct. 2018.

[14] H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh.
ASTRA: High Throughput 3PC over Rings with Ap-
plication to Secure Prediction. In ACM CCSW@CCS,
2019.

[15] H. Chaudhari, R. Rachuri, and A. Suresh. Trident: Ef-
ficient 4PC framework for privacy preserving machine
learning. In NDSS 2020. The Internet Society, Feb.
2020.

[16] Cryptography and P. E. G. at TU Darmstadt.
ENCRYPTO Utils. https://github.com/
encryptogroup/ENCRYPTO_utils, 2017.

[17] A. Dalskov, D. Escudero, and M. Keller. Fantastic four:
Honest-majority four-party secure computation with
malicious security. Cryptology ePrint Archive, Report
2020/1330, 2020. https://eprint.iacr.org/2020/
1330.

[18] I. Damgård, D. Escudero, T. K. Frederiksen, M. Keller,
P. Scholl, and N. Volgushev. New primitives for actively-
secure MPC over rings with applications to private ma-
chine learning. In 2019 IEEE Symposium on Security
and Privacy, pages 1102–1120. IEEE Computer Society
Press, May 2019.

[19] I. Damgård, C. Orlandi, and M. Simkin. Yet another
compiler for active security or: Efficient MPC over arbi-
trary rings. In H. Shacham and A. Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages
799–829. Springer, Heidelberg, Aug. 2018.

[20] D. Demmler, T. Schneider, and M. Zohner. ABY - A
framework for efficient mixed-protocol secure two-party
computation. In NDSS 2015. The Internet Society, Feb.
2015.

14

https://eprint.iacr.org/2019/1298
https://eprint.iacr.org/2019/1298
https://github.com/encryptogroup/ENCRYPTO_utils
https://github.com/encryptogroup/ENCRYPTO_utils
https://eprint.iacr.org/2020/1330
https://eprint.iacr.org/2020/1330

[21] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and
P. Scholl. Improved primitives for MPC over mixed
arithmetic-binary circuits. In D. Micciancio and T. Ris-
tenpart, editors, CRYPTO 2020, Part II, volume 12171
of LNCS, pages 823–852. Springer, Heidelberg, Aug.
2020.

[22] M. Fredrikson, S. Jha, and T. Ristenpart. Model in-
version attacks that exploit confidence information and
basic countermeasures. In I. Ray, N. Li, and C. Kruegel,
editors, ACM CCS 2015, pages 1322–1333. ACM Press,
Oct. 2015.

[23] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-
throughput secure three-party computation for malicious
adversaries and an honest majority. In J.-S. Coron and
J. B. Nielsen, editors, EUROCRYPT 2017, Part II, vol-
ume 10211 of LNCS, pages 225–255. Springer, Heidel-
berg, Apr. / May 2017.

[24] O. Goldreich. Foundations of Cryptography: Basic
Applications, volume 2. Cambridge University Press,
Cambridge, UK, 2004.

[25] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game or A completeness theorem for
protocols with honest majority. In A. Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[26] S. D. Gordon, S. Ranellucci, and X. Wang. Secure com-
putation with low communication from cross-checking.
In T. Peyrin and S. Galbraith, editors, ASIACRYPT 2018,
Part III, volume 11274 of LNCS, pages 59–85. Springer,
Heidelberg, Dec. 2018.

[27] S. Gueron, Y. Lindell, A. Nof, and B. Pinkas. Fast gar-
bling of circuits under standard assumptions. Journal of
Cryptology, 31(3):798–844, July 2018.

[28] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: tool for automating secure two-
party computations. In E. Al-Shaer, A. D. Keromytis,
and V. Shmatikov, editors, ACM CCS 2010, pages 451–
462. ACM Press, Oct. 2010.

[29] Y. Ishai, R. Kumaresan, E. Kushilevitz, and A. Paskin-
Cherniavsky. Secure computation with minimal inter-
action, revisited. In R. Gennaro and M. J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 359–378. Springer, Heidelberg, Aug. 2015.

[30] M. Keller, V. Pastro, and D. Rotaru. Overdrive: Making
SPDZ great again. In J. B. Nielsen and V. Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of
LNCS, pages 158–189. Springer, Heidelberg, Apr. / May
2018.

[31] V. Kolesnikov, P. Mohassel, and M. Rosulek. FleXOR:
Flexible garbling for XOR gates that beats free-XOR.
In J. A. Garay and R. Gennaro, editors, CRYPTO 2014,
Part II, volume 8617 of LNCS, pages 440–457. Springer,
Heidelberg, Aug. 2014.

[32] V. Kolesnikov and T. Schneider. Improved garbled cir-
cuit: Free XOR gates and applications. In L. Aceto,
I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. In-
gólfsdóttir, and I. Walukiewicz, editors, ICALP 2008,
Part II, volume 5126 of LNCS, pages 486–498. Springer,
Heidelberg, July 2008.

[33] N. Koti, M. Pancholi, A. Patra, and A. Suresh. SWIFT:
Super-fast and Robust Privacy-Preserving Machine
Learning. In USENIX Security’21, 2021. https:
//eprint.iacr.org/2020/592.

[34] A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-
10 dataset. 2014. https://www.cs.toronto.edu/
~kriz/cifar.html.

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, pages 2278–2324, 1998.

[36] Y. LeCun and C. Cortes. MNIST handwritten digit
database. 2010.

[37] Y. Lindell. How to simulate it - A tutorial on the simula-
tion proof technique. Cryptology ePrint Archive, Report
2016/046, 2016. https://eprint.iacr.org/2016/
046.

[38] E. Makri, D. Rotaru, N. P. Smart, and F. Vercauteren.
EPIC: Efficient private image classification (or: Learn-
ing from the masters). In M. Matsui, editor, CT-
RSA 2019, volume 11405 of LNCS, pages 473–492.
Springer, Heidelberg, Mar. 2019.

[39] S. Mazloom, P. H. Le, S. Ranellucci, and S. D. Gordon.
Secure parallel computation on national scale volumes
of data. In S. Capkun and F. Roesner, editors, USENIX
Security 2020, pages 2487–2504. USENIX Association,
Aug. 2020.

[40] P. Miao, S. Patel, M. Raykova, K. Seth, and M. Yung.
Two-sided malicious security for private intersection-
sum with cardinality. In D. Micciancio and T. Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 3–33. Springer, Heidelberg, Aug. 2020.

[41] P. Mohassel and P. Rindal. ABY3: A mixed protocol
framework for machine learning. In D. Lie, M. Mannan,
M. Backes, and X. Wang, editors, ACM CCS 2018, pages
35–52. ACM Press, Oct. 2018.

15

https://eprint.iacr.org/2020/592
https://eprint.iacr.org/2020/592
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046

[42] P. Mohassel, M. Rosulek, and Y. Zhang. Fast and secure
three-party computation: The garbled circuit approach.
In I. Ray, N. Li, and C. Kruegel, editors, ACM CCS 2015,
pages 591–602. ACM Press, Oct. 2015.

[43] P. Mohassel and Y. Zhang. SecureML: A system for
scalable privacy-preserving machine learning. In 2017
IEEE Symposium on Security and Privacy, pages 19–38.
IEEE Computer Society Press, May 2017.

[44] S. Ohata and K. Nuida. Communication-efficient (client-
aided) secure two-party protocols and its application. In
J. Bonneau and N. Heninger, editors, FC 2020, volume
12059 of LNCS, pages 369–385. Springer, Heidelberg,
Feb. 2020.

[45] A. Patra, T. Schneider, A. Suresh, and H. Yalame.
ABY2.0: Improved Mixed-Protocol Secure Two-Party
Computation. In USENIX Security’21, 2021. https:
//eprint.iacr.org/2020/1225.

[46] A. Patra and A. Suresh. BLAZE: Blazing fast privacy-
preserving machine learning. In NDSS 2020. The Inter-
net Society, Feb. 2020.

[47] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. SpOT-
light: Lightweight private set intersection from sparse
OT extension. In A. Boldyreva and D. Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS,
pages 401–431. Springer, Heidelberg, Aug. 2019.

[48] P. Pullonen and S. Siim. Combining secret sharing and
garbled circuits for efficient private IEEE 754 floating-
point computations. In M. Brenner, N. Christin, B. John-
son, and K. Rohloff, editors, FC 2015 Workshops, vol-
ume 8976 of LNCS, pages 172–183. Springer, Heidel-
berg, Jan. 2015.

[49] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori,
T. Schneider, and F. Koushanfar. Chameleon: A hybrid
secure computation framework for machine learning
applications. In J. Kim, G.-J. Ahn, S. Kim, Y. Kim,
J. López, and T. Kim, editors, ASIACCS 18, pages 707–
721. ACM Press, Apr. 2018.

[50] P. Rogaway and T. Shrimpton. Cryptographic hash-
function basics: Definitions, implications, and separa-
tions for preimage resistance, second-preimage resis-
tance, and collision resistance. In B. K. Roy and
W. Meier, editors, FSE 2004, volume 3017 of LNCS,
pages 371–388. Springer, Heidelberg, Feb. 2004.

[51] D. Rotaru and T. Wood. MArBled circuits: Mix-
ing arithmetic and Boolean circuits with active secu-
rity. In F. Hao, S. Ruj, and S. Sen Gupta, editors, IN-
DOCRYPT 2019, volume 11898 of LNCS, pages 227–
249. Springer, Heidelberg, Dec. 2019.

[52] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE Symposium on Security and Privacy,
pages 3–18. IEEE Computer Society Press, May 2017.

[53] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[54] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Risten-
part. Stealing machine learning models via prediction
APIs. In T. Holz and S. Savage, editors, USENIX Secu-
rity 2016, pages 601–618. USENIX Association, Aug.
2016.

[55] S. Wagh, D. Gupta, and N. Chandran. SecureNN: 3-
party secure computation for neural network training.
PoPETs, 2019(3):26–49, July 2019.

[56] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz,
P. Mittal, and T. Rabin. Falcon: Honest-majority ma-
liciously secure framework for private deep learning.
PoPETs, 2021(1):188–208, Jan. 2021.

[57] A. C.-C. Yao. Protocols for secure computations (ex-
tended abstract). In 23rd FOCS, pages 160–164. IEEE
Computer Society Press, Nov. 1982.

[58] S. Zahur, M. Rosulek, and D. Evans. Two halves make
a whole - reducing data transfer in garbled circuits using
half gates. In E. Oswald and M. Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages
220–250. Springer, Heidelberg, Apr. 2015.

16

https://eprint.iacr.org/2020/1225
https://eprint.iacr.org/2020/1225

A Preliminaries

A.1 Related Work

Related work covers MPC protocols with an honest majority
for high-throughput and constant-round setting and mixed-
protocol frameworks for the case of PPML.

ABY3 [41] was the first framework for the case of 3 parties,
supporting both training and inference. It had variants for both
passive and active security, with the former being based on [6]
and the latter on [5,23]. ASTRA [14] improved upon the 3PC
of [5,6,23] by proposing faster protocols for the online phase
with active security. As a result, secure inference of ASTRA
is faster than ABY3. Building on [9], BLAZE [46] proposed
an actively secure framework that supports inference of neural
networks. BLAZE pushes the expensive zero-knowledge part
of the computation to the preprocessing phase, making its
online phase faster than that of [9]. SWIFT (3PC) improved
upon BLAZE by using the distributed zero-knowledge pro-
tocol of [10], thereby achieving GOD. In an orthogonal line
of work, FALCON [56] focused on enhancing the efficiency
of actively secure protocols for large convolutional neural
networks, supporting training and inference.

In the high-throughput setting for 4PC, [26] explores pro-
tocols for the security notions of abort. Inspired by the the-
oretical GOD construction in [26], FLASH proposed prac-
tical protocols with GOD for secure inference. Trident [15]
improved protocols (in terms of communication) compared
to [26] with a focus on security with fairness. In addition, it
was the first work to propose a mixed-protocol framework for
the case of 4 parties. More recently, [39] improved over [26]
to provide support for fixed-point arithmetic with applications
to graph parallel computation, albeit with abort security.

Improving the security of Trident to GOD, SWIFT [33] pre-
sented an efficient, robust PPML framework with protocols
as fast as Trident. SWIFT only supports the secure inference
of neural networks and lacks conversions similar to the ones
from Trident and the garbled world. Fantastic Four [17] also
provides robust 4PC protocols which are on par with SWIFT.
While they claim to provide a better security model called
private robustness compared to SWIFT, it has been shown in
SWIFT that the two security models are theoretically equiv-
alent. Our security model is also similar to SWIFT, and we
elaborate on its equivalence to private robustness in §A.3.

In the regime of constant-round protocols, [42] presents
3PC protocols in the honest majority setting satisfying secu-
rity with abort, which require communicating one garbled cir-
cuit and three rounds of interaction. The work of [29] presents
a robust 4-party computation protocol (4PC) with GOD in 2-
rounds (which is optimal) at the expense of 12 garbled circuits.
Further, [13] presents efficient 3PC and 4PC constructions
providing security notions of fairness and GOD.

A mixed-protocol framework for MPC was first shown
to be practical, in the 2-party dishonest majority setting, by

TASTY [28]. TASTY was a passively secure compiler sup-
porting generation of protocols based on homomorphic en-
cryption and garbled circuits. This was followed by ABY [20],
which proposed a mixed protocol framework, also with pas-
sive security, combining the arithmetic, boolean and garbled
worlds. The recent work of ABY2 [45] improves upon the
ABY framework, providing a faster online phase with appli-
cations to PPML. The work of [21, 51] proposed efficient
mixed world conversions for the case of n parties with a dis-
honest majority. Both works have active security, with [51]
supporting the inference of SVMs, and [21] supporting neural
network inference.

In the honest majority setting, ABY3 [41] extended the
idea to 3 parties and provided specialised protocols for the
case of PPML. ABY3 was the first work to support secure
training in the case of 3 parties, while Trident [15] extended
it to the 4-party setting.

A.2 Basic Primitives

Shared Key Setup. Let F : {0,1}κ×{0,1}κ→ X be a secure
pseudo-random function (PRF), with co-domain X being Z2` .
The following set of keys are established between the servers.

– One key between every pair – ki j for Pi,Pj.

– One key between every set of three parties – ki jk for
Pi,Pj,Pk.

– One shared keys kP known to all parties in P .

Suppose P0,P1 wish to sample a random value r ∈ Z2` non-
interactively. To do so they invoke Fk01(id01) and obtain r.
Here, id01 denotes a counter maintained by the servers, and
is updated after every PRF invocation. The appropriate keys
used to sample is implicit from the context, from the identities
of the pair that sample or from the fact that it is sampled by
all, and, hence, is omitted.

FSETUP interacts with the servers in P and the adversary S . FSETUP

picks random keys ki j and ki jk for i, j,k ∈ {0,1,2,3} and kP . Let
ys denote the keys corresponding to server Ps. Then
– ys = (k01,k02,k03,k012,k013,k023 and kP) when Ps = P0.
– ys = (k01,k12,k13,k012,k013,k123 and kP) when Ps = P1.
– ys = (k02,k12,k23,k012,k023,k123 and kP) when Ps = P2.
– ys = (k03,k13,k23,k013,k023,k123 and kP) when Ps = P3.

Output: Send (Output,ys) to every Ps ∈ P .

Functionality FSETUP

Figure 6: Ideal functionality for shared-key setup

The key setup is modelled via a functionality FSETUP

(Fig. 6) that can be realised using any secure MPC proto-
col. A simple instantiation of such an MPC protocol is as
follows. Pi samples key ki j and sends to Pj. Pi samples ki jk

17

and sens to Pj. Pi,Pj jsnd ki jk to Pk. Similarly, P0 samples kP
and sends to P3. P0,P3 jsnd kP to P1 and P2.

Collision-Resistant Hash Function [50]. . A family of hash
functions {H : K ×M→ Y } is said to be collision resistant if
for all PPT adversaries A , given the hash function Hk for k ∈R
K , the following holds: Pr[(x,x′)←A(k) : (x 6= x′)∧Hk(x)=
Hk(x′)] = negl(κ), where x,x′ ∈ {0,1}m and m = poly(κ).

A.3 Security Model

We prove security using the real-world/ ideal-word simulation
paradigm [24, 37]. The security is analyzed by comparing
what an adversary can do in the real world’s execution of
the protocol with what it can do in an ideal world execution
where there is a trusted third party and is considered secure
by definition. In the ideal world, the parties send their inputs
to the trusted third party over perfectly secure channels that
carries out the computation and sends the output to the parties.
Informally, a protocol is secure if whatever an adversary can
do in the real world can also be done in the ideal world.

Every honest party Pi ∈ P sends its input xi to the functionality.
Corrupted parties may send arbitrary inputs as instructed by the
adversary. While sending the inputs, the adversary is also allowed
to send a special abort command.
Input: On message (Input,xi) from Pi, do the following: if
(Input,∗) already received from Pi, then ignore the current
message. Otherwise, record x′i = xi internally. If xi is outside Pi’s
domain, consider x′i = abort.
Output: If there exists an i ∈ {0,1,2,3} such that x′i = abort,
send (Output,⊥) to all the parties. Else, compute
y = f (x′0,x

′
1,x
′
2,x
′
3) and send (Output,y) to all parties.

Functionality FFAIR

Figure 7: Fair functionality for computing function f

Every honest party Pi ∈ P sends its input xi to the functionality.
Corrupted parties may send arbitrary inputs as instructed by the
adversary.
Input: On message (Input,xi) from Pi, do the following: if
(Input,∗) already received from Pi, then ignore the current
message. Otherwise, record x′i = xi internally. If xi is outside Pi’s
domain, consider x′i to be some predetermined default value.
Output: Compute y = f (x′0,x

′
1,x
′
2,x
′
3) and send (Output,y) to

all parties.

Functionality FGOD

Figure 8: GOD functionality for computing function f

Let A denote the probabilistic polynomial time (PPT) real-
world adversary corrupting at most one party in P , S denote
the corresponding ideal world adversary, and F denote the
ideal functionality. Let IDEALF,S (1κ,z) denote the joint out-
put of the honest parties and S from the ideal execution with

respect to the security parameter κ and auxiliary input z. Simi-
larly, let REALΠ,A(1κ,z) denote the joint output of the honest
parties and A from the real world execution. We say that
the protocol Π securely realizes F if for every PPT adver-
sary A there exists an ideal world adversary S corrupting the
same parties such that IDEALF,S (1κ,z) and REALΠ,A(1κ,z)
are computationally indistinguishable.

The ideal functionality for computing a function f with
fairness and GOD appears in Fig. 7 and Fig. 8, respectively.

On the security of robust Tetrad. We emphasize that we fol-
low the standard traditional (real-world / ideal-world based)
security definition of MPC, according to which, in the 4-party
setting with one corruption, exactly one party is assumed to
be corrupt, and the rest are honest. As per this definition, dis-
closing the honest parties’ inputs to a selected honest party
is not a breach of security. Indeed in Tetrad, the data sharing
and the computation on the shared data are done so that any
malicious behaviour leads to establishing a trusted third party
TTP who is enabled to receive all the inputs and compute
the output on the clear. There has been a recent study on the
additional requirement of hiding the inputs from a quorum
of honest parties (treating them as semi-honest), termed as
Friends-and-Foes (FaF) security notion [3]. This is a stronger
security goal than the standard one. Informally, designing
secure 4PC FaF protocols requires security against two in-
dependent corruptions. Our sharing semantics, designed to
handle only one corruption, does not suffice. Hence, we leave
FaF-secure 4PC for future exploration.

Another security notion, called private robustness, was re-
cently proposed in the work of Dalskov et al. [17], where the
protocol does not demand the inputs be sent to a TTP. Their
work, however, considers a more restricted security model,
where it is assumed that parties will discard messages which
are non-intended and are not a part of the protocol. This in-
volves assuming a secure erasure. Under this assumption, our
model is equivalent to that of private robustness.

A.4 Comparison with Fantastic Four [17]
We analyse the performance of Fantastic Four [17] where
execution proceeds in segments (cf. §6.4, [17]). Elaborately,
computation is carried out optimistically for each segment,
followed by a verification phase before proceeding to the next
segment. If verification fails, the current segment is recom-
puted via an active 3PC protocol. Subsequent segments also
proceed with a 3PC execution until the verification fails again.
In this case, a semi-honest 2PC with a helper is carried out for
the current and rest of the segments. For analysis, we consider
their best and worst-case execution cost.

Observe that the best case happens when the verification
is always successful, which we call as Case I. In this case,
the communication cost is that of the 4PC execution. Note
that an adversary can always make the verification fail in
the first segment itself. This results in executing the entire

18

Work Dot Product w/ Truncation #Active
PartiesPreprocessing Online

Fantastic Four: Case I ` 9` 4
Fantastic Four: Case II 76(`+κ)+54x+12 9`+6κ 3
Tetrad-RI(on-demand) - 5` 3
Tetrad-RII(on-demand) - 6` 3

Table 7: Comparison with Fantastic Four [17]

protocol (all segments) with their active 3PC, which accounts
for their worst-case cost. We denote this as Case II. Their 3PC
protocols are designed to work over the extended ring of size
`+κ bits. As evident from Tables 2, 3 of their paper, their
3PC is at least 10× more expensive than their 4PC in terms
of both runtime and communication. Thus, the higher cost of
3PC defeats the purpose of having an additional honest party
in the system.

Observe that their protocols are designed to work with a
function-independent preprocessing. Thus, for a fair compari-
son, we compare both cases against the on-demand variants
of our robust protocols (Tetrad-RI, Tetrad-RII). The results are
summarised in Table 7. We remark that the values for their
cases are obtained from Table 1 of their paper [17].

B 4PC Protocol

Joint-send for robust protocols.

Ps ∈ P initializes an inconsistency bit bs = 0. If Ps remains silent
instead of sending bs in any of the following rounds, the recipient
sets bs to 1.

– Send: Pi sends v to Pk.

– Verify:
- Pj sends H(v) to Pk. Pk sets bk = 1 if the received values
are inconsistent or if the value is not received.
- Pk sends bk to all servers. Ps for s ∈ {i, j, l} sets bs = bk.
- Ps for s ∈ {i, j, l} mutually exchange their bits. Ps resets
bs = b′ where b′ denotes the bit which appears in majority
among bi,b j,bl .
- All servers set TTP = Pl if b′ = 1, terminate otherwise.

Protocol Πjsnd(Pi,Pj,v,Pk)

Figure 9: Joint-Send for robust protocols

Lemma B.1 (Communication). Protocol Πjsnd (Fig. 9) re-
quires an amortized communication of ` bits and 1 round.

Proof. In the protocol Πjsnd(Pi,Pj,v,Pk) for the fair variant,
Pi communicates v to Pk requiring communication of ` bits
and one round. The hash value communication from Pj to
Pk can be clubbed for multiple instances with the same set
of parties and hence the cost gets amortized. The analysis is
similar for the robust case as well. Here, though the verifica-
tion consists of multiple steps, the cost gets amortized over
multiple instances.

Sharing Protocol.

Lemma B.2 (Communication). Protocol ΠSh (Fig. 10) re-
quires an amortized communication of at most 3` bits and 1
round in the online phase.

Proof. The preprocessing of ΠSh is non-interactive as the par-
ties sample non interactively using key setup FSETUP (§A.2).
in the online phase, Pi sends mv to P1,P2,P3 resulting in
1 round and communication of at most 3` bits (Pi = P0).
The next round of hash exchange can be clubbed for sev-
eral instances and the cost gets amortized over multiple in-
stances.

Preprocessing: Parties sample the following:

Pi,P0,P1,P3 : λ
1
v

∣∣∣ Pi,P0,P2,P3 : λ
2
v

∣∣∣ Pi,P0,P1,P2 : λ
3
v

Online:

1. Pi computes mv = v+λv and sends to P1,P2,P3.
2. P1,P2,P3 mutually exchange H(mv) and accept the sharing

if there exists a majority. Else parties abort for the case of
fairness and accepts a default value for the case of robust
security.

Protocol ΠSh(Pi,v)

Figure 10: J·K-sharing of a value v by party Pi.

Reconstruction Protocol.

Lemma B.3 (Communication). Protocol ΠRec (Fig. 11) re-
quires an amortized communication of 4` bits and 1 round in
the online phase.

Proof. The protocol involves 4 invocations of Πjsnd protocol
and the communication follows from Lemma B.1.

1. P1,P0 jsnd λ1
v to P2; P2,P0 jsnd λ3

v to P3;
P3,P0 jsnd λ2

v to P1; P1,P2 jsnd mv to P0.
2. Parties compute v = mv−λ1

v−λ2
v−λ3

v.

Protocol ΠRec(P ,JvK)

Figure 11: Reconstruction of value v among parties in P .

Multiplication Protocol.

Lemma B.4 (Communication). Protocol ΠMult (Fig. 1) (in
Tetrad) requires 2` bits of communication in the preprocessing
phase, and 1 round and 3` bits of communication in the online
phase.

Proof. During preprocessing, sampling of values u1,u2 are
performed non-interactively using FSETUP. A communication
of ` bits is required for the joint sharing of q by P0,P3 as
explained in §3.1. In addition, P0 communicates w to P3 re-
quiring additional ` bits. During online, two instances of Πjsnd

are executed in parallel resulting in a communication of 2`

19

bits and 1 round. This is followed by a joint sharing by P1,P2
for which an additional communication of ` bits are required.
However, in joint sharing, the communication is from P1 to P3
and the same can be deferred till the verification stage. Thus
the online round is retained as 1 in an amortized sense.

Robust Multiplication Protocol in Tetrad-RII. The formal
protocol for the robust multiplication in Tetrad-RII, ΠR

Mult, ap-
pears in Fig. 12. The primary difference from the fair coun-
terpart is that the communication of w from P0 to P3 in the
preprocessing is now split into two parts. (P0,P1),(P0,P2)
communicates w1,w2 respectively to P3 via jsnd.

Let isTr be a bit that denotes whether truncation is
required (isTr = 1) or not (isTr = 0).

Preprocessing:

1. Parties locally compute the following:

P0,P1 : γ
1
ab = λ

1
aλ

3
b+λ

3
aλ

1
b+λ

3
aλ

3
b

P0,P2 : γ
2
ab = λ

2
aλ

3
b+λ

3
aλ

2
b+λ

2
aλ

2
b

P0,P3 : γ
3
ab = λ

1
aλ

2
b+λ

2
aλ

1
b+λ

1
aλ

1
b

2. P0,P3 and Pj sample random u j ∈R Z2` for j ∈ {1,2}. Let
u1 +u2 = γ3

ab+ r for a random r ∈R Z2` .

3. P0,P3 compute r = u1 +u2− γ3
ab and set q = rt if isTr = 1,

else set q = r. P0,P3 execute ΠJSh(P0,P3,q) to generate JqK.

4. P0,P1,P2 sample random s1,s2 ∈R Z2` . P0,Pj jsnd w j = γ
j
ab+

s j to P3 for j ∈ {1,2}.

Online: Let y = (z+ r)−mamb.

1. Parties locally compute the following:

P1,P3 : y1 + s1 =−λ
1
amb−λ

1
bma+u1 +w1

P2,P3 : y2 + s2 =−λ
2
amb−λ

2
bma+u2 +w2

P1,P2 : y3 =−λ
3
amb−λ

3
bma

2. P1,P3 jsnd y1 + s1 to P2, while P1,P3 jsnd y2 + s2 to P1.
3. P1,P2 locally compute z+ r = (y1 +y2 +y3)+mamb− s1−

s2.
4. If isTr = 1, P1,P2 locally set p = (z+r)t, else p = z+r. P1,P2

execute ΠJSh(P1,P2,p) to generate JpK.
5. Parties locally compute JoK= JpK−JqK. Here o = zt if isTr =

1 and z otherwise.

Protocol ΠR
Mult(a,b, isTr)

Figure 12: Robust multiplication in Tetrad-RII.

Lemma B.5 (Communication). Protocol ΠR
Mult (Fig. 12) (in

Tetrad-RII) requires 3` bits of communication in the prepro-
cessing phase, and 1 round and 3` bits of communication in
the online phase.

Proof. During preprocessing, the sampling of values u1,u2

are performed non-interactively using FSETUP. A communica-
tion of ` bits is required for the joint sharing of q by P0,P3 as

explained in §3.1. In addition, P0,Pj for j ∈ {1,2} communi-
cates w j to P3 via jsnd requiring additional 2` bits. The online
phase is similar to the fair multiplication protocol (ΠMult) and
the costs follow from Lemma B.4.

B.1 Function-independent preprocessing
We provide the fair multiplication, ΠNoPre

Mult , for function-
independent preprocessing in Fig. 13. The protocol incurs no
overhead over the fair multiplication (ΠMult) in Tetrad. This
is due to the design of ΠMult where values u1,u2 are sampled
non-interactively in the preprocessing. Thus the joint-sharing
by P0,P3 (Step 5 (a) in Fig. 13) can be performed along with
the communication among P1,P2 (Step 4 in Fig. 13) in the on-
line. Moreover, the rest of the communication can be deferred
till the verification stage and thus, the online round complexity
is retained. The protocol for robust setting is similar.

Let isTr be a bit that denotes whether truncation is required
(isTr = 1) or not (isTr = 0).

Online:

1. Parties locally compute the following:

P0,P1 : γ
1
ab = λ

1
aλ

3
b+λ

3
aλ

1
b+λ

3
aλ

3
b

P0,P2 : γ
2
ab = λ

2
aλ

3
b+λ

3
aλ

2
b+λ

2
aλ

2
b

P0,P3 : γ
3
ab = λ

1
aλ

2
b+λ

2
aλ

1
b+λ

1
aλ

1
b

2. P0,P3 and Pj sample random u j ∈R Z2` for j ∈ {1,2}. Let
u1 +u2 = γ3

ab+ r for a random r ∈R Z2` .
3. Let y = (z+r)−mamb. Parties locally compute the following:

P1 : y1 =−λ
1
amb−λ

1
bma+ γ

1
ab+u1

P2 : y2 =−λ
2
amb−λ

2
bma+ γ

2
ab+u2

P1,P2 : y3 =−λ
3
amb−λ

3
bma

4. P1 sends y1 to P2, while P2 sends y2 to P1.
5. Parties proceed as follows:

(a) P0,P3: r = u1 + u2− γ3
ab; q = rt if isTr = 1, else q = r;

Execute ΠJSh(P0,P3,q).
(b) P1,P2: z + r = (y1 + y2 + y3) + mamb; p = (z + r)t if

isTr = 1, else p = z+ r; Execute ΠJSh(P1,P2,p).

6. Parties locally compute JoK= JpK−JqK. Here o = zt if isTr =
1 and z otherwise.

Verification:

1. P0,P1,P2 sample random s∈R Z2` . P0 sends w = γ1
ab+γ2

ab+s
to P3.

2. P3 computes v =−(λ1
a+λ2

a)mb−(λ1
b+λ2

b)ma+u1+u2+w
and sends H(v) to P1 and P2. Parties P1,P2 abort iff H(v) 6=
H(y1 +y2 + s).

Protocol ΠNoPre
Mult (a,b, isTr)

Figure 13: Fair multiplication without preprocessing.

20

C Building Blocks

Dot Product (Scalar Product).

Lemma C.1 (Communication). Protocol Πdotp (Fig. 3) (in
Tetrad) requires 2` bits of communication in preprocessing,
and 1 round and 3` bits of communication in the online phase.

Proof. Here, the parties add up the locally computed shares
corresponding to each partial product of the form aibi and
then performs the communication of the sum. The commu-
nication pattern is similar to that of the fair multiplication
protocol (Fig. 1) and the costs follow from Lemma B.4.

Lemma C.2 (Communication). Protocol Πdotp (Fig. 3) (in
Tetrad-RII) requires 3` bits of communication in preprocess-
ing, and 1 round and 3` bits of communication in the online
phase.

Proof. Here, the parties add up the locally computed shares
corresponding to each partial product of the form aibi and
then performs the communication of the sum. The commu-
nication pattern is similar to that of the fair multiplication
protocol (Fig. 1) and the costs follow from Lemma B.5.

Multi-input Multiplication.

Let isTr be a bit that denotes whether truncation is required
(isTr = 1) or not (isTr = 0).

Preprocessing:

1. Computation for γab:
– Parties invoke Fzero to enable P0,Pj obtain Z j for j ∈
{1,2,3} such that Z1 +Z2 +Z3 = 0.

P0,P1 jsnd ((γab))
1 = λ

1
aλ

3
b+λ

3
aλ

1
b+λ

3
aλ

3
b+Z1 to P2.

P0,P2 jsnd ((γab))
2 = λ

2
aλ

3
b+λ

3
aλ

2
b+λ

2
aλ

2
b+Z2 to P3.

P0,P3 jsnd ((γab))
3 = λ

1
aλ

2
b+λ

2
aλ

1
b+λ

1
aλ

1
b+Z3 to P1.

– Set 〈γab〉 as γ1
ab =

((
γab

))3
, γ2

ab =
((

γab

))2
, γ3

ab =
((

γab

))1.

2. Computation for γac:
– Parties locally compute the following:

P0,P1 : γ
1
ac = λ

1
aλ

3
c+λ

3
aλ

1
c+λ

3
aλ

3
c

P0,P2 : γ
2
ac = λ

2
aλ

3
c+λ

3
aλ

2
c+λ

2
aλ

2
c

P0,P3 : γ
3
ac = λ

1
aλ

2
c+λ

2
aλ

1
c+λ

1
aλ

1
c

– P0,P3 and P1 sample random u1
ac ∈R Z2` . P0,P3 compute

and jsnd u2
ac = γ3

ac−u1
ac to P2.

– P0,P1,P2 sample random sac ∈R Z2` . P0 sends wac = γ1
ac+

γ2
ac+ sac to P3.

3. Computation for γbc: Similar to Step 2 (for γac). P1,P2 obtain
u1
bc,u

2
bc respectively such that u1

bc+ u2
bc = γ3

bc . P3 obtains
wbc = γ1

bc+ γ2
bc+ sbc.

Protocol ΠMult3(a,b,c, isTr)

4. Computation for γabc:
– Using γab (Step 1), λc, compute the following:

P0,P1 : γ
1
abc = γ

1
abλ

3
c+ γ

3
abλ

1
c+ γ

3
abλ

3
c

P0,P2 : γ
2
abc = γ

2
abλ

3
c+ γ

3
abλ

2
c+ γ

2
abλ

2
c

P0,P3 : γ
3
abc = γ

1
abλ

2
c+ γ

2
abλ

1
c+ γ

1
abλ

1
c

– P0,P3 and Pj sample random u
j
abc ∈R Z2` for j ∈ {1,2}.

Let u1
abc+u2

abc = γ3
abc+ r for r ∈R Z2` .

– P0,P1,P2 sample random s ∈R Z2` . P0 sends wabc = γ1
abc+

γ2
abc+ s to P3.

5. P0,P3 compute r = u1
abc+u2

abc−γ3
abc and set q = rt if isTr =

1, else set q = r. Execute ΠJSh(P0,P3,q) to generate JqK.

Online: Let y = (z+ r)−mabc.

1. Parties locally compute the following:

P1 : y1 =−λ
1
ambc−λ

1
bmac−λ

1
cmab+ γ

1
abmc

+(γ1
ac+u1

ac)mb+(γ1
bc+u1

bc)ma+(γ1
abc+u1

abc)

P2 : y2 =−λ
2
ambc−λ

2
bmac−λ

2
cmab+ γ

2
abmc

+(γ2
ac+u2

ac)mb+(γ2
bc+u2

bc)ma+(γ2
abc+u2

abc)

P1,P2 : y3 =−λ
3
ambc−λ

3
bmac−λ

3
cmab+ γ

3
abmc

2. P1 sends y2 to P2, while P2 sends y1 to P1, and they locally
compute z+ r = (y1 +y2 +y3)+mabc.

3. If isTr = 1, P1,P2 locally set p = (z+ r)t, else p = z+ r.
Execute ΠJSh(P1,P2,p) to generate JpK.

4. Parties locally compute JoK= JpK−JqK. Here o = zt if isTr =
1 and z otherwise.

5. Verification:
– Parties locally compute the following:

P3 : v =−(λ1
a+λ

2
a)mbc− (λ1

b+λ
2
b)mac− (λ1

c+λ
2
c)mab

+(γ1
ab+ γ

2
ab)mc+(wac+ γ

3
ac)mb+(wbc+ γ

3
bc)ma

+(wabc+ γ
3
abc+ r)

P1,P2 : v′ = y1 +y2− sacmb− sbcma+ s

– P3 sends H(v) to P1,P2, who abort iff H(v) 6= H(v′).

Figure 14: 3-input fair multiplication in Tetrad.

Lemma C.3 (Communication). Protocol ΠMult3 (Fig. 14) (in
Tetrad) requires 9` bits of communication in preprocessing,
and 1 round and 3` bits of communication in the online phase.

Proof. In the preprocessing, computation of γab involves three
instances of jsnd. Each of the computation of γac,γbc involves
one instance of jsnd and a communication from P0 to P3. The
computation of γabc is similar to the preprocessing of fair
multiplication protocol (Fig. 1). The communication pattern
of the online phase is similar to that of the fair multiplication
protocol. The costs follow from Lemma B.4 and Lemma B.1.

21

Let isTr be a bit that denotes whether truncation is required
(isTr = 1) or not (isTr = 0).

Preprocessing:

1. Computation for γab:
– Parties invoke Fzero to enable P0,Pj obtain Z j for j ∈
{1,2,3} such that Z1 +Z2 +Z3 = 0.

P0,P1 jsnd ((γab))
1 = λ

1
aλ

3
b+λ

3
aλ

1
b+λ

3
aλ

3
b+Z1 to P2.

P0,P2 jsnd ((γab))
2 = λ

2
aλ

3
b+λ

3
aλ

2
b+λ

2
aλ

2
b+Z2 to P3.

P0,P3 jsnd ((γab))
3 = λ

1
aλ

2
b+λ

2
aλ

1
b+λ

1
aλ

1
b+Z3 to P1.

– Set 〈γab〉 as γ1
ab =

((
γab

))3
, γ2

ab =
((

γab

))2
, γ3

ab =
((

γab

))1.

2. Computation for γac,γbc: Similar to Step 1 (for γab).
3. Computation for γabc:

– Using γab (Step 1), λc, compute the following:

P0,P1 : γ
1
abc = γ

1
abλ

3
c+ γ

3
abλ

1
c+ γ

3
abλ

3
c

P0,P2 : γ
2
abc = γ

2
abλ

3
c+ γ

3
abλ

2
c+ γ

2
abλ

2
c

P0,P3 : γ
3
abc = γ

1
abλ

2
c+ γ

2
abλ

1
c+ γ

1
abλ

1
c

– P0,P3 and Pj sample random u
j
abc ∈R Z2` for j ∈ {1,2}.

Let u1
abc+u2

abc = γ3
abc+ r for r ∈R Z2` .

– P0,P1,P2 sample random s1,s2 ∈R Z2` . P0,Pj jsnd w j =

γ
j
abc+ s j to P3 for j ∈ {1,2}.

4. P0,P3 compute r = u1
abc+u2

abc−γ3
abc and set q = rt if isTr =

1, else set q = r. Execute ΠJSh(P0,P3,q) to generate JqK.

Online: Let y = (z+ r)−mabc+ s1 + s2.

1. Parties locally compute the following:

P0,P1 : y1 =−λ
1
ambc−λ

1
bmac−λ

1
cmab+ γ

1
abmc+ γ

1
acmb

+ γ
1
bcma+u1

abc+w1

P0,P2 : y2 =−λ
2
ambc−λ

2
bmac−λ

2
cmab+ γ

2
abmc+ γ

2
acmb

+ γ
2
bcma+u2

abc+w2

P1,P2 : y3 =−λ
3
ambc−λ

3
bmac−λ

3
cmab+ γ

3
abmc+ γ

3
acmb

+ γ
3
bcma

2. P1,P3 jsnd y1 to P2, while P2,P3 jsnd y2 to P1. P1,P2 locally
compute z+ r = (y1 +y2 +y3)+mabc− s1− s2.

3. If isTr = 1, P1,P2 set p = (z+ r)t, else p = z+ r.
Execute ΠJSh(P1,P2,p) to generate JpK.

4. Parties locally compute JoK= JpK−JqK. Here o = zt if isTr =
1 and z otherwise.

Protocol ΠR
Mult3(a,b,c, isTr)

Figure 15: 3-input robust multiplication in Tetrad-RII.

Lemma C.4 (Communication). Protocol ΠR
Mult3 (Fig. 15) (in

Tetrad) requires 12` bits of communication in preprocessing,
and 1 round and 3` bits of communication in the online phase.

Proof. In the preprocessing, computation of each of

γab,γac,γbc involves three instances of jsnd. The computation
of γabc is similar to the preprocessing of robust multiplication
protocol (Fig. 12). The communication pattern of the online
phase is similar to that of the robust multiplication protocol.
The costs follow from Lemma B.5 and Lemma B.1.

4-input multiplication: To obtain J·K-sharing of z= abcd
given the J·K-sharing of a,b,c,d, we can write z+ r as

z+ r = (ma−λa)(mb−λb)(mc−λc)(md−λd)+ r

=mabcd−mbcdλa−macdλb−mabdλc−mabcλd

+mabγcd+macγbd+madγbc+mbcγad+mbdγac

+mcdγab−maγbcd−mbγacd−mcγabd−mdγabc

+ γabcd+ r

While the online phase proceeds similarly to the 2 and 3-
input multiplication, in the preprocessing phase, the par-
ties need to generate the additive shares of γab,γac,γad,γbc,
γbd,γcd,γabc,γabd,γacd,γbcd,γabcd. This is computed similarly
as in the case of 3-input multiplication as follows. Parties
generate shares of γac,γad,γbc,γbd similar to the generation
of shares of γac in the 3-input multiplication. For γab,γcd,
parties proceed similar to generation of shares of γab in
the 3-input multiplication, where the respective 〈·〉-shares
are generated. This is followed by generation of shares of
γabc,γabd,γacd,γbcd,γabcd following steps similar to the ones
involved in generating γabc in the 3-input multiplication. Since
the protocol is very similar to the 3-input protocol, we omit
the formal details.

Bit to Arithmetic. For verifying the 〈·〉-sharing of u by P0,
we let P3 obtain the bit (λb⊕ rb) as well as its arithmetic
equivalent (λb⊕ rb)

R in clear. Here rb denotes a random bit
known to P0,P1,P2. P3 checks if both the received values
are equivalent and raise a complaint if they are inconsistent.
To catch a corrupt P0 from sharing a wrong u value, parties
use the 〈·〉-shares of u to compute (λb⊕ rb)

R. Moreover, the
verification steps are designed in such a way that every value
communicated can be locally computed by at least two parties.
This enables to use jsnd for communication and hence the
desired security guarantee is achieved.

Lemma C.5 (Communication). Protocol Πbit2A (Fig. 16)
requires 3`+1 bits of communication in preprocessing, and
1 round and 3` bits of communication in the online phase.

Proof. During preprocessing, generation of 〈u〉 involves com-
munication of ` bits from P0 to each of P1,P2. As part of
verification, two instances of jsnd are executed, one on 1
bit and other on ` bits. The communication for hash gets
amortized over multiple instances. The online phase involves
three instances of joint sharing protocol resulting in 1 rounds
and a communication of 3` bits. The costs follow from
Lemma B.1.

22

Let u = (λb)
R and v = mR

b .

Preprocessing:

1. Generation of 〈u〉: P0,P3,Pi for i ∈ {1,2} sample ui. P0 sends
u3 = u−u1−u2 to P1,P2.

2. P0,P1,P2 sample random rb ∈ {0,1} and r ∈ Z2` .
3. P1,P2 jsnd λ3

b⊕rb to P3. P3 locally sets λb⊕rb = (λ1
b⊕λ2

b)⊕
(λ3

b⊕ rb).

4. Parties compute: P1,P0 : w1 = rRb + (u1 + u3)(1− 2rRb) +

r, P2,P0 : w2 = (u2)(1−2rRb)− r.
5. P1,P0 jsnd w1 to P3, while P2,P0 jsnd H(w2) to P3.
6. P3 sets flag = continue if H((λb⊕rb)

R−w1) =H(w2), else
flag = abort. P3 sends flag to P0,P1,P2. Parties mutually
exchange the flag and accept the value that forms the majority.

7. For robust setting, if flag = abort, then TTP = P1 (or P2).

Online: Let y = bR.

1. Parties locally compute the following:

P1,P3 : y1 = v+u1(1−2v)

P2,P3 : y2 = u2(1−2v)

P1,P2 : y3 = u3(1−2v)

2. (P1,P3),(P2,P3),(P1,P2) execute ΠJSh on y1,y2,y3 to gener-
ate the respective J·K-shares.

3. Compute JyK = Jy1K+ Jy2K+ Jy3K.

Protocol Πbit2A(JbKB)

Figure 16: Bit to Arithmetic conversion

Piecewise Polynomials. Without loss of generality, consider
the case where m = 1. Similar to Πbit2A,

(bv)R = (mb⊕λb)
R(mv−λv)

= (mR
b +(λb)

R(1−2mR
b))(mv−λv)

=mR
bmv−mR

bλv+(2mR
b −1)((λb)

R
λv−mv(λb)

R)

During the preprocessing, we let P0 generate the 〈·〉-shares
of (λb)

R and (λb)
Rλv. The correctness of the sharing is ver-

ified using techniques from Trident [15]. During the online
phase, the communication corresponding to the m instances
can be clubbed together resulting in a communication of just
3` bits.

Lemma C.6 (Communication). Protocol Πpiecewise (Fig. 17)
requires m(6`+1) bits of communication in preprocessing,
and 1 round and 3` bits of communication in the online phase.

Proof. During preprocessing, generation of 〈ui〉,〈µi〉 for i ∈
[m] and its verification is similar to Πbit2A. An exception is for
the verification of 〈µi〉 where its not needed to communicate
a boolean bit to P3 as for the case of 〈ui〉. The communication
in the online phase is similar to that of the Πbit2A protocol.
The cost follows from Lemma C.5.

Let ui = λR
bi

and µi = λR
bi

λvi .

Preprocessing: For i ∈ [m], perform the following:

1. Generation of 〈ui〉,〈µi〉: P0,P3,Pj for j ∈ {1,2} sample u
j
i ,µ

j
i .

P0 sends u3
i = ui−u1

i −u2
i and µ3

i = µi−µ1
i −µ2

i to P1,P2.
2. Verifying correctness of 〈ui〉: Similar to the verification in the

preprocessing of Πbit2A (Fig. 16).
3. Verifying correctness of 〈µ〉i:

(a) P0,P3,Pj for j ∈ {1,2} sample r j ∈ Z2` while P0,P1,P2
sample r3 ∈ Z2` .

(b) Locally compute the following:

P0,P1 : y1 = λ
1
vi

u3
i +λ

3
vi

u1
i +λ

1
vi

u1
i −µ1

i +(r3− r1)

P0,P2 : y2 = λ
2
vi

u3
i +λ

3
vi

u2
i +λ

3
vi

u3
i −µ3

i +(r2− r3)

P3 : y3 = λ
1
vi

u2
i +λ

2
vi

u1
i +λ

2
vi

u2
i −µ2

i +(r1− r2)

(c) P0,P1 jsnd y1 to P3, while P0,P2 jsnd H(y2) to P3.
(d) P3 sets flag = continue if H(y2) = H(−y1 − y3), else

flag = abort and sends flag to P0,P1,P2. Parties mutually
exchange flag and accept the majority value.

(e) For robust case, if flag = abort, then TTP = P1 (or P2).

Online:

1. Parties locally compute the following:

P1,P3 : z1
i = mR

bi
mvi −mR

bi
λ

1
vi
+(2mR

bi
−1)(µ1

i −mvi u
1
i)

P2,P3 : z2
i = −mR

bi
λ

2
vi
+(2mR

bi
−1)(µ2

i −mvi u
2
i)

P1,P2 : z3
i = −mR

bi
λ

3
vi
+(2mR

bi
−1)(µ3

i −mvi u
3
i)

2. Set z1 = ∑
m
i=1 z1

i , z2 = ∑
m
i=1 z2

i , z3 = ∑
m
i=1 z3

i
3. (P1,P3),(P2,P3),(P1,P2) execute ΠJSh on z1,z2,z3 to gener-

ate the respective J·K-shares.
4. Compute JzK = Jz1K+ Jz2K+ Jz3K.

Protocol Πpiecewise

(
{JbiKB,JviK}m

i=1

)

Figure 17: Piecewise polynomial evaluation protocol

Non-Linear Activation functions. We discuss two widely
used activation functions, (i) Rectified Linear Unit (ReLU)
and (ii) Sigmoid (Sig). These functions can be viewed as
piece-wise polynomial functions and can thus be evaluated
using the protocol mentioned above (Πpiecewise, Fig. 17).

(i) ReLU: The ReLU function, ReLU(v) = max(0,v), can
be written as a piece-wise polynomial function as follows.

ReLU(v) =

{
0, v < 0
v 0≤ v

(ii) Sig: We use the MPC-friendly variant of the Sigmoid
function [14, 41, 43] which is given below:

Sig(v) =


0 v <− 1

2
v+ 1

2 − 1
2 ≤ v ≤ 1

2
1 1

2 < v

23

Oblivious Selection. Given J·K-shares of x0,x1 ∈ Z2` and
JbKB where b ∈ {0,1}, oblivious selection (Πobv) enables
parties to generate re-randomized J·K-shares of z = xb. The
protocol is similar in spirit to Oblivious Transfer primitive.
Note that z can be written as z= b(x1−x0)+x0. To compute
J·K-sharing of b(x1−x0), parties use an instance of piecewise
polynomial protocol (Πpiecewise, Fig. 17) with m = 1. The
J·K-share of z can then be obtained by adding the output of
Πpiecewise with Jx0K.

ArgMin/ ArgMax. The formal protocol appears in Fig. 18.
Here, Πbitext(Jx1K,Jx2K) computes the boolean sharing corre-
sponding to the msb of x1−x2.

Let~b be the bit vector of size m, where m equals the size of~x.
Parties execute the following steps in the respective preprocessing
and online phases.

1. If m = 2, do the following.

– Jd1KB = Πbitext(Jx1K,Jx2K) and Jd2KB = 1⊕ Jd1KB.

– JyK = Πobv(Jx2K,Jx1K,Jd1KB).

– Return (Jd1KB,Jd2KB,JyK).

2. Else, if m = 3, do the following

– Jd′1K
B = Πbitext(Jx1K,Jx2K).

– Jy′K = Πobv(Jx2K,Jx1K,Jd′1K
B).

– Jd′2K
B = Πbitext(Jy′K,Jx3K).

– JyK = Πobv(Jx3K,Jy′K,Jd′2K
B).

– Jd1KB = ΠMult(Jd′1K
B,Jd′2K

B), Jd2KB = Jd′2K
B⊕ Jd1KB.

– Jd3KB = 1⊕ Jd′1K
B⊕ Jd′2K

B.

– Return (Jd1KB,Jd2KB,Jd3KB,JyK).

3. Else, let ~x1 = (x1, . . . ,xbm/2c) and ~x2 = (xbm/2c+1, . . . ,xm).

–
(
Jd1KB, . . . ,Jdbm/2cK

B,Jy1K
)
= Πargmin(J~x1K).

–
(
Jdbm/2c+1K

B, . . . ,JdmKB,Jy2K
)
= Πargmin(J~x2K).

– JdKB = Πbitext(Jy1K,Jy2K).

– JyK = Πobv(Jy2K,Jy1K,JdKB).

– Jb jKB = ΠMult(JdKB,Jd jKB) ; j ∈ {1, . . . ,bm/2c}.

– Jb jKB =ΠMult(1⊕JdKB,Jd jKB) ; j ∈ {bm/2c+1, . . . ,m}.

– Return
(
Jb1KB, . . . ,JbmKB,JyK

)
.

Protocol Πargmin(J~xK)

Figure 18: Protocol to find index of smallest element in~x

To begin with, parties initialize b j = 1 for b j ∈~b by locally
setting mb j = 1 and λ1

b j
= λ2

b j
= λ3

b j
= 0. The minimum, yi j,

of two elements, xi,x j can be computed as: one invocation
of bit extraction protocol to obtain J·KB-sharing of bi j, where
bi j = 1 if xi < x j, and bi j = 0 otherwise; one invocation of
oblivious selection protocol Πobv(x j,xi,bi j), which outputs

J·K-shares of yi j = x j if bi j = 0, and yi j = xi, otherwise. To up-
date~b to reflect the pairwise minimums, we view the elements
x j ∈~x as the leaves of a binary tree, in a bottom-up manner.
For two elements in a pair, say (xi,x j), whose pairwise mini-
mum is yi j, we let yi j be the root node with xi as its left child
and x j as its right child. Now, to update~b, parties multiply bi j

with the bits in~b associated with the left-reachable leaf nodes,
which comprise of all the leaf nodes (elements of~x) that are
reachable through the left child of the root. Similarly, parties
multiply 1⊕bi j with the bits in~b associated with the right-
reachable leaf nodes, which comprise of all the leaf nodes
(elements of~x) that are reachable through the right child of
the root. Thus, if bi j = 1 indicating that xi < x j, bi remains
1 as it gets multiplied by bi j = 1 while b j gets reset to 0 as
it gets multiplied by 1⊕bi j = 0. The case for bi j = 0 holds
for similar reasons. Given the values yi j for the next level,
and the updated~b, the steps are applied recursively until the
minimum element is obtained.

The protocol Πargmax which allows the parties to com-
pute the index of the largest element in a J·K-shared vector
~x=(x1, . . . ,xm), is similar to Πargmin with the following differ-
ence. To find the maximum among two elements (JxiK,Jx jK),
parties run the bit extraction protocol to obtain Jbi jKB as be-
fore, followed by Πobv(xi,x j,bi j), which outputs J·K-shares
of yi j = xi if bi j = 0, and yi j = x j, otherwise. Now,~b is up-
dated in each level by multiplying 1⊕bi j with the bits in~b
associated with the left-reachable leaf nodes (as described
before) and multiplying bi j with the bits in~b associated with
the right-reachable leaf nodes.

D Garbled World

D.1 Garbling scheme and properties
As per Yao’s garbling circuit paradigm [57], every wire in the
circuit is assigned two κ-bit strings, called “keys”, one each
for bit value 0 and 1 on that wire. Let (K0

x,K
1
x) denote the

zero-key and one-key, respectively, on wire x in the circuit.
For simplicity, the same notation is used for wire identity
as well as the value on the wire. For instance, the key-pair
for wire x is denoted as (K0

x,K
1
x), while the key correspond-

ing to bit x on the wire is denoted as Kx
x. Then, each gate is

constructed by encrypting the output-wire key with the appro-
priate input-wire keys. For example, for an AND gate with
input wires x,y and output wire z, K0

z is double encrypted
with keys K0

x,K
0
y , with K0

x,K
1
y , and with K1

x,K
0
y , while K1

z is
double encrypted with K1

x,K
1
y . Given one key on each input

wire, the output wire key can be obtained by decrypting the
ciphertext which was encrypted using the corresponding input
wire keys. These ciphertexts are provided in a permuted order
so that the evaluating party does not learn which key, K0

z or
K1
z , it obtains after decryption.
Formally, a garbling scheme G , consists of four algorithms

24

(Gb,En,Ev,De) defined as follows:

1. Gb(1κ,Ckt)→ (GC,e,d): Gb takes as input the security
parameter κ and the circuit Ckt to be garbled, and out-
puts a garbled circuit GC, encoding information e and
decoding information d.

2. En(x,e)→ X: En encodes input x using e to output en-
coded input X. X is referred to as encoded input or en-
coded keys interchangeably.

3. Ev(GC,X)→ Y: Ev evaluates the garbled circuit GC on
the encoded input X and produces the encoded output Y.

4. De(Y,d)→ y: The encoded output Y is decoded into the
clear output y by running the De algorithm on Y and d.

We rely on the following properties of garbling scheme [8]
in our constructions.

1. A garbling scheme G = (Gb,En,Ev,De) is correct if
for all input lengths n≤ poly(κ), circuits C : {0,1}n→
{0,1}m and inputs x ∈ {0,1}n, the following holds.

Pr[De(Ev(GC,En(x,e)),d) 6=C(x) :
(GC,e,d)← Gb(1κ,C)]< negl(κ)

2. A garbling scheme G is said to be private if for all
n≤ poly(κ), circuit C : {0,1}n→{0,1}m, there exists a
PPT simulator Spriv such that for all x ∈ {0,1}n, for all
PPT adversary A the following distributions are compu-
tationally indistinguishable.
- REAL(C,x): run (GC,e,d)← Gb(1κ,C) and output
(GC,En(x,e),d).
- IDEAL(C,C(x)): run (GC′,X,d′)← Spriv(1κ,C,C(x))
and output (GC′,X,d′).

3. A garbling scheme G is authentic if for all n≤ poly(κ),
circuit C : {0,1}n→{0,1}m, input x∈{0,1}n and for all
PPT adversary A , the following probability is negl(κ).

Pr

(
Ŷ 6= Ev(GC,X)

∧De(Ŷ,d) 6=⊥
:

X = En(x,e),(GC,e,d)← Gb(κ,Ckt),

Ŷ← A(GC,X)

)

D.2 2GC Variant
We begin with the 2 GC variant. The protocol for generating
garbled sharing of a value appears in Fig. 19.

Evaluation. Let f (x) be the function to be evaluated. At
this point, the function input is J·KC-shared. This renders J·KG-
sharing for the input of the GC that corresponds to the function
f ′
(
mx,αx,λ

3
x

)
which first combines the given boolean-shares

to compute the actual input and then applies f on it. Let
GC j denote the garbled circuit to be sent to Pj ∈ {P1,P2} by
garblers in Φ j. Sending of GC j is overlapped with the key
transfer (during generation of JxKC), to save rounds, where

garblers in {P0,P3} jsnd GC j to Pj. On receiving the GC,
evaluators evaluate their respective GCs and obtain the key
corresponding to the output, say z. This generates JzKG.

1. Garblers in Φ j for j ∈ {1,2} generate keys K
0, j
v ,K

1, j
v for wire

v, using free-XOR technique.

2. Let P j
k ,P

j
l denote the garblers in the jth garbling instance, for

j ∈ {1,2}, who hold v ∈ Z2 . P j
k ,P

j
l jsnd K

v, j
v to evaluator Pj.

3. Pi ∈ {P0,P3} sets JvKG
i = (K0,1

v ,K0,2
v), P1 sets JvKG

1 =

(Kv,1
v ,K0,2

v) and P2 sets JvKG
2 = (K0,1

v ,Kv,2
v).

Protocol ΠG
Sh(P ,v)

Figure 19: Generation of JvKG

Output phase. The goal of output computation is to compute
the output z from JzKG. To reconstruct z towards Pj ∈ {P1,P2},
two garblers in Φ j send the least significant bit p j of K0, j

z , re-
ferred to as the decoding information, to Pj. If the received
values are consistent, Pj uses the received p j to reconstruct
z as z = p j ⊕ q j, where q j denotes the least significant bit
of K

z, j
z ; else Pj aborts. To reconstruct z towards the gar-

blers Pg ∈ {P0,P3}, one evaluator, say P1 sends the least
significant bit, q1, of Kz,1

z along with H = H(Kz,1
z) to Pg,

where H is a collision-resistant hash function. If a garbler
received a consistent (q1,H) pair from P1 such that there
exists a K ∈ {K0,1

z ,K1,1
z } whose least significant bit is q1 and

H(K) = H , then it uses q1 for reconstructing z; else the gar-
bler aborts the computation. Note that a corrupt evaluator P1
cannot create confusion among garblers in {P0,P3} by send-
ing the key that was not output by the GC owing to the authen-
ticity of the garbling scheme. Reconstruction is lightweight
and requires a single round for garblers while reconstruction
towards evaluators can be overlapped with key transfer and
does not incur extra rounds. The protocol appears in Fig. 20.

- For an output wire z, let p j denote the least significant bit of
K

0, j
z and q j denote the least significant bit of K

z, j
z for j ∈ {1,2}.

- Reconstruction towards Pj ∈ {P1,P2}: Garblers P0,P3 in Φ j
jsnd p j to Pj. If Pj received consistent values from P0,P3, it
reconstructs z as z = p j⊕q j.
- Reconstruction towards Pg ∈ {P0,P3}: P1 sends q1 and H =

H(Kz,1
z) to Pg, where H is a collision-resistant hash function. Pg

uses the q1 received from P1 for reconstructing z as z = p1⊕q1

if there exists a K ∈ {K0,1
z ,K1,1

z } whose least significant bit is q1

and H(K) = H .

Protocol ΠG
Rec(P ,JzKG)

Figure 20: Output computation: reconstruction of z

Optimizations when deployed in mixed framework. Work-
ing in the preprocessing model enables transfer of the
(communication-intensive) GC and generating J·KG-shares
of the input-independent shares of x (i.e. αx,λ

3
x) in the pre-

processing phase. Thus, the online phase is very light and

25

only requires one round to generate J·KG-shares for the input-
dependent data (i.e. mx). Since evaluation is local, evaluators
obtain J·KG-sharing of the GC output at the end of 1 round.

Achieving fairness and robustness. To ensure fairness, we
require a fair reconstruction protocol which proceeds as fol-
lows. As described in §3.2.1, parties first ensure that all parties
are alive. If so, they proceed similar to the protocol in Fig. 20,
except with the following differences. For reconstruction to-
wards evaluators, all three respective garblers send it the de-
coding information. The evaluator selects the value appearing
in majority for reconstruction. For reconstruction towards gar-
blers P0,P3, both the evaluators send the least significant bit
of the output key together with its hash to the garbler. The
presence of at least one honest evaluator guarantees that both
garblers will be on the same page.

To achieve robustness, the main difference from its fair
counterpart is use of a robust jsnd primitive. This guarantees
that in the event that a misbehaviour is detected, a TTP is
identified which can take the computation to completion and
deliver the output to all.

D.3 1 GC Variant
The input x= x1⊕x2 for this variant consists of two shares,
x1 = mx⊕λ2

x and x2 = λ1
x ⊕λ3

x , where mx,λ
1
x,λ

2
x,λ

3
x are as

defined in JxKB. To ensure correct key transfer for the value
x2 held by garbler P0 and evaluator P1, garblers P0,P3 commit
to both keys for x2 towards P1, while P0 sends the opening
to the key for x2. Then, P1 verifies the consistency of the
received commitments and the opening, as it possesses x2.
The protocol appears in Fig. 21.

1. Garblers in Φ1 generate keys K0
v,K

1
v using free-XOR tech-

nique.
2. If (Pi,Pj) = (P2,P3): Pi,Pj jsnd Kv

v to P1.
3. If (Pi,Pj) = (P0,P1):

- P0,P3 compute commitments on K0
v,K

1
v, and jsnd the com-

mitment to P1.
- P0 sends the opening of the commitment for Kv

v to P1.
- P1 verifies if the received opening information correctly
decommits the commitment on Kv

v, where v is held by P1.
Else it aborts.

4. Party Ps ∈Φ1 sets JvKG
s = K0

v, while P1 sets JvKG
1 = Kv

v.

Protocol ΠG
Sh(Pi,Pj,v)

Figure 21: Generation of JvKG

The evaluation and output phases are similar to the 2GC
variant except that now there exists only a single garbling in-
stance. Looking ahead, in the mixed protocol framework, the
output has to be reconstructed towards P1,P2. Reconstruction
towards P1 does not incur additional rounds since sending of
decoding information can be overlapped with key transfer.
However, unlike in the 2GC variant where reconstruction to-

wards P2 can be done similar to reconstruction towards P1, in
the 1GC variant an additional round is required as P2 is no
longer an evaluator. This incurs one extra round as opposed
to the 2GC variant.

Achieving fairness. To ensure fair reconstruction, as in §3.2.1,
parties first perform an aliveness check. Following this, they
proceed towards fair reconstruction of z from JzKG as fol-
lows. First, reconstruction of z is carried out towards the
garblers Pg ∈ Φ1. For this, P1 sends q (least significant bit
of Kz

z) and H = H(Kz
z) to Pg as before. Now, if a garbler

received a consistent (q,H) pair from P1 such that there
exists a K ∈ {K0

z ,K
1
z} whose least significant bit is q and

H(K) = H , then it uses q for reconstructing z, and sends z
to its co-garblers. Else, a garbler accepts a z received from a
co-garbler as the output. Thus, further dissemination of the
output by garblers ensures that all parties are on the same
page. If garblers receive the output, reconstruction of z is
carried out towards P1. For this, all garblers (who received
the output) send the decoding information to P1 who selects
the majority value to reconstruct z.

Achieving robustness. To attain robustness, we list below the
differences from the fair protocol that have to be carried out.
The first difference is use of a robust variant of jsnd. Second,
in input sharing protocol, where x1 is held by only garbler P0,
a corrupt P0 may refrain from providing P1 with the correct
key (sent as the opening information for the commitment).
To ensure robustness, in the event that P1 fails to receive the
correct key from P0, we let P1 complain to all parties about
this inconsistency by sending an inconsistency bit. All parties
exchange this inconsistency bit among themselves, and agree
on the majority value. If all parties agree on the presence of
an inconsistency, then P0,P1 are identified to be in conflict
and TTP= P2 is set to carry out the rest of the computation.
Finally, to ensure a robust reconstruction, the following ap-
proach is taken. Observe that the fair reconstruction provides
robustness as long as evaluator P1 is honest. In the event when
none of the garblers obtain the output in the fair protocol, it
is guaranteed that evaluator P1 is corrupt. Thus, in such a
scenario, all parties take P1 to be corrupt, and proceed with
P0 as the TTP.

E Mixed Framework

Table 8 compares the our sharing conversions with Trident.
For uniformity, we consider a function, F, to be computed
on an `-bit input x using a garbled circuit (GC) in the mixed
framework, which gives an `-bit output y = F(x), where `
denotes the ring size in bits. Let CF denote the corresponding
GC. In the table, CS2 denotes a 2-input garbled subtraction
circuit; CS2+ denotes 2-input garbled subtraction circuit with
its decoding information; CS3 denotes 3-input garbled subtrac-
tion circuit (with input: x,y,z, output: x−y− z); CA3 denotes
3-input garbled addition circuit; C1,...,i denotes the set of GCs

26

C1, . . . ,Ci; |C1,...,i| denotes the size of C1,...,i. Note that the
cost for Tetrad-RI is the same as that of Tetrad for conversions
not involving the GC. Hence, we omit its details.

Protocol Reference
Comm.

(Preprocessing)
Rounds

(Online)
Comm.

(Online)

Arithmetic to
Garbled to
Arithmetic

Trident |CS2,S2+,F|+2`κ+ ` 2 `κ+3`
TetradT 2|CF|+6`κ+ ` 1 2`κ+ `
TetradC |CF|+3`κ+ ` 2 `κ+2`

Arithmetic to
Garbled to

Boolean

Trident |CS2,F|+2`κ+ ` 2 `κ+3`
TetradT 2|CF|+6`κ+ ` 1 2`κ+ `
TetradC |CF|+3`κ+ ` 2 `κ+2`

Boolean to
Garbled to
Arithmetic

Trident |CS2+,F|+2`κ+ ` 2 `κ+3`
TetradT 2|CF|+6`κ+ ` 1 2`κ+ `
TetradC |CF|+3`κ+ ` 2 `κ+2`

Boolean to
Garbled to

Boolean

Trident |CF|+2`κ+ ` 2 `κ+3`
TetradT 2|CF|+6`κ+ ` 1 2`κ+ `
TetradC |CF|+3`κ+ ` 2 `κ+2`

Arithmetic to
Boolean

Trident 3` log2 `+2` 1+ log2 ` 3` log2 `+ `
Tetrad u1

∗+ ` log4 ` 3u3∗+ `
Tetrad-RII u2

∗+ ` log4 ` 3u3∗+ `

Boolean to
Arithmetic

Trident 3`2 + ` 1 3`
Tetrad 3`2 + ` 1 3`

Tetrad-RII 3`2 + ` 1 3`

– Notations: ` - size of ring in bits, κ - computational security parameter.
∗: u1 = 2n2+9n3+24n4, u2 = 3n2+12n3+33n4, u3 = n2+n3+n4,
where n2 = 216,n3 = 184,n4 = 179 denote the number of AND gates
in the optimized adder circuit [45] with 2, 3, 4 inputs, respectively.

Table 8: Sharing conversions of Trident and Tetrad.

Arithmetic to Boolean Conversion. The protocol for arith-
metic to boolean conversion appears in Fig. 22.

Preprocessing: P0,P3 execute joint boolean sharing to generate

Jv2KB, where v2 =−(λ1
v+λ2

v).

Online:

1. P1,P2 execute joint boolean sharing to generate Jv1KB, where
v1 = mv−λ3

v.
2. Parties obtain JvKB = Jv1KB + Jv2KB using addition circuit.

Protocol ΠA2B

Figure 22: Arithmetic to Boolean Conversion

Boolean to Arithmetic Conversion. The protocol for arith-
metic to boolean conversion appears in Fig. 23.

Let vi denote the ith bit of v. Let λv i = λ1
vi
⊕λ2

vi
⊕λ3

vi
,

pi = (mv i)
R, and q = (λv i)

R

Preprocessing:

1. For i ∈ {0,1, . . . , `− 1}, parties execute the preprocessing
of Πbit2A (Fig. 16) for each bit vi of v, to generate 〈qi〉 =
(q1

i ,q
2
i ,q

3
i).

Online: Let yi = vRi and y denotes the arithmetic equivalent of v.

Protocol ΠB2A(P ,JvKB)

1. Parties locally compute the following:

P1,P3 : y1 =
`−1

∑
i=0

2iy1
i =

`−1

∑
i=0

2i(pi +q1
i (1−2pi))

P2,P3 : y2 =
`−1

∑
i=0

2iy2
i =

`−1

∑
i=0

2i(q2
i (1−2pi))

P1,P2 : y3 =
`−1

∑
i=0

2iy3
i =

`−1

∑
i=0

2i(q3
i (1−2pi))

2. (P1,P3),(P2,P3),(P1,P2) execute ΠJSh on y1,y2,y3 to gener-
ate the respective J·K-shares.

3. Parties locally compute JyK = Jy1K+ Jy2K+ Jy3K.

Figure 23: Boolean to Arithmetic Conversion

We remark that the protocol ΠB2A can be used to efficiently
generate edaBits [21] in our setting. For this, the parties non-
interactively generate the boolean sharing for `-bits and per-
form the ΠB2A conversion to obtain the equivalent arithmetic
value.

F Additional Benchmarking

Training and Inference of NN. An NN can be divided into
various layers, where each layer contains a predefined number
of nodes. These nodes are a linear function composed of a non-
linear “activation” function. The nodes at the input layer or
the first layer are evaluated on the input features to evaluate a
neural network. The outputs from these nodes are fed as inputs
to the nodes in the next layer. This process is repeated for
all the layers to obtain the output. The underlying operation
involved is a computation of activation matrices for all the
layers. This constitutes the forward propagation phase. The
backward propagation involves adjusting model parameters
according to the difference in the computed output and the
actual output and comprises computing error matrices.

Concretely, each layer comprises matrix multiplications
followed by an application of the ReLU function. The max-
pool layer additionally follows convolutional layers after the
ReLU layer. After evaluating the layers in a sequential man-
ner, at the output layer, we use the MPC friendly variant of the
softmax activation function, softmax(ui) =

ReLU(ui)
∑
n
j=1 ReLU(u j)

, pro-

posed by SecureML [43]. To perform the division, we switch
from arithmetic to garbled world and then use a division
garbled circuit [48] followed by a switch back to the arith-
metic world. For training, we use Gradient Descent, where
the forward propagation comprises computing activation ma-
trices for all the layers in the network. The backward propa-
gation comprises computing error matrices involving matrix
multiplications with derivative of maxpool and derivative of
ReLU, depending on the network architecture. We refer read-
ers to [15, 41, 43, 46, 56] for formal details.

27

Trident

TetradT

TetradC

NN-1 NN-2
0

5

10

15

Tetrad-RT

NN-1 NN-2
0

5

10

15

Tetrad-RC

(a) Online Execution Time (PTon)

Trident

TetradT

TetradC

NN-1 NN-2
0

10

20

30

40

50

Tetrad-RT

NN-1 NN-2
0

10

20

30

40

50

Tetrad-RC

(b) Cumulative Time (CTtot)

Trident

TetradT

TetradC

NN-1 NN-2
0

20

40

60

80

100

120

Tetrad-RT

NN-1 NN-2
0

20

40

60

80

100

120

Tetrad-RC

(c) Monetary Cost (Cost)

Figure 24: Training of NN-1 and NN-2: in terms of PTon, CTtot, and Cost (cf. Table 4)

Inference of SVM. SVM is a function which takes as input
an n-dimensional feature vector,~x, and outputs the category
to which the feature vector belongs. SVM is implemented
as a matrix F, of dimension q× n where each row of F is
called the support vector and a vector ~b = (b1, . . . ,bq), is
called the bias. Each element of F and ~b lies in Z2` . Each
support vector along with a scalar from the bias can classify
the input ~x into a specific category. More precisely, let Fi
denote the ith row of matrix F. Then, the value Fi ·~x+ bi
specifies how likely~x is to be in category i. To find the most
likely category, we compute argmax over these values, i.e.
category(~x) = argmaxi∈{1,...,q}Fi ·~x+bi. We refer the readers
to [18] for more details.

Benchmarking of NN-1 Training. Table 9 shows the online
throughput of neural network (NN-1) training over varying
batch sizes and feature sizes using synthetic datasets. We find
that both TetradT,TetradC are up to 1.8× higher in throughput.
However, as the batch size and feature size increase, both
Trident and Tetrad experience a bandwidth bottleneck. The
effect of the bandwidth limitation is higher for Tetrad; hence
the gain in throughput over Trident decreases a bit.

Batch Size Features Trident TetradT TetradC Tetrad-RT Tetrad-RC

128
10 1905.58 5407.35 5271.88 5407.35 5138.07

100 1905.58 5152.29 5029.14 5152.28 5029.14
1000 1904.4 3500.89 3443.6 3500.89 3443.6

256
10 1905.58 2818.4 2744.87 2818.4 2744.87

100 1905.58 2747.5 2677.58 2747.5 2677.58
1000 1849.78 2195.3 2150.43 2195.3 2150.43

Table 9: Online throughput (TP) of NN-1 training (iterations
per minute) over various batch sizes (128, 256) and feature
sizes (10,100,1000).

Benchmarking of Comparison operations. Table 10 com-
pares the performance of the frameworks for circuits of vary-
ing depth. At each layer of the circuits, we perform 128 com-
parisons where the comparison results are generated in arith-
metic shared form. The idea is that each layer emulates a
comparison layer in an NN with a batch size of 128.

Interestingly, beyond a depth of roughly 100,
TetradT,Tetrad-RT start performing in every metric, es-
pecially monetary cost, over TetradC,Tetrad-RC. This is
because as the depth increases, runtime (CT) grows at a much
higher rate than the total communication. What we can infer
from Table 10 is that if one were to use a DNN with a depth
of over 100, TetradT,Tetrad-RT become the optimal choices.

Depth Parameter Trident TetradT TetradC Tetrad-RT Tetrad-RC

128
PTon 3.55 0.53 0.93 0.53 0.93
CTtot 9.6 1.06 1.85 1.06 1.85
Cost 0.49 0.05 0.09 0.05 0.09

1024
PTon 28.42 4.23 7.41 4.23 7.41
CTtot 76.79 8.47 14.82 8.47 14.82
Cost 3.89 0.43 0.75 0.45 0.76

8192
PTon 227.34 33.87 59.27 33.87 59.27
CTtot 614.3 67.76 118.56 67.76 118.56
Cost 31.27 3.48 6.03 3.49 6.03

Table 10: Benchmarking of comparisons over various depths. Each
depth has 128 comparisons. Time is reported in minutes, and mone-
tary cost in USD.

G Security proofs

Without loss of generality, we prove the security of our robust
framework. The case for fairness follows similarly, and we
omit its details. We provide proofs in the Fsetup,Fjsnd-hybrid
model, where Fsetup (Fig. 6), Fjsnd (Fig. 26) denote the ideal
functionality for the shared-key setup and jsnd, respectively.

The strategy for simulating the computation of function f
(represented by a circuit Ckt) is as follows: Simulation begins
with the simulator emulating the shared-key setup (Fsetup)
functionality and giving the respective keys to the adversary.
This is followed by the input sharing phase in which S com-
putes the input of A , using the known keys, and sets the inputs
of the honest parties, to be used in the simulation, to 0. S in-
vokes the ideal functionality FGOD on behalf of A using the
extracted input and obtains the output y. S now knows the
inputs of A and can compute all the intermediate values for

28

each of the building blocks. S proceeds with simulating each
of the building blocks in the topological order.

For modularity, we provide the simulation steps for each
building block (arithmetic/garbled) separately. Carrying out
these blocks in the topological order yields the simulation
for the entire computation. If a TTP is identified during the
simulation, the simulator stops and returns the function output
to the adversary on behalf of the TTP as per Fjsnd.

Ideal jsnd Functionality. The ideal jsnd functionality for
fairness security appears in Fig. 25 and that for the robust
setting appears in Fig. 26.

Fjsnd interacts with the servers in P and the adversary S .
Step 1: Fjsnd receives (Input,vs) from senders Ps for s ∈ {i, j},
(Input,⊥) from receiver Pk and fourth server Pl . While sending
the inputs, the adversary is also allowed to send a special abort
command.
Step 2: Set msgi = msg j = msgl =⊥.
Step 3: If vi = v j, set msgk = vi. Else, set msgk = abort.
Step 4: Send (Output,msgs) to Ps for s ∈ {0,1,2,3}.

Functionality Fjsnd (for fair security)

Figure 25: Ideal functionality for jsnd in Tetrad

Fjsnd interacts with the servers in P and the adversary S .
Step 1: Fjsnd receives (Input,vs) from senders Ps for s ∈ {i, j},
(Input,⊥) from receiver Pk and fourth server Pl , while it receives
(select,ttp) from S . Here ttp is a boolean value, with a 1 indicat-
ing that TTP = Pl should be established.
Step 2: If vi = v j and ttp = 0, or if S has corrupted Pl

a, set
msgi = msg j = msgl =⊥,msgk = vi and go to Step 4.
Step 3: Else, set msgi = msg j = msgk = msgl = Pl .
Step 4: Send (Output,msgs) to Ps for s ∈ {0,1,2,3}.

aThis condition is used to capture the fact that a corrupt Pl cannot
create an inconsistency in Fjsnd since the parties actively involved in Fjsnd

would be honest

Functionality Fjsnd (for robust security)

Figure 26: Ideal functionality for robust jsnd [33]

G.1 Arithmetic/Boolean World
We provide the simulation for the case for corrupt P0,P1 and
P3. The case for corrupt P2 is similar to that of P1.

Sharing Protocol (ΠSh, Fig. 10). During the preprocessing,
S P0

ΠSh
emulates Fsetup and gives the respective keys to A . The

values commonly held with A are sampled using the respec-
tive keys, while others are sampled randomly. The details for
the online phase are provided next. We omit the simulation
for corrupt P3 as it is similar to that of P1,P2.

Online:

– If dealer is A , SP0
ΠSh

receives mv from A on behalf of P1,P2,P3.

If the received values are consistent, SP0
ΠSh

computes A’s input v
as v = mv− [λv]1− [λv]2− [λv]3, else sets v as the default value.
It invokes FGOD on input (Input,v) to obtain the function output
y.
– If dealer is P1,P2 or P3, there is nothing to simulate as P0

doesn’t receive any value during the protocol.

Simulator SP0
ΠSh

Figure 27: Simulator SP0
ΠSh

for corrupt P0

Online:

– If dealer is A , SP1
ΠSh

receives mv from A on behalf of P2,P3. If

the received values are consistent, SP1
ΠSh

computes A’s input v as
v = mv− [λv]1− [λv]2− [λv]3, else sets v as the default value. It
invokes FGOD on input (Input,v) to obtain the function output y.
– If dealer is P0,P2 or P3, SP1

ΠSh
sets v = 0 and performs the

protocol steps honestly.

Simulator SP1
ΠSh

Figure 28: Simulator SP1
ΠSh

for corrupt P1

Shares unknown to A are sampled randomly in the simu-
lation, whereas in the real protocol, they are sampled using
the pseudorandom function (PRF). The indistinguishability
of the simulation thus follows by a reduction to the security
of the PRF. The same holds for the rest of the blocks.

Joint Sharing Protocol: The simulation for the joint sharing
protocol (ΠJSh) is similar to that of the sharing protocol. The
protocol’s design is such that the simulator will always know
the value to be sent as part of the joint sharing protocol. The
communication is constituted by jsnd calls and is emulated
according to the simulation of Fjsnd.

Multiplication Protocol (ΠR
Mult, Fig. 12).

Preprocessing:

– Computes γ1
ab,γ

2
ab, and γ3

ab on behalf of P1,P2,P3.

– Samples u1,u2 using the respective keys with A and computes
r. The joint sharing of q is simulated as discussed earlier.
– Emulates two instances of Fjsnd with A as one sender to send

w1,w2 to P3.

Online: P0 has no communication in the online phase except the

jsnd instances which are emulated by SP0
ΠMult

.

Simulator SP0
ΠMult

Figure 29: Simulator SP0
ΠMult

for corrupt P0

Preprocessing:

– Computes γ1
ab,γ

2
ab, and γ3

ab on behalf of P0,P2,P3.

Simulator SP1
ΠMult

29

– Samples u1 using the respective keys with A . Samples a ran-
dom u2 and computes r. The joint sharing of q is simulated as
discussed earlier.
– Emulates one instance of Fjsnd with A as one sender to send

w1 to P3.

Online:

– Computes y1 + s1,y2 + s2,y3 honestly.
– Emulates two instances of Fjsnd – i) A as sender to send

y1 + s1 to P2, and ii) A as receiver to obtain y2 + s2 from P2.
– Simulates joint sharing as discussed earlier.

Figure 30: Simulator SP1
ΠMult

for corrupt P1

Preprocessing:

– Computes γ1
ab,γ

2
ab, and γ3

ab on behalf of P0,P1,P2.

– Samples u1,u2 using the respective keys with A] and com-
putes r. The joint sharing of q is simulated as discussed earlier.
– Emulates two instances of Fjsnd with A as receiver to send

w1,w2 to A .

Online:

– Computes y1 + s1,y2 + s2,y3 honestly.
– Emulates two instances of Fjsnd with A as sender to exchange

y1 + s1,y2 + s2 among P1,P2.
– Simulates joint sharing as discussed earlier.

Simulator SP3
ΠMult

Figure 31: Simulator SP3
ΠMult

for corrupt P3

Reconstruction Protocol (ΠRec, Fig. 11). Using the input
of A obtained during simulation of sharing protocol, SΠRec

invokes FGOD on behalf of A and obtains the function output
y in clear. SΠRec

calculates the missing share of A using y and
the other shares. The missing share is then communicated to
A by emulating the Fjsnd functionality.

G.2 Security Proof for Garbled World
In this section, we present the proof of security for our robust
GC protocol with 2GCs. The case for 1 GC is similar, and we
omit the details. For completeness, we provide the simulation
assuming function evaluation entirely through the GC. How-
ever, as in the previous section, simulation steps are provided
for the different phases separately. Thus, the simulation for
the appropriate phase can be used while simulating the entire
protocol in the mixed framework.

The simulation begins with the simulator emulating the
shared-key setup (Fsetup) functionality and giving the respec-
tive keys to the adversary. This is followed by the input shar-
ing phase in which S computes the input of A , using the
known keys, and sets the inputs of the honest parties, to be
used in the simulation, to 0. S invokes the ideal functionality
FGOD on behalf of A using the extracted input and obtains

the output y. S proceeds with simulating the GC computation
phase using the output y by invoking the privacy simulator for
the GC. The reconstruction phase follows this. We provide
the simulation steps in the following order:

1. Generation of boolean shares for the input.

2. Transfer of keys and GC to the evaluator.

3. Output computation.

We give the proof with respect to a corrupt P0 and a corrupt P1.
Proofs for corrupt P3 and corrupt P2 follow similar to proof
for corrupt P0 and P1, respectively.

Generation of boolean shares for the input. This simulation
proceeds as per the simulation of the boolean world mentioned
in §G.1.

Key, GC transfer and evaluation. The simulation for ΠG
Sh

coupled with the GC transfer for a corrupt P1 and corrupt P0
are provided here. Cases for corrupt P2,P3 follow.

– With respect to the jth garbling instance for j ∈ {1,2}, SP0
Ev

generates the keys {Kb, j
mx ,K

b, j
αx

,K
b, j
λ3
x
}b∈{0,1} for each function in-

put x and the GC as per the honest execution.

– Sends the keys for K
mx, j
mx ,K

αx, j
αx

and GC j to Pj for j ∈ {1,2}
by emulating Fjsnd with A as the sender.

Simulator SP0
Ev

Figure 32: Simulator SP0
Ev for corrupt P0

– With respect to the first garbling instance, SP1
Ev runs

(GC1,X1,d1)← Spriv(1κ,Ckt,y) where y is obtained via invok-
ing FGOD on A’s input. With respect to the second garbling in-
stance, SP1

Ev generates the keys {Kb,2
mx ,K

b,2
αx

,Kb,2
λ3
x
}b∈{0,1} for each

function input x and GC2 as per the honest execution.
– SP1

Ev sends the keys for each input v to the GC, and GC1 by
emulating Fjsnd with A as the receiver.

– SP1
Ev emulates Fjsnd together with A as the sender to send

Kmx,2
mx ,K

λ3
x,2

λ3
x

to P2.

Simulator SP1
Ev

Figure 33: Simulator SP1
Ev for corrupt P1

Output computation.

– Let lsb(v) denote the least significant bit of v.

– SP0
Rec sends qJ = y⊕ lsb(K

0, j
y) and H j = H(K) to A on behalf

of honest Pj ∈ E such that K ∈ {K0, j
y ,K

1, j
y } and q j = lsb(K),

where y is obtained via invoking FGOD.

Simulator SP0
Rec

Figure 34: Simulator SP0
Rec for corrupt P0

30

– Let lsb(v) denote the least significant bit of v.

– SP1
Rec sends p1 = lsb(K0,1

y) to A on behalf of honest garblers
in Φ1 where y is obtained via invoking FGOD.

Simulator SP1
Rec

Figure 35: Simulator SP1
Rec for corrupt P1

Indistinguishability argument. We argue that IDEALF ,SΠ

c
≈

REALΠ,A when A corrupts P1 based on the following series
of intermediate hybrids.

HYB0: Same as REALΠ,A .
HYB1: Same as HYB0, except that P0, P2,P3 use uniform

randomness instead of pseudo-randomness to sample values
not known to P1.

HYB2: Same as HYB1 except that GC1 is created as
(GC1,X1,d1)← Sprv(1κ,Ckt,y).

Since HYB2 := IDEALF ,SΠ
, to conclude the proof we show

that every two consecutive hybrids are indistinguishable.
HYB0

c
≈ HYB1 : The difference between the hybrids is

that P0,P2,P3 use uniform randomness in HYB1 rather than
pseudo-randomness as in HYB0 (for sampling [α]2). The in-
distinguishability follows via reduction to the security of the
PRF.

HYB1
c
≈ HYB2: The difference between the hybrids

is in the way (GC1,X1,d1) is generated. In HYB1,
(GC1,e1,d1)←Gb(1κ,Ckt) is run. In HYB2, it is generated as
(GC1,X1,d1)← Sprv(1κ,Ckt,y). Indistinguishability follows
via reduction to the privacy of the garbling scheme.

We argue that IDEALF ,SΠ

c
≈ REALΠ,A when A corrupts P0

based on the following series of intermediate hybrids.
HYB0: Same as REALΠ,A .
HYB1: Same as HYB0, except that P1, P2,P3 use uniform

randomness instead of pseudo-randomness to sample values
not known to P0.

HYB2: Same as HYB1 except that hash of the key K where
K ∈ {K0, j

y ,K
1, j
y } to be sent to A is computed such that

lsb(K)⊕ lsb(K
0, j
y) = y, for j ∈ {1,2} instead of obtaining

it as output of GC evaluation.
Since HYB2 := IDEALF ,SΠ

, to conclude the proof we show
that every two consecutive hybrids are indistinguishable.

HYB0
c
≈ HYB1 : The difference between the hybrids is

that P1,P2,P3 use uniform randomness in HYB1 rather than
pseudo-randomness as in HYB0 (for sampling λ3). The in-
distinguishability follows via reduction to the security of the
PRF.

HYB1
c
≈ HYB2: The difference between the hybrids is that

in HYB1, key K where K ∈ {K0, j
y ,K

1, j
y } for j ∈ {1,2} is com-

puted as output of the GC evaluation while in HYB2, it is com-
puted such that lsb(K)⊕ lsb(K

0, j
y) = y. Due to the correctness

of the garbling scheme, the equivalence of K computed in
both the hybrids holds.

31

	Introduction
	Our Contributions
	Improved Arithmetic/Boolean 4PC
	4PC Mixed-Protocol Framework
	Benchmarking and PPML

	Preliminaries and Definitions
	4PC Protocol
	Primitives
	Multiplication in Tetrad
	Achieving Fairness
	Achieving Robustness

	Supporting on-demand computations

	Mixed Protocol Framework
	Building Blocks
	Implementation and Benchmarking
	ML Training
	ML Inference

	Preliminaries
	Related Work
	Basic Primitives
	Security Model
	Comparison with Fantastic Four EPRINT:DalEscKel20

	4PC Protocol
	Function-independent preprocessing

	Building Blocks
	Garbled World
	Garbling scheme and properties
	2GC Variant
	1 GC Variant

	Mixed Framework
	Additional Benchmarking
	Security proofs
	Arithmetic/Boolean World
	Security Proof for Garbled World

