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Data and signal authentication schemes are being proposed to
address Global Navigation Satellite Systems’ (GNSS) vulnerability to
spoofing. Due to the low power of their signals, the bandwidth available
for authentication in GNSS is scarce. Since delayed-disclosure proto-
cols, e.g., TESLA (timed-efficient stream loss-tolerant authentication),
are efficient in terms of bandwidth and robust to signal impairments,
they have been proposed and implemented by GNSS. The length of
message authentication codes (MACs) and cryptographic keys are two
crucial aspects of the protocol design as they have an impact on the
utilized bandwidth, and therefore on the protocol performance. We
analyze both aspects in detail for GNSS-TESLA and present recom-
mendations for efficient yet safe MAC and key lengths. We further
complement this analysis by proposing possible authentication success
and failure policies and quantify the reduction of the attack surface
resulting from employing them. The analysis shows that in some cases
it is safe to use MAC and key sizes that are smaller than those proposed
in best-practice guidelines. While some of our considerations are
general to delayed-disclosure lightweight protocols for data and signal
authentication, we particularize them for GNSS-TESLA protocols.
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I. INTRODUCTION

The threat of spoofing GNSS (Global Navigation Satel-
lite Systems) is more than a decade old, and cases of GNSS
spoofing have been observed with increasing frequency.
Possible spoofing countermeasures implemented on the
receiver’s end include signal power verification [1], [2],
consistency checks, and/or combination of GNSS with other
navigation sources (e.g., inertial navigation systems [3]). An
alternative to this approach is to add GNSS authentication
already at the source by adding cryptographic features to
GNSS signals. Galileo, the European GNSS, is the first
such system to include cryptographic authentication [4],
and other systems have already shared studies or plans to
follow suit [5], [6].

However, adding cryptographic authentication to GNSS
is not a trivial task as such systems are subject to technical
limitations. They are one-way broadcast systems, thus they
cannot configure their signal to specific users, which makes
it hard for the receiver to determine that the signal was
received from an authoritative source. Further compounding
the problem is that their signals are received at a very weak
power of around -155 to -160 dBW on Earth, which restricts
the available data bandwidth, as receivers must accumulate
enough energy to decode each bit. For example, the popular
GPS L1 C/A transmits every bit over a period of 20 ms,
resulting in a throughput of 50-bit/s; for Galileo E1 these
numbers are respectively 4 ms and 250-symbols/s, encoding
bits with a ½ coding rate.

The academic literature contains a plenitude of
proposals for radionavigation authentication protocols
[7]–[12]. The standard approach is to adopt and adapt
cryptographic protocols from other domains, e.g., network
communications. However, this process may require
specific tailoring before it can efficiently meet the special
constraints of GNSS.

This article focuses on delayed-disclosure protocols.
These are protocols based on the dissemination of an au-
thentication tag [sometimes also called “code”; or more
specifically MAC (Message Authentication Code) when
the authentication tag is the output of a MAC function],
stored by the receiver, and authenticated at a later time
following a disclosure of a certain cryptographic datum
such as a yet-unknown symmetric-key. The motivation for
this is twofold. First, such protocols can be optimized
for bandwidth, motivating numerous proposals such as
Galileo Open Service Navigation Message Authentication
(OSNMA) [13]; GPS’s experimental signal authentication
scheme, CHIMERA [5], and SBAS authentication [14]–
[16]. Second, while the delayed disclosure requirement is
only one option for data authentication (the other option be-
ing digital signatures), it may be a necessary component for
spreading code authentication [17]. This makes our analysis
applicable to code-level authentication schemes for GNSS
in which the authentication code watermarks the satellite
spreading code. Among delayed-disclosure protocols, we
focus on lightweight protocols, and in particular the TESLA
(timed-efficient stream loss-tolerant authentication) proto-
col, standardized in [18].
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After this introduction, we provide a short overview of
TESLA adapted for GNSS data authentication, hereinafter
referred to as GNSS-TESLA. We then propose a framework
for analyzing the probability of MAC forgery attacks. Two
user profiles are considered: safety-critical and standard;
and we derive the probability of a successful forgery attack
against each of them respective to our proposals for suc-
cessful and failed authentication policies, and respective to
different MAC sizes. We then particularize the discussion
to delayed-disclosure schemes using hash chains for key
dissemination. This key dissemination mechanism is the
engine underlying the TESLA protocol. We describe the
adversarial model and possible attack vectors and derive
attack complexities, which we use to estimate attack costs
and recommend safe key sizes and cryptoperiods. We con-
clude the article with a discussion on how to interpret our
recommendations.

II. PRELIMINARIES

A. Overview of TESLA Delayed-Disclosure Authentica-
tion Protocols for GNSS

The TESLA scheme is a delayed-disclosure authentica-
tion protocol for continuous data broadcasting presented in
[19]. Several references detail TESLA protocol implemen-
tations applied to GNSS, such as [20] and [21]. The idea
behind this protocol is to use a one-way function (e.g., a
hash function) to create a chain of authentication keys; this
is called a keychain. The last key of this chain is then released
and authenticated off-channel. The last bootstrapping step,
i.e., how to authenticate the last key in the chain, is outside
the scope of this article. In each step of the protocol, a
unit of data is authenticated by means of a cryptographic
MAC function using a previously disclosed key in the chain.
The key is disclosed after a delay period and its validity is
verified by locally re-evaluating the one-way function with
respect to this key and comparing its output to the last known
valid key. Once the key is accepted as valid, previously
received data authenticated using this key, can be verified.

The receiver stores the received data stream D and its
corresponding MAC M, and stores them awaiting the arrival
of the delayed-disclosed key K. Upon the arrival of this key,
the receiver computes M’ using D and K, and compares this
with the broadcast M. More formally

M ′ = mac (K, D)

M = M ′ → Authentication passed

M �= M ′ → Authentication failed (1)

where mac is a MAC function taking key and data as
first and second inputs, respectively, and retuning their
MAC. Implicit in this definition is that the output of the
MAC function is S-bit long. This is easily achieved by
directly employing a MAC function outputting MACs of
the appropriate length, or by truncating a longer output.
The cryptographic security of the authentication process
therefore depends on the choice of the MAC function, the
MAC length, and the use of a suitable key.

B. Primitives and Generic Security

MAC functions are a family of functions, parameterized
by a symmetric key, such that each function in the family
performs a unique mapping from an arbitrary-length input
to a fixed-length output, of S bits in our case. In the sequel,
we refer to this output as the MAC, and to its generating
function as the MAC function. An attack against the MAC
function (resp., the MAC) is any method to distinguish it
from a random mapping (resp., from a truly S-bit random
bitstring). MAC functions are a well-understood object and
some designs have been shown to withstand all forms of
known cryptanalysis despite many years of scrutiny. In
symmetric-key cryptography this is the highest form of
confidence as symmetric-key algorithms are normally not
reducible to hard mathematical problems as in the case
of public-key cryptography. Specifically, HMAC-SHA-256
and CMAC-AES-256, proposed for Galileo OSNMA [22],
have been determined to satisfy the confidence threshold
required by standardization bodies and were subsequently
included in their portfolios [23]–[25].

The same discussion, mutatis mutandis, applies to hash
functions, which can be viewed as a degenerate MAC
function whose key was fixed to a publicly known value.1

A more detailed framework for the security objectives and
basic attacks of one-way functions, including keyed- and
unkeyed-hash functions, can be found in [26].

We note that GNSS does not introduce any particular-
ities in that respect and proceed under the assumption that
choosing a secure primitive (MAC or hash function) is a
closed problem: a function included in the portfolio of a
respectable standardization body would suffice, security-
wise, and efficiency can now be the primary driver for the
actual choice within the portfolio. We can therefore proceed
to analyze the two remaining factors: the MAC function’s
output size and the key length.

C. Adversarial Model and Attack Objectives

In the context of GNSS data authentication, the goal
of an adversary is to trick the user into accepting spoofed
data, i.e., data that was not originated from an authoritative
source. This can be done by attacking the output directly
or by means of a key recovery; each of these is said to
be an attack vector. The output and the key, both being of
finite length, can be attacked generically irrespective to their
generating function.

The attack surface of an attack vector is the number of
targets within this attack vector. For example, if instead
of providing spoofed data respective to a specific MAC
it is sufficient for an adversary to provide spoofed data
respective to either of two MACs we say that the attack
surface is doubled; conversely, if the spoofed data must

1Hash functions often have this abstracted by eliminating the key interface
altogether or by defining a different hierarchy of primitives (i.e., instanti-
ating a MAC function from a hash function, e.g., HMAC). Nevertheless,
these are conceptual abstractions made for convenience and they are in no
way more “correct” than the one we offer.
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correspond to both MACs, the attack surface is reduced
by a factor 2.

The cost of an attack is captured by the attack complex-
ity, usually the number of calls to the generating function.
For example, given an S-bit MAC, providing a matching
input consistent with the key that was used to generate
this MAC has a generic attack complexity of 2S . Similarly,
finding a preimage for an n-bit output of a hash function has
generic attack complexity of 2n. Note that due to the nature
of such random mappings their analyses are probabilistic
and the attack complexities are expected values of random
variables.

We analyze in the sequel the attack surface of the two
dominant cryptographic attack vectors for GNSS-TESLA.
In the next section we consider MAC forgery. Then, in the
subsequent section we analyze the attack surface of TESLA-
based key recovery.

III. MAC FORGERY

This section analyzes the attack surface of MAC forgery
attacks. These are attacks supplementing the user with
spoofed data matching an existing MAC independently of
the key (and the authentication/signature mechanism). Two
approaches to MAC forgeries are possible: deterministic
and probabilistic. In the deterministic approach, the adver-
sary first recovers the secret key, and subsequently continues
to authenticate spoofed data with a success probability of 1
(thus “deterministic”). It is therefore covered in the next
section on finding a key preimage. In the probabilistic
approach, the adversary attacks the random mapping di-
rectly by “guessing” an input (resp., an input–output pair)
and hope it matches (resp., they match) the right output
(resp., each other). The generic attack complexity of the
probabilistic approach is a function of the MAC length. We
assume that the receiver is loosely synchronized with the
transmitter (the GNSS) and therefore the adversary cannot
delay the signal enough to receive the key and forge the
MAC [27]. We also assume that the MAC function is secure
and only generic attacks are possible. Observing that in
GNSS-TESLA the MAC length is generally smaller than
the key size, it is not rewarding for the adversary to prefer
the deterministic approach when executing a nonpersistent
attack. Therefore, in this section, we analyze the success
probability of an adversary taking the probabilistic approach
to attack the MAC function.

A. Related Work

The U.S. National Institute of Standards and Technol-
ogy (NIST) recommends that MAC lengths be no smaller
than 32 bits, but states explicitly that a low-bandwidth chan-
nel might still use 32-bit MACs [28]. The Joint Technical
Committee of the International Organisation for Standard-
ization and the International Electrotechnical Commission
(ISO/IEC JTC 1) recommends in [29] that the tag length
shall be a multiple of 8 bits, but makes no statement on
minimum tag length. Neither do they in [18] for the specific

case of broadcast authentication. ENISA’s report on Algo-
rithms, Key Sizes, and Parameters [30] discusses the subject
briefly noting that the “choice of the MAC output size can
be very much scheme, protocol, or even system, dependent”
without making a recommendation on the output size. The
2020 version of this report (to be published) will ratify this
statement.

Within the GNSS domain, current references range be-
tween 15 and 40 bits. Some early references considered 15
bits as sufficiently low to discourage attacks [31]. Others
suggest that 24 bits or more are secure [32]. For GNSS
integrity systems such as SBAS, a minimum of 29 bits is pro-
posed in [16]. 30 bits are proposed in [15] although MACs as
short as 10 are also discussed. Galileo OSNMA currently
published test specification mentions the MAC size as a
configurable parameter with a value ranging between 10
and 40 bits [22]. Some of these references mention that the
MAC length should be defined according to the random
guessing probability of the attacker, but they do not define
user authentication logic and operation period, which we
now consider in detail.

B. MAC Forgery Attack Model

A successful forgery is a pair (D’, M’) such that

M ′ = mac
(
K, D′) (2)

where D’ is the spoofed data; and M’ is an S-bit MAC
successfully authenticating D’ with respect to a valid key K,
unknown to the attacker. Observing that the constraint that
K is a valid key frustrates the birthday paradox on (D, M’),
it is sufficient for our needs, without loss of generality, to
restrict the discussion to a spoofed D’ respective to a fixed
M. Committing to a spoofed value (or respectively, to a pair
(D’, M’)) is called a forgery attempt and it is the attack vector
we consider. The probability that a single forgery attempt is
successful is P = 2−S , and the attack complexity is 1

P = 2S .

C. MAC Forgery Success Probability for GNSS-TESLA

In GNSS-TESLA, we define the attack surface as all
forgery attempts within a predetermined time frame. The
probability that the attack surface is penetrated, i.e., that at
least one forgery attempt succeeds, is given by

PNT = 1 − (
1 − 2−s

)NT (3)

where NT is the number of forgery attempts (the attack sur-
face). A good approximation to this probability is NT · 2−S

as long as NT << 2S (see also [28]).
In the original TESLA scheme, every step of the pro-

tocol involves one dataset, one MAC, and one delayed
key. In GNSS-TESLA, we generalize this definition: we
define a block as the information unit that contains at least
one satellite, and one key and one MAC per satellite, but
noting that a block will usually include data from several
satellites; a satellite may transmit more than one dataset, and
there may be several MACs per key transmission; and even
multiple key transmissions. Since every block may contain
several MACs and datasets, verification attempts are tried
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Fig. 1. GNSS-TESLA data structure for a MAC and key block from multiple satellites. Each satellite transmits its data (D), several MACs (M) and
the key (k). Nd is the number of datasets authenticated in each block and Nb the number of blocks within the attack period. Each diamond represents

that the key has been fully received and verifications of MACs from the preceding block can commence.

for multiple pairs of (D, M), which allows multiple forgery
attempts. This is depicted in Fig. 1, where a block contains
a single TESLA key, e.g., ki-1; multiple datasets Dj trans-
mitted from the different satellites, e.g., D1 is transmitted
from the first satellite; and multiple MACs transmitted from
each satellite, e.g., Mi,1,1, is the first MAC from satellite 1;
Mi,1,2, is the second MAC from satellite 1, etc. The MACs
are authenticated using the key included in the next block,
e.g., ki in our example. The term dataset is used here in place
of message in order to avoid confusion with the GNSS navi-
gation message. The latter is understood as a several-minute
data stream that may contain several datasets, including e.g.,
satellite almanacs, time conversion parameters, or satellite
orbits and clocks. For more details we refer the reader to
GNSS Signal-In-Space Interface Control Documents, or
SIS ICDs [33], [34]. We require that at least one of the
MACs transmitted by each satellite self-authenticates its
own satellite’s dataset to ensure that each dataset can be
authenticated, and make no further assumptions about the
other MACs which may cross-authenticate other satellites
or other datasets.

The attack surface NT = Nd · Nb depends on both the
number of datasets (D1, D2 …) authenticated per block (Nd )
and the number of blocks (Nb) received within the attack
period.

We define the probability of finding a successful forgery
within a predefined timeframe τ as Pf ,τ , and bound it by
Pmax,τ :

Pf ,τ = Nd · Nb

2S
< Pmax,τ . (4)

In (4), S is the MAC length, Nd is the number of
different datasets authenticated per block, and Nb is the
number of blocks transmitted during the attack period τ .
We still assume that the number of forgery attempts is
sufficiently low to satisfy NdNb � 2S. Specifically, we
consider τ = 1 h and motivate this decision later. In (4)
we also consider Pmax,τ as the threshold above which the
system is no longer considered secure. This value should
be supplied by systems’ designers according to their own
risk analysis and compared to Pf ,τ which we now proceed to
estimate.

D. Definition of Nd and Assumptions

The number of forgery attempts per block depends on
the number of datasets that are authenticated in the block,
and the policy of accepting successful authentications in
effect on the receiver.

Case Nd-A—Lenient authentication policy: Under this
policy the receiver treats every dataset indepen-
dently from the others and accepts a dataset if it
is successfully authenticated by its corresponding
MAC, discarding it otherwise. Assuming Nd (possi-
bly spoofed) datasets are included in a block, the
probability that at least one forgery attempt suc-
ceeds, is well approximated by Pf = Nd · 2−S. We
stress that if several MACs authenticate a dataset,
the receiver considers the dataset authenticated only
if all of the received ones are successfully verified.
Thus, having more than one MAC per dataset re-
duces the attack surface. Regarding the number of
datasets, one could assume four satellites in view,
which is the reference for GNSS constellation de-
sign, and therefore four datasets, but in usual geome-
tries there are more satellites in view and we must
consider at least one additional dataset not related
to a specific satellite, for example, for UTC-GNSS
time conversion [33]. We will assume for the lenient
authentication policy Nd = 8.

Case Nd-B—Strict authentication policy: Under this
policy the receiver accepts a block as authenticated
only if all datasets in the block are successfully
verified. If at least one dataset fails, the entire block is
discarded and all authentication verifications in this
block are considered as failed. Assuming j datasets,
since all must now authenticate, the probability for
a successful forgery decreases exponentially to

Pf ,all = 1

2S· j
(5)

where Pf ,all is the probability that the adversary successfully
spoofs j datasets. Note that under this policy the adversary
must avoid detection in addition to successfully spoof a
dataset. The most rewarding strategy in this case is to leave
j − 1 datasets untouched and spoof just one dataset, giving a
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success probability of Pf = 2−S . This corresponds to setting
Nd = 1 for the strict authentication policy.

E. Definition of Nb and Assumptions

The above Nd quantified the number of forgery attempts
that can be made within a single block. The number of
blocks that can be attacked within τ , namely Nb, depends
on certain assumptions. First of all, the duration of a block
needs to be determined. According to our block definition,
at least one dataset needs to be transmitted in a block.
Therefore, the block duration must be the longest of the
authentication and dataset transmission intervals. For exam-
ple, if three keys and one dataset (e.g., a set of ephemeris)
are transmitted per a 30-s subframe, the block duration is 30
s. Even if there are multiple trials from various MAC-key
combinations, since all authentications must pass, the attack
surface is reduced, as mentioned before. Therefore, Nb is
given by

Nb = τ

max (τauth, τdata )
(6)

where τauth is the time between authentications (also known
as TBA in other references [9], [31]), and τdata is the dataset
transmission period, e.g., 30 s for Galileo I/NAV or GPS
L1C/A ephemeris datasets. Note that we assume that the ad-
versary has no time advantage over the victim and therefore
both learn if a verification succeeded or failed concurrently,
following the key disclosure. This assumption prevents the
adversary to react to a failed verification by preventing the
victim to receive that key and begin a verification known to
fail. The situation can be incorporated into the attack surface
but this would unnecessarily complicate the model: First, it
would require a continuous service denial by the adversary
for potentially long durations, which can be detected by
the receiver through other means. Second, this might only
increase Nb, so it is anyway bounded by case Nb-A below.
Therefore, we do not consider it.

Case Nb-A—No treatment of failed authentications:
Under this policy, a failed authentication has no
impact on future verification attempts. For example,
applying (6) to Galileo OSNMA, Nb = 3600 s /
max(30 s, 30 s) = 3600 s / 30 s = 120, where
30 s is the maximum τauth for OSNMA, and τdata

is also 30 s (see [33]). To simplify the analysis
we set Nb = 27 = 128 > 120.2 Other GNSS have
similar or lower Nb values making it representative
for GNSS in general.

Case Nb-B—Treatment of failed authentications—
satellite exclusion: Under this policy, the attack
surface is reduced by excluding the satellite from
which the offending dataset originated for a certain

2Note that any system shown to be secure when Nb = 128 remains secure
with the more restricted Nb = 120, but not any system that is insecure
when Nb = 128 is also insecure when Nb = 120. Effectively, we will now
proceed to demonstrate the security of a weaker system than the one we
are interested in.

Fig. 2. Request of an additional MAC after failed authentication. The
attack starts after the first verification. The verification success is

represented by the green line, and the failure by the red line. The success
probability for each verification is shown in green.

time period. For example, if, following a failed
authentication, the originating satellite is excluded
from subsequent blocks for the rest of the τ period,
each satellite can be attacked at most once during
this period. The consequence is that, by disabling
the satellites for the rest of τ , Nb would be reduced
to the number of authenticated satellites. Thus, we
assume in our analysis Nb = 16, i.e., 16 trials from a
maximum of 16 different satellites authenticated in
an hour.

Case Nb-C—Treatment of failed authentications—
service exclusion or increased vigilance: Under this
treatment policy, the authentication function is dis-
continued after a failed authentication for the rest
of τ . If this is too aggressive, the receiver may
move to applying a stricter verification policy. For
example, it may require that two MACs authenti-
cate each dataset, effectively doubling the number
of authenticating bits (see Fig. 2) or apply other
measures. The actual measure used for this policy is
a matter of dedicated risk analysis, and we abstract
it here it by assuming that the measure ensures that a
successful forgery following a failed forgery attempt
is impossible.

The new measures can be implemented for just the
originating satellite, in which case Nb = 16, as justified
for Nb-B, or to all visible satellites, in which case Nb = 1.
We will proceed assuming the latter.

F. User Profiles and Security Levels

In order to determine a safe MAC length S, we con-
sider two types of users: safety-critical and standard, each
associated with different risk profiles; and define a different
tolerance level Pmax,τ for each.

Safety-critical user: Currently, the most stringent GNSS
requirements come from safety-critical aviation operations.
These include an integrity requirement of maximum failure
probability of 10−7 per 150 s for precision approach (the
most stringent phase flight), and 10−7 per hour for the
other navigation phases after take-off (en-route, terminal
approach, non-precision approach) (see [35]). As we
cannot allocate the whole failure probability to a MAC
forgery attack, we conservatively assume that 1% of the
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TABLE I
Summary of Possible Parameters

overall probability is negligible and will have no impact
on a safety-critical user. We therefore let Pmax,τ = 10−9

and τ = 1 h. This means that we can tolerate a successful
MAC forgery attack of one in a billion over a 1 h operation
period.3

Standard user: In this case, we base our reliability as-
sumptions on available GNSS documentation. In particular,
the GPS Standard Positioning Service—Performance Stan-
dard [36] defines the following figure for GPS: “1 × 10−5

Probability Over Any Hour of the SPS SIS Instantaneous
URE Exceeding the NTE Tolerance Without a Timely Alert
during Normal Operations (URE : User Range Error; NTE:
Not-to-exceed).”

As we do not consider a safety case for the standard
user, we can take 1 � 10−5 as a general reference error rate.
We set Pmax,τ = 10−5 and maintain τ = 1 h.

G. Determining MAC Size

Table I presents a summary of the parameters for de-
termining the MAC output length S. Table II presents the
resulting attack surfaces.

Table III presents, for safety-critical and standard user
profiles, the success probability Pf ,τ of a MAC forgery
attack respective to the full set of parameters and MAC
lengths between 16 and 80, as per [13].

Following our assumptions, Table III shows that for a
safety-critical user, 30-bit MACs can be used as long as
policy Nb-C is in effect. For a standard user, 17-bit MACs
can achieve the desired risk level, if Nb-C is in effect,
and 28-bit MACs otherwise. Table III therefore shows that
MAC lengths shorter than the usual 32-bit minimum are
sometimes sufficient, following a proper risk assessment.
A GNSS or an authentication application can use this ta-
ble indicatively and derive a MAC size complaint to their
desired risk tolerance, namely Pmax,τ .

Possibly a more intuitive way to view the robustness
of the proposed MAC lengths is to calculate the expected
time until a successful forgery attack i.e., the accumulated

3Note that considering here a 1 h operation period is more restrictive than
considering a 150 s operation period. This is because there are 24 periods
of 150 s in one hour thus a failure at the beginning of every 150 s period
would amount to 24 failures in a full hour.

TABLE II
Possible Values for Nb, Nd , and Resulting Attack Surfaces

TABLE III
Success Probability P f ,τ of a MAC Forgery Attack With τ = 1 h, for

Different MAC Lengths and Attack Surfaces

Note: When the success probability is lower than Pmax,τ = 10−9 (safety-critical user)
the cell is highlighted in green; when lower than Pmax,τ = 10−5 (standard user) it is
highlighted in orange.

probability over a period longer than 1 h. For example, con-
sidering a 40-bit MAC with no failure treatment (Pf ,τ = 1h =
9.31�10−10), an attack is expected to have one successful
forgery every τ

Pf ,τ
= 1

9.31E−10
∼= 1 073 741 824 h, which are

approximately 122 489 years, even assuming a continuous
24/7 operation of the receiver and the attacker. If we take as
a reference the 80-bit MAC with no failure treatment, this
leads to one forgery attack every 1.35�1017 years, or around
ten million times the estimated age of the universe.

In conclusion, Table III shows that MAC lengths in the
30 to 40-bit range provide a good tradeoff for different users
and authentication policies. Designers should also take into
account the performance impact of failed authentications
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in the absence of attacks, and the complexity increase in
the receiver logic resulting from specific failure treatment
policies. We also recommend that GNSS providers adding
authentication publish implementation guidelines explain-
ing the desired authentication treatment in the receiver.

IV. FINDING A PREIMAGE IN A GNSS-TESLA
KEYCHAIN

A limitation of the probabilistic approach considered
above is that it can only attack one MAC at a time. For a
persistent attack, the adversary must use the deterministic
approach and recover the secret key before a successful
spoof. However, for persistent spoofing it is not enough to
recover the key corresponding to a single MAC, as was the
case in the previous section, since this key is ephemeral and
cannot be used to spoof datasets in the next block. Instead,
the adversary must recover a key from which the ephemeral
keys are generated. In the case of GNSS-TESLA, this is a
preimage in the keychain. Therefore, the security of the key
is reduced to that of the GNSS-TESLA keychain and, as the
keychain is a chain of hashes, the generic attack complexity
is determined by the hash output length, which corresponds
to the key size.

A. Related Work

The TESLA key is a symmetric key used to generate the
MAC. NIST recommends symmetric key sizes of at least
112 bits until 2030 and at least 128 bits from 2030 and
beyond [37], and ENISA considers 128-bit security levels
to be the minimum requirement for new systems being
deployed [30]. ENISA recommends 80-bit values only for
legacy systems or “transactional data,” i.e., data that has
a very short validity period, and NIST directly mentions in
[37] that a security strength of 80 bits “is no longer consid-
ered adequate”. However, these recommendations are only
partly applicable to TESLA keys: a brute-force attack over
an ephemeral TESLA key can only be performed during
the duration of a block (30s in our model), as opposed to
the long-lived keys which drive the key sizes recommended
in the standards. The place where the key size does play a
dominating role is in the adversary’s ability to attack the
TESLA keychain, i.e., when it is considered as an output
of a hash function, and this is the focus of the rest of this
section.

Typical key lengths for GNSS-TESLA as per the pre-
vious literature range from 80 to 128 bits [31], [32]. This
80–128-bit range also appears in the first proposals for the
OSNMA protocol [38], [39], later extended to 256 bits to
deal with quantum attacks. Two references focus on the
parameter selection of GNSS-TESLA. The model in [40]
recommends values of more than 80 bits and provides a
formal analysis claiming a loss of security which grows
with the cryptoperiod. The model of [40] is also used in
[41], which proposes a key length range of 115–125 bits as
sufficient for safety applications such as SBAS, for a success
probability in the order of 10−9. In the sequel we propose
a model with some different assumptions. For example,

we do not assume that a hash function is a one-to-one
mapping (i.e., a permutation) whereby collisions are possi-
ble only via truncation, and leading to the conclusion that
there is some entropy loss which depends on the chain’s
cryptoperiod. Rather, our model considers this loss as an
expected behavior of any random mapping whose range is
smaller than its domain, in particular hash functions. We
also consider that a secure hash function must be so for any
input distribution. Abstracting both the input distribution
and the output truncation into the hash function, which
we consider secure, allows us to propose a simple model
which crystalizes the relevant factors when determining a
safe key length. Our model and resulting recommendations
are presented in this section.

B. Attacks Against the TESLA Keychain

We model each TESLA key as part of a keychain gen-
erated using a one-way function as follows:

ki−1 = f (ki ) = h(ki |tGNSS| α) (7)

where ki-1 is the key generated from and disclosed prior to
ki; h(�) is an n-bit hash function (i.e., its output size is n-bit
long); tGNSS is the GNSS time, α is a salt unique to every
chain and disclosed just before the chain enters into force;
and “a|b” is the concatenation of a and b. As in the previous
section, we will assume that the synchronization process
between the transmitters and the receiver is performed
securely as part of the bootstrapping process.

A common method to obtain a one-way function is
through a cryptographically secure hash function. A hash
function is a function taking inputs of arbitrary length,
producing an output of a fixed length n. Intuitively speaking,
a secure hash function behaves like a random mapping.
For any one-way function h(�), a preimage attack is an
attack that, given Y, finds an X such that Y = h(X). A
cryptographically secure hash function has to satisfy, among
other security requirements, that the work effort required
for finding a preimage for a given output of length n is
2n. Standardized hash functions (e.g., SHA-256 [42] and
SHA-3 [43]) are the subject of long ongoing research, and
are believed to offer this level of preimage-resistance.

In the context of GNSS, short keys are necessary in
order to save bandwidth and the key size is determined
by the output length of the hash function. The main driver
for choosing the key length is to prevent preimage attacks,
which are natural attacks on the TESLA chain. If after
releasing the key an adversary can find a preimage for that
key, she can use this value to authenticate spoofed messages,
as per (2), but with the difference that knowing the key
allows a successful forgery with probability 1 rather than
2−S. It is important to note that a preimage can be found for
any one-way function by means of exhaustive search, i.e.,
given an output value Y, by trying out all possible inputs
until the right output is obtained.
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C. Terminology

Let f be the key generation function as in (7), and z the
chain length (i.e., the cryptoperiod). In order to generate a
chain, we first choose uniformly a seed-key kz in the interval
[0,2n-1]. The previous key is generated as kz-1 = f(kz), and
successive keys ki-1 are generated as ki-1 = f(ki). The last
key in the chain used for authentication is k1. When the chain
is fully generated, k0 = f(k1) is released and authenticated
off-channel. We refer to k0 as the root key.

For simplicity, we assume that a newly disseminated
key is compared against the previous one in a single step,
and refer to the key against which the new key is compared
as the effective key, and to any key that is not part of the
original chain as an ineffective key. Furthermore, we refer
to a key ki, leading to an effective key after m hashing steps
as a preimage of degree m, i.e., k0 is a preimage of degree
0 of k0, k1 is a preimage of degree 1 of k0, etc.

D. Preimage Analysis

Given an effective key ki, we can analyze its number of
preimages as a binomial variable. The first observation is
that, as ki is part of a chain, it must have at least one preimage
ipso facto. The rest of the 2n−1 values are left to be mapped
at random by the hash function which, by definition, maps
each of them to a fixed value with probability 1/(2n−1)
≈ 2−n. For an effective key ki, we get that the number of
additional preimages can be modeled as a binomial random
variable X having

X ∼ B
(
2n − 1, 2−n

)
(8)

with expected value exactly μX = (2n−1)�2−n ≈ 1. For an
ineffective key, the expected number of preimages is μX.
For an effective key, taking into account that in addition to
any randomly mapped ineffective preimages, there is always
an effective preimage in the chain, the expected number of
preimages in μX + 1 ≈ 2, i.e., the previous key in the chain
and possibly other ineffective keys.

By induction, we assume that an effective key ki has m
preimages of degree m – 1 on average. Then, the number of
preimages of degree m for ki is m + 1. As ki is an effective
key, one of the m preimages of degree m−1 is the effective
key in the chain leading to ki. This key has two preimages
on average. Each of the other m −1 preimages of degree
m −1 has a single preimage on average. We conclude that
the number of preimages of degree m is 1�(m−1) + 2�1 =
m+1. An example for this behavior is depicted in Fig. 3.

A preimage attack of one block requires a single hash
(i.e., ki = f(ki+1)). However, executing a forgery on one
block requires two hashes. To see this, consider the state of
the system and the public information in block i. Previously,
in block i−1 the system disseminated Di−1, mac(ki, Di−1),
and ki−1 and all of these are now known to the adversary.
Now, in block i, the system authenticates the data using
ki+1 and will no longer accept data authenticated with ki.
The adversary guesses ki+1 and since she does not know ki
at this point, she must execute two hashing steps to compare

Fig. 3. Tree of chains ending in ki. Keys along the original chain are
connected via a solid line, while ineffective keys are drawn with a dotted
line. An effective key (solid circle) has two incoming arrows: one from
an effective key (solid circle), and one from an ineffective key (dotted
circle) which was mapped at random according to (7); ineffective keys
have only a single incoming arrow from a randomly mapped preimage

according to (7).

Fig. 4. Histogram of number of preimages for effective and ineffective
keys over one SHA-256 iteration truncated to 16 bits, compared with a

Poisson distribution.

f(f(ki + 1)) against the already known ki−1. Therefore, a
forgery attack over �−1 blocks requires � hashes.

In order to validate this model, we performed two ex-
periments on a downscaled case. In the first experiment, we
analyzed the preimage probability distribution over one it-
eration, and in the second, we measured the average number
of preimages for a chain with several iterations. For the first
experiment, we define our one-way function as SHA-256
truncated to 16 bits (n = 16). The probability of having zero
to nine preimages for both effective and ineffective keys is
shown in Fig. 4. The Figure also shows that the probability
for an ineffective key to have k preimages, Pine f (k), with
a preimage→image random mapping function, follows a
Poisson distribution:

Pine f (k) = e−λλk

k!
(9)

where the average is λ = 1, as expected. This result cor-
responds with the model proposed in [40, Sect III], with
the difference that here it is used to model ineffective keys
only. On the other hand, the probability distribution of the
number of preimages for an effective key is equivalent to the
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Fig. 5. Histogram of the average number of preimages for 128 keys in a TESLA-like chain, in 0.05-width intervals, for 100 experiments.

distribution of (9) but offset by one, the known preimage,
and therefore with an average of 2.

In the second test, we measured the average number of
preimages in a real one-way chain. We set n = 20 and z =
128. We defined the one-way function f as follows:

f (ki ) = ki ⊕ AEStrunc = 20
Q (ki ||0000| |c|| 00 . . . 0) (10)

where ki || 0000 || c || 00 …0 denotes the string consisting
of ki followed by four zero bits, an 8-bit counter c, and 96
zero bits. The counter c is incremented after each experi-
ment. AEStrunc = 20

Q (·) denotes the truncation to 20 bits of an
AES evaluation under the all-zero key. We performed 100
experiments with a new value of c for each new chain. We
computed in each step the average number of (degree 1)
preimages for all values on the chain. The results are shown
in Fig. 5.

Note that the results from Figs. 4 and 5 are consistent
with not only with the model in Fig. 3, but also with the
downscaled numerical examples of [40], suggesting that it
is sufficient to consider one random mapping and discern
between effective and ineffective keys.

In the following, we will model an attack on the chain
based on the success rates derived from the preimage anal-
ysis. Given an effective key ki an attack requires creating a
chain of length � such that ki is the last key of the chain. We
consider two scenarios: an online attack, where the attacker
waits until ki is disclosed, and an offline attack, where the
attacker tries different values of ki before it is disclosed, and
stores them in a table.

E. Online Attack

As we saw in the preimage analysis there are � + 1
starting points converging after � steps to an effective key
(see Fig. 3). In order to fully construct such a chain, �

hashes are required. Using a random starting point k̄i+ �, the
probability that such a candidate chain ends in a specific
value ki (i.e., an effective key), already disclosed, is

p = � + 1

2n
. (11)

The expected number of starting points to be checked
before finding a good key is inversely proportional to p, i.e.,
1/p. Given t̂ the hashing time in seconds by the adversary,
it takes �� t̂ seconds to generate a chain of � keys, and it is
expected to take

2n

� + 1
� · t̂ = 2n · t̂

�

� + 1
(12)

seconds to test enough starting points to find a spoofed chain
of length �. Note that when � = 1, then �/(�+1) = 0.5, and
when � is large enough �/(� + 1) ≈ 1. This means that the
expected time for a successful attack would always be in
the interval of 2n−1t̂ ≤ τ ≤ 2nt̂ seconds, independently of
the length of the attacked chain. This was already obtained
in [40, Section V], where it was attributed to entropy loss.
We attribute it to the fact that both models do not account
for the true cost of verifying that a spoofed chain is mapped
to an effective key. Accounting for this true cost, i.e., �+1,
(12) becomes 2n · t̂ �+1

�+ 1 = 2n · t̂ seconds, regardless of
the length of the attacked chain. Moreover, both models
assume that the key to verify a block is disseminated in the
following out. Supposing a higher latency GNSS-TESLA
where the key is disseminated 1000 blocks later, (12) would
become 2n · t̂ �+1001

�+ 1 which would suggest that there is an
“entropy gain” for short chains. In fact, what we see is that
the fixed overhead for verifying that a chain is valid is more
significant in short chains than in long ones.

F. Offline Attack

In an offline attack, the adversary tries to attack a future
effective key ki by generating chains of length � with end-
points k0

i , …, km−1
i and storing them in a large database. A

clever way to build such a database and a generic attack were
proposed by Hellman in [44] and also analyzed in [41] for
GNSS-TESLA. We will describe a variant of [44] adapted
to our setting: As soon as the chain salt α and tGNSS (7) are
disclosed, the adversary chooses a block i, and a chain length
� she wishes to attack. She chooses a starting point k̄0

i+� and
computes its respective endpoint k̄0

i = f � (k̄0
i+�). She stores

the pair (k̄0
i+�, k̄0

i ) in a look-up table, and repeats this process
for many starting points. When the target key ki is finally
released, the adversary searches the table to see whether
any value k̄ j

i = ki was previously stored. If there is such a
value, then its pair is the beginning of a spoofed chain. As
before, since a chain of length � has (�+1) possible starting
points converging to the same endpoint, the probability of
randomly selecting a good starting point is (�+1)/2n. Thus,
the time required for a successful attack is the same as for the
online attack: for a hashing time of t̂ , it takes � · t̂ seconds
to generate a single chain, and the time it takes to try the
required 2n/(�+1) starting points is � · t̂ ·2n/(�+1), which
converges to 2nt̂ seconds for high values of �, and is always
more than 2n−1t̂ seconds.
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TABLE IV
Chain Attack Time (τCA) for GNSS-TESLA Key Sizes (n) Between 70 and 128 Bits, for a Hashing Rate of 2−57 Seconds-Per-Hash

Note that if the attacker had certainty about the values
of α and tGNSS it could start the offline attack before the
root-key is disclosed. Since both are known only during
the cryptoperiod of the chain, the adversary is limited in
the amount of precomputation. Otherwise, if the adversary
wishes to overcome this and start building databases before
α is made known, she needs to guess α thus increase the
work effort by a factor of 2α . She also needs to predict the
time associated to the root-key, so adding uncertainty to this
value is recommended in [40].

G. Recommendations on Key Lengths and Cryptoperi-
ods for GNSS-TESLA

Based on the above analysis, in order to choose the
GNSS-TESLA key length, we recommend lower bounding
the attack time by 2n−1t̂ seconds, i.e., considering attacks
on very short chains with frequent dissemination as a ref-
erence. This decision bounds attacks on any chain length
at the cost of at most a single bit compared to longer
chains and slower dissemination. In order to define t̂ , we
can look at the currently available hashing devices. As
per [45], a 1000-USD Antminer R4 can perform 8.6 TH/s
(tera-hashes per second). Assuming that the timestamp and
salt addition do not alter the hashing rate, and a 10-Million
USD investment mounting parallel hashing devices, this
would allow 8.6ċ1016 hashes-per-second, or, rounding up,
t̂ = 2−57 seconds-per-hash. Further costs include energy
consumption, cooling costs, and sufficient and efficient
storage devices for the offline attack. This puts the attack
way beyond the reach of most reasonable adversaries. We
take 10 Million USD as a reference for the attack resources,
taking into account standard practical security considera-
tions such as the value of the authenticated information and
its short applicability period [46], and the fact that signal
re-radiation, even if expensive and sophisticated, may be
more cost-effective to spoof a GNSS position [10].

1) Hash Output Size: In order to facilitate this and
future analyses, we define the Chain Attack Time τCA as
follows:

τCA = 2n−ĥ−1 (13)

where ĥ is the two-exponent of the hashing rate, log2(1/t̂),
so ĥ = 57 in our case.

Table IV presents τCA for different values of GNSS-
TESLA key lengths between 70 and 128 bits. The table
shows that a key of 80 bits would allow one key recovery
every 48.55 days and it is therefore not recommended. In
the case of 96 bits, one successful attack is expected once
every 8716 years on average. If we extrapolate a hashing

rate to 10 years from now with a 1.5/year growth factor,
which overestimates Moore’s Law, then a successful attack
is expected “only” once every 302 years on average.

2) Chain Cryptoperiod: Since the attack complexity is
roughly the same when attacking short and long chains, we
can assume that a successful key recovery implies that the
rest of the chain was compromised entirely. In the worst-
case scenario, the attack is successful already in the first
attempt, compromising the entire chain.

In this setting, the cryptoperiod of the chain, i.e., its
length, can be used to compartmentalize the breach and
mitigate the adversary’s ability to mount a persistent attack.
Consider for example a parameter set where one breach
is expected in every 120-day period. In the worst-case
scenario, this breach would happen at the beginning of the
chain compromising all of it. If the chain has also a 120-day
cryptoperiod, an adversary would be able persistently to
spoof data for the next 120 days. If the same 120-day period
is instead covered by four 30-day chains, the spoofing period
following a successful chain attack is reduced to 25% of
that time, i.e., 30 days following a successful attack at the
beginning of one of the chains.

3) Combining the Hash Output Size and the Chain
Cryptoperiod: Considering the hash output size and the
chain cryptoperiod together allows to derive the average
spoof-per-cost period. Consider for example a 120-day
chain with 80-bit keys. From Table IV we expect an average
of one forgery every 48.55 days. We can derive that an
adversary would be able to mount a persistent spoof for an
average period of 120 – 48.55 = 71.45 days before the chain
is replaced. Alternatively, setting the cryptoperiod to 30
days with the same key length, the adversary would be able
to spoof an average period of about 60 – 48.55 = 11.45 days
in every 60-day period (corresponding to two chains), or
2 · 11.45 = 22.9 days in a 120-day period (corresponding
to four different chains).

Another approach would be to derive the worst-case
success probability and use it to derive the attack cost. For
example, to mount a 120-day attack on an 80-bit chain with
a 120-day cryptoperiod the adversary would need to mount
a single preimage attack with success probability 2−80.
Conversely, to mount a 120-day attack on four 80-bit chains
with a 30-day cryptoperiod each, the adversary would need
to mount four preimage attacks (one on each chain) with an
overall probability of 2−80·4 = 2−320 .

4) Summary: In summary, comparing the roles of the
hash output length and the chain cryptoperiod we see that
the former determines the difficulty of finding a preimage
and the latter the difficulty of using such a preimage to
mount a persistent attack.
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According to Table IV, and without accounting for
future improvements in computing power, we find that hash
output lengths of 88 bits or more appear to be resilient to
preimage attacks within several decades. Hash output sizes
of 96 bits or more are expected to remain resilient within
any reasonable timeframe, even considering Moore’s Law.

We further see that even if a preimage attack cannot
be avoided (e.g., due to short hash output sizes), the effect
of shorter keys can be mitigated by limiting the chain’s
cryptoperiod. Frequently replacing the chain would prevent
an adversary from mounting persistent spoofing attacks
even if they are successful in finding a preimage.

Note also that extending the key by a single bit re-
quires the adversary to double her efforts to maintain the
same success rate, hence extending the key length by
three bits every two years would compensate for likely
improvement in computing power. In any case, the crypto
algorithms and their parameters should be re-evaluated
once a year, taking into account changes in standards,
improvement of cryptanalytic techniques, decrease in hard-
ware costs, and disruptive technologies such as quantum
computers.

In summary, while shorter key values appear to be secure
nowadays, we recommend GNSS-TESLA chains with a
cryptoperiod of one year or less, and a hash output (i.e., a
TESLA key) size of 96 bits or more. Such parameters seem
to provide enough safety margin for today’s needs and those
of the near future. This recommendation is the result of an
application-oriented analysis and is shorter than standard
cryptographic practices of 112 or 128 bits.

V. CONCLUSION

This article analyzed the length of MACs and hash-
derived cryptographic keys for delayed-disclosure proto-
cols, such as TESLA, applied to GNSS. Regarding MAC
sizes, values of 17–40 bits are considered sufficient, depend-
ing on the user profile and receiver treatment policies. In
particular, for the simplest, most lenient treatment policy in
the receiver, values of 28 and 40 bits are considered safe, for
standard and safety-critical users, respectively. Regarding
TESLA key sizes, values of 96 or more bits are suggested.
These sizes are shorter than those recommended by stan-
dardization bodies such as [24] or [30]. This discrepancy is
due to the more restrictive application model we consider.

Regarding MACs, a standardization body providing a
general recommendation must take into account a forgery
attack against the MAC function, where the MAC and its
corresponding key are long-lived. However, the case for
GNSS-TESLA is different. In practical terms, a generic
forgery attack against the MAC is restricted to random
guesses, and since the MAC is also short-lived, we conclude
that MAC sizes shorter than the standard recommendation
can be used in some conditions. We then analyze the risk
of a key recovery attack targeting the key generation mech-
anism, i.e., the TESLA chain. The adversary tries to find
a preimage of a known output of a hash function (i.e.,
the key) by attacking the entire chain or parts of it. The

analysis on preimage attacks allows us to conclude that
shorter-than-recommended hash output lengths (i.e., MAC
key sizes) are sufficient. This analysis is based on a notably
simpler model than that in previous literature, validated as
part of this work.

While the recommendations are tailored for GNSS-
TESLA, they may be of use for other delayed-disclosure
protocols, at data or signal level, used for GNSS authenti-
cation.

Our work also recommends that GNSS authentication
providers publish clear implementation guidelines explain-
ing the minimum or desired authentication treatment in the
receiver.
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