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Abstract. Because of the everlasting need of space to store even the
headers of a blockchain, Ethereum requiring for example more than 4 GiB
for such a task, superlight clients stood out as a necessity, for instance
to enable deployment on wearable devices or smart contracts. Among
them is FlyClient [2], whose main benefit was to be non-interactive. How-
ever, it is still to be shown how a such protocol can be deployed on an
already existing chain, without contentious soft or hard forks. FlyClient
suggests the use of velvet forks [5,15], a recently introduced mechanism
for conflict-free deployment of blockchain consensus upgrades – yet the
impact on the security of the light client protocol remains unclear.
In this work, we provide a comprehensive analysis of the security of Fly-
Client under a velvet fork deployment. We discover that a naive velvet
fork implementation exposes FlyClient to chain-sewing attacks, a novel
type of attack, concurrently observed in similar superlight clients [6].
Specifically, we show how an adversary subverting only a small fraction
of the hash rate or consensus participants can not only execute double-
spending attacks against velvet FlyClient nodes, but also print fake coins –
with high probability of success. We then present three potential mitiga-
tions to this attack and prove their security both under velvet and, more
traditional soft and hard fork deployment. In particular, our mitigations
do not necessarily require a majority of honest, up-to-date miners.

Keywords: Blockchain · Superlight clients · FlyClient · Velvet forks ·
Cross-chain communication · Chain-sewing.

1 Introduction

FlyClient [2] is a superlight client designed in 2019 whose goal is to overcome the
flaws in the Superblock NIPoPoW protocol [5]. As such, the FlyClient protocol
aims to prove to a client which hasn’t access to a given blockchain that a certain
transaction lies within this chain, just like an SPV client [10]. Unlike an SPV
client however, a superlight client only requires a logarithmic number of blocks
with respect to the length of the chain to perform this.

FlyClient has been a major breakthrough within the blockchain community,
and there are now plethora of protocols that builds upon, or try to improve
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it [7,9,13,14,8]. FlyClient has shown especially useful in the case of cross-chain
communication where the client could be for instance a Smart Contract, whose
storage and number of performed operations must be as low as possible to avoid
excessive fees when verifying a transaction. This enthusiasm for FlyClient’s use-
fulness on this topic is most likely motivated by the fact that cross-chain commu-
nication now involves several millions of dollars [12], not to mention the recent
rise of cryptocurrencies value [11], together with the hype for them, leading to
the need for clients like smartphones with low storage to handle multiple chains
at once.

In order to prove that a given block is included within a chain, FlyClient re-
quires an additional piece of data to be stored within blocks: the interlink data.
Hence, deploying FlyClient on an already existing chain implies that a protocol
change strategy has to be chosen. The very fact that FlyClient induces a proto-
col change via a fork is considered by numerous to be its main drawback. This
explains in part for instance the need to build upon it to build the HawkClient
[9] or why the current BTC-Relay implementation only considers SPV clients
for now [4]. While the original FlyClient paper describes how the protocol would
have to be deployed via contentious soft or hard forks, the authors also suggest
that FlyClient can also be deployed via a backward compatible velvet fork. A
velvet fork [15] is a blockchain consensus upgrade strategy which does not re-
quire a majority of miners to adopt the new protocol, unlike soft or hard forks:
blocks mined by both upgraded and non-upgraded miners are ensured to be
accepted by consensus. However, FlyClient’s authors provide neither a detailed
velvet fork implementation, nor do they prove the security of their velvet fork
implementation proposal.

In this paper, we emphasize the fact that the secure deployment of FlyClient
under a velvet fork requires to consider the dangers arising from this method.
In particular, we show that FlyClient, were it to be naively deployed on a velvet
fork as indicated by its authors, is subject to so-called chain-sewing attacks
[6]. A chain-sewing attack may arise whenever a protocol using an interlink
data, such as FlyClient or NIPoPoW, is deployed on a velvet fork, which gives
an adversary the possibility to include malicious data to fool the client. We
describe how such attack strategies can be executed by adversaries controlling
less than half of the total computational power in Proof-of-Work blockchains
such as Bitcoin, and succeed with very high probability. Not only do chain-sewing
attacks in this setting allow to double-spend coins, but also allow the adversary to
convince a velvet FlyClient client to accept blocks and transactions invalid under
the chain’s consensus rules – ultimately breaking the assumption of light clients
that the longest (“main”) chain will always contain valid blocks. We describe
different strategies that an adversary can perform to improve their probability
of success while minimizing their cost. Furthermore, we propose modifications
to the FlyClient protocol to make it resilient against these attacks and discuss
the incurred cost overhead compared to the original FlyClient implementation.
In particular, we discuss countermeasures allowing to release the assumption
of a majority of honest, up-to-date miners. Finally, we discuss the relevance of
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implementing FlyClient as a velvet fork, considering the drawbacks this method
suffers from.

We present in section 2 a quick introduction to FlyClient and velvet forks,
which is the minimum knowledge to understand the attack. In section 3, we
explain how FlyClient can be subject to a chain-sewing attack when deployed
as a velvet fork. We provide in section 4 an analysis of the attack, highlighting
how much does it cost to an adversary to set this attack up in average and how
long do they have to wait to fool the client. Countermeasures to this attack are
highlighted in section 5. Finally, section 6 concludes this paper.

2 FlyClient and velvet forks background

2.1 FlyClient

Presentation of FlyClient FlyClient [2] is a superlight client [5,2] proposed in
2019. As such, its goal is to prove to a client which hasn’t access to a blockchain
C that a transaction TX lies within this chain, just like an SPV client [10]. Unlike
an SPV client however, FlyClient is a superlight client, which means that it only
requires a logarithmic number of blocks with respect to the length of the chain
to prove this inclusion.

However, since the client does not ask for every block in the chain, it cannot
recursively check that every Proof of Work (PoW) that forms the chain is valid.
Hence, an adversary with less than half of the total hashrate can try to have
the client accepting a transaction which lies in a block that isn’t on the main
chain. Such a situation is depicted on Figure 1. Note that since the client verifies
the node claiming to have the heaviest chain first, that is the longest one in the
case of a constant difficulty protocol, and then completely trusts this node, the
adversary has to include fake blocks in their fork in order to have a chain which
is as heavy as the main chain for their proof to be considered.
FlyClient’s goal is to sample at least one invalid block to prove that the attacker
is dishonest. In order to do this, FlyClient’s authors determined the optimal
sampling strategy that must be used by the client. We won’t present in this
section what this optimal strategy is. Still, a very important property is to be
denoted: the optimal sampling strategy samples more recent blocks with higher
probability.

Merkle Mountain Ranges In order for the client to know that a sampled
block is indeed included within the chain, the FlyClient protocol extensively uses
Merkle Mountain Ranges (MMR). An example of a MMR with 11 leaves is given
in Figure 2.

The construction of an MMR won’t be described in this paper. What is
important to notice however is the following:

– Given the MMR root, the client can efficiently verify the inclusion
of a block within the chain with a similar method to the one used with
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Genesis f

(f + 1)′

Contains TX

f + 1

(f + 2)′ (f + j)′

Adversary’s fork

f + 2 f + j

Main chain

Fig. 1. FlyClient use case. Curved lines represent one or more blocks. Red blocks repre-
sent invalid blocks. The attacker forks the chain starting from block f and tries to have
the client accept a transaction which lies within the block at height f + 1. However,
since the attacker owns less than half of the total hashrate, they are forced to include
fake blocks in their fork to have a chain as long as the main chain. If they don’t, their
chain would be smaller than the main chain, which will lead in the other chain being
verified and accepted before they can submit their proofs.

Merkle Trees: the prover provides the client with the path along the MMR to
reach the MMR root. Lying on a block eventually requires the prover to find
another pre-image to the MMR root, which is believed to be computationally
infeasible, H being a cryptographic hash function.

– The root of the MMR which only contains the first k blocks of the
chain can be verified to be consistent with the one of the MMR
containing every block in the chain. This ensures that the adversary
cannot simply put in their chain a precomputed block with a valid PoW,
since its interlink data would be found to be inconsistent with the provided
MMR root. Furthermore, it is easy for a node, given the MMR root and the
inclusion proof of the k-th block, to compute the root of the MMR containing
the first k − 1 blocks.

– It is easy for a node to maintain an MMR that represents their
local chain, since adding a leaf to an MMR is computationally easy.

To put it in a nutshell, the FlyClient protocol operates this way:

1. The client asks the prover for the last block of their chain, which contains
the root of the MMR containing every block preceding the last one, along
with the length of their chain. If both provers don’t claim having the same
chain length, the longer chain is verified first, as described in the Superblock
NiPoPow paper [5].

2. The client asks the prover for a number of blocks logarithmic with respect to
the length of the chain according to the optimal sampling strategy described
in the original FlyClient paper [2]. Every block is provided to the client along
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MMR root
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Fig. 2. A MMR with 11 leaves. hi are block hashes and H is a cryptographic hash
function like SHA-256.

with an MMR proof of inclusion, that is the path along the MMR to reach
the root.

3. If every sampled block is valid, the client trusts this prover and does not
consider other proofs. Otherwise, it checks the following prover.

Note that this assumes a model where at least one prover is honest, which is the
one used in the original FlyClient paper [2]. Furthermore, the protocol described
in the FlyClient original paper [2] is non-interactive. This does not change our
analysis however.

2.2 Velvet forks

Velvet forks are an uncontentious way to deploy a new protocol on top of an
old one [15]. Let us consider a situation where an arbitrary (potentially small)
portion of miners are updated. Besides, let us assume that the new protocol
reduces the set of valid blocks, just like a soft fork. Hence, a block mined by an
updated miner is considered valid by a non-updated miner. The principle of a
velvet fork is the following: every non-updated miner continues to mine on top
on the main chain, just like they used to. Every updated miner mines blocks
accordingly to the new protocol on top on the main chain, regardless of whether
previous blocks are updated or not. This is shown on Figure 3.

Genesis f f + 1 f + 2 f + 3 n− 1

Fig. 3. Example of how a velvet fork works in practice. Red blocks represent invalid
blocks with respect to the new protocol, green ones represent valid blocks with respect
to the new protocol. The velvet fork is launched at height f .
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Hence, whatever the percentage of updated miners is, a velvet fork allows the
protocol to be deployed, assuming that the fact that invalid blocks are present in
the chain. From now on, we call invalid blocks with respect to the new protocol
legacy blocks. However, it may be necessary for the new protocol to be adapted,
so it considers the fact that invalid blocks with respect to this new protocol are
now part of the main chain.

2.3 FlyClient under a velvet fork deployment

According to the FlyClient original paper: “For FlyClient the velvet fork would
lead to a constant fraction α of blocks containing an MMR root. Blocks created
by outdated nodes would not contain the root. The FlyClient protocol would
simply treat multiple blocks as one. Concretely, blocks that do not contain an
MMR root are viewed as part of the next upgraded block. The miner will always
download and check these joined blocks together.” [2]

Hence, for FlyClient, deploying the protocol as a velvet fork is tackled by
considering legacy blocks as part of valid blocks. What this means is that if
a legacy block is sampled, then the prover will provide the client with every
following block until a block mined by an updated miner is found. This is shown
on Figure 4.

Genesis f f + 1 f + 2 f + 3 n− 1

Sampled

Sampled with f + 1

Sampled with f + 1

Fig. 4. Example of what happens when a legacy block is sampled. Block at height f+1
contains no interlink data, while block at height f + 2 contains invalid interlink data.
The prover will provide the client with blocks from f + 1 to f + 3 along with an MMR
proof of inclusion for block at height f + 3.

A crucial point is that a prover can declare any block as legacy. Indeed, from a
non-updated miner’s point of view, updated blocks containing a valid interlink
piece of data and a block containing an arbitrary piece of data in the interlink
field is indistinguishable. As such, both these kinds of blocks are accepted within
the main chain.

Now, in order to show why this capability is essential, let us consider a flawed
protocol not allowing the provers to declare blocks containing data as legacy. A
very simple attack for an adversary would be to mine a block containing random
data in the interlink field. If this block is sampled during an honest prover’s proof,
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they would be unable to provide an MMR proof of inclusion for this block, since
its interlink data is not consistent with the honest prover’s MMR root. Since
it contains data, they cannot declare it as legacy either and thus are unable to
provide the client with a valid proof. Hence, mining a single block on the main
chain allows the adversary to completely break the protocol, since even honest
miners can’t provide the client with valid proofs.

To put it in a nutshell, it is mandatory for the protocol’s sake to allow any
prover to declare any block as legacy. When they do so, they have to provide the
client with any subsequent blocks until one for which they are able to provide a
valid MMR proof of inclusion.

Finally, it is also important to remark that detecting that a prover is dishonest
is not enough for the protocol to be sane. One may think that preventing any
transaction to be considered when a prover is dishonest is enough, but in the
situation where the honest prover wants a transaction to be verified while the
adversary doesn’t want to, not considering this transaction actually benefits the
adversary. Hence, the client is to determine which prover is dishonest before
taking any decision concerning the transaction to be verified.

3 Chain-sewing attack on FlyClient

The principle of a chain-sewing attack has been firstly described in [6]. The
principle is to take advantage of the fact that every miner can put arbitrary
data in the interlink field to fool the miner. The goal of the adversary running
this attack is to have a potentially invalid transaction accepted by the client,
assuming the client uses the FlyClient protocol.

3.1 Models

Provers model We work with the two-provers case, as described in the original
FlyClient paper: a client asks two provers for a proof of inclusion of a transaction
within the chain. While the original model considered by FlyClient’s authors
considered that at least one prover was honest, we will assume that exactly
one prover is honest, the other one being dishonest. Indeed, if both provers are
honest, they will agree on the fact that the transaction is present within the
main chain, and the random sampling won’t have to be performed. Hence, we
assume that both provers don’t agree on whether the transaction is included
within the chain, which means that at least one of them is dishonest. Since we
still assume that at least one prover is honest, it leads to one honest prover and
one dishonest prover.

Distributed Ledgers model Just like the original FlyClient paper [2], we
put our analysis under the Bitcoin Backbone model [3]. Specifically, the mining
process is represented as a memoryless process, where each player queries a
random oracle H until they get a value such N such that H(N) < T , where T
is the current difficulty of the mining process. Throughout our analysis, we will
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assume T to be constant, that is, we work in the constant difficulty setup. This
assumption is released in subsection 4.5, where we justify that our attacks still
work in the variable difficulty setup.

Since we can model the mining process by a memoryless process, that we work
in the two-provers model and that a given player having a computational power
of µ mines by definition a ratio µ of the blocks, we model the mining process in
rounds, where at each round, a player owning a computational power of µ has a
probability µ of mining the block. At the end of the round, exactly one player is
chosen to be the miner of the block according to their hashrate and another round
begins. Note that this is true even if a player performs selfish mining: another
round begins as soon as the adversary mines a block, even though this block is
not broadcasted. Indeed, the mining process being memoryless, the probability
that an honest player mines a block does not depend on the time they already
spent trying to mine it.

Finally, we consider a “fresh” client that connects to an already running
blockchain. It does not know anything about the main chain but its genesis
block, and the chain already has a considerable number of blocks in it. As a
consequence, the client did not store any block from the main chain that it
trusts to aid future synchronisation.

Adversary model Once again, we adopt the same adversary model as in the
original FlyClient paper. An adversary in our model owns a portion µ < 1

2 of
the total hashrate. They are able to mine on the main chain, to perform selfish
mining on a fork or to split their hashrate between a fork of their own and the
main chain. The original FlyClient paper also assumes that the adversary is able
to reorder messages within a round of the Bitcoin Backbone protocol. Since the
adversary does not use it for their attack, we omit this assumption in our model.

The goal of the adversary is to have the client accept a transaction lying in a
block the main chain does not know about. Since the client knows nothing about
the main chain but its genesis block, the adversary is free to fork the main chain
as far as they want, as long as their genesis block is the same as the one the client
knows about, given that the client trusts the chain with the most accumulated
difficulty on it, which is, in the constant difficulty setup, the longest chain.

Since they own less than half of the total hashrate, they are able to put fake
blocks within their fork to make their fork as long as the main chain. A fake
block can be:

– A block having an invalid PoW, which means that their hash is not lower
than the target difficulty T ;

– A block having invalid transactions in it, like invalid signed transactions or
transactions spending from an invalid UTXO, as explained in section 3.3;

– A block whose previous block reference in its header does not match the block
that precedes it, be it a block lying in the main chain or in the adversary’s
fork.

Creating such a block is computationally easy for the adversary, since they can
simply sample a block from the previous part of the chain to satisfy the PoW
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requirement. Of course, these blocks would have an invalid previous block ref-
erence, and the adversary won’t be able to provide a correct MMR proof of
inclusion for these. They can present any block to the main chain, which will be
accepted if and only if its PoW is valid and its previous block reference matches
that of the latest block of the chain. The adversary is also able to create a block
with a valid PoW and previous block reference but whose transactions are in-
valid. This is the case of the forking block, as explained in section 3.3. Note that
since we’re working in the velvet fork setup, the interlink data (i.e. the MMR
root) does not have to be valid, nor present, for a block to be accepted, as
explained in subsection 2.2.

We make the reasonable assumption that the adversary owns less than half
of the total hashrate. However, we do not assume that more than half of the
updated miners are honest. For instance, it is possible that 40% of the hashrate
is updated, while the adversary owns 25% of the hashrate and is dishonest. This
may happen if several adversaries collude or if a powerful adversary is amongst
the first miners to be updated.

Since the adversary can choose whenever they want to try to fool the client,
we also make the assumption that the client is requested to verify a transaction
the adversary sent it. In a more realistic setting, the client would ask the provers
to provide it with the transactions that concern it. The only thing that changes
between the two situation is whether the adversary has to prepare the attack
and launch it whenever they want, or if they have to wait for a client to connect,
once the attack is set up.

3.2 Notations

We use a Python-like indexing for the blockchain’s blocks. Hence, the genesis
block is denoted C[0], the last one C[ − 1] and the set of blocks from height i
inclusive to height j exclusive C[i : j]. The length of the chain is denoted by
n. Hence, the last block can also be denoted C[n − 1]. Blocks that are in the
adversary’s fork are denoted with a ′, like C[f + 1]

′
for instance.

We denote the adversary’s portion of the total hashrate by µ. According to
our adversary’s model, we have µ < 1

2 .

3.3 Principle of the attack

Setup As stated in our model, we consider a “fresh” client that does not know
anything about the blockchain except its genesis block. As stated in our model
section, it will connect to two provers, one of which is the adversary, whenever
the adversary decides to have the client verify a fake transaction.

Before contacting the client, the adversary was honestly mining on the main
chain. As such, they have an up-to-date chain and are connected to several honest
miners that they contact whenever they mine a block. Reciprocally, they learn
about any new block on the chain mined by a honest miner.
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Attack description One can read in the original FlyClient paper: “once a
malicious prover forks off from the honest chain, it cannot include any of the
later honest blocks in its chain because the MMR root in those blocks would not
match the chain” [2]. The chain-sewing attack on FlyClient is exactly about this:
merging the adversary’s fork with the main chain. Such a situation is represented
on Figure 5.

C[0] C[f ]

C[f + 1]′

C[f + 1]

C[m] C[− 1]

Contains TX

Fig. 5. A chain-sewing attack on FlyClient. Curved lines represent one or more blocks.
Black blocks are to be mined by the adversary. Dashed arrows represent MMR com-
mitment when different from the previous block reference. Since the root that the
adversary includes in their block is root of the MMR containing C[f + 1]′, it is easy for
them to provide a proof of inclusion of C[f + 1]′.

Definition 1. The block on top of which the adversary begins their fork is called
the forking block and is denoted by C[f ].

Definition 2. The block that merges the adversary’s fork with the main chain
is called the merging block and is denoted C[m].

The adversary does the following.

1. Starting from the forking block C[f ], the adversary mines a valid block C[f+
1]
′

but does not broadcast it to the rest of the network.
2. The adversary then mines the merging block, whose previous block reference

is the hash of C[f + 1], but the root inside this block is the root of the MMR
containing C[0 : f + 1] and C[f + 1]

′
.

3. For every block mined by the adversary on the main chain after having mined
the merging block, they include in it the root of the MMR where C[f + 1]

′

replaced C[f + 1].

By doing so, it is now easy for the adversary to provide an MMR proof of
inclusion of C[f + 1]

′
within the chain. Actually, if it isn’t for the previous block
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reference in C[m], nothing distinguishes C[f + 1] from C[f + 1]
′

from the client’s
point of view. Even worse, for every block sampled by the client, both provers
are able to provide an MMR proof of inclusion, by considering the other one’s
valid blocks as legacy. Hence, it is possible for the adversary to be trusted by
the client if their proof is checked before the honest prover’s. More generally,
the client has no way to distinguish the honest prover from the dishonest one.
Hence, the probability of success of this attack is 1, assuming that the client does
not check for consistency between previous block reference and sampled blocks.
This assumption may be justified by the fact that such a check is not necessary
to prove the security of FlyClient. As such, this is not part of the protocol as
described in the original article [2].

Adversary’s strategies It is high-likely that the adversary won’t manage to
mine both C[f + 1]

′
and C[m] before the honest miners do. Hence, they have

basically two strategies:

1. Add fake blocks to their fork until they manage to mine C[m];

2. Retry the attack if they don’t manage to mine C[m] before the honest
miners do.

We capture both these strategies by defining a new parameter F .

Definition 3. The maximum number of fake blocks that an adversary
accepts in their fork is denoted F . If the adversary does not manage to include
less than F fake blocks in their fork, they redo the attack.

For instance, setting F = 0 means retrying the attack until managing to have the
setup shown on Figure 5. Setting F = +∞ however means adding fake blocks
until managing to mine the merging block. Such a situation is shown on Figure 6.

C[0] C[f ]

C[f + 1]′ C[f + 2]′ C[m− 1]′

C[f + 1] C[f + 2] C[m− 1]

C[m] C[− 1]

Fig. 6. An example of a situation where the adversary had to include fake blocks in
their fork. Curved lines represent one or more blocks. Red blocks represent invalid
blocks. Dashed arrows represent an MMR commitment if different from the previous
block reference.
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If the adversary includes fake blocks in their fork, then the probability of success
of the attack decreases, since the client will declare the adversary as dishonest
if it samples a fake block. Hence, setting F = 0 leads to a higher probability of
success. However, it may be hard for the adversary to manage to put the attack
in place with a small F , especially if they have a small µ. On the other hand,
setting F = +∞ leads to the minimal probability the adversary can get, but is
the easiest scenario to put in place. This will be discussed further in section 4.
This situation is what we call thereafter the direct setup.

Definition 4 (Direct setup). The adversary uses the so-called direct setup
with parameter F if they try to mine the merging block C[m] as soon as possible
while accepting a maximum of F fake blocks in their fork, as shown on Figure 6.

The adversary adds a fake block to their fork whenever they don’t manage to
mine C[m] before the honest miners. If the number of fake blocks exceeds F , then
the adversary redo the attack from the beginning.

Finally, even though it wasn’t described in the FlyClient original paper, it is
possible that the client checks the previous block reference between two consecu-
tive sampled blocks. In this case, the setup depicted on Figure 5 does not succeed
with probability 1 anymore, since C[m] being sampled reveals an inconsistency
between its previous block reference and C[f + 1]

′
, which the adversary has to

provide since it contains the transaction to be accepted. In order to overcome
this problem, the adversary can increase its probability of success by mining an-
other valid block on top of C[f + 1]

′
before mining the merging block, as shown

on Figure 7.

C[0] C[f ]

C[f + 1]′ C[f + 2]′

C[f + 1] C[f + 2]

C[m] C[− 1]

Fig. 7. Trying to mitigate the merging block sampling problem. Curved lines represent
one or more block. Dashed arrows represent MMR commitment if different from the
previous block reference.

By doing so, one might believe that the adversary slightly increases the proba-
bility of success of the attack. Indeed, the attack now fails if both C[f + 2]

′
and

C[m] are sampled, or if the prover has to provide the client with the hash of
C[f + 2]

′
and C[m] is sampled. For instance, if m is odd, then in order to build
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the MMR proof of inclusion of C[m], the prover has to provide the client with
the hash of the block just before. Indeed, in order to build the very first hash in
the proof of inclusion, the hash of C[m− 1], that is C[f + 2]

′
would be required,

since C[m] is at the rightmost position in this subtree. However, if m is even,
then so is f + 1. Hence, since C[f + 1]

′
is sampled, the hash of C[f + 2]

′
would

be present in the MMR proof of inclusion of C[f + 1]
′
. Indeed, since C[f + 1]

′
is

at the leftmost position in this subtree, the hash required to build the very first
step of the inclusion proof is the next block’s. Hence, in every case, there is a
possibility for the client to detect the inconsistency between the previous block
reference in C[m] and the hash of C[f + 2]

′
. In order to use this strategy, yet

another valid block has to be included within the adversary’s fork, as shown in
Figure 8.

C[0] C[f ]

C[f + 1]′ C[f + 2]′ C[f + 3]′

C[f + 1] C[f + 2] C[f + 3]

C[m] C[− 1]

Fig. 8. The valid-between setup, mitigating the merging block sampling problem.
Curved lines represent one block or more. Dashed arrows represent MMR commit-
ment if different from the previous block reference.

Now the attack only fails if C[m] is sampled and if either m is odd or if
C[f + 3]

′
is sampled or if m is even and C[f + 2]

′
is sampled. Even though this

increases the probability of success, this is also much harder to put this in place
for the adversary. This will be further discussed in section 4. This strategy will
be called the valid-between setup from now on.

Definition 5 (Valid-between setup). The adversary uses the valid-between
setup if they try to mine three honest blocks on top on the forking block, the last
being C[m] which is broadcasted to the network.

If the adversary does not manage to mine these three blocks before the honest
miners, then they redo the attack from the beginning.

Finally, it is interesting to highlight the fact that even in the case of a deploy-
ment under a velvet fork, the adversary still cannot sample from previous parts
of the chain to avoid putting fake blocks in their fork. Indeed, if an adversary
were to do this, they would have to declare these blocks as legacy since they
wouldn’t be able to provide a MMR proof of inclusion. Whether the sampled
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block has a MMR root in its header does not matter: since it does not com-
mit to the adversary’s fork, the proof would fail. Hence, the adversary has no
choice but to declare these blocks as legacy. Thus, they would have to provide
every subsequent block, eventually having to provide C[m], whose previous block
reference won’t match C[m− 1].

Impact of the attack The attack we just described allows the adversary to
perform a double-spend transaction: they can have the client accept a transaction
that does not exist in the main chain. However, a much more powerful attack is
possible using the exact same setup.

Since C[f + 1]
′

isn’t verified by the consensus, it can include invalid trans-
actions and as such, invalid UTXOs from which the adversary can then spend.
For instance, let us consider the setup shown on Figure 9. The adversary firstly
creates an improperly signed transaction where an arbitrary player C gives them
an arbitrary number of coins. They then create transactions recursively spending
from this UTXO to create an arbitrary number of properly signed transactions.
Finally, they create the transaction they want the client B to accept.

Header

C[f + 1]′

TXC→A •
UTXOA

i

TXA→A •
UTXOA

j

TXA→A •
UTXOA

k

TXA→B •
UTXOA

l

Fig. 9. Printing coins using the chain-sewing attack when the client recursively checks
up to three UTXOs. TXX→Y is a transaction spent by X containing an UTXO that
Y can use. Red transactions are improperly signed ones. The dashed zone represents
what the client can see. Since the first transaction is created by the adversary, they
can include an arbitrary number of coins they can spend later.
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The insight behind this is that as a superlight client, B cannot recursively
follow every UTXO a transaction is spending from. Indeed, it would otherwise
have to sample every block being involved in this UTXO up to the genesis block,
which would be a huge loss in efficiency. Hence, there is a maximum depth up
to which the client recursively checks that the transactions associated to the
UTXO the adversary is spending from are valid.

Of course, this method is defeated by the client asking the adversary the
entire block, or recursively checking more UTXOs than the adversary can put
within a block. Since, the adversary knows the protocol in advance, they can
adapt themselves though. If they know that the client performs such a strategy,
they can create one or more blocks within their fork, containing the UTXOs
they want to spend from. Such a strategy is shown on Figure 10. Note that this
is more difficult for the adversary though, since they have to mine more valid
blocks within their fork.

Header

C[f + 1]′

Header

C[f + 2]′

Header

C[f + 3]′

TXC→A TXA→A TXA→B•
UTXOA

i •
UTXOA

j

Fig. 10. Printing coins using the chain-sewing attack assuming the client samples two
whole blocks. TXX→Y is a transaction spent by X containing an UTXO that Y can
use. Red transactions are improperly signed ones. The dashed zone represents what
the client can see. The adversary mines on their fork as much blocks as necessary to
prevent the client from checking an improperly signed transaction.

This attack is not possible against an SPV client. Indeed, if an SPV client
considers a block in the longest chain with enough confirmations, then it is
certain that this block has been verified by the consensus and is thus valid. This
is not the case with FlyClient: even a block which is deep in the longest chain can
be invalid using the chain-sewing attack. In this attack, every block is invalid
since they all contain transactions that eventually point to an improperly signed
transaction, but the client has no way to know it.

4 Analysis of the chain-sewing attack

We now aim to analyse the chain-sewing attack. That is, we aim at describing
the probability of success of the attack, the time taken by the adversary to put
the attack in place and the cost that they must pay to set the attack up.
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4.1 Assumptions and notations

Blockchain-related notations We still use a Python-like indexing for the
blockchain, and denote its length n. We denote by m the height of the merging
block. Hence, n−m represents the depth of the merging block within the chain.
We will use the security parameter δ introduced in the original FlyClient [2] but
will consider it as a fixed constant with value 2−10, which is the value that was
used for demonstrating purposes in the FlyClient original paper. Similarly, the
client samples independently q blocks from the blockchain. We will assume q
to be equal to 670, accordingly to the values presented in the FlyClient original
paper. We define g to be the proportion of upgraded miners. Finally, we denote
by R the block reward for mining a block.

Adversary-related notations The adversary’s computational power is de-
noted µ, and is assumed to be less than 1

2 . Since we assume that the adversary
is up-to-date, we have µ 6 g. Unless specified otherwise, we do not assume
that a majority of upgraded miners are honest, which means we do not assume
that µ

g <
1
2 . F represents the number of fake blocks included within the adver-

sary’s fork once they managed to put the attack in place, while F represent the
maximum number of blocks that an adversary accepts in their fork. When the
adversary does not manage to have F 6 F , they redo the attack. The number of
times that the adversary has to redo the attack is denoted N . The probability
of success of the attack is denoted by psuccess. Finally, the adversary’s cost is
denoted by C, and the total time in blocks to run the attack is denoted by t. If
the adversary wants to run the attack with a time constraint, we also introduce
the parameter t. For instance, if t = +∞, then the adversary does not care about
the time taken to run the attack. These notations are summarised in Table 1.
It is important to note that we will conduct our analysis under the constant
difficulty case for simplicity’s sake, and later show in subsection 4.5 that the best
strategy an adversary can adopt is even magnified by FlyClient in the variable
difficulty case.

Finally, it is important to explain what is the adversary’s cost.

Definition 6. The adversary’s cost C is defined as, in average, the number
of block rewards they are losing by mining on their fork rather than on the main
chain. It means that the adversary’s loses in average Rµ coins per block mined
on the main chain.

Note that while the adversary loses coins in average for every block they mine
on their fork, they gain in average R (1− µ) coins by mining the merging block,
since they have to mine it.

Assumption on the position of the block containing the transaction
to be verified There is no particular reason for which the block containing the
transaction must be the first one in the adversary’s fork. Actually, the adversary
increases slightly their probability of success by putting the block containing
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Notation Meaning

C[k] Block at height k from an honest node’s point of view

C[k]′ Block at height k from the adversary’s point of view

n Length of the chain

m Height of the merging block

n−m Depth of the merging block within the chain

δ Security parameter of FlyClient

q Number of blocks sampled by the client

g Proportion of upgraded miners

R Block reward

µ Adversary’s computational power

F Number of fake blocks in the adversary’s fork

F Maximum number of fake blocks in the adversary’s fork

N Number of times that the adversary has to redo the attack

psuccess Probability of success of the attack

C Adversary’s cost for running the attack

t Time in blocks to run the attack

t Average maximum time in blocks to run the attack
Table 1. Notations used throughout the analysis.

the transaction at position m − 1. This is equivalent to increasing n −m by 1,
which leads to a very small increase of their probability of success, as stated in
Corollary 1. In order to minimise the adversary’s probability of success, we will
assume for this analysis that the block containing the transaction to be verified
is at position f + 1 in the adversary’s fork. When discussing countermeasures
in section 5 though, we release this assumption to catch all possible adversarial
strategies.

4.2 Analysis of the direct setup

Adversary’s cost We prove Theorem 1 in subsection A.1.

Theorem 1. When using the direct setup, the cost that an adversary must pay
to run the attack is given by:

E
[
C
∣∣µ, F ] =

R

1− (1− µ)F+1
. (1)

In particular, the adversary’s cost is a decreasing function of F . However, increas-
ing F leads to include more fake blocks in average, inducing a smaller probability
of success.

Probability of success of the attack while minimising the cost We prove
Theorem 2 in subsection A.2.
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Theorem 2. When using the direct setup, the probability of success of the attack
psuccess, being given the number of fake blocks F is given by:

[
1− ln(1− 1

n−m )
ln(δ)

]q
if F = 0[

1− 2 ln( n−m
n−m+F )+ln(1− 1

n−m )
2 ln(δ)

]q
if 1 6 F 6 (n−m) (1−δ)−1

δ − 2

0 otherwise

. (2)

Theorem 2 gives us a relation between t and F . Indeed, if we denote tsetup the
time taken by the adversary to set the attack up, then we have the following
inequation, by definition of t:

n−m+ E
[
tsetup

∣∣µ, F ] 6 t. (3)

Hence, choosing t also forces the maximum value for n−m, which itself upper-
bounds F . However, if the adversary sets t = +∞, then they can also set F =
+∞, hence minimising their cost, according to Theorem 1. We do not solve
for every possible

(
F , t

)
couples, but we will assume in the following that F <

(n−m) (1−δ)−1
δ − 2. An example of how t impacts F and thus, the adversary’s

cost, is shown on Figure 11.

Note that the non-differentiable points on the curve occur whenever the ad-
versary is able to pick a larger value for n−m, and as such a larger value for F ,
incidentally reducing their cost while still satisfying the constraint derived from
t.

Theorem 2 directly leads to Corollary 1, which is the main result of this part.

Corollary 1. When using the direct setup, the expected probability of success of
the attack is given by:

E
[
psuccess

∣∣F 6 F
]

=
µ

1− (1− µ)F+1

(1− p0)
q

+

F∑
k=1

(1− pk)
q

(1− µ)k

 (4)

where pk is the probability that the attack fails from the first sampled block if
there are k fake blocks in the adversary’s fork, that is, given that F = k:

∀k ∈
q
0 ; F

y
, pk =


ln(1− 1

n−m )
ln(δ) if k = 0

2 ln(1− k
n−m+k )+ln(1− 1

n−m )
2 ln(δ) otherwise

. (5)

An important remark is that this probability of success converges to 1 as n−m
goes to infinity. Since the adversary is the one to choose n −m, they can wait
as long as they want to have a probability of success arbitrarily close to 1, even
when setting F = +∞. This is shown on Figure 12.
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Fig. 11. Evolution of the adversary’s cost for different values of t in order to get a
probability of success larger than 95% knowing that F is set at its largest possible
value. The smaller t, the smaller F , hence the higher the cost. Furthermore, the higher
t, the closer is the cost close to the optimal cost. At the contrary, for too small values
of t, the adversary may be unable to run the attack since no configuration can satisfy
the constraint derived from t.

4.3 Analysis of the valid-between setup

Adversary’s cost We prove Theorem 3 in subsection A.3.

Theorem 3. When using the valid-between setup, the cost that an adversary
must pay to run the attack is given by:

E [C|µ] =

[
3µ+ 1

µ3 (10− 20µ+ 15µ2 − 4µ3)
− 1

]
R . (6)

This cost is way higher than the direct setup’s one, even when setting F = 0.
However, this leads to a higher probability of success.

Probability of success of the attack using the valid-between setup We
prove Theorem 4 in subsection A.4.
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Fig. 12. The convergence of psuccess to 1 as n − m goes to infinity implies that an
adversary can have a probability of success as high as they want, no matter how much
fake blocks they include in their forks, as long as they wait for long enough.

Theorem 4. The probability of success of the attack is given by:

psuccess = (1− pm−1)
q

+ (1− pm)
q − (1− pm−1 − pm)

q
(7)

where pi is the probability that block at height i is sampled if q = 1:

pi =
ln
(

1− 1
n−i

)
ln(δ)

. (8)

Once again, the adversary can make the probability of success arbitrarily close
to 1 by increasing n−m, which is shown on Figure 13.

4.4 Comparison of the direct and valid-between setups

It is clear that even if the adversary adopts the direct setup and sets F to 0,
their cost would still be lower than if they had taken the valid-between setup.
However, the valid-between setup can reach a given probability faster than the
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Fig. 13. The convergence of psuccess to 1 as n − m goes to infinity implies that an
adversary can have a probability of success as high as they want as long as they wait
for long enough.

direct setup. If the adversary does not care about their cost but only want to run
the attack as fast as possible, the valid-between setup is often the best choice.
This is shown on Figure 14.

This figure shows that starting from µ ≈ 10 %, the adversary has to choose
the valid-between setup to run the attack as fast as possible while wanting to
keep the expected probability of success above 95 %. Note that this implies a
way higher cost than the one they would have get by choosing the direct setup.

4.5 Impact of variable difficulty on the attack

FlyClient has originally been designed to work under a variable-difficulty protocol
like the Bitcoin one, while we considered a constant difficulty protocol through-
out this analysis. In this subsection, we aim to prove that considering FlyClient
as a constant difficulty protocol does not change the adversary’s strategy of
waiting. At the contrary, FlyClient deployed for the Bitcoin protocol incentivises
the adversary to wait for the merging block to be deeper in the chain. Indeed,
using Lemma 1 and data from [1], we can compute the difference between the
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Fig. 14. Comparison of the direct setup and the valid-between setup in terms on how
long does it take to set them up in order to have an expected probability of success of
95 %. Starting from µ ≈ 10 %, at the price of a higher cost, the adversary can put the
attack in place faster using the valid-between setup rather than the direct setup.

constant-difficulty probability density function and the variable-difficulty one.
This is shown on Figure 15.

What this figure shows is that when FlyClient is deployed for the Bitcoin
protocol, it samples even more recent blocks than in the constant-difficulty case.
More precisely, if the adversary waits long enough for the merging block to
be around a depth of 0.85, then their probability of success would be higher
than what we’ve described in our analysis, since these blocks would be sampled
less often than they would have been in the constant difficulty case. Hence,
this justifies the fact that we simplify our analysis by working in the constant-
difficulty case.

5 Countermeasures to the attack

In this section, we aim at describing how the chain-sewing attack against Fly-
Client can be mitigated by proposing several methods and discussing each one’s
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Fig. 15. Difference between the CDFs of a block being sampled at a given height in
the Bitcoin case and in the constant-difficulty one.

pros and cons. Note that contrarily to section 4, we do not assume anymore that
the block containing the transaction is the first one in the adversary’s fork.

5.1 Using a Binary Search

The Binary Search Approach has already been described in the original FlyClient
paper. However, it was discarded for being interactive. We describe how can
this strategy be used here since, despite being interactive, it is a very efficient
approach to prevent chain-sewing attacks.

Since by assumption one of the prover is honest, we can compare their answers
to determine the position of a merging block. Indeed, we can slice the chain into
three distinct parts:

1. From the genesis to the forking block, where both provers agree on their
proofs.

2. Between the forking block and the merging block, both non-included, where
provers disagree on blocks hashes.
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3. After the merging block, where provers disagree on proof of inclusion.

Note that this last part may be potentially empty, if the adversary does not
merge their fork into the main chain. Hence, by comparing both provers answers
for each block query, it is straightforward for the client to perform a binary
search to find the merging block. Two cases are possible: either a merging block
is found, or no merging block is found. In the former case, the client knows
which prover is the adversary, since they can then ask for C[m+1] and check the
previous block reference in C[m]. If no merging block has been found, it means
that the adversary did not close their fork. We can then use another Binary
Search to look for the forking block and then sample uniformly in the tip of
the chain. Since the adversary did not close their chain, while claiming having a
chain as long as the main one, they had to include numerous fake blocks within
it. If they have included a portion r of fake blocks within their fork, with r
approaching 1 − µ with the chain growing, the probability of detecting it after
k queries is 1− rk.

This approach, in spite of being inherently interactive, can be more efficient
than FlyClient, since it only requires dlog2(n)e queries to the client if the adver-
sary used a merging block and 2 dlog2(n)e+ q otherwise, q being the number of
blocks uniformly sampled. As a comparison, FlyClient samples d50 ln(n)e blocks
to have a probability of success of 2−50. Depending on the length of the fork, q
can be adapted to have a probability of success of 2−50.

5.2 Filtering on the number of legacy blocks

When the adversary provides the client with their proofs of inclusion, they in-
clude a lot of legacy blocks in it: both blocks from non-updated miners and
from updated miners. Similarly, the legacy blocks in an honest prover’s proof of
inclusion would be the non-updated miners’ and the adversary’s.

Hence, if we make the assumption that a majority of up-to-date nodes are
honest, that is µ

g <
1
2 , it is possible to determine which prover is the adversary by

filtering on the number of legacy blocks included in their proofs. This assumption
is justified by Theorem 5, which we prove in subsection A.5.

Theorem 5. For each query, the probability that the adversary includes more
declared legacy blocks in their inclusion proof than an honest node is equal to
1 − µ

g . Furthermore, the number of declared legacy blocks in the adversary’s
proof follows a geometric distribution of parameter µ and support N, while the
number of declared legacy blocks in the honest prover’s proof follows a geometric
distribution of parameter g − µ and support N.

We now have two potential strategies : counting how many times a prover in-
cluded more legacy blocks than the other, or summing every number of legacy
blocks and compare them at the end. In every case, we define N to be the num-
ber of queries done after the forking block, so that the provers have different
proofs.
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Counting how many times did a prover include more legacy blocks
than the other. Using Theorem 5, we can consider each query as a Bernoulli
experiment with probability of success 1− µ

g . Hence, we can define the random
variable C which counts the number of times the honest prover included less
declared legacy blocks in their proof than the adversary. As a reminder, we
assume that µ

g <
1
2 . C follows a binomial distribution with parameters N and

1 − µ
g . Hence, the adversary succeeds if C is strictly less than

⌊
N
2

⌋
, so that

they have a strict majority. In case of an equality, another sampling must be
performed.

psuccess = P
[
C 6

⌊
N − 1

2

⌋]
=

bN−1
2 c∑

k=0

(
N
k

) (
1− µ

g

)k (
µ

g

)n−k
. (9)

Summing the numbers of legacy blocks in each prover’s proof. A more
efficient method consists in summing the numbers of legacy blocks included in
each prover’s proof and to compare them at the end. Intuitively, this allows the
honest prover to take some advance on the adversary: every time the honest
prover includes less blocks than the adversary, which happens with probability
at least 1

2 , it increases a bit the probability of winning at the end, since they
are more likely to include in total less legacy blocks when they lose than the
adversary does. This is more formally described by Theorem 6, which we prove
in subsection A.6.

Theorem 6. The probability that the total number of legacy blocks included by
the adversary’s in their proof is less than the honest prover’s can be approximated
by:

psuccess ≈ Φ

− g−2µ
µ (g−µ) N + 1√

N
(

1−µ
µ2 + 1−g+µ

(g−µ)2 + 2
g

)
 . (10)

where Φ is the cumulative distribution function of the standard normal distribu-
tion.

Note that this approximation gets better with N getting larger. Figure 18 shows
how close the model distribution is to the actual distribution for N being rela-
tively large.

Comparison of both methods We are now able to numerically compare these
methods. Three parameters are to be considered : the number N of queries done
after the forking block, the adversary’s hashrate µ and the ratio of updated nodes
g. Figure 16 shows the maximum hashrate that an adversary can own given g
and N .

This figure shows that the summing method performs better overall than the
counting method. Furthermore, this methods allows to keep the same level of
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Fig. 16. Comparison of both methods for different N . Counting method results are
dashed, while summing method results are solid. The measure taken to compare them
is the maximal hashrate an adversary can own such that psuccess < 2−50. We observe
that the summing method is overall better than the counting method.

security, which is a probability in succeeding to fool the client being less than
2−50 for an adversary which owns around 33 % of the updated computational
power with N ≈ 250.

This method has several advantages over the other ones. First of all, it is
efficient, since it does not require to add any blocks to the proofs. Furthermore,
note that the larger N , the more secure the protocol. Since N is the number of
blocks sampled after the forking block, waiting for the forking block to be deep
in the chain, which the adversary’s main strategy, also means increasing N , thus
increasing the security of the protocol. Indeed, one can approximate N with the
following formula:

N ≈ q
ln
(

δ n
n−m+F

)
ln(δ)

−−−−−→
n→+∞

q . (11)

The influence of N on the maximum possible hashrate when using the summing
method is shown on Figure 17. It also shows that the approximation only works
for relatively large N : it is not possible to find an N 6 63 such that psuccess <
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2−50. This directly comes from the fact that the approximation using the Central
Limit Theorem gets linearly better with

√
N .
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Fig. 17. Influence of N on the summing method for different g. The measure taken to
observe it is the maximal hashrate an adversary can own such that psuccess < 2−50.

A downside however is that we have to assume that the adversary is not too
powerful for the system to handle. The client, once having received the proof,
knows N and hence knows what the most powerful adversary it can handle is. If
N is too small, which is left at the client’s discretion, the security of the system
can no more be guaranteed. For this reason, we will also describe mitigations to
this attack while only assuming that µ < 1

2 .

5.3 Randomly sampling more blocks

The first idea in order to mitigate the attack is to lower its probability of success
such that the adversary would have to wait a unreasonable time to have a non-
overwhelming probability of failure. The client can either continue to sample
from FlyClient’s optimised sampling distribution or use another one.
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Sampling more accordingly to FlyClient’s sampling distribution Using
the former, sampling more blocks does not help. Indeed, let us consider an ad-
versary with 50 % of the hashrate minimising their cost. If they wait for a week
once they mined the merging block, that is, they set n−m = 144×7, then their
probability of success when sampling 670 blocks (which is a reasonable value
according to FlyClient’s original paper), is around 0.9224. In order to have the
same probability of success as the one in the original FlyClient paper, that is
2−50, the client would have to sample around 240 000 blocks, which would be a
huge loss in efficiency.

Sampling more uniformly The problem is that the adversary can potentially
have a very short fork located anywhere in the chain. Since we cannot gain any
information on it, another solution can be to randomly sample until either a
fake block is found or an inconsistency between the merging block and the block
before is found. In this case, an adversary which maximises their probability of
success would include no fake block in their fork. Hence, the client’s only way to
catch them is to sample both the merging block and the block before. However,
this solution does not scale either. Indeed, let us assume that the client, when
sampling a block, also asks for both the block that follows and the one that
precedes, so that it only has to sample either the merging block or the block
before. Assuming independent queries, then if the clients does q queries, given
that every block has a probability p of being sampled, the probability of success
of the adversary is given by, using the same reasoning as in subsection A.4:

psuccess = (1− 2 p)
q

[2 (1− p)q − (1− 2 p)q] . (12)

For a blockchain of size n, the client is as efficient as an SPV client if it performs
n
3 queries, since it samples three blocks at a time. However, even if it performs
n queries, p being equal to 1

n , the probability of success of the adversary can be
approximated by:

psuccess ≈ 2 e−3 − e−4 ≈ 0.081. (13)

Hence, this method is both less efficient and less secure than an SPV client.

5.4 Deterministically sampling more blocks

Rather than trying to decrease the adversary’s probability of success, one can
try to increase their minimal cost so that this cost becomes unreasonable. A way
to do so is asking the prover to provide the client with the k blocks that follow
and the k blocks that precede the block containing the transaction to be verified.
This forces the prover to have a fork with length at least k+1 valid blocks, which
can be particularly difficult. Theorem 7, which we prove in subsection A.7 shows
how the cost of an adversary using the direct setup increases with k.

Theorem 7. The minimal cost that an adversary must pay to run the attack
while having to provide k valid blocks after and k valid blocks before the block
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containing the transaction verifies:

E [C|µ] > [1 + k (1− µ)]R. (14)

Furthermore, with probability 1− [µ (2− µ)]k and assuming the adversary runs
the most optimal strategy, this inequality is actually an equality.

As a side-effect, using this technique also lowers the probability of success of
the attack. For instance, if the client uses k = 30, it increases the proof size by
approximately 9 % but sets the adversary’s minimal cost to run the attack to
at least 16R instead of R, while still being efficient. Note that since the very
first block has a valid MMR root by definition, there is no point in asking for
an MMR proof of every sampled block: only the last sampled block has to be
further verified like this. If this block is a legacy block, then it will be verified
the same way FlyClient handles legacy blocks. This greatly reduces the additional
data required for this additional check a prover has to provide the client with.

5.5 Implementation cost and security of the considered
countermeasures

Three methods arise from the previous analysis, each coming with its drawbacks:

– The Binary Search is interactive;
– Filtering on legacy blocks works in a stronger model;
– Deterministically sampling more blocks transforms the security from cryp-

tographic to cryptoeconomic.

Note that at the exception of the Binary Search, these methods are built on top
of FlyClient, which ensures their security, were FlyClient to be implemented as a
hard or soft fork. Similarly, the security of the Binary Search approach has been
discussed in the original FlyClient paper [2]. The previous section having shown
that these methods are secure under a velvet fork, they are secure in all possible
considered ways of deploying FlyClient.

A consideration that can be taken into account when choosing one of these
three countermeasures is the cost of implementation. Namely, we have to evaluate
the cost overhead of the mitigation compared to a vanilla implementation of
FlyClient. Note that all these mitigations check for the consistency between the
previous block reference and the MMR proofs of inclusion when it can.

Cost overhead of the Binary Search If the client is implemented using
the Binary Search, then the adversary has no point in using a chain-sewing at-
tack since it would be easily detected. Hence, their best guess is to create a
fork according to the original FlyClient use case. While FlyClient samples around
d50 ln(n)e blocks, this method only samples 2 dlog2(n)e + q blocks. Since the
probability of catching the adversary grows exponentially with q, q grows log-
arithmically with n − m to achieve a given probability of success. Hence, this
method does not incur a huge cost overhead for the client, and can even be more
efficient than vanilla FlyClient, at the cost of non-interactivity.
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Cost overhead of filtering on legacy blocks If the client filters on legacy
block using the summing method, then it does not sample more blocks than
vanilla FlyClient. However, an additional counter must be increased to count
how many legacy blocks were included in the proofs. Counting this number of
legacy blocks can be done efficiently while parsing the proof and hence induce a
negligible cost overhead.

Cost overhead of deterministically sampling more blocks Finally, if the
client deterministically samples more blocks, then the cost overhead is sampling
k more blocks, where k is a pre-determined constant fixed when implementing the
client depending on the desired induced cost for an adversary to run an attack.
Note however that only the MMR proof of the last block must be verified, the
client then just needs to recursively verify the PoW and previous block reference
of the other k − 1 blocks.

6 Conclusion

In this paper, we described a powerful attack against FlyClient when naively
deployed as a velvet fork, allowing adversaries owning less than half of the total
hashrate to perform double-spend transactions and to print coins at a constant
cost. We described the different strategies an adversary have at their disposal and
provide a comprehensive analysis on these. Finally, we proposed countermeasures
to keep the protocol non-interactive and efficient, while ensuring the security of
the protocol.

All in all, the benefits of deploying FlyClient as a velvet fork are to be con-
fronted with the constraints which come with it, namely the higher number of
blocks to provide the client with and the additional security measures that have
to be deployed along with it. While certain measures do not increase the number
of blocks to sample, they still increase the amount of computations that have
to be done to check the proof, which may result in higher cost for the provers,
were FlyClient to be deployed in the cross-chain setting. Furthermore, there is
no evidence that no other attack on the protocol deployed under a velvet fork is
possible. While the benefits of using a velvet fork seem clear, the potential re-
quirement for an honest updated majority along with the possible security flaws
it incurs make its relevance way more debatable.

Finally, it is to be denoted that our attack extensively uses the adversary’s
ability to declare any block as a legacy one. An even more efficient way to
prevent these kinds of attacks would be to have some kind of “meta-PoW”,
allowing updated miners to differentiate a legacy block from a malicious one.
This however would require once again to assume that a majority of updated
miners is honest.
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A Proofs

A.1 Theorem 1

Proof. First of all, according to the Bitcoin backbone protocol [3], mining a block
is a memoryless process. Hence, the adversary has no interest in continuing to
mine on top of a block to mine the forking block if the honest network has already
found the corresponding honest block. Hence, the adversary’s best strategy is to
try to mine the forking block before the honest network does and to retry on
top of the following honest block if they fail.

Since the probability that they find a block before the main chain is µ, they
will spend in average 1

µ blocks mining on their fork in order to mine the forking
block.

The adversary then wants to mine the merging block before the honest net-
work does, allowing themselves at most F fails. Hence, F follows a geometric
distribution of parameter µ and support N. As such, we have:

P
[
F 6 F

∣∣µ] = 1− (1− µ)F+1. (15)

Since N follows a geometric distribution of parameter P
[
F 6 F

]
and support

N, we have:

E
[
N
∣∣µ, F ] =

(1− µ)F+1

1− (1− µ)F+1
. (16)

Finally, the number of fake blocks that the adversary includes in their fork is
given by:

E
[
F
∣∣µ, F 6 F

]
=

F∑
k=0

k
P
[
(F = k) ∩

(
F 6 F

)]
P
[
F 6 F

] (17)

which leads to:

E
[
F
∣∣µ, F 6 F

]
=

(1− µ)
[
1− (1− µ)F

(
F µ+ 1

)]
µ
[
1− (1− µ)F+1

] . (18)

Since all the random variables are considered independent, this leads to the
following average cost:

E
[
C
∣∣µ, F ] =

[
E
[
N
∣∣µ, F ] ( 1

µ
+ F + 1

)
+

1

µ
+ E

[
F
∣∣µ, F 6 F

]]
Rµ−R (1−µ)

(19)

https://eprint.iacr.org/2018/643
https://eprint.iacr.org/2018/087


On the deployment of FlyClient as a velvet fork 33

where 1
µ + F + 1 corresponds to the number of blocks mined on the main chain

on average during a failed attempt and 1
µ + E

[
F
∣∣µ, F 6 F

]
corresponds to the

number of blocks mined on the adversary’s fork in average during their successful
attempt. This finally leads to:

E
[
C
∣∣µ, F ] =

(
1

µ

[
1 +

1

1− (1− µ)F+1

]
− 1

)
Rµ−R (1− µ). (20)

This expression can finally be reduced to:

E
[
C
∣∣µ, F ] =

R

1− (1− µ)F+1
. (21)

A.2 Theorem 2

Proof. Let us consider that F = 0. Then, the only way the client has to detect the

attack is to sample the merging block, which it does with probability
ln(1− 1

n−m )
ln(δ)

in the constant difficulty case, according to the FlyClient original paper [2].

Now, let us consider F > 1. There are two disjoint ways using which the client
can detect the attack, by sampling a fake block, or by sampling the merging block
and having to provide the previous block hash in the MMR proof of inclusion,
which is the case if m is odd. We will assume that m is odd with probability
1
2 , since the adversary does not control the parity of F , and redoing the attack
is quite costly for only a little gain in probability. Since the probability that
the client samples a block in C[m − F : F ] in the constant difficulty case is

given by
ln( n−m

n−m+F )
ln(δ) , the probability that the attack fails in this case is given by

ln( n−m
n−m+F )
ln(δ) +

ln(1− 1
n−m )

2 ln(δ) .

There is a corner case however. In order for the probabilities to make sense,
n − m cannot be too small if F is large. If we want to have no fake block in
the δ n last part of the chain, then F must satisfy F + 3 < (1 − δ)n, since the
genesis, the block that contains the transaction to be verified and the merging
block must be included as well, which is equivalent to δ (F + 3) < (1 − δ) δ n.
Furthermore, in order for no fake block nor the merging block to be sampled
with probability 1, we must have δ n < n−m− 1. Finally, this leads to:

F <
(n−m) (1− δ)− 1

δ
− 2. (22)

A simpler way to get this inequation is simply to solve for
ln( n−m−1

n−m+F )
ln(δ) < 1. That

said, if this inequation is not satisfied, then the probability of a fake block being
sampled is equal to 1. Hence, the probability of success of the attack is nil in
this case.
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A.3 Theorem 3

Proof. According to the Bitcoin Backbone protocol [3], we can model the mining
process with a memoryless one. For this reason, we will work in rounds, where,
at each round, the adversary mines a block with probability µ. If they fail, the
honest miners mine a block, which happens with probability 1− µ.

The adversary’s best strategy is to try to mine C[f+1]
′

until they manage to
do it before the honest miners do. This takes the adversary, in average, 1

µ blocks
to do. In order to compute the probability of succeeding, let us consider three
distinct cases:

– The adversary wins the first two rounds. This happens with probability
µ2. In this case, the adversary has to wait until C[f+1], C[f+2] and C[f+3]
are mined on the main chain, so that they can include the hash of C[f + 3]
in the previous block reference of C[m]. They then succeed with probability
µ.

– The adversary wins one out of the two first rounds. This happens
with probability 2µ (1−µ). Then either the adversary wins the next round,
wait for the main chain and mine the merging block, which happens with
probability µ2, or they lose the first round, which happens with probability
1−µ. In this case, the adversary and the main chain are at the same level: the
adversary has no longer a block in advance. The adversary either succeeds by
winning the next 2 rounds, or by losing the first and winning the next two. In
total, the adversary succeeds with probability µ2 +(1−µ)

[
µ2 + (1− µ)µ2

]
.

– The adversary loses the first two rounds. This happens with probability
(1 − µ)2. There are now two cases. If the adversary loses the next round,
which happens with probability 1 − µ, they have no choice but to win the
next three rounds, which happens with probability µ3. If they win the first
round however, then we’re back on the situation where the adversary’s fork
and the main chain have equal length, whose probability has been computed
previously. In total, the adversary succeeds with probability (1 − µ)µ3 +
µ
[
µ2 + (1− µ)µ2

]
.

Putting things together, the adversary succeeds to put the attack in place with
probability:

p(µ) = µ3 + 2µ3 (1− µ)
(
µ2 − 3µ+ 3

)
+ (1− µ)2 µ3 (3− 2µ) (23)

which leads to:
p(µ) = µ3

(
−4µ3 + 15µ2 − 20µ+ 10

)
. (24)

Hence, the average adversary’s cost E [C|µ] is equal to:[(
1

µ3 (−4µ3 + 15µ2 − 20µ+ 10)
− 1

) (
1

µ
+ 3

)
+

1

µ
+ 2

]
Rµ− (1− µ)R

(25)
which boils down to:

E [C|µ] =

[
3µ+ 1

µ3 (10− 20µ+ 15µ2 − 4µ3)
− 1

]
R . (26)
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A.4 Theorem 4

Proof. In order for the attack to fail, C[m] has to be sampled. Furthermore,
in order to detect the inconsistency between C[f + 3]

′
and the previous block

reference in C[m], either C[f+3]
′

has to be sampled, or m has to be odd. Indeed,
if m is odd, then the adversary has to provide the hash of C[f + 3]

′
in the MMR

proof of inclusion of C[m]
′
. However, the adversary can start to mine on top of

C[f ] only if f is even, so that m is even too. This does not increase the adversary’s
average cost since they will be mining on the main chain while waiting for f to
be even.

Hence, the attack fails if both C[f + 3]
′

and C[m] are sampled. Let us denote
by AN (respectively BN ) the event “C[m]

′
(respectively C[m]) is not sampled if

N blocks are sampled by the client”. In particular, we have:

P [A1] = 1− pm−1 (27)

and:
P [B1] = 1− pm. (28)

“The adversary succeeds” is an event equivalent to AN ∪BN , N being equal to
q in our case. Plus, we have:

P [AN ∪BN ] = P [AN ] + P [BN ]− P [AN ∩BN ] . (29)

We approximate FlyClient’s sampling by independent queries for blocks, as de-
scribed in the FlyClient original paper. Thus, we have:

P [AN ] = (1− pm−1)
N

(30)

and
P [BN ] = (1− pm)

N
. (31)

Finally, using the same reasoning, we have:

P [AN ∩BN ] = (1− pm − pm−1)
N

(32)

which concludes the proof.

A.5 Theorem 5

Proof. Let NH be the number of declared legacy blocks that an honest node
includes in their proof. Similarly, we define NA to be the number of declared
legacy blocks that the adversary includes in their proof.

As a reminder, each block has a probability of µ to be mined by the adversary,
a probability g− µ to be mined by an up-to-date honest node and a probability
1−g to be mined by a non-up-to-date node. Putting things differently, an honest
node only accepts a portion g − µ of the blocks in their proofs, the other being
declared as legacy, while the adversary only accepts a portion µ of the blocks
in their proofs. We only consider queries done after the forking block. Indeed,
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before the forking block, the adversary and the honest node will declare the same
number of legacy blocks. There’s no point for the adversary to lie here, since it
would only increase the number of legacy blocks they declare, which benefits the
honest prover. Hence, NH follows a geometric distribution with parameter g−µ
and support N, while NA follows a geometric distribution with parameter µ and
support N.

Note that NH and NA are not independent. Indeed, it is impossible to have
NH = NA, since this would mean that both provers accepts the same block to
be valid, which is not possible after the forking block. We are to compute the
joint distribution of (NH , NA). Let be (i, j) ∈ N2. We have:

P [NH = i,NA = j] = P [NH = i|NA = j] P [NA = j] . (33)

P [NA = j] is known since we know that NA follows a geometric distribution with
parameter µ and support N. Hence, we are to determine P [NH = i|NA = j].
For this proof only, C[0] will denote the block queried by the client. Then
P [NH = i|NA = j] is the probability that NH = i knowing that C[0 : j] are
either legacy or have been mined by an up-to-date miner and that C[j] has been
mined by the adversary. Thus, we have three distinct cases.

If i < j: For i = 0, this probability is equal to the probability that C[0] is a
honest block (that is, mined by an up-to-date miner) knowing that it is
either honest or legacy. Hence:

P [NH = 0|NA = j] =
g − µ
1− µ

. (34)

Then, knowing P [NH = i|NA = j] is given by the probability that C[0 : i]
are all legacy blocks and that C[i] is an honest block, knowing that they
aren’t adversary-mined blocks. Putting things together, we have:

P [NH = i|NA = j] =
g − µ
1− µ

(
1− g
1− µ

)i
. (35)

If i = j: This case cannot happen, for the reasons detailed above. Hence:

P [NH = i|NA = j] = 0. (36)

If i > j: This case happens if every block in C[0 : j] are legacy blocks, knowing
they are not adversary-mined. We also know that C[j] is adversary-mined.
We then have to have C[j + 1 : i : t]o be either legacy or adversary blocks.
Putting things together, we have:

P [NH = i|NA = j] =

(
1− g
1− µ

)j
(1− g + µ)i−j−1 (g − µ). (37)

Putting things together, we get:

P [NH = i|NA = j] =


g−µ
1−µ

(
1−g
1−µ

)i
if i < j

0 if i = j(
1−g
1−µ

)j
(1− g + µ)i−j−1 (g − µ) if i > j

. (38)
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Hence:

P [NH = i,NA = j] =


µ (g − µ) (1− g)i (1− µ)j−i−1 if i < j

0 if i = j

µ (g − µ) (1− g)j (1− g + µ)i−j−1 if i > j

. (39)

We are now able to compute P [NH < NA]:

P [NH < NA] =

+∞∑
i=0

+∞∑
j=i+1

P [NH = i,NA = j] (40a)

=

+∞∑
i=0

+∞∑
j=i+1

µ (g − µ) (1− g)i (1− µ)j−i−1 (40b)

= (g − µ)

+∞∑
i=0

(1− g)i (40c)

= 1− µ

g
. (40d)

A.6 Theorem 6

Proof. For each query, we define NAk
and NHk

to be the number of declared
legacy blocks included in respectively the adversary’s proof and the honest
prover’s proof. Their distribution has been computed in subsection A.5. We
then define SN to be:

SN
def
=

1

N

N∑
k=1

(NAk
−NHk

) . (41)

By assumption, all the NAk
− NHk

are i.i.d. Hence, the central limit theo-
rem ensures that SN can be approximated by a normal distribution with mean
E [NAk

−NHk
] and variance V [NAk

−NHk
]. Using linearity of the expectation,

E [NAk
−NHk

] is easily found to be equal to:

E [NAk
−NHk

] = E [NAk
]− E [NHk

] =
g − 2µ

µ (g − µ)
. (42)

We now are to compute V [NAk
−NHk

]. We have:

V [NAk
−NHk

] = V [NAk
] + V [NHk

]− 2V [NAk
, NHk

] (43a)

= V [NAk
] + V [NHk

]− 2 (E [NAk
NHk

]− E [NAk
] E [NHk

]) .
(43b)

Since NAk
and NHk

both follows geometric distribution with known parameter,
every quantity here can easily be computed except E [NAk

NHk
]. Hence, we are

to compute it. We have:

E [NAk
NHk

] =

+∞∑
i=0

+∞∑
j=0

i j P [NHk
= i,NAk

= j] . (44)
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Let us define s1 to be:

s1
def
=

+∞∑
i=1

+∞∑
j=i+1

i j P [NHk
= i,NAk

= j] (45)

and s2 to be:

s2
def
=

+∞∑
i=1

i−1∑
j=1

i j P [NHk
= i,NAk

= j] . (46)

Since P [NHk
= i,NAk

= i] = 0 for all i ∈ N, we have:

E [NAk
NHk

] = s1 + s2. (47)

Now, we have:

s1 =

+∞∑
i=1

+∞∑
j=i+1

i j µ (g − µ) (1− g)i (1− µ)j−i−1 (48a)

= µ (g − µ)

+∞∑
i=1

i (1− g)i
+∞∑
j=i+1

j (1− µ)j−i−1 (48b)

= µ (g − µ)

+∞∑
i=1

i (1− g)i
+∞∑
j=1

(i+ j) (1− µ)j−1 (48c)

= µ (g − µ)

+∞∑
i=1

i (1− g)i

i +∞∑
j=1

(1− µ)j−1 +

+∞∑
j=1

j (1− µ)j−1

 (48d)

= µ (g − µ)

+∞∑
i=1

i (1− g)i
(
i

µ
+

1

µ2

)
(48e)

= (g − µ)

[
+∞∑
i=1

i2 (1− g)i +
1

µ

+∞∑
i=1

i (1− g)i

]
(48f)

= (g − µ)

[
(1− g)2 + 1− g

g3
+

1− g
µ g2

]
(48g)

=
(g − µ) (1− g)

g2

(
2− g
g

+
1

µ

)
. (48h)

Similarly:

s2 =

+∞∑
i=1

i−1∑
j=1

i j µ (g − µ) (1− g)j (1− g + µ)i−j−1 (49a)

= µ (g − µ)

+∞∑
j=1

+∞∑
i=j+1

i j (1− g)j (1− g + µ)i−j−1 (49b)
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= µ (g − µ)

+∞∑
j=1

j (1− g)j
(

j

g − µ
+

1

(g − µ)2

)
(49c)

= µ

+∞∑
j=1

j2 (1− g)j +
1

g − µ

+∞∑
j=1

j (1− g)j

 (49d)

=
µ (1− g)

g2

(
2− g
g

+
1

g − µ

)
(49e)

Hence, we have:

E [NAk
NHk

] =
1− g
g2

[
2− g +

(g − µ)2 + µ2

µ (g − µ)

]
(50a)

=
g − g2 − g µ+ g2 µ+ µ2 − g µ2

g µ (g − µ)
. (50b)

We are thus able to compute V [NAk
, NHk

]:

V [NAk
, NHk

] =
g − g2 − g µ+ g2 µ+ µ2 − g µ2

g µ (g − µ)
− (1− µ) (1− g + µ)

µ (g − µ)
(51a)

=
g − g2 − g µ+ g2 µ+ µ2 − g µ2

g µ (g − µ)
− g − g2 + g2 µ− g µ2

g µ (g − µ)
(51b)

=
µ2 − g µ
µ g (g − u)

(51c)

= −1

g
. (51d)

Finally, this allows us to compute V [NAk
−NHk

]:

V [NAk
−NHk

] =
1− µ
µ2

+
1− g + µ

(g − µ)2
+

2

g
. (52)

Hence, the distribution of SN can be approximated by a normal distribution

with mean g−2µ
µ (g−µ) and variance 1

N

(
1−µ
µ2 + 1−g+µ

(g−µ)2 + 2
g

)
according to the central

limit theorem. In this case, the adversary succeeds if SN 6 − 1
N , which finally

ensures, using this approximation:

psuccess ≈ Φ

− g−2µ
µ (g−µ) N + 1√

N
(

1−µ
µ2 + 1−g+µ

(g−µ)2 + 2
g

)
 . (53)

A.7 Theorem 7

Proof. The adversary’s best strategy is to place the block containing the trans-
action at the beginning or at the end of their fork. By doing so, they can use
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precedent or next blocks as part of their proof, and have only to provide the
client with k additional valid blocks. Then, their best strategy is to try to mine
C[f + 1]

′
, which takes them in average 1

µ blocks, and then proceeding to mine

C[f + 2 : f + k + 2]
′
. They have no choice but to sequentially mine all these

blocks, more and more blocks being mined on the main chain meanwhile. As
in subsection A.3, we consider the process of mining as a memoryless process,
where at each round the adversary mines a block with probability µ. If they
don’t manage to mine this block, the honest miners mine a block on the main
chain. Hence, the number of blocks being mined on the main chain while the
adversary mines the k valid blocks is given by:

B = k + max

(
k∑
i=1

Xi − k, 0

)
(54)

where each Xi follows a geometric distribution of parameter µ with support N.
Hence:

P

[
k∑
i=1

Xi 6 k

]
= P

[
k⋂
i=1

(Xi 6 1)

]
(55)

which leads to:

P

[
k∑
i=1

Xi 6 k

]
= [µ (2− µ)]

k
. (56)

Furthermore,
k∑
i=1

Xi follows a negative binomial distribution with parameters k

and 1− µ. Hence, we have the following distribution for B:

P [B = k + l] =


[µ (2− µ)]

k
if l = 0(

2 k + l − 1

k + l

)
µk (1− µ)k+l otherwise

. (57)

Hence, E [B] seems to have no closed form. However, we can lower-bound B, and
as such E [B] using:

B >
k∑
i=1

Xi (58)

which leads to:

E [B] >
1− µ
µ

k. (59)

Hence, the following holds:

E [C|µ] >

(
1

µ
+

1− µ
µ

k +
1

µ
− 1

)
µR− (1− µ)R (60)

which leads to:
E [C|µ] > [1 + k (1− µ)] R. (61)
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Note that with probability 1− [µ (2− µ)]k, inequality 58 is actually an equality.
Hence, we have:

E [C|µ] = [1 + k (1− µ)] R (62)

with probability 1− [µ (2− µ)]k.

B Lemmas

B.1 Variable difficulty

Lemma 1. Let d be a function from [0 ; 1] to [0 ; 1] which represents the cumu-
lative difficulty of the protocol over time. FlyClient’s sampling distribution over
the block space is now given by:

∀x ∈ [0 ; 1− δ], s(x) =
d′(x)

[d(x)− 1] ln(δ)
. (63)

Proof. Let (a, b) ∈ J0 ; n (1− δ)K2 be two block heights, with a < b. The proba-
bility that a block in C[a : b] is sampled by FlyClient under a variable difficulty
protocol is given by:

pa,b =

∫ d( b
n )

d( a
n )

dt

(t− 1) ln(δ)
. (64)

Using integration by substitution, we have:

pa,b =

∫ b
n

a
n

d′(x)

[d(x)− 1] ln(δ)
dx. (65)

C Additional figures

C.1 Approximation of the sum of non-independent geometric
variables by a normal distribution
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Fig. 18. Difference between the model CDF and the empiric CDF for µ = 1
5
, g = 1

2

and N = 100 using 100 000 samples.
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