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Abstract

We study a quantum cryptography based on an algorithm for determining simultaneously all
the mappings of a Boolean function using an entangled state. The security of our cryptography
is based on the Ekert 1991 protocol, which uses an entangled state. Eavesdropping destroys the
entanglement. Alice selects a secret function from the number of possible function types. Bob’s
aim is then to determine the selected function (a key) without an eavesdropper learning it. In
order for both Alice and Bob to be able to select the same function classically, in the worst case
Bob requires multiple queries to Alice. In the quantum case however, Bob requires just a single
query. By measuring the single entangled state, which is sent to him by Alice, Bob can obtain
the function that Alice selected. This quantum key distribution method is faster compared to the
multiple queries that would be required in the classical case.
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I. INTRODUCTION

Some of the developments in quantum algorithms relevant for the present work are as follows: The Bernstein—
Vazirani algorithm [1, 2], published in 1993, can be considered an extension of the Deutsch—Jozsa algorithm [3—5].
In 1994, algorithms were proposed by Simon [6] and by Shor [7]. In 1996, Grover [8] presented strong arguments
for exploring the computational possibilities offered by quantum mechanics. In 2020, a parallel computation for all
of the combinations of values in variables of a logical function was proposed [9]. In 2021, concrete quantum circuits
for addition of two numbers of arbitrary length were proposed [10]. Quantum cryptography based on an algorithm
for determining a function using qudit systems was studied by Nagata et al. [11]. Continuous-variable quantum
computing and its applications to cryptography were proposed by Diep et al. [12].

Here, we study a quantum cryptography based on an algorithm for determining simultaneously all the mappings of
a Boolean function using an entangled state. The security of our cryptography is based on the Ekert 1991 protocol
[13], which uses an entangled state. Under this protocol, eavesdropping will destroy the entanglement. Our proposed
cryptographic scheme is as follows: Alice selects a secret function from the possible function types. Bob’s aim is then
to determine the selected function (a key) without an eavesdropper learning it. In order for both Alice and Bob to
be able to select the same function classically, in the worst case Bob would require multiple queries to Alice. In the
quantum case however, Bob requires just a single query. By measuring the single entangled state that is sent to him
by Alice, Bob can obtain the function that Alice selected. This quantum key distribution method is faster than the
classical case, which would require multiple classical queries.

II. QUANTUM ALGORITHM FOR DETERMINING ALL THE 2 MAPPINGS OF A BOOLEAN

FUNCTION

In this section, we propose a quantum cryptography based on an algorithm for determining a function using qubit
systems. We consider the Boolean function f : {0, 1} → {0, 1}. Alice knows all the 2 mappings f(0) and f(1) of
the function, that is, f(x) itself. Bob knows none of them. His aim is to obtain all of the mappings without an
eavesdropper learning them. In the classical case, Bob needs two queries. In the quantum case, Bob needs just a
single query. Hence, the quantum cryptography is faster than a classical cryptography by a factor of 2.

Quantum superposition is a fundamental feature of many quantum algorithms. It allows quantum computers to
evaluate simultaneously the mappings of a function f(x) for many different values of x. Suppose that

f : {0, 1} → {0, 1} (1)

is a Boolean function with a one-bit domain and range. A convenient way of computing the function on a quantum
computer is to consider a two-qubit quantum computer that starts with the state |x, y�, where x and y are variables
used in mapping f . The abbreviation |x, y� stands for |x� ⊗ |y�.

Like in the Deutsch—Jozsa problem, we are given a black box quantum computer known as an oracle that implements
some function f : {0, 1}2 → {0, 1}. For the quantum algorithms to work, the oracle computing f(x) from x has to be
a quantum oracle that doesn’t decohere x. It also mustn’t leave any copy of x lying around at the end of an oracle
call. We have the function f implemented as a quantum oracle. The oracle maps the state |x�⊗ |y� to |x�⊗ |y⊕f(x)�,
where ⊕ stands for addition modulo 2.

It is possible to transform the state |x, y� into

|x, y ⊕ f(x)�, (2)

by applying the quantum oracle. Let Uf denote the transformation defined by the mapping

Uf |x, y� = |x, y ⊕ f(x)�. (3)

Here, (2) and (3) meet the category of Boolean algebras because their outcomes meet this category. Therefore,
quantum computing meets the category of Boolean algebras.

We want to develop quantum algorithms that would allow for the ultimate parallel processing. The way to do it
is to find the actual ultimate parallelism while keeping in mind the physical quantum phenomena. To that end, we
insert an imaginary number i into the usual phase kickback formation and the mapping Uf , and define the following
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formulas:

Uf |0�(|0� − i|1�)/
√

2 = +|0�(|f(0)� − i|f(0)�)/
√

2

=

�
(−i)f(0)|0�(|0� − i|1�)/

√
2 if f(0) = 0,

(−i)f(0)|0�(|0�+ i|1�)/
√

2 if f(0) = 1.
(4)

Uf |1�(|0� − |1�)/
√

2 = +|1�(|f(1)� − |f(1)�)/
√

2

=

�
(−1)f(1)|1�(|0� − |1�)/

√
2 if f(1) = 0,

(−1)f(1)|1�(|0� − |1�)/
√

2 if f(1) = 1,
(5)

where |1� = |0� and |0� = |1�.
The phase of the outcome of (4) is different from the phase of the outcome of (5). Adding (4) and (5) gives (7). A

mathematical problem can be solved if the input state is defined as (7) because the mapping Uf is defined. Here we
use a phase effect, which is a quantum phenomenon.

We define the following notations:

|−�y =
|0� − i|1�√

2
, |+�y =

|0�+ i|1�√
2

, |−�x =
|0� − |1�√

2
. (6)

We further define the input state as follows, using an imaginary number i:

|ψ0� = α|0�|−�y + β|1�|−�x, 
ψ0|ψ0� = 1 ⇐ |α|2 + |β|2 = 1, α �= 0, β �= 0. (7)

Applying Ufi , (i = 0, 1, 2, 22
1 − 1), to |ψ0�, results in Ufi |ψ0� = |ψ1�i, therefore leaving us with one of 22

1

cases,

where the power 1 of 22
1

indicates the case of one qubit:

|ψ1�0 = α|0�|−�y + β|1�|−�x iff f0(0) = 0, f0(1) = 0,

|ψ1�1 = −iα|0�|+�y − β|1�|−�x iff f1(0) = 1, f1(1) = 1,

|ψ1�2 = α|0�|−�y − β|1�|−�x iff f2(0) = 0, f2(1) = 1,

|ψ1�3 = −iα|0�|+�y + β|1�|−�x iff f3(0) = 1, f3(1) = 0. (8)

Once we have (8), we know simultaneously both f(0) and f(1) by measuring the single output state. How can
we obtain (8)? Note that we cannot obtain it solely by using the usual phase kickback formation as this formation
changes only the global phase and global phases are indistinguishable. For this reason, such a situation must be
avoided.

Let us consider for distinguishing between the four states. Unfortunately, they are not orthogonal each other. Thus
we might consider we cannot distinguish between the four states. In (8) the operations on the mapping look fine to
us because the process here is based upon the phase that was obtained from the kickback formation. Therefore, the
issue of orthogonality is not so essential here as we consider the phase of each state to be guaranteed.

So, by measuring |ψ1�i, we can determine simultaneously all the 2 mappings of fi(x) for all x. Interestingly, the
quantum algorithm enables us to determine a perfect property of fi(x), namely, fi(x) itself, and does it faster than a
classical apparatus would. Classically namely, at least 2 evaluations would be necessary to that end.

Based on the above, our cryptography is as follows:

• Alice randomly selects a function fi.

• She applies Ufi to |ψ0� and obtains an entangled state |ψ1�i.
• She sends the entangled state |ψ1�i to Bob.

• Bob compares (by measurement) the outcome state |ψ1�i with the input state and obtains all the 2 mappings
with the respective values for the function fi.

• Bob learns what function Alice selected.

• Alice and Bob compare their functions (a subset of the results).

• If Eve eavesdropped, Alice and Bob will each have a different function.

• If Eve did not eavesdrop, Alice and Bob will each have the same function.

Alice and Bob perform the protocol described above many times in order to obtain enough secret keys (functions) for
a secure communication.
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A. Concrete Example

We present a concrete example for a full and natural understanding of our quantum communication method. Let
us consider the case where Alice selects a function f1. Bob wants to know all the following mappings:

f(0) =?, f(1) =?. (9)

In the classical case, Bob requires 2 evaluations. In the quantum case, Bob requires just one query.
Alice prepares the following input state:

|ψ1�0 = α|0�|−�y + β|1�|−�x (10)

Next, Alice applies Uf1 to |ψ0� to obtain Uf1 |ψ0� = |ψ1�1. After that, she has the following output state:

|ψ1�1 = −iα|0�|+�y − β|1�|−�x (11)

Bob enquires with Alice as to what phase factors of the quantum output state Alice has. In this example, the quantum
phase factors of the output state are as follows:

−i,−1. (12)

With this information, he then obtains simultaneously all the mappings of f1:

f(0) = 1, f(1) = 1. (13)

Finally, Bob learns that Alice selected a particular f1. Again, this takes less than a classical apparatus would take,
i.e. at least 2 evaluations. Likewise, Alice can select either of the 4 combinations of the mappings. That is, our
argumentation is true for each fixed parameter i.

III. QUANTUM ALGORITHM FOR DETERMINING ALL THE 3 MAPPINGS OF A BOOLEAN

FUNCTION

In this section, we propose a quantum cryptography based on an algorithm for determining a function using qutrit
systems. Consider the Boolean function f : {0, 1, 2} → {0, 1}. In our protocol, Alice will know all the 3 mappings
f(0), f(1), and f(2), that is, f(x) itself. Bob will know none of them. His aim will therefore be to obtain all of
them without an eavesdropper learning them. In the classical case, Bob needs three queries to learn all the mappings.
In the quantum case, Bob needs just one single query. Hence, the quantum cryptography is faster than a classical
cryptography by a factor of 3.

Quantum superposition is a fundamental feature of many quantum algorithms. It allows quantum computers to
evaluate simultaneously the mappings of a function f(x) for many different x. Suppose that

f : {0, 1, 2} → {0, 1} (14)

is a Boolean function known to Alice but not known to Bob. Bob’s aim is therefore to determine all the mappings

f(0) =?, f(1) =?, f(2) =?, (15)

that is, f(x) itself. In the classical case, Bob requires 3 queries to establish all the mappings. In the quantum case,
Bob requires just a single query. Therefore, the quantum communication is faster than a classical communication,
which would require at least 3 queries.

In a qutrit system, Alice can select one of the 8 possible functions. Later we introduce a parameter i = 0, 1, 2, ..., 7
to distinguish between these functions.

Let us discuss our quantum cryptography using qutrit systems. We introduce the transformation Uf defined by the
map

Uf |x�|j� = |x�|(f(x) + j) mod 3�. (16)

From the map Uf , we insert an imaginary number i and define the following formulas:

Uf |0�(|0� − i|1�)/
√

2 = +|0�(|f(0)� − i|f(0) + 1�)/
√

2

=

�
|0�(|0� − i|1�)/

√
2 if f(0) = 0,

|0�(|1� − i|2�)/
√

2 if f(0) = 1.
(17)

Uf |1�(|0� − |1�)/
√

2 = +|1�(|f(1)� − |f(1) + 1�)/
√

2

=

�
|1�(|0� − |1�)/

√
2 if f(1) = 0,

|1�(|1� − |2�)/
√

2 if f(1) = 1.
(18)
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We define a quantum state in a three-dimensional space |φ� as follows:

|φ� =
1√
3

(ω3|0�+ ω2|1�+ ω|2�), (19)

where ω = e2πi/3. We have the following formula by the phase kickback formation:

Uf |2�|φ� = ωf(2)|2�|φ�. (20)

In fact, from the map Uf , we can define the following formulas:

Uf |2�
1√
3

(ω3|0�+ ω2|1�+ ω|2�)

= |2� 1√
3

(ω3|f(2)�+ ω2|f(2) + 1�+ ω|f(2) + 2�)

=

�
|2� 1√

3
(ω3|0�+ ω2|1�+ ω|2�) if f(2) = 0,

ω|2� 1√
3
(ω3|0�+ ω2|1�+ ω|2�) if f(2) = 1.

(21)

Observe that

(Uf )3|x�|j� = |x�|(3f(x) + j) mod 3� = |x�|j�. (22)

Therefore, the map Uf is a cyclic transformation. Here, we define the normalized input state (
ψ0|ψ0� = 1) as follows:

|ψ0� = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�
+ γ|2�|φ�,

|α|2 + |β|2 + |γ|2 = 1, α �= 0, β �= 0, γ �= 0. (23)

Let us introduce a parameter i. Later, we will see that all the information for fi is embedded into a single output
state. This means that all the information for fi can be learned from the single output state. This is the key of our
quantum communication.

At the beginning of our communication protocol, Alice applies Ufi , (i = 0, 1, ..., 7) to |ψ0�, Ufi |ψ0� = |ψ1�i, the
output state is one of 8 cases:

|ψ1�0 = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�
+ γ|2�|φ�

iff f0(0) = 0, f0(1) = 0, f0(2) = 0, (24)

|ψ1�1 = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�
+ ωγ|2�|φ�

iff f1(0) = 0, f1(1) = 0, f1(2) = 1, (25)

|ψ1�2 = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |1� − |2�√
2

�
+ γ|2�|φ�

iff f2(0) = 0, f2(1) = 1, f2(2) = 0, (26)

|ψ1�3 = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |1� − |2�√
2

�
+ ωγ|2�|φ�

iff f3(0) = 0, f3(1) = 1, f3(2) = 1, (27)

|ψ1�4 = α|0�
� |1� − i|2�√

2

�
+ β|1�

� |0� − |1�√
2

�
+ γ|2�|φ�

iff f4(0) = 1, f4(1) = 0, f4(2) = 0, (28)

|ψ1�5 = α|0�
� |1� − i|2�√

2

�
+ β|1�

� |0� − |1�√
2

�
+ ωγ|2�|φ�

iff f5(0) = 1, f5(1) = 0, f5(2) = 1, (29)
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|ψ1�6 = α|0�
� |1� − i|2�√

2

�
+ β|1�

� |1� − |2�√
2

�
+ γ|2�|φ�

iff f6(0) = 1, f6(1) = 1, f6(2) = 0, (30)

|ψ1�7 = α|0�
� |1� − i|2�√

2

�
+ β|1�

� |1� − |2�√
2

�
+ ωγ|2�|φ�

iff f7(0) = 1, f7(1) = 1, f7(2) = 1. (31)

Let us consider for distinguishing between the eight states. Unfortunately, they are not orthogonal each other.
Thus we might consider we cannot distinguish between the eight states. In (24)-(31) the operations on the mapping
look fine to us because the process here is based upon the phase that was obtained from the kickback formation.
Therefore, the issue of orthogonality is not so essential here as we consider the phase of each state to be guaranteed.

By measuring the state |ψ1�i sent by Alice, Bob can determine simultaneously all the 3 mappings of fi(x) for all
x(= 0, 1, 2). Interestingly, the quantum communication gives us the ability to transmit a perfect property of fi(x),
namely, fi(x) itself. Moreover, the quantum transmission is faster than a classical communication, which would
require at least 3 queries.

With the above, our cryptography is as follows:

• Alice selects a function fi at random.

• She applies Ufi to |ψ0� and obtains an entangled state |ψ1�i.
• She sends the entangled state |ψ1�i to Bob.

• Bob compares (by measurement) the result state |ψ1�i with the input state and obtains all the 3 mappings with
regards to the function fi.

• Bob learns what function Alice selected.

• Alice and Bob compare their functions (a subset of the results).

• If Eve eavesdropped, Alice and Bob will each have a different function.

• If Eve did not eavesdrop, Alice and Bob will each have the same function.

Alice and Bob perform the protocol described above many times in order to obtain enough secret keys (functions).

A. Concrete Example

For a full and natural understanding of our quantum communication method, we present below a concrete example
for a qutrit system. Let us consider the case where Alice selects a function f1. Bob wants to know all the mappings

f(0) =?, f(1) =?, f(2) =?. (32)

In the classical case, Bob requires 3 evaluations. In the quantum case, Bob requires just one query.
At the beginning, Alice prepares the following input state:

|ψ0� = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�
+ γ|2�|φ�. (33)

Next, Alice applies Uf1 to |ψ0� obtaining Uf1 |ψ0� = |ψ1�1. Her output state is

|ψ1�1 = α|0�
� |0� − i|1�√

2

�
+ β|1�

� |0� − |1�√
2

�
+ ωγ|2�|φ�. (34)

Bob enquires with Alice as to what phase factors of the quantum output state Alice has. In this example, the quantum
phase factors of the output state are as follows:

1, 1, ω. (35)

Then Bob obtains simultaneously all the mappings of f1:

f(0) = 0, f(1) = 0, f(2) = 1. (36)

Finally, Bob learns that Alice selected the mapping f1. Again, the quantum method is faster than a classical apparatus,
which would require at least 3 evaluations. Likewise, Alice can select any of the 8 combinations of the mappings.
That is, our argumentation holds for each fixed parameter i.
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IV. QUANTUM ALGORITHM FOR DETERMINING ALL THE 4 MAPPINGS OF A BOOLEAN

FUNCTION

In this section, we propose a quantum cryptography based on an algorithm for determining a function using qubit
systems. Consider the Boolean function f : {0, 1}2 → {0, 1}. Assume that Alice knows all the 4 mappings f(0, 0),
f(0, 1), f(1, 0), and f(1, 1), that is, f(x) itself. Assume further that Bob knows none of them. His aim is then
to obtain all of these mapping values without an eavesdropper learning them. In the classical case, Bob needs four
queries. In the quantum case, Bob needs just a single query. Thus, the quantum cryptography is faster than a classical
cryptography by a factor of 4.

We propose a quantum algorithm for determining the 22 mappings of a function. Suppose that

f : {0, 1}2 → {0, 1} (37)

is a Boolean function. We want to know simultaneously the 22 mappings f(0, 0), f(0, 1), f(1, 0), and f(1, 1). Later we
will see a complete match between our results and a Boolean algebra F2 [14]. In the Boolean algebra F2, the functions
are of two variables. For example, f(x, y) is the function where x and y are variables used in mapping f . In what
follows, the abbreviation f(xy) will stand for f(x, y).

We define the input state as follows using an application of (7):

|ψ0� = a1|00�|−�y + a2|01�|−�y + a3|10�|−�x + a4|11�|−�x,

ψ0|ψ0� = 1 ⇐ |a1|2 + |a2|2 + |a3|2 + |a4|2 = 1, a1 �= 0, a2 �= 0, a3 �= 0, a4 �= 0. (38)

From the mapping Uf , we can define the following formulas:

Uf |00�|−�y =

�
(−i)f(00)|00�|−�y if f(00) = 0,

(−i)f(00)|00�|+�y if f(00) = 1.
(39)

Uf |01�|−�y =

�
(−i)f(01)|01�|−�y if f(01) = 0,

(−i)f(01)|01�|+�y if f(01) = 1.
(40)

Uf |10�|−�x =

�
(−1)f(10)|10�|−�x if f(10) = 0,

(−1)f(10)|10�|−�x if f(10) = 1.
(41)

Uf |11�|−�x =

�
(−1)f(11)|11�|−�x if f(11) = 0,

(−1)f(11)|11�|−�x if f(11) = 1.
(42)

Applying Ufi , (i = 0, 1, 2, ..., 22
2 − 1), to |ψ0� gives Ufi |ψ0� = |ψ1�i and leaves us with one of the 22

2

cases:

|ψ1�0 = a1|00�|−�y + a2|01�|−�y + a3|10�|−�x + a4|11�|−�x
iff f0(00) = 0, f0(01) = 0, f0(10) = 0, f0(11) = 0, (43)

|ψ1�1 = a1|00�|−�y + a2|01�|−�y + a3|10�|−�x − a4|11�|−�x
iff f1(00) = 0, f1(01) = 0, f1(10) = 0, f1(11) = 1, (44)

|ψ1�2 = a1|00�|−�y + a2|01�|−�y − a3|10�|−�x + a4|11�|−�x
iff f2(00) = 0, f2(01) = 0, f2(10) = 1, f2(11) = 0, (45)

|ψ1�3 = a1|00�|−�y + a2|01�|−�y − a3|10�|−�x − a4|11�|−�x
iff f3(00) = 0, f3(01) = 0, f3(10) = 1, f3(11) = 1, (46)

|ψ1�4 = a1|00�|−�y − ia2|01�|+�y + a3|10�|−�x + a4|11�|−�x
iff f4(00) = 0, f4(01) = 1, f4(10) = 0, f4(11) = 0, (47)
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|ψ1�5 = a1|00�|−�y − ia2|01�|+�y + a3|10�|−�x − a4|11�|−�x
iff f5(00) = 0, f5(01) = 1, f5(10) = 0, f5(11) = 1, (48)

|ψ1�6 = a1|00�|−�y − ia2|01�|+�y − a3|10�|−�x + a4|11�|−�x
iff f6(00) = 0, f6(01) = 1, f6(10) = 1, f6(11) = 0, (49)

|ψ1�7 = a1|00�|−�y − ia2|01�|+�y − a3|10�|−�x − a4|11�|−�x
iff f7(00) = 0, f7(01) = 1, f7(10) = 1, f7(11) = 1, (50)

|ψ1�8 = −ia1|00�|+�y + a2|01�|−�y + a3|10�|−�x + a4|11�|−�x
iff f8(00) = 1, f8(01) = 0, f8(10) = 0, f8(11) = 0, (51)

|ψ1�9 = −ia1|00�|+�y + a2|01�|−�y + a3|10�|−�x − a4|11�|−�x
iff f9(00) = 1, f9(01) = 0, f9(10) = 0, f9(11) = 1, (52)

|ψ1�10 = −ia1|00�|+�y + a2|01�|−�y − a3|10�|−�x + a4|11�|−�x
iff f10(00) = 1, f10(01) = 0, f10(10) = 1, f10(11) = 0, (53)

|ψ1�11 = −ia1|00�|+�y + a2|01�|−�y − a3|10�|−�x − a4|11�|−�x
iff f11(00) = 1, f11(01) = 0, f11(10) = 1, f11(11) = 1, (54)

|ψ1�12 = −ia1|00�|+�y − ia2|01�|+�y + a3|10�|−�x + a4|11�|−�x
iff f12(00) = 1, f12(01) = 1, f12(10) = 0, f12(11) = 0, (55)

|ψ1�13 = −ia1|00�|+�y − ia2|01�|+�y + a3|10�|−�x − a4|11�|−�x
iff f13(00) = 1, f13(01) = 1, f13(10) = 0, f13(11) = 1, (56)

|ψ1�14 = −ia1|00�|+�y − ia2|01�|+�y − a3|10�|−�x + a4|11�|−�x
iff f14(00) = 1, f14(01) = 1, f14(10) = 1, f14(11) = 0, (57)

|ψ1�15 = −ia1|00�|+�y − ia2|01�|+�y − a3|10�|−�x − a4|11�|−�x
iff f15(00) = 1, f15(01) = 1, f15(10) = 1, f15(11) = 1. (58)

Let us consider for distinguishing between the sixteen states. Unfortunately, they are not orthogonal each other.
Thus we might consider we cannot distinguish between the sixteen states. In (43)-(58) the operations on the mapping
look fine to us because the process here is based upon the phase obtained from the kickback formation. So, the issue
of orthogonality is not so essential because we consider the phase of each state to be guaranteed here.

By measuring |ψ1�i we can determine simultaneously all the 22 mappings of fi(x, y) for all x and y. Interestingly,
the quantum algorithm gives us the ability to determine a perfect property of fi(x, y), namely, fi(x, y) itself. This
determination is faster than with a classical apparatus, which would require at least 22 evaluations.

Our cryptography is as follows:

• Alice randomly selects a function fi.

• She applies Ufi to |ψ0� and obtains an entangled state |ψ1�i.
• She sends the entangled state |ψ1�i to Bob.

• Bob compares (by measurement) the result state |ψ1�i with the input state and obtains all the 4 mappings with
the values concerning the function fi.

• Bob learns what function Alice selected.

• Alice and Bob compare their functions (a subset of the results).

• If Eve eavesdropped, Alice and Bob will each have a different function.

• If Eve did not eavesdrop, Alice and Bob will each have the same function.

Alice and Bob perform the protocol described above many times in order to obtain enough secret keys (functions).
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A. Concrete Example

Let us consider the case where Alice selects a function f1. Bob wants to know all the following mappings:

f(0, 0) =?, f(0, 1) =?, f(1, 0) =?, f(1, 1) =?. (59)

In the classical case, Bob requires 4 evaluations. In the quantum case, Bob requires just one query.
Alice prepares the following input state:

|ψ0� = a1|00�|−�y + a2|01�|−�y + a3|10�|−�x + a4|11�|−�x. (60)

Next, Alice applies Uf1 to |ψ0� to obtain Uf1 |ψ0� = |ψ1�1. She has the following output state:

|ψ1�1 = a1|00�|−�y + a2|01�|−�y + a3|10�|−�x − a4|11�|−�x. (61)

Bob enquires with Alice as to what phase factors of the quantum output state Alice has. In this example, the quantum
phase factors of the output state are as follows:

1, 1, 1,−1. (62)

Then, Bob obtains simultaneously all the mappings of f1:

f(0, 0) = 0, f(0, 1) = 0, f(1, 0) = 0, f(1, 1) = 1. (63)

Finally, Bob realizes that Alice selected f1. Again, this quantum communication is faster than using a classical
apparatus, which would require at least 4 evaluations. Likewise, Alice can select any of the 16 combinations of the
mappings. That is, our argumentation holds for each fixed parameter i.

V. CONCLUSION

In conclusion, we have studied a quantum cryptography based on an algorithm for determining all the mappings
of a Boolean function simultaneously using an entangled state. The security of our cryptography is based on the
Ekert 1991 protocol, which uses an entangled state. Consequently, eavesdropping destroyed the entanglement. In the
cryptography, Alice selected a secret function among the possible function types. Bob’s aim was then to determine
the selected function (a key) without an eavesdropper learning it. In order for both Alice and Bob to be able to select
the same function classically, in the worst case Bob would require multiple queries to Alice. In the quantum case
however, Bob required just a single query. By measuring the single entangled state, which was sent to him by Alice,
Bob obtained the function that Alice had selected. This quantum key distribution method is faster than the multiple
classical queries that would be required in the classical case.

ACKNOWLEDGMENTS

The authors wish to thank Soliman Abdalla, Jaewook Ahn, Josep Batle, Mark Behzad Doost, Ahmed Farouk, Han
Geurdes, Shahrokh Heidari, Wenliang Jin, Hamed Daei Kasmaei, Janusz Milek, Mosayeb Naseri, Santanu Kumar
Patro, and Germano Resconi for their valuable support.

NOTE

On behalf of all authors, the corresponding author states that there is no conflict of interest.

[1] E. Bernstein and U. Vazirani, Proceedings of 25th Annual ACM Symposium on Theory of Computing (STOC ’93), p. 11
(1993).

[2] E. Bernstein and U. Vazirani, SIAM J. Comput. 26, 1411 (1997).
[3] D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).
[4] D. Deutsch and R. Jozsa, Proc. R. Soc. Lond. A 439, 553 (1992).
[5] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R. Soc. Lond. A 454, 339 (1998).



10

[6] D. R. Simon, Proceedings of 35th IEEE Annual Symposium on Foundations of Computer Science, p. 116 (1994).
[7] P. W. Shor, Proceedings of 35th IEEE Annual Symposium on Foundations of Computer Science, p. 124 (1994).
[8] L. K. Grover, Proceedings of 28th Annual ACM Symposium on Theory of Computing, p. 212 (1996).
[9] K. Nagata and T. Nakamura, Int. J. Theor. Phys. 59, 611 (2020).
[10] T. Nakamura and K. Nagata, Int. J. Theor. Phys. 60, 70 (2021).
[11] K. Nagata, D. N. Diep, and T. Nakamura, Int. J. Theor. Phys. 59, 2875 (2020).
[12] D. N. Diep, K. Nagata, and R. Wong, Int. J. Theor. Phys. 59, 3184 (2020).
[13] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[14] W. J. Gilbert and W. K. Nicholson, Modern algebra with applications (John Wiley and Sons, Inc. Second edition, 2004).


