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Abstract—Merkle tree is applied in diverse applications, namely, Blockchain, smart grid, IoT, Biomedical, financial transactions, etc., to
verify authenticity and integrity. Also, the Merkle tree is used in privacy-preserving computing. However, the Merkle tree is a
computationally costly data structure. It uses cryptographic string hash functions to partially verify the data integrity and authenticity of
a data block. However, the verification process creates unnecessary network traffic because it requires partial hash values to verify a
particular block. Moreover, the performance of the Merkle tree also depends on the network latency. Therefore, it is not feasible for
most of the applications. To address the above issue, we proposed an alternative model to replace the Merkle tree, called
HEX-BLOOM, and it is implemented using hash, Exclusive-OR and Bloom Filter. Our proposed model does not depends on network
latency for verification of data block’s authenticity and integrity. HEX-BLOOM uses an approximation model, Bloom Filter. Moreover, it
employs a deterministic model for final verification of the correctness. In this article, we show that our proposed model outperforms the
state-of-the-art Merkle tree in every aspect.

Index Terms—Merkle tree, Blockchain, Bitcoin, verification, authentication, integrity, privacy, Hash, Security.

F

1 INTRODUCTION

M ERKLE tree [1] is widely used nowadays due to the
diverse requirements of security. Recent develop-

ments suggest that Merkle tree is adapted in diverse re-
search domains including privacy-preserving computation
[2], Blockchain [2], [3], [4], cryptography [5], [6], agriculture
[7], Healthcare [8], [9], financial transactions [10], Smart
Grid [11], Cloud Computing [12], Big Data [13], Wireless
networking [14]. Therefore, the Merkle tree is modified
to enhances its performance. Jakobsson et al. [15] presents
fractal Merkle tree to enhance the time and space. Similarly,
M. Szydlo [16] enhances Jakobsson’s fractal Merkle tree.
Buchmann et al. [17] improves the Merkle tree. Moreover,
We have already witnessed diverse variants of the Merkle
tree [4], [12], [14], [18], [19]. It shows that the Merkle tree
is adapted in diverse applications and modified Merkle
tree as per the requirements of the applications. Therefore,
the Merkle tree has met wider applications in the diverse
domain which demands an alternative to the Merkle tree,
which features low space consumption, fewer network ac-
cesses, and low time complexity.

Merkle tree is a time-consuming data structure that
wastes computational resources significantly. It is used to
verify data blocks’ authenticity and integrity. It allows ver-
ification of the data block’s authenticity and integrity after
successfully downloading the data block using Merkle root.
However, it requires a few hash values, but it does not
require the entire Merkle tree. This process creates network
traffic. Each block requires a few hash values, which require
network access. Therefore, it degrades the performance of
the Merkle tree as well as the network traffic. Moreover,
the Merkle tree requires high memory to store entire hash
values; however, a user does not require the whole Merkle
tree. Also, verification of a particular block is costly. There-
fore, we propose an alternative model of the Merkle tree to
address the above issue. Our proposed model uses Hash,
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Exclusive-OR and Bloom Filter, HEX-BLOOM for short. It
is two-fold; first, LinkedHashX, and second, Bloom Filter.
We construct a deterministic model called LinkedHashX to
verify the entire process’s correctness. LinkedHashX uses
a cryptographic hash function and XOR operation to pro-
vide an alternative model to the Merkle tree. LinkedHashX
performs a hash on all data blocks and merges the data
blocks’ hashes into a single data block using XOR operation
to create LinkedHashX root. User or creator of LinkedHashX
does not maintain the entire process; instead, LinkedHashX
root is maintained for future use. A user needs to recon-
struct the LinkedHashX root and compares it with the
original root. Secondly, we use Bloom Filter to verify the
block’s authenticity and integrity, an approximation of data
structures. All data blocks are inserted into Bloom Filter
during the construction of the LinkedHashX. A user requires
LinkedHashX root and Bloom Filter to download to verify a
data block’s authenticity, integrity, and correctness.

Our key contributions are outlined below-

• HEX-BLOOM uses Bloom Filter to verify a data
block’s authenticity and integrity in O(k) time com-
plexity for k distinct hash functions.

• The total verification time complexity for data au-
thenticity and integrity is O(kL).

• The construction cost of HEX-BLOOM is two-folded,
firstly, the construction cost of Bloom Filter, and
secondly, the construction cost of LinkedHashX. The
construction cost of Bloom Filter and LinkedHashX
are O(kL) and O(L), respectively for L data blocks.

• The extra space complexity of Bloom Filter is µ
which is derived in Equation (12). The extra space
complexity of LinkedHashX is O(1).

• The total communication cost of our proposed model
is O(1).

• Moreover, the time complexity of insertion and dele-
tion is O(k).
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2 MERKLE TREE

Most of the Merkle tree implementation is binary; however,
we assume m-ary Merkle tree for generalization.

Definition 1. The m-ary or m-way tree is a tree of order m
where

• It is a rooted tree,
• Each node can have at most (m− 1) keys,
• Each node can have at most m children,
• Keys are not in ordered.

Definition 2. Anm-ary Merkle tree has leaf nodes, internal node
and Merkle root which are defined below-

• The direct hash value of data blocks are known as leaf
nodes in the Merkle tree.

• The Merkle tree concatenates m hash values and hashes
the concatenated hash value to form a single value is called
a parent node or an internal node.

• Merkle root is a root node of the tree that contains a hash
value of its siblings.

2.1 Merkle Tree

Merkle tree is complex to construct and maintain. There are
many issues in the Merkle tree, for instance, the insertion of
a new node. Also, it takes extra space complexity. Therefore,
we analyze the complexities with respect to the number of
blocks. Let L be the number of blocks. These blocks are
hashed using the SHA2 hash function, and these hash values
are used to build the Merkle tree. Therefore, there are L leaf
nodes in the tree. Theorem 1 shows that an m-ary Merkle
tree has I = (L−1)

(m−1) internal nodes. It shows that there is an
overhead of I hash functions. The cryptographic hash func-
tions are slower than the non-cryptographic hash functions.
Its cryptographic hash functions impact the Merkle tree’s
performance, for instance, SHA2.

2.2 Construction

Fig. 1: Construction of the conventional binary Merkle Tree.

Figure 1 demonstrates the construction of the Merkle
tree. Initially, all blocks are hashed using cryptographic
string hash functions, for instance, SHA256. Then, the two

consecutive hash values are concatenated, and the concate-
nated hash value is hashed using the same hash function
to form their parents. Again, the same procedure is applied
to the subsequent consecutive blocks. This process is rerun
repeatedly until it becomes a single node, i.e., it repeats
the process to get the Merkle root. Finally, the Merkle root
is published publicly and can be distributed to peers. The
creator of the Merkle tree maintains the tree, and the peers
do not require the entire Merkle tree.

2.3 Verification

Fig. 2: Verification process of a particular block’s authentic-
ity in binary Merkle tree.

Figure 2 shows the process of verifying a particular
block. Merkle tree verifies the authenticity of a specific
block. For instance, a user has downloaded a block and
needs to verify the block for its authenticity and integrity.
In this case, the user does not require the entire Merkle
to verify the block. It requires only a few hash values to
verify the authenticity of the block, as shown in the dashed
circle for block b3 in Figure 2. Therefore, it features a partial
verification process of a data block. Lemma 1 shows the total
number of nodes in terms of the number of leaf nodes.

2.4 Analysis
Merkle tree is a computationally costly process. In this
analysis, we analyze its time and space complexity. For
generality, we assume an m-ary Merkle tree. Theorem 1
shows the total number of internal nodes for L blocks
of data. Moreover, it shows the relation between the total
number of leaf nodes and the internal nodes.

Theorem 1. The total number of the internal nodes of m-ary
Merkle tree is I = (L−1)

(m−1) .

Proof. The relation between the leaf nodes and internal
nodes is given in Equation (1).

L = (m− 1) ∗ I + 1 (1)

Therefore, the total number of internal nodes can be derived
from Equation (1). Thus, the total number of internal nodes
is (L−1)

(m−1) .
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Lemma 1. The total number of nodes for L leaf nodes is n =

L+ (L−1)
(m−1) .

Proof. The total number nodes comprises of leaf nodes and
internal nodes. Thus, the total number nodes is n = L + I .
Substituting I using Theorem 1, we get n = L+ (L−1)

(m−1) .

Theorem 2. The m-ary Merkle tree has height h = dlogmne for
n nodes.

Proof. The m-ary Merkle tree is a complete tree, i.e., all leaf
nodes are at the same level. Therefore, the total number of
nodes is given in Equation (2).

n =
h∑
i=0

mi =
(mh+1 − 1)

(m− 1)
(2)

By solving the Equation (2), we get the height of the m-ary
Merkle tree. The height is derived from the Equation (2) in
Equation (3).

(mh+1 − 1)

(m− 1)
= n

mh+1 − 1 = (m− 1)n

mh =
(m− 1)n+ 1

m− 1

h = logm(
(m− 1)n+ 1

m− 1
)

h = logm(m− 1) + logmn+ logm1− logm(m− 1)

h = logmn

(3)

Thus, the height of the m-ary Merkle tree is logmn.

Theorem 2 shows the height of the Merkle tree in terms
of the total number of nodes in the tree. The total number
of nodes is shown in Lemma 1. Therefore, the total height is
logm(L + (L−1)

(m−1) ) in terms of total number number of leaf
nodes. Therefore, the height of the binary Merkle tree is
log2(2L − 1).

Theorem 3. The m-ary Merkle tree takes O(logmn) time com-
plexity to insert a new node or delete a node.

Proof. The insertion or deletion process is similar to the heap
tree. The insertion process requires entire rehashing from
bottom to top on the insertion path of the tree. The height
of the m-ary tree is logmn, and therefore, the m-ary Merkle
tree takes O(logmn) time complexity to insert a new node
or delete a node.

Theorem 4. The building time complexity of the m-ary Merkle
tree is O(n).

Proof. In an m-ary Merkle tree, there are L hash function
calls in the blocks, i.e., there are L leaf nodes. From Theorem
1, the total number of hash functions for the internal nodes
is (L−1)

(m−1) . It constitutes the total number of nodes where L+
(L−1)
(m−1) = n. Therefore, the total number of the hash function
calls is n. Thus, the total time complexity to build the m-ary
Merkle tree is O(n).

Theorem 5. The verification time complexity of a particular block
in m-ary Merkle tree is O(logmn).

Proof. All Merkle tree is not required to verify a particular
block. A few hash values are needed to verify the correctness
of the specific block; however, the tree’s total height is the
minimum requirement of the hash number. Thus, the veri-
fication time complexity of a particular block is O(logmn),
which is the height of the tree.

Theorem 6. The verification time complexity of the total number
of L blocks is O(L logmn)

Proof. In an m-way Merkle tree, there are L blocks, and
the total number of nodes in the tree is n as shown in
Lemma 1. Each block requires a verification time complexity
of O(logmn). Therefore, it requires O(L logmn) time com-
plexity for L blocks to verify each blocks. The L ≈ n, thus,
the total time complexity to verify the authenticity of all
blocks are O(n logmn).

Theorem 7. The extra space complexity of m-ary Merkle tree is
O(n).

Proof. There are n nodes in the m-ary Merkle tree for L
blocks. Therefore, the Merkle tree requiresO(n) extra spaces
to construct the tree for the given set of blocks. The relation
between blocks and nodes is given in Lemma 1. The tree
node contains a hash value that is generated by the SHA2
hash function. Therefore, it consumes a large amount of
extra memory.

3 ISSUES OF MERKLE TREE

Merkle tree is not a searched tree; it’s a simple m-ary or m-
way tree. Definition 1 and 2 defines the m-ary tree. Merkle
tree construction cost is given in Lemma 1, and Theorem 4.
The total cost is given by Lemma 1 and Theorem 4. There are
several issues in the Merkle tree, which are outlined below-

• Let us assume that the set of blocks L consists
of millions of blocks. Then, it is not feasible for a
conventional computer to construct the Merkle tree.
Therefore, the Merkle tree wastes not only energy but
also computational resources.

• Merkle tree construction requires O(n) hash function
calls which is time-consuming. As a result, it is not
feasible for a large set of blocks.

• Merkle tree cannot be constructed by BTree, B+Tree,
AVL Tree, or any other search tree; otherwise, it
violates the definition of Merkle tree.

• Merkle tree uses secure hash functions; for example,
SHA2. However, these secure hash functions are
costly, and a single operation also costs significantly,
which cannot be neglected.

• Merkle tree requires extra spaces of O(n), and it is
costly due to large-sized memory requirements per
node. It requires a mammoth-sized RAM for millions
of data blocks.

3.1 Communication costs
Computation is much faster than communication. Com-
munication involves many issues; for instance, it requires
network access, increases network traffic and latency. There-
fore, the Merkle tree can reduce its cost if the Merkle tree can
reduce the network accesses. However, it is hard to reduce
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the total number of network accesses in the Merkle tree
structure. Merkle tree requires L network accesses to verify
all data blocks, and it is the biggest drawback of the Merkle
tree. For example, there are η users downloading the same
file, and each user is verifying the data blocks, then it creates
huge network accesses, which is exactly ηL. Moreover, the
overall verification cost is O(ηL logmn).

4 BLOOM FILTER

Bloom Filter is an approximate membership filter with µ
bit array, initially filled with zeros. The insertion process
inserts 1 into k slots in the Bloom Filter by k independent
hash functions. Query process checks whether all k slots are
having 1 or not. If all slots contain 1, then it returns true;
false otherwise. The deletion process resets all 1 by 0 in k
slots in the bit array by the k independent hash functions.

Definition 3. A Bloom Filter is a approximate membership filter
that can answer “YES” or “NO” with a probability. Let U be the
universe, S = {x1, x2, x3, . . . , xn} be the set where S ⊂ U,
and B be the bloom filter of µ bit array initially filled with 0. Let
h = {h1, h2, h3, . . . , hk} be the k independent hash functions.
Let S inserted into the Bloom Filter B where S ∈ B using k
independent hash functions. Let xi be a random query and maps
it to the Bloom Filter B using f : h(xi) 7→ {0, 1}∗. The true
positive, false positive, true negative, and false positive are defined
below-

• True positive: If xi ∈ S and xi ∈ B, then the result of
Bloom Filter is a true positive.

• False positive: If xi 6∈ S and xi ∈ B, then the result of
Bloom Filter is a false positive.

• True Negative: If xi 6∈ S and xi 6∈ B, then the result of
Bloom Filter is a true negative.

• False negative: If xi ∈ S and xi 6∈ B, then the result of
Bloom Filter is a false negative.

0 1    2    3    4    5    

0 1 1 1 1 1 1 10 0 0

Fig. 3: Bloom Filter: Insertion and Query operations.

The µ is the number of bits in the bit array, the proba-
bility of a particular slot is not set to 1 by a specific hash
function is (1− 1

µ ). The probability of that particular slot is
not set to 1 by k hash functions is given by Equation (4).

(1− 1

µ
)k (4)

We know that
e−1 = lim

∞
(1− 1

µ
)µ (5)

Substituting Equation (4) by Equation (5), we get Equation
(6).

(1− 1

µ)k = ((1− 1
µ )
µ)k/µ ≈ e−k/µ

(6)

If we insert n items into the bit array, then probability of that
particular bit is still not set to 1 is given by Equation (7).

(1− 1

µ
)nk ≈ e−kn/µ (7)

The probability of that particular bit is set to 1 is given by
Equation (8).

(1− (1− 1

µ
)nk) ≈ 1− e−kn/µ (8)

The probability of all slots of µ bit array to be 1 is given in
the Equation (9).

ε = (1− e−kn/µ)k (9)

Equation (9) gives us the false positive probability. However,
the value of k must be optimal for a certain number of
inputs n; for instance, a large value of k increases the false
positive probability, and also, a small value of k increases
the false positive probability. Therefore, the value of k must
be optimal to reduce the false positive probability.

k =
µ

n
ln 2 (10)

Equation (10) gives optimal false positive probability for
given µ bits array and n input items [20]. Now, the value
of k is replaced in Equation (9), we get Equation (11).

ε =
(
1− e−(

µ
n ln2)

n
µ

) µ
n ln2

(11)

Taking ln both side of Equation (11), we get Equation (12).

ln ε = −µ
n
(ln 2)2

µ = − n ln ε

(ln 2)2

(12)

Equation (12) gives us the required memory size in bits for
a given number input items and a desired false positive
probability.

Property 1. The time complexity of insertion, query and deletion
in Bloom Filter is O(k) ≈ O(1) where k is the total number of
hash functions.

Equation (10) gives the total number of hash function
requirements. However, it is a pretty small number for
large input items as shown in Property 1; for instance, it
requires k = 10 hash functions for 10M inputs in standard
Bloom Filter [21]. However, it takes k = 5 for the exact
requirements in 2D Bloom Filter [22].

Property 2. The extra space complexity of Bloom Filter is µ =
− n lnε

(ln 2)2 bits.

Property 2 shows the relations among the required mem-
ory, error rate, and input items. It consumes µ = 17.14MiB
for 10M input items and 0.001 false positive probability
standard Bloom Filter [21]; however, it takes k = 2MB for
the same settings in 2D Bloom Filter [23], [24]. Thus, Bloom
Filter uses a tiny amount of memory. There are also diverse
fast approximation filters, namely, Morton filters [25], and
XOR Filters [26]. Recent research suggests that Bloom Filters
can be constructed with false positive free zone [27], [28].
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TABLE 1: Comparison between Merkle tree and Bloom
Filter. The O(k) ≈ O(1) because the value of k is nearly
constant.

Features Merkle tree Bloom Filters
Building cost O(n) O(kL)
Insertion cost O(logmn) O(k)
Deletion cost O(logmn) O(k)
Updating cost O(logmn) O(k)

Verification of a block O(logmn) O(k)
Verification of all blocks O(n logmn) O(kL)

Extra spaces O(n) µ
Type Deterministic Approximations

4.1 Comparison
Table 1 demonstrates the comparison between Merkle tree
and Bloom Filter. Bloom Filters are faster than Merkle tree.
Bloom Filter uses a non-cryptographic string hash function,
while Merkle tree uses a cryptographic string hash function.
Therefore, the Merkle tree is much slower than Bloom Filter.
Patgiri et al. compares the performance of between the
non-cryptographic string hash function and cryptographic
string hash function [20]. Moreover, the construction cost of
Bloom Filter is faster than Merkle tree. Similarly, verification
of a particular block in Bloom Filter is also faster than
Merkle tree. In short, Bloom Filter is much faster in all
operations than Merkle tree. However, the Bloom Filter is
an approximation data structure, while the Merkle tree is a
deterministic data structure. Therefore, Bloom Filter cannot
replace the Merkle tree due to its false positive probability.

5 LINKEDHASHX
We propose a new variant of Merkle Tree using hash and
XOR operations, LinkedHashX for short, which is used to
replace Merkle tree. LinkedHashX maintains its root. It does
not require maintaining process.

Property 3. If two same keys are XORed, then it produce zero
output, i.e., X1 ⊕X1 = 0.

Definition 4. Let hp, hb, and hd be the previous hash value,
the current hash value of a particular block, and the desired hash
value, respectively. Then, LinkedHashX can be defined as given in
Equation (13).

hd = hp ⊕ hb (13)

5.1 Construction
The construction of LinkedHashX is straightforward and
simple. Equation (14) shows the construction process of L
blocks. The last hash value of Equation (14) is the root of
LinkedHashX.

h1 ⊕ h2 = h12 ⊕ h3 = h123 ⊕ h4 = h1234 ⊕ h5
= h12345 ⊕ h6 = h123456 ⊕ h7 =

h1234567 ⊕ h8 = h12345678 ⊕ . . . = h12345678...L

(14)

Total hash functions calls are exactly L and the total number
of XOR operations are (L−1). Therefore, the total construc-
tion cost is (2L − 1). The XOR operations are much faster
than the hash operations. However, conventional Merkle
tree requires (2L− 1) hash functions calls and (L− 1) XOR
operations for binary tree structure. LinkedHashX publishes
the root h1234...L publicly along with the hash value of the
root, i.e., hroot = h(h123...L).

5.2 Insertion operation

To insert a new node, a new hash value of a transaction is
XORed with root of Equation (14).

h12345678 ⊕ hi = h12345678iL (15)

Equation (15) gives the the insertion operations. Therefore,
it requires a single hash function call and an XOR operation.
The total number of operations is 2, and hence, the time
complexity is O(1).

5.3 Delete operation

Delete operation is straightforward and straightforward by
using Property 3. For instance, we would like to delete h5,
then perform XOR operation h5 with the root of Equation
(14).

h12345678 ⊕ h5 = h1234678L (16)

Equation (16) shows the deletion process. It requires a single
operation which is the XOR operation. The hash value h5
is already calculated for LinkedHashX. Therefore, its time
complexity is O(1).

5.4 Update operation

Let us assume that the h1 is to be updated to the new hash
value hu.

h12345678 ⊕ h1 = h2345678L

h2345678 ⊕ hu = h2345678uL
(17)

Equation (17) demonstrates the update operation. It requires
deleting the existing hash value h1 by performing an XOR
operation with the root of LinkedHashX. The new hash
value hu can be inserted into the root of LinkedHashX for
the update. The two XOR operations and a hash function
call are required to update a particular node. Therefore, its
time complexity becomes O(1).

5.5 Space complexity

LinkedHashX does not use any extra spaces, and therefore,
its space complexity is O(1). LinkedHashX maintains its
root only; thus, there is no additional space requirement.
On the contrary, most of the Merkle tree implementation
uses at least O(L) space complexity where L is the number
of blocks.

5.6 Verification

One of the most significant disadvantages of LinkedHashX
is its verification. Suppose a user downloads a block of a
file. But it cannot verify partially in LinkedHashX, but the
Merkle tree offers verification of the authenticity of a par-
ticular block. In LinkedHashX, it requires complete down-
loading of all blocks to verify the authenticity and integrity.
Therefore, LinkedHashX cannot replace the Merkle tree due
to the unavailability of partial verification of authenticity
and integrity.
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TABLE 2: Caption

Complexity Merkle tree LinkedHashX
Building cost O(n) O(L)
Insertion cost O(logmn) O(1)
Deletion cost O(logmn) O(1)
Updating cost O(logmn) O(1)

Verification of a block O(logmn) Doesn’t support
Verification of all blocks O(n logmn) O(L)

Extra spaces O(n) O(1)

5.7 Comparison

Table 2 compares the conventional Merkle tree and Linked-
HashX. Merkle tree invokes n hash functions while Linked-
HashX invokes L in the time of constructions. Therefore,
LinkedHashX is much faster than Merkle tree. However,
LinkedHashX does not permit partial verification of a
block’s authenticity and integrity. Therefore, LinkedHashX
cannot be used directly in peer-to-peer networking. The
insertion, deletion, and updating operations do not require
in most applications.

6 HEX-BLOOM: THE REPLACEMENT

Merkle tree is costly in terms of time/space complexity and
network access. Therefore, it requires replacing the Merkle
tree with new design philosophy.

Our proposed system combines both LinkedHashX and
Bloom Filter. However, Bloom Filter can be replaced with
other approximation filters like Cuckoo Filter [29], Morton
filters [25], and XOR Filters [26].

6.1 Construction

In the construction process, it requires to construct Linked-
HashX as well as Bloom Filter. All hash values are inserted
into Bloom Filter. Similarly, the construction of Linked-
HashX requires (L + 1) cryptographic hash functions and
(L − 1) XOR operations. Bloom Filter requires L insertion
operation with k × L non-cryptographic string hash func-
tions. However, the non-cryptographic string hash function
is much faster than the cryptographic string hash function
[20]. The Bloom Filter and the root of LinkedHashX are
maintained for future use.

6.2 Verification

The verification process requires the LinkedHashX root and
Bloom Filter, which are downloaded from the trusted node
or server. The LinkedHashX root contains the XOR value
of all the hash values and the hash of the final results, i.e.,
h123...L and hroot. The partial verification process requires
Bloom Filter because LinkedHashX does not support partial
verification of a block’s authenticity. A block is verified
in Bloom Filter for its authenticity after completely down-
loaded the block, and at the same time, the user needs to
construct the LinkedHashX. Thus, the Bloom Filter gives ap-
proximate verification of a block’s authenticity and integrity.
LinkedHashX is constructed by the user while downloading
the data blocks. When all processes are completed, the
constructed LinkedHashX root is compared with the down-
loaded LinkedHashX root.

7 ANALYSIS

Bloom Filter results true or false depending on approxima-
tion. The true result of the Bloom Filter does not guarantee
the existence of the item in the Bloom Filter. However, the
false result of the Bloom Filter guarantees that the item is
not a member of the Bloom Filter.

7.1 Communication cost

The Conventional Merkle tree process creates enormous
network traffic. A set of data blocks n creates n network
access for a single user. Suppose there are η users, and these
users are interested in the same data, then network accessing
cost becomes O(ηn). It creates unnecessary network traffic
in verifying each block and transmitting the required hash
values to verify each block’s authenticity and integrity. In
our proposed solution, A user downloads the LinkedHashX
root and Bloom Filter only once. Then, the user verifies
each block’s authenticity and integrity in Bloom Filter. The
complete proof can be done after the completion of data
downloading. Also, it provides deterministic proof for the
correctness of the downloaded data using LinkedHashX
root. Thus, it reduces the communication cost significantly.

7.2 Comparison

TABLE 3: Comparison between Merkle tree and our pro-
posed model.

Features Merkle tree Our solution
Building cost O(n) O(kL)
Verification of a block O(logmn) O(k)
Verification of all blocks O(n logmn) O(kL)
Extra spaces O(n) µ
Communication cost O(L) O(1)
Total non-
cryptographic hash
functions

NA kL

Total cryptographic
hash functions

n L

Type Deterministic Approximations
and deterministic

HEX-BLOOM is much faster than the existing state-of-
the-art Merkle tree solution. The total construction cost of
our proposed model is O(kL), whereas the Merkle tree
takes O(n) time complexity. Here, the k is the number of
non-cryptographic string hash function calls, and it can be
ignored due to a small-sized value. Therefore, the Merkle
tree is slower than our proposed system in construction.
Furthermore, the verification of a block requires network
access, and its performance depends on the latency. Also,
it requires O(logmn) time complexity which consists of
all cryptographic string hash functions. Besides, it requires
L times network accesses to verify all block’s authentic-
ity. Therefore, HEX-BLOOM is significantly faster than the
existing state-of-the-art Merkle tree because our proposed
model does not require network access for verification. The
state-of-the-art Merkle tree consumes n × β where β is the
bit size of the hash value. On the contrary, our proposed
model consumes µ memory for Bloom Filter and 2β bits for
LinkedHashX root. Overall, HEX-BLOOM is a better choice
than the Merkle tree in every aspect.
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7.3 Drawback

Case 1. There is a false positive in Bloom Filter if the constructed
LinkedHashX root does not match with constructed LinkedHashX
root.

Case 1 states that Bloom Filter can return a false posi-
tive. The downloaded LinkedHashX root and constructed
LinkedHashX root mismatches due to the false positive
probability. A few blocks are corrupted or altered, and
hence, Bloom Filter returns true for the corrupted or altered
blocks. It leads to a complete download of the data blocks
and found the mismatch between the downloaded Linked-
HashX root and constructed LinkedHashX root. Then, there
is an error, and therefore, the entire process has to be redone.
In Case 1, it is not possible to diagnose the error and
unable to find which block causes the error. However, it is
improbable for the more extensive set of blocks. If the Bloom
filter returns negative, the process is terminated.

8 CONCLUSION

In this article, we unearth the drawback of the Merkle
tree and propose a new model to solve the issue of the
Merkle tree, called HEX-BLOOM. HEX-BLOOM is signif-
icantly faster than the state-of-the-art Merkle tree. More-
over, it also consumes less memory than the state-of-the-
art Merkle tree. We have demonstrated that the Merkle tree
creates unnecessary network traffic, which is addressed in
our proposed model. State-of-the-art Merkle tree requires
network access to verify a block, and therefore, it is time-
consuming, and its performance depends on the network
latency. On the contrary, HEX-BLOOM depends on Bloom
Filter to verify each block’s authenticity. Therefore, it does
not require network access in the verification process of each
block. Overall, HEX-BLOOM outperforms the state-of-the-
art Merkle tree in every aspect.
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