
Analysis of CryptoNote Transaction Graphs
using the Dulmage-Mendelsohn Decomposition

Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

Mumbai, India
sarva@ee.iitb.ac.in

Abstract. Transactions in CryptoNote blockchains induce a bipartite
graph, with the set of transaction outputs forming one vertex class and
the set of key images forming the other vertex class. In this graph, an
edge exists between an output and a key image if the output appeared in
the ring of the linkable ring signature which created the key image. Any
maximum matching on this graph is a plausible candidate for the ground
truth, i.e. the association of each key image with the actual output being
spent in the transaction.
The Dulmage-Mendelsohn (DM) decomposition of a bipartite graph re-
veals constraints which are satisfied by every maximum matching on
the graph. It identifies vertices which are matched in every maximum
matching. It classifies edges as admissible or inadmissible. An edge is
called admissible if it appears in at least one maximum matching and is
called inadmissible if it does not appear in any maximum matching.
The DM decomposition of a CryptoNote transaction graph reveals a set
of outputs which can be marked as spent (precisely those outputs which
are matched by every maximum matching). In some transaction rings,
the decomposition identifies the true output being spent (making the
ring traceable) by classifying the edges from all the other outputs to the
key image as inadmissible.
For pre-RingCT outputs in Monero, the DM decomposition performs
better than existing techniques for Monero traceability, but the improve-
ment is marginal. For RingCT outputs in Monero up to April 1, 2021,
the DM decomposition is only able to identify the same five outputs
that were identified as spent by existing techniques (which do not use
information from hard forks).
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1 Introduction

Coins in CryptoNote blockchains are associated with stealth addresses, which are
also called one-time addresses or transaction outputs [13]. We will use the term
output for brevity. Each output is uniquely identified by a public key, which
is a point on an elliptic curve. To spend from an output, the spender needs
to know the corresponding secret key. In a transaction, the spender creates a
ring of outputs which is a set containing the output being spent and some
other outputs sampled from the CryptoNote blockchain (these are called decoy
outputs or mixins). The spender generates a linkable ring signature over the
ring of outputs using the secret key of the output being spent. This signature
only reveals that the signer knows the secret key corresponding to one of the
ring outputs, without revealing the identity of the actual output being spent. To
prevent double spending from an output, the linkable ring signature reveals the
key image of the output being spent. The key image of an output is a unique
deterministic function of the secret key. For example, in Monero the public key
associated with an output is given by P = xG where G is the base point of the
elliptic curve group used by Monero and x is the secret key. Let Hp (·) denote the
Keccak hash function, whose outputs can be interpreted as points on the elliptic
curve. The key image I of the output associated with P is given by xHp(P ). If
the owner of the output corresponding to P tries to spend the coins associated
with it more than once, then the key image I would appear again in the second
transaction, identifying it as a double spending transaction. Such transactions
are not included in blocks by miners as the resulting block would be considered
invalid by the network.

Consider a CryptoNote transaction which spends from two existing outputs
and creates three new outputs as illustrated in Fig. 1. The new outputs are
denoted by R1, R2, R3. The transaction has two rings of outputs of size five
each, (P1, P2, . . . , P5) and (Q1, Q2, . . . , Q5). Exactly one output from each ring
is being spent in the transaction. The key images I1 and I2 of the outputs being
spent are revealed in the transaction. Note that the two rings can have common
outputs.

For the purpose of illustration, suppose that the two rings have two outputs in
common. Let Q1 = P4 and Q2 = P5. The relationship between the ring outputs
and the key images in this transaction can be represented by the bipartite graph
in Fig. 2. The union of the two ring output sets forms one vertex class and the
two key images form the other vertex class. An edge between an output and a key
image indicates that the latter could be the true key image of that output. Note
that the new outputs R1, R2, R3 play no role in the construction of the bipartite
graph. In this document, we will refer to such output/key image bipartite graphs
as transaction graphs.

As each key image must have been generated from a unique output, any pair
of edges (Pi, I1) and (Qj , I2) such that Pi 6= Qj is a plausible candidate for the
true relationship between the outputs and key images. Recall that a matching
on a graph is a subset of the edges such that no two edges in the subset share
a vertex. The pair of edges (Pi, I1) and (Qj , I2) with Pi 6= Qj is a matching on
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Fig. 1. A CryptoNote transaction with two inputs and three outputs

the graph in Fig. 2. In fact, it is a matching of maximum size as any three edges
in this graph would have two which meet in either I1 or I2.

Let us now consider a similar bipartite graph induced by the set of all trans-
actions which have appeared up to the block having height h. The key image
vertex class Kh in this graph is the set of all key images which have appeared
on the blockchain up to block height h. The output vertex class Oh is the set of
all outputs which have appeared in at least one transaction ring in the blocks
up to height h. Note that Oh is not the set of all outputs which have appeared
on the blockchain in blocks up to height h. For example, suppose that the trans-
action illustrated in Fig. 1 appeared on the blockchain in a block with height
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Fig. 2. Transaction graph corresponding to the transaction in Fig. 1
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h′ < h. Further, suppose that by the time the block with height h appeared on
the blockchain, the outputs R1 and R2 have appeared in transaction rings (as
decoy or spending outputs) but R3 has never appeared in a ring. Then the set
Oh contains R1, R2 but not R3. Thus Oh is the set of “ringed” outputs at block
height h. It increases monotonically with h as previously “unringed” outputs
appear for the first time in transaction rings.

At block height h, we represent the edge set of the transaction graph induced
by the CryptoNote transaction rings as a subset E of Oh×Kh. For P ∈ Oh and
I ∈ Kh, the edge (P, I) belongs to E if the output P appeared in the transaction
ring used to create I (via the linkable ring signature).

Since each key image I ∈ Kh is generated from a unique output P ∈ Oh,
we have |Kh| ≤ |Oh|. In a bipartite graph with vertex classes of cardinality
m and n, the size of a maximum matching can be at most min(m,n). Since
the edges corresponding to the true association between outputs and key images
form a matching of size |Kh|, the induced bipartite graph always has a maximum
matching. In fact, we have the following principle which has been discussed by
Monero Research Lab researchers [6] and others [15].

Any maximum matching on the induced bipartite graph is a plausible can-
didate for the ground truth, i.e. the true association between outputs and key
images.

We now describe the Dulmage-Mendelsohn decomposition of a bipartite graph
and its relation to maximum matchings.

2 The Dulmage-Mendelsohn Decomposition

Consistent with notation used by Dulmage and Mendelsohn [5], we define an
undirected bipartite graph K as a triple (S, T,E) where S and T are non-empty
sets representing vertex classes and E ⊆ S × T represents the edge set. So an
edge in K is given by an ordered pair (s, t) where s ∈ S and t ∈ T . The ordering
of the vertices in the edge (s, t) is simply a consequence of putting S before T
in the triple (S, T,E), and does not imply directivity. We say that an edge (s, t)
belongs to the graph K, written as (s, t) ∈ K, to mean that (s, t) ∈ E. We will
only consider bipartite graphs K where both S and T are finite sets.

Definition 1. Let K = (S, T,E) be a bipartite graph. Let A and B be subsets
of S and T respectively. A pair of such sets (A,B) is called a vertex cover for
a bipartite graph K if for each edge (s, t) ∈ K, either s ∈ A or t ∈ B (both
conditions can also hold).

We state and prove a simple lemma for later reference.

Lemma 1. Suppose (A,B) is a vertex cover of a bipartite graph K = (S, T,E).
Then E ∩ (Ac ×Bc) = ∅.

Proof. We want to argue that the graph cannot have edges in the set Ac × Bc.
Suppose that (s, t) ∈ E ∩ (Ac ×Bc). Then s ∈ Ac and t ∈ Bc. This contradicts
the assumption that (A,B) is a vertex cover of K. ut
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Definition 2. The size of a vertex cover (A,B) is defined as |A| + |B| where
|X| denotes the cardinality of a set X.

Since S and T are assumed to be finite sets, every vertex cover of K will have a
finite size.

Definition 3. The cover number of a bipartite graph K is the minimum of
|A|+ |B| over all vertex covers (A,B) of K.

Definition 4. A vertex cover (A,B) of a bipartite graph K whose size equals
the cover number of K is called a minimum cover.

We now define matchings on bipartite graphs and relate them to vertex
covers. We say that edges (s, t) and (s′, t′) share a vertex if either s = s′ or
t = t′.

Definition 5. A matching on a bipartite graph K = (S, T,E) is a subset M
of the edge set E such that no two edges in M share a vertex. The set cardinality
|M | is called the order of the matching M .

Definition 6. A maximum matching on a bipartite graph K is a matching
on K of maximum order.

The following theorem by König relates cover numbers to orders of maximum
matchings.

Theorem 1. The cover number of a finite bipartite graph equals the order of
maximum matchings on the graph.

The following definition classifies edges according to their membership in
maximum matchings on K.

Definition 7. An edge (s, t) of a bipartite graph K is said to be admissible if
there exists a maximum matching M on K such that (s, t) ∈M . An edge which
is not admissible is said to be inadmissible.

In the transaction graph induced by some CryptoNote transactions, if we
can show that an edge (P, I) is inadmissible, then P cannot be the true output
corresponding to the key image I. This fact reduces the effective ring size of
the transaction which created I. If we can classify all the edges incident on I
except one as inadmissible, then the true output corresponding to I is identified.
We now state a central theorem (proved in [5]) which characterizes inadmissible
edges in terms of minimum covers.

Theorem 2. An edge (s, t) of a bipartite graph K is inadmissible if and only if
there exists a minimum cover (A,B) of K such that (s, t) belongs to A×B.

Example 1. To illustrate the above the theorem, consider three CryptoNote
transaction rings having ring members {P1}, {P1, P2}, and {P1, P2, P3, P4} re-
spectively. Let I1, I2, I3 be the key images created from these three transaction
rings. The first transaction ring has only one member and therefore corresponds
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Fig. 3. Transaction graph corresponding to Example 1

to a zero-mixin transaction. The induced bipartite graph is shown in Fig. 3. Let
S = {P1, P2, P3, P4} and T = {I1, I2, I3}. To apply Theorem 2, we need to find a
minimum cover (A,B) of the graph where A ⊆ S and B ⊆ T . As any maximum
matching on the graph has size 3, minimum covers will also have size 3.

– The set pair (∅, T ) is a minimum cover of the graph. But it does not give us
any inadmissible edges as ∅ × T is empty.

– The set pair ({P1}, {I2, I3}) is a minimum cover of the graph. Theorem 2
now tells us that the edges (P1, I2) and (P1, I3) are inadmissible. This is the
same conclusion one draws from the fact that the ring which created I1 is
zero-mixin. Since P1 is the true output corresponding to I1, it cannot be the
true output corresponding to I2 or I3.

– The set pair ({P1, P2}, {I3}) is a minimum cover of the graph. Theorem
2 tells us that the edges (P1, I3) and (P2, I3) are inadmissible. This is the
same conclusion one draws from the fact that the first two transaction rings
{P1} and {P1, P2} form a closed set (as defined in [15]). Essentially, the
outputs P1, P2 must be the true outputs corresponding to key images I1, I2.
So neither of them can be the true output corresponding to I3.

ut

We will need the following corollary of Theorem 2 in a later argument.

Corollary 1. Let K be a bipartite graph with finite cover number and let (A,B)
be a minimum cover of K. Every maximum matching M on K has |A| edges in
A×Bc and |B| edges in Ac ×B.

Proof. By König’s theorem (Theorem 1), the maximum matchingM has |A|+|B|
edges. Lemma 1 tells us that M cannot have any edges in Ac×Bc and Theorem
2 tells us that M has no edges in A × B. Thus all the edges of M must lie in
either A×Bc or Ac ×B.

As distinct edges in the matching M cannot share a vertex, for any two
distinct edges (s1, t1) and (s2, t2) of M in A × Bc we must have s1 6= s2. Thus
the number of edges of M in A × Bc is at most |A|. Similarly, the number of
edges of M in Ac×B is at most |B|. Since M has exactly |A|+ |B| edges, the sets
A×Bc and Ac ×B must have exactly |A| and |B| edges of M , respectively. ut
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Theorem 2 is also related to the definition of sets of spent outputs given
by Monero Research Lab [11]. We recall the definition below for convenience.
Readers not interested in this relationship can skip ahead to Theorem 3 without
loss of continuity.

Definition 8. Let O be the set of outputs on a CryptoNote-style blockchain. Let
Ri ⊂ O be a transaction ring of outputs for i = 1, 2, . . . , n. One output in each
transaction ring is spent resulting in a unique key image. We say that each Ri
is spent if ∣∣∣∣∣

n⋃
i=1

Ri

∣∣∣∣∣ = n.

An output is spent if it is an element of a spent ring.

The reasoning behind this definition is as follows. Each ring Ri has a unique
key image Ii associated with it. Since ∪ni=1Ri has only n outputs, all of them
must have been spent to create the n key images I1, I2, . . . , In.

Let ∪ni=1Ri = {P1, P2, . . . , Pn}. Suppose we draw the bipartite graph in-
duced by the entire blockchain history while listing P1, . . . , Pn and I1, . . . , In
before the other vertices on each side. Let Pn+1, . . . , PM be the other outputs
on the blockchain. Let In+1, . . . , IN be the other key images on the blockchain
where N ≤ M . Fig. 4 illustrates the bipartite graph. Since each key image in
I1, I2, . . . , IN corresponds to a unique true output on the left hand side, there
exists a maximum matching of order N on this graph. Then (∅, {I1, . . . , IN}) is
a minimum cover of the graph.

Note that there cannot be any edges from the key images I1, . . . , In to the
outputs Pn+1, Pn+2, . . . , PM . To see this, suppose there is an edge from Ij to
Pk for some j ∈ {1, 2, . . . , n} and k ∈ {n + 1, . . . ,M}. Then Pk must belong to
the ring Rj as it is the only ring which contributes edges incident on Ij . This
would mean Pk belongs to ∪i=1Ri = {P1, P2, . . . , Pn}, which is a contradiction
as k ≥ n + 1. So all the edges incident on I1, . . . , In must have an output from
P1, . . . , Pn on the other end.

The above argument shows that ({P1, . . . , Pn}, {In+1, . . . , IN}) is a minimum
cover of the graph. Thus the union ∪ni=1Ri of the spent rings as defined in
Definition 8 is the first member of a minimum cover of the transaction graph.
One can also prove the other direction. We claim that if (A,B) is a minimum
cover of the transaction graph where A 6= ∅, then there exist transaction rings
Ri1 , Ri2 , . . . , Rin such that

A =

n⋃
j=1

Rij and

∣∣∣∣∣∣
n⋃
j=1

Rij

∣∣∣∣∣∣ = n. (1)

Let O = {P1, . . . , PM} be the set of all outputs and K = {I1, . . . , IN} be
the set of all key images, which have appeared on the blockchain at some block
height. For a minimum cover (A,B), let Bc = K\B be the set of key images not
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Fig. 4. Transaction graph to illustrate the connection of Definition 8 to Theorem 2.

in B. Suppose Bc = {Ii1 , Ii2 , . . . , Iin}. Each key image Iij in Bc is associated
with a unique transaction ring Rij which contains the true output corresponding
to it.

Since (∅,K) is a minimum cover of the graph, every minimum cover must
have size N . This implies that |A|+ |B| = N . As n = |Bc| = N − |B|, the set A
must have n outputs.

Since (A,B) is a cover of the bipartite graph, every edge incident on key
images in Bc must be covered by an output in A (as B can only cover edges
incident on the key images in it). The ring Rij associated with a key image
Iij ∈ Bc is the set of outputs adjacent to Iij in the graph. So the other endpoints
of edges incident on Iij are in Rij . This implies that the transaction ring Rij is
a subset of A for every Iij ∈ Bc. Thus ∪nj=1Rij ⊆ A.

Furthermore,
∣∣∪nj=1Rij

∣∣ ≥ n because each of the n key images Ii1 , Ii2 , . . . , Iin
has a unique true output in ∪nj=1Rij . Putting all this together, we have

n ≤

∣∣∣∣∣∣
n⋃
j=1

Rij

∣∣∣∣∣∣ ≤ |A| = n. (2)

Thus, we conclude that A = ∪nj=1Rij and that
∣∣∪nj=1Rij

∣∣ = n. This completes
our digression discussing the relationship between Definition 8 and Theorem 2.
We now return to our discussion of minimum covers.

The following two theorems were proved by Dulmage and Mendelsohn [5].



Analysis of CryptoNote using the DM Decomposition 9

Theorem 3. If (A1, B1) and (A2, B2) are minimum covers of a bipartite graph
K having finite cover number, then (A1 ∩ A2, B1 ∪ B2) and (A1 ∪ A2, B1 ∩ B2)
are both minimum covers of K.

Theorem 4. Let (A1, B1) and (A2, B2) be minimum covers of a bipartite graph
K having finite cover number. If A1 ⊆ A2, then B1 ⊇ B2.

Setting A1 = A2 in the above theorem gives us the following corollary.

Corollary 2. If (A,B1) and (A,B2) are both minimum covers of a bipartite
graph K having finite cover number, then B1 = B2.

The following theorem will be useful in identifying spent outputs in CryptoNote
transaction graphs. We give a proof as it was not explicitly stated by Dulmage
and Mendelsohn [5], although it follows from their results.

Theorem 5. Let (A1, B1) and (A2, B2) be minimum covers of a bipartite graph
K having finite cover number such that A1 ⊆ A2. Then every maximum matching
M on K has |A2| − |A1| edges in the set (A2 \A1)× (B1 \B2).

Proof. Since A1 ⊆ A2, Theorem 4 tells us that B2 ⊆ B1. Since (A1, B1) and
(A2, B2) are both minimum covers, Corollary 1 tells us that every maximum
matching M of K has exactly |A1| edges in A1 × Bc1 and exactly |A2| edges in
A2 ×Bc2.

As A1×Bc1 ⊆ A2×Bc2, every edge of M in A1×Bc1 is contained in A2×Bc2.
Thus M has |A2| − |A1| edges in (A2 ×Bc2) \ (A1 ×Bc1). As illustrated in Fig. 5,
the set A2 ×Bc2 can be partitioned as

A2 ×Bc2 = [A1 ∪ (A2 \A1)]× [(B1 ∪Bc1) ∩Bc2]

= [A1 ∪ (A2 \A1)]× [(B1 \B2) ∪Bc1]

= [A1 × (B1 \B2)] ∪ [A1 ×Bc1]

∪ [(A2 \A1)× (B1 \B2)] ∪ [(A2 \A1)×Bc1] . (3)

Since (A1, B1) is a minimum cover and A1 × (B1 \B2) ⊆ A1 ×B1, Theorem
2 tells us that the matching M cannot have any edges in A1 × (B1 \B2).

Since (A1, B1) is a vertex cover and (A2 \A1)×Bc1 = (A2 ∩Ac1)×Bc1 ⊆ Ac1∩
Bc1, Lemma 1 tells us that the graph K cannot have any edges in (A2 \A1)×Bc1.
Consequently, the matching M cannot have any edges in this set.

The above observations tell us that two of the partition elements in equation
(3) cannot have edges from a maximum matching M . Thus the |A2|− |A1| edges
of M in (A2 ×Bc2) \ (A1 ×Bc1) must belong to (A2 \A1)× (B1 \B2). ut

If a matching on a graph has an edge incident on a vertex, we say that the
vertex is matched by the matching. The following corollary of Theorem 5 says
that all the vertices in the difference between two minimum covers are matched
by every maximum matching.
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Fig. 5. Partition of A2 ×Bc
2 in the proof of Theorem 5.

Corollary 3. Let (A1, B1) and (A2, B2) be minimum covers of a bipartite graph
K having finite cover number such that A1 ⊆ A2. Let M be any maximum
matching on K. Then all the vertices in the sets A2\A1 and B1\B2 are matched
by M .

Proof. Theorem 5 tells us that any maximum matching M must have |A2|−|A1|
edges in the set (A2 \A1) × (B1 \B2). Since A1 ⊆ A2, |A2 \A1| = |A2| − |A1|.
As any two distinct edges in M cannot have a vertex in common, each vertex in
A2 \A1 must have exactly one of the |A2| − |A1| edges of M incident on it.

Since (A1, B1) and (A2, B2) are both minimum covers, |A1|+ |B1| = |A2|+
|B2| =⇒ |B1| − |B2| = |A2| − |A1|. As B1 ⊆ B2, |B1 \B2| = |B1| − |B2|. Thus
each vertex in B1 \B2 has exactly one of the |A2| − |A1| edges of M incident on
it. ut

By this corollary, if we can find two distinct minimum covers of the transac-
tion graph induced by a CryptoNote blockchain, then we would have identified
some outputs which are matched by every maximum matching on this graph.
Thus every candidate for the true association between outputs and key images
has these outputs marked as spent.

For a bipartite graph K, let C be the set of all minimum covers. Let us define
the following sets obtained by taking intersections and unions of the components
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of the minimum covers.

A∗ =
⋂

(A,B)∈C

A, A∗ =
⋃

(A,B)∈C

A, (4)

B∗ =
⋂

(A,B)∈C

B, B∗ =
⋃

(A,B)∈C

B. (5)

By Theorem 3, if K has a finite cover number then the pairs (A∗, B
∗) and

(A∗, B∗) are both minimum covers of K.

Example 2. Consider the bipartite graph in Fig. 3 with vertex classes S =
{P1, P2, P3, P4} and T = {I1, I2, I3}. Since (∅, T ) is a minimum cover the graph,
A∗ = ∅ and B∗ = T . As ({P1}, {I2, I3}) and ({P1, P2}, {I3}) are the only other
minimum covers, A∗ = {P1, P2} and B∗ = {I3}.

With the above definitions in place, we are ready to describe the Dulmage-
Mendelsohn (DM) decomposition.

Definition 9. Let K = (S, T,E) be a bipartite graph having a finite cover num-
ber. The Dulmage-Mendelsohn decomposition of K is a partition of S × T
into three disjoint sets R1, R2, R3 which satisfy the following properties:

1. The set of admissible edges in K equals E ∩R1.
2. The set of inadmissible edges in K equals E ∩R2.
3. E ∩R3 = ∅.

The structure of the sets R1, R2, R3 depends on the minimum covers of K.
Suppose A∗ = A∗. Then the graph K has only one minimum cover given by
(A∗, B

∗) = (A∗, B∗). In this case, the sets R1, R2, R3 are given by

R1 = (A∗ × (B∗)c)
⋃

((A∗)
c ×B∗) ,

R2 = A∗ ×B∗, (6)

R3 = (A∗)
c × (B∗)c.

It is clear that S × T = R1 ∪ R2 ∪ R3 and Ri ∩ Rj = ∅ for i 6= j, 1 ≤ i, j ≤ 3.
Since (A∗, B

∗) is a vertex cover, Lemma 1 tells us that E ∩R3 = ∅. As (A∗, B
∗)

is the only possible minimum cover of K, Theorem 2 tells us that the set of
inadmissible edges in K equals E ∩ R2. Furthermore, the theorem tells us that
the edges in E ∩ Rc2 are admissible. Since there are no edges in E ∩ R3, the set
of admissible edges in K equals E ∩R1.

Now suppose A∗ 6= A∗. By definition, A∗ ⊆ A∗. So A∗ must be a proper
subset of A∗. Then there exists at least one non-empty set X ⊂ S such that
A∗ ∩ X = ∅ and (A∗ ∪ X,Y ) is a minimum cover of K for some Y ⊂ T . The
existence of such a set follows from the fact A∗ \ A∗ is a candidate for X. Let
S1 be a set of smallest cardinality among all candidates for X. There may be
many possibilities for S1, all having the same smallest cardinality. We can pick
any one of them.
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Let (A1, B1) be a minimum cover with A1 = A∗ ∪ S1. By Corollary 2, B1 is
uniquely determined by A1. As A∗ ⊆ A1, Theorem 4 tells us that B1 ⊆ B∗. As
all minimum covers of K have the same size, we have |A∗|+ |B∗| = |A1|+ |B1|.
Since |A1| > |A∗|, we have |B1| < |B∗|. Thus B1 is a proper subset of B∗. Let
T1 = B∗ \B1. Since |A1| − |A∗| = |B∗| − |B1|, we have |S1| = |T1|.

If A1 = A∗, the process stops. Otherwise, there exists at least one non-
empty set X ⊂ S such that A1 ∩X = ∅ and A1 ∪X is the first component of a
minimum cover of K. Let S2 be a set of smallest cardinality among all candidates
for X. Let (A2, B2) be a minimum cover with A2 = A1 ∪ S2 = A∗ ∪ S1 ∪ S2.
As before, B2 is uniquely determined by A2 and B2 ⊂ B1. Let T2 = B1 \ B2.
Since |A2| − |A1| = |B1| − |B2|, we have |S2| = |T2|. Since B∗ = T1 ∪ B1 and
T2 = B1 \B2, we have B∗ = T1 ∪ T2 ∪B2.

If we proceed in this manner, the process will stop for some k where

A∗ ∪ S1 ∪ S2 . . . ∪ Sk = A∗. (7)

At this point, (A∗, B∗) will be the resulting minimum cover. Furthermore, the
Ti’s satisfy

B∗ = T1 ∪ T2 ∪ . . . Tk ∪B∗. (8)

In the intermediate stages of this process, (Ai, Bi) is a minimum cover for K for
each i ∈ {1, 2, . . . , k} where

Ai = A∗ ∪ S1 ∪ S2 ∪ . . . ∪ Si, (9)

Bi = Ti+1 ∪ Ti+2 ∪ . . . ∪ Tk ∪B∗. (10)

Equations (7) and (8) give the following decompositions of the vertex classes S
and T .

S = A∗
⋃

(A∗)c = A∗ ∪ S1 ∪ S2 . . . ∪ Sk
⋃

(A∗)c, (11)

T = (B∗)c
⋃
B∗ = (B∗)c

⋃
T1 ∪ T2 . . . ∪ Tk ∪B∗. (12)

The k + 2 sets in the unions on the extreme right of both the above equations
form a partition of S and T respectively. These partitions are unique except for
a permutation of the Si’s having same cardinality, with the Ti’s appropriately
permuted.

We claim that the DM decomposition is given by the sets

R1 = (A∗ × (B∗)c)
⋃

(S1 × T1)
⋃
. . .
⋃

(Sk × Tk)
⋃

((A∗)c ×B∗) , (13)

R2 = (A∗ ×B∗)
⋃

(A∗ ×B∗)
⋃
i<j

(Si × Tj) , (14)

R3 = ((A∗)
c × (B∗)c)

⋃
((A∗)c × (B∗)

c)
⋃
i>j

(Si × Tj) . (15)

To visualize the DM decomposition, suppose we order the vertices in S according
to the partition in equation (11), i.e. the vertices in A∗ appear first, followed
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S

T

A∗ S1 S2 · · · Sk (A∗)c

(B∗)c

T1

T2

...

Tk

B∗

A∗ ×
(
B∗)c

S1 × T1

S2 × T2

Sk × Tk

(
A∗)c × B∗

R2

R3

Fig. 6. The DM decomposition of a graph.

by vertices in S1, S2, . . . , Sk, and (A∗)
c
. Similarly, suppose the vertices in T are

ordered according to the partition in equation (12). Then the DM decomposition
can be represented by Fig. 6, where the rows correspond to vertices in T and the
columns correspond to vertices in S. The admissible edges lie in blocks along the
diagonal, the inadmissible edges lie above these blocks, and there are no edges
below these blocks.

Furthermore, by applying Theorem 5 to adjacent minimum covers in the
sequence (A∗, B

∗), (A1, B1), . . . , (Ak−1, Bk−1), (A∗, B∗), we conclude that every
maximum matching on the graph has |Si| edges in Si × Ti for i = 1, 2, . . . , k.
By Corollary 3, every maximum matching matches all the vertices in Si and Ti.
If we choose S to be the set of all outputs in the bipartite graph induced by a
CryptoNote blockchain transaction history, then the sets Si contain only spent
outputs for all i = 1, 2, . . . , k.

Before checking that the sets R1, R2, R3 satisfy the properties required of a
DM decomposition, let us calculate them for our running example.

Example 3. Consider the bipartite graph in Fig. 3 with vertex classes S =
{P1, P2, P3, P4} and T = {I1, I2, I3}.

– As we noted in Example 2, A∗ = ∅, B∗ = T and A∗ = {P1, P2}, B∗ = {I3}.
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– As ({P1}, {I2, I3}) is the only candidate for (A1, B1), we have S1 = {P1}
and T1 = {I1}.

– As ({P1, P2}, {I3}) is the only candidate for (A2, B2), we have S2 = {P2}
and T2 = {I2}.

The DM decomposition is given by

R1 = {(P1, I1), (P2, I2), (P3, I3), (P4, I3)} ,
R2 = {(P1, I3), (P2, I3), (P1, I2)} ,
R3 = {(P3, I1), (P3, I2), (P4, I1), (P4, I2), (P2, I1)}

The graph has no edges in R3. The edges in R2 cannot appear in any maximum
matching, as P1 must be matched to I1 and P2 must be matched to I2. The edges
in R1 appear in at least one maximum matching on the graph. Every maximum
matching has one edge in S1 × T1 = {(P1, I1)} and one edge in S2 × T2 =
{(P2, I2)}}. Finally, S1 and S2 contain only spent outputs. ut

Returning to the general DM decomposition given in equations (13), (14),
(15), let us first show that the graph cannot have edges in the set R3. Since
(A∗, B

∗) and (A∗, B∗) are vertex covers, Lemma 1 tells us that the graph has no
edges in (A∗)

c × (B∗)c and (A∗)c × (B∗)
c. For i ≥ 2, we have

Aci−1 = S \Ai−1 = Si ∪ Si+1 . . . ∪ Sk
⋃

(A∗)
c
, (16)

Bci−1 = T \Bi−1 = (B∗)c
⋃
T1 ∪ T2 . . . ∪ Ti−1, (17)

as seen by the representations of Ai, Bi in equations (9), (10) and the repre-
sentations of S, T in equations (11), (12). For i > j, each Si × Tj is contained
in (Aci−1, B

c
i−1). As (Ai−1, Bi−1) is vertex cover, by Lemma 1 the graph cannot

have edges in Si × Tj for i > j. This completes the proof that the edge set E of
the graph K satisfies E ∩R3 = ∅ for the R3 in equation (15).

Now let us show that the set of inadmissible edges in K equals E ∩ R2 for
the R2 given in equation (14). Since (A∗, B

∗) and (A∗, B∗) are minimum covers
of the graph, Theorem 2 tells us that graph edges in A∗ × B∗ and A∗ × B∗ are
inadmissible. Observe that for i < j the set Si×Tj is contained in Ai×Bi, as seen
in equations (9), (10). As each (Ai, Bi) is a minimum cover of the graph, Theorem
2 once again tells us that graph edges in Si × Tj for i < j are inadmissible. But
these results merely tell us that E ∩ R2 is a subset of the set of inadmissible
edges. We want to show that it equals the set of inadmissible edges in K.

In the case of A∗ = A∗, the graph had only one minimum cover (A∗, B
∗),

which simplified the task of finding the set of inadmissible edges. For A∗ 6= A∗,
there could be minimum covers (A,B) which are not equal to any of (A∗, B

∗),
(A1, B1), (A2, B2), . . . , (Ak−1, Bk−1), (A∗, B∗). However, in their 1958 paper [5],
Dulmage and Mendelsohn proved that the any minimum cover (A,B) of K can
be represented by a combination of the Si’s and Ti’s as described in the following
theorem.
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Theorem 6. For a bipartite graph K having a finite cover number, let A∗, B∗,
S1, S2, . . . , Sk, T1, T2,. . . ,Tk be the sets obtained in the procedure described
earlier in this section. Let (A,B) be any minimum cover of K. Then there exist
complementary subsets ∆ and Π of {1, 2, . . . , k} such that

A = A∗
⋃(⋃

i∈∆
Si

)
,

B =

⋃
j∈Π

Tj

⋃B∗.

This theorem (in combination with Theorem 2) tells us that the set of inad-
missible edges equals the union of E ∩ (A×B) as the set ∆ varies over the 2k

subsets of {1, 2, . . . , k} with Π = ∆c. But all such sets E∩(A×B) are contained
in R2. To see this, note that

E ∩ [A×B] = E ∩
[
(A∗ ×B)

⋃
(∪i∈∆Si ×B)

]
= E ∩

[
(A∗ ×B)

⋃
(∪i∈∆Si ×B∗)

⋃
(∪i∈∆Si × ∪j∈ΠTj)

]
⊆ E ∩

[
(A∗ ×B∗)

⋃
(A∗ ×B∗)

⋃
(∪i∈∆Si × ∪j∈ΠTj)

]
(18)

= E ∩

(A∗ ×B∗)
⋃

(A∗ ×B∗)
⋃

i∈∆,j∈Π,i<j
(Si × Tj)

 (19)

⊆ E ∩R2, (20)

where the subset relation in (18) follows from equations (7) and (8) which show
that ∪i∈∆Si ⊆ A∗ and B ⊆ B∗. The equality in (19) follows from two observa-
tions: (a) the graph cannot have edges in Si × Tj for i > j, as discussed in our
argument showing E ∩R3 = ∅, and (b) i 6= j when i ∈ ∆ and j ∈ Π = ∆c. The
subset relation in (20) follows from definition of R2 in (14). Thus, we conclude
that the set of inadmissible edges in the graph K equals E ∩R2.

Finally, as R1, R2, R3 form a partition of S × T with E ∩ R3 = ∅, the set of
admissible edges must equal E ∩ Rc2 which is equal to E ∩ R1. This completes
the proof that the expressions for R1, R2, R3 in equations (13), (14), (15), satisfy
the properties of a DM decomposition given in Definition 9.

Computing the DM Decomposition

The DM decomposition of a bipartite graph K can be computed by finding a
maximum matching M on K, then finding subsets of vertex classes unreach-
able from M via alternating paths, and finally by finding strongly connected
components of the subgraph induced by the unreachable vertices (see [12] for
details). Both open source [4] and proprietary [1] implementations of the DM
decomposition algorithm are available.
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3 DM Decomposition of the Monero Graph

A transaction ring is said to be traceable if the true output being spent is identi-
fied. To evaluate the effectiveness of the DM decomposition in tracing transaction
rings, we used the results obtained by Yu et al. [16] on Monero as the benchmark.
The latter results are the best results on Monero traceability which do not use
information from hard forks like Monero Original and MoneroV. Hinteregger et
al. [7] used the key images which appeared in both the main Monero chain and
these hard forks to trace transactions in all three chains. We were unable to
download the MoneroV and Monero Original blockchain data. This prevented
us from using the cross-chain data in evaluating the DM decomposition.1

The algorithm proposed by Yu et al. [16] first applies the cascade algorithm
proposed by Kumar et al. [8] and Moser et al. [10]. Then it uses a clustering
algorithm to find sets of spent outputs, called closed sets (these correspond to
the Si’s in the DM decomposition). The algorithm classifies a transaction ring
as traceable if the cascade/clustering algorithms mark all outputs in the ring
except one as spent in another ring. Similarly, the DM decomposition classifies
a transaction ring as traceable if only one edge incident on the corresponding
key image is admissible.

Yu et al. considered Monero transactions contained in blocks with height up
to 1,541,236 (March 30, 2018). This data set contains 23,164,745 transaction
rings (each one contributing a key image) and 25,126,033 outputs. The cor-
responding bipartite graph has 58,791,856 edges. In Monero, RingCT outputs
have amounts hidden in Pedersen commitments. They were introduced in Mon-
ero in January 2017 and became mandatory in September 2017 [3]. Out of the
23,164,175 transaction rings in the data set, 4,330,234 were RingCT rings and
the remaining 18,834,511 were pre-RingCT rings.

Previous work [8], [10], [16], on Monero traceability has shown that RingCT
transactions in Monero are immune to traceability attacks. The same observation
holds for the DM decomposition approach. None of the 4,330,234 RingCT rings
could be traced by the DM decomposition. Table 1 compares the number of pre-
RingCT transaction rings traced by the cascade/clustering (CC) algorithm and
the DM decomposition. Each row in the table gives results for transaction rings
which have a certain number of mixin outputs. The results for all transaction
rings with 10 or more mixin outputs are combined in the row with label “≥ 10”.

All the 16,335,308 rings traced by the DM decomposition are associated with
a set Si with |Si| = 1. The singleton set Ti corresponding to Si has the key image
of the output in Si. As seen from the last row, the DM decomposition identifies
only 341 more traceable rings than the CC algorithm. These new rings are only
among the transaction rings having 2, 3, or 4 mixins. Thus, for transactions
up to block height 1,541,236 the advantage of using the DM decomposition for
tracing Monero transactions is marginal.

1 Hinteregger has made the public keys corresponding to spent outputs available on
Zenodo https://zenodo.org/record/1304033. But we need the transaction rings
where these outputs are spent to construct the graph.

https://zenodo.org/record/1304033
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No. of mixins No. of rings Traced by CC Traced by DM

0 12209675 12209675 12209675
1 707786 625641 625641
2 4496490 1779134 1779446
3 1486593 952855 952862
4 3242625 451959 451981
5 319352 74186 74186
6 432875 202360 202360
7 21528 4296 4296
8 30067 3506 3506
9 17724 2178 2178
≥ 10 200030 29177 29177

Total 23164745 16334967 16335308

Table 1. Monero traceability of pre-RingCT rings by the CC algorithm vs DM de-
composition (up to block 1,541,236)

Yu et al. report finding 3017 closed sets with sizes in the range 2 to 55. In
the DM decomposition, each Si is a closed set. The DM decomposition is able
to find 3045 closed sets with 3041 of them having sizes in the range 2 to 55. The
remaining four closed sets have sizes 103, 106, 119, and 122.

The DM decomposition marked 15,633,140 out of the 58,791,856 edges in
the bipartite graph as inadmissible. Each inadmissible edge reduces the effective
mixin size of a transaction ring. Table 2 gives the counts of transactions with a
certain number of mixins before and after the DM decomposition.2 As expected,
transaction rings with smaller effective mixin size are more frequent after the
DM decomposition.

To check if the transactions which have appeared after block 1,541,236 have
affected the traceability of RingCT rings, we computed the DM decomposition
of the subgraph induced exclusively by RingCT transaction rings in all blocks up
to height 2,330,000 (April 1, 2021). This subgraph has 26,098,794 key images and
29,588,617 outputs with 252,843,948 edges between them. Let K be the set of all
the key images in this subgraph. Its DM decomposition revealed only two mini-
mum covers, (∅,K) and (S1,K\T1) where |S1| = |T1| = 5. The set S1 consists of
RingCT outputs with indices 3890287, 3890288, 3890289, 3890290, and 3890291.
These five outputs were created by Wijaya et al. [14] in block 1,468,425.3 All of
them were spent using the other four as mixins in five transaction rings in block
1,468,439 (Dec 17, 2017), to demonstrate that a set of outputs can be considered
spent without relying on zero-mixin transactions.4. These five outputs are also
marked as spent by the Monero blackball tool [11]. Thus, the DM decomposition

2 Yu et al. presented the corresponding counts after execution of the CC algorithm in
bar graph form. So we are unable to compare the exact numbers.

3
https://xmrchain.net/tx/b6781f2a6f5608553546442b84888346fdc3f78dd8995170180ed74081c05362

4
https://xmrchain.net/tx/8d4a0c7eccf92542eb5e1f09e72cc0d934b180b768bc95388d33051db83194bb

https://xmrchain.net/tx/b6781f2a6f5608553546442b84888346fdc3f78dd8995170180ed74081c05362
https://xmrchain.net/tx/8d4a0c7eccf92542eb5e1f09e72cc0d934b180b768bc95388d33051db83194bb
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Effective No. of rings No. of rings
no. of mixins before DMD after DMD

0 12209675 16335308
1 707786 1413028
2 4496490 2369796
3 1486593 279377
4 3242625 2369578
5 319352 186257
6 432875 73690
7 21528 13086
8 30067 23615
9 17724 13071
≥ 10 200030 87939

Total 23164745 23164745

Table 2. Effective number of mixins before and after DM decomposition (up to block
1,541,236). Only 17 RingCT rings experience a change in effective number of mixins.

of the Monero RingCT subgraph (using only main chain data) does not identify
any new outputs as spent.

There were 22,785,298 RingCT transaction rings in the blocks with heights
from 1,468,426 to 2,330,000. The five spent RingCT outputs were chosen as
mixins in only 17 of these RingCT rings. The block heights and RingCT ring
indices of the affected rings are shown in Table 3. Each of the 17 rings has its
effective number of mixins reduced by one. The latest affected ring appears in
block 1,521,556 (March 3, 2018). Thus, the change in effective number of mixins
shown in Table 2 is mostly in pre-RingCT rings.

Justin Ehrenhofer maintains a list of RingCT outputs which are known to be
spent [2]. This list was generated from both hard fork data and mining payouts.
It contains the spent outputs identified by Hinteregger et al. as a subset.5 It is
meant to be consumed by Monero wallets to avoid picking these spent outputs
as mixins. The data set does not mention the transaction rings in which each
output was spent. If this information were available, some edges from the RingCT
subgraph can be removed, leading to a different DM decomposition. We hope to
obtain this information from the Monero community and share our findings at
a later time.

4 Conclusion

We have described how the Dulmage-Mendelsohn decomposition of bipartite
graphs can be used to characterize the information revealed by CryptoNote
transaction rings. It is surprising that this decomposition has gone unnoticed for
so long, as the idea of maximum matchings on CryptoNote transaction graphs

5 https://github.com/oerpli/MONitERO/blob/master/csv/tx_spent.md

https://github.com/oerpli/MONitERO/blob/master/csv/tx_spent.md
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Block RingCT output indices in affected ring Mixin output
height index

1468459 2598830, 3003977, 3355066, 3434937, 3890288 3890288
1468463 2547881, 3767909, 3872300, 3882612, 3890290 3890290
1468528 2547174, 3038956, 3635398, 3806854, 3890287 3890287
1468554 1994254, 3214788, 3682735, 3870916, 3890291 3890291
1468589 2293356, 2959042, 3502654, 3853789, 3890290 3890290
1468589 1275085, 3315022, 3439832, 3748016, 3890289 3890289
1468610 3846244, 3873104, 3875091, 3881368, 3890291, 3892572 3890291
1468633 603380, 3882040, 3888806, 3890287, 3896742 3890287
1468736 3194098, 3862759, 3890287, 3895198, 3896533 3890287
1469040 3861157, 3890289, 3890864, 3894739, 3910002 3890289
1469132 3452429, 3875789, 3884238, 3890289, 3910975 3890289
1469171 2145284, 2683687, 3890287, 3893435, 3913073 3890287
1491145 112916, 1691643, 2371432, 3890287, 3952071 3890287
1497524 1463611, 3890288, 4205669, 4265964, 4292176, 4487224, 4491812, 4496125, 4496544 3890288
1500511 3391172, 3890290, 4326731, 4541461, 4544110 3890290
1508728 1464801, 2033769, 3890288, 4243990, 4533972, 4654036, 4657845, 4660726, 4663215 3890288
1521556 735259, 1038734, 2887471, 3890289, 4791022, 4842288 3890289

Table 3. The 17 RingCT transaction rings affected by the 5 spent outputs (up to
block 2,330,000)

being plausible candidates for the ground truth has been known for a while. The
general form of the DM decomposition (the Gallai-Edmonds decomposition) is
described as a central result of matching theory in the preface of the standard
reference on the subject [9]. While the decomposition does not reveal much
more about Monero than what was known before, it is preferable as it avoids
the heuristics and computational bottlenecks of previous methods.

A natural question arises: How should the mixin sampling strategy in Crypto-
Note blockchains be designed to avoid revealing information via the DM decom-
position? We do not have an answer. Empirically, the existing sampling strategy
in Monero seems to be robust to the decomposition. Can one expect this robust-
ness to continue in the future? Yu et al. [16] gave estimates on the probability
of existence of a closed set for a uniform sampling strategy when each ring has
3 mixins. Similar analyses with more realistic assumptions are needed to under-
stand the information leakage risks of the sampling strategies used in practice.
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