
A Novel Completeness Test and its Application

to Side Channel Attacks and Simulators

Si Gao1 and Elisabeth Oswald1,2

1University of Klagenfurt
2University of Bristol

Abstract

Today’s side channel attack targets are often complex devices in which
instructions are processed in parallel and work on 32-bit data words. Con-
sequently, the state that is involved in producing leakage in these modern
devices is large, and basing evaluations (i.e. worst case attacks), simu-
lators, and assumptions for (masking) countermeasures on a potentially
incomplete state can lead to drastically wrong conclusions.

We put forward a novel notion for the “completeness” of an assumed
state, together with an efficient statistical test that is based on “collapsed
models”. Our novel test can be used to recover a state that contains
multiple 32-bit variables in a grey box setting. We illustrate how our
novel test can help to guide side channel attacks and we reveal new attack
vectors for existing implementations. We also show how the application
of our statistical test shows where even the most recent leakage simulators
do not capture all available leakage of their respective target devices.

1 Introduction

Since Kocher’s seminal work [21], research has explored the properties of all
“key ingredients” that contribute to successful side channel (key recovery) at-
tacks. These key ingredients include side channel distinguishers (i.e. the way in
which side channel leakage is statistically exploited in attacks), and side chan-
nel leakage models (i.e. the way in which side channel leakage is predicted
or explained by an adversary). The latter component, the leakage model, is
crucial for attacks (a better model leads to attacks requiring fewer leakage ob-
servations), and therefore it is also of fundamental significance in the context
of security evaluations, but it also greatly matters in the context of leakage
simulators as well as for assumptions that designers make when implementing
masking countermeasures.

But what does a leakage model constitute of? Informally, most of the existing
literature understands a leakage model to be a leakage function that maps a

1

collection of device internal variables (the state) to a real value (if it is a uni-
variate model). Considering this informal definition in the context of attacks,
it is clearly desirable to try and find a function that offers good predictions
for the true device leakage, because it enables successful attacks with fewer
traces. Thus, a lot of research has gone into deriving good estimates for leakage
functions from real device data [11, 31, 15, 35, 26]. However, the leakage function
itself is only part of what consistitutes a leakage model: the state that is being
leaked on is equally relevant.

In a realistic setting (such as low to mid-range processors, or dedicated hard-
ware implementations of core crypto algorithms), finding the state is far from
easy, not only because they tend to be closed source. If open source descrip-
tions are available, e.g. ARM released some semi-obfuscated VHDL descrip-
tions, then these are at best architecturally similar to the commercial prod-
ucts of the same type, but they are not micro-architecturally equivalent at all.
Micro-architectural effects have been explored and exploited across many recent
works [29, 19, 27, 18, 25]. These papers show how a wrong assumption about the
state renders provably secure masking schemes completely insecure in practice.
In the context of application specific crypto cores, the situation is not better
as their descriptions are typically also not available to the public. Taking the
perspective of a designer of an application specific crypto core (who has access
to such a description), it is in principle possible to identify the components that
are active during any cycle. However, inclusion of everything that contributes
without understanding of the amount of its contribution or its relevance, may
lead to a model that becomes entirely impractical to work with. Thus even in
this context, a methodology to decide what is the “state that matters” would
be desirable.

Our contribution. We stress that finding the exact intermediate state from
a typical processor in a grey box setting is a long-standing problem: like many
(statistical learning) problems, a universally optimal solution is unlikely to exist.
Thus, whilst we do not claim optimality of our work, we claim the following
contributions:

1. We clearly state the identification of the actual state as a fundamental
problem and discuss its impact on attacks and leakage simulators.

2. We put forward a novel notion for models—denoted as “completeness”—
which flags whether the tested model has captured all relevant state.

3. We put forward a novel statistical methodology based on what we call
“collapsed” models: using the nested F-tests, we can test whether a leakage
model is complete in a “collapsed” setup and infer whether it is complete
in the original un-collapsed setup.

4. We show how our approach can find subtle leakage that can be easily ne-
glected. Although such leakage does not necessarily contribute to more

2

effective attacks, it plays an important role in comprehensive security eval-
uations.

5. We discuss the importance of completeness in the context of simulators for
leakage detections and demonstrate that our approach can lead to better
models for simulations.

Organisation. We start our discussion with clarifying some definitions and
introducing a few useful statistical tools in Section 2. Section 3 introduces
the concept of completeness and proposes a necessary (but not sufficient) test
to verify completeness. We further show how our novel test can be applied
when analysing the leakage from both unprotected and masked implementations
(Section 4), revealing subtle leakage that is otherwise difficult to find. Section 5
confirms completeness is also critical for leakage simulators, demonstrating how
an incomplete leakage model can jeopardise the following detection accuracy.
We summarise our discussion and emphasise a few important lessons learned in
Section 7.

2 Preliminaries

2.1 Leakage modelling: state of the art

We use some simple notations throughout this paper: for the sake of readabil-
ity we do not include time indices in our notations. Consequently, any set of
variables, and any leakage function, is specific to a point in time during the
computation of some algorithm1.

We call the set X the entire device state. X is comprised of key and input
dependent variables that the leakage function L acts on. The variable Y = {y} ∈
Y is a leakage observation that is available to an adversary. We also follow the
usual convention that traces are noisy, whereby the leakage contribution L(X)
and the (Gaussian) noise N(0, σ2) are independent:

y = L(X) +N(0, σ2)

The leakage model is an approximation of the real device leakage. It consists
of a function and a state: the function maps the state to a (set of) real values.
In our work, which follows the trajectory of [26, 32], we consider univariate
models, thus we write L : Fm

2 → R and x ∈ Fm
2 .

Throughout this work we assume that we are working in a “grey box ”
setting, i.e. we have some basic knowledge about the device/implementation
(e.g. instruction set architecture, executing code etc.), but not concrete gate-
level hardware details. The relevant device state X (for a certain time index)
is unknown in this setting. We can of course, build an overly conservative
model using all possible state X̂ where X ⊂ X̂ (all intermediate variables that

1We use the concept of “time points” for readability, but one could equally use the concept
of clock cycles or instructions instead.

3

ever occured). However, such a model is clearly unusable for attacks/evaluations
(because it requires guessing the entire key) and it is also unusable for simulators
(because the estimation of its distribution is computationally infeasible).

The de facto practice in all attacks/evaluations, when building leakage mod-
els, is to divide the model building process into two steps. The first step is
identifying a concise (i.e. easily enumerable) state Z. For instance, a popular
assumption is that the intermediate state depends completely on the output of
an S-box (denoted by Sout) computation, which leads to the cardinality of the
state being small (e.g. #{Z} = 28 for AES).

The second step is to estimate the leakage function assuming it only acts on
Z. Various techniques have been proposed, including naive templating [11],
regression-based modelling [31, 15], step-wise regression [38] etc. Previous
works [38, 31, 17] have also proposed various metrics to evaluate/certificate the
device’s leakage (as well as the quality of model that built from the measure-
ments). As many will be utilised later, the next two subsections explain these
techniques in details, then we move on to our point of interest: what should we
do about the first step?

2.2 Leakage modelling: approaches

Already in the early days of side channel research, the concept of profiling (aka
leakage modelling, aka templating) was introduced by Chari et al. [11]. In their
original paper, the idea was to assume that the distribution of the measurements
from the same state value should follow a (multivariate) normal distribution,
and an adversary with a priori access to a device can simply estimate the
parameters of the distribution.

An alternative to the direct parameter estimation is using regression tech-
niques to derive an equivalent model. A paper by Schindler et al. [31] proposes
the use of regression to derive a linear model of a considered state. The basis
of building regression models is that we can express any real valued function of
Z as a polynomial L̃ =

∑
j βjuj(Z) [14], or short L̃ = ~β(Z). In this polynomial

the explanatory variables uj are monomials of the form
∏n−1

i=0 z
ji
i where zi de-

notes the i-th bit of Z and ji denote the i-th bit of j (with n the number of bits
needed to represent Z in binary). Regression then estimates the coefficients βj .
The explanatory variables uj simply represent the different values that Z can
take. If we do not restrict the uj then the resulting model is typically called
the full model. If no subscript is given, we implicitly mean the full model. In
many previous attacks, the leakage model is restricted to just contain the linear
terms. We denote this particular linear model using L̃l.

2.3 Model Quality

Any model is only an approximation: there is a gap between the model output
and the observed reality. Statistical models are built for at least two purposes
[33]. They are either used to predict events in the future, in which case the
model quality relates to its predictive power; or they are used to help explain

4

reality, in which case the model quality relates to how many of the relevant
factors it can identify. In the context of leakage attacks/evaluations, models
are used to predict side channel leaks. Therefore we use metrics such as the
coefficient of determination, and cross validation to judge the quality. In the
context of leakage simulators, models are built that are supposed to include as
many relevant leakage sources as possible. Therefore, the quality relates how
two (or more) models compared with each other in terms of explaining the
realistic leakage.

Coefficient of determination For any model L̃(Z) that is estimated from
the side channel measurements Y, the “modelling error” can be defined as the
residual sum of squares (RSS),

RSS =

q∑
i=1

(y(i) − L̃(z(i)))2

where q represents the number of traces and z(i) represents the value of z for the
i-th measurement. Meanwhile, the explained data-variance can be interpreted
as the explained sum of squares (ESS),

ESS =

q∑
i=1

(
L̃(z(i))− ȳ

)2
where ȳ represents the mean of measured values Y. If L̃ is derived from linear
regression on Y, RSS and ESS should sum up to the total sum of squares (TSS),

TSS =

q∑
i=1

(
y(i) − ȳ

)2
Then, the coefficient of determination (R2) is defined as:

R2 =
ESS

TSS
= 1− RSS

TSS
.

Given two estimated models L̃1 and L̃2, whereby both models are assumed
to have the same number of terms (i.e. same restrictions on uj(Z) in Section
2.2), the model with the higher R2 value would be considered as better. The
crucial point here is that both models need the same number of terms, because
the R2 increases with the number of terms that are included in the model.
Consequently, the R2 does not lend itself to investigate models that represent
approximations in different numbers of terms.

Cross-validation An important aspect in model validation is to check if a
model overfits the data. If a model overfits the data, it will generalise badly,
which means it is bad in terms of predicting new data. Therefore using cross-
validation of any chosen metric (e.g. the RSS) is essential [17] when aiming for
models with a high predictive power. Given two models, one can compute via
cross validation both RSS values and then judge their relative predictive power.

5

F-tests Given two “nested” models (i.e. there is a so called full model and
a restricted model which only consists of a subset of terms), the F-test is the
most natural way to decide whether the restricted model is missing significant
contribution compared with the full model. More specifically, assuming a full
model L̃f (Zf) and a restricted model L̃r(Zr), where Zr is constructed by re-
moving zf − zr explanatory variables (set regression coefficients to 0) from Zf ,
one can compute the F-statistic as

F =

RSSr−RSSf

zf−zr
RSSf

q−zf

.

The resulting F follows the F distribution with (zf−zr, q−zf) degree of freedom.
A p-value above a statistically motivated threshold rejects the null hypothesis
(the two models are equivalent) and hence suggests that at least one of the
removed variables is potentially useful. This approach was used in [26] to derive
relatively fine grained models on selected intermediate states.

2.4 Approaches to find the state

It is critical to remember that all approaches above (at least their current usage
in the community) assume the concise Z has already been found. In other
words, whether we assume users already know X beforehand and simply set
Z = X (eg. through analysing hardware details etc.) or users have already
constructed an appropriate Z that ensures X ⊆ Z through some trial-and-error
process. To our knowledge, this step is often quite ad hoc: users try some set
of Z, evaluate the leakage model with R2 or cross-validation (or alternatively,
perform attacks with CPA). If the evaluation/attack result is not successful, it
suggests the current Z is unlikely to be correct. Otherwise, Z might be a part
of X, but not necessarily complete. Based on their initial knowledge, users can
repeat this process and determine what they believed to be the most suitable
Z, without much confidence if this Z is sufficient.

Leakage certification techniques, eg. “assumption error” v.s. “estimation
error” [17] are also designed under the assumption that Z is given. One could
be tempted to use such techniques to test the scenario where the selected Z is
not sufficient: however, neither does not fit with the original intention of [17]
nor is statistical power of those techniques sufficient. In the interest of flow we
provide the reasoning for this statement in Appendix A.

3 Model quality: is my leakage model complete?

In this section, we introduce the novel concept of model completeness, and an
associated test to measure it efficiently.

6

3.1 Completeness

So far the nested F-test has mainly been used for determining low degree terms
of L̃(Z) [26, 38]. However in the wider statistical literature, its primary us-
age is in selecting contributing factors from a variety of potential explanatory
variables, which helps to build a model with a high explanatory power.

Definition 1. For any two nested models L̃(A), L̃(B) we denote A as com-
plete (with respect to B) if the F-test results support the assumption that
L̃(A) did not miss any significant contributing factor compared with L̃(B). With
infinite profiling traces (i.e. infinite statistical power), this usually suggests
B ⊆ A (if already assumed A ⊆ B, then A = B).

In practice, considering the restriction of a grey box setting, we have limited
information about the state (at any point in time during a computation). Thus
our main challenge is to define a conservative set X̂ that satisfies X ⊆ X̂, then
drop terms from X̂ to see which (combinations of) terms actually matter (i.e.
find an approximation Z for X).

Toy example. Say we have an unknown relevant set X. Although X is un-
known, we can define an overly conservative set e.g. X̂ = {x0, x1, x2, x3} that
satisfies X ⊆ X̂. At this point, we wish to test if we can discard x3 and see if
Z = {x0, x1, x2} is a good model. Following our discussion in Section 2.2, we
can estimate from realistic measurements:

L̃f = ~β(X̂)

L̃r = ~β(Z)

If the F-test reports a p-value higher than the significance level, we can con-
clude at least one of the regression terms that depends on x3 is contributing
significantly. In other words, x3 ∈ X and X 6⊆ Z, which suggests the model
built with Z is missing some leakage, it is not complete with respect to X̂ and
therefore it is also not complete with respect to X.

Defining X̂ concretely For deterministic block cipher implementations with
a constant key (a case frequently considered in the side channel literature), a
conservative state assumption would be based on the entire plaintext. Because
of the large block size, this is a starting point that is in fact unworkable from a
statistical point of view (to estimate anything we need multiple observations for
each value that the state can take). If an implementation is masked, then also
the masks need to be included. The F-test then checks the contribution of all
resulting explanatory variables. Unlike leakage detection tests (which consider
only the unshared secret), the F-test is agnostic to specific statistical moments,
as long as all explanatory variables are taken into consideration. We explain a
statistical trick in the next section, that makes this seemingly infeasible problem,
practical.

7

3.2 Collapsed F-test for completeness

The full model is often too large: it consists of many large variables in practice
(in statistical terminology it is a factorial design). Consequently, we must find
ways to reduce the inevitable complexity. Techniques such as aliasing (i.e. if
several factors are known to be related) or identifying confounding variables (i.e.
variables that impact on multiple factors) are well known in statistical model
building. What is possible is typically situation dependent. We make two key
observations that apply to side channel leakage modelling.

The first observation (we mention this before in the text) is that the F-test,
although often used to deal with proportional models, actually tests for the
inclusion/exclusion of explanatory variables in nested models. Such models are
nominal models, i.e. the regression coefficient is either 0 or 1: either a variable
matters or it does not.

The second observation is that although our explanatory variables contain
n bits, they are rarely independent; and we consider a variable as relevant if
any of its bits are relevant. Consequently, there is an elegant trick to bound our
explanatory variables to small space.

Bounding the explanatory variables We suggest that it is possible to
bound the explanatory variables to a much smaller space. For instance, as-
suming our target process has four inputs A, B, A′ and B′. Each input
is an n-bit state, where 2n explanatory variables can be constructed from
(a0, a1, ..., an−1), ai ∈ F2. By setting ai = a0 (and a0 drawn at random from
{0, 1}), we can bound the input A to a much smaller space:

a = (a0, a0, ..., a0), a0 ∈ F2.

Applying this restriction to the other 3 inputs, the full model now contains only
24 parameters, which is easy to work with.

Of course, such a restriction is not for free: originally, there could be many
interaction terms between the explanatory variables. In the model Lc these
terms are “collapsed” and “added” to the remaining terms, e.g. a1a0 becomes
a0 as a1 = a0. In fact, as there is only 1 bit randomness, a0 now becomes an
alias for the operand A: having this term in Lc suggests A appears in L, but
certainly not in the same way as in Lc. We can expand this idea by allowing two
bits of randomness: this enables us to differentiate between linear and non-linear
models2.

Formalising this idea, we define a mapping called “collapse” Coll on the
uj(Z), where Z = {AA′BB′}. Recall that uj(Z) is defined (Section 2.2) as:

uj(Z) =
∏

zjii

2We could take this further and include more “in-variable” interactions, but we left this
for future considerations

8

where ji represents the i-th bit of the binary representation of j. For any
j ∈ [0, 24n), we define a 24n → 2n map Coll as:

Coll(j) = jcoll = ja||ja′ ||jb||jb′ ∈ [0, 24)

where ja =
∨n−1

i=0 ji, ja′ =
∨2n−1

i=n ji, jb =
∨3n−1

i=2n ji, jb′ =
∨4n−1

i=3n ji. Readers can
easily verify that when all operands are bounded to 1-bit, we have

uj(Z) = ujcoll(Zc) ,Zc = {zc|zc = a0||a′0||b0||b′0}

The latter can be easily tested in an F-test. In the following, we show that
the test model passes the F-test in our “collapsed” case is a necessary (but not
sufficient) condition for passing the F-test in the original setup.

Theorem 1. If a collapsed term ujcoll(Zc) cannot be ignored from L̃c (i.e.

βjcoll 6= 0), at least one of the corresponding uj(Z) cannot be ignored from L̃
(i.e. βj 6= 0).

Proof. In the original case, any leakage model can always be written as

L̃(Z) =

24n−1∑
j=0

βjuj(Z)

However, considering the inputs have been bounded, such model collapses to:

L̃(Z) =

24−1∑
jcoll=0

 ∑
∀j,Coll(j)=jcoll

βj

ujcoll(Zc)

Thus, if a certain collapsed term ujcoll(Zc) has a significant contribution to L̃c

(i.e. βjcoll 6= 0), one can conclude that:∑
∀j,Coll(j)=jcoll

βj 6= 0⇒ ∃j, βj 6= 0

Clearly nothing can be concluded if the above sum equals 0, which suggests this
is only a necessary condition.

Theorem 1 implies that whilst we still cannot directly test L̃f = ~β(X̂), we

can estimate the restricted (and collapsed) models L̃cr = ~β(Zc) from realistic
measurements and test it against the estimated collapsed full model L̃cf =
~β(X̂c): if the F-test finds enough evidence to reject a model L̃cr in relation to

the collapsed full model L̃cf , then it is clear that the model L̃r = ~β(Z) would

also be rejected in comparison to the full model L̃f = ~β(X̂) (i.e. Z is not

complete with respect to X̂).

9

Toy example. Suppose we want to test L̃r = ~β{AB}, ~β ∈ (0, 1)2
2n

against

L̃f = ~β{AA′BB′}, ~β ∈ (0, 1)2
4n

. As mentioned before, for n = 32, direct testing
is not feasible. However, we can bound the inputs and test

L̃cr = β0 + β1a0 + β2b0 + β3a0b0

L̃cf = β0 + β1a0 + β2a
′
0 + β3b0 + β4b

′
0

+ β5a0b0 + β6a
′
0b
′
0 + β7a

′
0b0 + β8a0b

′
0 + β9b0b0 + β10a0a

′
0

+ β11a0a
′
0b
′
0 + β12a0a

′
0b0 + β13a0b

′
0b0 + β14a

′
0b
′
0b0

+ β15a0a
′
0b0b

′
0

If the F-test rejects the null hypothesis, then we know that the missing terms
make a difference not only in L̃c but also in L̃. Therefore, we can conclude
the L̃r is also not complete, without explicitly testing it. The price to pay is
that unlike the original F-test, our collapsed test becomes a necessary yet not
sufficient condition: that being said, any Z that fails our test still presents a
genuine concern, as it directly suggests the selected Z is unlikely to be complete
and all following steps can be potentially jeopardised.

Considering from now on we will always work with collapsed models, we will
not continue using the double subscript cr, but revert back to just using r.

3.3 Statistical power of the nested F-test

For any statistic test, an important question to ask is how much power does it
preserve. To compute the power of collapsed F-tests, we first need to consider
the effect size that we are dealing with. The effect size in our case relates to
the difference between the restricted model and the full model, which can be
computed (according to Cohen [12]) as:

f2 =
R2

F −R2
R

1−R2
F

=
RSSR −RSSF

RSSF

Under the alternative hypothesis, the computed F-statistic follows a non-
central F distribution with non-centrality parameter λ and two degrees of free-
dom from the numerator df1 and the denominator df2. When f2 = 0, this
becomes the null distribution of the central F-distribution. Thus, when the
false positive rate is set to α, the threshold of F-statistic is

Fstatth = QF (df1, df2, 1− α)

where QF is the quantile function of the central F distribution. The false-
negative rate β can be computed as

β = Fnc(Fstatth, df1, df2, λ),

λ = f2(df1 + df2 + 1),

10

where Fnc is the CDF function of the non-central F distribution. The statistical
power for effect size f2 is then 1− β. Our test in Section 5.1 has df1 = {256−
7, 256 − 19, 256 − 16}, df2 = q − 256, q = 20000, per-test α = 10−3.7, which
comes to 1− β ≈ 1 for the small effect size f2 = 0.02 in [12]. According to [37]
this corresponds indeed to what they observed in similar experiments.

Summarising, the F-Test on collapsed models has high power for relevant
side channel scenarios according to [37], and assuming sufficient traces (20k in
our calculation).

4 Application to Leakage Attacks

4.1 Unprotected AES

To demonstrate how this novel testing tool could be applied in practice, let
us start our discussion with a trivial target: the first round Sbox look-up in an
AES-128 encryption. For succinctness, we only analyse the first 4 Sbox look-ups
(the analysis of the remaining S-box is identical).

Experimental setup We select the TinyAES [22] as our target implemen-
tation, running on an ARM Cortex M3 core (NXP LPC1313). As the code is
written in C, the compiling toolchain and commercial core create a grey-box sce-
nario: we can locate the Sbox computation from C, yet do not fully understand
what is happening in each cycle on the power trace. The working frequency is
set to 12 MHz, while our oscilloscope (Picoscope 5243D) captures 10k traces at
250 MSa/s (for both the collapsed case and the un-collapsed case). Altogether
the 4 Sbox computations cost 17 µs, which counts to around 204 cycles and
4250 samples on the power trace.

Only computation leaks. A natural way to analyse such implementation is
following the “only computation leaks” principle [28], whereby “computation”
is architecturally defined.

We denote the first 4 bytes of the Sbox input as {x0, x1, x2, x3} and the
output as {s0, s1, s2, s3}. If the processor is computing the first Sbox, we should
see the leakage of both x0 and s0 but nothing else. As the outputs are completely
determined by the inputs, following the same principle in Section 3.1, we define
the uncollapsed conservative model as

L̃(X̂) = ~β{∀j uj(X̂)|x̂ = x0||x1||x2||x3, x̂ ∈ X̂}

Respectively, for the first Sbox, if “only computation leaks”,

L̃(Z) = ~β{∀j uj(Z)|z = x0, z ∈ Z}

As we do not restricted the degree of L̃, s0 is fully determined by x0, therefore
already included by L̃(Z). We now collapse each byte to 2 bits3, the former
model contains only 28 terms whereas the latter has only 22.

3Note that although S(x0) is still an 8-bit value, in a collapsed case, it only has 2-bit

11

200 400 600 800
Time(*4ns)

0

5

10

15

20

25

30

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

5

10

15

20

25

30

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

5

10

15

20

25

30

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

5

10

15

20

25

30

-
l
o
g
(
p
-
v
a
l
u
e
)

Figure 1: Collapsed F-test on each Sbox computation

Figure 1 illustrates the F-test results for all 4 Sbox computations. Clearly,
architectural interpretation of “only computation leaks” is not enough: the F-
test for the single byte models (blue line) all exceed the threshold, thus fail.
This suggests any attack that is based on a single byte might be not optimal.
Consequently, security evaluations/leakage certifications that are based on single
bytes can be overly optimistic.

One step further. Now let us further investigate what variables may be
missing. Through deliberately adding possible terms to the model and repeating
the test, we found one acceptable leakage model that is always assuming each
computation leaks all 4 bytes. The red line in Figure 1 shows that this model
is not rejected.

With this new finding in mind, we revert back to the un-collapsed case:
with the un-collapsed trace set, we plot the linear regression attack [15] results
(targeting each Sbox output) with the correct key in Figure 2: as expected, each
Sbox computation leaks mainly for the byte it is computing. However, from the
second Sbox, we start to see a small peak (slightly above the threshold) for the
first Sbox output. For the last byte, all previous three Sbox outputs have an
influence, which is consistent with what we observed in Figure 1. The fact that
a linear regression distinguisher can also find these leaks confirms the existence
and exploitability of such leakage in realistic attacks4. This suggests that single
byte attacks are far from optimal.

Architectural reasoning. It is possible to link our concrete statistical obser-
vations with some informed guesses about the processor architecture. For this

entropy and can be expressed with only 2 bits. Therefore L̃(Z) can still portray any leakage
caused by S(x0).

4Additional profiling is also possible where one could estimate coefficients separately to
create proportional models for dedicated attacks which is however not the focus of this paper.

12

200 400 600 800
Time(*4ns)

0

10

20

30

40

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600 800
Time(*4ns)

0

10

20

30

40

-
l
o
g
(
p
-
v
a
l
u
e
)

Figure 2: Linear regression attack for each Sbox computation

purpose, we examined the source code and noticed that the code in TinyAES [22]
suggests the 4 S-box bytes are stored within one word, but not accessed adja-
cently in the Sbox look-ups (this explains why we did not see any Hamming
distance style leakage). From the existing knowledge, we suspect the observed
leakage is from the fact that the processor loads more than the target byte in a
load instruction: as suggested in Section 5.2 of [25], it is indeed quite common
to load the entire word from memory then discard the unnecessary bytes.

4.2 Masked AES: Sbox look-up

In the following, we further investigate the impact of our F-test on masked im-
plementations. Specifically, we select the affine masking implementation from
ANSSI [1] as our target. The security of this implementation has been ques-
tioned by Bronchain and Standaert [3]: through the so-called “dissection” pro-
cedure, they had successfully recovered the full key with less than 2000 traces
in a profiling setup. In fact, the critical part of this attack is performing “sub-
attacks” on each trace in order to recover the temporary masks [3]. Considering
such implementation requires repetitively loading masks from the memory, this
“dissection” procedure is often quite effective in a profiling setup, where the
attacker can match the measured trace with a number of pre-built multivariate
templates (eg. also applied by many attacks in the DPAContest [30]).

In the following, we investigate the leakage of this implementation in our
experimental setup5. We stick with the same measurement setup as Section
4.1, while we are analysing the masked table look-ups of the first 4 Sboxes.

Note that the original implementation also includes hiding techniques, such
as random shuffling. Unless stated otherwise, our following analysis always
assume shuffling is not presented (i.e. “#define NO SHUFFLE” in the code).
Readers can take this as the non-shuffling analysis (which is an option in the

5The original Compute GTab function contains a few instructions (eg. uadd8) that are
not available on our platform. We had rewritten an equivalent version in pure Thumb-16
assembly. This makes no difference in our leakage analysis as we are not targetting at this
part.

13

authors’ analysis [1]), or take it as a follow-up analysis where the shuffling
permutation has been already recovered using the technique in [3].

Affine Masking As this implementation is specific to AES, each data byte
is protected as an element on the Galois Field GF(28). More specifically, each
data byte x is presented as:

C(x; rm, ra) = (rm⊗ x)⊕ ra

where C is the encoding function, rm is called the multiplicative mask and ra
the additive mask. Note that by definition, rm is uniform on [1, 255] (i.e. cannot
be 0). For the i-th state byte xi, the implementation stores the additive mask
rai accordingly in a mask array ra. The multiplicative mask rm, on the other
hand, is shared among all 16 bytes within this encryption. Each linear operation
(eg. ShiftRow, MixColumn) can be done separately on ra and x. Meanwhile,
the masked Sbox is pre-computed according to the multiplicative mask rm and
the Sbox input/output mask rin and rout:

S′(rm⊗ x⊕ rin) = rm⊗ S(x)⊕ rout

Code snippet for the Sbox In order to compute the Sbox’s ouput using the
pre-computed table, one must transfer the additive mask rai to rin, then after
the table look-up, transfer rout back to rai. The SubBytesWithMask function
performs this task as follow:

SubBytesWithMask:

... //r3=C(x) r10=ra

... //r0=i r8=S’

ldrb r4, [r3, r0] //(1) r4=C(x)_i^rin

ldrb r6, [r10, r0] //(2) r6=ra_i

eor r4, r6 //(3) r4=C(x)_i^rin^ra_i

ldrb r4, [r8, r4] //(4) r4=rmS(x)^rout

eor r4, r6 //(5) r4=rmS(x)^rout^ra_i

strb r4, [r3, r0] //(6) store r4 to state

... //removing rout later

Note that the rin is added before this function, therefore line (1)-(3) purely
focus on removing rai. Similarly, removing rout is postponed to the end of the
Sbox calculation, therefore not presented in this code.

Only computation leaks. Following the spirit of Section 4.1, we analyse the
leakage of the first Sbox look-up and use 1 bit to represent each xi. All random
masks must also be considered in our leakage analysis: we use 6 bits to represent
ra0:3, rin and rout respectively. When collapsed to 1 bit, rm is restricted to 1

14

50 100 150 200 250 300
Time(*4ns)

0

5

10

15

20

25

30

35

40

45

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200 250 300
Time(*4ns)

0

5

10

15

20

25

30

35

40

45

-
l
o
g
(
p
-
v
a
l
u
e
)

Figure 3: Leakage analysis for the first Sbox

(i.e. nullifies the protection of rm)6. Thus, we exclude this bit from our F-test
and analyse the leakage where rm is set to 1. This means we will not cover any
potential unexpected leakage introduced by rm in our experiment: of course,
one can always switch to 2-bit version and use more traces to cover rm.

The complete model is therefore defined as

L̃(X̂) = ~β{∀j uj(X̂)|x̂ = x0:3||ra0:3||rin||rout, x̂ ∈ X̂}

Following our common practice, it is expected that all the computed values
are leaked plus some transitions. As a starter, let us first use some coarse-grained
model that capturing all possible computations for the first Sbox:

L̃(Z) = ~β{∀j uj(Z)|z = x0||ra0||rin||rout, z ∈ Z}

Readers can easily verify that all the intermediate values appear in the code
snippet can be expressed by this restricted model L̃(Z). However, once again,
we find this x0-only model is hardly satisfying in the collapsed F-test : as we
can see in Figure 3, the blue line clearly passes the threshold, which suggests
the realistic leakage contains much more than what L̃(Z) can express.

One step further. Following the same clue we found in Section 4.1, it is
sensible to assume each ldrb loads not only the target byte, but also the other
bytes within the same word. Thus, our line (1) loads:

{rm⊗ x0 ⊕ ra0, rm⊗ x1 ⊕ ra1, rm⊗ x2 ⊕ ra2, rm⊗ x3 ⊕ ra3}

Line (2) loads
{ra0, ra1, ra2, ra3}

If we add both these values (plus their transitions) into L̃(Z), the red lines
shows that the first peak around 100-150 is gone, suggesting the leakage has
been safely captured in the collapsed model. However, the second half of the
trace still presents some extra leakage.

6Note that this only applies to the collapsed case and the F-test: the following regression
analyses and attacks are performed on the un-collapsed traces, where the protection of rm
still applies.

15

Let us further consider line (4): if it also loads a word, then

{S′(rm⊗ x0 ⊕ rin), S′(rm⊗ x0 ⊕ rin⊕ 1),

S′(rm⊗ x0 ⊕ rin⊕ 2), S′(rm⊗ x0 ⊕ rin⊕ 3)}

The tricky bit of this word is its byte-order depends on rin, which varies
from trace to trace. Therefore, if we calculate the memory bus transition leakage
from line (2) to (4), the correct form can be complicated. Nonetheless, we can
always create a conservative term Za1 where za1 = x0||rin||rout||ra1: adding
~β(Za1) covers all possible transitions between ra1 and the Sbox output bytes
from line(4), despite which byte it is transmitting to. Similarly, we add Za2 and
Za3 to L̃(Z) and construct a model that passes the F-test (i.e. the cyan line in
the left half of Figure 3).

We further verify our inference from the F-test—ldrb loads word and causes
word-wise transitions. In order to confirm such leakage does exist, we go back
to the original un-collapsed implementation and perform a linear regression
attack [15] on rm⊗ xi ⊕ rin. In theory, ldrb should load x0 only, which means
only rm⊗x0⊕rin should be computed as for the masked table look-up. However,
we did observe that the other 3 bytes also contribute to peaks on the regression
results in the right half of Figure 3. To our knowledge, the most reasonable
explanation is such leakage is from the transition from line (1) and (2), where
the entire word is loaded in both cases.

Non-profiled attacks. The existence of leakage for rm ⊗ xi ⊕ rin provides
a clue for non-profiled attacks: as all 4 bytes leaks the same way around point
100, we can raise our measurements to their 2nd order moments, which cancels
the influence of rin. However, unlike the trivial Boolean masking schemes, now
xi (or xi ⊕ xi+1) is still protected by rm. That being said, considering if we
have a “collision” (aka xi = xj) within a word, we know for sure rm⊗xi⊕rin =
rm⊗ xj ⊕ rin as both rm and rin are shared among all bytes. Such restriction
further affects the variance of the measured leakage, which could be exploited
through 2nd order attacks.

Implementing this idea, we have tested 50 plaintexts that have collisions and
50 plaintexts without collision in the first word. Within each test, we perform
a fixed-v.s.-random t-test and plot the minimal p-value in Figure 4. After 2500
fixed traces and 2500 random traces, nearly 90% of the collision cases can be
identified, which confirms the validity of our analysis above.

It is not hard to see that such an oracle provides a link between each key
bytes: in a chosen plaintext setup, attackers can manipulate the plaintext and
learn information about the secret key. Ideally, if we found 3 collisions within
the same word and figured out their collision indices through adaptively testing,
the key space for each word can be reduced to 28. Repeat that with the other
3 words, we can enumerate the remaining 232 key guess space and learn the full
key. We leave the question of what is the most efficient attack strategy open,
as it is out of the scope of this paper. Clearly, our attack strategy is no match
for the attack in [3], however, our analyses could guide potentially even more

16

10 20 30 40 50
Traces [*50]

0

2

4

6

8

10

12

14

16

18

20

-
l
o
g
1
0
(
p
-
v
a
l
u
e
)

Univariate 2nd order

10 20 30 40 50
Traces [*50]

0

2

4

6

8

10

12

14

16

18

20

-
l
o
g
1
0
(
p
-
v
a
l
u
e
)

Bivariate 2nd order

collision
non-collision

Figure 4: Collision Oracle

effective attacks that build proportional models guided by our nominal models.
From a non-profiled perspective, it also considerably extends the attack scope
from the authors’ correlation analyses [1].

Notes. We list a few more intriguing facts about this implementation/attack
which might be a worthwhile topic for future works:

• Bivariate attacks. A trivial alternative is to construct our oracle above
with bivariate leakage (i.e. one sample for x0 and one sample for x1) and
combine multiple points on the trace with the “mean-free” product. As
we can see in the right half of Figure 4, this approach turns out to be less
efficient. One possible explanation is combining 2 samples introduces two
independent sources of noise.

• Leakage for line (4). At the first glance, the word-wise leakage for line
(4) seems to be a better target. The entire word is masked with 1 byte
rm, 1 byte rout and contains 8-bit of secret key. In our experiment, we
found the influence of rm to be onerous, at least in a non-profiled setup.
However, as this leakage reveals a certain key-byte’s value (v.s. reveals
the key byte’s relation to other key bytes), we leave the exploitability of
such leakage as an open problem.

• Avoiding leakage. The exploited leakage above can be easily prevented, if
the implementation loads something else between line (1) and (2). In other
word, this is a specific implementation pitfall, not linked to the masking
scheme itself. As a comparison, the bivariate version in the right half of
Figure 4 is not affected by these subtle implementation details.

• Link to t-test. The exploited leakage can be found through 2nd order fixed-
v.s.-random (or fixed-v.s.-fixed) t-test, suppose the selected fixed constant
contains “collision”. For a randomly selected constant, the probability
that it has a “collision” in the first word is around 0.04, which poses again
a question on the “coverage” of using 1 or 2 fixed constant(-s) in leakage
detections [36].

17

4.3 A Case Study for Hardware

In this section we move on to another realistic scenario: the ASIC DES imple-
mentation that was the basis of the DPAContest [30]. As the goal of this trace
set is validating attacks, for our purpose, it serves as a highly practical/realistic
example.

The DPAContest website provides power traces for 2 unprotected DES crypto-
processors in ASIC and one FPGA based implementation. We used the first data
set, namely secmatv1 2006 04 0809. Our analysis for “secmatv3 20070924” lead
to the same conclusions.

The DES core is running at 32 MHz, while the scope captures traces at 20
GSa/s. As a consequence, the captured traces cover a 1µs time period with
20000 measurement values, whereby each clock cycle contains 626.67 measure-
ment values. To avoid any statistical influence from the input, we select the cycle
when the third round encryption flips to the fourth round encryption (around
index [6893, 7520) in the traces). Considering the implementation is parallel, we
further assume each S-box computation is independent from other concurrent
S-boxes7. Our following analysis is limited to modelling the power consumption
from the first DES S-box, while the power consumption from the other S-boxes
simply becomes noise. We do not see this as a particular restriction because this
is indeed a quite common choice for attacks/evaluations [17, 30], therefore our
results can at least apply to those cases. The entire data set contains more than
80k traces: in our experiments, the first 60k were used for constructing models
with our F-test methodology, while the last 20k traces serve as a cross-validation
set.

4.3.1 Model comparison

We conduct a similar analysis as in Section 5: first check if various models
have enough explanatory power via the F-test, and then analyse the models’
predictive power via cross validation. Note that in the case of this hardware
implementation, which corresponds to Figure ??, because there is only one
input, L̃t−ext is omitted (L̃t−ext = L̃f).

The upper half of Figure 5 plots the F-test results: clearly, transition leakage
is important and should not be neglected8. In contrast to the case we studied
in Section 5, the F-test suggests the combinatorial combinations do explain a
significant part of the measured power consumption (L̃TA). We believe this phe-
nomenon is caused by two factors: firstly, the sampling rate here is 20 GSa/s,
which might capture the temporal short-term power consumption better. Sec-
ondly, the DES S-box has a slightly more complicated critical path than the
simple XOR in the ALU: using the input and output of the S-box alone can no
longer portray all the internal combinatorial effects.

The lower half of Figure 5 plots the cross-validation results: due to the
lower SNR, only a small number of samples provide a “useful” model. Most

7This assumption can be verified via an F-test.
8Note that part of this is from the round state register, not the S-box.

18

200 400 600
Time(*0.05ns)

0

50

100

150

200

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600
Time(*0.05ns)

-0.1

-0.05

0

0.05

0.1
R
2

Cross validation R2

200 400 600
Time(*0.05ns)

0

10

20

30

40

50

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600
Time(*0.05ns)

-0.1

-0.05

0

0.05

0.1

0.15

R
2

Cross validation R2

200 400 600
Time(*0.05ns)

0

50

100

150

200

-
l
o
g
(
p
-
v
a
l
u
e
)

200 400 600
Time(*0.05ns)

-0.1

-0.05

0

0.05

0.1

R
2

Cross validation R2

Figure 5: Comparing various models with traces from DPAContest ‘SecMatV1
ASIC’ implementation of DES

other samples lead to negative cross-validation R2, which suggests significant
over-fitting effects exist. Nonetheless, L̃le achieves the best predictive power,
whilst it clearly has a low explanatory power according to the F-test.

4.3.2 Practical impact: attacks

One question remains from our discussion above: does such unaccounted leakage
contribute significantly to attack success? From the attacker’s perspective, we
stress that completeness is not necessarily relevant: a leaking barrel will of
course be “exploited” from the shortest stave, not from other “shorter-than-
average” staves. To make things worse, not all “staves” are equal in a side
channel attack: for example, exploiting Hamming distance leakage sometimes
requires a larger key guessing space, which can quickly cancel out the advantage
of capturing more leakage.

In the following experiments, we provide a profiling attack9 based on the
models in Figure 5: 60k traces were used for building the models. 1k/2k traces
were then randomly picked from the remaining 20k traces for key recovery. The
key guess can then be identified as the one corresponds to the highest prediction
accuracy. To avoid enlarging the key space, we assume the previous S-box inputs
are given: this is an unlikely case for DES, yet when the cipher has two adjacent
independent round keys, attacking the second round key may lead to a similar
scenario. Figure 6 portrays the average of the correct key rank after 100 attacks:
as we are only targeting one key byte, the maximum key rank is 64.

Similar to Figure 5, we observe that linear models, especially L̃le, perform
reasonably well in our attacks. With less than 100 traces, the correct key guess is
almost determined with certainty. This is consistent with the reports from [30]:
many powerful attacks were built on profiled/non-profiled Hamming distance
models, successfully recovering the full key with 100+ traces. The non-linear

9For the unprotected DES implementation in DPA Contest, there are however much easier
attack options [30].

19

20 40 60 80 100

*10 Traces

0

5

10

15

20

R
an

k
of

 c
or

re
ct

 k
ey

 g
ue

ss

Profiled key recovery: secmatv1_2006_04_0809

50 100 150 200

*10 Traces

0

5

10

15

20

R
an

k
of

 c
or

re
ct

 k
ey

 g
ue

ss

Profiled key recovery: secmatv3_20070924

Figure 6: Profiled key recovery

combinatorial components can contribute (see L̃TA v.s. L̃l), but the benefit
will be counteracted by the over-fitting effect (L̃f v.s. L̃le). Consistent with

all previous results, transition leakage makes a significant contribution (L̃l v.s.
L̃le): this suggests if adding transitions does not enlarge the key guess space,
one should prioritise models that contain transition leakage.

5 Application to Leakage Simulators

In recent years, various leakage simulators have been proposed in order to enable
early-stage leakage awareness [4]. Using a leakage simulator, developers can
identify and patch potential leakage at an early stage, even if they have no access
to the target device. In this section, we utilise our new test to challenge existing
leakage simulators that have either asserted models or estimated models.

Throughout this section, we use the same ARM Cortex M3 core as our target
software platform. Each profiling trace set includes 20k traces to estimate and
evaluate the model. The setup is the same as in Section 4, except for the
working frequency which we reduced to 1 MHz: a lower frequency helps to have
a clearer cycle-to-cycle view, which is essential for model building. Any model is
ultimately data dependent: a proportional leakage model such as [26] represents
the device leakage as it was captured by a specific setup. In particular, the
explanatory variables in a leakage model relate to the (micro)architecture of
the modelled processor, and the coefficients relate to the measurement setup.
With our novel technique the emphasis is to build nominal models (models that
initally at least only have 0/1 coefficients). By ensuring the processor runs at a
frequency where we have a very clean view of the clock cycles, we are in a good
position to build a nominal model. To build a proportional model on top of the
recovered nominal model, it would be possible to estimate coefficients based on
further measurement data (adjusted to the frequency that the target would run
on in the wild).

5.1 Instruction-wise modelling

As pointed out in [4], one of the remaining challenge for grey-box simulators is
“(they) target relatively simple architecture”. In fact, many tools only target

20

Scan control

Instruction
decoder and
logic control

Instruction pipeline
Read data register

Thumb instruction controller
Write data register

nENOUT

DBE

nENIN

B
bu

s

32-bit ALU

Barrel shifter

32 x 8
Multiplier

D[31:0]

DBGRQI

BREAKPTI

DBGACK

ECLK

nEXEC

ISYNC

BL[3:0]

APE

MCLK

nWAIT

nRW

MAS[1:0]

nIRQ

nFIQ

nRESET

ABORT

nTRANS

nMREQ

nOPC

SEQ

LOCK
nCPI

CPA

CPB

nM[4:0]

TBE

TBIT

HIGHZ

A
LU

bu
s

Register bank
(31 x 32-bit registers)
(6 status registers)

A
bu
s

Address
incrementer

Address register

P
C
bu
s

A[31:0]
ALE ABE

In
cr
em

e
nt
er

b
us

INSTRVALID

(a) Substantial view

Operand A Operand B

a

a’

b

b’

c’

ALU

(b) Architectural view

ASM function for ISWd2

a=(a
(1)

||a
(2)

) b=(b
(1)

||b
(2)

)

c=(c
(1)

||c
(2)

)

r

(c) Abstract view on the
code in Section 5.2

Figure 7: Different levels of abstraction for the M3 core.

algorithmic variables that may correspond to multiple intermediate states. Even
if the simulator takes binary code as its input (eg. ELMO [26]), the undocu-
mented micro-architectural effects can still cause all sort of issues [25]. Our novel
statistical tool can help to identify missed leakage: if a leakage simulator fails
our novel test, it suggests that some contributing factor is missing in its leakage
model. Note that we can only fairly compare simulators that work on the same
piece of code: considering our code is written in Thumb assembly, despite many
leakage simulators exist in literature [4], the only options we have are the ELMO
family [26, 32] and MAPS [13]. The ELMO*/ROSITA [32] model extended the
ELMO model to cover various memory issues: as the following code does not
utilise any memory instruction, it shares the same results as ELMO [26].

Architectural view Because the actual state is unknown, our analysis must
be guided by (an abstraction of) the available information about the M3 ar-
chitecture. Figure 7a shows a simplified architectural description for a realistic
ARM M3 core [24]: whilst different realisations of an M3 adhere to this architec-
ture, their micro-architectural features (such as buffers or registers) will differ.
A common micro-architectural element for such a processor architecture would
be some so-called pipeline registers: these are the input registers in Figure 7b.
Thus we can map the entire red block in Figure 7a to Figure 7b.

21

Common instruction-wise model A common simplification in many pre-
vious grey-box simulators is focusing on the execute leakage within the ALU
(i.e. Figure 7b instead of Figure 7a). This choice is quite reasonable: even if
the processor has a multi-stage pipeline, we do not necessarily care about the
leakage from fetching the instructions (as it is often not data-dependent10). Fol-
lowing our principles in Section 3.1, the reference full model for Figure 7b can
be written as

L̃f = ~β{AA′BB′}
Note that the output value C is completely determined by A and B, therefore
there is no need to add C into the model here. However, if further restrictions
(eg. the leakage of A is linear) have been added, we might need to add C when
necessary. In our experiments, we also consider the following leakage models
that correspond to the most commonly used models in the existing literature:

L̃l = ~β{A,B,C}l: this model is a linear function in the current inputs and
output. Because of the linearity of the model, it is imperative to include
the output here. E.g. if the circuit implements the bitwise-and function,
the leakage on ab cannot be described by any linear function in a and b.
In the existing literature this is often further simplified to the Hamming
weight of just the output (aka the HW model).

L̃le = ~β{A,B,C,A′, B′, C ′, (dA), (dB), (dC)}l, where dA = A ⊕ A′, dB =
B ⊕ B′, dC = C ⊕ C ′: this model further includes Hamming distance
information, which can be regarded as an extension for both the Ham-
ming weight and the pure Hamming distance model (used in the MAPS
simulator [13]); it therefore also generalises the ELMO model [26] which
only fits a single dummy for the Hamming distance leakage.

L̃TA = ~β{AB}: this model represents template attacks [11], where all relevant
current inputs are taken into consideration. In this model the output does
not have to be included because we allow interactions between the input
variables. This model can also be taken as a faithful interpretation of
“only computation leaks” [28].

Target instruction. Before any further analysis, we craft a code snippet that
can trigger the simplified leakage in Figure 7b, while not causing any other type
of data-dependent leakage from other pipeline stages (i.e. fetch and decode):

eors r2,r2 //r2=0

eors r1,r3 //r1=a’, r3=b’

nop

nop

eors r5,r7 //r5=a, r7=b **Target**

nop

nop

10Otherwise, the program has data-dependent branches, which should be checked through
information flow analysis first.

22

50 100 150 200 250
Time(*4ns)

0

50

100

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200 250
Time(*4ns)

0

1

2

3

4

5

-
l
o
g
(
p
-
v
a
l
u
e
)

50 100 150 200 250
Time(*4ns)

0

50

100

-
l
o
g
(
p
-
v
a
l
u
e
)

Figure 8: Comparing various models against L̃f

eors r5,r7 represents the cycle we are targeting at in Figure 7b: the 2 pipeline
registers are set to value a and b, where the previous values are a′ and b′. a′

and b′ are set by eors r1,r3 : since both lines use eors, a (b) and a′ (b′) should
share the same pipeline register. The 2 nop-s before/after ensure all data-
dependent leakage should be caused by eors r5,r7 : in a 3-stage pipeline micro-
processor, the previous XOR-s should already been committed and retired, while
the fetcher/decoder should be executing nop-s (which in theory, does not cause
any data-dependent leakage11).

Collapsed F-test Although we are working at an instruction level, because
each operand has 32 bits, building the full model L̃f is still infeasible. Thus,

we need to “collapse” L̃f to a smaller space. More specifically, we allow each
operand to contain 2-bit randomness (a = {a1a2....a1a2}): comparing with the
1-bit strategy in Section 3.2, this option needs more traces to achieve reasonable
statistical power. However, with 2-bit random operands we can distinguish
whether the contribution of a specific term is linear or not, which is of interest
when comparing existing simulators.

Figure 8 shows the F-test results: clearly, models that exclude transitions in
the inputs massively exceed the rejection threshold. This means that in these
cases we can conclude that the dropped transition terms have a statistically
significant impact on the model. The linear model with transitions L̃le only
marginally fails the test: thus it again demonstrates how significant the tran-
sitions are, but it also indicates that dropping higher-order terms does impact
the quality of the leakage model.

Clearly, none of the three conventional models can be regarded as complete.

11In practice, this may depend on the content of r8 in ARM cores; our experiments had
already set r8 to 0 beforehand.

23

Table 1: Leakage detection results on a 2-share ISW multiplication gadget

Instruction Device ELMO MAPS L̃b

0
//r1 = a(1), r2 = a(2)
//r3 = b(1), r4 = b(2), r5 = r

1 mov r6, r1(mov.w r6, r1 for MAPS)
2 ands r6, r3//r6 = a(1)b(1)
3 mov r7, r4(mov.w r7, r4 for MAPS) X
4 ands r7, r2//r7 = a(2)b(2)
5 ands r1, r4//r1 = a(1)b(2) X X
6 eors r1, r5//r1 = a(1)b(2) ⊕ r X X
7 ands r2, r3//r2 = a(2)b(1) X X X X
8 eors r1, r2//r1 = a(1)b(2) ⊕ r ⊕ a(2)b(1)
9 eors r6, r1//c(1) = a(1)b(2) ⊕ r ⊕ a(2)b(1) ⊕ a(1)b(1) X X
10 eors r7, r5//c2 = r ⊕ a(2)b(2) X X X X

As a consequence, simulators built on these models could miss leakage, due to
the limited explanatory power of the respective leakage models. Various effects
could be contributing here (including the bit-interaction [18]).

5.2 Gadget-wise modelling

Our novel testing methodology clearly shows that conventional models are not
sufficient. But can we use it to develop better models?

In this section we extend our study to a more complex bit of code: mask-
ing gadgets. More specifically, we consider the Thumb-encoded 2-share ISW
multiplication gadget that is given in the second column (under the header “In-
struction”) of Table 1. To avoid overloading notation, we denote the first share
of input a as a(1). Considering this larger code sequence does not control the
pipeline registers or the other components (eg. the decoding stage) in the pro-
cessor, we need to be aware that our architectural view of the ALU (Figure 7b)
may no longer be an adequate metal model for the actual reality in hardware
(Figure 7a). In other words, it is expected that a full model that corresponds
to Figure 7b is no longer complete.

Full model We now switch to a more abstract view: Figure 7c shows the
functional view of our code in Table 1. Clearly, all functional inputs a, b and
r no longer reflect any architectural port/bus/register. Having said that, as-
suming the processor starts from a constant state (in our experiments, ensured
by clearing the data registers and memory buses before the function call), all
leakage can still be bounded with all possible inputs. Thus, if both shares of a
and b and r are collapsed to 2-bit, the full model can be defined as

L̃f = ~β{A(1)A(2)B(1)B(2)R}

24

500 1000 1500 2000 2500
Time(*4ns)

0

50

100

150

200

-lo
g

(p
-v

al
ue

)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

500 1000 1500 2000 2500
Time(*4ns)

0

5

10

15

-lo
g

(p
-v

al
ue

)

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Figure 9: Model comparison based on a 2-share ISW multiplication in software

Collapsed F-test With a proper definition of L̃f , we can again challenge

L̃le in the context of this snippet. This model is of particular interest because
the two most relevant (i.e. working with Thumb code on an ARM Cortex M
processor) simulators ELMO [26] and MAPS [13] both use a subset of L̃le. We
recall that L̃l/L̃TA was massively rejected in Figure 8), thus we only tested L̃le

in the context of the more complex code snippet. The result is shown in the
left picture in in Figure 9. We can see, rather unexpectedly, that the linear
extended model is rejected by our test.

One step further. Similar to Section 4, we can try to build a better leak-
age model by adding terms and re-evaluating the model quality through the
collapsed F-test. The final model out of this ad-hoc procedure is called L̃b. De-
veloping an architectural reasoning for this model is beyond the scope of this
paper. However, Figure 9 shows that L̃b only marginally fails our test, and thus
is considerably better than the linear extended model that many modern simula-
tors use (with respect to our target processor). We build this model by observing
that most operands influence the leakage for at least 2 cycles, which suggests
that the decoding stage does significantly contribute to the data-dependent leak-
age. Consequently we include data from the decoding stage and this leads to
L̃b.

Comparing L̃b. Whilst we now have a model that explains the device leakage
of an M3 for a relatively complex gadget according to our novel test, it is still
open if this better model helps to actually improve the simulator-based leakage
detections. Thus we perform a leakage detection test (first order t-test) for the
2-share ISW implementation above, on realistic traces measured from our M3

25

core, traces from ELMO, traces from MAPS, and traces where we use L̃b to
predict leakage. The last four columns in Table 1 show the resulting leakage
detection test results.

MAPS captures all register transitions, including the pipeline registers in the
micro-architecture (command line option “-p”) [13]. MAPS reports 3 leaking
instructions in our experiments: 2 are verified by the realistic 1st order t-test,
while cycle 3 is not. Technically, this may not be a false-positive because MAPS
is using the 32-bit instruction mov.w instead of the tested 16-bit instruction
mov12.

ELMO captures the operands and transitions on the ALU data-bus [26]:
ELMO reports exactly the same leaking cycles as MAPS. Detailed analysis
shows that both cycles leak information from their operands’ transitions: ELMO
captures these as data-bus transitions, while MAPS claims these as pipeline
register transitions. Considering the pipeline registers are connected to the
corresponding ALU data-bus, this is hardly unexpected13.

Our manually constructed model leads to significantly better leakage pre-
dictions than both MAPS and ELMO as Table 1 shows. It reports the same
leaking cycles as we found in the the real measurements. Specifically, cycle 5
reports a leakage from the ALU output bus transition (aka C ⊕ C ′ in Figure
7b), which is a part of L̃le but not covered by ELMO or MAPS. We suspect
cycle 6 (1250-1500) and 9 (2000-2250) come from the decoding stage: they are
merely a preview of the leakage of cycle 7 and 10.

Extrapolating from this example, it seems clear that building simulators
based on insufficient models (in particular models that wrongly exclude parts
of the state) leads to incorrect detection results.

6 Impact of Model Completeness on Security
Proof Assumptions

It is critical to remember that the completeness property, relates to the question
— what is being leaked?. This question is also fundamental to any security proof.

6.1 Security proofs

Security proofs too come with assumptions about leakage. There are range
of different concepts that relate to leakage resilience in the literature, and a
particularly well research concept is that of proofs in the proing model as it
originated in [7]. It has become clear over the years that the type of probe that
was put forward in this original work is not sufficient to cover leakage that can

12For some reason, MAPS seems to have a problem with the 16-bit mov instruction in our
experiments.

13At this point we want to clarify that although ELMO is specifically designed for the M0
core architecture, and we are working with an M3 here, the parts of the architecture that
relate to the instructions in our implementation are identical (to the best of our knowledge)
to the M0.

26

Table 2: Leakage assumption from various models and tools (hardware gate-
level)

Name[Reference] Leakage assumption

Proof: probing

standard probe [7] L̃ = β{A,B,C}
glitch-extended probe [9] L̃ = β{AB}
transition-extended probe [9] L̃ = β{AA′, BB′, CC ′}
(1,1,0)-robust probe [9] L̃ = β{AA′BB′}

Verification
REBECCA/COCO [6, 19] L̃ = β{AA′BB′}
maskVerif(HW) [10] L̃ = β{AB,CC ′}
SILVER [5] L̃ = β{AB}

be observed in practice. We show now how this can be rephrased as assumptions
about the state in our notion.

Types of probes. We classify various concepts of probes by “what the at-
tacker can learn by probing one unit/wire”. For example, the standard ISW
probing model [7] assumes the attacker can learn the value on a wire by plac-
ing a probe on it. In the following, we call this probe as the standard probe.
Concepts like non-interference [8] and strong non-interference [8] also follow
the same probing rule: probe one variable only reveals the value on this wire.
Glitch-extended probes [9], however, allow the attacker learn all connected in-
puts from the last register layer. If the probing unit connects to k registered
inputs, the attacker can potentially learn k values with only one probe. A probe
can also be extended with transition leakage [9], where both the previous and
current values will be given to the attacker. Finally, if a probe is extended by
both glitch and transition, we use the notation from [9], denote it as (1,1,0)-
robust probe (i.e. (transition,glitch,no coupling)). Of course, an attacker can
place multiple probes and learn more values: using two standard probes may
enable to learn the same information as one transition extended probe.

We now derive the leakage models that correspond to these different types
of probes based on our exemplary circuits. It is important to bear in mind that
the various types of probing models were defined with a “white box” gate level
view. That is to say that there are no hidden elements in the circuit. If a circuit
has only two input bits (A and B) and one output bit C the attacker can learn
either A, B or C. Thus a standard probe can only capture a subset of

L̃ = β{A,B,C}.

When considering a glitch extended probe [9], probing C gives both A and
B. If there are no hidden elements then C is fully determined by A and B, and
thus we can omit the output C. Thus, the model of a glitch extended probe
corresponds to

L̃ = β{AB}.

27

Similarly, when extended with transition leakage, A, B and C are both extended
with their previous values. Namely, such probe captures a subset of

L̃ = β{AA′, BB′, CC ′}.

Finally, when the probe is extended with both glitch and transitions, the adver-
sary can potentially learn the full model:

L̃ = β{AA′BB′}.

Clearly the (1,1,0)-robust probing model contains all information that is avail-
able to an adversary for a simple (gate level) exemplary circuit. According to
our discussion above, it is thus statistically complete. For clarity, we provide a
full comparison in Table 2.

Theory vs. Practice The previous section strongly depends on the as-
sumption that our exemplary circuit was a single gate with no hidden (micro-
architectural) elements. If this assumption also holds in practice, then the
(1,1,0)-probes capture all available information. However, this is likely to only
ever hold in a white-box hardware context. This statement is particularly im-
portant when considering the use of probing based verification tools that operate
on a “high level language”: unless a verification tool is applied to a hardware
netlist, the resulting security proof does not necessarily give any security for the
resulting implementation. This is because the implementation may run on a
device that contains unknown micro-architectural elements, or types of leakage
that were not considered by the proof.

7 Discussion and conclusion

This paper puts the state that is captured by a leakage model at the centre
stage. We put forward the novel notion of “completeness” for a model. A
model is complete if it captures all relevant state information, thus suitable to
be the basis for leakage simulators or security evaluations.

Deciding if a model is complete or not initially seems like an impossible task
in the case of modern processors. Even for a 2-operand instruction, if we take
previous values into account, there are 24n values to take into account. For
n = 8 (i.e. in a small micro-controller), it is computationally expensive; but
for n = 32 (i.e. in a modern microprocessor), it becomes clearly infeasible.
We overcome this problem by introducing a novel statistical technique using
collapsed models as part of a nested F-test methodology. This test is robust
and effective as we illustrate based on a range of concrete experiments. As a
bonus, our novel methodology helps to find a statistically complete model for
a given device efficiently, with minimal device knowledge (all our examples in
this paper are in a grey box setting).

Beyond this novel test, we affirm a range of important points when it comes
to attacks and simulations:

28

• We have shown that in some reported best attacks, some leakage was
missed.

• Predictive models are not guaranteed to capture all relevant leakage.
Therefore accuracy metrics like cross-validation R2 or SSE alone should
not be the basis for a security certification in the style of [17, 2, 23].

• A complete model is essential for leakage simulators: the detection accu-
racy can be significantly affected if the leakage is overly-simplified com-
pared with realistic measurements.

• Whilst we do not cover leakage detection explicitly in our paper, there
are clear implications for detection from our findings. So-called “specific
leakage detection” [20] relies on specifying a leakage model (and therefore
state). Clearly a leakage detection that is based on an incomplete state
can miss out leaks.

Acknowledgments

The authors were funded in part by the ERC via the grant SEAL (Project
Reference 725042).

References

[1] Ryad Benadjila, Louiza Khati, Emmanuel Prouff, and Adrian Thillard.
Hardened library for aes-128 encryption/decryption on arm cortex m4 achi-
tecture.

[2] Olivier Bronchain, Julien M. Hendrickx, Clément Massart, Alex Olshevsky,
and François-Xavier Standaert. Leakage certification revisited: Bounding
model errors in side-channel security evaluations. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019
- 39th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2019, Proceedings, Part I, volume 11692 of Lecture
Notes in Computer Science, pages 713–737. Springer, 2019.

[3] Olivier Bronchain and François-Xavier Standaert. Side-channel counter-
measures’ dissection and the limits of closed source security evaluations.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):1–25, 2020.

[4] Ileana Buhan, Lejla Batina, Yuval Yarom, and Patrick Schaumont. Sok:
Design tools for side-channel-aware implementions, 2021.

[5] Knichel, D., Sasdrich, P., Moradi, A.: SILVER - statistical independence
and leakage verification. In Moriai, S., Wang, H., eds.: Advances in Cryp-
tology - ASIACRYPT 2020 - 26th International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon, South

29

Korea, December 7-11, 2020, Proceedings, Part I. Volume 12491 of Lecture
Notes in Computer Science., Springer (2020) 787–816

[6] Bloem, R., Groß, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.:
Formal verification of masked hardware implementations in the presence of
glitches. IACR Cryptol. ePrint Arch. 2017 (2017) 897

[7] Ishai, Y., Sahai, A., Wagner, D.A.: Private circuits: Securing hardware
against probing attacks. In Boneh, D., ed.: Advances in Cryptology -
CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 17-21, 2003, Proceedings. Volume 2729
of Lecture Notes in Computer Science., Springer (2003) 463–481

[8] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub,
P., Zucchini, R.: Strong non-interference and type-directed higher-order
masking. In Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S., eds.: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28,
2016, ACM (2016) 116–129

[9] Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Com-
posable masking schemes in the presence of physical defaults & the robust
probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3)
(2018) 89–120

[10] Barthe, G., Beläıd, S., Cassiers, G., Fouque, P., Grégoire, B., Standaert,
F.: maskverif: Automated verification of higher-order masking in presence
of physical defaults. In Sako, K., Schneider, S.A., Ryan, P.Y.A., eds.: Com-
puter Security - ESORICS 2019 - 24th European Symposium on Research
in Computer Security, Luxembourg, September 23-27, 2019, Proceedings,
Part I. Volume 11735 of Lecture Notes in Computer Science., Springer
(2019) 300–318

[11] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2002, 4th Interna-
tional Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, pages 13–28, 2002.

[12] Jacob Cohen. Chapter 9 - f tests of variance proportions in multiple re-
gression/correlation analysis. In Jacob Cohen, editor, Statistical Power
Analysis for the Behavioral Sciences, pages 407 – 453. Academic Press,
1977.

[13] Yann Le Corre, Johann Großschädl, and Daniel Dinu. Micro-architectural
power simulator for leakage assessment of cryptographic software on ARM
cortex-m3 processors. In Junfeng Fan and Benedikt Gierlichs, editors,
Constructive Side-Channel Analysis and Secure Design - 9th International

30

Workshop, COSADE 2018, Singapore, April 23-24, 2018, Proceedings, vol-
ume 10815 of Lecture Notes in Computer Science, pages 82–98. Springer,
2018.

[14] Yves Crama and Peter L. Hammer, editors. Boolean Models and Methods in
Mathematics, Computer Science, and Engineering. Cambridge University
Press, 2010.

[15] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier
Standaert. Univariate side channel attacks and leakage modeling. J. Cryp-
togr. Eng., 1(2):123–144, 2011.

[16] François Durvaux, François-Xavier Standaert, and Santos Merino Del Pozo.
Towards easy leakage certification: extended version. J. Cryptogr. Eng.,
7(2):129–147, 2017.

[17] François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-
Charvillon. How to certify the leakage of a chip? In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Pro-
ceedings, volume 8441 of Lecture Notes in Computer Science, pages 459–
476. Springer, 2014.

[18] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing:
Friend or foe? IACR Transactions on Cryptographic Hardware and Em-
bedded Systems, 2020(1):152–174, Nov. 2019.

[19] Barbara Gigerl, Vedad Hadzic, Robert Primas, Stefan Mangard, and Rod-
erick Bloem. Coco: Co-design and co-verification of masked software im-
plementations on cpus. IACR Cryptol. ePrint Arch., 2020:1294, 2020.

[20] Benjamin Jun Gilbert Goodwill, Josh Jaffe, Pankaj Rohatgi, et al. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, volume 7, pages 115–136, 2011.

[21] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, pages 388–397, 1999.

[22] kokke. Tiny aes in c.

[23] Liran Lerman, Nikita Veshchikov, Olivier Markowitch, and François-Xavier
Standaert. Start simple and then refine: Bias-variance decomposition as a
diagnosis tool for leakage profiling. IEEE Trans. Computers, 67(2):268–283,
2018.

[24] ARM Limited. Arm7tdmi technical reference manual.
https://developer.arm.com/documentation/ddi0210/c/, 2004.

31

[25] Ben Marshall, Dan Page, and James Webb. Miracle: Micro-architectural
leakage evaluation. IACR Cryptol. ePrint Arch., 2021. https://eprint.

iacr.org/2021/261.

[26] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practi-
cal tools for side channel aware software engineering: ’grey box’ modelling
for instruction leakages. In 26th USENIX Security Symposium (USENIX
Security 17), pages 199–216, Vancouver, BC, 2017. USENIX Association.

[27] Lauren De Meyer, Elke De Mulder, and Michael Tunstall. On the effect of
the (micro)architecture on the development of side-channel resistant soft-
ware. IACR Cryptol. ePrint Arch., 2020:1297, 2020.

[28] Silvio Micali and Leonid Reyzin. Physically observable cryptography (ex-
tended abstract). In Moni Naor, editor, Theory of Cryptography, First
Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA,
February 19-21, 2004, Proceedings, volume 2951 of Lecture Notes in Com-
puter Science, pages 278–296. Springer, 2004.

[29] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. In Sylvain Guilley, editor, Construc-
tive Side-Channel Analysis and Secure Design - 8th International Work-
shop, COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected
Papers, volume 10348 of Lecture Notes in Computer Science, pages 282–
297. Springer.

[30] Télécom ParisTech. Dpa contest 2008/2009.

[31] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In Josyula R. Rao and Berk
Sunar, editors, Cryptographic Hardware and Embedded Systems - CHES
2005, 7th International Workshop, Edinburgh, UK, August 29 - September
1, 2005, Proceedings, volume 3659 of Lecture Notes in Computer Science,
pages 30–46. Springer, 2005.

[32] Madura A. Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni,
Markus Wagner, and Yuval Yarom. Rosita: Towards automatic elimination
of power-analysis leakage in ciphers. CoRR, abs/1912.05183, 2019.

[33] Galit Shmueli. To explain or to predict? Statist. Sci., 25(3):289–310, 08
2010.

[34] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Antoine
Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Cologne, Germany, April 26-30, 2009. Proceedings, volume
5479 of Lecture Notes in Computer Science, pages 443–461. Springer, 2009.

32

[35] Carolyn Whitnall and Elisabeth Oswald. Profiling DPA: efficacy and ef-
ficiency trade-offs. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th Inter-
national Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Pro-
ceedings, volume 8086 of Lecture Notes in Computer Science, pages 37–54.
Springer, 2013.

[36] Carolyn Whitnall and Elisabeth Oswald. A cautionary note regarding the
usage of leakage detection tests in security evaluation. Cryptology ePrint
Archive, Report 2019/703, 2019.

[37] Carolyn Whitnall and Elisabeth Oswald. A critical analysis of ISO 17825
(’testing methods for the mitigation of non-invasive attack classes against
cryptographic modules’). In Advances in Cryptology - ASIACRYPT 2019 -
25th International Conference on the Theory and Application of Cryptology
and Information Security, Kobe, Japan, December 8-12, 2019, Proceedings,
Part III, pages 256–284, 2019.

[38] Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert. The
myth of generic dpa...and the magic of learning. In Topics in Cryptology -
CT-RSA 2014 - The Cryptographer’s Track at the RSA Conference 2014,
San Francisco, CA, USA, February 25-28, 2014. Proceedings, pages 183–
205, 2014.

A PI, HI & Assumption error

Leakage certification approaches such as described in [17, 16, 2] (based on the
general framework introduced by Standaert, Malkin and Yung [34]) aim at pro-
viding guarantees about the quality of an evaluation, based on estimating the
amount of information leaked by a target device.

In order to estimate the amount of leaked information (i.e. the mutual infor-
mation), the intermediate state must be selected as a first step. In our notation,
this means the user must correctly provide an enumerable state Z that ensures
the corresponding model L̃(Z) is close to the full model L̃(X) w.r.t. its explana-
tory power. Then, one can estimate the mutual information of MI(Z;L) using
concepts like perceived information (PI) or hypothetical information (HI) [2].

The common choice for Z is often a variable that relates to a single S-box
[17, 16, 2]: because the MI calculation runs through all possible values of Z, it
corresponds to a template attack. This extremely popular choice is potentially
inadequate because the device state is likely to be considerably more complex (as
we have argued before), and it will likely include at least transition leaks, which
cannot be captured in this way. Consequently, prior to any of these leakage
certification approaches, it is imperative to test what state must be considered.

33

(a) HD leakage without any noise (b) HD leakage with noise variance 0.1

Figure 10: Moment based detection of “assumption error”

A.1 Estimating “assumption errors”

In [17] Durvaux et al. proposed a technique to test for (the so-called) assump-
tion errors in the leakage model [17]. One could be tempted to regard this as an
alternative solution for testing completeness. Unlike our F-test, their approach
is based on checking if the distance between pairs of simulated samples (gen-
erated with a profiled model) and the distance between simulated and actual
samples behave differently.

However, their technique of checking assumption errors is about ensuring
that the estimation of MI is accurate. In order words, their technique is not
an effective way to test whether Z is complete or not. To demonstrate this, we
present a simple experiment that is based on the common example of leakage
from an AES S-box output (S(p1⊕ k1), where p1 is the plaintext byte and k1 is
the corresponding key byte). Let us further assume that the leakage function L
depends on not only on S(p1⊕k1), but also the previous S-box output S(p0⊕k0):

L = HW (S(p1 ⊕ k1)) +HD(S(p1 ⊕ k1), S(p0 ⊕ k0)).

Taking advantage of the code from [16], we can validate the power of de-
tecting the above “assumption error”: Figure 10a portrays the moment-based
estimation on the leakage function above in a noise free setting. Each line cor-
responds to a model value, and if any value leads to a line that keeps getting
“darker”, it would suggest the p-value is small enough to confidently report an
“assumption error”. Even if there is no noise (left figure), only the kurtosis
marginally reports errors. With some small noise added in (Figure 10b), the
situation remains the same. Only the kurtosis gives some small p-values, but
there is no statistical decision criterion that enables us to draw a firm conclusion
here. This outcome should not be surprising. Because p0 is an independent ran-
dom variable, the Hamming distance part follows Binomial distribution B

(
n
2 ,

n
4

)
where n is the bit-length of p0 (for AES, n = 8). With Z = P1, the estimated
model would be:

M = HW (S(p1 ⊕ k1)) +N
(n

2
,
n

4

)
where N (µ, σ2) represents the Gaussian distribution. For any fixed value of

34

Figure 11: F-test with noise variance 0.1

p1 ⊕ k1, the “distance between pairs of simulated samples” becomes

DM =
{
l1 − l2|l1 ∈ N

(n
2
,
n

4

)
, l2 ∈ N

(n
2
,
n

4

)}
Meanwhile, “the distance between simulated and actual samples” becomes:

DLM =
{
l1 − l2|l1 ∈ N

(n
2
,
n

4

)
, l2 ∈ B (0.5, n)

}
It is well-known that with reasonably large n, the binomial distribution will

asymptotically approximate the Gaussian distribution. The idea behind this test
in [17] is based on an expected inconsistency between the unexplained leakage
distribution and estimated Gaussian distribution: the test becomes powerless if
the former equals/stays close to Gaussian, which is not really a rare case in side
channel applications.

In contrast, our F-test can detect such an “error” with ease, see Fig. 11.
The advantage here requires though to explicitly assign X = {P1P0}. Without
some guess work (or a priori knowledge) one may need to use a collapsed full
model instead, say using 1 bit for each plaintext byte and testing on a trace set
larger than 216.

We want to emphasize at this point that these previous works did not aim for
testing the completeness of the state as such, so our findings do not invalidate
their statements. We merely wish to point out that there is a difference between
their ideas of “assumption errors” and our notion of “completeness”.

A.2 HI&PI

Bronchain, Hendrickx and Massart et al. proposed that using the concepts of
Perceived Information (PI) and Hypothetical Information (HI), one can “bound
the information loss due to model errors quantitatively” by comparing these
two metrics, estimate the true unknown MI and obtain the “close to worst-
case” evaluations [2].

It is critical to remember the “worse-case” are restricted the computed MI:
back to previous our example, estimating HI and PI still bound the correct
mutual information MI(K1;P1, L). The additional Hamming distance term

35

affects how we should interpret this metric: when combing multiple key-bytes
to obtains the overall security-level, MI(K1;P1, L) might not be as helpful as
one may hope.

More concretely, we tested our example simulation leakage with the code
provided in [2]: as we can see in Figure 12, PI and HI still bounds the correct
MI. The only difference here is MI itself decreases as P0 and K0 are not taken
into consideration.

Figure 12: PI and HI estimation for the leakage function

A.3 Bias-Variance Decomposition

Lerman, Veshchikov and Markowitch et al. also proposed a diagnosis tool
based on the bias-variance decomposition [23]. The goal of their tool is purely
predictive—“guiding the design of the best profiled attack”. In other words,
the “syndrome to diagnose” is still restricted to the specific selected intermedi-
ate state. In our example, the additional Hamming distance will be taken as
part of the random noise. Admittedly, unless the missing Hamming distance is
taken into the model building procedure, any corresponding leakage will always
end up in the noise. Therefore, any model can be perfectly estimated, yet that
does not guarantee it is complete, as the estimated noise is not necessarily pure
measurement noise.

36

