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ABSTRACT

The key exchange protocol that establishes initial shared secrets in

the handshake of the Signal end-to-end encrypted messaging proto-

col has several important characteristics: (1) it runs asynchronously

(without both parties needing to be simultaneously online), (2) it

provides implicit mutual authentication while retaining deniability

(transcripts cannot be used to prove either party participated in the

protocol), and (3) it retains security even if some keys are compro-

mised (forward secrecy and beyond). All of these properties emerge

from clever use of the highly flexible Diffie–Hellman protocol.

While quantum-resistant key encapsulation mechanisms (KEMs)

can replace Diffie–Hellman key exchange in some settings, there is

no KEM-based replacement for the Signal handshake that achieves

all three aforementioned properties, in part due to the inherent

asymmetry of KEM operations. In this paper, we show how to con-

struct asynchronous deniable key exchange by combining KEMs

and designated verifier signature schemes. Furthermore, we show

how designated verifier signatures can be built by using chameleon

hash functions in both full-domain-hash and Fiat–Shamir-style

signature schemes, enabling efficient post-quantum instantiations.

This provides the first efficient post-quantum realization of the

Signal handshake with the same asynchronicity and security prop-

erties as the original Signal protocol.
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1 INTRODUCTION

The Signal protocol [62, 63], designed by Marlinspike and Perrin,

has enabled mass adoption of end-to-end encrypted messaging in

consumer applications such as WhatsApp, Signal, Facebook Mes-

senger, Skype, and more. From a cryptographic perspective, the

Signal protocol consists of an initial handshake and key exchange

(called “X3DH” [63], a simplified version of which is shown in Fig-

ure 1), asymmetric and symmetric key exchange “ratchets” that

establish new keys for every new chat message sent (called the

“double ratchet” algorithm [62]), and symmetric authenticated en-

cryption for application data. Each of these components contributes

to Signal’s interesting and useful security features:

• Implicit mutual authentication in the handshake: The session
key 𝐾 established in the handshake can only be computed by

Alice Bob

𝑔𝑏 , 𝑔𝑠 , 𝑔𝑦

Bob’s pre-key bundle

𝑔𝑎

Alice’s pre-key bundle

𝑥 ←$ Z𝑞
𝑔𝑥

𝐾 ← KDF(𝑔𝑎𝑠 ∥𝑔𝑥𝑏 ∥𝑔𝑥𝑠 ∥𝑔𝑥𝑦 ) 𝐾 ← KDF(𝑔𝑎𝑠 ∥𝑔𝑥𝑏 ∥𝑔𝑥𝑠 ∥𝑔𝑥𝑦 )

Figure 1: Simplified version of Signal’s X3DH handshake.

Long-term keys 𝑎 and 𝑏; semi-static key 𝑠 ; ephemeral keys 𝑥 and 𝑦.

the intended peer. This comes from the terms involving the

long-term secret keys 𝑎 and 𝑏 in Figure 1.

• Forward secrecy in the handshake: The session key𝐾 established

in the handshake remains secret even if long-term keys are

later compromised. This comes from the terms involving the

ephemeral keys 𝑥 and 𝑦 in Figure 1.

• Offline deniability [29, 51] of the handshake: A judge seeing

a transcript of an honest communication session cannot be

convinced that a particular party was actually involved in the

session. This comes from the use of Diffie–Hellman for authen-

tication rather than signatures; all of the DH shared secrets

input to the key derivation function in Figure 1 could have been

computed unilaterally either by Alice or by Bob (e.g., both Alice

and Bob can compute 𝑔𝑎𝑠 , using 𝑎 and 𝑠 respectively). See [75]

for a detailed analysis of the deniability of X3DH.

• Asynchronicity: The two communicating parties need never be

online simultaneously, and can leave packets at an untrusted

relay server until the other party comes back online. The hand-

shake is made asynchronous by allowing each party to upload

a pre-key bundle to an untrusted server in advance, consisting

of long-term, medium-term, and ephemeral public keys. The re-

strictions on communication flow in an asynchronous protocol

are weaker than those of non-interactive key exchange [40].

• Forward secrecy and post-compromise security [23] in long-lived
conversations: Keys are updated using a new DH key exchange

with each chat message via the asymmetric ratchet, enabling

secrecy of past and future messages after a compromise.

1.1 Making Signal Post-quantum

Since the Diffie–Hellman problem upon which much of Signal relies

is not secure against quantum adversaries, it is important to have a

post-quantum alternative available. The post-quantum primitives to

be standardized by the United States National Institute of Standards
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and Technology (NIST) post-quantum standardization project are

signatures and key encapsulation mechanisms (KEMs).

The symmetric ratchet and authenticated encryption compo-

nents of Signal are built on symmetric primitives, and thus are not

in immediate danger from quantum algorithms. The asymmetric

ratchet was phrased by Marlinspike and Perrin [62] and analyzed

by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [22] in

terms of Diffie–Hellman. Alwen, Coretti, and Dodis [1] generalized

it into a primitive called continuous key agreement that can be

built from KEMs, yielding post-quantum security. Hence, our focus

in the rest of this paper is thus on the handshake. It is certainly

possible to generically construct an authenticated key exchange

protocol from signatures and KEMs, but it is not possible to use only
KEMs and signatures in a generic way to create a post-quantum

replacement for Signal with all of the properties listed above.

Suppose one tried to use KEMs instead of Diffie–Hellman in

Figure 1. Recall that, to use a KEM for key exchange, one party uses

the key generation algorithm to create a public-key/secret-key pair

and transmits the public key to their peer; the peer encapsulates

against that public key, producing a ciphertext and a shared secret,

then transmits the ciphertext, which the first party decapsulates

using their secret key to compute the shared secret. In the Signal

handshake, one could try using KEM public keys to replace the

Diffie–Hellman shares in Alice and Bob’s pre-key bundles. We can

still obtain ephemeral key exchange (by having Alice encapsulate

against Bob’s ephemeral public key) and implicit Bob-to-Alice au-

thentication (by having Alice encapsulate against Bob’s long-term

public key). However, we cannot obtain Alice-to-Bob authentication

using KEMs without adding an extra flow: Bob cannot produce a

ciphertext for Alice to decapsulate without knowing Alice’s public

key first, so he cannot asynchronously produce a pre-key bundle

for Alice to immediately use. This highlights the difference between

Diffie–Hellman and KEMs: in DH, both parties’ shares are objects

of the same type and can be generated independently, but in generic

KEMs, public keys and ciphertexts are in principle objects of dif-

fering types and a ciphertext is generated with respect to a given

public key. To obtain Alice-to-Bob authentication without adding

an extra communication round, Alice could of course produce a

signature for Bob to verify, but this undermines deniability.

The problem, in a nutshell, is to create an asynchronous deniable
authenticated key exchange protocol that can be instantiated in the

post-quantum setting, preferably with an efficient construction

based on standardized primitives.

1.2 Options for PQ Asynchronous DAKE

There are several examples of authenticated key exchange protocols

built generically from KEMs which have the potential for deniabil-

ity [11, 12, 28, 41, 70] but do not have the desired asynchronicity

property for reasons similar to the discussion above.

One post-quantum option that avoids the problem with KEMs

described above is to use CSIDH [19], a primitive based on super-

singular isogenies that yields a commutative group action which

enables non-interactive key exchange. CSIDH could be used to

achieve implicit Alice-to-Bob authentication while maintaining

asynchronicity and deniability; indeed several key exchange pro-

tocols from CSIDH have been proposed [27, 50]. Unfortunately,

there are several reasons CSIDH may not be a fully satisfactory

solution: it is not part of the current NIST standardization process;

it is much more computationally expensive than most other forms

of post-quantum cryptography; there is ongoing debate about the

security of its concrete parameters [10, 66]; and the decisional form

of a related problem [20] is not hard.

Most other post-quantum assumptions used in KEMs, including

SIDH [49] and learning-with-errors (LWE) [68], are insecure against

key reuse attacks without additional protection such as the Fujisaki–

Okamoto transform [42] that leaves them unable to be used for non-

interactive key exchange (since the ciphertext must be generated

with respect to a given public key). There have been several attempts

at SIDH-based non-interactive key exchange which have ended

up being insecure [2, 31, 32, 35], and one attempt relying on an

additional novel assumption [9] the security of which is unknown.

Brendel, Fischlin, Günther, Janson, and Stebila [14] previously

considered the question of building a post-quantum version of

the Signal handshake, highlighting many of these problems. They

proposed decomposing the three operations of a KEM into a 4-

operation “split KEM”, and showed how a Signal-like handshake

could be built from a split KEM meeting a suitably high security

notion. They showed how CSIDH and LWE could be used to build

split KEMs, but these constructions did not achieve the suitably high

security notion required for the Signal-like handshake, effectively

leaving the overall problem unsolved.

Unger and Goldberg [73, 74] also consider deniable authenti-

cated key exchange (DAKE) protocols for secure messaging. Their

construction relies on primitives for which post-quantum versions

are not under consideration for standardization by NIST, ring signa-

tures and dual receiver encryption, the latter of which does not yet

appear to have a PQ instantiation in the literature. Their protocol

does permit the use of a PQ KEM for ephemeral key exchange.

The recent work by Hashimoto, Katsumata, Kwiatkowski, and

Prest [45] is closest to ours. Their core protocol is meant to replace

the Signal handshake based on (post-quantum) KEMs and signa-

tures. It achieves strong security against exposure of long-term

keys and session state (though not against randomness exposure)

similar to Signal and a weaker deniability level by encrypting the

(regular) signature exchanged. They provide an implementation

for their weakly-deniable protocol and further discuss a theoretical

variant achieving stronger deniability based on ring signatures,

strong knowledge-type assumptions for plaintext-aware [4] KEMs,

and non-interactive zero-knowledge arguments; assessing the post-

quantum security of these components is left as an open problem.

1.3 Our Contributions

We show how to construct an asynchronous deniable authenticated

key exchange protocol from generic building blocks that can be

efficiently instantiated in the post-quantum setting and that can

be constructed with small modifications to algorithms in the NIST

post-quantum standardization project.

The main tool that allows us to achieve these goals is a designated
verifier signature (DVS) scheme. Introduced by Jakobsson, Sako, and

Impagliazzo [48], DVS schemes allow a signer to convince a chosen

recipient, called the designated verifier, of the authenticity of a

message, but in such a way that the designated verifier cannot
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Alice Bob

𝑝𝑘KEM
𝐵

, 𝑝𝑘DVS
𝐵

, 𝑒𝑝𝑘KEM
𝐵

Bob’s pre-key bundle

𝑝𝑘DVS
𝐴

Alice’s pre-key bundle

(𝐾1, 𝑐1) ←$ KEM1 .Encaps(𝑝𝑘KEM𝐵
)

(𝐾2, 𝑐2) ←$ KEM2 .Encaps(𝑒𝑝𝑘KEM𝐵
)

𝜎 ←$ DVS.Sign(𝑠𝑘DVS
𝐴

, 𝑝𝑘DVS
𝐵

, transcript)
𝑐1, 𝑐2, 𝜎

DVS.Vrfy(𝑝𝑘DVS
𝐴

, 𝑝𝑘DVS
𝐵

, transcript, 𝜎)

𝐾1 ← KEM1 .Decaps(𝑠𝑘KEM𝐵
, 𝑐1)

𝐾2 ← KEM2 .Decaps(𝑒𝑠𝑘KEM𝐵
, 𝑐2)

𝐾 ← KDF(𝐾1 ∥𝐾2, transcript) 𝐾 ← KDF(𝐾1 ∥𝐾2, transcript)

Figure 2: Our core asynchronous DAKE protocol, combining

static and ephemeral key encapsulation schemes KEM1 and

KEM2, and a designated verifier signature DVS.

convince any other party of the authenticity. In a DVS scheme,

both the signer and the verifier have a public-key/secret-key pair;

signing requires both the signer’s secret key and the verifier’s public

key, and verification uses both parties’ public keys. To achieve the

non-transferability property (called “source hiding”), a DVS scheme

is accompanied by an additional simulation algorithm with which

the designated verifier can, using its own secret key, construct a

signature indistinguishable from one generated by the signer.

Asynchronous DAKE construction. We combine a DVS with a

KEM to achieve an asynchronous deniable authenticated key ex-

change as shown in Figure 2. As expected, Bob-to-Alice authen-

tication comes from an implicitly authenticated key exchange in

which Alice encapsulates to Bob’s long-term KEM key (KEM1 with

long-term public key 𝑝𝑘KEM
𝐵

and ciphertext 𝑐1 in Figure 2), and for-

ward secrecy comes from a key exchange using an ephemeral KEM

key (KEM2 with public key 𝑒𝑝𝑘KEM
𝐵

and ciphertext 𝑐2). Alice-to-

Bob authentication comes from Alice using the designated verifier

signature scheme to sign a transcript with Bob as the designated

verifier; she can obtain Bob’s DVS verification key (𝑝𝑘DVS
𝐵

) from

his pre-key bundle. Since the source hiding property of the DVS

scheme enables Bob to also have created a valid-looking signature

from Alice with himself as the designated verifier, the transcript of

the key exchange protocol could have been constructed by either

Alice or Bob, yielding the desired deniability property.

Post-quantum designated verifier signatures. To achieve our goal

of post-quantum asynchronousDAKE,we thus need a post-quantum

designated verifier signature scheme. While there is a long line of

research on DVS schemes (including [26, 48, 55, 58, 69, 71, 78]),

comparatively little is available in the literature on post-quantum

DVS schemes. An isogeny-based DVS scheme was proposed in

[72] but is insecure due to key reuse attacks identified in [43].

There are several lattice-based DVS schemes which may fit the bill

[57, 64, 76, 77, 79], but these have not received much scrutiny in the

mainstream cryptographic literature; we summarize this literature

and differences to our constructions in Section 3.5. These lattice-

based DVS schemes are direct constructions not based on any NIST

candidates, so they would require their own thorough analysis.

In contrast, we give two generic constructions of DVS schemes,

both of which can be instantiated from post-quantum building

blocks much closer to schemes involved in NIST standardization.

• Our first DVS construction is based on the full-domain-hash

signature scheme [5], although following the variant by Gen-

try, Peikert, and Vaikuntanathan [44] which uses a trapdoor

function rather than a trapdoor permutation as in [5].

• Our second DVS construction is based on themethod of Fiat and

Shamir [37] for constructing a signature scheme from an honest-

verifier zero-knowledge canonical identification protocol.

In both of these signature schemes, signatures are constructed in

the normal “forward” direction by the signer using the hashing and

signing algorithms in the normal way. One can attempt to construct

signatures in the “backward” direction without the secret key by

applying the permutation (for the full-domain hash scheme) or

generating an identification protocol transcript (in the Fiat–Shamir

case), but a forger will get stuck without a way to make the hash

of the message match the hash digest picked during the backwards

signature generation. The key idea in both of our constructions is to

replace the standard hash function with a chameleon hash function
[18, 53], which allows pre-images of the hash function to be found

with knowledge of a trapdoor, which will be held by the verifier.

This enables valid-looking signatures to also be constructed in the

“backward” direction by the verifier generating a signature for an

arbitrary hash then inverting the hash function using the CHF’s

trapdoor, yielding the source hiding property we need.

Gentry, Peikert, and Vaikuntanathan [44] do provide a lattice-

based instantiation of their signature scheme. Moreover, the NIST

Round 3 finalist Falcon [39] is an efficient instantiation of the GPV

signature scheme relying on the NTRU lattice structure [46]. There

are many examples of Fiat–Shamir-based signature schemes. Picnic

[21] is a NIST Round 3 alternate candidate, some versions of which

are obtained by applying the Fiat–Shamir transform to the ZKB++

proof system which can be viewed as a canonical identification pro-

tocol. As for the chameleon hash function, Cash, Hofheinz, Kiltz,

and Peikert [18] show how to construct a lattice-based chameleon

hash function from the short integer solutions (SIS) problem; and

Ducas andMicciancio [34] give a ring-SIS-based version. These CHF

constructions are admittedly not under consideration for standard-

ization by NIST; however, their designs are actually quite simple

and the connection of their security to the underlying SIS prob-

lem is clearly stated, so the parameter analysis of NIST candidates

relying on SIS can inform security parameter choices for these

chameleon hash functions. In particular, the ring-SIS CHF of [34]

can be instantiated with modulus and ring dimension compatible

with Falcon [39] at level 1 (128-bit) security, with CHF public key

around 12.5 KiB and signature nonce around 25KiB.

Application to Signal handshake. We present a version of the

Signal X3DH handshake which we call SPQR—Signal in a Post-

Quantum Regime—based on our asynchronous DAKE design that

uses KEMs and a designed verifier signature scheme. We show

that the SPQR handshake achieves strong (“maximal-exposure”)

session key security in a variant of the security model of [22] cov-

ering compromises of long- and medium-term keys and ephemeral

randomness, as well as deniability.

Outline of the paper. In Section 2 we introduce preliminaries. In

Section 3 we show how to construct designated verifier signature

schemes by using a chameleon hash function (Section 3.2) in the
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GPV signature scheme (Section 3.3) and the Fiat–Shamir transform

(Section 3.4), showing both the existential unforgeability and source

hiding properties for these DVS schemes. In Section 4 we present

a security model for key exchange that captures session key in-

distinguishability with implicit mutual authentication and weak

forward secrecy, as well as offline deniability. In Section 5 we show

that our core asynchronous deniable authenticated key exchange

protocol from Figure 2 fulfills these security notions; in particular,

offline deniability is based on the source hiding property of the

DVS scheme. In Section 6 we introduce a complete post-quantum

version of the Signal handshake that extends on our core protocol

to include additional components present in the Signal handshake

(e.g., semi-static keys). In Section 7 we provide a security model

for our full protocol and prove, in Section 8, its session key indis-

tinguishability and deniability. In Section 9, we conclude with a

discussion of the results and some limitations.

2 PRELIMINARIES

We begin by introducing notation and recapping some basic com-

ponents.

2.1 Notation

To sample an element 𝑥 uniformly at random from a set S (or a

distribution on an underlying set) we write 𝑥 ←$ S. For determin-

istic algorithms A we denote by 𝑦 ← A(𝑥) the execution of A on

input 𝑥 with output 𝑦. Similarly, 𝑦←$ A(𝑥) denotes the probabilis-
tic execution of A, and 𝑦 ← A(𝑥 ; 𝑟 ) the deterministic execution of

a probabilistic algorithm A with its random coins fixed to 𝑟 . Adver-

saries are typically denoted byA and we writeAOracle
to indicate

thatA has access to the oracle Oracle. Adversaries can have local

quantum computation power but their oracle access and outputs are

still classical. For an integer 𝑛, we denote by [𝑛] the set {1, . . . , 𝑛}.
Double square brackets ⟦·⟧ that enclose a boolean statement return

the bit 1 if the statement is true, and 0 otherwise.

2.2 Key Encapsulation Mechanisms

The main building block for our post-quantum secure initial key

agreement of Signal are so-called key encapsulation mechanisms
that allow an encapsulator to transfer a shared secret key 𝐾 via a

ciphertext 𝑐 to the decapsulator.

Definition 2.1 (Key Encapsulation Mechanisms). A key encapsu-
lation mechanism KEM is a triple of algorithms KEM = (KGen,
Encaps,Decaps). In more detail:

• KGen() $→ (𝑝𝑘, 𝑠𝑘): A probabilistic algorithm taking that out-

puts a public-key/secret-key pair with (𝑝𝑘, 𝑠𝑘) ∈ PK × SK .
• Encaps(𝑝𝑘) $→ (𝑐, 𝐾): A probabilistic algorithm taking as input

a public key 𝑝𝑘 ∈ PK and outputs a ciphertext 𝑐 ∈ C and the

therein encapsulated key 𝐾 ∈ K .
• Decaps(𝑠𝑘, 𝑐) → 𝐾 ′: A deterministic algorithm taking as input

a ciphertext 𝑐 ∈ C and secret key 𝑠𝑘 and outputs 𝐾 ′ ∈ K ∪ {⊥},
where ⊥ indicates an error.

We say that a KEM KEM = (KGen, Encaps,Decaps) is 𝛿-correct if,
for every key pair (𝑝𝑘, 𝑠𝑘) ←$ KGen(), and every encapsulation

(𝑐, 𝐾) ←$ Encaps(𝑝𝑘), we have
Pr

[
𝐾 ′ ≠ 𝐾

�� 𝐾 ′ ← Decaps(𝑠𝑘, 𝑐)
]
≤ 𝛿.

Gindcpa
KEM (A) :

1 (𝑝𝑘, 𝑠𝑘) ←$ KGen()
2 (𝑐∗, 𝐾∗

0
) ←$ Encaps(𝑝𝑘)

3 𝐾∗
1
←$ K

4 𝑏←$ {0, 1}
5 𝑏′←$ A(𝑝𝑘, 𝑐∗, 𝐾∗

𝑏
)

6 return ⟦𝑏′ = 𝑏⟧

Gindcca
KEM (A) :

1 (𝑝𝑘, 𝑠𝑘) ←$ KGen()
2 (𝑐∗, 𝐾∗

0
) ←$ Encaps(𝑝𝑘)

3 𝐾∗
1
←$ K

4 𝑏←$ {0, 1}
5 𝑏′←$ ADecaps (𝑝𝑘, 𝑐∗, 𝐾∗

𝑏
)

6 return ⟦𝑏′ = 𝑏⟧
Decaps(𝑐) :

7 if 𝑐 = 𝑐∗
8 return ⊥
9 else

10 return Decaps(𝑠𝑘, 𝑐)

Figure 3: IND-CPA and IND-CCA security for KEM =

(KGen, Encaps,Decaps) with key space K .

We call KEM (perfectly) correct if 𝛿 = 0.

Security of KEMs is defined in terms of indistinguishability of

encapsulated keys from random given the decapsulator’s public

key and the encapsulating ciphertext:

Definition 2.2 (IND-ATK Security of KEMs). Let KEM = (KGen,
Encaps,Decaps) be a KEM with key space K . We say that KEM is

(𝑡, 𝜖)-IND-CPA-secure, resp. (𝑡, 𝜖,𝑄𝐷 )-IND-CCA-secure, if for any
adversaryA with running time at most 𝑡 , resp. and making at most

𝑄𝐷 queries to the decapsulation oracle, we have that

AdvindatkKEM (A) :=
����Pr[GindatkKEM (A) = 1

]
− 1

2

���� ≤ 𝜖,
where GindatkKEM (A) (with atk = cpa, resp. atk = cca) is defined in

Figure 3.

2.3 (Twisted) Pseudorandom Functions

Beyond classical pseudorandom functions for key derivation, an-

other crucial component for our SPQR protocol are special pseudo-

random functions called twisted pseudorandom functions [41, 54].
In the following we recall the respective definitions and security

games.

Definition 2.3. Let F : {0, 1}𝜅 × {0, 1}𝜄 → {0, 1}𝜔 be an efficient

keyed function with key length 𝜅 , input length 𝜄, and output length

𝜔 .

Let GprfsecF (A) be defined as in the top of Figure 4. We call F a
(𝑡, 𝜖,𝑄F)-pseudorandom function (or simply (𝑡, 𝜖,𝑄F)-PRFSEC), if
for any adversary A with running time at most 𝑡 and making at

most 𝑄F queries to the PRFChallenge oracle, we have that

AdvprfsecF (A) :=
����Pr[GprfsecF (A) = 1

]
− 1

2

���� ≤ 𝜖.
Let GtprfsecF (A) be defined as in the bottom of Figure 4. We

call F a (𝑡, 𝜖, 𝑞)-twisted pseudorandom function (or simply (𝑡, 𝜖, 𝑞)-
tPRFSEC), if for any adversary A with running time at most 𝑡 , we

have that

AdvtprfsecF,𝑞 (A) :=
����Pr[GtprfsecF,𝑞 (A) = 1

]
− 1

2

���� ≤ 𝜖.
4
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Gprfsec
F (A) :

1 𝐾 ←$ {0, 1}𝜅
2 𝑔←$ {functions 𝑓 : {0, 1}𝜄 → {0, 1}𝜔 }
3 𝑏←$ {0, 1}
4 𝑏′←$ APRFChallenge ()
5 return ⟦𝑏′ = 𝑏⟧
PRFChallenge(𝑥) :

6 if 𝑏 = 0

7 return F(𝐾, 𝑥)
8 else
9 return 𝑔 (𝑥)

Gtprfsec
F,𝑞 (A) :

1 𝑔←$ {functions 𝑓 : {0, 1}𝜄 → {0, 1}𝜔 }
2 𝑔′←$ {functions 𝑓 : {0, 1}𝜅 → {0, 1}𝜔 }
3 𝐾,𝐾 ′←$ {0, 1}2𝜅
4 𝑏←$ {0, 1}
5 𝑥, 𝑥1, 𝑥2, . . . , 𝑥𝑞 ←$ {0, 1} (𝑞+1)𝜄
6 𝑠0 ←

{
(𝑥1, F(𝐾, 𝑥1)), (𝑥2, F(𝐾, 𝑥2)), . . . , (𝑥𝑞 , F(𝐾, 𝑥𝑞 )), (𝐾 ′, F(𝐾 ′, 𝑥))

}
7 𝑠1 ←

{
(𝑥1, 𝑔 (𝑥1)), (𝑥2, 𝑔 (𝑥2)), . . . , (𝑥𝑞 , 𝑔 (𝑥𝑞 )), (𝐾 ′, 𝑔′ (𝐾 ′))

}
8 𝑏′←$ A(𝑠𝑏 )
9 return ⟦𝑏′ = 𝑏⟧

Figure 4: Pseudorandomness (GprfsecF (A), top) and twisted

pseudorandomness (GtprfsecF (A), bottom) of a function F.

Note that one can easily build a twisted PRF tPRF from a PRF F
in the standard model. Following Kurosawa and Furukawa [54], a

secure construction doubling the key and label lengths is:

tPRF((𝑘, 𝑘 ′), (𝑒, 𝑒 ′)) = F(𝑘, 𝑒) ⊕ F(𝑒 ′, 𝑘 ′) .

3 DESIGNATED VERIFIER SIGNATURES

Designated verifier signature (DVS) schemes were introduced by

Jakobsson, Sako, and Impagliazzo [48]. Their goal is for a signer

to convince a chosen recipient (the “designated verifier”) that a

message is authentic but in such a way that the designated verifier

cannot convince any other party of the authenticity of the message.

This property is typically modeled by requiring that the designated

verifier can efficiently simulate signatures that are indistinguishable

from signatures produced by the signer.

In this sectionwe give two generic constructions of DVS schemes,

both of which can be instantiated in the post-quantum setting. A

key ingredient in our construction is a chameleon hash function.

Previously, Yang, Yu, and Sun [78] used chameleon hash functions

with collision trapdoors to build a variant of a DVS scheme; in con-

trast, we use CHF with a trapdoor that enables preimage sampling.

3.1 DVS Definitions

Definition 3.1. A designated verifier signature scheme (DVS) is a
tuple of algorithms DVS = (SKGen,VKGen, Sign,Vrfy, Sim) along
with a message spaceM.

• SKGen() $→ (𝑝𝑘𝑆 , 𝑠𝑘𝑆 ): A probabilistic key generation algo-

rithm that outputs a public-/secret-key pair for the signer.

• VKGen() $→ (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ): A probabilistic key generation algo-

rithm that outputs a public-/secret-key pair for the verifier.

Geufcma
DVS (A) :

1 𝑄 ← ∅
2 (𝑝𝑘𝑆 , 𝑠𝑘𝑆 ) ←$ DVS.SKGen()
3 (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ) ←$ DVS.VKGen()
4 (𝑚★, 𝜎★) ←$ ASign (𝑝𝑘𝑆 , 𝑝𝑘𝐷 )
5 𝑑 ← DVS.Vrfy(𝑝𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚∗, 𝜎∗)
6 return ⟦𝑑 = true ∧ 𝑚∗ ∉ 𝑄⟧

Sign(𝑝𝑘,𝑚) :

7 if 𝑝𝑘 = 𝑝𝑘𝐷
8 𝑄 ← 𝑄 ∪ {𝑚}
9 𝜎 ←$ DVS.Sign(𝑠𝑘𝑆 , 𝑝𝑘,𝑚)

10 return 𝜎

Gsrchid
DVS (A) :

1 (𝑝𝑘𝑆 , 𝑠𝑘𝑆 ) ←$ DVS.SKGen()
2 (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ) ←$ DVS.VKGen()
3 𝑏←$ {0, 1}
4 𝑏′←$ AChall (𝑝𝑘𝑆 , 𝑠𝑘𝑆 , 𝑝𝑘𝐷 , 𝑠𝑘𝐷 )
5 return ⟦𝑏′ = 𝑏⟧

Chall(𝑚) :

6 if 𝑏 = 0

7 𝜎 ←$ DVS.Sign(𝑠𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚)
8 else
9 𝜎 ←$ DVS.Sim(𝑝𝑘𝑆 , 𝑠𝑘𝐷 ,𝑚)

10 return 𝜎

Figure 5: Existential unforgeability under chosen-message

attacks (top) and source hiding (bottom) of a designated ver-

ifier signature scheme DVS.

• Sign(𝑠𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚) $→ 𝜎 : A probabilistic signing algorithm that

uses a signer secret key 𝑠𝑘𝑆 to produce a signature 𝜎 for a

message𝑚 ∈ M for a designated verifier with public key 𝑝𝑘𝐷 .

• Vrfy(𝑝𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚, 𝜎) → true/false: A deterministic verification

algorithm that checks a message𝑚 and signature 𝜎 against a

signer public key 𝑝𝑘𝑆 and verifier public key 𝑝𝑘𝐷 .

• Sim(𝑝𝑘𝑆 , 𝑠𝑘𝐷 ,𝑚) $→ 𝜎 : A probabilistic signature simulation al-

gorithm that uses the verifier’s secret key 𝑠𝑘𝐷 to produce a

signature 𝜎 on message𝑚 for signer public key 𝑝𝑘𝑆 .

A DVS scheme DVS is correct, if, for any honestly generated key

pairs (𝑝𝑘𝑆 , 𝑠𝑘𝑆 ), (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ) and every message 𝑚 ∈ M, it holds

that

Pr [Vrfy(𝑝𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚, Sign(𝑠𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚)) = true] = 1.

We follow [55] in defining separate key generation algorithms

for signer and designated verifier. While in some cases these two

algorithms may be identical, they differ for our constructions. Some

DVS schemes, called strong DVS, are written with a verification

algorithm that requires the designated verifier’s secret key instead

of the public key.

A long line of research has scrutinized the security of DVS

schemes [26, 48, 55, 58, 69, 71, 78] in different settings. For the

purpose of this paper, it suffices to define the security notions of

unforgeability and source hiding. Unforgeability for DVS is like that

of standard signature schemes, except the signing oracle permits

the adversary to supply the public key of the designated verifier.

Definition 3.2. A designated verifier signature scheme DVS is

(𝑡, 𝜖,𝑄𝑆 )-existentially unforgeable under chosen-message attacks if,
for any adversary A with running time at most 𝑡 and making at

most 𝑄𝑆 queries to the signing oracle, we have that

Adveufcma
DVS (A) = Pr

[
Geufcma
DVS (A) = 1

]
≤ 𝜖,

where Geufcma
DVS (A) is as in Figure 5.

The second property we consider is called source hiding [55],

where it should be infeasible for an attacker to determine whether

a given signature has been generated by the signer or by the desig-

nated verifier, even if the attacker learns the secret keys.
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Definition 3.3. A designated verifier signature scheme DVS is

(𝑡, 𝜖,𝑄𝐶 )-source hiding if, for any adversary A with running time

at most 𝑡 and making at most 𝑄𝐶 to the challenge oracle, we have

that

AdvsrchidDVS (A) =
����Pr [GsrchidDVS (A) = 1

]
− 1

2

���� ≤ 𝜖,
where GsrchidDVS (A) is defined in Figure 5.

This property of source hiding also appears under different terms

in the literature such as the designated verifier property [48, 69],

non-transferability [71], source deniable [38], untransferability [15],

and recently off-the-record [26]. While all these definitions share

the intuition that the sender can blame another party (in particular,

the designated receiver) as originator of the signature, they vary in

the attacker capabilities, i.e., whether the attacker is unbounded or

whether it gets access to the secret keys.

3.2 Chameleon Hash Functions

For our constructions of DVS we need a chameleon hash function

[53]. We use the formalization of Cash, Hofheinz, Kiltz, and Peik-

ert [18], where the trapdoor enables preimage sampling (unlike

[53], where the trapdoor enables collision sampling).

Definition 3.4. A chameleon hash function (CHF) is a tuple of

algorithms CHF = (KGen,Hash, Inv) with public key space P,
message spaceM, digest spaceD, randomness space R, and a (not
necessarily uniform) distribution R

dist
over R:

• KGen() $→ (𝑝𝑘, 𝑠𝑘): A probabilistic key generation algorithm.

• Hash(𝑝𝑘,𝑚; 𝑟 ) → ℎ: A hashing algorithm that takes as input a

public key 𝑝𝑘 and a message𝑚 ∈ M along with randomness

𝑟 ∈ R, and outputs a digest ℎ ∈ D.

• Inv(𝑠𝑘, ℎ,𝑚) $→ 𝑟 : A probabilistic hash inversion algorithm that

takes as input a secret key 𝑠𝑘 , digest ℎ ∈ D, and message

𝑚 ∈ M, and outputs randomness 𝑟 ∈ R.

Definition 3.5. A CHF is (𝑡, 𝜖)-secure if it satisfies:
Uniformity For (𝑝𝑘, 𝑠𝑘) ←$ KGen(),𝑚 ∈ M, and 𝑟 ←$ R

dist
, we

have that (𝑝𝑘,Hash(𝑝𝑘,𝑚; 𝑟 )) is 𝜖-close to uniform over P×D.

Chameleon For (𝑝𝑘, 𝑠𝑘) ←$ KGen(), ℎ ∈ D,𝑚 ∈ M, we have

that ℎ = Hash(𝑝𝑘,𝑚; Inv(𝑠𝑘, ℎ,𝑚)).
Collision resistance Given 𝑝𝑘 ∈ P, no time-𝑡-bounded adver-

sary can find distinct (𝑚, 𝑟 ), (𝑚′, 𝑟 ′) with Hash(𝑝𝑘,𝑚; 𝑟 ) =

Hash(𝑝𝑘,𝑚′; 𝑟 ′) with probability greater than 𝜖 .

Chameleon indistinguishability For all (𝑝𝑘, 𝑠𝑘) ←$ KGen(),𝑚 ∈
M, and ℎ ∈ D, Inv(𝑠𝑘, ℎ,𝑚) is 𝜖-close to the distribution of

𝑟 ←$ R
dist

conditioned on Hash(𝑝𝑘,𝑚; 𝑟 ) = ℎ.

Chameleon hash functions as random oracles. In proofs later in

this section we model CHF = (KGen,Hash, Inv) as a random oracle

using lazy sampling. This is achieved by providing the adversary

with two oracles: RO and InvRO.

• RO(𝑝𝑘,𝑚, 𝑟 ) $→ (𝑟 ′, ℎ): Models the idealized computation of

Hash. It takes as input a public key 𝑝𝑘 , the data𝑚 to be hashed,

and randomness 𝑟 ∈ R ∪ {𝜀}. Provision of the hashing random-

ness is required when recomputing an already existing digest,

e.g., during signature verification. If no randomness is given, i.e.,

𝑟 = 𝜀, the random oracle will choose the randomness according

to the distribution R
dist

. It then outputs the randomness 𝑟 ′ and
the lazily-sampled digest ℎ.

• InvRO(𝑠𝑘, ℎ,𝑚) $→ 𝑟 : Provides the idealized execution of the

Inv algorithm. It takes as input a secret key 𝑠𝑘 , the desired

digest ℎ, and the data𝑚 to be hashed to this digest and outputs

randomness 𝑟 , which was lazily-sampled from R
dist

.

Note that the chameleon property of CHF requires that ℎ =

Hash(𝑝𝑘,𝑚; Inv(𝑠𝑘, ℎ,𝑚)). Therefore, consistency between RO and

InvRO also must be ensured. We achieve this via standard book-

keeping techniques under the assumption that given a secret key

𝑠𝑘 , we can compute the corresponding public key 𝑝𝑘 .1

In more detail, 𝑄RO many queries (𝑝𝑘,𝑚, 𝑟 ) will be stored along

with the corresponding response (𝑟 ′, ℎ) as tuples (𝑝𝑘,𝑚, 𝑟 ′, ℎ) in
the listLRO. For the proof of Theorem 3.8 we will save an additional

element in the list, i.e., entries of the form (𝑝𝑘,𝑚, 𝑟 ′, 𝑠, ℎ). Note that
if 𝑟 ≠ 𝜀 in the query, then 𝑟 ′ = 𝑟 . For queries to InvRO which

are of the form (𝑠𝑘,𝑚,ℎ) with response 𝑟 , the secret key 𝑠𝑘 is first

converted into the corresponding public key 𝑝𝑘 and then the tuple

(𝑝𝑘,𝑚, 𝑟, ℎ) is also stored inLRO. Hence,LRO contains up to𝑄RO+
𝑄InvRO many entries (less entries in case a RO queries asks for an

input set by InvRO). In the proofs, the adversary cannot use the

InvRO oracle on keys that are relevant for the reduction since it

does not know the corresponding secret keys.

3.3 DVS from Chameleon Hashing in GPV

Signatures

Gentry, Peikert, and Vaikuntanathan [44] showed how to construct

a hash-then-sign signature scheme analogous to the full-domain

hash signature scheme [5], but using a preimage sampleable trap-

door function rather than a permutation. In this section we show

that using a chameleon hash function in the GPV construction

results in a designated verifier signature scheme.

3.3.1 Preimage sampleable functions and GPV signatures.

Definition 3.6. A preimage sampleable function (PSF) [44] is de-
fined by four algorithms (TrapGen, SampleDom, SamplePre, 𝑓 ) and
associated spaces D,R (for domain and range of 𝑓 ):

• TrapGen() $→ (𝑝𝑘, 𝑠𝑘): A probabilistic trapdoor generation al-

gorithm that outputs a public-key/secret-key pair.

• SampleDom() $→ 𝑥 : A probabilistic domain sampling algorithm

that outputs a sample 𝑥 ∈ D.

• SamplePre(𝑠𝑘,𝑦) $→ 𝑥 : A probabilistic preimage sampling al-

gorithm that takes as input a secret key from a key pair (𝑝𝑘, 𝑠𝑘)
output by TrapGen() and 𝑦 ∈ R, and outputs 𝑥 ∈ D.

• 𝑓 (𝑝𝑘, 𝑥) → 𝑦: A deterministic function taking as input a public

key and a value 𝑥 ∈ D and outputting 𝑦 ∈ R.

Definition 3.7. APSF is (𝑡, 𝜖)-secure if, for (𝑝𝑘, 𝑠𝑘) ←$ TrapGen(),
we have:

Uniformity SampleDom() yields𝑥 from a (possibly non-uniform)

distribution over D such that 𝑓 (𝑝𝑘, 𝑥) is 𝜖-close to uniform

over R.

1
This is a reasonable assumption to make since public keys 𝑝𝑘 can often be considered

to be computed as 𝑝𝑘 ← KGen(params; 𝑠𝑘) , where 𝑠𝑘 is simply the randomness

within the execution of KGen. Thus, given 𝑠𝑘 and the public parameters of the scheme,

one can deterministically recompute the public key.
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GPV.KGen() :

1 (𝑝𝑘, 𝑠𝑘) ←$ PSF.TrapGen()
2 return (𝑝𝑘, 𝑠𝑘)
GPV.Sign(𝑠𝑘,𝑚) :

3 𝑟 ←$ R
4 𝑐 ← H(𝑚 ∥𝑟 )
5 𝑠←$ PSF.SamplePre(𝑠𝑘, 𝑐)
6 𝜎 ← (𝑟, 𝑠)
7 return 𝜎

GPV.Vrfy(𝑝𝑘,𝑚, 𝜎) :

8 (𝑟, 𝑠) ← 𝜎

9 if 𝑠 ∉ PSF.D then return false
10 if 𝑟 ∉ R then return false
11 𝑐 ← H(𝑚 ∥𝑟 )
12 if PSF.𝑓 (𝑝𝑘, 𝑠) = 𝑐 then return true
13 else return false

Figure 6: Signature scheme GPV = GPV[H, PSF,R] of [44]

constructed from a hash function H, a preimage sampleable

function PSF, and signature randomness space R.

Preimage sampling with trapdoor For 𝑦 ∈ R, SamplePre(𝑠𝑘,
𝑦) outputs 𝑥 𝜖-close to the distribution of 𝑥 ←$ SampleDom()
conditioned on 𝑓 (𝑝𝑘, 𝑥) = 𝑦.

One-way without trapdoor For any time-𝑡-bounded adversary

A, the probability that 𝑦 = 𝑓 (𝑝𝑘,A(𝑝𝑘,𝑦)) is at most 𝜖 , where

the probability is taken over (𝑝𝑘, 𝑠𝑘) ←$ TrapGen(), 𝑦←$ R,
and A’s random coins.

Preimage min-entropy For every 𝑦 ∈ R, the conditional min-

entropy of 𝑥 ←$ SampleDom() given 𝑓 (𝑝𝑘, 𝑥) = 𝑦 is at least

𝜔 (log log |D|).
Collision-resistant without trapdoor For any time-𝑡-bounded

adversaryA, the probability thatA(𝑝𝑘) outputs distinct 𝑥, 𝑥 ′ ∈
D such that 𝑓 (𝑝𝑘, 𝑥) = 𝑓 (𝑝𝑘, 𝑥 ′) is at most 𝜖 , where the proba-

bility is taken over (𝑝𝑘, 𝑠𝑘) ←$ TrapGen() and A’s coins.

A PSF that has preimage min-entropy and is collision-resistant

without trapdoor is also one-way without trapdoor.

The GPV signature scheme is shown in Figure 6. It is constructed

from a preimage sampleable function PSF, a signature randomness

space R, and a hash function H : {0, 1}∗ × R → PSF.R.
Gentry, Peikert, and Vaikuntanathan [44] show that the GPV

signature scheme in Figure 6 is (strongly) existentially unforgeable

under chosen message attack when the preimage sampleable func-

tion has preimage min-entropy and is collision-resistant without

trapdoor, and the hash function is modeled as a random oracle.

Our construction. We show that if we use a chameleon hash func-

tion in the GPV signature scheme, where the digest space of the CHF

is the same as the range of the PSF, then we can obtain a designated

verifier signature scheme that is unforgeable and source hiding.

The construction is shown in Figure 7. The signature randomness

space R in the GPV scheme is set to be CHF.R, the randomness

space of the chameleon hash function.

Theorem 3.8 (Unforgeability ofGPVDVS). IfPSF is a (𝑡, 𝜖PSF)-
secure preimage sampleable function and CHF is modeled as a ran-
dom oracle, then GPVDVS as shown in Figure 7 is (𝑡 ′, 𝜖 ′, 𝑄𝑆 +𝑄RO +
𝑄InvRO) existentially unforgeable under chosen message attacks, with
𝑡 ′ ≈ 𝑡 and 𝜖 ′ ≤ 𝜖PSF · (1 − 2−𝜔 (log log |PSF.D |) ).

Proof. The proof idea follows [44, Prop. 6.2]. We reduce exis-

tential unforgeability of GPVDVS to collision resistance without

trapdoor of PSF, while [44] reduces from strong unforgeability

of the signature scheme. Furthermore, the treatment of the hash

function differs.

GPVDVS.SKGen() :

1 (𝑝𝑘𝑆 , 𝑠𝑘𝑆 ) ←$ PSF.TrapGen()
2 return (𝑝𝑘𝑆 , 𝑠𝑘𝑆 )
GPVDVS.VKGen() :

3 (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ) ←$ CHF.KGen()
4 return (𝑝𝑘𝐷 , 𝑠𝑘𝐷 )
GPVDVS.Sign(𝑠𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚) :

5 𝑟 ←$ CHF.Rdist
6 𝑐 ← CHF.Hash(𝑝𝑘𝐷 ,𝑚; 𝑟 )
7 𝑠←$ PSF.SamplePre(𝑠𝑘𝑆 , 𝑐)
8 𝜎 ← (𝑟, 𝑠)
9 return 𝜎

GPVDVS.Vrfy(𝑝𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚, 𝜎) :

10 (𝑟, 𝑠) ← 𝜎

11 if 𝑠 ∉ PSF.D then return false
12 if 𝑟 ∉ CHF.R then return false
13 𝑐 ← CHF.Hash(𝑝𝑘𝐷 ,𝑚; 𝑟 )
14 if PSF.𝑓 (𝑝𝑘𝑆 , 𝑠) = 𝑐 then return true
15 else return false

GPVDVS.Sim(𝑝𝑘𝑆 , 𝑠𝑘𝐷 ,𝑚) :

16 𝑠←$ PSF.SampleDom()
17 𝑐 ← PSF.𝑓 (𝑝𝑘𝑆 , 𝑠)
18 𝑟 ←$ CHF.Inv(𝑠𝑘𝐷 , 𝑐,𝑚)
19 𝜎 ← (𝑟, 𝑠)
20 return 𝜎

Figure 7: Designated-verifier signature scheme GPVDVS =

GPVDVS[CHF, PSF] constructed from a chameleon hash

function CHF and a preimage sampleable function PSF sat-

isfying CHF.D = PSF.R.

In our setting, the chameleon hash function (modeled according

to Section 3.2) is called on the designated verifier’s public key 𝑝𝑘𝐷 ,

the message𝑚, and the randomness 𝑟 .

We can further assume that queries to the RO and the signing

oracle are not repeatedly asked by A as the consistent random

oracle response yields no new information.

Initialization of A The adversary B against collision resistance

without trapdoor of PSF receives as input a public key 𝑝𝑘PSF.
Next, B sets 𝑝𝑘𝑆 ← 𝑝𝑘PSF and generates a key pair (𝑝𝑘𝐷 ,
𝑠𝑘𝐷 ) ←$ CHF.KGen(). The reduction then initializes the

EUF-CMA adversary A on input (𝑝𝑘𝑆 , 𝑝𝑘𝐷 ).
Queries to RO For any query (𝑝𝑘,𝑚, 𝑟 ), the reduction first checks

if an entry (𝑝𝑘,𝑚, 𝑟, ·, ℎ) exists in LRO. If yes, it returns (𝑟, ℎ).
Else, it sets 𝑟 ′ ← 𝑟 if 𝑟 ≠ 𝜖 and 𝑟 ′←$ CHF.R

dist
otherwise. It

then samples 𝑠←$ PSF.SampleDom(), sets ℎ ← PSF.𝑓 (𝑝𝑘𝑆 , 𝑠),
saves (𝑝𝑘,𝑚, 𝑟 ′, 𝑠, ℎ) in LRO, and returns (𝑟 ′, ℎ).

Queries to InvRO For any query (𝑠𝑘, ℎ,𝑚) the reduction com-

putes 𝑝𝑘 from 𝑠𝑘 , samples 𝑟 ←$ CHF.R
dist

, saves (𝑝𝑘,𝑚, 𝑟,⊥, ℎ)
to LRO, and returns 𝑟 .

Queries to Sign A’s queries to the Sign oracle are of the form(𝑝𝑘,
𝑚). For each of the 𝑄𝑆 queries, the reduction B first samples

𝑟 ←$ CHF.R
dist

and queries the random oracle on (𝑝𝑘,𝑚, 𝑟 ). It
finds an entry (𝑝𝑘,𝑚, 𝑟, 𝑠, ℎ) for any 𝑠, ℎ in LRO and returns 𝑠 .

If 𝑠 = ⊥, B restarts with sampling new randomness 𝑟 . Note

that this case only occurs if the sampled randomness is identi-

cal to the randomness that was sampled for a previous InvRO

query on the same public key and message. For signing queries

(𝑝𝑘𝐷 ,𝑚) including the challenge public key, B additionally

records𝑚 in the list LSign.

Existential Forgery. At some point, A outputs a valid DVS

forgery (𝑚∗, 𝜎∗ = (𝑟∗, 𝑠∗)) wrt. 𝑝𝑘𝑆 and 𝑝𝑘𝐷 . Recall that the validity
of the forgery implies:

• 𝑚∗ ∉ LSign, i.e.,𝑚
∗
has not been queried to the signing oracle

for the designated verifier’s public key,

• 𝑠∗ ∈ PSF.D, i.e., 𝑠∗ is a valid domain element of PSF,
• 𝑟∗ ∈ CHF.R, i.e., 𝑟∗ is a valid randomness of the CHF, and
• CHF.Hash(𝑝𝑘𝐷 ,𝑚∗, 𝑟∗) = PSF.𝑓 (𝑝𝑘𝑆 , 𝑠∗), i.e., the signature

contains a preimage for the chameleon hash of the message.

7
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We assume that the attacker has queried RO on (𝑝𝑘𝐷 ,𝑚∗, ·) be-
fore returning the forgery. The reduction checks LRO for an entry

(𝑝𝑘𝐷 ,𝑚∗, 𝑟∗, 𝑠, ℎ∗) with ℎ∗ = CHF.Hash(𝑝𝑘𝐷 ,𝑚∗, 𝑟∗) and outputs

(𝑠, 𝑠∗) as a collision in PSF under 𝑝𝑘𝑆 if 𝑠 ≠ 𝑠∗.
The reduction soundly simulates the unforgeability game against

GPVDVS. The random oracle provides answers with randomness

sampled according to the distribution R
dist

for both RO and InvRO.

For RO the digests are computed by sampling a domain element of

PSF and applying PSF.𝑓 to it. According to the uniformity property

of the PSF these values are distributed uniformly. Thus, the signing

oracle answers consistently with the random oracle by construction.

Since the attacker has queried RO on (𝑝𝑘𝐷 ,𝑚∗), there is an entry
(𝑝𝑘𝐷 ,𝑚∗, 𝑟∗, 𝑠, ℎ∗) in LRO with ℎ∗ = CHF.Hash(𝑝𝑘𝐷 ,𝑚∗, 𝑟∗). The
min-entropy of 𝑠∗ conditioned on PSF.𝑓 (𝑝𝑘𝑆 , 𝑠∗) = ℎ∗ is

𝜔 (log log |PSF.D|) due to the preimage min-entropy property of

PSF. Hence, 𝑠∗ ≠ 𝑠 except with small probability 2
−𝜔 (log log |PSF.D |)

and (𝑠, 𝑠∗) is a collision wrt. PSF and 𝑝𝑘𝑆 .

The running time 𝑡 of B is dominated by the running time 𝑡 ′

of A and we write 𝑡 ≈ 𝑡 ′; simulating the random oracle is not

expensive. If A outputs a successful forgery with probability 𝜖 ′,
then B is able to produce a collision without trapdoor wrt. PSF and
𝑝𝑘𝑆 with probability 𝜖 ′ ≤ 𝜖PSF · (1 − 2−𝜔 (log log |PSF.D |) ). □

Theorem 3.9 (Source hiding of GPVDVS). If PSF is a (𝑡, 𝜖PSF)-
secure preimage sampleable function and CHF is a (𝑡, 𝜖CHF)-secure
chameleon hash function, then GPVDVS is (𝑡 ′, 2𝜖PSF + 2𝜖CHF, 𝑄𝐶 )-
source hiding with 𝑡 ≈ 𝑡 ′.

Proof. We need to show that GPVDVS.Sign and GPVDVS.Sim
output essentially the same distribution of signatures, for fixed

public-key/secret-key pairs and any fixed message𝑚. We do so by

arguing that both algorithms generate values (𝑟, 𝑐, 𝑠) close to the

distribution, call it Δ, generated by the following procedure: sample

𝑐←$ CHF.D, then sample (𝑟, 𝑠) from the conditional distribution

over the product of the distribution CHF.R
dist

on CHF.R and the

distribution on PSF.D output by PSF.SampleDom, conditioned on

𝑐 = CHF.Hash(𝑝𝑘𝐷 ,𝑚; 𝑟 ) = PSF.𝑓 (𝑝𝑘𝑆 , 𝑠). Note CHF.D = PSF.R.
First consider (𝑟, 𝑐, 𝑠) in GPVDVS.Sign. By the uniformity prop-

erty of CHF, lines 5 and 6 of Figure 7 result in 𝑐 𝜖CHF-close to

uniformly distributed over CHF.D, with 𝑟 sampled from the distri-

bution CHF.R
dist

conditioned on 𝑐 = CHF.Hash(𝑝𝑘𝐷 ,𝑚; 𝑟 ). By the
preimage sampling with trapdoor property of PSF, line 7 of Figure 7
outputs 𝑠 that is 𝜖PSF-close to the distribution of PSF.SampleDom
conditioned on 𝑐 = PSF.𝑓 (𝑝𝑘𝑆 , 𝑠). Thus, (𝑟, 𝑐, 𝑠) in GPVDVS.Sign
are 𝜖CHF + 𝜖PSF-close to Δ.

Now consider (𝑟, 𝑐, 𝑠) in GPVDVS.Sim. By the uniformity prop-

erty of PSF, lines 16 and 17 of Figure 7 result in 𝑐 𝜖PSF-close to

uniformly distributed over PSF.R = CHF.D, with 𝑠 sampled from

the distribution output by PSF.SampleDom conditioned on 𝑐 =

PSF.𝑓 (𝑝𝑘𝑆 , 𝑠). By the chameleon indistinguishability property of

CHF, line 18 of Figure 7 outputs 𝑟 that is 𝜖CHF-close to the distri-

bution 𝑟 ←$ CHF.R
dist

conditioned on CHF.Hash(𝑝𝑘𝐷 ,𝑚; 𝑟 ) = 𝑐 .

Thus, (𝑟, 𝑐, 𝑠) in GPVDVS.Sim are 𝜖PSF + 𝜖CHF-close to Δ.
Hence, (𝑟, 𝑐, 𝑠) in GPVDVS.Sign and GPVDVS.Sim are (2𝜖PSF +

2𝜖CHF)-close, so GPVDVS is source hiding as required. □

Instantiation. The GPVDVS scheme can be instantiated by using

the existing preimage sampleable function at the heart of Falcon

[39] (which is a signature scheme in the GPV framework) and either

the plain SIS-based chameleon hash function of [18, §4.1] or the

ring-SIS based CHF of [34, §B.3]. Either way, we must ensure that

the range of the CHF and the range of the PSF are the same (or have

an efficient mapping between them). For Falcon, the range of the

PSF are polynomials in R𝑞 where R = Z[𝑥]/(𝑥𝑛 + 1); Falcon’s level
1 parameters have 𝑛 = 512 and 𝑞 = 12289. The ring-SIS-based CHF

of [34] can be instantiated at the 128-bit security level with the same

𝑛 and 𝑞, yielding a CHF public key of 12.5 KiB and CHF randomness

of 25 KiB.
2
For the plain-SIS-based CHF of [18], we must use a much

larger modulus in the CHF (𝑞 ≈ 2
47
), and then need to adapt the

Falcon parameters accordingly; at the 128-bit security level this

yields a CHF public key of 287MiB, CHF randomness of 0.5MiB,

Falcon public key of 3 KiB, and Falcon signature of 0.7 KiB.

3.4 DVS from Chameleon Hashing in

Fiat–Shamir Signatures

In this section, we give the full construction of designated verifier

signatures via the Fiat-Shamir transform with chameleon hash-

ing. We first recall some of the basic definitions and formalize the

construction before re-stating the theorem and proving it in full.

3.4.1 Definitions. Fiat-Shamir signatures are traditionally built

from canonical identification protocols CID. These are three-move

challenge-response protocols between a prover P and a verifier V. In
order to build existentially unforgeable signatures from canonical

identification protocols, we need them to have a sufficient level

of min-entropy, to be honest-verifier zero-knowledge, and to be

secure against impersonation attacks. These properties are defined

formally as follows:

Definition 3.10. A canonical identification protocol CID is de-

fined by three algorithms (KGen, P,V):
• KGen() $→ (𝑝𝑘, 𝑠𝑘): A probabilistic key generation algorithm

that outputs a public-key/secret-key pair.

• The prover P = (P1, P2) is a two-stage algorithm that takes as

input the secret key 𝑠𝑘 . P1 starts taking 𝑠𝑘 as input and outputs

a commitment com along with some state st. P2 takes as input
the challenge ch (provided by V1) and state st outputting a

response rsp.
• The verifier V = (V1,V2) is a two-stage algorithm that takes

as input the public key. V1 samples a random challenge ch and

sends it to the prover. V2 takes as input the public key as well

as the tuple (com, ch, rsp) and outputs true if it accepts the

conversation or false otherwise.
For all (𝑝𝑘, 𝑠𝑘) ← KGen(), we require that any honest interaction

between P(𝑠𝑘) and V(𝑝𝑘) within an instance of the protocol re-

sults into the verifier accepting. That is, for (com, st) ←$ P1 (𝑠𝑘),
ch←$ V1 (), and rsp←$ P2 (𝑠𝑘, com, ch, st), we have that

Pr[V2 (𝑝𝑘, com, ch, rsp) = true] = 1.

We denote the interactive execution of the canonical identifica-

tion protocol between the prover and the verifier by P(𝑠𝑘) ⇄ V(𝑝𝑘).
Additionally, we write Trans[P(𝑠𝑘) ⇄ V(𝑝𝑘)] to simply denote a

transcript (com, ch, rsp) generated from the interaction between P
and V.
2
We used the SIS security estimator from PQ-Crystals: https://github.com/pq-crystals/

security-estimates and the Falcon parameters script from the NIST Round 3 submission.
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Gimpkoa
CID (A) :

1 (𝑝𝑘, 𝑠𝑘) ←$ CID.KGen()
2 (com, st) ←$ A(𝑝𝑘)
3 ch←$ CID.V1 ()
4 rsp←$ A(ch, st)
5 return
⟦CID.V2 (𝑝𝑘, com, ch, rsp)⟧

Gimppa
CID (A) :

1 (𝑝𝑘, 𝑠𝑘) ←$ CID.KGen()
2 (com, 𝑠𝑡 ) ←$ A(𝑝𝑘)
3 ch←$ CID.V1 ()
4 rsp←$ ATranscript (ch, 𝑠𝑡 )
5 return ⟦CID.V2 (𝑝𝑘, com, ch, rsp)⟧
Transcript:

6 return Trans[CID.P(𝑠𝑘) ⇄ CID.V(𝑝𝑘) ]

Figure 8: Security experiments for IMP-KOA and IMP-PA of

CID against impersonating adversaries A.

Definition 3.11. A canonical identification protocolCID = (KGen,
P,V) has 𝛼 bits of min-entropy if the probability over the random

choice (𝑝𝑘, 𝑠𝑘) ←$ KGen() that the commitment com generated by

P1 (𝑠𝑘) is from a distribution with at least 𝛼 bits of min-entropy is

at least 1 − 2𝛼 .
Definition 3.12. Let CID = (KGen, P,V) be a canonical identifica-

tion protocol. We say thatCID is 𝜖ZK-honest-verifier zero-knowledge,
or 𝜖ZK-HVZK, if there exists an algorithm Sim, called the simulator,

such that for all (𝑝𝑘, 𝑠𝑘) ←$ KGen(), the outputs of Sim(𝑝𝑘) can
only be distinguished from real conversations between P and V
with probability at most 𝜖ZK.

Definition 3.13. Let CID = (KGen, P,V) be a canonical identifica-
tion protocol and let A be an algorithm. First consider the security

game Gimpkoa
CID (A) as provided on the left of Figure 8. We say that

CID is (𝑡, 𝜖)-secure against impersonation attacks under key-only

attacks, (𝑡, 𝜖)-IMP-KOA-secure, if for any adversary A running in

time at most 𝑡 , we have Pr[Gimpkoa
CID (A) = 1] ≤ 𝜖 .

Similarly, consider the security game Gimppa
CID (A) as provided on

the right of Figure 8. We say that CID is (𝑡, 𝜖,𝑄𝑇 )-secure against
impersonation attacks under passive attacks, (𝑡, 𝜖,𝑄𝑇 )-IMP-PA-
secure, if for any adversaryA running in time at most 𝑡 and with at

most𝑄𝑇 queries to the oracleTranscript, we have Pr[Gimppa
CID (A) =

1] ≤ 𝜖 .

3.4.2 Construction and security. The construction of the DVS

scheme denoted by FSDVS[CID,CHF] from a canonical identifica-

tion scheme CID and a chameleon hash function CHF is given in

Figure 9. The key idea is that using a chameleon hash function in

the Fiat–Shamir transform enables the designated-verifier property.

As usual for the Fiat–Shamir transform we require that the digest

space D of the (chameleon) hash function equals the challenge set

of the canonical identification protocol.

To show that FSDVS[CID,CHF] is a secure DVS scheme, we

need to show existential unforgeability as well as source hiding:

Theorem 3.14 (Unforgeability of FSDVS). Let CID = (KGen,
P,V) be a (𝑡, 𝜖,𝑄𝑇 )-IMP-PA-secure canonical identification protocol
with commitments that have 𝛼 bits min-entropy. Let further CHF =

(KGen,Hash, Inv) be a secure chameleon hash function, modeled as
a programmable random oracle.

Then the Fiat–Shamir transformed designated verifier signature
scheme FSDVS[CID,CHF] as defined in Figure 9 is (𝑡 ′, 𝜖 ′, (𝑄𝑆 +
𝑄RO +𝑄InvRO))-EUF-CMA secure according to Definition 3.2, where
𝑡 ≈ 𝑡 ′ and 𝜖 ′ ≤ 𝑄RO · (𝜖 +𝑄𝑆 (𝑄RO +𝑄InvRO) · 2−𝛼 ).

FSDVS.SKGen() :

1 (𝑝𝑘𝑆 , 𝑠𝑘𝑆 ) ←$ CID.KGen()
2 return (𝑝𝑘𝑆 , 𝑠𝑘𝑆 )
FSDVS.VKGen() :

3 (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ) ←$ CHF.KGen()
4 return (𝑝𝑘𝐷 , 𝑠𝑘𝐷 )
FSDVS.Sign(𝑠𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚) :

5 (com, st) ←$ CID.P1 (𝑠𝑘𝑆 )
6 𝑟 ←$ CHF.Rdist
7 ch← CHF.Hash(𝑝𝑘𝐷 , com∥𝑚; 𝑟 )
8 rsp←$ CID.P2 (ch, st)
9 𝑠 ← (com, ch, rsp)

10 𝜎 ← (𝑟, 𝑠)
11 return 𝜎

FSDVS.Vrfy(𝑝𝑘𝑆 , 𝑝𝑘𝐷 ,𝑚, 𝜎) :

12 (𝑟, (com, ch, rsp)) ← 𝜎

13 ch′ ← CHF.Hash(𝑝𝑘𝐷 , com∥𝑚; 𝑟 )
14 if ch ≠ ch′ then return false
15 𝑑 ← CID.V2 (𝑝𝑘𝑆 , com, ch, rsp)
16 return 𝑑

FSDVS.Sim(𝑝𝑘𝑆 , 𝑠𝑘𝐷 ,𝑚) :

17 (com, ch, rsp) ←$ CID.Sim(𝑝𝑘𝑆 )
18 𝑟 ←$ CHF.Inv(𝑠𝑘𝐷 , ch, com∥𝑚)
19 𝑠 ← (com, ch, rsp)
20 return (𝑟, 𝑠)

Figure 9: Designated-verifier signature scheme

FSDVS[CID,CHF] constructed from an HVZK and IMP-PA-
secure identification protocol CID = (KGen, P,V) and a

chameleon hash function CHF = (KGen,Hash, Inv).

𝑄𝑇 denotes the number of B’s queries to its Transcript oracle
which is equal to 𝑄𝑆 , the number of A’s signing queries to Sign.
𝑄RO denotes the number ofA’s queries to the random oracle RO, and
𝑄InvRO the number of A’s queries to the random oracle InvRO.

Proof. Assume there exists a (𝑡 ′, 𝜖 ′, (𝑄𝑆 + 𝑄RO + 𝑄InvRO))-
adversaryA against the EUF-CMA security of the FSDVS[CID,CHF]
designated verifier signature scheme. We give a (𝑡, 𝜖,𝑄𝑇 )-adversary
B against the IMP-PA security of the underlying identification

scheme CID.
Without loss of generality, assume that A only asks “signature-

relevant” RO queries, i.e., queries of the form (𝑝𝑘,𝑚, 𝑟 ), where 𝑝𝑘
is a designated verifier’s public key,𝑚 a message, and 𝑟 ∈ R ∪ {𝜀}
the randomness input for hashing.

We can further assume that queries (𝑝𝑘,𝑚, 𝑟 ) with 𝑟 ≠ 𝜀 are not
repeatedly asked by A as the consistent random oracle response

yields no new information.

Initialization of A The IMP-PA adversary B receives as input a

public key, say, 𝑝𝑘CID.B sets 𝑝𝑘𝑆 ← 𝑝𝑘CID and generates a key

pair (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ) ←$ CHF.KGen(). The reduction then initializes
the EUF-CMA adversary A on input (𝑝𝑘𝑆 , 𝑝𝑘𝐷 ).

Queries to RO Let 𝑄RO be the number of queries that A makes

to RO. The reduction B guesses the query 𝑖∗ ∈ [𝑄RO] to RO

that belongs to the existential signature forgery that A will

output, yielding a loss of a factor 𝑄RO.

Simulation of query 𝑖∗: Let (𝑝𝑘,𝑚′, 𝑟∗) be the 𝑖∗-th query of

A to RO. Note that in order to yield a winning signature forgery

it must be that 𝑝𝑘 = 𝑝𝑘𝐷 and𝑚′ is of the form com∗∥𝑚∗ for
some commitment com∗ and message𝑚∗. The randomness 𝑟∗

may be chosen by the adversary or the empty string 𝜀 in which

case the reduction will sample the randomness 𝑟∗←$ R
dist

to

be used. B then submits com∗ to its own challenger, receiving

a challenge ch∗. B stores (𝑝𝑘,𝑚′, 𝑟∗, ch∗) in LRO and returns

(𝑟∗, ch∗) to A.

Simulation of queries 𝑗 ≠ 𝑖∗: For any query (𝑝𝑘,𝑚, 𝑟 ) where
𝑟 ≠ 𝜀, the reduction consults the list of recorded random oracle

queries LRO. If there exists a tuple (𝑝𝑘,𝑚, 𝑟, ℎ) ∈ LRO, then

9
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the reduction returns (𝑟, ℎ) to the adversary. Note that, in par-

ticular, this already ensures consistency with previous InvRO

queries (𝑠𝑘,𝑚,ℎ) with response 𝑟 , in case 𝑝𝑘 is the public key

corresponding to 𝑠𝑘 . If there is no such value in LRO, then the

reduction samples a digest ℎ at random, stores (𝑝𝑘,𝑚, 𝑟, ℎ) in
LRO, and returns (𝑟, ℎ) to the adversary. For queries (𝑝𝑘,𝑚, 𝜀),
the reduction samples a value 𝑟 ←$ R

dist
and ensures that there

is no (𝑝𝑘,𝑚, 𝑟, ·) entry in LRO (the probability of such an entry

already existing is negligible). If there is, the reduction simply

resamples 𝑟 until no such list entry is present. It then samples

a uniformly random digest ℎ and, after storing (𝑝𝑘,𝑚, 𝑟, ℎ) in
LRO, returns (𝑟, ℎ) to the adversary. Note that the probability

that there exist (𝑝𝑘,𝑚, 𝑟 ) and (𝑝𝑘,𝑚′, 𝑟 ′) such that both get

assigned the same digest ℎ by this procedure is negligible, due

to the random sampling from the digest space; moreover this

can be avoided by simply resampling the digest.

Queries to InvRO For any query (𝑠𝑘, ℎ,𝑚), the reduction sam-

ples 𝑟 ←$ R
dist

, computes 𝑝𝑘 from 𝑠𝑘 , stores (𝑝𝑘,𝑚, 𝑟, ℎ) inLRO

and returns 𝑟 to A. Consistency with subsequent RO queries

on these values is ensured via the entry in LRO; no further

bookkeeping is required.

Queries to Sign A’s queries to Sign are of the form (𝑝𝑘,𝑚),
where 𝑝𝑘 is the designated verifier’s public key and𝑚 the mes-

sage to be signed. For each of the 𝑄𝑆 queries of A, B uses

its Transcript oracle to receive an accepting conversation

(com, ch, rsp) with respect to signing public key 𝑝𝑘𝑆 . In order

to ensure the validity of the signature, the reduction samples

𝑟 ←$ R
dist

and must ensure that ch = RO(𝑝𝑘, com∥𝑚, 𝑟 ). With

high probability, (𝑝𝑘, com∥𝑚, 𝑟, ·) has not been set in LRO due

to an adversary’s previous RO or InvRO query; the probability

ofA detecting the simulation of the random oracle due to such

a collision is upper bounded by (𝑄RO +𝑄InvRO) · 2−𝛼 , where
𝛼 is the min-entropy of commitments in CID. Thus, A cannot

detect the programming of the random oracle by B on these

values.

Existential Forgery At some point, A outputs a valid DVS

forgery (𝑚∗, 𝜎∗ = (𝑟∗, (com∗, ch∗, rsp∗))) with respect to 𝑝𝑘𝑆 , 𝑝𝑘𝐷
and corresponding to the 𝑖∗-th random oracle query, otherwise B
aborts. Recall that the validity of the forgery implies:

• 𝑚∗ ∉ LSign, i.e.,𝑚
∗
has not been queried to the signing oracle

for the designated verifier’s public key, and thus the RO has

not been patched by B on this value;

• ch∗ = RO(𝑝𝑘𝐷 , com∗∥𝑚∗, 𝑟∗), i.e., ch∗ is the appropriate digest
set in the 𝑖∗-th query to RO; and

• V2 (𝑝𝑘𝑆 , (com∗, ch∗, rsp∗)) = 1, i.e., (com∗, ch∗, rsp∗) is an ac-

cepting conversation under 𝑝𝑘𝑆 .

Thus, B can return rsp as output in its own IMP-PA game and win.

The running time 𝑡 of B is dominated by the running time 𝑡 ′

of A and we write 𝑡 ≈ 𝑡 ′, omitting the explicit mention of the

time it takes to simulate the random oracle, to query the IMP-PA
challenger once and to query Transcript a total of𝑄𝑇 = 𝑄𝑆 times.

IfA outputs a successful forgery with probability 𝜖 ′, then B is able

to win the IMP-PA game with probability 𝜖 ′ ≤ 𝑄RO · (𝜖 +𝑄𝑆 (𝑄RO +
𝑄InvRO) · 2−𝛼 ). □

Theorem 3.15 (Source Hiding of FSDVS). Let CID = (KGen,
P,V) be a 𝜖ZK-HVZK and (𝑡, 𝜖)-IMP-KOA-secure canonical identifi-
cation protocol. Let CHF = (KGen,Hash, Inv) be a (𝑡, 𝜖CHF)-secure
chameleon hash function. Then the Fiat–Shamir transformed signa-
ture scheme FSDVS[CID,CHF] as defined in Figure 9 is (𝑡 ′, 𝜖 ′, 𝑄𝐶 )-
source hiding according to Definition 3.3, where 𝑡 ′ ≈ 𝑡 and 𝜖 ′ ≤
2𝜖CHF + 𝜖ZK.

Proof. The proof proceeds similar to the one from Theorem 3.9.

We need to show that FSDVS.Sign and FSDVS.Sim output essen-

tially the same distribution of signatures, for fixed public-key/secret-

key pairs and any fixed message𝑚.

Let us first consider (𝑟, 𝑠) in FSDVS.Sign where 𝑠 is of the form

(com, ch, rsp). By the uniformity property of CHF, we have that ch
is 𝜖CHF-close to uniformly distributed over CHF.D (which is equal

to the challenge set of the canonical identification protocol), with

𝑟 sampled from the distribution CHF.R
dist

conditioned on ch =

CHF.Hash(𝑝𝑘𝐷 ,𝑚; 𝑟 ). Since the canonical identification protocol

is honestly executed this results in generating a commitment com
and response rsp such that the overall transcript (com, ch, rsp) will
correctly verify.

Now consider (𝑟, 𝑠) in FSDVS.Sim. By the honest-verifier zero-

knowledge property ofCID, we have that the simulated transcript is

𝜖ZK-close distributed to real transcripts. By the chameleon indistin-

guishability property of CHF, the call to CHF.Inv on line 18 of Fig-

ure 9 outputs 𝑟 that is 𝜖CHF-close to the distribution 𝑟 ←$ CHF.R
dist

conditioned on CHF.Hash(𝑝𝑘𝐷 ,𝑚; 𝑟 ) = ch.
Hence, (𝑟, 𝑠) in FSDVS.Sign and FSDVS.Sim are (2𝜖CHF + 𝜖ZK)-

close, so FSDVS is source hiding as required. □

3.5 Related Work: Lattice-based DVS

There are several lattice-based DVS schemes in the literature. In this

section we review this related work and highlight the differences

to our two constructions.

Wang, Hu, and Wang [76] construct a DVS scheme directly

from lattice assumptions (LWE and SIS) by combining the Bonsai

tree lattice trapdoor of [18] with the GPV lattice-based signature

scheme [44]; a subsequent paper of theirs [77] extends this to the

identity-based setting. While [76] does use ingredients from the

same two papers that our first construction relies on ([44] and

[18]), their construction is different as it uses the Bonsai lattice

trapdoor directly in the arithmetic of the signing and verifying

operations, rather than in the hashing as we do with the chameleon

hash function. [76] also requires the designated verifier to use their

secret key in the verification algorithm (i.e., they require a strong
DVS). Finally, our construction is generic and can be instantiated by

any preimage sampleable trapdoor function and chameleon hash

function (as long as the digest space of the CHF matches the range

of the PSF), whereas theirs is written for specific lattice operations.

Noh and Jeong [64] improve on [76, 77] by giving direct construc-

tions from lattices that can be proven without relying on random

oracles; they do so by replacing the random oracle with a chameleon

hash function. Whereas [64] uses a CHF as a standard-model re-

placement of a programmable random oracle for maintaining con-

sistency of their simulation in the proof of unforgeability, we use

the CHF for the source hiding property of the DVS.
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Li, Liu, and Yang [57] construct a DVS scheme directly from ideal

lattice assumptions (ring-SIS) by combining a ring version of the

GPV signature scheme [61] with a ring chameleon hash function

[34] and adding a Fiat–Shamir-with-aborts technique [59, 60]. The

use of the chameleon hash function in the LLY scheme is closest to

ours, in the sense that it permits the hash digest to be inverted by the

designated verifier for simulating signatures. However, the exact

way the CHF is used is different, as is their overall construction,

and their formulation is non-generic.

Zhang, Loiu, Tang, and Tian also give a DVS constructed directly

from SIS by adapting the Lyubashevsky signature scheme [60].

4 SECURITY MODEL FOR ASYNCHRONOUS

DENIABLE KEY EXCHANGE

From a formal perspective, an asynchronous authenticated key ex-

change protocol is just a traditional authenticated key exchange

protocol with a specific type of message flow. In particular, asyn-

chronicity allows one party to post pre-key bundles containing

long-term and possibly ephemeral public keys, provided that they

can be constructed without knowing the intended partner. We will

formalize security for this setting based on a Bellare–Rogaway-

type model [3] with implicit authentication and (weak) forward

secrecy using post-specified peers [17, 52]. The model presented in

this section is simplified to deal with basic Bellare–Rogaway-type

security with only long-term keys as a warm-up; in Section 7 we

present a more granular model that accommodates the complex

characteristics found in the Signal protocol handshake, including

semi-static keys and stronger security against maximal exposure.

Parties and sessions. Let P be the set of 𝑛𝑝 parties, each of whom

has a long-term public-key/secret-key pair generated by an algo-

rithm KGenLT. Each party may run multiple instances of the proto-

col simultaneously or sequentially, each of which is called a session.

The 𝑖th session at party 𝑃 is denoted 𝜋𝑖
𝑃
. For each session, the party

maintains the following collection of session-specific information:

• oid ∈ P: The identity of the session owner.

• pid ∈ P ∪ {★}: The identity of the intended peer, which may

initially be unknown (indicated by ★).

• role ∈ {initiator, responder}: The role of the party.
• stexec ∈ {⊥, running, accepted, rejected}: The status of this ses-

sion’s execution.

• sid ∈ {0, 1}∗ ∪ {⊥}: A session identifier defining partnering.

• cid ∈ {0, 1}∗ ∪ {⊥}: A contributive identifier, indicating cryp-

tographically relevant material for key derivation.

• K ∈ KKE ∪ {⊥}: The session key established in this session.

• Any additional protocol-specific data used during execution.

Protocol specification. A 2-party key exchange protocol consists

of the following algorithms:

• KGenLT() $→ (𝑝𝑘, 𝑠𝑘): A probabilistic long-term key genera-

tion algorithm that outputs a public-key/secret-key pair.

• Run(𝑠𝑘, ®𝑝𝑘, 𝜋,𝑚) $→ (𝜋 ′,𝑚′): A probabilistic session execution

algorithm that takes as input a party’s long-term secret key

𝑠𝑘 , a list of long-term public keys for all other honest parties

®𝑝𝑘 , a session state 𝜋 , and an incoming message𝑚, and outputs

an updated session state 𝜋 ′ and a (possibly empty) outgoing

message𝑚′. To set up the session sending the first message,

Run is called with a distinguished message𝑚 = create.

In a deniable key exchange protocol, we will demand the existence

of an additional algorithm:

• Fake(𝑝𝑘𝑈 , 𝑠𝑘𝑉 ) $→ transcript: A probabilistic transcript sim-

ulation algorithm that takes as input one party’s public key

and the other party’s secret key and generates a transcript of a

protocol interaction between them.

Asynchronous key exchange. In principle, a key exchange pro-

tocol can have an arbitrary number of message flows, which cor-

respond to multiple calls to Run for a single session. In normal

execution of an asynchronous authenticated key exchange proto-

col, the following three calls to Run occur: 1) a call to Run at the

responder (Bob)
3
with 𝑚 = create, which sets up the responder

session and outputs the responder’s pre-key bundle, including an

ephemeral public key; 2) a call to Run at the initiator with the re-

sponder’s pre-key bundle (long-term public and ephemeral public

keys) which generates a session key and outputs a key exchange

message; and 3) a call to Run at the responder with the initiator’s

long-term public key and key exchange message which generates

a session key and has no output message.

Partnering. Two sessions 𝜋𝑖
𝑈

and 𝜋
𝑗

𝑉
are said to be partners if

they agree on the session identifier (𝜋𝑖
𝑈
.sid = 𝜋

𝑗

𝑉
.sid).

Session key indistinguishability. The first security property we

want of an authenticated key exchange protocol is indistinguishabil-

ity of session keys. At the start of the security experiment, long-term

public-key/secret-key pairs are generated for all 𝑛𝑝 honest parties

and the public keys
®𝑝𝑘 are provided to the adversary, as well as a

random challenge bit 𝑏test fixed for the duration of the experiment.

The adversary is then able to interact with honest parties via the

following queries:

• Send(𝑈 , 𝑖,𝑚): Sends message 𝑚 to session 𝜋𝑖
𝑈
, which corre-

sponds to executing Run(𝑠𝑘𝑈 , ®𝑝𝑘, 𝜋𝑖𝑈 ,𝑚), saving the updated

session state 𝜋 ′ as 𝜋𝑖
𝑈
, and returning the outgoing message𝑚′

to the adversary.

• CorruptLTKey(𝑈 ): Returns party 𝑈 ’s long-term secret key

𝑠𝑘𝑈 to the adversary.

• RevealSessKey(𝑈 , 𝑖): If session 𝜋𝑖
𝑈

has accepted, return its

session key 𝜋𝑖
𝑈
.K to the adversary.

• Test(𝑈 , 𝑖): If the Test query has been called before or session

𝜋𝑖
𝑈

has not accepted, then return ⊥. Otherwise, if 𝑏test = 0,

return 𝜋𝑖
𝑈
.K, otherwise return an element of KKE chosen uni-

formly at random. Record 𝜋∗ ← 𝜋𝑖
𝑈
.

The test session 𝜋∗ = 𝜋𝑖
∗
𝑈 ∗ is called fresh if the following all hold:

(1) RevealSessKey(𝑈 ∗, 𝑖∗) was never called.
(2) RevealSessKey(𝑉 , 𝑗) was never called for any 𝑉 , 𝑗 such that

𝜋∗ .sid = 𝜋
𝑗

𝑉
.sid.

(3) Either

3
Note that we call Bob the responder in our model despite Bob outputting the first,

asynchronous key exchange message. Based on the high-level protocol interaction,

we deem it more natural to call Alice, who decides to initiate a Signal session with

Bob, the initiator (in contrast to, e.g., [22, 73, 74]).
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(a) there exists an honest partner session 𝜋∗p (𝜋∗p .sid = 𝜋∗ .sid if

𝜋∗ is a responder, and 𝜋∗p .cid = 𝜋∗ .cid if 𝜋∗ is an initiator),

covering weak forward secrecy, or

(b) CorruptLTKey(𝜋∗ .oid) and CorruptLTKey(𝜋∗ .pid) was
never called, covering implicit authentication.

At the end of the experiment, the adversary outputs a bit 𝑏 ′. The
adversary is said to win if 𝑏 ′ = 𝑏test and the test session 𝜋∗ is fresh.
Formally, if the test session is fresh, the experiment outputs 1 if

𝑏 ′ = 𝑏test and 0 otherwise; if the test session is not fresh, then the

experiment outputs a random bit. The adversary’s advantage in the

key indistinguishability game is the absolute value of the difference

between
1

2
and the probability that the experiment outputs 1.

Deniability. The second security property we want is deniability.

At the start of this experiment, long-term public-key/secret-key

pairs are generated for all 𝑛𝑝 honest parties and the public and
secret keys are provided to the adversary. A random challenge

bit 𝑏 is fixed for the duration of the experiment. The adversary

is given repeated access to a Chall oracle which takes as input

two party identifiers 𝑈 and 𝑉 . If 𝑏 is 0, then Chall will generate

an honest transcript of an interaction between 𝑈 and 𝑉 using the

Run algorithm and each party’s secret keys. If 𝑏 is 1, then Chall

will generate a simulated transcript of an interaction between 𝑈

and 𝑉 using the Fake algorithm. At the end of the experiment, the

adversary outputs a guess𝑏 ′ of𝑏. The experiment outputs 1 if𝑏 ′ = 𝑏
and 0 otherwise. The adversary’s advantage in the deniability game

is the absolute value of the difference between
1

2
and the probability

the experiment outputs 1.

There are several prior works giving definitions of offline deni-

ability for key exchange [24, 25, 30, 73, 74]. Our definition differs

from previous ones in that it gives access to secret keys to the Fake
algorithm (corresponding to the simulator in simulation-based def-

initions) and to the adversary (i.e., the judge). This models the

informal deniability requirement from the Signal specification [63,

§4.4]. See Appendix A for a more detailed discussion.

5 SECURITY OF THE CORE PROTOCOL

We now show that our core protocol Π from Figure 2 achieves the

security properties defined in Section 4. Key indistinguishability of

Π depends in IND-CCA security of the two KEMs, unforgeability

of the DVS, and security of the KDF; deniability of Π depends on

source hiding of the DVS. Both proofs are in the standard model.

To formally capture Π in the security model of Section 4, we

need to specify a few more details:

• Alice takes the initiator role, Bob the responder role.
• The transcript in Figure 2 corresponds to the session identifier

and consists of the parties’ identities and long-term public keys,

the responder’s ephemeral public key, and the KEM ciphertexts;

the contributive identifier corresponds to the pre-key bundle

part of the transcript, received by Alice from Bob:

transcript = sid = (𝐴, 𝐵, 𝑝𝑘DVS𝐴 , 𝑝𝑘KEM𝐵 , 𝑝𝑘DVS𝐵 , 𝑒𝑝𝑘KEM𝐵 , 𝑐1, 𝑐2)

cid = (𝐵, 𝑝𝑘KEM𝐵 , 𝑝𝑘DVS𝐵 , 𝑒𝑝𝑘KEM𝐵 )

5.1 Key Indistinguishability

Theorem 5.1 (Key indistinguishability ofΠ). LetDVS be a (𝑡,
𝜖DVS, 𝑄𝑆 )–EUF-CMA-secure DVS scheme,KEM1 be a (𝑡, 𝜖KEM1

, 𝑛𝑠 )–
IND-CCA-secure KEM, KEM2 be a (𝑡, 𝜖KEM2

, 1)–IND-CCA-secure
KEM, and KDF be a (𝑡, 𝜖KDF, 𝑛𝑠 )–PRF-secure key derivation function
when keyed through either of the key components 𝐾1 and 𝐾2. Then
the asynchronous DAKE protocol Π from Figure 2 provides key indis-
tinguishability (as defined in Section 4) in that the advantage 𝜖 ′ of
any adversary A running in time 𝑡 ′ ≈ 𝑡 is upper bounded as

𝜖 ′ ≤ 𝑛𝑠 ·
©«
𝑛𝑠 ·

(
𝜖KEM2

+ 𝜖KDF
)

+𝑛𝑝 ·
(
𝜖KEM1

+ 𝜖KDF
)

+𝑛2𝑝 ·
(
𝜖DVS + 𝑛𝑠 · (𝜖KEM2

+ 𝜖KDF)
) ª®¬ ,

where 𝑛𝑠 ≤ 𝑄𝑆𝑛𝑑 is the maximum number of sessions (upper bounded
by the number 𝑄𝑆𝑛𝑑 of Send queries) and 𝑛𝑝 the number of parties.

Proof. We proceed via a sequence of game hops starting from

the key indistinguishability game for an adversary A. We bound

the difference between each hop until we reach a game where the

adversary’s advantage is 0.

Game 0. The initial key indistinguishability game, denoted G0,
letting 𝜖 ′ := AdvG0ADAKE (A) = | Pr[G0 = 1] − 1

2
|.

Game 1 (Guess test session 𝜋∗). We first guess the tested ses-

sion 𝜋∗ and “invalidate” the game by overwriting the adversary’s

bit guess with 0 if the adversary calls Test on a different session.

Guessing among the 𝑛𝑠 many sessions (where 𝑛𝑠 is at most the

number 𝑄𝑆𝑛𝑑 of calls to the Send oracle),

AdvG0ADAKE (A) ≤ 𝑛𝑠 · Adv
G1
ADAKE (A) .

For the remaining proof, we distinguish the following three cases

for the test session being fresh:

A. There exists an honest partner session 𝜋∗p (𝜋∗p .sid = 𝜋∗ .sid if 𝜋∗

is a responder, and 𝜋∗p .cid = 𝜋∗ .cid if 𝜋∗ is an initiator).

B. The tested session is an initiator (“Alice”) session and

CorruptLTKey(𝜋∗ .pid) was never called.
C. The tested session is a responder (“Bob”) session and neither

CorruptLTKey(𝜋∗ .oid) norCorruptLTKey(𝜋∗ .pid) was ever
called.

4

Treating theses cases as events in G1, and writing G1 [𝑋 ] to indicate
that event 𝑋 occurs, by the union bound we have:

AdvG1ADAKE (A) ≤ AdvG1 [A]ADAKE (A) +Adv
G1 [B]
ADAKE (A) +Adv

G1 [C]
ADAKE (A) .

Case A (Honest partner). In the first proof case, there exists a

session 𝜋∗p that agrees with the tested session 𝜋∗ on the responder’s

ephemeral KEM public key 𝑒𝑝𝑘KEM used. We will leverage this to

embed a challenge into the ephemeral KEM ciphertext 𝑐2.

Game A.1 (Guess partnered session). We first guess a ses-

sion 𝜋∗p which is partnered via sid (if 𝜋∗ is a responder) or cid
(if 𝜋∗ is an initiator) to the test session 𝜋∗, and let the adversary

lose if the guess is incorrect. By this case’s prerequisites, (at least)

4
In our full SPQR protocol (see Section 6), we will strengthen this case by having

Bob use semi-static DVS keys. This limits the time window for a key-compromise

impersonation (KCI) attack [7] against Bob, as in the Signal handshake [63, §4.6].
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one partner session exists and is guessed with probability at least

1/𝑛𝑠 , hence

AdvG1 [A]ADAKE (A) ≤ 𝑛𝑠 · Adv
G𝐴.1
ADAKE (A) .

Game A.2 (Ephemeral KEM). We now replace the KEM key 𝐾2

with a random key 𝐾2 in 𝜋
∗
and also in 𝜋∗p (unless the latter is a

responder and receives a different ciphertext 𝑐2 than sent by 𝜋∗).
We bound the difference introduced by this step through a re-

duction to the IND-CCA security of the KEM2 scheme, which sim-

ulates G𝐴.1 truthfully except for the following changes and runs

in time 𝑡 ≈ 𝑡 ′. It embeds the obtained challenge public key 𝑝𝑘 into

the ephemeral KEM public key 𝑒𝑝𝑘 of the responder session among

𝜋∗ and 𝜋∗p , the challenge ciphertext 𝑐
∗
as 𝑐2 of the initiator session

(among 𝜋∗ and 𝜋∗p), and the challenge (real-or-random) key 𝐾∗
𝑏
)

as 𝐾2 into both 𝜋∗ and 𝜋∗p . If 𝜋
∗
is an initiator session, it uses its

Decaps oracle (at most once, i.e., 𝑄𝐷 ≤ 1) to decrypt a potentially

different ciphertext 𝑐 ′
2
≠ 𝑐2 = 𝑐∗ received by 𝜋∗p . Depending on

the IND-CCA KEM challenge bit, the reduction perfectly simulates

G𝐴.1 or G𝐴.2, hence
AdvG𝐴.1ADAKE (A) ≤ 𝜖KEM2

+ AdvG𝐴.2ADAKE (A).

Game A.3 (KDF). We finally replace the key derivation func-

tion KDF in both 𝜋∗ and 𝜋∗p (in the latter only if it uses 𝐾2) with a

random function, in particular replacing the session key 𝐾 of 𝜋∗

with a randomly sampled key 𝐾 .

We bound the introduced advantage difference via a reduction to

the pseudorandomness of the key derivation function KDF, treated
as a PRF keyed through the second key component 𝐾2 and taking

(𝐾1, transcript) as label. The reduction runs in time 𝑡 ≈ 𝑡 ′ and
simulates Game G𝐴.2 truthfully, except that it does not sample 𝐾2
itself but instead uses its oracle PRFChallenge to compute the

session key values derived from 𝐾2. It calls its oracle at most twice,

once for 𝜋∗ and possibly once for 𝜋∗p on a different label, hence

𝑄𝑃𝑅𝐹 ≤ 𝑛𝑠 . Depending on whether its oracle output is the true KDF
evaluation or that of a random function, the reduction perfectly

simulates G𝐴.2 or G𝐴.3, thus
AdvG𝐴.2ADAKE (A) ≤ 𝜖KDF + Adv

G𝐴.3
ADAKE (A) .

In Game G𝐴.3, the challenge key 𝐾test for 𝜋
∗
is a uniformly

random key, independent of 𝑏test. Furthermore, by the first two

freshness conditions, A cannot reveal 𝐾test via a RevealSessKey

query on 𝜋∗ or any partnered session who might hold the same

key. Thus, in G𝐴.3, A cannot do better than guessing, leaving it

with advantage AdvG𝐴.3ADAKE (A) = 0.

Case B (Initiator tested, peer uncorrupted). In the second proof

case, we have that the tested initiator session 𝜋∗ has an uncorrupted
intended peer. We will leverage this to embed a challenge into the

static KEM ciphertext 𝑐1.

Game B.1 (Guess responder identity). We first guess the test

session’s intended peer, 𝑉 = 𝜋∗ .pid, among the 𝑛𝑝 many parties in

the game and let the adversary lose if we guess incorrectly. This

reduces the adversary’s advantage by a factor at most 𝑛𝑝 :

AdvG1 [B]ADAKE (A) ≤ 𝑛𝑝 · Adv
G𝐵.1
ADAKE (A).

Game B.2 (Static KEM). We can now replace the KEM key𝐾1 in

𝜋∗ (and any responder session of𝑉 receiving the same ciphertext 𝑐1)

with a random key 𝐾1.

We bound the advantage difference introduced by this step

through a reduction to the IND-CCA security of the KEM1 scheme.

The reduction runs in time 𝑡 ≈ 𝑡 ′ and simulates G𝐵.1 truthfully, but
embeds the obtained challenge public key 𝑝𝑘 as 𝑉 ’s public KEM

key 𝑝𝑘KEM
𝑉

at the outset of the game. It further embeds the challenge

ciphertext 𝑐∗ as 𝑐1 sent by 𝜋∗ and the challenge (real-or-random)

key 𝐾∗
𝑏
) as 𝐾1 into 𝜋∗ (and any responder session of𝑉 receiving 𝑐∗).

The reduction uses the Decaps oracle to decapsulate any cipher-

texts 𝑐1 ≠ 𝑐
∗
received by sessions of 𝑉 (calling the oracle at most

𝑛𝑠 times), and never has to respond to CorruptLTKey(𝑉 ) queries
as otherwise 𝜋∗ would not be fresh. Depending on the IND-CCA
KEM challenge bit, the reduction perfectly simulates G𝐵.1 or G𝐵.2,
hence

AdvG𝐵.1ADAKE (A) ≤ 𝜖KEM1
+ AdvG𝐵.2ADAKE (A).

Game B.3 (KDF). We finally replace the key derivation func-

tion KDF in 𝜋∗ (and any other session using 𝐾1) with a random

function, in particular replacing the session key 𝐾 of 𝜋∗ with a

randomly sampled key 𝐾 .

Analogous to Game G𝐴.3, we can bound the introduced ad-

vantage difference by the pseudorandomness of KDF when keyed

through the first key component𝐾1 and taking (𝐾2, transcript) as la-
bel. The challenge static KEM key 𝐾1 may possibly be decapsulated

in many responder sessions of𝑉 , who use distinct transcript labels
unless they are partnered with 𝜋∗; the PRF reduction, running in
time 𝑡 ≈ 𝑡 ′, may hence make up to 𝑛𝑠 queries to its PRFChallenge

oracle. Simulating either of the two games in the reduction, we get

AdvG𝐵.2ADAKE (A) ≤ 𝜖KDF + Adv
G𝐵.3
ADAKE (A).

At this point, the challenge key 𝐾test for 𝜋
∗
is uniformly random

and independent, as only partnered sessions will use the same

transcript label to derive their session keys, but for 𝜋∗ to be fresh

those cannot be revealed. Thus AdvG𝐵.3ADAKE (A) = 0.

Case C (Responder tested, both parties uncorrupted). In the final

proof case, we know that the tested responder session 𝜋∗ has an
uncorrupted intended peer. We will leverage this to ensure that

there is a partnered initiator session (which signed the transcript)

and then embed a challenge into the ephemeral KEM ciphertext 𝑐2
between these two sessions.

GameC.1 (Guess initiator and responder identities). Wefirst

guess the (responder) test session’s owner𝑉 = 𝜋∗ .oid and intended

(initiator) peer𝑈 = 𝜋∗ .pid among the 𝑛𝑝 many parties in the game

and “invalidate” the game (overwriting A’s bit guess by 0) if we

guess incorrectly. Guessing both parties induces a quadratic loss

in 𝑛𝑝 :

AdvG1 [C]ADAKE (A) ≤ 𝑛
2

𝑝 · Adv
G𝐶.1
ADAKE (A).

GameC.2 (Signature unforgeability). Wenow “invalidate” the

game (overwritingA’s bit guess by 0) if the test session 𝜋∗ accepts
a DVS signature 𝜎 on a transcript that no session of𝑈 has issued.

We bound this event by a reduction against the existential un-

forgeability of DVS, running in time 𝑡 ≈ 𝑡 ′ and simulating G𝐶.1
13
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except that it embeds the EUF-CMA game’s challenge public keys

as 𝑝𝑘𝑈 = 𝑝𝑘𝑆 and 𝑝𝑘𝑉 = 𝑝𝑘𝐷 . The reduction uses its signing or-

acle to compute signatures under 𝑝𝑘𝑈 = 𝑝𝑘𝑆 (and for any peer

public key 𝑝𝑘). As 𝑈 and 𝑉 remain uncorrupted in this proof

case, the reduction never has to answer a CorruptLTKey(𝑈 ) or
CorruptLTKey(𝑉 ) query. In the case that 𝜋∗ receives a valid DVS
transcript-signature pair (transcript, 𝜎) that no session of 𝑈 sent

(and hence transcript was not queried to the DVS Sign oracle), the

reduction outputs this pair as its forgery and wins. Therefore,

AdvG𝐶.1ADAKE (A) ≤ 𝜖DVS + Adv
G𝐶.2
ADAKE (A) .

Game C.3 (Guess partnered session). As of G𝐶.2, we know

that 𝜋∗ receives a DVS signature on a transcript value transcript =
𝜋∗ .sid sent by some session of𝑈 . We now guess this (sid-partnered)
session 𝜋∗p (among the𝑛𝑠 many sessions) and, invalidating the game

(overwriting A’s bit guess by 0) upon wrong guess, get

AdvG𝐶.2ADAKE (A) ≤ 𝑛𝑠 · Adv
G𝐶.3
ADAKE (A) .

Game C.4 (Ephemeral KEM). We next replace the KEM key 𝐾2

with a random key 𝐾2 in 𝜋
∗
and 𝜋∗p .

As in Game G𝐴.2, we bound the introduced advantage difference
by the IND-CCA security of the KEM2 scheme. The reduction runs

in time 𝑡 ≈ 𝑡 ′, embeds the challenge 𝑝𝑘 and 𝑐∗ into 𝜋∗’s ephemeral

KEM public key, resp. 𝜋∗p’s 𝑐2 ciphertext, and uses the challenge

key 𝐾∗
𝑏
in place of 𝐾2 in both sessions. It does not need to use its

Decaps oracle (i.e.,𝑄𝐷 = 0), since 𝑝𝑘 is not used in another session

and we are at this point guaranteed that 𝜋∗ receives 𝜋∗p’s ephemeral

ciphertext. (So in fact we only need IND-CPA security of KEM2

here.) The reduction simulates the difference between G𝐶.3 and

G𝐶.4, so

AdvG𝐶.3ADAKE (A) ≤ 𝜖KEM2
+ AdvG𝐶.4ADAKE (A).

Game C.5 (KDF). In the final game hop, we replace KDF in both

𝜋∗ and 𝜋∗p with a random function, replacing the session key 𝐾

of 𝜋∗ with a randomly sampled key 𝐾 .

As in Game G𝐴.3, this is bounded by the pseudorandomness

of KDF with key 𝐾2 and label (𝐾1, transcript). Due to 𝜋∗ and 𝜋∗p
agreeing on the transcript input to KDF, the corresponding reduc-

tion only makes one query, 𝑄𝑃𝑅𝐹 = 1 ≤ 𝑛𝑠 , running in time 𝑡 ≈ 𝑡 ′.
Simulating the game difference through this reduction, we get

AdvG𝐶.4ADAKE (A) ≤ 𝜖KDF + Adv
G𝐶.5
ADAKE (A) .

This completes the last proof case, as the challenge key 𝐾test
for 𝜋∗ is now uniformly random and independent (beyond part-

nered sessions), leaving A with advantage AdvG𝐶.5ADAKE (A) = 0. □

5.2 Deniability

Theorem 5.2 (Deniability of Π). Let DVS = (SKGen,VKGen,
Sign,Vrfy, Sim) be a (𝑡, 𝜖srchid, 𝑄𝐶 )-source hiding DVS scheme. Then
the asynchronous DAKE protocol Π from Figure 2 provides deniability
(as defined in Section 4) in that the advantage 𝜖 ′ of any adversary
A running in time 𝑡 ′ ≈ 𝑡 and making up to 𝑄𝐶 challenge queries is
upper bounded as 𝜖 ′ ≤ 𝑛2𝑝 · 𝜖srchid, where 𝑛𝑝 is the number of parties.

Proof. The proof follows by a standard hybrid argument. Let

A be a successful attacker against deniability of Π, then we can

construct a reduction B against the source hiding property of DVS.
Observe that B computes for each of the 𝑛𝑝 parties a long-term key

pair. It randomly guesses the identifiers of two parties iid∗, rid∗ ∈
[𝑛𝑝 ] for which A can distinguish between Run and Fake. Let a
number 𝑖 ∈ [𝑛2𝑝 ] uniquely denote two independent values iid, rid
in a query (e.g., encoded as (iid − 1) · 𝑛𝑝 + rid) and let 𝑖∗ ∈ [𝑛2𝑝 ]
denote the specific guess iid∗, rid∗ of B. For party iid∗, B replaces

the sampled long-term key with its challenge key pair (𝑝𝑘𝑆 , 𝑠𝑘𝑆 )
and similarly it replaces for party rid∗ with (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ).

In case A makes a query 𝑖 for 1 ≤ 𝑖 < 𝑖∗, then B answers as

if 𝑏 = 0, i.e., it runs DVS.Sign. For all 𝑖∗ < 𝑖 ≤ 𝑛2𝑝 , if A makes a

query, then B answers as if 𝑏 = 1, i.e., it runsDVS.Sim. IfA queries

𝑖 = 𝑖∗, then B passes it to its own oracle. In all cases B returns the

transcript and the session key 𝐾 to A. Finally, when A returns its

guess bit 𝑏 ′, B returns 𝑏 ′ as its guess.
Observe that B faithfully simulates the deniability game for A.

Moreover, the runtime of B is essentially the runtime of A plus

the runtime to generate the keys and answer the oracle queries.

Nowwe analyze the winning probability ofA against deniability.

For this, we define the hybrids𝐻0, . . . , 𝐻𝑛2𝑝
with𝐻𝑖 being the hybrid

that answers all challenge queries for indices 1, . . . , 𝑖 with Run and

the challenge queries for indices 𝑖+1, . . . , 𝑛2𝑝 with Fake. The extreme

hybrids are 𝐻𝑛2𝑝
, which answers all the challenge queries with Run,

and𝐻0, which answers all queries with Fake. Observe that𝐻𝑖−1 and
𝐻𝑖 only differ in an execution of Run or Fake. Hence, the probability
of distinguishing between 𝐻𝑖−1 and 𝐻𝑖 is bounded by 𝜖srchid. Since

there are 𝑛2𝑝 many hybrids, we overall obtain that A’s probability

of winning the deniability game is bounded by 𝜖 ′ ≤ 𝑛2𝑝 · 𝜖srchid. □

6 SIGNAL IN A POST-QUANTUM REGIME

We now extend our core protocol Π from Figure 2 to capture all the

characteristics of the Signal handshake. The core protocol already

captures implicit mutual authentication, forward secrecy, offline

deniability, and asynchronicity. Signal’s X3DH has a few more

subtle aspects and security features to consider, which we address

in our extended asynchronous DAKE protocol: SPQR (Signal in a

Post-Quantum Regime), depicted in Figure 10.

Semi-static keys. In Signal, asynchronicity is facilitated by a cen-

tral, untrusted server which stores the users’ pre-key bundles. To

enable multiple users to asynchronously contact some responder

user, say Bob, the latter uploads multiple ephemeral public pre-keys

to the Signal server, of which one is handed to any initiator session

that wants to contact Bob (along with the other pre-key bundle

elements) and then deleted from the Signal server.

Bob will periodically upload new ephemeral pre-keys; however,

if Bob has been offline for a long time, those pre-keys may run out.

Therefore, the Signal protocol also includes a semi-static key in

user pre-key bundles, and always includes key derivations based

on that semi-static key. If the Signal server runs out of ephemeral

pre-keys, the corresponding key share is not derived and left out;

in that case the semi-static key share still provides delayed forward

secrecy [13]. We capture this similarly in SPQR by encapsulating a
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KGenLT() :
(𝑝𝑘KEM, 𝑠𝑘KEM ) ←$ KEM

1
.KGen()

(𝑝𝑘DVS, 𝑠𝑘DVS ) ←$ DVS.SKGen()
𝑡𝑘←$ tPRF.KGen()
𝑝𝑘 ← (𝑝𝑘KEM, 𝑝𝑘DVS )
𝑠𝑘 ← (𝑠𝑘KEM, 𝑠𝑘DVS, 𝑡𝑘 )
return (𝑝𝑘, 𝑠𝑘 )

KGenSS() :
(𝑠𝑠𝑝𝑘KEM, 𝑠𝑠𝑠𝑘KEM ) ←$ KEM

2
.KGen()

(𝑠𝑠𝑝𝑘DVS, 𝑠𝑠𝑠𝑘DVS ) ←$ DVS.VKGen()
𝑠𝑠𝑝𝑘 ← (𝑠𝑠𝑝𝑘KEM, 𝑠𝑠𝑝𝑘DVS )
𝑠𝑠𝑠𝑘 ← (𝑠𝑠𝑠𝑘KEM, 𝑠𝑠𝑠𝑘DVS )
return (𝑠𝑠𝑝𝑘 , 𝑠𝑠𝑠𝑘 )

KGenEP() :
return (𝑒𝑝𝑘 , 𝑒𝑠𝑘 ) ←$ KEM

3
.KGen()

Alice BobSignal Server

Initiator Registration Responder Registration

(𝑝𝑘𝐴, 𝑠𝑘𝐴) ←$ KGenLT() (𝑝𝑘𝐵 , 𝑠𝑘𝐵 ) ←$ KGenLT()
(𝑠𝑠𝑝𝑘

𝐵
, 𝑠𝑠𝑠𝑘

𝐵
) ←$ KGenSS()

Responder Ephemeral Key Generation

(𝑒𝑝𝑘
𝐵
, 𝑒𝑠𝑘

𝐵
) ←$ KGenEP()Send Pre-Key Bundle to Initiator

𝐵, 𝑝𝑘𝐵 , 𝑠𝑠𝑝𝑘𝐵 , 𝑒𝑝𝑘𝐵

define: 𝑐𝑖𝑑 := (𝐵, 𝑝𝑘𝐵 , 𝑠𝑠𝑝𝑘𝐵 , 𝑒𝑝𝑘𝐵 )
define: 𝑠𝑖𝑑 := (𝐴, 𝐵, 𝑝𝑘𝐴, 𝑝𝑘𝐵 , 𝑠𝑠𝑝𝑘𝐵 , 𝑒𝑝𝑘𝐵 , 𝑛, 𝑐1, 𝑐2, 𝑐3)

Initiator Key Agreement and Protocol Message Responder Key Agreement (on input𝑚)

(𝑠𝑘KEM
𝐴

, 𝑠𝑘DVS
𝐴

, 𝑡𝑘𝐴) ← 𝑠𝑘𝐴 (𝑠𝑘KEM
𝐵

, 𝑠𝑘DVS
𝐵

, 𝑡𝑘𝐵 ) ← 𝑠𝑘𝐵

(𝑝𝑘𝐾𝐸𝑀
𝐵

, 𝑝𝑘𝐷𝑉𝑆
𝐵

) ← 𝑝𝑘𝐵 (𝑝𝑘𝐾𝐸𝑀
𝐴

, 𝑝𝑘𝐷𝑉𝑆
𝐴

) ← 𝑝𝑘𝐴

(𝑠𝑠𝑝𝑘𝐾𝐸𝑀
𝐵

, 𝑠𝑠𝑝𝑘𝐷𝑉𝑆
𝐵

) ← 𝑠𝑠𝑝𝑘
𝐵

if DVS.Vrfy(𝑝𝑘DVS
𝐴

,

(𝑛, 𝑟 ) ←$ {0, 1}𝜆 × RtPRF 𝑠𝑠𝑝𝑘DVS
𝐵

, 𝑠𝑖𝑑, 𝜎) = false
𝑟1 ∥𝑟2 ∥𝑟3 ∥𝑟4 ← tPRF(𝑡𝑘𝐴, 𝑟 ) return (⊥,⊥, rejected,⊥)
(𝐾1, 𝑐1) ← KEM1 .Encaps(𝑝𝑘KEM𝐵

; 𝑟1) 𝐾1 ← KEM1 .Decaps(𝑠𝑘KEM𝐵
, 𝑐1)

(𝐾2, 𝑐2) ← KEM2 .Encaps(𝑠𝑠𝑝𝑘KEM𝐵
; 𝑟2) 𝐾2 ← KEM2 .Decaps(𝑠𝑠𝑠𝑘𝐵 , 𝑐2)

if 𝑒𝑝𝑘
𝐵
≠ ⊥ if 𝑒𝑠𝑘

𝐵
≠ ⊥

(𝐾3, 𝑐3) ← KEM3 .Encaps(𝑒𝑝𝑘𝐵 ; 𝑟3) 𝐾3 ← KEM3 .Decaps(𝑒𝑠𝑘𝐵 , 𝑐3)
else (𝐾3, 𝑐3) ← (𝜀, 𝜀) else (𝐾3, 𝑐3) ← (𝜀, 𝜀)
ms← 𝐾1 ∥𝐾2 ∥𝐾3 ms← 𝐾1 ∥𝐾2 ∥𝐾3
𝜎 ← DVS.Sign(𝑠𝑘DVS

𝐴
, 𝑠𝑠𝑝𝑘DVS

𝐵
, 𝑠𝑖𝑑 ; 𝑟4)

𝐾 ← KDF(ms, 𝑠𝑖𝑑) 𝐾 ← KDF(ms, 𝑠𝑖𝑑)
𝑚 ← (𝐴, 𝑝𝑘𝐴, 𝑛, 𝑐1, 𝑐2, 𝑐3, 𝜎)
return (𝐾, 𝑠𝑖𝑑, accepted,𝑚) return (𝐾, 𝑠𝑖𝑑, accepted, 𝜀)

𝑚 = (𝐴, 𝑝𝑘𝐴, 𝑛, 𝑐1, 𝑐2, 𝑐3, 𝜎)

Responder Fake transcript

run Responder Ephemeral Key Generation, and Initiator Key Agreement upto (excluding) the call to DVS.Sign, then:
𝜎 ← DVS.Sim(𝑠𝑠𝑠𝑘DVS

𝐵
,𝑝𝑘DVS

𝐴
,𝑠𝑖𝑑 ;𝑟

4
)

𝐾 ← KDF(ms, 𝑠𝑖𝑑 )
return (𝐾,𝑚 = (𝐵,𝑝𝑘𝐵, 𝑠𝑠𝑝𝑘𝐵, 𝑒𝑝𝑘𝐵,𝐴, 𝑝𝑘𝐴,𝑛,𝑐1, 𝑐2, 𝑐3, 𝜎 ) )

Figure 10: The SPQR protocol (top: key generation, mid-

dle: protocol flow, bottom: fake transcript generation), com-

bining static, semi-static and ephemeral key encapsulation

schemes KEM1, KEM2, and KEM3, a designated verifier signa-

ture DVS, and a twisted pseudorandom function tPRF.

key-ciphertext pair (𝐾3, 𝑐3) against Bob’s ephemeral KEM public

key 𝑒𝑝𝑘𝐵 only if the latter is present.

Maximal-exposure security. Signal aims for very strong security

guarantees, considering beyond long-term and session key compro-

mise and also compromise of semi-static and ephemeral keys (via

the randomness of sessions) [16, 22, 56]. We model this in an accord-

ingly strong key exchange model (in Section 7) and prove (in Sec-

tion 8) that SPQR achieves equivalent security in the post-quantum

setting as Signal does in the classical setting. In particular, we show

that session keys remain secret, as long as any of the (Alice–Bob)

secret combinations ephemeral–ephemeral, ephemeral–semi-static,

ephemeral–long-term, and long-term–semi-static are uncompro-

mised. Secrecy from the first three is straightforwardly achieved via

encapsulations against the corresponding ephemeral, semi-static,

and long-term KEM keys of Bob. To achieve secrecy from the last

one (i.e., when all initiator randomness is compromised), beyond

relying on the DVS scheme for initiator authentication, we apply

a NAXOS-like [56] trick to extract randomness from Alice’s long-

term secrets via a twisted PRF [41, 54] (generically instantiable

from regular PRFs, see Section 2.3).

We present our formal security results for SPQR in Section 8

after introducing the full security model next.

7 FULL SECURITY MODEL

In this section we present the extensions to the core ADAKE model

that we will use to prove our post-quantum Signal construction

SPQR depicted in Figure 10 secure. The key-indistinguishability

game is fully specified in Figure 11 and the deniability game in

Figure 12. The main differences to the core security models are as

follows

• Signal employs semi-static keys; these keys are authenticated
via signatures using the long-term key of the respective party,

reused, and updated regularly. We thus establish multiple of

these keys for each party, identifying each key pair uniquely

via an identifier ssid ∈ [𝑛ss]. Sessions receive semi-static keys

in an authenticated manner in the model (just like long-term

keys). The adversary is able to corrupt semi-static keys of a

user 𝑈 via the CorruptSSKey(𝑈 , ssid) oracle, similar to the

corruption of long-term keys via CorruptLTKey(𝑈 ).
• The usage of ephemeral pre-keys is optional in Signal (as the

pre-keys stored on the Signal server may run out). We model

this by introducing two types of sessions, full and reduced,
depending on whether an ephemeral pre-key is received by the

initiator in the pre-key bundle or not.

• The adversary is now granted maximal-exposure capabilities

by also revealing the randomness used in a party’s execu-

tion Run. To this end, we make the used randomness explicit

in syntax via the session state variable coins, which during

setup of the session samples random coins from the appropri-

ate randomness spaces. The adversary then has access to a

RevealRandom(𝑈 , 𝑖) oracle that returns the coins sampled in

session 𝜋𝑖
𝑈
, and marks them as revealed via a flag revrand.

7.1 Key Indistinguishability

Definition 7.1. An asynchronous DAKE key exchange proto-

colADAKE is (𝑡, 𝜖, (𝑄𝑆𝑛𝑑 , 𝑄𝐶𝑜𝑟𝑟𝐿𝑇 , 𝑄𝐶𝑜𝑟𝑟𝑆𝑆 , 𝑄𝑅𝑒𝑣𝑅, 𝑄𝑅𝑒𝑣𝑆𝐾 ))–key-
indistinguishable if for any adversaryA with running time at most 𝑡 ,

we have that

Advke-kindADAKE (A) =
����Pr [Gke-kindADAKE (A) = 1

]
− 1

2

���� ≤ 𝜖,
where Gke-kindADAKE (A) is defined in Figure 11 and 𝑄𝑥 for 𝑥 ∈ {𝑆𝑛𝑑,
𝐶𝑜𝑟𝑟𝐿𝑇 ,𝐶𝑜𝑟𝑟𝑆𝑆, 𝑅𝑒𝑣𝑅, 𝑅𝑒𝑣𝑆𝐾} denotes the number of queries to the

oracles Send,CorruptLTKey,CorruptSSKey, RevealRandom and

RevealSessKey, respectively. The model restricts the adversary to

a single query to the Test oracle.
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In addition to the state variables given for the core protocol in

Section 4, the following protocol-specific variables are introduced:

• ssid ∈ [𝑛ss] denotes the identifier of the responder’s semi-

static key used in this session. If 𝜋.role = initiator this refers to
𝑠𝑠𝑝𝑘ssidpid , if 𝜋.role = responder this refers to 𝑠𝑠𝑝𝑘ssidoid .

• type ∈ {full, reduced} indicates whether an ephemeral pre-key

was included in the pre-key bundle, or not. Setting type = full
indicates that an ephemeral pre-key has been received and

used by the initiator, whereas type = reduced means that no

ephemeral pre-key has been received resp. used by the initiator.

• coins ∈ RKE denotes the random coins from the randomness

space RKE used in the execution of Run.
• revrand ∈ {true, false} indicates whether the random coins

𝜋.coins have been revealed via a RevealRandom query. The

default value is false.

In order to fully describe the security game Gke-kindKE (A) that is
played between the adversary and the challenger, we introduce the

following game-specific flags associated with a user𝑈 ∈ [𝑛𝑝 ]. They
indicate whether a party𝑈 ’s long-term or one of it its semi-static

secret keys have been compromised by the adversary:

• corrltk𝑈 ∈ {true, false} indicates whether the long-term secret

key of party 𝑈 has been compromised by the adversary via a

CorruptLTKey(𝑈 ) query. The default value is false.
• corrsskssid

𝑈
∈ {true, false} indicates whether the semi-static

secret key with index ssid of party𝑈 has been compromised by

the adversary via a CorruptSSKey query. The default value is

false.

7.1.1 Session Partnering and Correctness. As in the core model,

(full) session partnering is defined via session identifiers: We say

that a session 𝜋𝑖
𝑈
owned by𝑈 is partnered with a session 𝜋

𝑗

𝑉
owned

by 𝑉 if they agree on the session identifier, i.e., 𝜋𝑖
𝑈
.sid = 𝜋

𝑗

𝑉
.sid ≠

⊥. In order to identify sessions which may eventually derive the

same key but are not fully partnered (yet), we have introduced

the concept of contributive identifiers cid. More precisely, we say

that a session 𝜋𝑖
𝑈

owned by 𝑈 is contributively partnered with a

session 𝜋
𝑗

𝑉
owned by 𝑉 , if they agree on their contributive session

identifier, i.e., whenever 𝜋𝑖
𝑈
.cid = 𝜋

𝑗

𝑉
.cid ≠ ⊥.

We say that an asynchronous authenticated key exchange pro-

tocol KE = (KGenLT,KGenSS,KGenEP,Run) with randomness

space RKE is correct if any protocol execution between honest par-

ties without interference by the adversary results in two sessions

which accept with the same session key and session identifier.

7.1.2 Soundness. Soundness, captured in the predicate sound,
describes the behavior with respect to a correct protocol execution.

If an adversaryA manages to create one of the following situations,

it will win the game immediately:

(i) Two sessions accept with the same session identifier, but derive

different session keys, indicate different handshake types (full
vs. reduced), or do not agree on their contributive identifiers

(Fig. 11, Line 18).

(ii) Two initiator sessions accept with the same session identifier

(Fig. 11, Line 19).

(iii) Three sessions accept with the same session identifier in full
handshake type (Fig. 11, Line 20).

7.1.3 Freshness. Granting the adversaryA access to the oracles

described in Figure 11without restrictionwould allow the adversary

to trivially win the game, e.g., by testing a session key and then

revealing it or corrupting all secrets used in the key derivation of

a session. Therefore, as in the core model, we require the tested

session to be fresh and for this introduce the predicate fresh (cf.

Figure 11) which takes as input the test session 𝜋∗ and prohibits all
“trivial wins”. On a high level, the session key derived in the test

session is considered to be fresh if the following criteria hold:

(i) The session key of the test session has not been revealed to A
via a RevealSessKey query (Fig. 11, Line 14).

(ii) The session key of any partnered session (i.e., any session with

the same session identifier as the test session) has not been

revealed to A via a RevealSessKey query (Fig. 11, Line 15).

(iii) A has not obtained sufficiently many secrets to derive the ses-

sion key of the test session itself via CorruptLTKey and/or

CorruptSSKey and/orRevealRandom queries (Fig. 11, Line 16).

Clean keys. Following the terminology of Cohn-Gordon, Cre-

mers, Dowling, Garratt, and Stebila [22] the last criterion of fresh-

ness is captured by a series of so-called clean predicates, which we

discuss next. The formal description can also be found in Figure 11.

Let 𝜋∗ denote the test session. Depending on whether an ephemeral

pre-key was used in the key derivation of 𝜋∗ or not, we apply either
the cleanfull or the cleanreduced predicate to 𝜋∗.

Since cleanreduced is part of the description of cleanfull, we first
assume that 𝜋∗ .type = reduced. Intuitively, a session key derived

in such a session remains unknown to the adversary, if one of the

three keys that constitute the master secret, is “clean”, i.e., cannot be

computed by the adversary. This is the case if either of the following

three clean predicates holds for the test session 𝜋∗:

cleanLTSS: This predicate indicates whether the combination of

the long-term key of the initiator and the semi-static key of the

responder is unknown to the adversary.

cleanELT: This predicate indicates whether the combination of the

ephemeral contribution
5
of the initiator and the long-term key

of the responder is unknown to the adversary.

cleanESS: This predicate indicates whether the combination of the

ephemeral contribution of the initiator and the semi-static key

of the responder is unknown to the adversary.

If the test session 𝜋∗ is a responder session, the evaluation

of cleanELT and cleanESS necessitates a further predicate called

cleanpeerE (in all other cases, it is sufficient to consider the flags

corrltk, corrssk, and revrand, respectively). For responder test ses-
sions, cleanpeerE indicates whether the randomness used in any

partnered initiator session 𝜋∗p (if test session responder) is unknown
to the adversary.

For test sessions in full handshake mode, i.e., where 𝜋∗ .type =
full, it must either hold that cleanreduced is true or that the addi-

tional input to the master secret computation is clean. The latter is

captured by the following predicate:

5
Recall that the ephemeral contribution in initiator sessions is determined by the

session specific randomness coins ∈ RKE .
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Gke-kind
KE (A) :

1 𝑏test←$ {0, 1} //sample test bit

2 𝜋∗ ← ⊥ //variable for test session

3 for𝑈 ∈ [𝑛𝑝 ]
4 (𝑝𝑘𝑈 , 𝑠𝑘𝑈 ) ←$ KGenLT() //long-term key generation

5 for ssid ∈ [𝑛ss ]
6 (𝑠𝑠𝑝𝑘ssid

𝑈
, 𝑠𝑠𝑠𝑘ssid

𝑈
) ←$ KGenSS() //semi-static key generation

7 ®𝑝𝑘 ← {𝑝𝑘𝑈 }𝑈 ∈[𝑛𝑝 ] ; ®𝑠𝑠𝑝𝑘 ← {𝑠𝑠𝑝𝑘ssid
𝑈
}ssid∈[𝑛ss ]
𝑈 ∈[𝑛𝑝 ]

8 𝑏′←$ ASend,Test,CorruptLTKey,CorruptSSKey,RevealRandom,RevealSessKey ( ®𝑝𝑘, ®𝑠𝑠𝑝𝑘 ) //run adversary

9 if sound() = false //adversary wins if it breaks soundness

10 return 1

11 if fresh(𝜋∗) = false //attack invalid if test session is not fresh

12 𝑏′ ← 0

13 return ⟦𝑏′ = 𝑏test⟧ //determine win or loss

fresh(𝜋∗) :

14 if 𝜋∗ .revealed = true then return false //test session is revealed

15 if ∃ 𝜋 𝑗
𝑉

≠ 𝜋∗ : (𝜋 𝑗
𝑉
.sid = 𝜋∗ .sid ∧ 𝜋 𝑗

𝑉
.revealed = true) then return false

//test session’s partner is revealed

16 return
(
𝜋∗ .type = full and cleanfull (𝜋∗)

)
//test session in full handshake mode and test session key is clean

or
(
𝜋∗ .type = reduced and cleanreduced (𝜋∗)

)
//test session in reduced handshake mode and test session key is clean

sound() :

17 return ∀ distinct 𝜋, 𝜋 ′, 𝜋 ′′
(

18 (𝜋.sid = 𝜋 ′.sid ≠ ⊥ =⇒ 𝜋.K = 𝜋 ′.K ∧ 𝜋.type = 𝜋 ′.type ∧ 𝜋.cid =

𝜋 ′.cid)
//same session identifier imply same shared key, type, and contributive identifiers

19 and (𝜋.sid = 𝜋 ′.sid ≠ ⊥ ∧ 𝜋.role = initiator =⇒ 𝜋 ′.role = responder)
//session identifiers of two initiator sessions never collide

20 and (𝜋.sid = 𝜋 ′.sid = 𝜋 ′′.sid ≠ ⊥ =⇒ 𝜋.type = reduced)
)

//session identifiers of three sessions only collide in reduced mode

Send(𝑈 , 𝑖,𝑚) :

21 if 𝜋𝑖
𝑈

= ⊥ //initiate session: for responders,𝑚 = create carries semi-static key identifier

22 𝜋𝑖
𝑈
.oid← 𝑈 //set owner identity

23 if 𝑚 = create then
24 𝜋𝑖

𝑈
.role← responder; 𝜋𝑖

𝑈
.ssid←𝑚.ssid //set responder role and semi-static key identifier (carried in𝑚)

25 else 𝜋𝑖
𝑈
.role← initiator //set initiator role (𝑚 is first protocol message)

26 𝜋𝑖
𝑈
.coins←$ RKE //sample session randomness

27 𝜋𝑖
𝑈
.stexec ← running

28 (𝜋𝑖
𝑈
,𝑚′) ← Run(𝑠𝑘𝑈 , ®𝑝𝑘, ®𝑠𝑠𝑝𝑘 , 𝜋𝑖𝑈 ,𝑚;𝜋𝑖

𝑈
.coins) //run session, with explicit random coins

29 return (𝑚, 𝜋𝑖
𝑈
.stexec) //return message and session state

Test(𝑈 , 𝑖) :

30 if 𝜋𝑖
𝑈

= ⊥ or 𝜋𝑖
𝑈
.stexec ≠ accepted or 𝜋∗ ≠ ⊥ //session does not exist, has not accepted yet, or test already asked

31 return ⊥
32 𝜋∗ ← 𝜋𝑖

𝑈
//record test session

33 if 𝑏test = 0

34 𝐾test ← 𝜋𝑖
𝑈
.K //real session key

35 else
36 𝐾test←$ KKE //random key from key space

37 return 𝐾test //return challenge key

CorruptLTKey(𝑈 ) :

38 corrltk𝑈 ← true //mark long-term key as corrupted

39 return 𝑠𝑘𝑈 //return long-term secret key

CorruptSSKey(𝑈 , ssid) :

40 corrsskssid𝑈 ← true //mark semi-static key as corrupted

41 return 𝑠𝑠𝑠𝑘ssid
𝑈

//return semi-static secret key

RevealRandom(𝑈 , 𝑖) :

42 if 𝜋𝑖
𝑈

= ⊥ then return ⊥ //session does not exist

43 𝜋𝑖
𝑈
.revrand← true //mark randomness as revealed

44 return 𝜋𝑖
𝑈
.coins //return session’s random coins

RevealSessKey(𝑈 , 𝑖) :

45 if 𝜋𝑖
𝑈

= ⊥ or 𝜋𝑖
𝑈
.stexec ≠ accepted then return⊥

//session does not exist or has not derived key yet

46 𝜋𝑖
𝑈
.revealed← true //mark session key as revealed

47 return 𝜋𝑖
𝑈
.K //return session key

cleanfull (𝜋∗) :

48 return cleanreduced (𝜋∗) or cleanEE (𝜋∗)

cleanreduced (𝜋∗) :

49 return cleanLTSS (𝜋∗) or cleanELT (𝜋∗) or cleanESS (𝜋∗)

cleanEE (𝜋∗) :

50 return 𝜋∗ .revrand = false and cleanpeerE (𝜋∗)
//randomness of test session is unrevealed and ephemeral contribution of peer is clean

cleanpeerE (𝜋∗) :

51 return
52

(
𝜋∗ .role = initiator and ∃𝜋 ≠ 𝜋∗ :
(𝜋.role = responder and 𝜋∗ .cid = 𝜋.cid and 𝜋.revrand = false)

)
//there exists a contributively partnered responder session exists whose randomness is unrevealed

53 or
(
𝜋∗ .role = responder and ∃𝜋 ≠ 𝜋∗ :
(𝜋.role = initiator and 𝜋∗ .sid = 𝜋.sid and 𝜋.revrand = false)

)
//there exists a partnered initiator session (which is unique by sound) whose randomness is unrevealed

cleanLTSS (𝜋∗) :
54 return
55

(
𝜋∗ .role = initiator and corrltk𝜋∗ .oid = false and corrssk𝜋

∗ .ssid
𝜋∗ .pid = false

)
//long-term secret of initiator test session and semi-static key of responder peer are uncorrupted

56 or
(
𝜋∗ .role = responder and corrltk𝜋∗ .pid = false and corrssk𝜋

∗ .ssid
𝜋∗ .oid = false

)
//long-term secret of responder peer and semi-static key of initiator test session are uncorrupted

cleanELT (𝜋∗) :
57 return
58

(
𝜋∗ .role = initiator and 𝜋∗ .revrand = false and corrltk𝜋∗ .pid = false

)
//randomness of initiator test session is unrevealed and long-term secret of responder peer is uncorrupted

59 or
(
𝜋∗ .role = responder and cleanpeerE (𝜋∗) and corrltk𝜋∗ .oid = false

)
//long-term secret of responder test session is uncorrupted and ephemeral contribution of initiator peer is clean

cleanESS (𝜋∗) :
60 return
61

(
𝜋∗ .role = initiator and 𝜋∗ .revrand = false and corrssk𝜋

∗ .ssid
𝜋∗ .pid = false

)
//randomness of initiator test session is unrevealed and semi-static secret of responder peer is uncorrupted

62 or
(
𝜋∗ .role = responder and cleanpeerE (𝜋∗) and corrssk𝜋

∗ .ssid
𝜋∗ .oid = false

)
//semi-static secret of responder test session is uncorrupted and ephemeral contribution of initiator peer is clean

Figure 11: Key indistinguishability game Gke-kindKE (A) for key exchange protocol KE against adversary A; composed of the

main game (top section), oracles (middle section), and clean predicates defining freshness (bottom section). Without loss of

generality, we assume that all queries that the adversary makes to the oracles are well-defined and valid, i.e., of the expected

type and in the appropriate ranges.
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cleanEE: This predicate indicates whether the combination of the

ephemeral contribution of the initiator and the ephemeral pre-

key of the responder is unknown to the adversary.

Again, the predicate cleanpeerE helps to determinewithin cleanEE
whether the randomness of the test session’s (contributive) partners

is unrevealed or uncorrupted, respectively.

7.1.4 Main differences to the model in [22]. Our authenticated
key exchange model closely follows the one used in the original

Signal analysis of Cohn-Gordon et al. [22]. We make the follow-

ing modifications: Since we are only concerned about the initial

key agreement and not the subsequent symmetric and asymmetric

ratcheting stages, we can forgo the notion of multi-stage AKE secu-

rity, where multiple sessions keys are derived in a series of stages.

Lastly, we explicitly take the deniability feature of Signal into ac-

count in a separate notion to avoid establishing a post-quantum

solution that forgoes a key requirement of the specification.

7.2 Deniability

Definition 7.2. An asynchronous DAKE protocol ADAKE is (𝑡, 𝜖,
𝑄𝐶 )-deniable if for any adversary A with running time at most 𝑡

and making at most 𝑄𝐶 many queries to its Chall oracle, we have

that

Advadake-denADAKE (A) =
����Pr [Gadake-denADAKE (A) = 1

]
− 1

2

���� ≤ 𝜖,
where Gadake-denADAKE (A) is defined in Figure 12.

The main difference between the textual description of the denia-

bility game in Section 5.2 and Figure 12 is the use of semi-static keys.

Here, we generate 𝑛ss many semi-static keys per party, all of which

are given to the attacker. When querying the challenge oracle, the

attacker may choose the semi-static key that the responder uses.

The pre-key bundle of the responder may depend on the semi-static

key. The Initiator key agreement and the Fake algorithm also use

the semi-static key as specified by ADAKE.

8 SPQR SECURITY PROOFS

In this section we present the security results for our SPQR protocol

(Figure 10) via theorem statements and detailed proofs of both key-

indistinguishability and deniability in the previously described

security model (Section 7).

Before we start, we translate the informal protocol description of

SPQR given in Figure 10 into the syntax of our model. The resulting

protocol flow is depicted in Figure 13.

8.1 Key Indistinguishability

Theorem 8.1 (Key indistinguishability of SPQR). Let DVS
be a (𝑡, 𝜖DVS, 𝑄𝑆 )–EUF-CMA-secure DVS scheme.

Let KEM1 be a (𝑡, 𝜖KEM1
, 𝑛𝑠 )–IND-CCA-secure KEM, KEM2 be

a (𝑡, 𝜖KEM2
, 𝑛𝑠 )–IND-CCA-secure KEM, KEM3 be a (𝑡, 𝜖KEM3

, 1)–
IND-CCA-secure KEM with randomness space RKEM3

, and 𝛿corr be
the maximal correctness error among KEM1, KEM2, and KEM3.

Let KDF be a (𝑡, 𝜖KDF, 𝑛𝑠 )–PRF-secure key derivation function
when keyed through any key component 𝐾1, 𝐾2, 𝐾3, and tPRF a (𝑡,
𝜖tPRF, 𝑛𝑠 )-secure twisted pseudorandom functionwith label spaceRtPRF.

Gadake-den
ADAKE (A) :

1 L ← ∅ //list of keys for the adversary

2 for𝑈 ∈ [𝑛𝑝 ]
3 (𝑝𝑘𝑈 , 𝑠𝑘𝑈 ) ←$ KGenLT() //long-term key generation

4 L ← L ∪ {(𝑝𝑘𝑈 , 𝑠𝑘𝑈 ) }
5 for ssid ∈ [𝑛ss ]
6 (𝑠𝑠𝑝𝑘ssid

𝑈
, 𝑠𝑠𝑠𝑘ssid

𝑈
) ←$ KGenSS() //semi-static key generation

7 L ← L ∪ {(𝑠𝑠𝑝𝑘ssid
𝑈
, 𝑠𝑠𝑠𝑘ssid

𝑈
) }

8 ®𝑝𝑘 ← {𝑝𝑘𝑈 }𝑈 ∈[𝑛𝑝 ] ; ®𝑠𝑠𝑝𝑘 ← {𝑠𝑠𝑝𝑘ssid
𝑈
}ssid∈[𝑛ss ]
𝑈 ∈[𝑛𝑝 ]

9 𝑏←$ {0, 1}
10 𝑏′←$ AChall (L)
11 return ⟦𝑏′ = 𝑏⟧
Chall(iid, rid, ssid) :

12 if 𝑏 = 0

13 𝜋rid .role← responder; 𝜋rid .stexec ← running //initialize session variables

14 𝜋iid .role← initiator; 𝜋iid .stexec ← running
15 (𝜋rid,𝑚) ←$ Run(𝑠𝑘rid, ®𝑝𝑘, ®𝑠𝑠𝑝𝑘 , 𝜋rid, (create, ssid)) //build pre-key bundle

16 (𝜋iid,𝑚
′) ←$ Run(𝑠𝑘iid, ®𝑝𝑘, ®𝑠𝑠𝑝𝑘 , 𝜋iid,𝑚) //initiator sends message

17 (𝐾, transcript) ← (𝜋iid .𝐾, (𝑚,𝑚
′)) //save session key and transcript

18 else
19 (𝐾, transcript) ←$ Fake(𝑝𝑘iid, 𝑠𝑘rid, ®𝑠𝑠𝑝𝑘 , ssid)
20 return (𝐾, transcript)

Figure 12: Security game for deniability of an asynchronous

DAKE protocol ADAKE against an adversary A.

Then the SPQR protocol with randomness space RKE = {0, 1}𝜆 ×
RtPRF × RKEM3

as shown in Figure 10 and formalized in Figure 13
provides (𝑡 ′, 𝜖 ′, (𝑄𝑆𝑛𝑑 , 𝑄𝐶𝑜𝑟𝑟𝐿𝑇 , 𝑄𝐶𝑜𝑟𝑟𝑆𝑆 , 𝑄𝑅𝑒𝑣𝑅, 𝑄𝑅𝑒𝑣𝑆𝐾 ))–key in-
distinguishability for 𝑡 ≈ 𝑡 ′ and

𝜖 ′ ≤ 𝑛
2

𝑠

2
𝜆
+ 𝑛2𝑠

2
|RtPRF |

+ 𝑛2𝑠

2
|RKEM

3
| + 3𝑛𝑠 · 𝛿corr

+ 𝑛𝑠 · 𝑛2𝑝 ·
(
𝑛ss ·

(
𝜖DVS + 2𝑛𝑠 · (𝜖tPRF + 𝜖KEM2

+ 𝜖KDF)
)

+𝑛𝑠 ·
(
2𝜖tPRF + 𝜖KEM1

+ 𝜖KEM3
+ 2𝜖KDF

) )
,

where 𝑛𝑠 ≤ 𝑄𝑆𝑛𝑑 is the maximum number of sessions (upper bounded
by the number 𝑄𝑆𝑛𝑑 of Send queries), 𝑛𝑝 the number of parties, and
𝑛ss the number of semi-static keys per party.

Proof. We proceed via a sequence of game hops starting from

Gke-kindSPQR (A) (cf. Figure 11), branching off into the cleanness pred-

icates. In the final games, we will have that the adversary A has

probability exactly
1

2
in guessing the test challenge bit 𝑏. Along the

way, we will further establish that the soundness predicate sound
is satisfied.

Game 0. The initial game, Game G0, is the key indistinguishabil-

ity game Gke-kindSPQR (A) for SPQR played by A. By definition,

𝜖 ′ := Advke-kindSPQR (A) = AdvG0SPQR (A) =
����Pr[G0 = 1] − 1

2

���� .
Game 1 (Nonce and randomness collisions). We modify G0
to overwrite the adversary’s output with 0, if any two initiator

sessions hold the same nonce 𝑛 or the same randomness value 𝑟 ,

or if two responder sessions pick the same ephemeral KEM key

pair. As initiator nonces are uniformly random 𝜆-bit strings, the

initiator randomness is a uniformly random element from tPRF’s
label space RtPRF, and the responder randomness is a uniformly

random element from KEM3’s randomness space RKEM3
, we can
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Alice Bob

Run(𝑠𝑘𝐵 , ®𝑝𝑘, ®𝑠𝑠𝑝𝑘 , 𝜋𝐵 , (create, ssid))
𝜋𝐵 .pid← ★

(⊥,⊥, 𝑟 ′) ← 𝜋𝐵 .coins
(𝑒𝑝𝑘

𝐵
, 𝑒𝑠𝑘

𝐵
) ← KGenEP(; 𝑟 ′)

𝜋𝐵 .cid← (𝐵, 𝑝𝑘𝐵 , 𝑠𝑠𝑝𝑘ssid𝐵
, 𝑒𝑝𝑘

𝐵
)

return (𝜋𝐵 ,𝑚 = (𝐵, ssid, 𝑒𝑝𝑘
𝐵
))

𝑚

Run(𝑠𝑘𝐴, ®𝑝𝑘, ®𝑠𝑠𝑝𝑘 , 𝜋𝐴,𝑚)

(𝑠𝑘KEM
𝐴

, 𝑠𝑘DVS
𝐴

, 𝑡𝑘𝐴) ← 𝑠𝑘𝐴

(𝐵, ssid, 𝑒𝑝𝑘
𝐵
) ←𝑚

(𝑝𝑘𝐾𝐸𝑀
𝐵

, 𝑝𝑘𝐷𝑉𝑆
𝐵

) ← 𝑝𝑘𝐵

(𝑠𝑠𝑝𝑘𝐾𝐸𝑀
𝐵

, 𝑠𝑠𝑝𝑘𝐷𝑉𝑆
𝐵

) ← 𝑠𝑠𝑝𝑘ssid
𝐵

(𝑛, 𝑟,⊥) ← 𝜋𝐴 .coins
𝑟1 ∥𝑟2 ∥𝑟3 ∥𝑟4 ← tPRF(𝑡𝑘𝐴, 𝑟 )
(𝐾1, 𝑐1) ← KEM1 .Encaps(𝑝𝑘KEM𝐵

; 𝑟1)
(𝐾2, 𝑐2) ← KEM2 .Encaps(𝑠𝑠𝑝𝑘KEM𝐵

; 𝑟2)
if 𝑒𝑝𝑘

𝐵
≠ ⊥

𝜋𝐴 .type← full
(𝐾3, 𝑐3) ← KEM3 .Encaps(𝑒𝑝𝑘𝐵 ; 𝑟3)

else
𝜋𝐴 .type← reduced
(𝐾3, 𝑐3) ← (𝜀, 𝜀)

ms← 𝐾1 ∥𝐾2 ∥𝐾3
𝑠𝑖𝑑 ← (𝐴, 𝐵, 𝑝𝑘𝐴, 𝑝𝑘𝐵 , 𝑠𝑠𝑝𝑘ssid𝐵

, 𝑒𝑝𝑘
𝐵
, 𝑛, 𝑐1, 𝑐2, 𝑐3)

𝜎 ← DVS.Sign(𝑠𝑘DVS
𝐴

, 𝑠𝑠𝑝𝑘DVS
𝐵

, 𝑠𝑖𝑑 ; 𝑟4)
𝜋𝐴 .pid← 𝐵

𝜋𝐴 .K← KDF(ms, 𝑠𝑖𝑑)
𝜋𝐴 .cid← (𝐵, 𝑝𝑘𝐵 , 𝑠𝑠𝑝𝑘ssid𝐵

, 𝑒𝑝𝑘
𝐵
)

𝜋𝐴 .sid← 𝑠𝑖𝑑

𝜋𝐴 .stexec ← accepted
return (𝜋𝐴,𝑚′ = (𝐴,𝑛, 𝑐1, 𝑐2, 𝑐3, 𝜎))

𝑚′

Run(𝑠𝑘𝐵 , ®𝑝𝑘, ®𝑠𝑠𝑝𝑘 , 𝜋𝐵 ,𝑚′)

(𝑠𝑘KEM
𝐵

, 𝑠𝑘DVS
𝐵

, 𝑡𝑘𝐵 ) ← 𝑠𝑘𝐵

(𝐴,𝑛, 𝑐1, 𝑐2, 𝑐3, 𝜎) ←𝑚′

(𝑝𝑘𝐾𝐸𝑀
𝐴

, 𝑝𝑘𝐷𝑉𝑆
𝐴

) ← 𝑝𝑘𝐴

(𝑠𝑠𝑝𝑘𝐾𝐸𝑀
𝐵

, 𝑠𝑠𝑝𝑘𝐷𝑉𝑆
𝐵

) ← 𝑠𝑠𝑝𝑘ssid
𝐵

𝑠𝑖𝑑 ← (𝐴, 𝐵, 𝑝𝑘𝐴, 𝑝𝑘𝐵 , 𝑠𝑠𝑝𝑘𝑠𝑠𝑖𝑑𝐵
, 𝑒𝑝𝑘

𝐵
, 𝑛, 𝑐1, 𝑐2, 𝑐3)

if DVS.Vrfy(𝑝𝑘DVS
𝐴

, 𝑠𝑠𝑝𝑘DVS
𝐵

, 𝑠𝑖𝑑, 𝜎) = false
𝜋𝐵 .stexec ← rejected
return (𝜋𝐵 , 𝜀)

𝐾1 ← KEM1 .Decaps(𝑠𝑘KEM𝐵
, 𝑐1)

𝐾2 ← KEM2 .Decaps(𝑠𝑠𝑠𝑘KEM𝐵
, 𝑐2)

if 𝑐3 ≠ 𝜀

𝜋𝐵 .type← full
𝐾3 ← KEM3 .Decaps(𝑒𝑠𝑘𝐵 , 𝑐3)

else
𝜋𝐵 .type← reduced
(𝐾3, 𝑐3) ← (𝜀, 𝜀)

ms← 𝐾1 ∥𝐾2 ∥𝐾3
𝜋𝐵 .pid← 𝐴

𝜋𝐵 .K← KDF(ms, 𝑠𝑖𝑑)
𝜋𝐵 .sid← 𝑠𝑖𝑑

𝜋𝐵 .stexec ← accepted
return (𝜋𝐵 , 𝜀)

Figure 13: Formal specification of the Run algorithm of asynchronous DAKE SPQRwrt. the model given in Section 7. Note that

the generation of long-term and semi-static keys during registration happens at the outset of the game Gke-kindKE (A) and the

Signal Server is abstracted away. Thus these elements are not included explicitly in the above description.
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upper-bound the probability of this happening across the at most 𝑛𝑠
sessions by the birthday bound:

AdvG0SPQR (A) ≤
𝑛2𝑠

2
𝜆
+ 𝑛2𝑠

2
|RtPRF |

+ 𝑛2𝑠

2
|RKEM

3
| + Adv

G1
SPQR (A).

Game 2 (KEM correctness). We modify G1 to overwrite the ad-
versary’s output with 0 if for any key pair (𝑝𝑘, 𝑠𝑘) ←$ KGen𝑙 () and
encapsulation (𝑐, 𝐾) ←$ Encaps𝑙 (𝑝𝑘) used in any of the sessions,

where 𝑙 ∈ {1, 2, 3}, we have that 𝐾 ≠ 𝐾 ′ ← Decaps𝑙 (𝑠𝑘, 𝑐). The
probability of this happening for any tuple (𝑝𝑘, 𝑠𝑘, 𝑐) is upper-

bounded by the maximal correctness error 𝛿corr among KEM1,

KEM2, andKEM3. As there are at most three such tuples per session,

we can bound any correctness errors happening by:

AdvG1SPQR (A) ≤ 3𝑛𝑠 · 𝛿corr + AdvG2SPQR (A)

Soundness. At this point, soundness (i.e., sound() = true) holds
unconditionally and this will not change in any of the subsequent

game hops. Consider the three sub-conditions of the sound predi-

cate:

• Shared key, type, contributive identifier (Figure 11, Line 18): Ses-
sion identifiers fix the KEM keys and ciphertexts involved in

key derivation, hence by game G2 KEM correctness implies

agreement on 𝐾1, 𝐾2, and (if type = full) 𝐾3 and thus also

on 𝐾 under deterministic key derivation KDF. Session identi-

fiers have distinct entries depending, and ensuring agreement,

on the session type (𝑒𝑝𝑘
𝐵
= ⊥ if and only if type = reduced).

Since the entries in the contributive identifier are a (proper)

subset of the entries of session identifiers, agreement on session

identifiers also yields agreement on contributive identifiers.

• No initiator session identifiers collide (Figure 11, Line 19): As

of Game G1, each initiator session picks a unique nonce. This

nonce is part of the session identifier and thus ensures unique-

ness of initiator session identifiers.

• No three session identifiers collide in full mode (Figure 11, Line 20):
We ruled out initiator collisions above already. For session

identifiers to collide in two responder sessions in full mode,

the two sessions would need to use the same ephemeral pre-

key (𝑒𝑝𝑘, 𝑒𝑠𝑘 ). Since we ruled out collisions in the randomness

space RKEM3
sampled in responder sessions, the ephemeral

pre-keys derived via KGenEP() are unique.

Game 3 (Guess test session 𝜋∗). Next, we guess the tested ses-

sion 𝜋∗ among the at most 𝑛𝑠 sessions total at the outset of the

game, and “invalidate” the game by overwriting the adversary’s

bit guess with 0 if the adversary calls Test on a different session.

With probability 1/𝑛𝑠 , the guess is correct and this change goes

unnoticed, so

AdvG2SPQR (A) ≤ 𝑛𝑠 · Adv
G3
SPQR (A)

Game 4 (Guess initiator identity 𝑈 ). We first guess the test

session’s own identity if it is an initiator session, or the test session’s

peer identity if it is a responder session. Note that since the test

session has necessarily accepted, the peer in a responder session

is also set to a valid identity in [𝑛𝑝 ], i.e., is not set to ★ anymore.

We denote the guessed initiator identity by 𝑈 and overwrite the

adversary’s bit guess with 0 if this guess was incorrect. This step

loses at most a factor of the number of users 𝑛𝑝 :

AdvG3SPQR (A) ≤ 𝑛𝑝 · Adv
G4
SPQR (A)

Game 5 (Guess responder identity𝑉 ). Next, we guess the iden-

tity of the involved (intended) responder. This is 𝜋∗’s own identity

if it is a responder session, or its intended peer identity if 𝜋∗ is an
initiator session. We denote the guessed responder identity by 𝑉

and again overwrite the adversary’s bit guess with 0 if this guess

was incorrect. This step again loses at most a factor of the number

of users 𝑛𝑝 :

AdvG4SPQR (A) ≤ 𝑛𝑝 · Adv
G5
SPQR (A)

Recall that the adversary’s bit guess at the end of the game is

considered only if fresh(𝜋∗) holds for the tested session 𝜋∗. Fresh-
ness requires that the session key in neither 𝜋∗ nor in a partnered

session was revealed and that one of these four cleanness condi-

tions is satisfied: cleanLTSS (𝜋∗) or cleanELT (𝜋∗) or cleanESS (𝜋∗)
or

(
𝜋∗ .type = full and cleanEE (𝜋∗)

)
.

We will now branch out into four sub-cases following the struc-

ture of the cleanness predicates, bounding the adversary’s winning

advantage AdvG5SPQR (A) by the sum of its advantages when con-

ditioning the adversary on each of the cleanness sub-conditions

being satisfied (which we write as G5 [𝑐] for predicate 𝑐). Via the
union bound:

AdvG5SPQR (A) ≤
∑︁

c ∈{cleanLTSS (𝜋∗), cleanELT (𝜋∗),
cleanESS (𝜋∗), 𝜋∗ .type=full∧ cleanEE (𝜋∗) }

AdvG5 [c]SPQR (A) .

Case A (cleanLTSS (𝜋∗)). In this proof case, we are guaranteed

that either

(1) 𝜋∗ is an initiator session owned by 𝑈 for which both its own

long-term key and its intended peer 𝑉 ’s semi-static key are

uncorrupted or

(2) 𝜋∗ is a responder session owned by 𝑉 whose own semi-static

and intended peer𝑈 ’s long-term keys are both uncorrupted.

We will leverage this to show that the KEM ciphertext 𝑐2 exchanged

with the test session 𝜋∗ was generated for an uncorrupted KEM

key with good randomness, bootstrapping key indistinguishability

from the corresponding encapsulated key 𝐾2.

Game A.0. This is the game conditioned on cleanLTSS (𝜋∗) being
satisfied.

AdvG𝐴.0SPQR (A) = AdvG5 [cleanLTSS (𝜋
∗) ]

SPQR (A).

Game A.1 (Guess semi-static key of 𝑉 ). We now guess the

identifier ssid of the responder 𝑉 ’s (uncorrupted) semi-static key

𝑠𝑠𝑝𝑘ssid
𝑉

. Note that depending on the role of 𝜋∗ this is either the test
session’s own key (if 𝜋∗ .role = responder), or of the intended peer

(if 𝜋∗ .role = initiator). We denote the guessed identifier by ssid∗,
and abort, setting the adversary’s output bit to 0, if this guess is

20



Post-quantum asynchronous deniable key exchange and the Signal handshake

incorrect, losing at most a factor 𝑛ss of the number of semi-static

keys per user:

AdvG𝐴.0SPQR (A) ≤ 𝑛ss · Adv
G𝐴.1
SPQR (A).

GameA.2 (Signature unforgeability). We now abort the game

(again, returning 0 as the adversary’s bit guess) in the event that the

test session 𝜋∗ is a responder session and accepts having received

a DVS signature 𝜎 that no session of𝑈 has issued. The probability

of such an abort can be bounded by the advantage of the following

reduction B1 against the (𝑡, 𝜖DVS, 𝑄𝑆 )-existential unforgeability
of DVS.

Reduction B1 samples all key components itself except for the

long-term DVS key (𝑝𝑘DVS
𝑈

, 𝑠𝑘DVS
𝑈
) of 𝑈 and the semi-static DVS

key (𝑠𝑠𝑝𝑘DVS
𝑉

, 𝑠𝑠𝑠𝑘DVS
𝑉
) of 𝑉 , for which instead it uses the public

keys 𝑝𝑘𝑆 and 𝑝𝑘𝐷 , respectively, obtained in its EUF-CMA game.

In its simulation of Game G𝐴.2, B1 uses its signing oracle to com-

pute signatures under 𝑠𝑘DVS
𝑈

(and for any peer semi-static public

key 𝑠𝑠𝑝𝑘 ). Since cleanLTSS (𝜋∗) = true, B1 never has to answer a

CorruptLTKey(𝑈 ) or a CorruptSSKey(𝑉 , ssid) query. Hence B1
can provide a perfect simulation of G𝐴.2, and if 𝜋∗ as a responder
receives a signature 𝜎 on a session-identifier message 𝑠𝑖𝑑 that no

session of 𝑈 has issued, B1 can output this as its forgery and wins.

Thus,

AdvG𝐴.1SPQR (A) ≤ 𝜖DVS + Adv
G𝐴.2
SPQR (A) .

GameA.3 (Guess partnered initiator session). ByGameG𝐴.2,
we are now ensured that a responder test session does not accept un-

less an honest session 𝜋∗p has sent the ciphertext 𝑐2 that 𝜋
∗
received,

as 𝑐2 is signed under 𝜎 . We now guess this initiator session 𝜋∗p (if

𝜋∗ is a responder), aborting and setting A’s output to 0, if the test

session is a responder and the guess was incorrect. This reduces

the adversary’s advantage by a factor of at most the number of

sessions 𝑛𝑠 :

AdvG𝐴.2SPQR (A) ≤ 𝑛𝑠 · Adv
G𝐴.3
SPQR (A) .

Game A.4 (Twisted PRF randomness). Next, we replace all

tPRF evaluations involving𝑈 ’s long-term secret 𝑡𝑘𝑈 by the evalua-

tion of a randomly chosen function. This, in particular, replaces the

value 𝑟2 in 𝜋
∗
(if 𝜋∗ is an initiator) or in 𝜋∗p (if 𝜋∗ is a responder)

with an independent random value 𝑟2 (recall that the randomness

value 𝑟 is unique per session as of Game G1).
We bound the advantage difference introduced by this step based

on the (𝑡, 𝜖tPRF, 𝑛𝑠 )-twisted pseudorandomness of tPRF via the fol-

lowing reduction B2. The reduction B2 receives a sequence of 𝑛𝑠
tuples (𝑥𝑖 , 𝑦𝑖 ) (and a tuple (𝐾 ′, 𝑧) but this is not relevant for our
purposes here), which is either ((𝑥1, tPRF(𝐾, 𝑥1)), . . . , (𝑥𝑞, tPRF(𝐾,
𝑥𝑞))) or ((𝑥1, 𝑔(𝑥1)), . . . , (𝑥𝑞, 𝑔(𝑥𝑞))) for random values 𝐾, 𝑥1, . . . ,

𝑥𝑞 and a randomly chosen function 𝑔.

During the reduction, instead of sampling the tPRF key 𝑡𝑘𝑈
itself, B2 will simply use 𝑦𝑖 as the expanded randomness in the 𝑖-th

initiator session of 𝑈 (there are at most 𝑛𝑠 such sessions), setting

𝑟1∥𝑟2∥𝑟3∥𝑟4 ← 𝑦𝑖 . (B2 simulates the rest of the game as usual, in

particular generating the tPRF keys for all other users itself.) As

its bit guess, B2 outputs 1 if A wins the game and 0 otherwise.

Depending on which sequence B2 is given, it either simulates G𝐴.3
or G𝐴.4, thus

AdvG𝐴.3SPQR (A) ≤ 𝜖tPRF + Adv
G𝐴.4
SPQR (A).

Game A.5 (Semi-static KEM). In the following, let

(𝑐2, 𝐾2) ←$ KEM2 .Encaps(𝑠𝑠𝑝𝑘ssid
∗

𝑉 ; 𝑟2)

be the encapsulation computed in the initiator session between 𝜋∗

and 𝜋∗p under the semi-static key identified by ssid∗ of 𝑉 . Recall
that by the previous game, 𝑟2 is an independent random value,

unknown to the adversary. This allows us to now replace the key

𝐾2 encapsulated in 𝑐2 with a randomly sampled key 𝐾2 in 𝜋
∗
and

its partnered session(s), if existent. Furthermore, we replace 𝐾2

with 𝐾2 in any session of 𝑉 using ssid∗ that has received the same

encapsulating ciphertext 𝑐2.
6

We can now bound A’s difference in advantage by the advan-

tage of a reduction B3 in winning the (𝑡, 𝜖KEM2
, 𝑛𝑠 )-IND-CCA secu-

rity game for KEM2. The reduction B3 obtains the IND-CCA chal-

lenge (𝑝𝑘, 𝑐∗, 𝐾∗
𝑏
) and simulates the game for A as follows: It sam-

ples the test bit 𝑏test itself and generates all long-term, semi-static,

and ephemeral pre-keys itself, except for the key pair (𝑠𝑠𝑝𝑘ssid∗
𝑉

,

𝑠𝑠𝑠𝑘ssid
∗

𝑉
) of the previously guessed responder identity 𝑉 and iden-

tifier ssid∗. The reduction embeds its received challenge public

key 𝑝𝑘 by setting 𝑠𝑠𝑝𝑘ssid
∗

𝑉
= 𝑝𝑘 . As predicate cleanLTSS holds, A

never asks the query CorruptSSKey(𝑉 , ssid∗) and the reduction

thus never needs to output the secret key 𝑠𝑘 corresponding to 𝑝𝑘 .

Whenever a decapsulation of some ciphertext 𝑐 ≠ 𝑐∗ using 𝑠𝑘
is necessary to faithfully simulate the game for A, B3 simply for-

wards this ciphertext to its decapsulation oracle Decaps (making at

most 𝑛𝑠 queries as claimed). In both 𝜋∗ and its partnered session(s)

𝜋∗p (if existent), B3 embeds 𝐾∗
𝑏
wherever 𝐾2 would be used and 𝑐∗

wherever 𝑐2 would be used. The same replacement is employed in

responder sessions of party𝑉 that receive 𝑐2 as an encapsulation un-

der 𝑠𝑠𝑝𝑘ssid
∗

𝑉
= 𝑝𝑘 . When A stop with output 𝑏 ′, the reduction B3

returns ⟦𝑏test = 𝑏 ′⟧.
Observe that B3 perfectly simulates G𝐴.4 if 𝑏 = 0 in GindccaKEM2

(B3)
and G𝐴.5 otherwise. Hence, any difference in A’s advantage in

the two games is bounded by the distinguishing advantage of B3
against the IND-CCA security of KEM2:

AdvG𝐴.4SPQR (A) ≤ 𝜖KEM2
+ AdvG𝐴.5SPQR (A).

Game A.6 (Session key KDF). Lastly, we replace the output of

the session key derivation 𝐾 ← KDF(𝐾1∥𝐾2∥𝐾3, 𝑠𝑖𝑑) in the test

session and its partnered session(s), as well as in any other session

using 𝐾2, by the output of a random function; in particular replac-

ing 𝐾 with a uniformly random key 𝐾 . We show that any adversary

that can efficiently distinguish Game G𝐴.6 from Game G𝐴.5 can

be turned into an efficient adversary B4 against the (𝑡, 𝜖KDF, 𝑛𝑠 )-
pseudorandomness of the key derivation function KDF, treated as

6
Note that we know the involved initiator session of𝑈 (it is either the test session

𝜋∗ itself or its partnered session 𝜋∗p ) and the identity𝑉 of the owner of the involved

semi-static key pair with id ssid∗ . This allows us to precompute 𝑐2 at the outset of the

game and thus easily identify responder sessions that receive 𝑐2 .
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a PRF keyed through the second key component 𝐾2 and taking

(𝐾1, 𝐾3, 𝑠𝑖𝑑) as label.
The reduction B4 generates all key pairs itself and initializes A

as usual. In particular, B4 samples the test bit 𝑏test itself and can

answer all CorruptSSKey, CorruptLTKey queries truthfully. Sim-

ilarly, the reduction B4 can execute all Send queries. Furthermore,

B4 can reveal the randomness and the session keys of sessions, with

the exception of session keys in the test session and its partnered

session(s) (which is unproblematic since these queries would trigger

an immediate loss for the adversary when checking fresh(𝜋∗)).
In any session using 𝐾2 as of Game G𝐴.5, and in particular

in the test session 𝜋∗ and its partner(s), B4 queries (𝐾1, 𝐾3, 𝑠𝑖𝑑)
to its PRFChallenge oracle to compute the session key, where

𝑠𝑖𝑑 = (𝑈 ,𝑉 , 𝑝𝑘𝑈 , 𝑝𝑘𝑉 , 𝑠𝑠𝑝𝑘𝑉 , 𝑒𝑝𝑘𝑉 , 𝑛, 𝑐1, 𝑐2, 𝑐3); this amount to at

most 𝑛𝑠 oracle queries, as claimed. The returned values are either

KDF(𝐾1∥𝐾2∥𝐾3, 𝑠𝑖𝑑) for a uniformly random key 𝐾2 if 𝑏 = 0, or

the outputs of a uniformly random function 𝑔 if 𝑏 = 1. When A
terminates with output 𝑏 ′, B4 returns ⟦𝑏test = 𝑏 ′⟧.

Note that B4 perfectly simulates G𝐴.5 if 𝑏 = 0 and G𝐴.6 if 𝑏 = 1.

Hence, if A can distinguish the two games, the reduction can win

the PRF security game against KDF with the same advantage and

we have

AdvG𝐴.5SPQR (A) ≤ 𝜖KDF + Adv
G𝐴.6
SPQR (A) .

Finalize. To conclude this proof case, observe that in Game G𝐴.6
the challenge 𝐾test for 𝜋

∗
is now a uniformly random key, indepen-

dent of𝑏test. Furthermore,A cannot reveal𝐾test via aRevealSessKey

query on 𝜋∗ or any partnered session who might hold the same

key. Thus, A cannot gain any information about the test bit 𝑏test
and can do no better than to guess:

AdvG𝐴.6SPQR (A) ≤ 0.

Case B (cleanELT (𝜋∗)). In this proof case, we are guaranteed that
either

(1) 𝜋∗ is an initiator session owned by 𝑈 whose randomness is

unrevealed and whose intended peer 𝑉 ’s long-term key is un-

corrupted or

(2) 𝜋∗ is a responder session owned by𝑉 and (via cleanpeerE) there
exists a unique partnered initiator session 𝜋∗p whose random-

ness is unrevealed and which is unique (via sound). We further

know that 𝜋∗p is owned by𝑈 , as the matching session identifiers

include the initiator identity guessed in Game G4.

Game B.0. We now condition on cleanELT (𝜋∗):

AdvG𝐵.0SPQR (A) = AdvG5 [cleanELT (𝜋
∗) ]

SPQR (A)

Game B.1 (Guess unique partnered initiator session). As

mentioned above, if the test session 𝜋∗ is a responder session, by
cleanpeerE there exists an initiator partner session 𝜋∗p to 𝜋∗ which
furthermore is unique by sound. We now guess this partnered ini-

tiator session 𝜋∗p owned by party𝑈 ; if 𝜋∗ is an initiator session we

simply ignore the guess. The game is changed to overwrite A’s

output to 0 if the test session is a responder and the guess was

incorrect. This reduces the adversary’s advantage by a factor of at

most the number of sessions 𝑛𝑠 :

AdvG𝐵.0SPQR (A) ≤ 𝑛𝑠 · Adv
G𝐵.1
SPQR (A) .

Game B.2 (Twisted PRF randomness). Next, we replace the

tPRF evaluation of the initiator session 𝜋 owned by𝑈 by the eval-

uation of a randomly chosen function (here 𝜋 = 𝜋∗, if 𝜋∗ .role =

initiator, and 𝜋 = 𝜋∗p , if 𝜋
∗ .role = responder). In particular, we re-

place the value 𝑟1 in 𝜋 with an independent random value 𝑟1 (recall

the randomness value 𝑟 is unique per session as of Game G1).
We bound the advantage difference introduced by this step by

the (𝑡, 𝜖tPRF, 0)–twisted pseudorandomness of tPRF via the follow-

ing reduction B5. The reduction receives (𝐾 ′, 𝑧) which is either

(𝐾 ′, tPRF(𝐾 ′, 𝑥)) if 𝑏 = 0, or (𝐾 ′, 𝑔′(𝐾 ′)) if 𝑏 = 1, where 𝐾 ′, 𝑥 are

random values and 𝑔′ is a random function.

The reduction B5 then generates all keys and parameters for the

key exchange games itself, but sets 𝑡𝑘𝑈 ← 𝐾 ′. It uses 𝑡𝑘𝑈 in all

sessions of𝑈 except for 𝜋 , where instead of evaluating tPRF(𝑡𝑘𝑈 , 𝑟 ),
B5 sets 𝑟1∥𝑟2∥𝑟3∥𝑟4 ← 𝑧. Upon a potential CorruptLTKey(𝑈 )
query, B5 can hand out 𝑡𝑘𝑈 as part of 𝑈 ’s secret key (note that 𝑟

remains hidden as RevealRandom(𝜋) is never called). As its bit
guess,B5 outputs 1 ifA wins the game and 0 otherwise. Depending

on which sequence B5 is given, it either simulates G𝐵.1 or G𝐵.2,
and thus:

AdvG𝐵.1SPQR (A) ≤ 𝜖tPRF · Adv
G𝐵.2
SPQR (A).

Game B.3 (Long-term KEM). In the following, let

(𝑐1, 𝐾1) ←$ KEM1 .Encaps(𝑝𝑘KEM𝑉 ; 𝑟1)
be the encapsulation computed at session 𝜋 , where again 𝜋 = 𝜋∗, if
𝜋∗ .role = initiator, and 𝜋 = 𝜋∗p , if 𝜋

∗ .role = responder. Recall that
by the previous game, 𝑟1 is an independent random value, unknown

to the adversary. In Game G𝐵.3, we now replace the encapsulated

key 𝐾1 with a randomly sampled key 𝐾1 in the test session 𝜋∗ and
its partnered session(s), if existent. Furthermore, in any responder

session of 𝑉 that receives the same encapsulating ciphertext 𝑐1,

we replace 𝐾1 with 𝐾1, too. Observe that, knowing the involved

initiator session 𝜋 aswell as the long-term key identity𝑉 in advance,

we can precompute 𝑐1 at the outset of the game and then simply

check when 𝑐1 is received by responder sessions owned by 𝑉 .

We bound the difference inA’s advantage by the advantage of a

reduction B6 against the (𝑡, 𝜖KEM1
, 𝑛𝑠 )-IND-CCA security of KEM1

as follows. B6 obtains a challenge (𝑝𝑘, 𝑐∗, 𝐾∗𝑏 ) and simulates the

game for A as follows: It samples the test bit 𝑏test itself and gen-

erates all key pairs to initialize A itself, except for the long-term

KEM public key of 𝑉 , for which it only sets 𝑝𝑘KEM
𝑉

= 𝑝𝑘 .

Note that cleanELT ensures thatA never callsCorruptLTKey(𝑉 ),
so B6 never has to output 𝑠𝑘KEM

𝑉
. Whenever B6 would have to

use 𝑠𝑘KEM
𝑉

to decapsulate some ciphertext 𝑐 ≠ 𝑐∗ in some respon-

der session of𝑉 , it does so via its Decaps oracle (quering the oracle

at most 𝑛𝑠 times as claimed). In the test session 𝜋∗ and its potential
initiator partner 𝜋∗p , B6 embeds 𝐾∗

𝑏
in the place of 𝐾1 and 𝑐

∗
in the

place of 𝑐1. Also, in responder sessions of𝑉 receiving 𝑐1 (recall, B6
knows 𝑐1 from the start of the game), B6 uses 𝐾∗𝑏 in the place of 𝐾1

and 𝑐∗ in the place of 𝑐1. WhenA stops and outputs its bit guess 𝑏 ′,
B6 returns ⟦𝑏test = 𝑏 ′⟧.
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The simulationB6 provides forA perfectly represents GameG𝐵.2
if 𝑏 = 0 in the IND-CCA game for KEM1, and Game G𝐵.3 otherwise.
Any difference in A’s advantage between the two games hence

translates into a distinguishing advantage of B6 in the IND-CCA
game against KEM1:

AdvG𝐵.2SPQR (A) ≤ 𝜖KEM1
+ AdvG𝐵.3SPQR (A).

Game B.4 (Session key KDF). As the final step in this proof

case, we replace in Game G𝐵.4 the session key derived in the test

and partnered session as 𝐾 ← KDF(𝐾1∥𝐾2∥𝐾3, 𝑠𝑖𝑑), as well as in
any other session using 𝐾1, by the output of a random function; in

particular replacing 𝐾 with a randomly sampled key 𝐾 . As in the

previous case in GameG𝐴.6 we can bound the advantage introduced
by this change by the advantage of an adversary B7 against the
(𝑡, 𝜖KDF, 𝑛𝑠 )–pseudorandomness property of KDF, treated as a PRF

keyed through the first key component 𝐾1 and taking (𝐾2, 𝐾3, 𝑠𝑖𝑑)
as label:

AdvG𝐵.3SPQR (A) ≤ 𝜖KDF + Adv
G𝐵.4
SPQR (A) .

Finalize. To conclude the proof, we observe that in Game G𝐵.4,
the challenge session key is uniformly random independent of 𝑏test
and cannot be revealed byA, henceA cannot do better than guess-

ing:

AdvG𝐵.4SPQR (A) ≤ 0.

Case C (cleanESS (𝜋∗)). In this proof case, we are guaranteed that
either

(1) 𝜋∗ is an initiator session owned by𝑈 whose session randomness

is unrevealed and whose intended peer 𝑉 ’s semi-static key in

question is uncorrupted or

(2) 𝜋∗ is a responder session owned by𝑉 whose semi-static key in

question is uncorrupted and (via cleanpeerE and sound) there
exists a unique partnered session 𝜋∗p owned by 𝑈 whose ran-

domness is unrevealed .

Similarly to the cases before, we leverage this to show that the

KEM ciphertext 𝑐2 associated with the test session 𝜋
∗
was generated

using an uncorrupted KEM key with good randomness, yielding

key secrecy for the corresponding encapsulated key 𝐾2.

Game C.0. We now condition on cleanESS (𝜋∗):

AdvG𝐶.0SPQR (A) = AdvG5 [cleanESS (𝜋
∗) ]

SPQR (A)

Game C.1 (Guess unique partnered initiator session). We

guess the unique existing partner session 𝜋∗p of 𝜋
∗
, if the test session

is a responder session; if 𝜋∗ is an initiator session, we simply ignore

the guess. As before we setA’s output to 0 if the guess was incorrect.

We thus reduce the adversary’s advantage by a factor of at most

the number of sessions 𝑛𝑠 :

AdvG𝐶.0SPQR (A) ≤ 𝑛𝑠 · Adv
G𝐶.1
SPQR (A) .

Game C.2 (Guess semi-static key of 𝑉 ). Next, we guess the

identifier ssid of the (uncorrupted) semi-static key 𝑠𝑠𝑝𝑘ssid
𝑉

of party𝑉 ,

which, depending on the role of 𝜋∗, is either the test session’s

own key (if 𝜋∗ .role = responder) or that of its intended peer (if

𝜋∗ .role = initiator). As before, we denote the guessed identifier by

ssid∗, and abort with 0 if this guess is incorrect, losing at most a

factor of the number of semi-static keys per user 𝑛ss :

AdvG𝐶.1SPQR (A) ≤ 𝑛ss · Adv
G𝐶.2
SPQR (A)

Game C.3 (Twisted PRF randomness). Next, we replace the

tPRF evaluation of the initiator session 𝜋 owned by𝑈 by the eval-

uation of a randomly chosen function (here 𝜋 = 𝜋∗, if 𝜋∗ .role =

initiator, and 𝜋 = 𝜋∗p , if 𝜋
∗ .role = responder).

In particular, we replace the value 𝑟2 in 𝜋 with an independent

random value 𝑟2 (recall the randomness value 𝑟 is unique per session

as of Game G1). This change thus assures that the randomness

involved in the ensuing encapsulation under the semi-static public

key of 𝑉 is unknown to the adversary.

We bound the advantage difference induced by this step by the

twisted (𝑡, 𝜖tPRF, 0)-twisted pseudorandomness of tPRF via the fol-

lowing reduction B8. The reduction receives (𝐾 ′, 𝑧) which is either

(𝐾 ′, tPRF(𝐾 ′, 𝑥)) if 𝑏 = 0, or (𝐾 ′, 𝑔′(𝐾 ′)) if 𝑏 = 1, where 𝐾 ′, 𝑥 are

random values and 𝑔′ is a random function.

The reduction B8 then generates all keys and parameters for

the key exchange games itself, in particular it sets 𝑡𝑘𝑈 ← 𝐾 ′.
Instead of evaluating tPRF(𝑡𝑘𝑈 , 𝑟 ) for (𝑛, 𝑟 ) ← 𝜋.coins, B8 sets

𝑟1∥𝑟2∥𝑟3∥𝑟4 ← 𝑧. Upon a potential CorruptLTKey(𝑈 ) query, B8
can hand out 𝑡𝑘𝑈 as part of𝑈 ’s secret key (while 𝑟 remains hidden

as RevealRandom(𝜋) is never called). As its bit guess,B8 outputs 1
ifA wins the game and 0 otherwise. Depending on which sequence

B8 is given, it either simulates G𝐶.2 or G𝐶.3, and thus:

AdvG𝐶.2SPQR (A) ≤ 𝜖tPRF + Adv
G𝐶.3
SPQR (A).

Game C.4 (Semi-static KEM). In the following, let

(𝑐2, 𝐾2) ←$ KEM2 .Encaps(𝑠𝑠𝑝𝑘ssid
∗

𝑉 ; 𝑟2)

be the encapsulation computed at session 𝜋 , where 𝜋 = 𝜋∗, if
𝜋∗ .role = initiator, and 𝜋 = 𝜋∗p , if 𝜋

∗ .role = responder.
We can now replace the key 𝐾2 encapsulated in 𝑐2 under the

semi-static key of 𝑉 with identifier ssid∗ with a randomly sampled

key 𝐾2 in 𝜋
∗
and its partnered session(s), if existent. Furthermore,

we replace 𝐾2 with 𝐾2 in any session of 𝑉 that has received the

same encapsulating ciphertext 𝑐2.

As in previous cases, we can bound A’s difference in advantage

that was introduced by this change by the advantage of a reduction

B9 in winning the (𝑡, 𝜖KEM2
, 𝑛𝑠 )-IND-CCA security game forKEM2,

where the reduction B9 obtains its IND-CCA challenge (𝑝𝑘, 𝑐∗, 𝐾∗
𝑏
)

and simulates the gameA by generating all parameters of the game

itself, except for embedding its received challenge public key 𝑝𝑘

by setting 𝑠𝑠𝑝𝑘ssid
∗

𝑈
= 𝑝𝑘 . The predicate cleanESS holds, thus we

know that A never asks a CorruptSSKey(𝑉 , ssid∗) query and the

reduction need never output the secret key 𝑠𝑘 corresponding to 𝑝𝑘 .

Whenever a decapsulation of some ciphertext 𝑐 ≠ 𝑐∗ using 𝑠𝑘 is

necessary to faithfully simulate the game forA,B9 simply forwards

this ciphertext to its decapsulation oracle Decaps (querying its

oracle at most 𝑛𝑠 times as claimed). In both 𝜋∗ and its partnered

session(s) 𝜋∗p (if existent), B9 embeds 𝐾∗
𝑏
wherever 𝐾2 would be

used and 𝑐∗, wherever 𝑐2 would be used. The same replacement

is employed in any responder sessions of party 𝑉 that receive 𝑐2.
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At some point, A will stop with output 𝑏 ′, and the reduction B9
returns 0 if 𝑏 ′ = 𝑏test and 1 otherwise.

Observe that B9 perfectly simulates G𝐶.3 if 𝑏 = 0 in GindccaKEM2

(B9)
and G𝐶.4 otherwise. Hence, any difference in A’s advantage in

the two games is bounded by the distinguishing advantage of B9
against the IND-CCA security of KEM2:

AdvG𝐶.3SPQR (A) ≤ 𝜖KEM2
+ AdvG𝐶.4SPQR (A).

Game C.5 (Session key KDF). As the final step in this proof

case, we replace in Game G𝐶.5 the session key derived in the test

and partnered session as 𝐾 ← KDF(𝐾1∥𝐾2∥𝐾3, 𝑠𝑖𝑑) by a randomly

sampled key 𝐾 . As in the previous cases we can bound the advan-

tage introduced by this change by the advantage of an adversary

B10 against (𝑡, 𝜖KDF, 𝑛𝑠 )-PRFSEC property of KDF, this time keyed

via 𝐾2:

AdvG𝐶.4SPQR (A) ≤ 𝜖KDF + Adv
G𝐶.5
SPQR (A) .

Finalize. To conclude the proof, we observe that the adversary

expects the challenge 𝐾test to be the output of the key derivation

function KDF applied to the master secret𝑚𝑠 and session identifier

𝑠𝑖𝑑 if 𝑏test = 0 or a uniformly random string if 𝑏test = 1. In all of

the above cases, this distinction cannot be made by A anymore as

both keys are now uniformly random. Thus, A cannot gain any

information about the test bit 𝑏test and can do no better than to

guess, causing us to arrive at the final bound

AdvG𝐶.5SPQR (A) ≤ 0.

Case D (𝜋∗ .type = full and cleanEE (𝜋∗)). In this proof case, we

are guaranteed

(1) 𝜋∗ is an initiator session owned by𝑈 whose session randomness

is unrevealed and that has received an ephemeral pre-key that

was generated using unrevealed randomness in a session of

intended partner 𝑉 , or

(2) 𝜋∗ is a responder session owned by 𝑉 whose ephemeral pre-

key generation was executed with unrevealed randomness and

there exists a partnered initiator session 𝜋∗p owned by𝑈 whose

session randomness is unrevealed.

Similarly to the cases before, we leverage this to show that the

KEM ciphertext 𝑐3 associated with the test session 𝜋
∗
was generated

using an uncorrupted KEM key with good randomness, yielding

key indistinguishability for the corresponding encapsulated key 𝐾3.

Game D.0. We now condition on the test session running in full

mode and cleanEE (𝜋∗) being satisfied:

AdvG𝐷.0SPQR (A) = AdvG5 [𝜋
∗ .type=full∧ cleanEE (𝜋∗) ]

SPQR (A)

GameD.1 (Guess unique (contributive) partner session). We

first guess the unique existing (contributive) partner session 𝜋∗p
of 𝜋∗: If 𝜋∗ is a responder session, 𝜋∗p is its sid-partner, if 𝜋∗ is an
initiator session, 𝜋∗p is its contributively partnered session via cid.
(Recall that this unique contributive partner exists since we ruled

out collisions in the ephemeral pre-keys, and 𝜋∗ .type = full, so 𝜋∗

received such ephemeral pre-key contained in its contributive iden-

tifier.) The game sets A’s output bit to 0 if the guess was incorrect.

We thus reduce the adversary’s advantage by a factor of at most

the number of sessions 𝑛𝑠 :

AdvG𝐷.0SPQR (A) ≤ 𝑛𝑠 · Adv
G𝐷.1
SPQR (A) .

Game D.2 (Twisted PRF randomness). Next, we replace the

tPRF evaluation of the initiator session 𝜋 owned by𝑈 by the eval-

uation of a randomly chosen function (here 𝜋 = 𝜋∗, if 𝜋∗ .role =

initiator, and 𝜋 = 𝜋∗p , if 𝜋
∗ .role = responder).

In particular, we replace the value 𝑟3 in 𝜋 with an independent

random value 𝑟3 (recall the randomness value 𝑟 is unique per session

as of Game G1). This change thus assures that the randomness

involved in the ensuing encapsulation under the ephemeral pre-key

of 𝑉 is unknown to the adversary.

As in previous cases, we bound the advantage difference induced

by this step by the (𝑡, 𝜖tPRF, 0)-twisted pseudorandomness of tPRF
via a reduction B11. The reduction receives (𝐾 ′, 𝑧) which is either

(𝐾 ′, tPRF(𝐾 ′, 𝑥)) if 𝑏 = 0, or (𝐾 ′, 𝑔′(𝐾 ′)) if 𝑏 = 1, where 𝐾 ′, 𝑥 are

random values and 𝑔′ is a random function.

Instead of evaluating tPRF(𝑡𝑘𝑈 , 𝑟 ) for (𝑛, 𝑟 ) ← 𝜋.coins, B11
sets 𝑟1∥𝑟2∥𝑟3∥𝑟4 ← 𝑧; as in prior cases, B11 can still answer a

potential CorruptLTKey(𝑈 ) query, but 𝑟 remains hidden since

RevealRandom(𝜋) is never called. As its bit guess, B11 outputs 1
ifA wins the game and 0 otherwise. Depending on which sequence

B11 is given, it either simulates G𝐷.1 or G𝐷.2, and thus:

AdvG𝐷.1SPQR (A) ≤ 𝜖tPRF + Adv
G𝐷.2
SPQR (A).

Game D.3 (Ephemeral pre-key KEM). In the following, let

(𝑐3, 𝐾3) ←$ KEM3 .Encaps(𝑒𝑝𝑘𝑉 ; 𝑟3)

be the encapsulation computed at session 𝜋 , where 𝜋 = 𝜋∗, if
𝜋∗ .role = initiator, and 𝜋 = 𝜋∗p , if 𝜋

∗ .role = responder.
We can now replace the key 𝐾3 encapsulated in 𝑐3 under the

ephemeral pre-key of 𝑉 with a randomly sampled key 𝐾3 in 𝜋
∗
and

its partnered session(s), if existent. Furthermore, we replace𝐾3 with

𝐾3 in any session of 𝑉 that has received the same encapsulating

ciphertext 𝑐3.

Similar to previous cases, we can bound A’s difference in ad-

vantage that was introduced by this change by the advantage of a

reduction B12 in winning the (𝑡, 𝜖KEM3
, 1)-IND-CCA security game

for KEM3, which embeds the received challenge (𝑝𝑘, 𝑐∗, 𝐾∗
𝑏
) by set-

ting 𝑒𝑝𝑘
𝑉
= 𝑝𝑘 , 𝑐3 = 𝑐

∗
, and 𝐾3 = 𝐾

∗
𝑏
. The predicate cleanEE holds,

thuswe know thatA never asks aRevealRandom(�̃�) query, where
�̃� = 𝜋∗ if the 𝜋∗ is the responder, and �̃� = 𝜋∗p , if 𝜋

∗
is the initiator;

hence B12 need never output the secret key 𝑠𝑘 corresponding to 𝑝𝑘 .

If session �̃� receives a different ciphertext than 𝑐3, B12 uses (once)
its Decaps oracle to obtain the resulting key. At some point,A will

stop with output 𝑏 ′, and the reduction B12 returns 0 if 𝑏 ′ = 𝑏test
and 1 otherwise.

Observe thatB12 perfectly simulatesG𝐷.2 if𝑏 = 0 inGindccaKEM3

(B12)
and G𝐷.3 otherwise. Hence, any difference inA’s advantage in the

two games is bounded by the distinguishing advantage of B12
against the IND-CCA security of KEM3:

AdvG𝐷.2SPQR (A) ≤ 𝜖KEM3
+ AdvG𝐷.3SPQR (A).
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Game D.4 (Session key KDF). As the final step in this proof

case, we replace in Game G𝐷.4 the session key derived in the test

and partnered session as 𝐾 ← KDF(𝐾1∥𝐾2∥𝐾3, 𝑠𝑖𝑑) by a randomly

sampled key𝐾 . As in the previous caseswe can bound the advantage

introduced by this change by the advantage of an adversary B13
against (𝑡, 𝜖KDF, 2)-PRFSEC property of KDF (note that here, 𝐾 is

used at most in two sessions, 𝜋∗ and 𝜋∗p):

AdvG𝐷.3SPQR (A) ≤ 𝜖KDF + Adv
G𝐷.4
SPQR (A) .

Finalize. To conclude the proof, we observe that the adversary

expects the challenge 𝐾test to be the output of the key derivation

function KDF applied to the master secret𝑚𝑠 and session identifier

𝑠𝑖𝑑 if 𝑏test = 0 or a uniformly random string if 𝑏test = 1. In all of

the above cases, this distinction cannot be made by A anymore as

both keys are now uniformly random. Thus, A cannot gain any

information about the test bit 𝑏test and can do no better than to

guess, causing us to arrive at the final bound

AdvG𝐷.4SPQR (A) ≤ 0. □

8.2 Proof of Deniability

Theorem 8.2 (Deniability of SPQR). IfDVS is a (𝑡, 𝜖srchid, 𝑄𝐶 )-
source hiding designated verifier signature, then the SPQR protocol
as shown in Figure 10 is (𝑡 ′, 𝜖 ′, 𝑄 ′

𝐶
)-deniable, where 𝑡 ′ ≈ 𝑡 , 𝜖 ′ ≤

𝑛2𝑝𝑛ss · 𝜖srchid, where 𝑛𝑝 is the number of parties and 𝑛ss the number
of semi-static keys per party, and 𝑄 ′

𝐶
= 𝑄𝐶 .

Proof. An attackerB against the source hiding property ofDVS
can use a successful attackerA against deniability of SPQR[KEM1,

KEM2,KEM3,DVS,KDF, tPRF] to succeed in its own game. The

challenger starts B with two DVS key pairs who then simulates the

asynchronousDAKE key exchange deniability gameGadake-denSPQR (A)
forA as follows. For each of the 𝑛𝑝 parties B generates a long-term

key pair and 𝑛ss many semi-static keys. It randomly guesses the

identifiers of two parties iid∗, rid∗ ∈ [𝑛𝑝 ] and the identifier of a

semi-static key ssid∗ ∈ [𝑛ss] for which the deniability attacker

can distinguish between Run and Fake. Let a number 𝑖 ∈ [𝑛2𝑝𝑛ss]
uniquely denote three independent values iid, rid, ssid in a query

(e.g., as (iid− 1) ·𝑛𝑝 ·𝑛ss + (rid− 1) ·𝑛ss + ssid) and let 𝑖∗ ∈ [𝑛2𝑝𝑛ss]
denote the specific guess iid∗, rid∗, ssid∗ of the reduction. For the
party iid∗, B replaces the DVS sender key pair in the long-term

key with its own challenge key pair (𝑝𝑘𝑆 , 𝑠𝑘𝑆 ). For the party rid∗,
B replaces the DVS verifier key pair in the semi-static key with id

ssid∗ with its own challenge key pair (𝑝𝑘𝐷 , 𝑠𝑘𝐷 ). It starts A with

all key pairs.

B answers the queries ofA to the Chall oracle as follows: First,

it runs the responder ephemeral key generation. Then, it runs the

initiator key agreement until computing the DVS signature (i.e.,

it computes a nonce and the three KEM ciphertexts (𝑛, 𝑐1, 𝑐2, 𝑐3)
and sets the master secret 𝑚𝑠 to the concatenation of the KEM

encapsulations). In the next step, the reduction computes the DVS

signature on the session identifier 𝑠𝑖𝑑 . Here B distinguishes be-

tween three cases: The first case is that the query is for 1 ≤ 𝑖 < 𝑖∗.
Then the reduction behaves as if 𝑏 = 0, i.e., it executes DVS.Sign.
The second case is that the query is for 𝑖 = 𝑖∗. In this case the

reduction forwards the query to its own oracle to obtain a DVS

signature or a simulated one depending on the outside challenge

bit. The third case is that the query is for 𝑖∗ < 𝑖 ≤ 𝑛2𝑝𝑛ss . Then the

reduction behaves as if 𝑏 = 1, i.e., it executes DVS.Sim. In all cases

the reduction then proceeds to compute the session key 𝐾 from

the master secret and the session id. Finally, the reduction returns

the transcript and the session key 𝐾 to A. Hence, the transcript

and session key were computed either as specified by Run or as

specified by Fake, depending on the query index 𝑖 and the secret

bit of the DVS challenger. Finally, when A returns its guess bit 𝑏 ′,
B returns 𝑏 ′ as its guess.

Observe that B faithfully simulates the deniability game for A.

Moreover, the runtime of B is essentially the runtime of A plus

the runtime to generate the keys and answer the oracle queries.

Now let us analyze the winning probability of A against denia-

bility. For this, we define the hybrids 𝐻0, . . . , 𝐻𝑛2𝑝𝑛ss
with 𝐻𝑖 being

the hybrid that answers all challenge queries for indices 1, . . . , 𝑖

by Run and all other challenge queries for indices 𝑖 + 1, . . . , 𝑛2𝑝𝑛ss
are answered with Fake. The extreme hybrids are 𝐻𝑛2𝑝𝑛ss

which

answers all the challenge queries with Run and 𝐻0 which answers

all queries by Fake. Observe that 𝐻𝑖−1 and 𝐻𝑖 only differ in an exe-

cution of Run or Fake depending on the reduction B’s challenge
oracle. Hence, it is easy to see that the probability of distinguishing

between 𝐻𝑖−1 and 𝐻𝑖 is bounded by 𝜖srchid.

Now let us analyze A’s advantage in more detail and we denote

by𝐻A
𝑖

the output of the adversary in the 𝑖th hybrid. Then it follows:

Advadake-denSPQR (A)

=

����Pr[Gadake-denSPQR (A) = 1

]
− 1

2

����
=

���Pr[Gadake-denSPQR (A) = 1|𝑏 = 1

]
· Pr[𝑏 = 1]

+ Pr
[
Gadake-denSPQR (A) = 1|𝑏 = 0

]
· Pr[𝑏 = 0] − 1

2

����
=

����1
2

·
(
Pr

[
Gadake-denSPQR (A) = 1|𝑏 = 1

]
+ Pr

[
Gadake-denSPQR (A) = 1|𝑏 = 0

] )
− 1

2

����
=

����1
2

·
(
Pr

[
Gadake-denSPQR (A) = 1|𝑏 = 1

]
+1 − Pr

[
Gadake-denSPQR (A) = 0|𝑏 = 0

] )
− 1

2

����
=

����1
2

· (Pr[1←$A|𝑏 = 1] − Pr[1←$A|𝑏 = 0])
����

=

����1
2

·
(
Pr

[
𝐻A
0

= 1

]
− Pr

[
𝐻A
𝑛2𝑝𝑛ss

= 1

] )����
≤ 1

2

·
(���Pr[𝐻A

0
= 1

]
− Pr

[
𝐻A
1

= 1

] ��� + . . .
+
����Pr[𝐻A𝑛2𝑝𝑛ss−1 = 1

]
− Pr

[
𝐻A
𝑛2𝑝𝑛ss

= 1

] ����)
=

1

2

·
𝑛2𝑝𝑛ss∑︁
𝑖=1

| Pr
[
𝐻A𝑖−1 = 1

]
− Pr

[
𝐻A𝑖 = 1

]
|
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=

𝑛2𝑝𝑛ss∑︁
𝑖=1

1

2

· | Pr[1←$ B|𝑏srchid = 1] − Pr[1←$ B|𝑏srchid = 0] |

=

𝑛2𝑝𝑛ss∑︁
𝑖=1

|Pr[1←$ B|𝑏srchid = 1] · Pr[𝑏srchid = 1]

+ Pr[0←$ B|𝑏srchid = 0] · Pr[𝑏srchid = 0] − 1

2

����
=

𝑛2𝑝𝑛ss∑︁
𝑖=1

����Pr[GsrchidDVS (B) = 1 − 1

2

] ����
=

𝑛2𝑝𝑛ss∑︁
𝑖=1

AdvsrchidDVS (B) = 𝑛
2

𝑝𝑛ss · AdvsrchidDVS (B)

Hence by this analysis, it follows thatA’s probability of winning

the deniability game is bounded by 𝜖 ′ ≤ 𝑛2𝑝𝑛ss · 𝜖srchid. □

9 DISCUSSION AND LIMITATIONS

Our protocols demonstrate that designated verifier signatures are

helpful for constructing practical authenticated key exchange pro-

tocols with constraints on the message flow (asynchronicity) and

with specialized security properties (deniability).

The key ingredient in our approach for achieving post-quantum

asynchronous DAKE is a post-quantum designated verifier signa-

ture scheme. While there are several lattice-based DVS schemes

in the literature as described in Section 3.5, we believe that their

security merits further scrutiny before adoption. Regarding our two

DVS constructions (GPVDVS and FSDVS), one limitation is that our

proofs are in the classical random oracle model, whereas it would

be preferable for post-quantum schemes to have security proofs

that consider random oracle queries in quantum superposition [8].

While the signature scheme components of our constructions (GPV
and FS) have many well-studied practical realizations including

some Round 3 candidates in the NIST PQC standardization pro-

cess, instantiations of chameleon hash functions are much less

common. Another limitation of our DVS constructions is that the

digest space of the chameleon hash function must match some

input space in another function, which may require some care to

achieve since chameleon hash functions tend to have structured

output spaces rather than opaque bitstrings. We give an estimate

of security parameters for instantiating the GPVDVS scheme; note

that the formulas that our analysis of the CHF parameters is based

on [18, §4.1],[34, §B.3] have asymptotic terms for which the hidden

constants are not yet worked out. This may affect the parameters

somewhat and should be resolved before adopted in practice.

We believe SPQR is a good start as a PQ replacement for the

Signal X3DH handshake, but in any real-world protocol deployment

there are many subtleties, some of which we now highlight.

The way Signal is used in practice has the semi-static keys signed

under the long-term key. In SPQR the long-term key is not suitable

for this purpose, so an additional long-term signing key might

have to be introduced solely for the purposes of signing the other

keys; note this could be done without undermining deniability. This

characteristic was likewise not considered in the provable security

analysis of Signal of [22].

SPQR is solely a replacement for the initial handshake (X3DH).

A fully post-quantum Signal would require quantum-resistance

in the ratcheting and message encryption; fortunately there are

several generic treatments of ratcheting [1, 6, 67].

As Signal does not use certificates or a PKI, long-term public

keys must be manually authenticated out-of-band, and that remains

the case with SPQR.
Our analysis of SPQR considers disclosure of randomness, but

not use of malicious randomness. This has been considered for

ratcheting [1], but not yet in the initial handshake. Our security

analysis shows that SPQR, as an authenticated key exchange pro-

tocol, has offline deniability. One should be careful with deniability

as a cryptographic property. How cryptographers understand de-

niability may be different from how a judge in the legal system

would understand it [73]. Additionally there are stronger notions

of deniability [33] that SPQR (and the Signal handshake) does not

achieve, such as if one party maliciously generates messages or

colludes in real-time with the judge. One should also confirm deni-

ability at all levels of the protocol, and that deniability of individual

components composes appropriately. Despite all these subtleties,

steps toward deniability are helpful, as Unger and Goldberg write

[73]: “we should strive to design deniable protocols to avoid unin-

tentionally incriminating users.”
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A RELATEDWORK ON DENIABILITY

Deniability allows a party to deny having interacted with a peer.

In particular, the peer cannot convince a judge of the first party

having interacted with itself. Online deniability is concerned with

the scenario of the judge interacting with the peer during the pro-

tocol execution with the first party. This notion is not achievable

in the asynchronous setting. [73] Hence, we address offline denia-
bility, where the peer presents data to the judge after the protocol
execution has taken place.

Prior work defined several notions of offline deniability for au-

thenticated key exchange [24, 25, 30, 73, 74]. Based on the work of

Dwork, Naor, and Sahai [36] on deniable authentication, Di Rai-

mondo, Gennaro, and Krawczyk defined concurrently deniable (or
fully deniable) authenticated key exchange using the simulation par-

adigm in [30]. Given the list of all public keys and some auxiliary

information (e.g., some legal transcripts), the attacker may freely

interact with honest parties as either initiator or as responder, in-

terleaving between executions at will. The view of the adversary

then consists of the transcripts, session keys, and random coins of

the protocol executions it took part in. The session key is included

in the view as it may be used as part of another protocol for which

deniability is desirable. This view needs to be indistinguishable

from the output of a simulator running on the same inputs as the

adversary.

Di Raimondo, Gennaro, and Krawczyk [30] also proposed a

weaker notion called partial deniability, which formalizes the intu-

ition that it is indistinguishable whether an (honest) user interacted

with party A or party B. Based on the definition of partial deniability,
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Cremers and Feltz [24] proposed peer deniability and peer-and-time
deniability. For either notion the simulator does not have to output

the session key and gets access to the secret key of corrupted parties.

Peer-deniability intuitively allows a user to deny its communication

peer, while peer-and-time deniability allows a party to deny that it

was alive during a certain time frame.

Dagdelen, Fischlin, Gagliardoni, Marson, Mittelbach, and Onete

[25] proposed a game-based definition called outsider deniability.
Here, the adversary has access to Init, Exec, Send, Reveal, Corrupt,

and Register oracles (identical to the key secrecy game) and a mod-

ified challenge oracle. Depending on the secret bit, the challenge

oracle returns either a real transcript and session key or a transcript

and session key simulated based on public data. Intuitively, this

allows parties to deny having engaged in a protocol run against an

eavesdropper that frames a party.

In [73, 74], Unger and Goldberg have given deniability definitions

in the UC model. For this they define an ideal functionality called

post-specified peer key exchange with incrementing abort that

unifies the model of contributiveness, deniability with abort, and

their model [73] of post-specified peers.

In [75], Vatandas, Gennaro, Ithurburn, and Krawczyk provided an

analysis that Signal’s X3DH is deniable (wrt. full deniability of [30])

under a general extractability assumption. The authors emphasize

the observation of Pass in [65] that a simulator for deniability must

be a real algorithm (unlike a Zero-Knowledge simulator, which can

be thought of as a thought experiment allowing, e.g., re-winding).

Recently, Hülsing and Weber have defined deniability for group

chats (and not just key exchange) in [47]. They formalize a stronger

notion than ours that allows an unbounded judge to choose all

long-term key pairs and learn all short-term keys, and the simula-

tor does not get access to any secret key. Furthermore, the judge

chooses the instructions (i.e., messages and group actions) to be

executed. However, the group setting requires a restriction: Infor-

mally, they need one message that authentically reaches all other

group members.

We propose a game-based definition, Definition 7.2, where the

adversary interacts with a real-or-random challenge oracle. Intu-

itively, the “real” part relates to the view of the adversary and the

“random” part to the simulated view. However this simulated view

cannot make use of features like re-winding and is a plain proba-

bilistic classical algorithm. At the same time, the distinguisher (or

judge) of simulation-based definitions relates to the adversary in

the game-based definition.

We further take into account the informal requirement on de-

niability for asynchronous DAKE in [63, §4.4]: Neither party has
a proof of the fact that both parties communicated and a purported
transcript of the execution can be produced by any party that has
access to one of the party’s secret keys. This informal description im-

plies a relaxation compared to previous definitions: The simulated

transcript may make use of the secret key of either party.

Please observe that we only consider asynchronousDAKE,which

consist of only one message with a specified peer. Hence, we do

not need to take any special precautions to achieve deniability for

concurrent executions. Furthermore, we give the adversary (i.e., the

distinguisher) access to all secret keys. This models the scenario

where a party is framed in court and the judge (in a legal sense)

learns the secret keys of all involved parties through a subpoena.

Hence, our distinguisher is significantly stronger than previous

distinguishers. As the distinguisher has access to all secret keys,

the challenge oracle does not return the random coins used. Other-

wise, the distinguisher could compute both the real and simulated

execution of the protocol and check which result is identical to

the return value of the oracle. One could prevent this by requiring

identical outputs instead of indistinguishably distributed outputs.

We deem this impractical, though.
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