
Multi-key Private Matching for Compute

Prasad Buddhavarapu Benjamin M Case Logan Gore Andrew Knox
Payman Mohassel Shubho Sengupta Erik Taubeneck Min Xue

Facebook Inc.

8th June 2021

Abstract

We extend two-party private set union for secure computation, by considering matching
between records having multiple identifiers (or keys), for example email and phone. In the
classical setting of this problem, two parties want to perform various downstream computations
on the union of two datasets. The union is computed by joining two datasets with the help of
a single agreed upon identifier, say email. By extending this to joining records with multiple
identifiers, we bring it much closer to real world uses where the match rate and match quality
can be greatly improved by considering multiple identifiers.
We introduce an extension to the Private-ID protocol [3] which outputs a full outer join (union)
of two datasets by a match logic that can join rows containing multiple identifiers. We also
introduce new techniques for privately sharding the protocol across multiple servers. Both
constructions are based on Decisional Diffie–Hellman (DDH) assumptions.

Keywords: private set intersection, private identity matching

1 Introduction

Joining records across multiple data owners is an essential precursor to many applications; from
gathering aggregate statistics to training machine learning models. For example, computing a test
statistic of a randomized controlled trial requires such a join when one party owns a test/control
group assignment data, and the other party owns the outcome data [14]. Another application is a
model that calculates the risk of a specific health condition, where case-specific health condition
labels are known by one party, and the predictive features are known by the other party [3].

Private Set Intersection (PSI) [13, 8, 6, 11] offers a way to join two sets and learn the intersection
membership without revealing anything outside the intersection. Private-ID and Private Secret
Shared Set Intersection (PS3I) protocols [3, 7], extend this functionality by decoupling the matching
phase of these protocols from the computation phase that acts upon the features associated with
these records. This allows for a richer set of computation to happen on the associated features in a
different privacy computation framework. This also allows for the matching step to be done once
while allowing the later addition of features associated with these records.

However, the drawback of these protocols, is they only allowed for one identifier per record to be
used in the join logic. In practice, the type and quality of identifiers may vary across data owners,
and it is often highly advantageous to match on multiple identifiers to improve the match quality
and match rate. For instance, two data owners may wish to match on both email address and phone
number, to improve coverage for records with incomplete information. A related work [12] that has
considered matching on multiple keys uses different techniques including Garbled Circuits.

In terms of scalability, while the Private-ID protocols are multi-threaded, they run on a single
server per party. This is a serious impediment to scaling to hundreds of millions of records. Naive

1

sharding across multiple servers for improvements in scale and performance is possible in the
single-key case but would reveal the intersection size of each shard; in the multi-key case such naive
sharding solutions applied to the inputs are not even possible.

Thus, we set out to extend the Private-ID union protocol to support joining based on multiple
identifiers per record and to allow for sharding across multiple servers, while preserving its privacy
guarantees.

2 Our Contribution

We extend the Private-ID protocols with the following functionalities.

� Deterministic ranked join using multiple identifiers: We organize multiple identifiers
as sets and construct pseudorandom Universal Identifiers (UID) corresponding to the records
created by union of both datasets. Joining on multiple identifiers typically results in many-to-
many connections, while Private-ID enforces one-to-one mapping. To circumvent this issue, we
collapse many-to-many connections to one-to-one connections by choosing to match according
to an ordering of identifiers set by one of the parties.

� Sharding We present an extension to the Private-ID protocol to allow sharding across multiple
servers without leaking any additional information.

We implement the multi-key Private-ID protocol in Rust programming language, and evaluate it’s
performance under multiple settings. Our results indicate that multi-key Private-ID is 3X slower
relative to the single-key protocol (3 min 52 sec vs 1 min 2 sec for a million records with single key
in each variant) but incurred the same communication cost.

3 Multi-key Matching

3.1 Problem setup

Records are often indexed by one or more identifiers (e.g. email address, phone number), and the
notion of an individual defined by a certain combination of identifiers may differ across data owners.
For example, a health care provider may represent patients using a comprehensive set of identifiers
such as social security number, phone number, and email address while a fitness subscription service
may identify subscribers using only an email address.

In both multi-key and single-key based matching a link is established across datasets with exact
matching on identifiers (i.e. no fuzzy matches allowed, although it’s possible to add regex variants
as new identifiers). Two datasets with records indexed by a single identifier may be joined using
exact matching on the common identifier. However, the presence of multiple identifiers allows for
flexible join logic and often yields many-to-many connections. For example, both Party C and Party
P may represent individuals using email and phone number. However, one of Party P ’s customers
may use a current phone number at the time of purchase, but may not have updated the phone
number on Party C’s platform. In this case, the phone numbers may not match, however; matching
on email is still feasible. Another of Party P ’s customers may utilize a household member’s phone
number to set up a proxy shipment recipient for a purchase albeit using a personal email to track
the shipment. Party C’s dataset may then represent two distinct users for the purchaser and the
household member, with respective identifiers. This results in one-to-many connection between
Party P and Party C’s datasets when they come together to perform a join (see Figure 1). In
addition, neither parties may be willing to share their notion of an individual with other Party.

2

Figure 1: An example of many-to-many connections with multiple identifiers

3.2 Matching logic

The above examples highlight the need for matching protocols with arbitrary join logic and arbitrary
number of identifiers. Private-ID style protocols enforce a one-to-one mapping as the output, hence
we leverage a ranked deterministic join logic that collapses many:many connections to one-to-one as
described below.

In the case of many-to-one connections (i.e. multiple records from the first dataset may be
linked to one record in the second dataset if there is at least one common identifier), then we use a
predefined identifier ranking to resolve such conflicts by iteratively matching on identifiers. The
ordering of identifiers is set by one of the parties performing the matching. In the first round, we
match all records on the first identifier (akin to single-key based matching), then proceed to a
second round to match on second identifier, but limiting to unmatched records from prior round.
The process is continued as many times as the maximum number of identifiers present within the
records.

In the case of one-to-many, (when one record from the party that chooses the ranking order
has identifiers that belong to multiple records in the second party’s dataset), the matching process
resolves randomly. At the end, the matching logic only outputs at most one link between the records
from both datasets. Note that the protocol may be trivially extended to other similar join logic
implementations.

Figure 1 demonstrates an example matching scenario. The aforementioned process maps Party
P ’s User A to Party C’s user A, if Party C chooses to prefer matching on email followed by phone
number in this scenario. In other words, Party C may trust that individual may not share email
addresses while its possible to share phone numbers with household members, hence prefer to match
on email while falling back to phone number in cases where email is unavailable or unmatched to
maximize match cardinality or intersection size. Note that the above examples are not limitations
of the proposed protocol rather are a specific embodiment of its usage.

In full generality, we can think of the many-to-many mapping between the two sets as a bipartite
graph. The ranked match logic then defines the weights of the edges in the graph. Since we want
to only output a one-to-one matching, the problem we are looking to solve is the globally optimal
bipartite matching problem. We could use an algorithm, such as the Hungarian algorithm, to solve
for the globally optimal set of matches; however, we currently use a greedy algorithm which selects
a random node from one set and then picks its best match. This performs well heuristically but
does not guarantee an optimal solution.

3

4 Protocol

4.1 Setup

C and P are sets of nc and np records from two different parties, C and P respectively, consisting of
arrays of identifiers of varying sizes,

C : {ci : (c1i , c
2
i , . . . , c

li
i), i ∈ (1, 2, . . . nc)}

P : {pi : (p1i , p
2
i , . . . , p

mi
i), i ∈ (1, 2, . . . np)}

Each array (c1i , c
2
i , . . . , c

li
i) is pre-ordered based on identifier priority by party C. The ordering varies

from row to row and reflects party C’s belief about the importance of identifier cji in defining a

connection with party P ’s record containing cji .
The protocol outputs a set of Universal Identifiers (UID), denoted by UID = {uid1, . . . , uid|UID|}

where |UID| = |C ∪ P | to both parties. In addition to UID, party C learns a map Mc, where
Mc[uidi] = ci if ci ∈ C and Mc[uidi] = ⊥ otherwise. Similarly, party P learns a map Mp, where
Mp[uidi] = pi if pi ∈ P and Mp[uidi] = ⊥ otherwise. Mc and Mp enable the usage of UID, for any
downstream secure computation using the features associated with records C and P.

4.2 Protocol Overview

Step 1, Exchange records. Our starting point is a DDH based scheme [8, 10, 5, 9, 3].

In Step 1 of the protocol, (Step 1 in Figures 2 and 3) party C hashes its records componentwise
ci = (c1i , c

2
i , ..., c

li
i) as H(ci) = (H(c1i), H(c2i), ...,H(clii)) and exponentiates each component

using a random secret scalar kc, H(ci)
kc . Party P also computes H(pj)

kp for each of its
records. These random secret scalars are shown as keys in Figure 2. Both parties shuffle and
exchange these encrypted records, denoted as the sets Uc = {H(ci)

kc} and Up = {H(pj)
kp}.

In Step 1 , party C also computes H(pj)
kpkc and similarly party P computes H(ci)

kckp . These
double exponentiated Diffie-Hellman (DH) values are denoted by Ep and Ec and shown in
Figure 2 using two lock symbols. A first natural attempt is to use a component of these DH
values as UID for the universe, such that UID = Ec ∪ Ep. However this reveals the items
in the intersection to party C. A common solution to avoid this leakage is for C to receive
Ec randomly shuffled, so that it only learns the size of the intersection, but this breaks the
linkages between the universal identifiers and their corresponding values in C’s set. Instead,
each party uses one more random secret scalar rc and rp to calculate the eventual UID’s of
the form H(cαi)kpkcrcrp or H(pαi)kpkcrcrp , where each party will be able to link UIDs to its
users, but even the party performing the matching will not learn which records are in the
intersection.

Step 2, Matching. In Step 2 party C calculates the matching between the sets Ec and Ep follow-
ing a ranked deterministic match process. If many-to-one (party C to party P) connections
arise, they are resolved using iterative matching leveraging predefined identifier ranking defined
by party C. If one-to-many connections arise, they are resolved randomly. The output of this
matching process is four sets Vc, Vp, Sc, Sp. The sets Vc and Ec are in one-to-one correspondence
with the element in Vc being either the first component of the corresponding array in Ec or a
later component if a match was selected using that later component. The same is true for Vp
and Ep. The sets Sc and Sp are made from the first components of the rows of Ec and Ep
that were never matched. Also, party C exponentiates the elements in the set Vc, Vp by its

4

2 43

3 67

7 34

10 81

3 67

10 81

2 43

7 34

Party C Party P

2 43

4 61

5 67

7

4 61

7

5 67

2 43

Exponentiate
and Shuffle

3 67

10 81

2 43

7 34

4 61

7

5 67

2 43

Exchange and
Exponentiate

Shuffle and
Send to
Party C

C UC P UP

EP

4 61

7

5 67

2 43

Party C

7 34

2 43

3 67

10 81

4

7

67

2

7

2

67

10

Matching
Input

Party C Party P

2 2 43

67 3 67

7 7 34

10 10 81

4 null null

2 2 43

4 4 61

67 5 67

7 7

10 null null

Create
Mappings

ECEP

EC

VP SP VC S’C

Matching
Output,
sent to
Party P

4 10

4

7

67

2

67

10

2

7

VP SP VC S’C

4 10

2

67

7

10

2

4

67

7

WP S’P WC S’’C

4 10

Unshuffle,
Exponentiate

MP: UIDP, id

2

67

7

10

WC S’P

4

MC: UIDC, id

Step 1

Step 2

Step 3

kC, rC, sC
kP, rP

Figure 2: Protocol Diagram

5

second key rc and Vc by a third key sc and exponentiates the elements of the set Sc to form
the set S′c. The four sets are then sent to party P .

Step 3, Output mapping. In Step 3 , party P can unshuffle Vp to match the original order of
set P . Combining this with the elements in S′c and exponentiating by its second key rp, party
P is able to form its copy of the set of UIDs and mapping to its original records. Party P also
exponentiates and unshuffles the sets Vc and S′p (denoted as Wc and S′p) and sends these back
to party C so that party C can similarly unshuffle Wc to align with its original records and
combine with S′p to get its copy of UIDs and mapping.

6

4.3 Protocol Details

∏PID−multi−key

Inputs:
Party C : {ci : (c1i , c

2
i , . . . , c

li
i), i ∈ (1, 2, . . . nc)}.

Pre-arrange elements of ci according to row-level (vary with i) key-priority (only by Party C)

Party P : P : {pi : (p1i , p
2
i , . . . , p

mi
i), i ∈ (1, 2, . . . np)}

Outputs:
[C : (UID,Mc), P : (UID,Mp)]

Let G be a cyclic group of order q with generator g wherein DDH is hard, and H(·) : {0, 1}∗ → G modeled
as a random oracle.

Step 1 (Exchange records): Party C

� Let kc, rc, sc
R← Zq, and Uc ← ∅.

� For each ci ∈ C compute uic = H(ci)
kc = (H(c1i)

kc , H(c2i)
kc . . . H(clii)kc), and let Uc = Uc ∪ {uic},

where uic will be of size li.

� Randomly (outer) shuffle the elements in Uc using a permutation πcUc
, however, NOT inner shuffling

elements within ci, and send to P.

Step 1 (Exchange records): Party P

� Let kp, rp
R← Zq, and Up, Ec ← ∅

� For each pi ∈ P compute uip = H(pi)
kp = (H(p1i)

kp , H(p2i)
kp . . . H(plii)kp), and let Up = Up ∪ {uip},

where uip will be of size mi.

� Randomly shuffle the elements in Up using a permutation πpUp
, and inner shuffling elements within

pi as well (no need to store inner shuffle).

� For each uic ∈ Uc received form C:

– Compute eic = (uic)
kp and let Ec = Ec ∪ {eic}

� Randomly shuffle the elements in Ec using a permutation πpEc
, and send the sets Ec, Up to C

Step 2 (Matching): Party C

� Let Ep, Vc, Vp, Sc, S
′
c, Sp ← ∅

� For each uip ∈ Up:

– Compute eip = (uip)
kc and let Ep = Ep ∪ {eip}

� Initialize
Sc = {eic[1] : i ∈ (1, 2, . . . nc)}
Sp = {eip[1] : i ∈ (1, 2, . . . np)}
Vc = {(eic[1])rcsc : i ∈ (1, 2, . . . nc)}
Vp = {(eip[1])rc : i ∈ (1, 2, . . . np)}

Figure 3: Private-ID multi-key matching with key priority

7

∏PID−multi−key continued

� Pad each tuple eic of Ec with random unique looking strings such that size of eic, ∀ i, is
maxi∈(1,2,...nc) li

� From padded Ec, prepare sets Ec[1], Ec[2], . . . Ec[maxi∈(1,2,...nc) li], where
Ec[j] = {eic[j] : i ∈ (1, 2, . . . nc)}, where j ∈ (1, 2, ..maxi∈(1,2,...nc) li)

– Iterate over each j in 1 : maxi∈(1,2,...nc) li

* Iterate over each eip ∈ Ep, which is a vector of size mi:

When Matched: If at least one element of eip is within Ec[j], then
- Denote the matched elements, i.e. intersection of Ec[j] and eip as matchijcp corresponding
to the jth batch of matching, and ith element of set Ep.
- Also denote, the matched indices within set Ec[j] as match locijEc

- In the case of many(C):1(P) mapping (i.e. size of match locijEc
> 1), pick first element

of matchijcp
- Denote first matched position corresponding to the first matched element, i.e.
match locijEc

[1] as ϕ.
- Update the sets

· Sc = Sc \ eϕc [1].

· Sp = Sp \ eip[1]

· Assign the first matched identifier to the ϕth element of Vc.
i.e Vc[ϕ] = (matchijcp[1])rcsc

· Assign the first matched identifier to the ith element of Vp.
i.e Vp[i] = (matchijcp[1])rc

- Drop the matched elements from Ec and Ep sets, and perform padding using random
strings to retain the appropriate index. In practice, padding with random strings may
not be necessary, by keeping track of appropriate indices.

· Replace eϕc [k] ∀ k > j with a random looking unique string.

· Replace eip with a random looking string (vector of size 1).

When unmatched: i.e. if at least one element of eip is NOT within Ec[j], then
- Do nothing, and proceed with i++.

� For each sic ∈ Sc, let S′c = S′c ∪ {(sic)rc}, and randomly shuffle elements in Sp.

� Send the sets S′c, Sp, Vc, Vp to P.

Step 3 (Output mapping): P

� Let Wc,Wp, S
′′
c , S

′
p = ∅

� Create UIDP :

– Shuffle back the elements of Vp using πpUp

−1. For every vip ∈ Vp, let Wp = Wp ∪ {(vip)rp}, and

Mp[(v
i
p)
rp] = pi

– For each sic ∈ S′c, let S′′c = S′′c ∪ {(sic)rp} and Mp[(s
i
c)
rp] = ⊥

– Output UIDp = Wp ∪ S′′c and Mp

� For each sip ∈ Sp, let S′p = S′p ∪ {(sip)rp}
� Shuffle back the elements of Vc using πpEc

−1. For each vic ∈ Vc, let Wc = Wc ∪ {(vic)rp}.
� Send S′p,Wc to C

Step 3 (Output mapping): C

� Let W ′c, S
′′
p = ∅

� Shuffle back the elements of Wc using πcUc

−1. For every wic ∈Wc let W ′c = W ′c ∪ {(wic)s
−1
c }

� Mc[w
′i
c)] = ci

� For every s′p
i ∈ S′p let S′′p = S′′p ∪ {(s′p

i
)rc} and Mc[(s

′
p
i
)rc] = ⊥

� Output UIDc = W ′c ∪ S′′p and Mc

Figure 4: Private-ID multi-key matching with key priority, continued8

5 Security and Privacy

The privacy of a system is in some sense measured by the amount of information that can be gleaned
from a secure system. The current design leaks the following information:

� Both parties learn the size of the intersection. It is clear that party C learns the intersection
size while computing the matching. Party P learns it through knowing |P| and seeing |C| and
|C ∪ P|, thus learning |C ∩ P| = |C|+ |P| − |C ∪ P|. This leakage is generally benign. However,
if the protocol is run multiple times with a single record of identifiers differing, it can reveal
membership.

� Party C gets to see the full bipartite graph of matches up to an isomorphism. Since we do
not shuffle the identifiers in each record for party C, it also sees the number of matches that
happen at each location within a record.

This leakage is acceptable as its an aggregated metric.

� Both parties learn the distributions of the number of identifiers per record in the other party’s
data. However, this can be avoided by padding dummy identifiers for both parties at the
expense of additional compute.

5.1 Security of multi-key Private-ID,
∏PID

We use standard simulation-based definitions of security for secure multiparty computation to prove
that the protocol is secure against a semi-honest (honest-but-curious) adversary. In particular,
the security argument is split into two pieces, one against a corrupted C and another against a
corrupted P .

In each case, we describe a simulator SIM that only takes the corrupted party’s input, the size of
the two sets C and P (and in case of corrupted P also size of C ∩P and in the case of a corrupted C
a graph G ∼= (C̃, P̃) which is isomorphic to the bipartite graph of matches between the sets C and P)
as input and indistinguishably simulates the view of that party in the real protocol. In the graph G
the sets C̃ and P̃ can be thought of as applying an OPRF to the values in C and P and shuffling
their rows. The view of a party consists of its inputs, the randomness it uses, as well as messages
sent and received throughout the protocol. More formally, let REALa,λ∏PID(C,P) be a random variable

representing the view of party a in a real protocol execution where the random variable ranges over
the internal randomness of both parties. Our first theorem captures security against a corrupted C
as follows.

Theorem 1 (Security of
∏PID against a semi-honest C). There exists a PPT simulator SIMc such

that for all security parameters λ and all inputs C = {c1, . . . , cn} and P = {p1, . . . , pm},

REALC,λ∏PID(C,P) ≈ SIMc(C, 1λ,m, n,G)

where G ∼= (C̃, P̃) is a graph isomorphic to the bipartite graph of matches between the sets C and P.

proof sketch. In Figure 5, we describe the simulator SIMc which we claim indistinguisably simulates
the real view of party C.

Using a sequence of hybrid arguments, we show that the distribution generated by SIMc is indeed
indistinguishable from the real view of C.

9

Simulate C’s step 1:

� Generate kc, rc, sc
R← Zq

� Honestly generate Uc, i.e. for each ci ∈ C compute uic = H(ci)
kc and let Uc = Uc ∪ {uic}.

Simulate P ’s step 1:

� For each i ∈ [n] compute gi
R← G, and let Ec = Ec ∪ {gkci }.

� Construct the set Up to have the same structure of matches with Ec as G, for matches

components letting ujp,i = eαc,γ and for non-matches letting ujp,i
R← G.

� Let Vc = {v1, . . . , vn} where all vi’s are randomly selected from G

� Randomly shuffle the elements in Ec, Up and send the sets Ec, Vc, Up to C

Simulate C’s step 2: SIMc does this step exactly as the protocol describes and using rc, kc, and
sc it generated above. So we skip the full details. At the end of this step SIM outputs Vp, S

′
c, Sp

for P .
Simulate P ’s step 2:

� Let J = m− `, where ` = |C ∩ P|. For i ∈ [J], let S′
p = S′

p ∪ {si} for randomly selected si in
G, and send S′

p to C.

Simulate C’s Step 3: SIMc does this step exactly as the protocol describes and using rc and sc
it generated above.

Figure 5: Description of SIMc for Theorem 1

H0: This is the view of party C in the real execution of the protocol.

H1,0: Identical to H0.

H1,i,αi : Let (i, αi) range over the individual identifiers in C which are not also in P . H1,i,αi−1 is the
same as H1,i,αi except that we replace H(cαii)kckp in Ec with gkci for random gi ∈ G.

H2,0: Identical to the last H1,i,αi .

H2,j,αj : Let (j, αj) rand over the individual identifiers in P but not in C. H2,j,αj−1 is the same as

H2,j,αj except that we replace H(p
αj
j)kp in Up with random hj ∈ G.

H3,0: Identical to the last H2,j,αj

H3,t,αt : Let (t, αt) range over the individual identifiers in C that also appear in P. H3,t,αt is the

same as H3,t,αt except that we replace H(cαtt)kckp in Ec with gkc and H(p
α∗t
t∗)kp in Up with gt

where (t∗, α∗t) is the index of the element matching cαtt in P.

H4,0: Identical to the last H3,t,αt

H4,i: for i ∈ [n], the same as H4,i−1 except that we replace vi ∈ Vc with a randomly selected element
in G

H5,0: Identical to H4,n

H5,i: for i ∈ [m− `], the same as H5,i−1 except that we replace si ∈ S′c with a randomly selected
element in G

10

H6 : The view of C output by SIMc.

We now need to argue that each consecutive pair of hybrids in the above sequence are indis-
tinguisable by a PPT algorithm. The interesting arguments here are those for (H1,i,αi−1,H1,i,αi),
(H2,j,αj−1,H2,j,αj), (H3,t,αt−1,H3,t,αt), (H4,i−1,H4,i) and (H5,i−1,H5,i). Given that they all follow
a similar line of argument that relies on hardness of DDH and the random oracle property of the
hash function, we go through the argument for (H1,i,αi−1,H1,i,αi) as an example. In particular, we
argue that for any PPT adversary A who can distinguish the two hybrids, we devise an adversary B
who can solve the DDH problem. B is given (g, ga, gb, gc) and needs to decide whether c is random
or c = ab. First note B can program H(·) to return gb on input cαii . We also let ga = gkp . Then
it is easy to observe that since gi is uniformly random, the tuple (g, ga, H(cαii), gc) is identically
distributed to H1,i−1 if c = ab and is identically distributed to H1,i if c is random (since gi is
uniformly random). If A can decide which hybrid it is interacting with, B can decide which DDH
tuple it was given with the same probability.

Theorem 2 (Security of
∏PID against a semi-honest P). There exists a PPT simulator SIMp such

that for all security parameter λ and all inputs C = {c1, . . . , cn} and P = {p1, . . . , pm},

REALP,λ∏PID(C,P) ≈ SIMp(P, 1λ,m, n, `)

where ` = |C ∩ P|.

proof sketch. The description of SIMp is quite straightforward. It generates rp, kp randomly as P
would, and performs all computations that P does throughout the protocol using these two values
as described. For all group elements to be received from C, SIMp replaces them with randomly
generated elements in G. This includes elements in Uc, Vp, S

′
c, Sp.

We will not go through a detailed sequence of hybrid arguments but note that starting from the
first hybrid which is the view of P in the real protocol, we sequentially replace elements sent by C
with random group elements until we reach the view generated by SIMc. The argument we used in
the proof of Theorem 1 can be plugged in here to show that each pair of consecutive hybrids are
indistinguishable if DDH is hard and H is a random oracle.

6 Private Sharding

To scale multi-key Private-ID to inputs of 500 million records or more, it is necessary to shard the
input across multiple servers. But this process of sharding should not leak additional information
about the party’s input sets. We present a sharded version of our protocol where each party runs a
set of m servers, where each server represents a shard of the data. Our design leaks no additional
information between the two parties compared to when it is run using only one server per party. To
make the sharding design simpler, we make a simplifying assumption to the match logic that each
record has a single identifier per type and they are consistently ordered for both parties, across all
records.

In the case of a single-key protocol, one could shard the input values the same way for both
parties. Then each pair of servers could independently run the single-key Private-ID protocol
between them, for their shards. This, however leaks the intersection size per shard. This method
of input sharding cannot be extended to the case of multiple keys since there is no way to send a
record to a single shard on which we know the match should happen. Instead, we shard not on the

11

sending
shard 2

sending
shard 1

sending
shard 3

receiving
shard 2

receiving
shard 1

receiving
shard 3

Figure 6: Cross Shard Shuffle with 3 shards

identifiers, but on their deterministic encryptions, xkckp . We also perform the shuffles in a way that
does not leak anything about the shuffle to the receiving party.

Notation. Assume each party has m servers. We will denote these servers as C1, ..., Cm for
party C and as P1, ..., Pm for party P . We will denote the partitions of a set S sharded across these
servers as S(1), ..., S(m).

6.1 Private Cross Shard Shuffle

A frequent operation in the multi-key Private-ID protocol is the shuffling of records before sending
to the other party. When we shuffle and send a set that is held across many servers, we need to
ensure a receiving party’s servers cannot discern which records it received from which sending party.
We use anonymous routing to enforce this guarantee. To send a record to a receiving server, a
sending server will choose a receiving server at random, and then choose another sending server at
random as an intermediate node to route it through.

A sending server will randomly shuffle and partition its shard across the m destination nodes. It
will then further divide each partition across m intermediate nodes.

� Round 1 (red in Figure 6): Each sending server sends the partition to the corresponding
intermediate node. These intermediate nodes are other sending servers.

� Round 2 (black in Figure 6): After receiving all data, the sending servers acting as intermediate
nodes, will group all data going to a particular receiving node, shuffle the records and then
send it.

From the perspective of the recipient nodes, they cannot tell which row originated from which
sending node, since the records flow through a random intermediate node. Also since there are
independent random shuffles at each step of the way, a row has an equal probability of ending up at
any ending index; thus, the protocol samples a random permutation.

12

6.2 Sharded Protocol Details

We present the details of our sharded protocol in Figures 7, 8, and 9.

Sharded
∏PID−multi−key

Inputs:
Party C: C = {ci : (c1i , c

2
i , . . . , c

li
i), i ∈ (1, 2, . . . nc)}.

Pre-arrange elements of ci according to globally aligned key types (ordered by priority)

Party P : P = {pi : (p1i , p
2
i , . . . , p

mi
i), i ∈ (1, 2, . . . np)}

Both parties will agree in advance as to what identifiers are allowed in each slot and will agree on
the maximum number of identifiers allowed per user so that max num keys := maxi∈(1,2,...nc) li =
maxi∈(1,2,...np)mi.
Outputs:
[C : (UID,Mc), P : (UID,Mp)], but where this output is distributed across the shards with each holding
a part,

[Ck : (UID(k),M (k)
c), Pk : (UID(k),M (k)

p)], 1 ≤ k ≤ m.
Let G be a cyclic group of order q with generator g wherein DDH is hard, and H(·) : {0, 1}∗ → G modeled
as a random oracle.

Step 1 (Encryption): Party C

� Let one coordinator for C generate the secret keys kc, rc, sc,
R← Zq and then send these over a secure

channel to the it’s shards C1, ..., Cm.

� For the input set C, the coordinator will shard it out to the C1, ..., Cm servers sending partitions
C(1), ..., C(m) to each respectively.

� Then on shard Ck, 1 ≤ k ≤ m, let U
(k)
c ← ∅ and for each ci ∈ C(k)

– compute uic = H(ci)
kc = (H(c1i)

kc , H(c2i)
kc . . . H(clii)kc), and let U

(k)
c = U

(k)
c ∪ {uic}, where

uic will be of size li.

� Then shard Ck sends U
(k)
c to Pk (no security gained by shuffling here).

Step 1 (Encryption): Party P

� Let one coordinator for P generate the secret keys kp, rp
R← Zq and sends these over a secure channel

to the it’s shards P1, ..., Pm.

� For the input set P, the coordinator will shard it out to the P1, ..., Pm servers sending partitions
P(1), ...,P(m) to each respectively.

� Then on shard Pk, 1 ≤ k ≤ m, let U
(k)
p , E

(k)
p ← ∅ and for each pi ∈ P(k)

– compute uip = H(pi)
kp = (H(p1i)

kp , H(p2i)
kp . . . H(plii)kp), and let U

(k)
p = U

(k)
p ∪ {uip}, where

uip will be of size mi.

� For each uic ∈ U
(k)
c received form Ck: Compute eic = (uic)

kp and let E
(k)
c = E

(k)
c ∪ {eic}

� Perform a Cross Shard Shuffle of the sets Ec and Up while sending to the shards of C. The sending
shards store how to reverse this Cross Shard Shuffle later.

Figure 7: Sharded multi-key Private-ID

13

Sharded
∏PID−multi−key continued

Step 2 (Calculate set difference and waterfall matching): Party C
Pre-Match Processing

� On shared Ck, 1 ≤ k ≤ m which received E
(k)
c and U

(k)
p from Pk let E

(k)
p , V

(k)
c , V

(k)
p ← ∅

– Compute E
(k)
p = {(uip)kc : uip ∈ U

(k)
p }

– Pad each tuple eic ∈ E
(k)
c with random looking strings such that the size of all eic is

max num keys.

– Tag each row of Ec and Ep with the original Party C shard number and an index giving the
original order of that row on the shard, (shard index, order index).

Staged Matching.
For j in 1 to maxi∈(1,2,...nc) li. Stage j:

� Shard the sets Ec and Ep from all shards C1, ..., Cm to all shards C1, ..., Cm based on the values of
the elements in position j, Ec[j] and Ep[j] (sending the full rows).

� On Shard k

– Denote the subsets of Ec and Ep that are on this shard as E
(k)
c and E

(k)
p (note these will

contain different partitions of the sets Ec and Ep than was earlier denoted by E
(k)
c and E

(k)
p).

– For each eip ∈ E
(k)
p check if eip[j] is in E

(k)
c [j]. (Note that because of the simplified match logic

and the restriction of no repeats in the input from either party no many(C):one(P) matches
can occur here, which is different from the version without simplified match logic).

– Denote a match as (eip, e
γ
c , j) where eip[j] = eγc [j].

– As each match is found, we will remove the matched rows from E
(k)
c and E

(k)
p and create the

corresponding output rows to add to the sets Vc, Vp. For an update (eip, e
γ
c , j) compute:

* V
(k)
c = V

(k)
c ∪ {(eγc [j])rcsc , shard index, order index)}

* V
(k)
p = V

(k)
p ∪ {(eip[j])rc , shard index, order index)}

* E
(k)
c = E

(k)
c \ eic (drop row entirely, not just set to false)

* E
(k)
p = E

(k)
p \ eip

– Then re-shard the sets E
(k)
c and E

(k)
p sending out according to the value of E

(k)
c [j+1] (mod m)

or E
(k)
p [j + 1] (mod m). Leave the rows of V

(k)
c and V

(k)
p on the shard that created them.

– Important Notes:

* The key idea in the matching is that we don’t need to create a row of Vc, Vp until the
corresponding row of Ec, Ep is set to be dropped. Also, we don’t need to create the sets
Sc, Sp until all matches have been found as they just end up being what is left over
unmatched of Ec, Ep.

* Once a row of Vc has been created and the corresponding row of Ec been dropped, no
more updates will come to this row, so it can remain on the shared where it was created
until all the stages are finished (no need to re-shard these sets). Similarly for Vp and Ep.

� End of stage j.

Post Match Processing

� Once all stages have finished, create Sc, Sp from what is left of Ec and Ep. On shard k let

– S
(k)
c = {(eic[1], shard index, order index), eic ∈ E

(k)
c }

– S
(k)
p = {(eip[1], shard index, order index), eip ∈ E

(k)
p }

� Also add what is left of Ec and Ep to Vc and Vp. On shard k let

– V
(k)
c = V

(k)
c ∪ {((eic[1])rcsc , shard index, order index) : eic ∈ E

(k)
c }

– V
(k)
p = V

(k)
p ∪ {((eip[1])rc , shard index, order index) : eip ∈ E

(k)
p }

� Send back the sets Sc, Sp, Vc, Vp to the original shards which received them from P .

� Distributed across all the shards compute S′c = {(sic)rc : sic ∈ Sc}.

� Shards Ck send back V
(k)
c and V

(k)
p without shuffling and according to the same order in which

the corresponding rows of Ec and Ep were received at the end of Step 1. Party C performs a cross
shard shuffle in sending Sc, Sp to P .

Figure 8: Sharded multi-key Private-ID, continued

14

Shared
∏PID−multi−key continued

Step 3 (Output mapping): Party P

� The cross shard shuffle applied at the end of Step 1 when sending the sets Ec and Up is reversed
when Party C receives the sets Vc and Vp. Rows get passed back to the the original sending shards.

� On shard k which received S
(k)
c , S

(k)
p , V

(k)
c , V

(k)
p from Ck let W

(k)
c , W

(k)
p , S

′′(k)
c S

′(k)
p ← ∅.

� Create UIDP :

– For every vip ∈ V
(k)
p , let W

(k)
p = W

(k)
p ∪ {(vip)rp}, and M

(k)
p [(vip)

rp] = pi

– For each sic ∈ S
′(k)
c , let S

′′(k)
c = S

′′(k)
c ∪ {(sic)rp} and M

(k)
p [(sic)

rp] = ⊥

– Output UID
(k)
p = W

(k)
p ∪ S′′(k)c and M

(k)
p where

M (k)
p = {(uid, id) : uid ∈ UID(k)

p , id ∈ P ∪ {⊥}}.

– This set of UIDs should either be sorted by or the set S
′′(k)
c should be shuffled internally

before revealing this output publicly or to Party C. See (*) for why we need to add this
shuffle.

� For each sip ∈ S
(k)
p , let S

′(k)
p = S

′(k)
p ∪ {(sip)rp}

� For each vic ∈ V
(k)
c , let W

(k)
c = W

(k)
c ∪ {(vic)rp}.

� Perform a cross shard shuffle of S′p and send to C; also send Wc without shuffling. See (**) for why
we need to add this shuffle of S′p.

Step 3 (Output mapping): Party C

� On shard k which received S
′(k)
p and W

(k)
c from Pk, let W

′(k)
c , S

′′(k)
p ← ∅

� For every wic ∈W
(k)
c let W

′(k)
c = W

′(k)
c ∪ {(wic)s

−1
c }

� M
(k)
c [w′ic] = ci for w′ic ∈W

′(k)
c .

� For every s′p
i ∈ S′(k)p let S

′′(k)
p = S

′′(k)
p ∪ {(s′p

i
)rc} and M

(k)
c [(s′p

i
)rc] = ⊥

� Output UID
(k)
c = W

′(k)
c ∪ S′′(k)p and M

(k)
c where

M (k)
c = {(uid, id) : uid ∈ UID(k)

c , id ∈ C ∪ {⊥}}.

Notes on new shuffles:

� (*) Since Party C shuffled S
′′(k)
c , if the output is revealed to Party C then they can know from

having observed the matching if there was a row of S′′c which as an earlier row of Ec could have
been matched with a different set of match rules or random order of matching. Thus, this UID is
known to Party C to be in the intersection for some definition of the intersection.

� (**) Without the added shuffle of S
′(k)
p Party C can know from having observed the matching if

there was a row of S
′(k)
p which as an earlier row of Ep could have matched with different match

rules or random order of matching. Thus, this resulting UID is known to Party C to be in the
intersection for some definition of the intersection.

Figure 9: Sharded multi-key Private-ID, continued

7 Experiments

In this section, we present the details of our implementation of the proposed multi-key Private-ID
protocol and report performance in terms of wall clock time, and network traffic volume. We first
establish the extra cost of leveraging multi-key Private-ID protocol relative to single-key Private-ID
protocol in the case when there is at most one identifier to perform the matching. We also assess
the performance of the protocols using additional synthetic datasets created assuming a spectrum

15

of underlying dataset parameters such as number of input records, intersection size, and number of
identifiers per record to demonstrate the scalability.

7.1 Implementation

We implemented the protocol in Rust and it is available at the Private-ID Github repository [4].
We chose the Rust language for its superior memory management and the ease of multi-threading
while enforcing safety. We use the Dalek [1] library for Elliptic Curve Cryptography which utilizes
Ristretto [2] technique for Curve25519. The performance measurements were carried out on AWS
m5.12xlarge (Intel Xeon Scalable Processors with all-core CPU frequency of 3.1GHz, 48 vCPU,
192GB RAM) EC2 instances. To simulate client and server parties we leverage two separate AWS
EC2 instances in the same region and availability zone.

7.2 Varying input size

In this test, we vary the number of records in each party’s synthetic dataset to show how the
protocol scales with input size. Both parties have the same number of records and each record has
one identifier and the intersection size is 50%. We find that the multi-key protocol is roughly three
times slower than the single-key protocol irrespective of the of input size. Both wall clock run time
and network traffic grew roughly linearly with respect to input size (see Figure 10)

Input size
Single-key Multi-key

Time(s) In/Out [MB] Time(s) In/Out[MB]

104 0.6 1.0/1.2 1.8 1.5/1.4

105 4.7 10/12 14 15/14

106 47 102/119 146 147/140

107 491 1024/1193 1501 1462/1395

* Data obtained from network communication is measured by /proc/net/dev

stats. In/Out communication is shown for one party P , since it is the same

for both parties. Input size is the number of records that C and P each

have.

Table 1: Performance for varying input sizes

7.3 Varying intersection size

We now fix the input size at 1 million records for both parties and the number of identifiers at 2
per record. We vary the intersection size which is the number of records that will match across
parties. We see that wall clock time increases with intersection size, but network traffic decreases.
We attribute the reduction in network traffic to the records present in the intersection that need
not be transported across parties in the later steps of the protocol. On the other hand, compute
grows with intersection size due to the waterfall rounds from the match logic.

16

104 105 106 107

Input Size

1 s

5 s

1 min

8 min

W
al

l C
lo

ck
 R

un
tim

e

single_key
multi_key

Figure 10: Run time with number of records

Intersection
size

Multi-key

Time(s) In/Out [MB]

1% 69 180/157

25% 107 164/149

50% 146 147/140

75% 185 130/131

100% 224 113/122

* Data obtained from network communica-

tion is measured by /proc/net/dev stats.

In/Out communication is shown for one party

P , since it is the same for both parties. Input

size is the number of records that C and P

each have.

Table 2: Performance for varying intersection sizes

7.4 Varying number of identifiers

Finally, with a fixed the input size of 1 million records, intersection size at 50% and identifier size
at 10 characters, we increase the number of identifiers per record and we see that both time and
network I/O scales with the number of identifiers (Figure 11(b)).

17

0 25 50 75 100
Intersection Size (%)

75

100

125

150

175

200

225

W
a

ll
 C

lo
ck

 R
u

n
ti

m
e

(s
ec

)

240

260

280

300

320

340

To
ta

l N
et

w
o

rk
 T

ra
ff

ic
 (I

n
 &

 O
u

t)
 M

B

WallClockRunTime

TotalNetworkTraffic

(a) Varying intersection size of datasets

2 4 6 8
Identifier Count

200

300

400

500

W
a

ll
 C

lo
ck

 R
u

n
ti

m
e

(s
ec

)

400

600

800

1000

To
ta

l N
et

w
o

rk
 T

ra
ff

ic
 (I

n
 &

 O
u

t)
 M

B

WallClockRunTime

TotalNetworkTraffic

(b) Varying per record identifier count

Figure 11: Run time and total network traffic of multi-key PID protocol

identifiers
Multi-key

Time(s) In/Out [MB]

1 146 147/140

3 217 216/277

5 299 284/413

7 410 354/550

9 516 421/685

* Data obtained from network communica-

tion is measured by /proc/net/dev stats.

In/Out communication is shown for one party

P , since it is the same for both parties. Input

size is the number of records that C and P

each have.

Table 3: Performance for varying number of identifiers record

References

[1] Dalek library for elliptic curve cryptography. https://github.com/dalek-cryptography/

curve25519-dalek, May 2020.

[2] Ristretto. https://ristretto.group/, May 2020.

[3] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik Taubeneck,
and Vlad Vlaskin. Private matching for compute. Cryptology ePrint Archive, Report 2020/599,
2020. https://eprint.iacr.org/2020/599.

[4] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik Taubeneck,
and Vlad Vlaskin. Privateid. https://github.com/facebookresearch/Private-ID, 2020.

18

https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek
https://ristretto.group/
https://eprint.iacr.org/2020/599
https://github.com/facebookresearch/Private-ID

[5] Emiliano De Cristofaro, Jihye Kim, and Gene Tsudik. Linear-complexity private set intersection
protocols secure in malicious model. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 213–231. Springer, 2010.

[6] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set
intersection. In International conference on the theory and applications of cryptographic
techniques, pages 1–19. Springer, 2004.

[7] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh.
Private set operations from oblivious switching. Cryptology ePrint Archive, Report 2021/243,
2021. https://eprint.iacr.org/2021/243.

[8] Bernardo A Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy and trust in electronic
communities. In Proceedings of the 1st ACM conference on Electronic commerce, pages 78–86.
ACM, 1999.

[9] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shobhit
Saxena, Karn Seth, David Shanahan, and Moti Yung. On deploying secure computing commer-
cially: Private intersection-sum protocols and their business applications. Cryptology ePrint
Archive, Report 2019/723, 2019. https://eprint.iacr.org/2019/723.

[10] Stanis law Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In International
Conference on Security and Cryptography for Networks, pages 418–435. Springer, 2010.

[11] Lea Kissner and Dawn Song. Privacy-preserving set operations. In Annual International
Cryptology Conference, pages 241–257. Springer, 2005.

[12] Ben Kreuter, Sarvar Patel, and Ben Terner. Private identity agreement for private set function-
alities. Cryptology ePrint Archive, Report 2020/620, 2020. https://eprint.iacr.org/2020/
620.

[13] Catherine Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In 1986 IEEE Symposium on Security and
Privacy, pages 134–134. IEEE, 1986.

[14] Mahnush Movahedi, Benjamin M. Case, Andrew Knox, Li Li, Yiming Paul Li, Sanjay Saravanan,
Shubho Sengupta, and Erik Taubeneck. Private randomized controlled trials: A protocol for
industry scale deployment. CoRR, abs/2101.04766, 2021.

19

https://eprint.iacr.org/2021/243
https://eprint.iacr.org/2019/723
https://eprint.iacr.org/2020/620
https://eprint.iacr.org/2020/620

	Introduction
	Our Contribution
	Multi-key Matching
	Problem setup
	Matching logic

	Protocol
	Setup
	Protocol Overview
	Protocol Details

	Security and Privacy
	 Security of multi-key Private-ID, PID

	Private Sharding
	Private Cross Shard Shuffle
	Sharded Protocol Details

	Experiments
	Implementation
	Varying input size
	Varying intersection size
	Varying number of identifiers

