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Abstract. White-box cryptography has been proposed as a software countermeasure technique
for applications where limited or no hardware-based security is available. In recent years it has
been crucial for enabling the security of mobile payment applications. In this paper we continue a
recent line of research on device binding for white-box cryptography [2,3]. Device binding ensures
that a white-box program is only executable on one specific device and is unusable elsewhere.
Building on this, we ask the following question: is it possible to design a global white-box program
which is compiled once, but can be securely shared with multiple users and bound to each of their
devices? Acknowledging this question, we provide two new types of provably-secure constructions
for white-box programs.
First, we consider the use of Token-Based Obfuscation (TBO) [28] and show that TBO can
provide us a direct way to construct white-box programs with device-binding, as long as we can
securely share a token generation key between the compiling entity and the device running the
white-box program. This new feasibility result provides more general and efficient results than
previously presented for white-box cryptography and demonstrates a new application of TBO
not previously considered.
We then consider a stronger family of global white-boxes, where secrets don’t need to be shared
between users and providers. We show how to extend approaches used in practice based on
message recoverable signatures and validate our proposed approach, by providing a construction
based on puncturable PRFs and indistinguishability obfuscation.
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1 Introduction

We use cryptography to address a multitude of use cases and as a result it is deployed in all
types of environments, from ultra-secure government facilities to our mobile phones. For the
most sensitive environments, we can use special hardware to secure cryptographic implemen-
tations. However, in many settings where such specialized hardware is not available, we must
ensure security against attackers which may have full control of the execution environment.
Here, white-box cryptography aims to implement cryptographic algorithms that remain se-
cure in the presence of such adversaries. White-box cryptography was introduced in 2002 by
Chow, Eisen, Johnson, and van Oorschot [19,20].

White-box cryptography finds its main use cases in Digital-Rights Management (DRM)
and mobile-payment applications [45,23] (see Section A for an extended discussion on the role
of white-box cryptography in mobile payments). In both cases, standard symmetric encryp-
tion ciphers are implemented in a white-box fashion. However, it is not publicly known how
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exactly the ciphers are implemented and which level of security they actually achieve. The sci-
entific community has proposed white-box designs for DES [20,37] and AES [19,15,48,33,5],
but all of these approaches have been subject to key-extraction attacks (cf. [31,29,47] and
[10,41,40,35,22]).

It remains an open question, whether one can construct a white-box implementation of
DES or AES which remains secure against key-extraction attacks. In practice, white-box
designs remain robust for a certain period of time, and key extraction is mitigated by pe-
riodically rotating the embedded keys and updating the white-box obfuscation. However,
we should note that in the application scenarios discussed above, white-box programs also
implement countermeasures against so called code-lifting attacks.

1.1 Code-lifting Attacks and Device Binding

White-box programs may be susceptible to code-lifting attacks, where, an adversary simply
copies the execution code of the program with its embedded secret key [46]. The adversary
can then run the code for his own purposes on any device or environment of its choice, without
needing to perform a key-extraction or reverse-engineering attack. In real-life applications,
such attacks take place when a user re-distributes his DRM decryption software, or when an
invasive adversary (in the form of malware) copies the payment application and credentials
of a user.

One approach to mitigate code-lifting attacks is to implement device binding operations
[6,44,23]. That is, the white-box programs are configured such that they can only be executed
on one specific device. In practice, device binding plays an important role in combination
with white-box cryptography for protecting mobile payment applications, as recommended
by EMVCo [23]. Device binding can be implemented by having the white-box program verify a
specific signature provided by some trusted component or party. Alternatively, one can design
a white-box program which does not compute directly on raw inputs, but rather on encoded
inputs. The corresponding encoding algorithm can be extracted from the secure hardware of
a device. This encoding forces us thus to run our white-box program in combination with
that device.

It may seem counterintuitive to combine white-box cryptography with dependency on
some trusted hardware. However, in many environments the availability of specific secure
hardware and what algorithms they support may be somewhat limited. For example, payment
processes rely heavily on 3DES which has only been supported in Android Keystore recently
(since v9) and is not supported by many secure elements. This is clearly an example where a
device may have trusted hardware available but it cannot provide the required cryptographic
functionality. One can view our approach of using both a trusted component and a white-
box obfuscation scheme as a means to bootstrap the limited functionality of the trusted
component to facilitate the secure computation of a complex functionality. In addition it
facilitates added crypto-agility, once secure hardware is deployed it can be relatively hard to
update with newer algorithms. By bootstapping with a white-box obfuscation scheme we can
enable a secure hardware deployment to support new and needed cryptographic schemes.

Security definitions for white-box cryptography with device binding have been presented in
recent years. Alpirez Bock et al. [2] define security for white-box encryption programs and, in
further work [3], the security of a white-box key derivation function and a payment application.
The definitions in these works capture the property that the corresponding programs only
execute correctly in combination with one specific device and are otherwise useless, while
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preserving their corresponding security properties. In the second work [3], the authors provide
feasibility results for white-boxed payment applications. Their constructions are based on
puncturable pseudorandom functions (PPRF) and indistinguishability obfuscation (iO) [7].
In a way, the result gives a general feasibility result for the white-box payment applications,
since the construction can be augmented by any secure symmetric-encryption scheme. One
may wonder whether white-box cryptography for arbitrary ciphers can only be achieved via
strong obfuscation assumptions, such as indistinguishability obfuscation.

Other methods for mitigating code-lifting. In white-box related literature, the prop-
erty of incompressibility has been widely studied as a means to mitigate code-lifting attacks.
Incompressibility aims at designing a program of large size, which remains functional only in
its complete form. If the program is compressed or fragments of the program are removed,
the program should lose its functionality. Thus, incompressible programs (of very large size)
should be difficult to share over the network. A line of definitions, feasibility results and con-
crete constructions have been presented for incompressibility [21,13,14,11,24,18,1,34]. However
to the best of our knowledge, incompressibility is not really implemented in practice. Namely
as discussed in [2], the large size of the programs also makes their legal distribution difficult.
Moreover, the idea of having software programs of very large size stands in contrast with
the folklore goal of designing small sized applications for mobile devices. We note also that
incompressible ciphers are rather new, white-box friendly ciphers, while commercial applica-
tions usually make use of more standardized ciphers such as AES. For this reason as explained
above, commercial applications aim to implement an obfuscated version of a standardized ci-
pher and bind it to one specific device. In this paper we focus on device-binding as opposed to
incompressibility since we wish to study white-box cryptography from a perspective of how
it is implemented in real life.

1.2 Our Contributions

In this paper, we continue the study of white-box cryptography with device binding. We start
by observing that the previous constructions [3,2] necessitate that a unique white-box program
is created for each device. In this line, we ask the following question: is it possible to create a
single global white-box which can be distributed to multiple users and securely bound to each
user’s device? With such a construction, we aim to take further steps towards more practical
white-box approaches. Namely with a global white-box, our compiler needs to generate only
one white-box application and place it directly in the cloud available for download (avoiding
multiple expensive obfuscation operations). Such a setting stands in-line with traditional app
stores and does not necessitate any additional side-loading when downloading the program.

To enable our work we define a new formal framework for global white-boxes and examine
two different strengths of global white-box constructions. In one case, we assume that a secret
is shared with the corresponding devices and this secret will be used for the binding. In the
second case, we relax this assumption and consider thus a stronger class of global white-boxes.
Further intuition on these is given in the next section of the introduction.

At a high-level we consider a global white-box compiler which will obfuscate some function
F . Generally, the function F corresponds to the description of a program we wish to combine
with a white-box decryption program. Our schemes must satisfy two important properties:
ensure the confidentiality of inputs to the white-box (e.g. an encrypted stream in the case of
DRM or a bank provided key in the case of payments) and ensure that the white-box can only
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be evaluated on inputs which have been “bound” to a device’s trusted component. To cap-
ture these properties we introduce corresponding notions of security for both classes of global
white-box programs. On this line, we give examples of how each class of global white-box can
be constructed by providing corresponding provably secure constructions. For the first class,
our constructions are based on Token-based obfuscation. This result provides us a new flavour
of white-box constructions, showing that strong obfuscation assumptions, such as indistin-
guishability obfuscation, are not necessary for white-box obfuscation of arbitrary ciphers. At
the same time, this construction allows us to demonstrate a new use case for Token-based
obfuscation which had not been previously considered. Our second flavour of constructions,
which meet the stronger version of global white-boxes, are inspired by message-recoverable
signatures and augmented by puncturable pseudorandom functions and indistinguishability
obfuscation. This type of constructions suggest thus a general approach for device-binding
if full-fledged obfuscation schemes were secure and practical. In the rest of the introduction
we dive deeper into the concepts of global white-boxes, their different flavors and how we
construct them.

1.3 Global White-boxes

Ideally, we would like a software provider (or server) to compile a single white-box program
and upload it to the cloud. Any user who wants to acquire the program can download it to
their device. However upon download, the white-box program should not (yet) be functional.
Instead, the program should first be properly enrolled and bound to a user’s device. This
way we ensure that the program is not subject to code-lifting attacks. Below we introduce
two possible ways of constructing global white-boxes with their corresponding enrollment
processes.

First we consider a white-box which is compiled to only work on inputs which are encoded
using some secret key material. This key material is generated by the server such that the
corresponding decoding key can be embedded when creating the white-box. A user can only
run this white-box if he obtains the corresponding encoding key from the server. By securely
storing this key in the hardware of a user’s device, we ensure that use of the white-box is
bound to that device. Below we show an example in pseudocode of how such a white-box
program would work in collaboration with the secure hardware, denoted here as HW. The
secure hardware takes as input a ciphertext that we wish to later decrypt with our white-box
program. HW encodes the ciphertext with the key it obtained from the server, es, and obtains
c̃. The white-box program has a decoding and a decryption key embedded (ds and k) and it
takes as input the encoded ciphertext c̃. The white-box first decodes a ciphertext and then
decrypts it.

HW(c)

c̃ ← Encode(es, c)

return c̃

WB(c̃)

c ← Decode(ds, c̃)

m ← Dec(k, c)

return m

Note that the white-box program needs to be obfuscated such that an adversary is unable
to separate the decoding and the decryption operations. This makes it impossible for an
adversary to run the white-box without access to a hardware device with the corresponding
encoding key. The scenario described above achieves our initial goal of a global white-box as
long as the encoding key can be securely shared between the server and the devices.
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A stronger approach is if each user makes use of their own (unique) key for encoding
inputs to the white-box. Here we additionally ensure that even if a device’s trusted hardware
is compromised this only affects the binding of that device and no others, thus providing a
strongly level of security. To implement this approach we need a white-box which takes two
encoded inputs. One input is the ciphertext encoded via the secret key of the user’s hardware.
The other input is the corresponding decoding key of the user’s hardware, but encoded via
the server’s secret key. The white-box should first recover the decoding key of the user and
then use the recovered key to decode the encoded ciphertext, as shown in the pseudocode
below. Here dh is the decoding key of the user’s hardware. The server encodes dh via the
server’s secret key es. The hardware encodes a ciphertext via the hardware’s secret key and
returns ĉ.

Server(dh)

d̃h ← Encode(es, dh)

return d̃h

HW(c)

c̃ ← Encode(eh, c)

return ĉ

WB(d̃h, c̃)

dh ← Decode(ds, d̃h)

c ← Decode(dh, c̃)

m ← Dec(k, c)

return m

Here as before, the white-box program should be obfuscated such that an adversary is unable
to separate the decode and decryption algorithms. Note that if an adversary copies the white-
box, a ciphertext and the encoded key d̃h (or even gains knowledge of the decoding keys ds
and dh), the adversary is still unable to correctly perform a decryption, unless he can access
the corresponding hardware in order to correctly encode the ciphertext.

We refer to the scenario described above as a strong global white-box. The idea is that the
white-box program will only output correct values if both its inputs are provided consistently,
i.e. if the encoded key d̃h is used in combination with inputs encoded via the device holding
dh. In what follows we explain how we can construct white-boxes used in both, the simple
and in the stronger global white-box setting.

1.4 Token-based Obfuscation for Global White-boxes

An obfuscator is a compiler that takes a plaintext circuit C as input and outputs a circuit
C̃ that is functionally equivalent to C but is “unintelligible” [30,7]. General-purpose code
obfuscation is an amazingly powerful technique, making it possible to hide arbitrary secrets
in any software. Tremendous progress has been made in the area of obfuscation in the last two
decades. Strong security definitions of obfuscation were formalized in the work of Hada [30]
and Barak et al. [7] in early 2000s. The first candidate construction of iO, proposed by Garg
et al. [25], opened up a new direction of research that transformed our thinking about what
can and cannot be done in cryptography. The goal of white-box cryptography can be viewed
as providing practical obfuscation of special programs, namely symmetric ciphers.

However, constructing a full-fledged obfuscator that is both efficient and secure based
on the hardness of established mathematical problems is quite difficult. Since the proposal
of the first full-fledged obfuscation candidate in 2013 [25], there were several attacks [17,16]
and alternative proposals [12,4,36]. So far, only one of them [32] is based on relatively well-
established assumptions.

On the other hand, if we would like to produce obfuscated programs that are only exe-
cutable on inputs for which some special token has been issued, then such a restricted type
of obfuscation is easier to construct, and was indeed formalized as Token-Based Obfuscation
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(TBO) by Goldwasser et al. [28]. Readers who are familiar with garbled circuits can think
of token-based obfuscation as reusable garbled circuits, where the obfuscated circuit is the
reusable garbled circuit and the tokens are the garbled input. Here, the obfuscated circuit
leaks no information other than the size of the circuit and the outputs obtained from evaluat-
ing the reusable garbled circuit on the specific garbled inputs. TBO can be constructed based
on the hardness of learning-with-errors problems [42], as opposed to full-fledged obfuscation
for which the security of none of the candidate constructions is well-established.

A convenient restriction. As mentioned above, the security of TBO is achieved under the
restriction that the obfuscated circuit (or program) can only be executed for specific inputs:
the inputs for which a user obtains a token. A token-based obfuscation scheme is therefore
defined in combination with a token-generation algorithm, where the token generation key
is created together with the obfuscated program. We recall now that for achieving device-
binding, we want to generate a white-box program which can only be correctly executed in
combination with a specific trusted component. Here, token-based obfuscation directly gives
us the functionality and security we desire for our complete white-box scheme when we place
our token input generator directly on the trusted component.

For context, consider the following simplified example, where we already introduce part
of our notation. Let F be a pseudorandom permutation with an embedded secret key, such
that F (c) = x. Furthermore, assume that we want to use this pseudorandom permutation as
a decryption function. That is, the input c corresponds to a ciphertext which was generated
for some message x via the inverse of F . We now obfuscate F via token-based obfuscation:
(O[F ],MSK)←$TBO.Obf(F ). We obtain thus a program O[F ] which alone reveals nothing
about F . O[F ] can be used for recovering x only when we can obtain a valid token for the
corresponding c value: c̃←$TBO.InpGen(MSK, c). Upon receiving c̃, a user can recover x via
O[F ](c̃). Thus, if we implement the token-generation algorithm within the trusted component
of a device, the obfuscated program becomes useful only if it has access to that device,
achieving thus the property of device binding.

In this paper we formalize the construction described above and show how we can use
TBO to construct global white-boxes. This leads us to new interesting feasibility results
for white-box cryptography which are based on LWE [42] and we thus show that strong
notions of obfuscation such as iO are not always necessary for building white-box applications
instantiated with any encryption scheme, such as AES.

1.5 Message-recoverable Signatures for Strong Global White-boxes

Message-recoverable signatures (MRS) were introduced by Bellare and Rogaway [8]. Unlike
traditional signature schemes, whose signing algorithm generates a signature for a particular
message, an MRS signing algorithm embeds the signature within the message. Additionally,
an MRS scheme consists of a recover algorithm which verifies the signature and returns the
original message. Security of MRS holds as long as an adversary is unable to forge a valid
signed message. The original benefit of using MRS as opposed to a traditional signature is
that it reduces the amount of data that must be sent between the signing and the verifying
entity. In [8], the authors show how signature schemes such as RSA can be used to construct
MRS schemes.

As of today, MRS-inspired approaches are used in practice for implementing device binding
for white-box programs running on mobile phones with trusted components [38]. In such
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approaches, the trusted component on a user’s phone generates an RSA key pair and securely
stores the secret key. The public key is shared with the entity compiling the white-box program
and the white-box is compiled such that it has the public key embedded in it, together with a
symmetric decryption key. Whenever we want to decrypt a ciphertext, we first sign it via the
secret key stored in the trusted component. We then give this signed ciphertext as input to the
white-box, which first uses the public key to recover the ciphertext before the final decryption
with the symmetric key. Note that given such a white-box program, it should be difficult
for an adversary to separate the message recovery from the decryption algorithm. Thus, the
white-box program (with the embedded public key) can only be used in the presence of the
trusted component which generates the signed ciphertexts.

By extending this approach, we can build a compiler which creates a single white-box
program that may be used by all legitimate users. This approach would use two layers of
message-recoverable signatures and the white-box program would have the public key of the
server and a symmetric decryption key embedded. The first layer will use the embedded public
key to recover the unique public key of the user. The second layer will use that user’s public
key to decode the ciphertext. Thus ensuring the stricter requirement of per-device binding
of a strong global white-box. The use of MRS makes the enrollment process described in the
previous section easier, since no secrets need to be shared between the server and the user.

MRS vs Traditional signatures. We note that device binding for white-box programs
could also be implemented using a traditional signature scheme. In this case instead of encod-
ing the message we wish to compute via an MRS scheme, the trusted component generates
a separate signature for that specific message. The white-box program would verify the sig-
nature and only proceed if the signature was valid. In this paper we choose to focus on
the use of MRS in order to validate and extend approaches used in practice [38]. Why such
MRS-inspired approaches are used in practice instead of traditional signature schemes is not
completely clear. In early white-box related works, it was proposed to make use of external
encodings for protecting white-box AES designs against code-lifting attacks [19,39]. Here, ex-
ternal encodings refer to encodings provided by an external source (e.g. a secure hardware),
and the white-box program is designed such that it computes correctly only on values encoded
via that external source. The approach of using MRS correlates with this proposal since we
are using the secret signing key as our encoding function and the public key embedded in the
white-box as a decoding function. Note that for such a design, the recover algorithm can be
simplified and does not really need to check for the validity of the signature. Instead, it can
directly perform the decoding using the embedded public key. If the input was not encoded or
encoded using the wrong secret key, then the output of the white-box will be anyway faulty
(see Section 1.3). It is an interesting question whether it is easier to obfuscate (in practice) a
program which checks for the validity of a signature (and then decrypts) or a program which
decrypts directly on encoded inputs.

2 Preliminaries and Notation

a ← b denotes the assignment of a value b to a variable a. We denote by a ← A(b) the
execution of a deterministic algorithm A on input b to produce an output a. a←$A(b) denotes
the execution of a probabilistic algorithm A. We use square brackets to denote a fixed value
hard-coded into an algorithm, e.g. A[k] denotes that the value k is hard-coded in the algorithm
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A. a‖b denotes the concatenation of two values a and b, while |a| denotes the length of a value
a. q←$Q denotes the process of randomly sampling an element q from a set (or distribution)
Q.

By 1λ we denote (the unary representation of) the security parameter, which all algo-
rithms receive as input. We write it explicitly for the algorithms which only take the security
parameter as input and leave it implicit for the rest. The subscript to an adversary A denotes
the class of oracles the adversary gets access to in our security definitions. With ≈c we denote
computationally indistinguishability.

2.1 Theoretical Background on Obfuscation

Let us recall the definitions of strong VBB obfuscation and indistinguishability obfuscation.

Definition 1 (Obfuscation [30,7]). A probabilistic algorithm O is an obfuscator for a class
of circuit C if the following conditions hold:

– (Preservation of the function) For all inputs x, Pr[C(x) = O(C(x))] > 1− negl(λ).
– (Polynomially slowdown) There is a polynomial p s.t. |O(C)| < p(|C|).
– (Strong virtual black-box obfuscation) For any PPT adversary A, there is a PPT simulator

Sim s.t. for all C,
{
A(1λ, O(C))

}
≈c
{
SimC(·)(1λ, |C|)

}
.

– (Indistinguishability obfuscation) For functionally equivalent circuits C0, C1, O(C0) ≈c
O(C1).

Let us recall the definition of token-based obfuscation [28].

Definition 2 (Token-based obfuscation [28]). A token-based obfuscation scheme for a
class of functions Fn = {F : {0, 1}n → {0, 1}} is a tuple of PPT algorithms (TBO.Obf,
TBO.InpGen) such that:

– TBO.Obf(1λ, F ) takes as input the security parameter 1λ and a function F , and outputs
the master secret key MSK and an obfuscated program O[F ].

– TBO.InpGen(MSK,m) takes MSK and a message m ∈ {0, 1}n, and outputs a token m̃.

We require that for every message m ∈ {0, 1}n and function F ∈ Fn, we have correctness:

Pr[O[F ](TBO.InpGen(MSK,m)) = F (m)] > 1− negl(λ),

where the probability is taken over the randomness of the algorithms TBO.Obf and TBO.InpGen.
Efficiency. The running time of TBO.InpGen is independent of the size of F .
Security. We say that a token-based obfuscation scheme is secure if for all PPT stateful

algorithms A, there is a PPT stateful algorithm Sim such that:{
Experiment REALA(1λ)

}
λ∈N
≈c
{

Experiment IDEALA,Sim(1λ)
}
λ∈N

,

where the real and ideal experiments are defined as follows:

Experiment REALA(1λ) Experiment IDEALA,Sim(1λ)

(F, stateA)←$A(1λ); (F, stateA)←$A(1λ);

(MSK, O[F ])←$TBO.Obf(1λ, F ); (stateS , OS)←$ SimP (1λ, 1|F |);

b←$ATBO.InpGen(MSK,m)(O[F ], stateA); b←$ASimI (stateS ,1
|m|,F (m))(OS , stateA);

Output b Output b
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In the experiments, A can ask for a single obfuscated program and polynomially many
input queries, denoted as m afterwards. Once A picks a function F ∈ Fλ, in the real exper-
iment, A obtains the obfuscated code O[F ]; in the ideal experiment, it obtains a program
generated by SimP , where SimP is given only the size of F . For the input-token queries made
by A after the function query, in the real experiment, A obtains the token of m. In the ideal
experiment, A obtains a value generated by SimI , where SimI is given only 1|m| and F (m).
The output of the experiment is the final output bit of A.

3 Global White-boxes with Device Binding

Device binding ensures that a white-box program can only be executed on one specific de-
vice and is useless without access to that device. As mentioned earlier, device binding is a
countermeasure technique for preventing code-lifting attacks. Previous notions for white-box
device binding [3,2] relate to schemes which require a specific white-box application for each
individual user. That is, every time a user enrolls to use a service, a unique white-box is
compiled and sent to that user. Here we introduce our new definitions which consider a more
general approach for distributing white-boxes, where a single global white-box program is
created for all users.

3.1 Definitions

Our Setting. We consider a setting where a provider creates an obfuscated program (for
some functionality F ) which will be distributed to multiple devices. We assume devices each
have a trusted component which is used for the purposes of device binding. In practice, this
trusted component has limited functionality and supports only standard cryptographic primi-
tives. We assume trusted components have been securely initialized based on some enrollment
process with the provider.

The provider encrypts inputs for the white-box program which will be provided to the
device. Before executing the white-box program, the device submits these encrypted inputs
to its trusted component to bind them to the device (by performing an additional encoding
step). An obfuscated white-box program execution proceeds by verifying that the input is
properly bound to the device and then executing the functionality F .

Formally achieving these goals. We now define the formal syntax for our global white-box
scheme, which we refer to as a GW-scheme. In the definition below, we consider a program
(compiler) Comp which based on a function F , generates an obfuscated program and the
necessary key material for the scheme. The obfuscated program WB should work on encoded
data and be functionally equivalent to F . This is further depicted in Figure 1.

Definition 3. A Global White-box GW-Scheme consists of the following algorithms:

– A randomized compiler Comp which takes as input a function F with syntax z ← F (x, y).
The compiler returns a program WB and randomly generated keys ek and bk, i.e.
(ek, bk,WB)←$Comp(F ).

– A probabilistic algorithm Encrypt which takes as input a secret (encryption) key ek, a value
x, and an identifier ID, and outputs an encrypted message c, i.e. c←$Encrypt(ek, x, ID).

– A probabilistic algorithm Encode, which takes as input a secret (binding) key bk, a value
c, and an additional value y, and returns an encoded value c̃, i.e. c̃←$Encode(bk, c, y).
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Provider

x←$X
c←$Encrypt(ek, x, ID)

c c, y

c̃

Device

Trusted Component

c̃←$Encode(bk, c, y)

Application

y ← Y

z ←WB(c̃)

Fig. 1: Global White-box (GW) Scheme. For initial setup the provider runs the compiler program to generate
the whitebox and some key material, (ek, bk,WB)←$Comp(F ). WB is distributed to all devices via a central
appstore. The binding key bk is distributed to all devices through some PKI-based enrollment phase.

Correctness states that for every function F : X × Y → Z, for all x ∈ X , all y ∈ Y, we have

Pr[WB(Encode(bk,Encrypt(ek, x, ID), y)) = F (x, y)] = 1,

where the probability is over the randomness of all algorithms and the corresponding secret
keys bk, ek.

For context, note that the WB program has the following syntax: WB(c̃) = F (x, y). Note
that c̃ is generated based on an encryption of a value x and a value y. WB recovers the values
x and y and then computes F (x, y). Note that the values x and y should not be revealed
during computation. Below we define the security notions for our scheme. We consider two
variants of security. For all games, the distribution of the output of the adversaries should be
indistinguishable (to achieve security).

Definition 4 (Security of GW-schemes). Let Comp be a GW-scheme for some function-
ality F . For PPT adversaries A = (A1,A2) and simulators Sim = (Sim1, Sim2) consider the
following experiments:

Experiment REALGW,A(1λ) Experiment IDEALGW,A,Sim(1λ)

(F, state)←$A1(1
λ); (F, stateA)←$A1(1

λ);

(ek, bk,WB)←$Comp(F ); (W̃B, states)←$Sim1(1
|F |);

α←$ATC
2 (WB, F, state); α←$AO2 (W̃B, F, stateA);

Return α Return α

Here TC means the adversary can query the following algorithms:

– Encrypt(), by providing a chosen value x and obtaining a ciphertext c.
– Encode(), by providing a ciphertext and a value y: (c, y).

O means the adversary can query the following oracles, which keep track of states. Note
that ẽk, b̃k ∈ states:

– OEncrypt(x), the oracle runs Sim2 on the length of x, 1|x|, and returns cs and states.
The oracle sets X[x]← cs and updates the state. The oracle then returns cs to the adver-
sary.

– OEncode(cs, y): the oracle retrieves x ← X[cs] and runs Sim2 with input F (x, y), y and
length of x, and returns c̃s and states.
The oracle sets C[c]← c̃s and updates the state. The oracle then returns c̃s to the adver-
sary.
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Here the simulators only see the size of the function F and the size of the input x. So if
the simulators are able to produce outputs that are indistinguishable from the real world, it
means the function and the input are hidden in the global white-box scheme.

We say that the global white-box GW-scheme is secure if there exists a pair of ppt simulators
Sim = (Sim1,Sim2), such that for all pairs of ppt adversaries A = (A1,A2), the following two
distributions are computationally indistinguishable:{

Experiment REALGW,A(1λ)

}
λ∈N

≈

{
Experiment IDEALGW,A,Sim(1λ)

}
λ∈N

3.2 Security of GW-schemes with user-specific encryption

We now present a variant of the security definition for GW-schemes. The definition below
differs in that it ensures that the provider chosen inputs x are now encrypted for a specific
user/device. Here the adversary is able to choose which ID values are used for generating the
ciphertexts. Additionally, the adversary can choose different Encode() algorithms for encoding
the ciphertexts.

Definition 5 (Security of GW-schemes with user-specific encryption). Let Comp be
a GW-scheme for some functionality F . For PPT adversaries A = (A1,A2) and simlulators
Sim = (Sim1,Sim2) consider the following experiments:

Experiment REALA(1λ) Experiment IDEALA,Sim(1λ)

(F, state)←$A1(1
λ); (F, stateA)←$A1(1

λ);

(ek, bk,WB)←$Comp(F ); (W̃B, states)←$ Sim1(1
|F |);

α←$ATC
2 (WB, F, state); α←$AO2 (W̃B, F, stateA);

Return α Return α

Here TC means the adversary can query the following algorithms:

– Encrypt(), with a randomly chosen value x and an ID, returning c and ID.
– Encode(), with a selected pair (c, y) and an ID indicating which evaluator to use. The

algorithm returns c̃.

O means the adversary can query the following oracles, which keep track of states. Note
that ẽk, b̃k ∈ states. Note that every time the oracle runs the simulator, it provides it with the
updated state:

– OEncrypt(x, IDs), the oracle runs Sim2 on (1|x|, IDs) and returns cs and states.
The oracle sets X[x]← (cs, IDs), updates the state, and returns (cs, IDs) to the adversary.

– OEncode(c, y): The oracle retrieves (cs, IDs) ← C[cs]. It runs Sim2 on F (x, y) and the
lengths of x, y, and returns c̃ and states.
The oracle sets C[c̃]← c, updates the state, and returns c̃ to the adversary.

We say that the global white-box GW-scheme is secure if there exists a pair of PPT sim-
ulators Sim = (Sim1, Sim2), such that for all pairs of PPT adversaries A = (A1,A2), the
following two distributions are computationally indistinguishable:{

Experiment REALGW,A(1λ)

}
λ∈N

≈

{
Experiment IDEALGW,A,Sim(1λ)

}
λ∈N
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4 Constructions based on Token-Based Obfuscation

We recall that in token-based obfuscation, the master secret key used for generating the tokens
is generated by the same entity which obfuscates the programs. In Definition 3, the compiler
Comp is responsible for obfuscating the program and for generating the key material ek, bk.
The binding key (bk) is used as the master secret key for the token-generation algorithm.
Therefore for our construction, we assume that the provider generating the obfuscated pro-
gram can securely communicate bk to the trusted components running the Encode algorithm.
As an example, we explain below how this could be achieved for mobile-phone applications
used in combination with trusted components on phones.

First the provider of a service generates the program WB and the corresponding key
material. Next the provider can make the program WB available for download. At this point,
a user can download WB, but note that the user still needs to obtain bk in order to encode
inputs to WB properly. One way to achieve this is by each user generating a key pair within
his trusted component. The user’s public key is then given to the service provider who will use
this to encrypt bk. Upon receiving the encrypted bk, this can be decrypted by and stored in
a user’s trusted component, and be used by the token-generation algorithm. In Section 5, we
present a strengthened variant of global white-boxes, where we extend our syntax to include
this enrollment procedure as part of our white-box programs.

Construction 1. Let F be any function of the syntax F (x, y) = z. Let SE = (SE.KGen,
SE.Enc, SE.Dec) be a symmetric encryption scheme and let TBO = (TBO.Obf, TBO.InpGen)
be an obfuscation scheme.

C[K](w)

c‖y ← w

x← SE.Dec(K, c)

z ← F (x, y)

return z

Comp[C](F )

ek←$ SE.KGen(1n)

(MSK, O)←$TBO.Obf(C[ek])

WB← O

bk← MSK

return ek, bk,WB

Encrypt(ek, x, ID)

c← SE.Enc(ek, x)

return c

Encode(bk, c, y)

MSK← bk

w ← c‖y
c̃←$TBO.InpGen(MSK, w)

return c̃

Additionally, we consider an execution algorithm for WB, which takes as input c̃, runs WB
on c̃ and outputs the value z, i.e. WB(c̃) = z.

Theorem 1. If SE a secure symmetric encryption scheme and TBO is a secure token-based
obfuscation scheme, then Construction 1 is a secure GW-scheme.

The proof of Theorem 1 is a reduction from any TBO scheme since our program WB is the
direct output of the obfuscator and it is not possible to compute any value on WB without the
token generation algorithm (namely Encode). We first argue the correctness of the program
WB.

Proof of correctness. First note that WB is the obfuscated program generated via TBO.Obf,
i.e. WB← O. WB gets as input c̃, which is the output of the TBO.InpGen algorithm ran on the
key MSK. Both MSK and WB (i.e. O) are generated via the TBO.Obf algorithm and it follows
from the correctness of the TBO scheme that c̃ is a valid input for WB. This means that WB
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will compute C[ek](w), i.e. will split w in two and decrypt one half to recover x. From the
correctness of the symmetric encryption scheme, it follows that SE.Dec(ek, SE.Enc(ek, x)) = x.
Thus, WB correctly retrieves x and computes F (x, y) = z.

Proof of security. To prove the security of Construction 1, it suffices to build a simulator
Sim = (Sim1,Sim2) in Definition 4. We build the simulators Sim1,Sim2 from the simulators
for the TBO and semantic secure encryption as follows.

– Sim1 from the simulators of TBO: We build Sim1 by calling the simulator SimP used
for token-based obfuscation (see Definition 2). In short, Sim1 runs the SimP on the size of
the function |F |, gets back Os, and treats Os as W̃B, recorded the (possibly) simulated
MSK in the state states.

– Sim2 in collaboration with OEncrypt: We build this simulator by directly calling the
simulator of the semantic secure probabilistic symmetric encryption scheme. Recall the
simulator of a semantic secure encryption scheme is supposed to output a string that is
indistinguishable from the real ciphertext given the length of the message. For example,
for an encryption scheme with pseudorandom ciphertext, the simulator simply draws a
random value once given the length of the message.

– Sim2 in collaboration with OEncode: We build this simulator from SimI used for token-
based obfuscation (see Definition 2). Here Sim2 runs the SimI on values F (x, y) and the
lengths of x and y. SimI returns a value c̃. Sim2 then outputs c̃.

We now prove indistinguishability of the real and ideal world experiments. Here, we define
a sequence of hybrid experiments. We invoke the security of the underlying SE and TBO
schemes to prove that the outcome of the hybrid experiments are indistinguishable.

Hybrid 0. The first hybrid is the output of the ideal experiment in Definition 4.
Hybrid 1. This hybrid is the same as the previous one with the following exception.

Instead of generating a ciphertext by running Sim2 in collaboration with OEncrypt, we replace
it by running the semantic secure encryption algorithm on x. Following the semantic security
of SE, Hybrid 1 is indistinguishable from Hybrid 0, since the secret key of the semantic secure
encryption scheme is not used in the rest of the experiment in both Hybrid 1 and Hybrid 0.

Hybrid 2. The next hybrid is the same as the previous one with the following exception:
the simulated encoded ciphertext (denoted as c̃) is replaced by the encoded ciphertext ob-
tained from running c on the algorithm OEncode, and the simulated program W̃B is replaced
by the real token-based obfuscated program. Hybrid 2 is indistinguishable from Hybrid 1
following the security of the TBO.

Hybrid 2 is then the real experiment.

In Section C we present a TBO-based construction for user specific encodings and prove
its security with regard to Definition 5.

Remark on the key-loading assumption. As already pointed out, for Construction 1 and
Construction 3 we assume that a user is able to load external key material (bk) in its secure
element. We note however that this assumption is only necessary when constructing global
white-boxes. If we were to construct white-boxes with device binding compiled individually for
each user (following the style of [3]), we would not need to make such a key-loading assumption
and we would obtain a simpler TBO-based feasibility result. We explain this briefly below
and refer the reader to Section 4.1 of [28] for more details on how TBO is constructed.
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First we explain why the key-loading assumption is necessary for constructing global
white-boxes via TBO. In short, the obfuscated program in a TBO scheme is a garbled circuit
which consists of an encryption of the original circuit C. Thus whenever running the garbled
circuit, we need to provide some key as input so that the original circuit can be recovered
and run. If we are considering global white-boxes compiled only once, then all such white-
boxes consist of the same circuit encrypted via the same secret key. Thus, this key has to
be generated on the server side and shared with all legitimate users who wish to run the
white-box on their device.

Now if we were to construct white-boxes compiled individually for each user, such a key
could be generated on the user’s secure element. The key can be securely shared with the
server, who can then use that key for encrypting the circuit when compiling the white-box.
The white-box is then shared with the user who can run it via the secret key already stored in
his secure element. Below we explain more formally how such a construction and flow would
look. We will partly use the notation from Section 4.1 of [28].

1. First the user generates some secret key SK in its secure element and securely sends it to
the server. Note that this does not need to be some unique fixed key, but it can be some
sub key derived from a unique key, as done in the constructions of [3].

2. The server will now generate the white-box program according to the steps in Section 4.1
of [28]. That is, the server first generates some functional encryption key material. Then
in Step 2, the server encrypts circuit C via the SK it obtained from the user. Steps 3, 4
and 5 are performed in the same way as described in the original paper. The server can
now share the compiled program with the user.
We note that to run the generated program (i.e. our white-box), we need (1) the FE
public key generated by the server in Step 1 [28, Section 4.1] and (2) the symmetric key
SK located on the user’s secure element.

3. Content generation and distribution. The server generates some content (LUK or
DRM), encrypts it, and appends the FE public key, i.e. all ciphertexts are of the form c =
(c, fmpk). The server sends the obfuscated program to the user along with all ciphertexts.

4. Now, the user can decrypt c by first sending c to the secure element. The secure element
parses (c, fmpk) ← c, and runs FE.Enc(fmpk, (SK, c)) to generate a token. Now the user
has a correctly generated token and can run his white-box program on it.

Encrypt((ek, fmpk), x)

c← SE.Enc(ek, x)

c← (c, fmpk)

return c

Encode(SK, c)

(c, fmpk)← c

c̃←$FE.Enc(fmpk, (SK, c))

return c̃

It is easy to see that such a construction achieves correctness and the desired security for
a white-box program with device binding.

5 Strong Global White-boxes

In the previous sections, we introduced the concept of global white-boxes and presented cor-
responding definitions. We note that, in those previous definitions, we necessitate a “global”
binding key as well. That is, the binding key bk is generated by the provider and is distributed
to each device’s trusted component through some secure provisioning process. A single com-
promise of a trusted component would reveal this global binding key to the adversary and
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thus requires our full confidence in the trusted components. By relaxing this assumption and
instead enforcing per-device binding keys we formalize a stronger definition which still allows
us to achieve global white-boxes. We refer to this notion as strong global white-box.

In addition to introducing a per-device binding key we make a further change to our
syntax. In the previous setting the device-chosen input y is bound to the device together
with the provider-chosen input x. In our new setting we only require that the provider-chosen
input needs to be device bound. This permits the device greater flexibility by decoupling
when binding happens and the additional input y is chosen.

This second change does however impact our definitional style. When we consider func-
tions that take two inputs coming from potentially different parties, this makes it hard to
achieve security in a simulation-based setting. When the input of the function is split into
two pieces (i.e. the provider-chosen input x and device-chosen input y), a natural simulation-
based definition for global white-boxes is impossible to achieve. This is due to similar reasons
as for multi-input functional encryption [27], where a natural simulation-based definition for
2-input functional encryption implies VBB obfuscation. As result we switch our definitional
style to now provide game (or, indistinguishability)-based definitions to capture the security
for this alternate setting.

Our Extended Setting. As in Section 3.1, we consider a setting where a provider creates
an obfuscated program (for some functionality F ) which will be distributed to a collection of
devices. Unlike before, we additionally define the enrollment process for trusted components.
The following explanation is a more detailed extension to what was discussed in the second
part of Section 1.3. Also see Section 6 for more context. A user enrolls his device by calling the
trusted component and submitting the result to the provider for certification. More precisely,
the trusted component generates a secret-public key pair and some ID value. The user then
shares the public key and the ID value with the server. The server will generate a certificate
based on this public key and the certificate will be used as an input for the white-box program.
More precisely, the server certifies the public key via an MRS-like scheme: the server uses its
secret key for signing the user’s public key. Thus, we obtain a signed (or encoded) version of
the user’s public key, denoted cert, which is sent back to the user.

The provider generates and encrypts the inputs of the white-box program (e.g. the DRM
content or the LUKs) and sends the corresponding ciphertexts to the user. For decrypting the
ciphertexts, the user first encodes them via its trusted component. The trusted component
encodes the ciphertexts via an MRS-like scheme: it signs them using its secret key. The user
now gives the encoded ciphertext and the cert as inputs to the white-box program. The white-
box program will first recover (or decode) the user’s public key from the cert and then use
that public key to recover the original ciphertext, which afterwards will be decrypted.

Note that ciphertexts will only be recovered correctly if the public key obtained from cert
(for the purpose of decoding) is the same public key that was generated during the initial
enrollment process. Thus, a user is only able to correctly run the white-box program if he
(1) obtains a legitimate cert and (2) encodes the inputs via the secret key of its trusted
component. Moreover the cert used must be an encoding, under the secret key of the server,
of the public key corresponding to the secret key used to encode inputs to the white-box.
Below we define the syntax of each algorithm. Figure 2 gives further clarity on which party
runs each algorithm.
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Provider

(cert)←$Enroll(rk, pk)

x←$X
c←$Encrypt(ek, x, ID)

pk

cert

c

pk

c

c̃

Device

Trusted Component

(sk, pk, ID)←$ Init(1n)

c̃←$Encode(sk, c, ID)

Application

y ← Y
z ←WB(c̃, cert, y)

Fig. 2: Strong Global White-box (sGW) Scheme. For initial setup the provider runs the compiler program to
generate the whitebox and some key material, (ek, rk,WB)←$Comp(F ). WB is distributed to all devices via a
central appstore.

Definition 6. A Strong Global White-box scheme sGW-Scheme consists of the following al-
gorithms

– A randomized compiler Comp which takes as input a function F , with syntax z ← F (x, y).
The compiler returns a program WB and two randomly generated keys rk and ek, i.e.
(rk, ek,WB)←$Comp(F ).

– A probabilistic algorithm Init, which on input the security parameter, outputs the fol-
lowing values: a secret key sk, an associated public key pk and an identifier ID, i.e.
(sk, pk, ID)←$ Init(1n).

– A probabilistic algorithm Enroll which takes as input a secret (registration) key rk and a
request message pk, and outputs an authenticated badge cert, i.e. (cert)←$Enroll(rk, pk).

– A probabilistic algorithm Encrypt which takes as input a secret (encryption) key ek, a value
x, and an identifier ID, and outputs an encrypted message c, i.e. c ←$ Encrypt(ek, x, ID).

– A probabilistic algorithm Encode which on input of a secret (binding/encoding) key sk and
a value c, and an identifier ID returns a value c̃, i.e. c̃←$Encode(sk, c, ID).

Correctness states that for every genuine rk and pk, such that cert←$Enroll(rk, pk), for every
function F : X × Y → Z, for all x ∈ X , all y ∈ Y, we have

Pr[WB(Encode(sk,Encrypt(ek, x, ID)), cert, y) = F (x, y)] = 1,

where the probability is over the randomness of all algorithms and the corresponding secret
keys sk, ek, rk.

Security Definitions We now introduce our security notions for an sGW-scheme. We provide
both a privacy notion, which captures the security of the private inputs x, and a forgery notion
with respect to some underlying cryptographic functionality F . The more general properties
captured by these security notions are the following. Firstly, they capture the property that
a device (trusted component) should be properly enrolled with the provider such that it can
run the white-box program correctly. Secondly, the notions capture the property that inputs
to the white-box should be properly bound to the device, i.e. properly encoded by the device.

We first formalize the privacy property of an sGW-scheme via the game depicted in Fig-
ure 3. We recall that we could have two different types of global white-boxes depending on
the application we are considering. If the global white-box is meant to decrypt broadcasted
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data, e.g. as in DRM applications, then all global white-boxes should be able to decrypt
all values. In turn if the white-boxes are used for payment applications, the inputs to the
white-boxes are user specific. That is, the ciphertexts sent should only be decrypted by one
specific user. For our privacy game, we consider the case where information is broadcast to all
owners of white-boxes. Thus, we remark that one white-box allows an adversary to decrypt
any broadcasted value as long as he has access to a registered hardware. This also implies that
the encryptions are not user specific. For this reason, we do not consider the ID values in this
game (they will become relevant for a later model). We now describe the security experiment.

The adversary is given access to several oracles which permit him to enroll devices, receive
encrypted inputs from the provider, and bind these to a legitimately enrolled device. For the
purposes of the experiment, we assume that the trusted component cannot be impersonated
(i.e. some secure attestation process ensures the validity of pk submitted to the Enroll oracle).
Note that the adversary can run the white-box on any value c encoded via any device which
has been properly enrolled, and can enroll as many devices as he wants.5 The adversary
encodes values via the Encode oracle, which he queries with c and a public key value pk
which indicates which device he will use for encoding. Additionally, the adversary is given
access to a challenge oracle, to which he submits an input x. As output, this oracle returns
either the encryption of x or the encryption of a random value r. The adversary wins the
security experiment if he can distinguish between these values. Note that to prevent trivial
attacks the adversary cannot query the Encode oracle for values which were output by the
challenge oracle unless the encoding is meant to be done with a device which has not yet been
enrolled. This captures the property that the white-box program should only work properly
on inputs encoded via enrolled devices.

Definition 7 (Privacy). We say that a sGW-scheme is private if for all PPT adversaries A
playing the privacy game described in Figure 3, the distinguishing advantage Pr[ExpprivA (1n) =
1]− 1

2 is negligible.

An obfuscation scheme which satisfies the privacy notion above ensures that an adversary
cannot deduce the private input x shared by the provider. When obfuscating a specific function
F , what we actually wish to guarantee is that the adversary cannot evaluate the function F
on secret input x without using a legitimate device enrolled with the provider. For instance
when considering a mobile payment application, the function F we obfuscate is a message
authentication code (MAC). Specifically, F (x, y) = MAC(x, y), where x is a limited-use key
(LUK) for the MAC, and y is the transaction data to be authenticated. Just like for DRM,
the Enroll process ensures that only legitimate users who have registered their device are able
to run WB correctly. Therefore, for use case such as payments what we ultimately wish to
ensure is that an adversary in unable to forge the output of an obfuscated program.

An additional difference for mobile payments use case is that the generated ciphertexts
should only be decrypted by one specific user. Otherwise, an adversary could download the
global white-box, enroll it, and then steal the ciphertexts corresponding to some other user.
Thus, the ciphertexts given to a user need to somehow be linked with the user’s device,
in such way that they can only be decrypted if the white-box program is run on that one

5This capability is somewhat similar to the capability an adversary might have to obtain re-compiled
versions of a white-box program, introduced by Delerablée et al. in [21] with respect to notions such as
security against key extraction, one-wayness, incompressibility and traceability. Each new white-box program
is compiled based on different randomness, but on the same secret key, allowing thus to decrypt or encrypt
the same values.
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ExpprivA (1n)

b←$ {0, 1}
F ←$A(1n)

C,P ← ∅
(rk, ek,WB)←$Comp(F )

b∗ ←$AO(F,WB)

return (b∗ = b)

OInit()

(sk, pk)←$ Init(1n)

SK[pk]← sk

return pk

OEnroll(pk)

if SK[pk] 6= ⊥ and pk /∈ P
cert←$Enroll(rk, pk)

E[pk]← 1

return cert

OEncrypt(x)

c←$Encrypt(ek, x)

return c

OEncode(c, pk)

if c /∈ C or ⊥ ← E[pk]

sk← SK[pk]

c̃←$Encode(sk, c)

P := P ∪ pk

return c̃

OChall(x)

r←$X
if b = 1

c←$Encrypt(ek, x)

else

c←$Encrypt(ek, r)

C := C ∪ c
return c

Fig. 3: Privacy ExpprivA (1n) security game.

device. Below we introduce our forgery security definition for strong global white-boxes. This
definition captures the property that an adversary should not be able to forge valid outputs
of the function F for ciphertexts which correspond to some other user’s device.

The forgery security experiment and corresponding oracles are depicted in Figure 4. Unlike
the privacy experiment, this notion is now parameterized by a specific F . We need this
restriction since otherwise, the adversary could choose an F which computes values which are
trivial to forge. An additional difference is that we do not let the adversary choose the values to
be encrypted by the encryption oracle. This is because knowing a value x would trivially allow
the adversary to compute a valid output F (x, y) = z. Instead when the adversary queries an
encryption oracle, a value is generated at random, encrypted and then the ciphertext is given
to the adversary. We note that this restriction seems fair in this model. Namely in this use case,
the encrypted values correspond to key material which will later be used for authentication.
Therefore, it is normal to assume that these values will be generated at random and will
initially be unknown to a user or an adversary. Below we explain how the oracles are defined.

The Init oracle generates key material for a specific device. It also generates an ID value
which identifies the device (or the owner of that device). The Enroll oracle is queried via a
public key and its corresponding ID. This corresponds to the device for which we wish to
obtain a valid certificate in order to run the white-box program on that device. The oracle
returns a certificate specific for that device. The Encrypt oracle is queried via a public key and
its corresponding ID. The oracle encrypts a randomly generated value according to the specific
ID provided by the adversary and keeps track of a list for the plaintext-ciphertext pairs. Note
that this ciphertext should only be decrypted correctly via the device corresponding to the
given ID.

The Encode oracle is queried by providing a ciphertext (together with its corresponding
ID) and a public key (together with its corresponding ID). That is, when querying this oracle,
we indicate which device we wish to use for encoding the given ciphertext. If the device we
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ExpunfF,A(1n)

C ← ∅
(rk, ek,WB)←$Comp(F )

(c, y, z∗, pk), (x∗, c∗)←$AO(F,WB)

pk||ID← pk

x← Dec(ek, c, ID)

if ((c, pk) /∈ C or ⊥ ← E[pk])

and F (x, y) = z∗

return 1

or if X[c∗]→ x∗

return 1

else return 0

OInit()

(sk, pk, ID)←$ Init(1n)

pk← pk||ID
SK[pk]← sk

return pk

OEnroll(pk)

if SK[pk] 6= ⊥
pk||ID← pk

cert←$Enroll(rk, pk)

E[pk]← 1

return cert

OEncrypt(pk)

x←$X
pk||ID← pk

c←$Encrypt(ek, x, ID)

X[c]← x

c← c||ID
return c

OEncode(c, pk)

c||ID∗ ← c

pk||ID← pk

if ID = ID∗

C := C ∪ (c, pk)

sk← SK[pk]

c̃←$Encode(sk, c, ID)

return c̃

OVer(c, y, z, pk)

pk||ID← pk

x← Dec(ek, c, ID)

if F (x, y) = z

return 1

else return ⊥

Fig. 4: Forgery security game.

mean to use has the same ID as the ciphertext, then we store this ciphertext-public key pair
in a set. Namely for this pair, we know that the resulting encoding should be properly decoded
by the global white-box. Thus having such an encoded value would let the adversary trivially
generate a valid value z.

We now explain the winning conditions. The adversary outputs two tuples, each relevant
to one different winning condition. For the first tuple (z∗, c, y, pk), the adversary wins if his
given values compute to F (Dec(ek, c, ID), y) = z∗, as long as one of the following holds: (1)
The public key ID provided for the decryption of c, and c, were not used together for querying
the Encode oracle; or, (2) the device public key ID provided for the decryption of c has not
been enrolled yet. This captures the general property of device enrollment mentioned above.
For the second tuple (c∗, x∗), the adversary wins if the provided value c∗ corresponds to a
ciphertext encrypting x∗.

Alternative winning condition. With the second winning condition we wish to capture that a
value x is never leaked during its decryption and computation with the white-box program. In
practice, we usually obfuscate the complete white-box program including function F and we
wish to ensure the privacy of such values x. Namely, if such values x are leaked, an adversary
would have an easier way of attacking a user’s application by simply observing how they are
once computed by the white-box, bypassing an adversary’s need to perform a code-lifting
attack. Note that without this second winning condition, a white-box program which does
not obfuscate F would be secure in the model.

Definition 8 (Forgery). We say that an sGW-scheme in combination with some func-
tion F is unforgeable if all PPT adversaries A have a negligible probability of winning the
ExpforgeryA,F (1n) game in Figure 4.
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6 Message-Recoverable Signatures for sGW-Schemes

We recall that a message-recoverable signature scheme consists of a signing and a recover
algorithm. Here, the signing algorithm uses a secret key to sign and encode a message, while
the recover algorithm uses a public key to recover the message (or an error if the signature is
invalid).

We now recall how MRSs are used in practice to implement device binding. First the
device’s trusted component generates a key pair (sk, pk). The public key is given to the
provider who embeds this within the white-box application. That is, the white-box application
has the user’s public key hard-coded in it, plus its decryption key. Now to use the white-box
application, the device first calls its trusted component to sign/encode the input using sk.
During the white-box application’s execution, it uses the embedded public key pk to recover
the input message. Following successful recovery, the white-box proceeds to perform the other
functionality embedded, e.g. a decryption.

However, this approach requires a different white-box application to be created for every
device (note that we encode a different public key for each device). The next question is
how can we enhance the discussed approach to provide a secure obfuscator that is used to
construct a single, strong global white-box. To address this, we use two layers of recover
algorithms within our white-box program. The first layer will recover the user’s public key,
which has been signed by the provider as a method of enrolling this device within the system.
The second recover algorithm uses the recovered public key to recover the input which was
signed by the trusted component. Below we provide a pseudocode description of the algorithms
for the case that WB is a white-box decryption program. Here, WB is bound to the Encode
component and can only be used correctly if the corresponding pk1 has been signed by the
Enroll algorithm.

Enroll(sk1, pk2)

cert←$ Sig(sk1, pk2)

return cert

Encode[sk2](c)

c̃←$ Sig(sk2, c)

return c̃

WB(cert, c̃)

pk2 ← Rcvr(pk1, cert)

c← Rcvr(pk2, c̃)

m← Dec(k, c)

return m

In practice, we would usually instantiate such a construction with efficient and standard
primitives. For example, we would use RSA for the public-key operations and AES-based
schemes for symmetric-key decryption. On top of that, we would apply some efficient form of
obfuscation to the circuit describing WB to hide the symmetric key k and to stop an adversary
from separating the decryption program from the recover algorithms.

For our formal constructions, we use indistinguishability obfuscation together with iO-
friendly, puncturable pseudorandom functions. Let us remark that we can also view the con-
struction as using general-purpose obfuscation together with normal signature with message
recovery (such as RSA), since all the existing iO candidates can be viewed as candidate VBB
obfuscators except for the “self-referring” programs used as the counterexamples of VBB [7].
Such a view is also used in other works [26]. The use of puncturable signature and other
iO-friendly primitives is for achieving a feasibility result with provable security guarantee.

Instantiating our construction. We apply indistinguishability obfuscation to our circuit
in order to achieve the desired security. Recall that for iO, we need two circuits which are
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functional equivalent but differ in their description. Specifically for a white-box design, our
functional equivalent circuits should differ on their sensitive information, ensuring that an
adversary is not able to extract that sensitive information from the obfuscated program.
Thus, we construct our circuit using puncturable primitives.

Puncturable signature schemes have been presented by both Bellare et al. [9], and by Sahai
and Waters [43] for short signatures. Both the schemes are based on PPRFs and provide
a public verification algorithm which lets a user verify the validity of a signature. Recall
however that in our scheme, we need a verification algorithm which actually recovers a signed
message, instead of only verifying the validity of the signature. Thus, we need to extend the
punctured schemes mentioned above. One possibility would be to use the CCA-secure public-
key encryption scheme presented by Sahai and Waters [43, Section 5.3] as we explain below.
Here, the authors build a CCA-PKE scheme by using two puncturable PRF keys K1 and K2

as a secret key for decrypting messages. Then they create an obfuscation of a program which
uses the same keys K1 and K2 to perform the inverse operation (encryption). In this context,
the obfuscated program is seen as a public key, since anybody can use it for encrypting
messages but only the owner of the keys K1 and K2 can decrypt those messages.

We could construct a puncturable message-recoverable signature scheme using the same
method as above, but by swapping the encryption and decryption functions. That is, the
secret keys would be used for encrypting messages (i.e., signing in an MRS) and the obfuscated
program would be used for recovering the message from a signature. Then, if we can show
that the recover algorithm is puncturable, then we could construct a program of the form
Dec(k∗,Rcvr2(Rcvr1(pk

∗, ·)).
In this paper however, we choose a more direct approach, where we define one single

circuit Γ , which corresponds to all three operations. That is, in the circuit we define groups of
operations corresponding to the first recover, the second recover and the decryption algorithm.
Below we give more details to our construction and to how it maps a construction using actual
signatures with message recovery.

6.1 Construction via PPRFs Γ [K1,K2, ek, F ](cert, c̃, y)

1 : ψ, c1, c2 ← cert

2 : if PRG(c2) 6= PRG(PPRF(K2, ψ||c1))

3 : return ⊥
4 : else

5 : w ← PPRF(K1, ψ)

6 : pk′ ← c1 ⊕ w
7 : K′1||K′2 ← pk′

8 : ψ′, c′1, c
′
2 ← c̃

9 : if PRG(c′2) 6= PRG(PPRF(K′2, ψ
′||c′1))

10 : return ⊥
11 : else

12 : w′ ← PPRF(K′1, ψ
′)

13 : c← c′1 ⊕ w′

14 : t, r ← c

15 : v ← PPRF(ek, r)

16 : x← t⊕ v
17 : return F (x, y)

In this section we present our construction
for a strong global white-box. Note that
in the construction in this section, the key
generation algorithms generate a key pair
K1,K2 (and K ′1,K

′
2), where each pair is

used as a secret key within the construc-
tion. We now provide some explanations
with regard to how our construction maps
the approach using MRS.

First, we focus on the circuit Γ which
we will obfuscate, shown on the right. Lines
1 to 7 recover the user’s key material. That
is, these lines correspond to the recover al-
gorithm which, ran on the server’s public
key, recovers the user’s public key. Lines
8 to 13 use the user’s key material to re-
cover the ciphertext c. These lines corre-
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spond thus to the recover algorithm ran on the user’s public key and on the encoded value c̃.
Finally, lines 14 to 17 correspond to the decryption of c. Note that in this case we care only
about achieving privacy for our global white-box, the function F will just output the value
x.

Below we show the rest of our construction. Note that the ID variable introduced in the
syntax of Definition 6 is not used in this construction and thus we omit it in the following
description. We explain shortly what each algorithm does. The compiler (ran by the server or
trusted entity) will generate the keys K1,K2, ek and embed them in the circuit Γ . Then it runs
an indistinguishability obfuscator on the circuit, generating the white-box program. The Init
(trusted hardware component on the user’s device) generates the key material K ′ = K ′1||K ′2
and let the obfuscated programs iO(PPRF(K ′1, ·)), iO(PPRF(K ′2, ·)) be the public key of K ′,
denoted as pk′. Enroll is the process ran by the trusted entity for certifying a user’s public
key, i.e. it corresponds to the process of signing the public key of the user by means of the
secret key of the server. We are interested in the algorithm providing a notion of integrity
for the generated value cert. Encrypt is ran by the trusted entity and simply encrypts some
value x via the symmetric encryption key ek. Finally Encode corresponds to the process of
encoding the inputs of the white-box program via a signing key located on the device’s trusted
component. Here, we are also interested in achieving a notion of integrity for the output values
c̃.

Comp(F )

1 : (K1,K2)←$ {0, 1}λ

2 : rk← K1||K2

3 : ek←$ {0, 1}λ

4 : WB←$ iO(Γ [K1,K2, ek, F ])

5 : return rk, ek,WB

Encrypt(ek, (x))

1 : r←$ {0, 1}n

2 : v ← PPRF(ek, r)

3 : t← x⊕ v
4 : c← (t, r)

5 : return c

Enroll(rk, (pk′))

1 : K1||K2 ← rk

2 : ψ←$ {0, 1}λ

3 : w ← PPRF(K1, ψ)

4 : c1 ← pk′ ⊕ w
5 : c2 ← PPRF(K2, ψ‖c1)

6 : cert← (ψ, c1, c2)

7 : return cert

Encode(K′1,K
′
2, (c))

1 : ψ′ ←$ {0, 1}λ

2 : w′ ← PPRF(K′1, ψ
′)

3 : c′1 ← c⊕ w′

4 : c′2 ← PPRF(K′2, ψ
′‖c′1)

5 : c̃← (ψ′, c′1, c
′
2)

6 : return c̃

Init(1λ)

1 : (K′1,K
′
2)←$ {0, 1}λ

2 : K′ ← K′1||K′2
3 : pk′ ← iO(PPRF(K′1, ·)), iO(PPRF(K′2, ·))
4 : return (K′, pk′)

Construction 2. Let the circuit Γ be as described above. Let F be any function of the syntax
F (x, y) = z. Let iO be an indistinguishability obfuscator. Let PRG be a pseudorandom
generator and PPRF be a secure puncturable PRF.

Theorem 2. Let iO be a an indistinguishability obfuscator. Let PRG be a pseudorandom
generator, and PPRF a secure puncturable pseudorandom function. Then Construction 2 is a
privacy-secure sGW scheme.
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Proof. To prove the privacy property of our sGW scheme, we place our construction on the
privacy game presented in this section. Then we go through a series of hybrid experiments
where we argue on the security properties of the primitives used within our construction.
When we reach the final hybrid, we show that the adversary has no advantage of winning the
game.

The first hybrid corresponds to our privacy game in Figure 3. We recall that in this game,
we care that the adversary does not learn anything about the value x unless he has access to
an enrolled hardware device.

– Hybrid 0: The keys K1,K2, ek,K
′
1,K

′
2 are generated at random. Recall that the keys

K1,K2, ek will be used for compiling the white-box program.
The outputs of the Enroll, Init, Encrypt and Encode oracles are obtained in the same
way as described for the algorithms in Construction 2 with the corresponding names. The
challenge oracle generates the ciphertext z∗ by encrypting either a value x or r (depending
on the bit value of b). The encryption is performed in the same way as described for the
Encrypt algorithm in Construction 2 and b is chosen at random.
Note that in the program Γ , in Line 7, the decrypted pk′ should be the iOed program of
K ′1 and K ′2, but inside the program we denote them as K ′1 and K ′2 for simplicity.

– Hybrid 1: The same as Hybrid 0, except that we will puncture the keys on the points
defined as follows and change the program Γ to a functionally equal one, which we denote
Γ ∗.

1. Let K ′∗ = K ′1
∗||K ′2

∗ denote the key K ′ of the protected user.
2. Let ψ′∗ denote the value of ψ′ used by the encode oracle when our user calls it on c∗.
3. Let w′∗ ← PPRF(K ′1, ψ

′∗).
4. Let c′1

∗ be c∗ ⊕ w′∗.
5. Let c′2

∗ ← PPRF(K ′2, ψ
′∗||c′1

∗)
6. Puncture K ′1

∗ on ψ′∗ and get K ′1
∗{ψ′∗}.

7. Puncture K ′2
∗ on ψ′∗||c′1

∗ and get K ′2
∗{ψ′∗||c′1

∗}.
8. Let ψ∗ denote the value of ψ used by the enroll oracle when our user calls it on K ′∗.
9. Let w∗ be PPRF(K1, ψ

∗).
10. Let c1

∗ be
(
iO(PPRF(K ′1

∗{ψ′∗}, ·))||iO(PPRF(K ′2
∗{ψ′∗||c′1

∗}, ·))
)
⊕ w∗.

11. Let c2
∗ be PPRF(K2, ψ

∗||c1∗).
12. Puncture K1 on ψ∗ and get K1{ψ∗}.
13. Puncture K2 on ψ∗||c1∗ and get K2{ψ∗||c1∗}.
14. Let r∗ denote the value of r used when generating the challenge ct c∗.
15. Let v∗ be PPRF(ek, r∗).
16. Let c∗ be (x⊕ w∗, r∗).
17. Puncture ek on r∗ and get ek{r∗}.
18. Finally, generate

Γ [K1{ψ∗},K2{ψ∗||c1∗}, c2∗,K ′1
∗{ψ′∗},K ′2

∗{ψ′∗||c′1
∗}, c′2

∗, c∗, ek{r∗}, v∗, F ] as in Figure 5.
Note that all the values in the keys have been defined.

The circuits Γ and Γ ∗ in Hybrids 0 and 1 respectively are functional equivalent and this
game hop reduces to iO security.
Remark: note that on lines 17 and 20 of Γ ∗ the circuit uses non-punctured keys K ′1 and
K ′2. This has the following reasoning: if K ′ is defined as in line 3, this means that the
circuit is using a punctured key K ′1

∗{ψ′∗}||K ′2
∗{ψ′∗||c′1

∗} as K ′1||K ′2. In all other cases, the
circuit uses a non-punctured key K ′ = K ′1||K ′2.
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Γ ∗[K1{ψ∗},K2{ψ∗||c1∗}, c2∗,K′1
∗{ψ′∗},K′2

∗{ψ′∗||c′1
∗}, c′2

∗
, c∗, ek{r∗}, v∗, F ](cert, c̃, y)

1 : ψ, c1, c2 ← cert

2 : if ψ||c1 = ψ∗||c1∗ and PRG(c2) = PRG(c2
∗)

3 : pk′ ← K′1
∗{ψ′∗},K′2

∗{ψ′∗||c′1
∗}

4 : else if ψ = ψ∗ and (c1 6= c1
∗ or PRG(c2) 6= PRG(c2

∗))

5 : return ⊥
6 : else if PRG(c2) 6= PRG(PPRF(K2{ψ∗||c1∗}, ψ||c1))

7 : return ⊥
8 : else

9 : w ← PPRF(K1{ψ∗}, ψ)

10 : pk′ ← c1 ⊕ w
11 : K′1||K′2 ← pk′

12 : ψ′, c′1, c
′
2 ← c̃

13 : if ψ′||c′1 = ψ′
∗||c′1

∗
and PRG(c′2) = PRG(c′2

∗
)

14 : c← c∗

15 : else if ψ′ = ψ′
∗
and (c′1 6= c′1

∗
or PRG(c′2) 6= PRG(c′2

∗
))

16 : return ⊥
17 : else if PRG(c′2) 6= PRG(PPRF(K′2, ψ

′||c′1))

18 : return ⊥
19 : else

20 : w′ ← PPRF(K′1, ψ
′)

21 : c← c′1 ⊕ w′

22 : t, r ← c

23 : if r = r∗

24 : v ← v∗

25 : else

26 : v ← PPRF(ek{r∗}, r)
27 : x← t⊕ v
28 : return F (x, y)

Fig. 5: Γ ∗ in Hybrid 1.
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– Hybrid 2: the same as Hybrid 1 with the following exceptions:
1. We replace c∗2 by c∗2←$ {0, 1}λ.
2. We then calculate h←$ PRG(c∗2).
3. We hard-code h in Γ ∗ and replace PRG(c∗2) by h on lines 2 and 4.
This game hop reduces to PPRF- and iO-security.

– Hybrid 3: the same as Hybrid 2 with the following exceptions:
1. We replace c′2

∗ by c′2
∗←$ {0, 1}λ.

2. We then calculate h′←$ PRG(c′2
∗).

3. We hard-code h′ in Γ ∗ and replace PRG(c′2
∗) by h′ on lines 13 and 15.

This game hop reduces to PPRF- and iO-security.
– Hybrid 4: the same as Hybrid 3 with the following exceptions:

1. h′←$ {0, 1}2λ.
2. Line 14 and c∗ is no longer needed in the description of Γ ∗ since Line 13 will be satisfied

only with negligible probability.
This game hop reduces to PRG- and iO-security.

– Hybrid 5: the same as Hybrid 4 with the following exceptions:
1. We replace v∗ by v∗←$ {0, 1}λ.
This game hop reduces to PPRF-security.
Finally, we use the fact that v∗ is random to argue that the decrypted x∗ is random in Γ
for both b = 0 and b = 1. This completes the proof for the privacy game.

In Section D we provide a construction for user specific encryptions, where the values
c are only meant to be decrypted by one specific user. Such a construction is suited for a
mobile payment application, where the value c corresponds to a limited use key which will
be decrypted and used for generating a message authentication code. The construction is a
simple extension of Construction 2 as it just adds two further PPRFs to the circuit Γ .
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A Protecting Mobile-Payment Applications.6

Payment applications run on the mobile phone of the client and communicates with the ter-
minal via near field communication (NFC). In this context, the mobile payment applications
act as a substitute of traditional credit cards and they store unique client-related information
used for authentication. Moreover, the applications should allow a user to perform payments
even when not having access to the internet. While these applications open up to new possi-
bilities in the payment industry, special care needs to be taken when implementing them in
order to provide the desired security.

The applications run on mobile phones which support the use of many other applications
and they might be subject to invasive attacks, from adversaries in the form of malware with
access to the application code. Here, we wish to stop such an adversary from stealing user-
related information and use it for their own purposes. Therefore, user-related information
is stored in encrypted form and only decrypted at the moment they are needed, i.e. for
performing a payment transaction. Ideally, cryptographic related keys are stored in hardware-
based secure elements supported by the mobile phones. This way, an adversary as described
above has no way of compromising such cryptographic keys since he does not get access
to the hardware of the phone. However as of today, not all mobile phones support secure
elements. For instance, many low end phones which use the Android operating system do not
support a secure element (note however that all Apple phones do support a secure element).
To achieve a broader coverage of phones, payment applications can also be implemented in
software only and are able to use the NFC controller via host card emulation (HCE). Clearly,
further security measures need to be taken into consideration for applications implemented
in software only. Specially since the cryptographic related keys need to be stored in a secure
way such that they cannot be compromised or misused. Here, white-box cryptography has
been proposed as a main software countermeasure technique for protecting such keys.

Since different mobile phones provide different hardware and software components, it is
not trivial to design a mobile payment application which achieves the best possible security
for all phones. Moreover, a different application needs to be designed for a different operation
system. Consider for instance the two biggest players in the mobile phone industry as of
today. iOS software runs only and exclusively on Apple phones. As mentioned before, all
Apple phones are supported by a secure element. Therefore, all mobile payment applications
designed to run on iOS can be implemented in such a way that they rely on the secure elements
for the secure storage of cryptographic keys. However for the Android operating system, the
story looks different. Android OS runs on multiple devices of different manufacturers such as
Samsung, Sony and Huawei. As mentioned above, only a fraction of the mobile phones which
support Android include a secure element as part of their hardware. In this case, we could
design two classes of payment applications for Android: one which relies on the secure element
for the key storage and one which relies on other software countermeasure techniques, such as
white-box cryptography. However, designers usually prefer to take a more flexible approach,
where the same class of application can run on any type of device. In this case, the Trusted
Execution Environment (TEE) from the Android OS could be of great use.

TEE and Android Key Store Android implements an isolated fraction of its operating
system known as its TEE. Only specific applications with specific permissions can be exe-

6All trademarks are the property of their respective owners, are used for identification purposes only, and
do not necessarily imply product endorsement or affiliation with Visa.
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cuted on the TEE. Note that making it difficult to access the TEE for normal applications also
makes it difficult to install malware running on the TEE. Moreover, for phones supporting
a secure element, the TEE is hardware based. Designing a payment application which runs
on the TEE of different manufacturers seems out of reach in many cases7 since the payment
application will come from a party separated from either Android or the hardware manufac-
turer. However, we could use some functionalities provided by the applications running on the
TEE in order to increase the security of our payment applications. One such application is
the Android KeyStore. The Android KeyStore is used for the storage of cryptographic keys,
which can be used exclusively within the KeyStore. With this in mind, one idea could be
to design our applications such that all cryptographic operations are performed on the Key-
Store. Unfortunately, this would lead to the following drawbacks, especially for applications
implementing a larger number of cryptographic operations:

– Delays: Accessing the KeyStore implies a context switch within the operating system.
Moreover, the KeyStore allows to perform a cryptographic operation and then provides its
output. For the case that our application performs more than one cryptographic operation,
we would need to access the KeyStore several times.

– Information leakage: The TEE has a clear API interface, such that it is relatively
simple to intercept the data that is output from it. This introduces a vulnerability for
the cases when the output of a cryptographic operation needs to remain secret. Namely, a
white-box adversary located within the operating system can easily listen to the outputs
coming from the TEE and use these outputs for his own purposes.

– Limits of the functionalities: The KeyStore includes a rich set of cryptographic API’s
which allow the execution of widely used cryptographic operations (e.g. AES, RSA, ECC,
etc.). However, it might be the case that our application implements some operations
which are not supported by these APIs. This might be the case that our application
implements non-standardized or less popular ciphers. For such cases, we are not able to
count on the KeyStore for the execution of such operations and we need to look out for
alternatives.

– Dependency on the hardware vendors: For the providers of the mobile application,
it might be desired to have as much independence from the hardware manufacturers as
possible. Note that Android OS is supported by phones provided by at least 10 different
independent manufacturers. Delegating cryptographic operations to the Android KeyStore
implies delegating such operations to the hardware provided by those manufacturers,
specially for the case that the KeyStore runs on a secure element.

These drawbacks provide the motivation for re-considering the use of obfuscation and
white-box cryptography in order to achieve the desired flexibility for applications running
on Android phones. For achieving robustness against code-lifting attacks, we can bootstrap
simple functionalities of the Android KeyStore. For example, we can compile a white-box such
that it only works correctly if a valid RSA signature from the KeyStore is provided. Every
time we wish to run our white-box program, we query the KeyStore and then the white-box
verifies the signature. If the signature is successfully verified, the white-box performs further
functionalities (decryption, payments, etc.). Alternatively, we can use the secret key material
of the KeyStore for encoding the inputs to the white-box (as described in Sections 1.5 and

7In the case of Samsung Pay, where the producer of the payment application has control of the hardware
this would be feasible

29



6). Here, every time we want to run a value x on the white-box, we first encode it via the
RSA secret key of the KeyStore. Then our white-box uses the corresponding public key for
decoding x. Many trusted components used within industrial products already support RSA-
compatible signature schemes. Thus, we can assume that a white-box design based on MRS
or traditional signatures will be viable in a very large amount of commercial mobile phones.

With both of the approaches described above, we obtain a white-box program which is
bound to a unique Android device. The white-box can perform any complex functionality
while the binding is achieved via a simple functionality, which can be performed by any
KeyStore. As mentioned above, in the best case the KeyStore will be hardware based and in
the worst case, it will be located in a software-based TEE. As mentioned in the Introduction,
one can view this approach of using the white-box program in combination of a trusted
hardware (or KeyStore) as a means to bootstrap the limited functionality of the hardware to
facilitate the secure computation of a complex functionality.

B Additional cryptographic primitives

Definition 9. A symmetric encryption scheme SE is a tuple of three algorithms (SE.KGen,
SE.Enc, SE.Dec) such that SE.KGen and SE.Enc are probabilistic polynomial-time algorithms
(PPT), SE.Dec is a deterministic polynomial-time algorithm, and the algorithms have the
following syntax:

k←$SE.KGen(1λ)
c←$SE.Enc(k,m)
m← SE.Dec(k, c).

Moreover, this scheme is correct, if for all messages m ∈ {0, 1}∗,

Pr[Dec(k,Enc(k,m)) = m] = 1

where the probability is over the randomness of Enc and k←$KGen(1λ).

Definition 10. A symmetric encryption scheme SE = (SE.KGen,SE.Enc, SE.Dec) is indistin-
guishable under chosen-ciphertext attacks (IND-CCA secure) if for all PPT adversaries A,
the advantage

∣∣Pr
[
ExpIND-CCA

A,SE (1λ) = 1
]
− 1

2

∣∣ is negligible.

ExpIND-CCA
A,SE (1λ)

k←$KGen(1λ)

b←$ {0, 1}
b∗ ←$AOEnc,ODec(1λ)

return (b = b∗)

OEnc(m)

if b = 0

c←$ SE.Enc(k,m)

else

c←$ SE.Enc(k, 0|m|)

T [c]← m

return c

ODec(c)

if b = 0

m← SE.Dec(k, c)

if b = 1

if T [c] is defined

m← T [c]

else

m← SE.Dec(k, c)

return m

Next, we provide a definition for message-recoverable signatures, where we use a secret
key for signing a message and a public key for verifying and recovering the message.
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Definition 11. A message-recoverable signature (MRS) scheme is a tuple of three algorithms
(KGen,Sig,Rcvr) such that KGen and Sig are probabilistic polynomial-time algorithms (PPT)
and Rcvr is a deterministic polynomial-time algorithm, which have the following syntax:

(sk, pk)←$KGen(1λ)
m̃←$Sig(sk,m)
m/⊥ ← Rcvr(pk, m̃).

Moreover, this scheme is correct, if for all messages m ∈ {0, 1}∗,

Pr[Rcvr(pk,Sig(sk,m)) = m ] = 1

where the probability is over the randomness of (sk, pk)←$KGen(1λ) and Sig.

Definition 12. An MRS scheme is secure if for all PPT adversaries A, their advantage∣∣∣Pr
[
ExpintegrityA,MRS (1λ) = 1

]∣∣∣ is negligible.

ExpintegrityA,MRS (1λ)

M← ∅
(sk, pk)←$KGen(1λ)

m̃←$AOSig(pk)

m← Rcvr(pk, m̃)

if m /∈M∪ {⊥} return 1

else return 0

OSig(m)

m̃←$Sig(sk,m)

M :=M∪m
return m̃

That is, the adversary wins if she is able to produce a signature m̃ that recovers to a message
m that was not queried to the signing oracle before.

Let us recall the definition of puncturable PRFs.

Definition 13 (Puncturable PRF [43]). Let l(λ) and m(λ) be the input and output
lengths. A family of puncturable pseudorandom functions G = {PPRF} is given by a triple of
efficient functions (Setup, Eval, Punc), where Setup(1λ) generates the key K, such that PPRF
maps from {0, 1}l(λ) to {0, 1}m(λ); Eval(K,x) takes a key K, an input x, outputs PPRF(K,x);
Punc(K,x∗) takes a key K and an input x∗, outputs a punctured key K{x∗}.

It satisfies the following conditions:

Functionality preserved over unpunctured points: For all x∗ and keys K, if K{x∗} =
Punc(K,x∗), then for all x 6= x∗, PPRF(K,x) = PPRF(K{x∗}, x).

Pseudorandom on the punctured points: For every input x∗, the value of F on x∗

is indistinguishable from random in the presence of the key punctured at x∗. That is, the
following two distributions are indistinguishable for every x∗:

(x∗,K{x∗}, GK(x∗)) and (x∗,K{x∗}, r∗) ,

where K is output by Setup(1λ), K{x∗} is output by Punc(K,x∗), and r∗ is uniform in
{0, 1}m(λ).

Theorem 3 ([43]). If one-way function exists, then for all length parameters l(λ), m(λ),
there is a puncturable PRF family that maps from l(λ) bits to m(λ) bits.
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C TBO-Construction for user specific encryption

Construction 1 in Section 4 provides the desired security in scenarios where information is
broadcast by a provider and only legitimate users should be able to decode such information.
That is, all users who have registered are able to run the broadcast information through the
token-generation algorithm and decode it with WB. The provider can encrypt the information
using one symmetric key, which is embedded in the WB of all the users.

However, this construction does not provide the desired security in scenarios where the
transmitted information should only be decoded by specific users. For instance in mobile-
payment applications, we provide the users with a set of encrypted limited-use keys (LUKs)
which the user stores in encrypted form and decrypts at the moment of performing a transac-
tion. Here, only that user should be able to decrypt those keys. Therefore, we need to modify
our construction, such that the ciphertexts are generated using an encryption key which is
unique for each user. We do this by integrating a pseudorandom function (PRF) within our
scheme. The PRF is run on the secret key ek and on the ID value corresponding to one unique
user. Thus, we need to assume that for these use cases, the ID is securely transmitted to the
provider along with the user’s public key. Additionally, this ID needs to be stored securely in
the trusted component of the provider and integrated within the token-generation process.

Construction 3. Let F be any function of the syntax F (x, y) = z. Let SE = (SE.KGen,
SE.Enc, SE.Dec) be a symmetric-encryption scheme. Let PRF be a pseudorandom function.
Let TBO = (TBO.Obf, TBO.InpGen) be a token-based obfuscation scheme.

C[K](w)

c‖y‖ID← w

k ← PRF(K, ID)

x← SE.Dec(k, c)

z ← F (x, y)

return z

Comp[C](F )

ek←$ SE.KGen(1n)

MSK, O←$TBO.Obf(C[ek])

WB← O

bk← MSK

return ek, bk,WB

Encrypt(ek, x, ID)

k ← PRF(ek, ID)

c← SE.Enc(k, x)

return c

Encode[ID](bk, c, y)

MSK← bk

w ← c‖y‖ID
c̃←$TBO.InpGen(MSK, w)

return c̃

Theorem 4. If SE is a secure symmetric encryption scheme, PRF is a pseudorandom func-
tion and TBO is a secure token based obfuscation scheme, then Construction 3 is a secure
GW-scheme with user-specific encryptions.

This can be proved by simple extension to the proof of Theorem 1.
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D MRS-like Construction for user specific encryptions

Γ2[K1,K2, ek, F ](cert, c̃, y)

1 : ψ, c1, c2 ← cert

2 : if PRG(c2) 6= PRG(PPRF(K2, ψ||c1))

3 : return ⊥
4 : else

5 : w ← PPRF(K1, ψ)

6 : pk′ ← c1 ⊕ w

7 : K′1||K′2|| ˜ID← pk′

8 : ψ′, c′1, c
′
2 ← c̃

9 : if PRG(c′2) 6= PRG(PPRF(K′2, ψ
′||c′1))

10 : return ⊥
11 : else

12 : w′ ← PPRF(K′1, ψ
′)

13 : c|| ¯ID← c′1 ⊕ w′

14 : t, r ← c

15 : k̃ ← PPRF(ek, ˜ID)

16 : k̄ ← PPRF(ek, ¯ID)

17 : if PRG(k̃) 6= PRG(k̄)

18 : return ⊥
19 : else

20 : v ← PPRF(k̄, r)

21 : x← t⊕ v
22 : return F (x, y)

As with our constructions based on token-
based obfuscation, we consider two classes
of constructions for strong global white-
boxes based on PPRFs. Namely our first
construction based on the circuit Γ is use-
ful for cases where the values c correspond
to information broadcasted to a number
of users, such as for DRM programs. For
applications such as mobile payments, we
need to ensure that the values c can only
be decrypted by a specific user. We re-
call that for mobile payment applications,
c corresponds to an encrypted limited use
key which, when decrypted, is used for gen-
erating a message authentication code.

We use the same approach as presented
in Section 4 by integrating a KDF. All
white-boxes will have the same KDF em-
bedded on them and it will run on the key
ek. During the encrypt process, the KDF
will be called based on the user’s ID and
on ek and will be used for generating an en-
cryption key. If an integrity check is passed,
the white-box will run the KDF on ek and
the ID to generate the corresponding de-
cryption key.

The circuit describing our white-box
program for this case is the same as the circuit Γ described in the beginning of Section 6.1 with
the following differences. On line 7, when parsing pk′, there is an additional ˜ID value appended
to the end. Then, when recovering c on line 13, there is an additional ¯ID value appended to
the end. The circuit then checks if PRG( ˜ID) 6= PRG( ¯ID) then return ⊥else k ← PPRF(ek, ID).
If the check goes through, the circuit then proceeds to line 15, but uses the derived key k
instead of ek.

Construction 4. Let the circuit Γ2 be as described above. Let F be any puncturable func-
tion of the syntax F (x, y) = z. Let iO be an indistinguishability obfuscator. Let PRG be a
pseudorandom generator and PPRF be a secure puncturable PRF.

Theorem 5. Let iO be a an indistinguishability obfuscator. Let PRG be a pseudorandom
generator, and PPRF a secure puncturable pseudorandom function. Then Construction 4 is a
privacy- and forgery-secure sGW scheme.

Proof. The proof of Theorem 5 follows the same approach as that of Theorem 2. Recall that
our forgery game has two alternative winning conditions for the adversary. Here we will prove
that an adversary cannot win on either of the two. For proving the second winning condition,
where an adversary tries to recover a value x∗ from a chosen ciphertext c∗, we need to be
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Comp(F )

1 : (K1,K2)←$ {0, 1}λ

2 : rk← K1||K2

3 : ek←$ {0, 1}λ

4 : WB←$ iO(Γ2[K1,K2, ek, F ])

5 : return rk, ek,WB

Encrypt(ek, (x, ID))

1 : k ← PPRF(ek, ID)

2 : r←$ {0, 1}n

3 : v ← PPRF(k, r)

4 : t← x⊕ v
5 : c← (t, r)

6 : return c

Encode(K′1,K
′
2, (c))

1 : K′1||K′2|| ˜ID← K′

2 : ¯ID← ˜ID

3 : ψ′ ←$ {0, 1}λ

4 : w′ ← PPRF(K′1, ψ
′)

5 : c′1 ← c|| ¯ID⊕ w′

6 : c′2 ← PPRF(K′2, ψ
′‖c′1)

7 : c̃← (ψ′, c′1, c
′
2)

8 : return c̃

Init(1λ)

1 : ˜ID←$ {0, 1}l

2 : (K′1,K
′
2)←$ {0, 1}λ

3 : K′ ← K′1||K′2|| ˜ID
4 : pk′ ← iO(PPRF(K′1, ·)), iO(PPRF(K′2, ·))|| ˜ID
5 : return (K′, pk′)

Enroll(rk, (pk′))

1 : K1||K2 ← rk

2 : ψ←$ {0, 1}λ

3 : w ← PPRF(K1, ψ)

4 : c1 ← pk′ ⊕ w
5 : c2 ← PPRF(K2, ψ‖c1)

6 : cert← (ψ, c1, c2)

7 : ˜ID← pk′[l − |pk′|]
8 : return cert, ˜ID

specific about the function F . For this case, we will consider F to run a one-way function on
x and then simply append y.

We will go through a series of hybrid which we describe next. The first hybrid corresponds
to our unforgability experiment presented in Figure 4. Recall that in this game, the adversary
tries to forge a valid value z, for a specific ciphertext c and context pair y. The adversary
tries to forge such a value without accessing the hardware of an enrolled device.

– Hybrid 0: The attacker chooses a ciphertext c, a value y and the public key with ID ID∗.
The attacker will try to forge a value z∗ which should correspond to z = F (Dec(., c, ID∗), y).
The keys K1,K2, ek,K

′ are generated at random. Recall that the keys K1,K2, ek will be
used for compiling the white-box program.
The outputs of the Enroll, Init, Encrypt and Encode oracles are obtained in the same way
as described for the algorithms in Construction 4 with the corresponding names. Note
that during the game, the attacker will enroll the public key with ID ID∗, but the attacker
will never query the encode oracle for the chosen value c and the public key with ID∗.

– Hybrid 1: The same as Hybrid 0, except that we will puncture the keys on the points
defined as follows and change the program Γ2 to a functionally equal one, which we denote
Γ ∗2 .
1. Let K ′∗ = K ′1

∗||K ′2
∗ denote the key K ′ of the protected user.

2. Let ψ′∗ denote the value of ψ′ used by the encode oracle when our user calls it on c∗.
3. Let w′∗ ← PPRF(K ′1, ψ

′∗).
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4. Let c′1
∗ be c∗ ⊕ w′∗.

5. Let c′2
∗ ← PPRF(K ′2, ψ

′∗||c′1
∗)

6. Puncture K ′1
∗ on ψ′∗ and get K ′1

∗{ψ′∗}.
7. Puncture K ′2

∗ on ψ′∗||c′1
∗ and get K ′2

∗{ψ′∗||c′1
∗}.

8. Let ψ∗ denote the value of ψ used by the enroll oracle when our user calls it on K ′∗.
9. Let w∗ be PPRF(K1, ψ

∗).
10. Let c1

∗ be
(
iO(PPRF(K ′1

∗{ψ′∗}, ·))||iO(PPRF(K ′2
∗{ψ′∗||c′1

∗}, ·))
)
⊕ w∗.

11. Let c2
∗ be PPRF(K2, ψ

∗||c1∗).
12. Puncture K1 on ψ∗ and get K1{ψ∗}.
13. Puncture K2 on ψ∗||c1∗ and get K2{ψ∗||c1∗}.
14. Let ID∗ denote the value of ID used when generating the challenge ct c∗.
15. Let k∗ be PPRF(ek, ID∗).
16. Let c∗ be (x⊕ PPRF(k, r).
17. Puncture ek on ID∗ and get ek{ID∗}.
18. Finally, generate

Γ2[K1{ψ∗},K2{ψ∗||c1∗}, c2∗,K ′1
∗{ψ′∗},K ′2

∗{ψ′∗||c′1
∗}, c′2

∗, c∗, ek{ID∗}, k∗, F ] as in Fig-
ure 6. Note that all the values in the keys have been defined.

The circuits Γ2 and Γ ∗2 in Hybrids 0 and 1 respectively are functional equivalent and this
game hop reduces to iO security.

– Hybrid 2: the same as Hybrid 1 with the following exceptions:

1. We replace c∗2 by c∗2←$ {0, 1}λ.
2. We then calculate h←$ PRG(c∗2).
3. We hard-code h in Γ ∗2 and replace PRG(c∗2) by h on lines 2 and 4.

This game hop reduces to PPRF- and iO-security.
– Hybrid 3: the same as Hybrid 2 with the following exceptions:

1. We replace c′2
∗ by c′2

∗←$ {0, 1}λ.
2. We then calculate h′←$ PRG(c′2

∗).
3. We hard-code h′ in Γ ∗2 and replace PRG(c′2

∗) by h′ on lines 13 and 15.

This game hop reduces to PPRF- and iO-security.
– Hybrid 4: the same as Hybrid 3 with the following exceptions:

1. We replace k∗ by k∗←$ {0, 1}λ.
2. We then calculate d← PRG(k∗).
3. We hard-code d in Γ ∗2 in line 27

This game hop reduces to PPRF and iO-security.
– Hybrid 5: the same as Hybrid 4 with the following exceptions:

1. d←$ {0, 1}2λ.
2. Now lines 30-32 will not be needed since line 27 will only be satisfied with negligible

probability.

This game hop reduces to PRG- and iO-security.
– Hybrid 6: the same as Hybrid 4 with the following exceptions:

1. After line 30, we check if c = c∗. If this is the case, we output z∗ = F (x∗, y) = f(x∗)||y,
else we proceed to line 31.

This game hop reduces to OWF- and iO-security.
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Γ ∗2 [K1{ψ∗},K2{ψ∗||c1∗}, c2∗,K′1
∗{ψ′∗},K′2

∗{ψ′∗||c′1
∗}, c′2

∗
, c∗, ek{r∗}, ID∗, k∗, c∗, z∗F ](cert, c̃, y)

1 : ψ, c1, c2 ← cert

2 : if ψ||c1 = ψ∗||c1∗ and PRG(c2) = PRG(c2
∗)

3 : pk′ ← K′1
∗{ψ′∗},K′2

∗{ψ′∗||c′1
∗}

4 : else if ψ = ψ∗ and (c1 6= c1
∗ or PRG(c2) 6= PRG(c2

∗))

5 : return ⊥
6 : else if PRG(c2) 6= PRG(PPRF(K2{ψ∗||c1∗}, ψ||c1))

7 : return ⊥
8 : else

9 : w ← PPRF(K1{ψ∗}, ψ)

10 : pk′ ← c1 ⊕ w

11 : K′1||K′2|| ˜ID← pk′

12 : ψ′, c′1, c
′
2 ← c̃

13 : if ψ′||c′1 = ψ′
∗||c′1

∗
and PRG(c′2) = PRG(c′2

∗
)

14 : c← c∗

15 : else if ψ′ = ψ′
∗
and (c′1 6= c′1

∗
or PRG(c′2) 6= PRG(c′2

∗
))

16 : return ⊥
17 : else if PRG(c′2) 6= PRG(PPRF(K′2, ψ

′||c′1))

18 : return ⊥
19 : else

20 : w′ ← PPRF(K′1, ψ
′)

21 : c|| ¯ID← c′1 ⊕ w′

22 : t, r ← c

23 : if ˜ID = ID∗

24 : k̃ ← k∗

25 : else

26 : k̃ ← PPRF(ek{ID∗}, ˜ID)

27 : k̄ ← PPRF(ek{ID∗}, ¯ID)

28 : if PRG(k̃) 6= PRG(k̄)

29 : return ⊥
30 : else

31 : v ← PPRF(k, r)

32 : x← t⊕ v
33 : return F (x, y)

Fig. 6: Γ ∗2 in Hybrid 1.
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