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Abstract

Volumetric leakage in encrypted databases had been overlooked by the com-
munity for a long time until Kellaris et al. (CCS ’16) proposed the first database
reconstruction attack leveraging communication volume. Their attack was soon
improved and several query recovery attacks were discovered recently. In response
to the advancements of volumetric leakage attacks, volume-hiding searchable sym-
metric encryption (SSE) schemes have been proposed (Kamara and Moataz, Eu-
rocrypt ’19 & Patel et al., CCS ’19). In these schemes, the database is padded
in a clever way so that the volume (i.e., the number of responses) for any search
query is the same or computationally indistinguishable while keeping the storage
complexity and search complexity as small as possible.

Unfortunately, existing volume-hiding SSE schemes do not support atomic up-
dates (i.e., addition/deletion of an arbitrary keyword-document pair), which is the
most common update operation considered in the SSE literature. Meanwhile, re-
cent volumetric attacks (Wang et al., EuroS&P ’20 & Blackstone et al., NDSS ’20)
indeed target dynamic databases.

We initiate a formal study of volume-hiding dynamic SSE. We extend the ex-
isting definition of volume-hiding leakage function into the dynamic setting and
present efficient constructions VH-DSSE and VH-DSSEk. VH-DSSE suffers from
non-negligible correctness error. To remedy the disadvantage of VH-DSSE, we pro-
pose a multi-copy construction VH-DSSEk that amplifies correctness by parallel
repetition. As a side contribution, both VH-DSSE and VH-DSSEk satisfy the
strongest notions of backward-privacy, which is the first one in the literature, to
the best of our knowledge.

1 Introduction

A searchable symmetric encryption (SSE) scheme [16] encrypts a private database into
an encrypted index. An untrusted cloud server holding this encrypted index can an-
swer keyword search queries issued by the database owner efficiently. The main design
goal of SSE in terms of efficiency is to avoid a linear scan over the large database
during search, which is unavoidable if one uses generic solutions such as multi-party
computation (MPC) and fully homomorphic encryption (FHE). State-of-the-art SSE
constructions [3, 10, 16, 18] for keyword search achieve optimal search complexity, i.e.
linear in the number of matching documents.

1



The efficiency of SSE comes at the cost of revealing some information, called leak-
age, to the server. Informally, an SSE scheme is secure, by definition, if the untrusted
server does not gain extra information about the private database and the search queries
beyond a pre-defined set of leakages. Common leakages in the SSE literature include
search patterns, response lengths, database size, etc. There is a long-standing and still
active line of research [5, 9, 24, 28, 29, 31, 34, 39, 44–47, 52, 64] devoted to studying the
security implications of these leakages.

Volumetric Leakage. For SSE schemes that achieve optimal-time search, the number
of matching documents is revealed to the server unavoidably. Such information is often
referred to as response length pattern or volume pattern.1 While this leakage seems very
innocent at the first glance, somewhat surprisingly, researchers have demonstrated that
it actually imposes severe threats to the actual security of the encrypted database: an
attacker can reconstruct the database content [28,31,39], or recover the database owner’s
search queries [5, 28,64] using volumetric leakage.

In response to these attacks, Kamara and Moataz [37] initiated the study of volume-
hiding SSE. Their idea is to pad the database carefully so that the volumes of search
queries are computationally indistinguishable while keeping the size of the (padded)
encrypted index and the search complexity small. Patel et al. [55] proposed a more
efficient scheme dprfMM that achieves asymptotically optimal storage complexity (linear
in the size of the original database) and search complexity (linear in the maximum
volume).

Unfortunately, the dprfMM scheme proposed by Patel et al. [55] does not support
updates on the encrypted database. Meanwhile, the dynamic variants proposed by
Kamara and Moataz [37] only support a limited class of updates. Let DB be the
database and DB(w) be the subset of entries in DB that contain the keyword w . Three
types of update operations were considered in [37]: 1. Tuple addition: adding DB(w∗)
to DB where w∗ is a brand new keyword; 2. Tuple deletion: removing all entries in
DB(w∗) from DB for an existing keyword w∗; 3. Tuple edition: delete all entries in
DB(w∗) first and then add back updated DB(w∗). Their VLH construction supports
all three types while their aVLH construction only supports the last type.

So far, existing schemes do not support atomic update that adds/removes a single
keyword-document pair (w , ID) if w already exists in the database. Atomic update is
the most flexible and versatile type of update considered in the SSE literature, as it
can efficiently emulate both file and tuple updates. Meanwhile, recent volumetric at-
tacks [5, 28, 64] assume that the attacker is able to inject malicious content into the
database and observing changes in volumetric leakage in subsequent search queries.
Both Decode and Binary attack2 [5] and replay attack [64] recover search queries with
probability 1 by inserting a few dozen malicious files. Given the gaps between the volu-
metric attacks and defenses in the literature, a formal study of volume-hiding dynamic
SSE schemes (DSSE) is not just a purely theoretical interest, but also a pressing need
in practice.

Forward and Backward Privacy. Putting volumetric leakage aside, restricting other
leakages in DSSE schemes is already a challenging research problem. Two security
notions that aim to restrict the update leakages in DSSE have been considered in
the literature: forward and backward privacy. Informally, a DSSE scheme is forward-
private [6,8,21,42] if it is impossible to connect a new update to previous operations, e.g.,
it is impossible to tell whether the addition is for a previously searched keyword or not.
Forward-privacy mitigates certain query recovery attacks [66] on encrypted databases.

1We use the terms (i.e., volume, response length, number of matching documents) interchangeably.
2We remark that they work against ORAM-based solutions as well.
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Backward-privacy [8] is a similar notion that requires search queries should not leak
entries after they have been deleted. Several notions of backward-privacy have been
proposed in the literature. Among them, BP-I [8] and BP-I∗ [67] are the two strongest
(and incomparable) notions. To the best of our knowledge, there is no DSSE scheme in
the literature that satisfies these two notions simultaneously.3

Is there a baseline solution? If one does not care about storage complexity, there is
a simple baseline solution for volume-hiding static SSE: pad the database with dummy
entries so that the volumes of all keywords are the same (e.g., equal the maximum
volume). However, complications arise immediately when we apply the same design
in the dynamic setting. First, it is not clear how to replace an existing dummy entry
with a new keyword-document pair (w , ID) efficiently and securely, especially when the
keyword w may have been searched before. Second, updates may change the maximum
volume of the existing database, which means paddings on all other keywords need to be
changed accordingly. This will not be an efficient operation. Perhaps more importantly,
the server can differentiate an update on a keyword with maximum volume from an
update on other keywords, which is a natural violation of privacy during updates. Note
that this issue is inherent as long as the maximum response length is included in the
leakage profile, even if heavyweight tools like ORAM are used. In short, there does not
seem to be any straightforward baseline solution, even if we afford to sacrifice storage
complexity. We are thus intrigued to ask the following question:

Can we have a dynamic SSE scheme with the following properties?

1. volume-hiding;

2. supporting atomic update operation;

3. asymptotically optimal storage complexity and search complexity;

4. with forward and backward privacy.

1.1 Our Contributions

In this work, we initiate a formal study of volume-hiding DSSE and answer the above
question in the affirmative.

� We give the first formal security definition for volume-hiding DSSE, which gener-
alizes the existing notion for static SSE [37, 55] in several aspects. Notably, our
volume-hiding notion prevents the leakage profile from containing the maximum
response length, which is partly motivated by the issue of update privacy discussed
above.4

� We describe the first volume-hiding DSSE construction VH-DSSE that supports
the addition/deletion of any keyword-document pairs. Our starting point is the
state-of-the-art volume-hiding static SSE construction dprfMM in [55]. To upgrade
dprfMM into a dynamic SSE efficiently and make it satisfy our strong volume-
hiding notion, we modify its inner workings and also borrow techniques from data
structure design and the ORAM literature.

3Unlike forward-privacy, we are not aware of what concrete attacks backward privacy (regardless
of BP-I, BP-I* or weaker variants) can thwart to the best of our knowledge. That said, leaking less
information provides a stronger security guarantee in general. It is possible that in the future, new
attacks targeting DSSE schemes without backward privacy will be identified.

4See Section 4.3 for more discussions on why maximum response length should be hidden.
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Table 1: Comparison with recent SSE Schemes. |W|: size of keyword space; |ID|:
size of file-identifier space; `max = maxw∈W |DB(w)| : maximum volume in DB ; dmax:
maximum number of deletion supported; N : the (current) size of the (possibly dynamic)
database. For a dynamic database using lazy deletion strategy, N = N0 + k where N0

is the size of the initial database and k is the total number of update operations so
far. For keyword w : aw = # updates, iw = # insertions, `w = |DB(w)| the volume
of keyword w in DB . BP stands for backward privacy type. VH stands for volume-
hiding. am. stands for amortized efficiency. The correctness guarantee of VLH assumes
DB follows Zipf-distribution. Also see [37, Corollary 4.3] for concrete parameters. We
do not consider the dynamic variants in [37] as they do not support atomic updates
considered in this work.

schemes
Storage Complexity Computation Complexity

Correctness BP VH
Server Client Search Update

[37]
VLH Θ(|W|`max) Θ(1) Θ(`max) N.A. (1 − negl(λ), 1 − o(1)) N.A. Yes

aVLH Θ(N) Θ(1) Θ(`max · logN) N.A. perfect N.A. Yes

[55] dprfMM Θ(N) Θ(1) Θ(`max) N.A. perfect N.A. Yes

[17]
SDa Θ(N) Θ(1) Θ(aw + logN) Θ(logN) (am.) perfect BP-II No

SDd Θ(N) Θ(1) Θ(aw + logN) Θ(log3 N) perfect BP-II No

QOS Θ(N) Θ(1) Θ(`w log iw + log2 |W|) Θ(log3 N) perfect BP-III No

[67] FB-DSSE Θ(|W||ID|) Θ(|W|) Θ(aw |ID|) Θ(|ID|) perfect BP-I∗ No

[62] Aura Θ(N) Θ(|W|dmax) Θ(`w ) Θ(1) (1, 1 − o(1)) BP-II No

VH-DSSE Θ(N) Θ(1) Θ(`max + logN) Θ(logN) (am.)
(1, β = `max/N)

BP-I & I∗ Yes
(1 − negl(λ), 1 − o(1))

VH-DSSEk ω(log λ)Θ(N) Θ(1) ω(log λ)Θ(`max + logN) ω(log λ)Θ(logN) (am.) (1 − negl(λ), 1 − negl(λ)) BP-I & I∗ Yes

� As the maximum response length is hidden from the untrusted server, VH-DSSE
becomes lossy, i.e., some matching documents may not be returned by the search
protocol. However, we prove that the loss is bounded under some assumptions on
the database distribution with high probability. Our detailed probability analysis
turned out to be more difficult than expected when computing the lower bound
of the summation of dependent random variables following hypergeometric dis-
tribution. See Section 6.2.3 for more detail. Our probability analysis may be
of independent interest. VH-DSSE achieves asymptotically optimal storage com-
plexity. For search and update complexity, VH-DSSE is comparable with recent
forward and backward private SSE schemes [17]. Our final construction VH-DSSEk

achieves negligible loss by amplifying the correctness of VH-DSSE using parallel
repetition.

� As a side product, we show that VH-DSSE and VH-DSSEk satisfy the two strongest
notions of backward-privacy (BP-I and BP-I∗). To the best of our knowledge,
VH-DSSE and VH-DSSEk are the first ones in the literature.

A detailed comparison with prior arts in terms of various efficiency metrics and security
guarantees is given in Table 1. We can see that the asymptotic efficiency of our schemes
is comparable with recent works, such as the SDa construction in [17]. The most recent
forward&backward private SSE scheme Aura [62] suffers from asymptotically large client-
side storage and it only achieves a weaker notion of backward privacy (BP-II).

1.2 Related Work

The most common data structure used by SSE constructions is multi-map. The de-
sign of SSE boils down to encrypting the multi-map in an efficiently queryable manner.
The notion of SSE has been extended to structured encryption [14] that encrypts more
general data structures like graphs [14,48,50] while maintaining the ability to privately
query the data structure. Search queries beyond (single-)keyword search are also con-
sidered in the literature, including conjunctive/disjunctive/Boolean query [11, 35, 56],
range query [20,22,40,58], skyline query [49,63,65], SQL query [36], etc.
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Towards the goal of better understanding the concrete security of SSE schemes, many
attacks leveraging different leakage profiles have been proposed. This line of research
was initiated by Islam et al. [34], who use access pattern leakage to recover search
queries. Subsequent attacks reconstruct the plaintext values [29, 39, 45, 47] from an
encrypted database supporting expressive queries, e.g., range query/k-NN. While most
of these works leverage access pattern and search pattern leakage only, volumetric leakage
attacks [5,28,31,39,64] are receiving increasing attention recently, possibly because they
are much harder to avoid and their consequences are much less understood.

The idea of forward and backward privacy, first appeared in [13] and [61] respectively,
is to restrict the information leakage during updates. Subsequent works [8, 12, 21, 42,
48, 62, 67] formalized the notions and also made significant improvements in terms of
efficiency. Kamara, Moataz, and Ohrimenko [38] proposed a general transform that
suppresses search pattern leakage. Kamara and Moataz [37] and Patel et al. [55] study
the problem of hiding volumetric leakage.

Two recent works [19, 32] also consider reducing leakages in searchable symmetric
encryption. Demertzis et al. [19] reduce the search/access/volumetric patterns in static
SSE via adjustable Oblivious RAM and adjustable padding. Their static SSE scheme,
SEAL(α, x), is parameterized by α (which controls the amount of search leakage) and x
(which controls the amount of volumetric leakage). They left the problem of handling
dynamic databases as an open question explicitly and discussed difficulties in making
their scheme dynamic. Gui et al. [32] introduce bucketization to hide volumetric leakage
and delayed, pseudorandom write-backs to hide access patterns. The latter technique
also makes search and update operations indistinguishable, which leads to a strong
notion of forward and backward security. Like [37], their dynamic SSE scheme only
supports document-level addition/deletion. Atomic update operations, which is the
focus of our work, can be simulated (inefficiently) by a deletion on an old document
followed by an insertion on the modified document.

2 Preliminary

We use λ ∈ N to denote the security parameter, which is an implicit input to all al-
gorithms/protocols. PPT stands for probabilistic polynomial-time. negl(λ) denotes the
set of functions that grow slower than any inverse polynomial in λ. For a finite set or a
vector S, |S| denotes its size and s ← S denotes picking an element uniformly at ran-
dom from S. We denote [i, j] = {i, i+1, . . . , j}. We consider a collection of D documents
with identifiers ID1, . . . , IDD, each of which contains keywords from a given alphabet Λ.
We follow the canonical database representation in the SSE literature: let DB consists
of pairs of keyword-identifiers, such that (w , ID) ∈ DB if and only if the file ID contains
the keyword w . For a dynamic database that adopts lazy deletion strategy, the database
entries (w , ID, op) will have an extra “operation” field op ∈ {add , del}. For each w, let
DB(w) denote the set of database entries (w , ID) (or (w , ID, op)) associated with the
keyword w . |DB | denotes the size of the database, namely |DB | =

∑
w∈W |DB(w)|.

DB [i, j] denotes the subset of DB consisting of the i-th entry to the j-th entry (both
inclusive) in DB , where 1 ≤ i ≤ j ≤ |DB |. Let Q denote the query space. We focus on
single-keyword search queries, so W = Q. We denote by (outA, outB) ← ΠA,B(X;Y )
the execution of a two-party protocol Π between parties A and B, where X and Y are
the inputs provided by A and B, respectively; and outA and outB are the outputs to
A and B, respectively. Our protocols are executed between two parties, a client and a
server. We omit the subscripts when the identities of the participants are clear in the
context.
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2.1 (Dynamic) Symmetric Searchable Encryption

A symmetric searchable encryption scheme (SSE) Σ = (Setup,Search) consists of a setup
algorithm Setup and a protocol Search that is executed between a client and a server:

� Setup(1λ,DB) outputs (K, τ,EDB) where K is a secret key for the client, τ is
the client’s local state, and EDB is an (initially empty) encrypted database (if
DB is empty) that is sent to the server. The algorithm may additionally take a
parameter N (i.e., Setup(1λ,DB , N)) denoting the maximum supported number
of entries.

� Search(K, q , τ ; EDB) is a protocol for searching the encrypted database. We con-
sider single-keyword search query, i.e., q = w ∈ Λ. The client’s output is DB(w).
The protocol may also modify K, τ and EDB .

If the SSE is dynamic (DSSE), it has an additional Update protocol:

� Update(K, op, (w , ID), τ ; EDB) inserts an entry to or removes an entry from DB .
Input consists of op = add/del , file identifier ID, and keyword w . The protocol
may modify K, τ and EDB .

Usually, SSE schemes are lossless, i.e., all the matching document identifiers are
returned by the search protocol. Recently, many lossy SSE schemes [15, 15, 37, 59, 62]
have been proposed for better security or efficiency. For the convenience of analysis, we
need to introduce the notion of correctness for SSE schemes.

Definition 2.1 (Correctness of SSE). An SSE scheme Σ is called (p, ε)-correct for a
keyword w if, with probability at least p, it returns at least ε fraction of DB(w).5 We
say that Σ is perfectly correct if ε = p = 100% for all keywords.

Looking forward, our keyword-level correctness (Definition 2.1) captures the correct-
ness guarantee of our constructions in a fine-grained manner accurately (Theorem 6.1, 6.2
and 7.2). It is easy to define a macro-level correctness definition on top of Definition 2.1.
We leave the flexibility to readers.

The security of Σ is parametrized by a (stateful) leakage function L = (LStp,LSrch,LUpdt)
describing the information revealed to the server in the protocol execution. LStp refers
to leakage during setup, LSrch during a search operation, and LUpdt during updates. In-
formally, a secure DSSE scheme with leakage L should reveal nothing about the database
DB beyond this leakage. This is formally captured by a standard real/ideal experiment
with two games RealDSSEA , IdealDSSESim,L . We present these two games (adapted from [17])
in Figure 1.

Definition 2.2. A DSSE scheme Σ is adaptively-secure with respect to leakage func-
tion L, iff for any PPT-adversary A, there exists a stateful PPT simulator Sim =
(SimSetup,SimSearch,SimUpdate) such that |Pr[RealDSSEA (1λ) = 1]−Pr[IdealDSSESim,L (1λ)]| ≤
negl(λ).

2.1.1 Typical Leakage Functions.

We describe typical leakage functions that have been considered in the literature. We
follow existing notions [37,38,55].

5Note that false negatives are inherent by definition in all lossy (D)SSE schemes. If a lossy DSSE
scheme uses lazy deletion, tuples for marking deletion may not be returned, leading to false positives
too.
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RealDSSEA (1λ)

1 : DB0 ← A(1λ), (K, τ0,EDB0)← Setup(1λ,DB0)

// Let t0 be an empty string

2 : for k = 1 to poly(λ) do

3 : (typek, IDk,wk, `k)← A(EDBk, t0, . . . , tk−1)

4 : if typek == Search then

5 : (τk,DB(wk);EDBk)← Search(K,wk, τk−1, `k;EDBk−1, `k)

6 : else if typek == Update then

7 : (K, τk;EDBk)← Update(K, add/del , (IDk,wk), τk−1;EDBk−1)

8 : Let tk be the message from client to server in Search/Update above

9 : return A(EDB0, t0, t1, . . . , tpoly(λ))

IdealDSSESim,L (1λ)

1 : DB0 ← A(1λ), (stS ,EDB0)← SimSetup(1λ,LStp(DB0))

// Let t0 be an empty string

2 : for k = 1 to poly(λ) do

3 : (typek, IDk,wk, `k)← A(EDB0, t0, . . . , tk−1)

4 : if typek == Search then

5 : (stS ; tk,EDBk)← SimSearch(stS ,LSrch(EDBk−1,wk), `k)

6 : else if typek == Update then

7 : (stS ; tk,EDBk)← SimUpdate(stS ,LUpdt(EDBk−1,wk))

8 : return A(EDB0, t0, t1, . . . , tpoly(λ))

Figure 1: Real and ideal experiments for the DSSE scheme. The highlighted part is
tailored for our modified dprfMM scheme only.

� Search Pattern: LEq reports whether two search queries are to the same keyword
or not. Formally, for a sequence of search queries: ~q = (q1, . . . , qt), LEq(~q) = M
consists of a t× t binary matrix such that M [i][j] = 1 iff qi = qj

� Response Length: LRL reports the volume associated with the queries. For-
mally, for a sequence of search queries q1, , . . . , qt and a database DB , that is
LRL(DB , q1, . . . , qt) = (`q1 , . . . , `qt) = (|DB(q1)|, . . . , |DB(qt)|).

� Maximum Response Length: LMRL reports the maximum number of match-
ing documents associated with any keyword in the database. Formally, for any
database DB , LMRL(DB) = `max = maxq∈W |DB(q)|.

� Database Size: LDSize reports the total number of key-value pairs in the database,
namely LDSize(DB) = |DB | =

∑
w∈W |DB(w)|.

2.2 Forward and Backward Privacy

Definition 2.3 (Forward Privacy [6, 8]). An L-adaptively-secure DSSE scheme that
supports single-keyword addition is forward private iff the update leakage function LUpdt
can be written as LUpdt(op,w , ID) = L′(op, ID) where L′ is a stateless function, op ∈
{add , del}, and ID is a file identifier.,
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In the literature, four types of backward privacy with different leakage patterns
have been considered. BP-I, BP-II, and BP-III were first formalized in [8], with BP-I
leaking the least information and BP-III leaking the most. Recently, Zuo et al. [67]
proposed BP-I∗, a variant of BP-I backward privacy that is strictly stronger than
BP-II but it is incomparable to BP-I. In the following, we present the necessary no-
tation for BP-I and BP-I∗. Readers may refer to [8] for the remaining two weaker
notions. Let Q be a list with one entry for each operation. For searches, the en-
try is (u,w) where u is the timestamp and w is the searched keyword. For updates,
it is (u, op, (w , ID)) where op = add/del and ID is the index of the modified file.
TimeDB(w) = {(u, ID)|(u, add , (w , ID)) ∈ Q∧∀u′, (u′, del , (w , ID)) /∈ Q} is the function
that returns all timestamp file-identifier pairs of keyword w that have been added to DB
and have not been deleted. Updates(w) = {u|(u, add , (w , ID)) ∈ Q ∨ (u, del , (w , ID)) ∈
Q} is the function that returns the timestamp of each insertion/deletion operation for
w . Using the notions above, backward privacy is defined as follows.

Definition 2.4 (Backward Privacy [8,67]). An L-adaptively-secure SSE scheme is back-
ward private:

� BP-I: iff LUpdt(op,w , ID) = L′(op) and LSrch(w) = L′′(TimeDB(w), aw),

� BP-I∗: iff LUpdt(op,w , ID) = L′(op) and LSrch(w) = L′′(Updates(w)),

where L′ and L′′ are stateless functions, aw is the number of updates for the keyword
w .

If a DSSE scheme satisfies both BP-I and BP-I∗, then its update leakage is at most
the intersection of the two leakage profiles defined in BP-I and BP-I∗. Such schemes
provide stronger security guarantee than those that only satisfy only one backward
privacy notion.

3 Our Definitions

3.1 Security Definition for Volume-Hiding DSSE

We define security notions for volume-hiding dynamic symmetric searchable encryption
below. Patel et al. [55] defined volume-hiding leakage profiles for static SSE schemes.
Our definition naturally extends theirs. Intuitively, a volume-hiding leakage function
should ensure that the number of values associated with any keyword, namely the volume
of the keyword, is not revealed. We formalize this intuition as follows.

We start with the description of volume-hiding game VolHA,L(1λ) parameterized by
a (stateful) leakage function L = (LStp, LSrch, LUpdt) and an adversary A. We then
explain why we have formulated the game in this way and compare it with the existing
one for static databases in [55]. The VolHA,L(1λ) game proceeds in three phases:

� Setup phase: The adversary A chooses two databases DB0 and DB1, subject to
the following constraints:

–
∑

w∈W |DB0(w)| =
∑

w∈W |DB1(w)|;
– maxw∈W |DB0(w)| = maxw∈W |DB1(w)|.

The challenger C flips a coin b ← {0, 1} internally and returns LStp(DB) to the
adversary A.

� Query phase: The challenger C and the adversary A repeat the following steps for
poly(λ) times:
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1. A adaptively chooses a query q and sends it to the challenger C;

2. If q is a Search query, C parses q = w and returns LSrch(DB ,w) to A;

3. If q is an Update query, then C parses q = (q0, q1), where qb = (opb, (wb, IDb))
for b ∈ {0, 1}. C updates DB with qb and returns LUpdt(DB , qb) to A.

� Output phase: A outputs a bit b′.

We say that A wins the VolHA,L(1λ) game if b′ = b. The advantage of A in the above

game is defined as AdvVolH
A,L = |2 Pr[b′ = b]− 1|.

Definition 3.1 (Volume-Hiding Leakage Functions). The leakage function L = (LStp,
LSrch, LUpdt) is volume-hiding if AdvVolH

A,L is negligible for all (possibly computationally
unbounded) adversaries.

With the definition of volume-hiding leakage function, we introduce the security
definition for dynamic volume-hiding SSE schemes as follows.

Definition 3.2 (Volume-Hiding DSSE). A DSSE scheme Σ = (Setup, Search, Update)
is volume-hiding if there exists a leakage profile L = (LStp, LSrch, LUpdt) such that

1. Σ is adaptively-secure with respect to leakage L according to Definition 2.2;

2. L is a volume-hiding leakage profile according to Definition 3.1.

3.2 Intuition and Explanation of Our Definitions

In the VolHA,L game, the adversary A (implicitly) defines two dynamically evolving
databases DB0 and DB1 (hence the number of matching documents, i.e., the response
length/volumes of all keywords) using the Update queries. Definition 3.2 requires that
A cannot tell whether C has chosen DB0 or DB1. Therefore, it guarantees that the
response lengths do not give A any advantage in distinguishing two databases.

Observe that Definition 3.1 prevents LSrch and LUpdt from containing the maximum
response length LMRL. Otherwise, there is a trivial attack: the adversary updates
the two databases DB0,DB1 so that they have different maximum response lengths
and uses LMRL to win. This attack is inherent, as long as the adversary is allowed
to choose one pair of update queries (q0, q1) to be of different types. Recent attacks
on DSSE schemes using volumetric leakage [5, 64] indeed assume the adversary has
the ability to inject files containing maliciously chosen keywords. Our formulation thus
faithfully captures the adversary’s ability in these attacks. Moreover, if a DSSE scheme is
forward-private (cf., Definition 2.3), then its update leakage LUpdt cannot contain LMRL.
Otherwise, the adversary can differentiate an update on the keyword with maximum
response length from an update on other keywords. This violates the requirement that
the update leakage being independent of w (i.e., LUpdt(op,w , ID) = L′(op, ID)). Our
definition reflects the natural security requirements of volume-hiding in the dynamic
setting. Nevertheless, it is easy to obtain weaker notions by adding restrictions (say,
requiring LMRL(DB0) = LMRL(DB1) throughout the game). But we believe such
definitions will be too weak. Looking ahead, removing LMRL will be the main design
principle of our volume-hiding DSSE schemes.

3.3 Comparisons with Previous Definitions.

3.3.1 Compare with KM19 [37].

Kamara and Moataz did not provide any formal definition for volume-hiding. In their
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security analysis, they only informally argued that “their (static) construction is volume-
hiding” by observing that “its query leakage does not include the response length.”6

3.3.2 Compare with PPYY19 [55].

Patel et al. [55] gave the first formal definition of volume-hiding leakage function for static
databases, partially closing the gap left by Kamara and Moataz. Their volume-hiding
game, which we renamed as sVolH in the rest of the paper for easier differentiation,
begins by having the challenger generate two databases according to the volumes chosen
(under certain constraints) by the adversary. Then the challenger randomly chooses one
of the databases and sends the setup and search leakages of the chosen database to the
adversary. Informally, a leakage profile is said to be volume-hiding if no adversary can
tell apart which database the challenger has chosen. For completeness, we recall their
formal definitions in Appendix D.

Our Definitions 3.1 and 3.2 extend the ones given in [55] in several aspects. First,
we define volume-hiding leakage in the context of DSSE instead of static SSE. The
sVolH game in [55] imposes two restrictions on DB0 and DB1: (1) the total number
of keyword-document pairs are the same (i.e., LDSize(DB0) = LDSize(DB1)); (2) the
maximum response lengths are the same (i.e., LMRL(DB0) = LMRL(DB1)). In VolH,
these two restrictions are only imposed in the setup phase. The only other restriction
in VolH is that the number of updates is the same throughout the whole game, e.g., in
the VolH game, it is possible that q0 is an add query while q1 is a del query. Second, in
our VolH game, it is the adversary who fully decides the two challenge database, further
giving the adversary extra distinguishing power. Lastly, in Definition 3.1, we allow the
adversary to have a small-but-negligible advantage in winning the VolH game, while
in [55], the advantage must be 0, which seems to be unnecessarily restrictive. For these
reasons, we believe our definitions are more general.

Although the last difference between our definitions and those in [55] mentioned
above prevents us from asserting that our definitions are (strictly) stronger, it is not
hard to see that if there exists an adversary A who has an advantage p in the sVolH
game, there must exist an adversary B who can win our VolH game with advantage at
least p. In Appendix D, we formally prove this statement to quantitatively compare our
definitions with those in [55].

4 Technical Roadmap

Our starting point is the static volume-hiding SSE scheme dprfMM proposed by Pa-
tel et al. [55], which is the only one achieving asymptotically optimal storage complexity.
For ease of exposition, we first review dprfMM and discuss the difficulties in making it
dynamic. We describe the high-level ideas of our approach and the challenges that we
encountered and how we circumvent them before we finally introduce our construction.

4.1 Review of dprfMM@CCS’19 [55]

At a high-level, dprfMM still follows the common design footprint of many inverted-
index based (non-volume-hiding) SSE schemes in the literature [10, 16]. To avoid leak-
ing `w (i.e., the volume of the search query q = w), one can pad DB with dummy
entries so that all keywords have the same maximum volume `max, or all keywords have
(pseudo)randomly distributed volumes [37]. However, these two padding methods sig-

6They did not argue similarly for their dynamic variant.

10



nificantly increase the server-side storage overhead. Ideally, we want to keep the size of
the encrypted database to be linear in the plaintext one, i.e., |EDB | ∈ O(|DB |).7

The main idea of Patel et al. [55] is to use Cuckoo hash table [53] instead of gen-
eral dictionaries/hash tables to store the encrypted inverted-index entries (PRF(Kw , i),
Enc(K, (w , IDw ,i))), where i ∈ [1, `w ]. In detail, to store n entries, a Cuckoo hash ta-
ble consists of two arrays T0, T1 of size O(n), an ω(1)-size stash, and two independent
hash functions H0, H1. An entry x will be stored in either T0[H0(x)] or T1[H1(x)] or
in the stash.8 In dprfMM, the hash functions H0, H1 are instantiated by a (delegat-
able) PRF in the following way: the entry Enc(K, (w , IDw ,i)) will be stored in either
T0[PRF(Kw, (i||0))] or T1[PRF(Kw, (i||1))] or in the local stash. Empty slots in T0, T1

are padded with dummy entries. In the search protocol, the server obliviously returns
entries in T0[PRF(Kw, (i||0))] and T1[PRF(Kw, (i||1))] for all i ∈ [1, `max]. Note that
only the first `w entries may be correct results. Some correct results may reside in the
stash. The rest could be encryptions of either incorrect key-value pairs (w ′, IDw ′) or
dummy entries. The server cannot differentiate them from correct results but the client
can locally filter them out. In this way, the server only knows the maximum volume
`max but not keyword-specific volume `w .

4.2 Difficulties in Making dprfMM@CCS’19 Dynamic

Making dprfMM dynamic is not straightforward. Let’s consider the basic update opera-
tion: adding a new (w , ID∗) tuple to an inverted-index. Suppose originally the keyword
w is contained in `w < `max documents. Following the insertion algorithm of plaintext
Cuckoo hash tables [1], naturally, the new key-value pair should be stored in exactly
one of the three possible locations: T0[PRF(Kw, (`w + 1||0))], T1[PRF(Kw, (`w + 1||1))],
or the stash, in order to maintain the invariance in dprfMM. However, the first two
cases violate forward-privacy (Definition 2.3): If the client has searched the keyword w
before, then the server must have accessed both T0[PRF(Kw, (i||0))], T1[PRF(Kw, (i||1))]
for i ∈ [`w + 1, `max]. Hence, the server can correlate this update with a previous search
query. If the new key-value pair goes to the local stash, then the size of the stash will
grow indefinitely. Moreover, if both T0[PRF(Kw, (i||0))] and T1[PRF(Kw, (i||1))] are al-
ready occupied, an eviction process will be triggered. It is not clear how to prevent
potential leakage in eviction.

4.3 Our Approach

4.3.1 Another way to Make dprfMM [55] Dynamic.

Given the difficulties discussed above, we resort to a different approach [4] that (semi-
generically) transforms a static data structure into a dynamic one).9 The price to pay is
increasing search complexity. In detail, the technique builds a DSSE scheme that holds
N item using blogNc+ 1 instances of static SSE schemes of sizes 20, 21, . . . , 2blogNc re-
spectively. Denote these encrypted indexes as ˆEDB0, . . . , ˆEDBblogNc. These encrypted
indexes are either empty or full, subject to the constraint that the total size of all
non-empty ones is N . A new insertion will be written to ˆEDB0 if ˆEDB0 is empty.
Otherwise, the server identifies the first empty index, say ˆEDB j . Then, the server sends

7Kamara and Moataz [37] proposed alternative constructions that achieve optimal server storage size.
But those constructions not only introduce a much larger search overhead, but also rely on non-standard
computational assumptions.

8It has been shown [43] that with high probability, the n entries can be successfully placed in the
Cuckoo hash table subject to the constraints above.

9This technique has been used to construct verifiable DSSE [7] and forward private DSSE with small
client-side storage [17], hierechical ORAMs [2,23,54], and dynamic proofs-of-retrievability [60]. To the
best of our knowledge, it has not been used to construct volume-hiding DSSE before.
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all ˆEDB0, . . . , ˆEDB j−1 (they must be all full) to the client, who merges them together

with the entry to be inserted into a new encrypted index of size 2j . ˆEDB0, . . . , ˆEDB j−1

will be deleted and the originally empty ˆEDB j will be replaced by the one just created.
Deletions are treated as inserting entries of the form (w , (ID, del)). The client can lo-
cally filter out deleted entries during search. The complexity of the update protocol is
Θ(logN) amortized.

4.3.2 Handling Stashes.

Although we have made the data structure in the server dynamic, complications arise
because of the existence of local stashes of Cuckoo hash tables. It turns out we need
to carefully handle the failure probability of the underlying Cuckoo hash table due to
stash overflow, for both correctness and efficiency. Recall that a Cuckoo hash table
with a stash of size s fails if more than s items need to be inserted into the stash. The
failure probability is O(n−s) where n is the capacity of the Cuckoo hash table [43]. In
the original dprfMM [55], the stash is set to be O(1)-size and stored locally as part of
the secret key. Directly employing this approach in the VH-DSSE construction sketched
above causes problems since we are using O(logN) instances of dprfMM on databases
of sizes 20, . . . , 2blogNc. Firstly, the failure probability of a small-size Cuckoo hash table
is non-negligible. Secondly, even if none of the O(logN) instances fails, the client still
needs to locally store the stashes of size O(logN) in total.

For the first problem, we borrow the idea of “shared stash” in the ORAM litera-
ture [26,27]. Instead of allocating an O(1)-size stash for each Cuckoo hash table, we use
a single O(logN)-size stash. Although some of the Cuckoo hash tables may have ω(1)
overflowed items, it has been shown [27, Theorem 2.1] that the total number of items
in the shared stash is unlikely to exceed O(logN). To implement this idea, we modify
dprfMM from [55] so that dprfMM.Setup does not abort even if the size of the stash is
ω(1). For the sake of self-containedness, we present the modified dprfMM scheme in
detail in Appendix C.

For the second problem, we can encrypt and upload this O(logN)-size shared stash
to the server. In the search protocol, the server always sends the O(logN)-size encrypted
stash to the client. This does not increase the search complexity, as the server needs to
search O(logN) instances of encrypted indexes anyway. Meanwhile, when the update
protocol rebuilds a particular instance of an encrypted index using dprfMM.Setup of size
2j , the stashed elements corresponding to ˆEDB1, . . . , ˆEDB j−1 should be replaced. A
simple way is to always download the whole stash and then upload an updated version
back to the server. The complexity of such stash handling in the update protocol is
Θ(logN). The overall asymptotic complexity of the update protocol remains Θ(logN)
amortized.

In VH-DSSE, we use a more efficient approach to handle the stash. At a high level, we
introduce an amortization technique that can outsource this O(logN)-size stash to the
server while reducing the complexity of stash update to O(1) (amortized). As a result,
the constant behind the O(logN) cost of the update protocol is reduced. We make two
observations here. First, we do not need to frequently update part of the O(logN)-
size stash that corresponds to a large-size Cuckoo hash table. In fact, they need to
be updated only when a rebuild occurs. Second, rebuild of a large encrypted index is
relatively infrequent: rebuilding an encrypted index of size O(logN) only happens after
at least O(logN) updates. These observations give us room to amortize the cost of stash
update to O(1) by delaying rebuild of small-sized encrypted indices.

In more detail, we replace all encrypted indexes whose size is smaller than logN
with a single list of size at most 2blogNc − 1, denoted by buf, which temporarily holds
all recent updates until it is full. The update protocol is changed to simply sending
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the (randomized) encrypted keyword-document pair to the server, who appends the
ciphertext to buf. Once buf is full after O(logN) updates, the server runs the original
update protocol described before: (1) identifying the first empty encrypted index ˆEDB j ;

(2) sending ˆEDB j−1, ˆEDB j−2, . . ., together with buf and stash (both of size O(logN))

to the client. The client builds an encrypted index ˆEDB j of size 2j using dprfMM.Setup,

updates stash, and sends ˆEDB j , stash and an empty buf to the server. It is not hard to
see that the amortized stash update complexity is reduced to O(1).

Remark Recently, Falk et al. [23] pointed out that a security flaw in some hierechical
ORAMs that use a combined stash. Their attack applies to hierarchical ORAMs whose
physical access pattern depends on whether an item is found in the combined stash
or not. Our constructions do not behave differently according to the content in the
combined stash so we are immune to the attack.

4.3.3 Achieving Volume-Hiding.

We have described how to make dprfMM dynamic but we have so far ignored the is-
sue of volume-hiding. It turns out keeping the above design volume-hiding is quite
tricky. If we were in the static setting, then we could make the response length equal
to `max = maxq∈W |DB(q)|, just like in dprfMM. However, we are considering dynamic
SSE, which means `max may change over time. Naturally, `max should be calculated
for the current database DB , which requires the client to locally record the number
of matching documents for each keyword, which is quite a large local storage over-
head. More unfortunately, as we have discussed in Section 4.3, if the search leakage
LSrch(DB , q) contains LMRL(DB) = `max, it cannot satisfy our volume-hiding defini-
tion (cf., Definition 3.1).

To deal with the stringent security requirement, we propose to make the response
length of every search query independent of maxw∈W |DB(w)| and w . There are multiple
ways to instantiate this seemingly straightforward idea, but one should be careful when
choosing the appropriate response length. For example, setting the response length
to be some constant c will satisfy the above criteria, but as the encrypted database
grows larger, the number of matching documents for many keywords may exceed this
constant eventually. On the other hand, if we set it to be equal to the database size
|DB | =

∑
w∈W |DB(w)|, then the communication cost will be too high.

Our choice is to set the response length to grow (somewhat) linearly with respect
to the total number of updates to the database. The rationale behind this is that when
database size grows, naturally the average response length and the maximum response
length will grow correspondingly. The server can estimate these two numbers by itself
from the current size of the encrypted database. Our main observation is that volume-
hiding does not mean preventing the server from making such estimations but just
preventing the server from knowing how accurate its estimation is.

4.3.4 Correctness.

Of course, now that the server does not know how accurate its estimation on `max is,
it is inevitable that for some search queries, not all matching documents are returned.
Since we cannot achieve (1, 1)-correctness (cf., Definition 2.1), the best we may hope for
is (1− negl(λ), 1− negl(λ))-correctness. It turns out this goal is still very challenging if
we do not make extra assumptions on how the database is distributed. We leave it as
an open question.

That said, if we allow the server to know the normalized frequency of the most com-
mon keyword `max/|DB |, then we can ask the server to return 2i · `max/|DB | entries
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from the encrypted index of size 2i. The resulting scheme achieves (1, `max/|DB |)-
correctness for all keywords. If we further assume that the keyword-ID pairs are uni-
formly distributed across all O(logN) instances of encrypted indexes, we can show that
our (single-copy) scheme achieves (1− negl(λ), 1− o(1))-correctness. Somewhat surpris-
ingly, the proof turns out to be challenging. One of the reasons is that the distributions
of the encrypted indexes are correlated: once we condition on the number of matching
documents for keyword w in EDB i, the number of matching documents for this keyword
in other EDB j,j 6=i will change. This makes the probability analysis more difficult than
one may expect. See the outline of the proof in Section 6.1 for details.

We argue that leaking (the initial) `max/|DB | to the server is a reasonable and mild
assumption for the following reasons. First, it is commonly assumed in the literature that
the adversary has prior knowledge (say, the distribution) about the plaintext database
before seeing EDB and search/update queries [9,30,51,57] and β = `max/|DB | is a small
part of database distribution. Leaking (the initial) β is not the best we can hope for but
at least it does not give the adversary extra information in such scenarios. Second, prior
work [37] assumes a stronger assumption that the keywords follow Zipf-distribution to
derive a better efficiency guarantee.10 Under their assumption, the server knows the
normalized frequency of all keywords.

To further amplify correctness, we can run k copies of the (single-copy) scheme
and take the union of the answers. The resulting multi-copy scheme VH-DSSEk achieves

(1−negl(λ), 1−
(

2
3

)Θ(k)
)-correctness. If we set k = ω(log λ), then we get (1−negl(λ), 1−

negl(λ))-correctness.

5 Our Single-Copy VH-DSSE Construction

5.1 Formal Description.

Figures 2 to 4 give a formal description of VH-DSSE, which is parameterized by a positive
constant β ≤ 1 and a function f(n) ∈ O(log n). dprfMM makes use of a modified version
of dprfMM [55]. Apart from the difference in stash handling that we described above,
we further modify the interface of dprfMM.Search (as well as the underlying delegatable
PRF, see Section A) to make the response length an explicit parameter for both parties.
See the complete description of our modified dprfMM in Appendix C for details.

The function f(n) is the upper bound of the size of the combined stash. The pa-
rameter β controls the response length of a search query (line 3 of VH-DSSE.Search).
In short, VH-DSSE returns a β-fraction of the database for each search query. β = 1
means always returning the whole database. We assume the client and the server share
prior knowledge of the normalized frequency of the most common keyword in DB , (i.e.,
`max

|DB| = maxw∈W |DB(w)|∑
w∈W |DB(w)| ), and set β to be this value. 11

5.2 Leakage Function of VH-DSSE

We formally describe the leakage L = (LStpVH-DSSE,LSrchVH-DSSE,L
Updt
VH-DSSE) and a high-level

discussion on why VH-DSSE only leaks this information, We then briefly argue why this
L satisfies forward and backward privacy and our definition of volume-hiding. Formal
security proofs will be given in Section 5.3.

10We recall the definition of Zipf-distribution in Appendix B.2.
11For a key-value pair database following the Zipf-distribution (cf. Definition B.1 in Appendix B.2),

β can be computed directly as 1
H|W|,1

= (1 + 1
2

+ · · ·+ 1
|W| )

(−1)
.
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(K, τ,EDB)← VH-DSSE.Setup(1λ,DB)

1 : Set EDB ,K, τ to be empty vectors; Set buf, stash to be empty lists

2 : Let N = |DB |, kv1, . . . , kvN denote the keyword-document pairs in DB

3 : Randomly select two encryption keys Kstash,Kbuf ← SKE.KeyGen(1λ)

4 : for i = 1 to N do :

5 : Parse kvi as (w ′, ID′)

6 : Set kvi as (w ′, (ID′, add))

7 : Randomly permute the order of kv1, . . . , kvN

8 : Let idx = 1, and bblogNc · · · b0 be the binary representation of N

9 : Let min be the integer such that 2min ≤ logN < 2min+1

10 : for i = blogNc to min do :

11 : if bi = 1 then

12 : Let DB i = {kvidx, . . . , kvidx+2i−1}

13 : (K[i], τ [i], ˆEDB i)← dprfMM.Setup(1λ,DB i)

14 : Parse K[i] as (KPRF[i],KSKE[i], stash[i])

15 : Append stash[i] to stash

16 : K[i] := (KPRF[i],KSKE[i]), idx += 2i

17 : // Handle stash and the remaining f(N) items

18 : for i = idx to N do :

19 : Append ct = SKE.Enc(Kbuf , kvi) to buf

20 : foreach kv′ ∈ stash :

21 : kv′ := SKE.Enc(Kstash, kv
′)

22 : Pad stash with dummy ciphertexts so that there are f(N) elements

23 : Compute β =
maxq∈W |DB(q)|

N
// Normalized freq. of the most common keyword

24 : Set EDB = (β, buf, stash, ( ˆEDBmin, . . . , ˆEDBblogNc))

25 : Set K = (Kstash,Kbuf , (K[min], . . . ,K[blogNc])), τ = N

26 : return (K, τ,EDB)

Figure 2: VH-DSSE.Setup Algorithm

5.2.1 Setup leakage:

LStpVH-DSSE = (LDSize, β) = (|DB |, maxw∈W |DB(w)|
|DB| ).

First, β is explicitly revealed to the server to control how many results should be
returned in VH-DSSE.Search. Second, when VH-DSSE.Setup is executed on a database of
size |DB | = N , it invokes dprfMM.Setup forO(logN) times to build ( ˆEDBmin, . . . , ˆEDBblogNc)
and SKE.Enc to encrypt O(logN) key-value pairs into stash and buf. The size of stash
and buf is determined by N . As SKE is RoR-secure, stash and buf do not leak informa-
tion to the server and the leakage of VH-DSSE.Setup is the union of the leakage from
dprfMM.Setup. Note that the only leakage of dprfMM.Setup is the database size. More-
over, the exact number of invocations of dprfMM.Setup as well as the size of the input
database to dprfMM.Setup are both uniquely determined by |DB | = N . Therefore, the

setup leakage of LStpVH-DSSE can be uniquely described by (LDSize, β).
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VH-DSSE.Search(K, q , τ ; EDB)

Client ←→ Server

1 : Set {X0,X1, . . .} as a list of empty sets

2 : for all i such that ˆEDB i 6= φ do :

3 : `i = dβ2ie

4 : Xi ← dprfMM.Search(K[i], q, τ [i], `i; ˆEDB i, `i)

5 : Send ({X0,X1, . . .}, stash, buf) to the client

Client:

6 : Let X be an empty set

7 : for all Xi ∈ {X0,X1, . . .} such that Xi 6= φ

8 : X = X ∪ DecAll(K[i],Xi)
9 : X = X ∪ DecAll(Kstash, stash) ∪ DecAll(Kbuf , buf)

10 : Remove dummy entries in X
11 : return DB(q)← {ID|(w , (ID, add)) ∈ X ∧ (w , (ID, del)) /∈ X}

Figure 3: VH-DSSE.Search Protocol

5.2.2 Search leakage:

LSrchVH-DSSE = (. . . ,Mi−1,Mi,Mi+1, . . .) where Mi is a binary matrix defined as follow. Let
ci denotes the number of search queries when the size of the largest non-empty index
in EDB is 2i and let Q = (. . . , ~qi−1, ~qi, ~qi+1, . . .) be the set of all search queries, where

~qi = (q
(i)
1 , q

(i)
2 , . . . , q

(i)
ci ). Mi is a ci × ci binary matrix and Mi[x][y] = 1 iff q

(i)
x = q

(i)
y for

x, y ∈ [1, ci].
To see why LSrchVH-DSSE is in this form, recall that VH-DSSE.Search invokes dprfMM.Search

on all non-empty instances in EDB and LSrchdprfMM = LEq only. Suppose q
(i)
t1 , q

(j)
t2 are two

search queries (i ≤ j) and q
(i)
t1 (resp. q

(j)
t2 ) was issued when the index of the largest non-

empty encrypted index is i (resp. j). If i = j, the server can learn if q
(i)
t1 = q

(j)
t2 from

LSrchdprfMM. If i < j, then all the non-empty encrypted indexes at time t1 must have been

rebuilt using freshly chosen keys from dprfMM.Setup. The search tokens for q
(i)
t1 and

q
(j)
t2 will therefore be independent, making it impossible to learn q

(i)
t1

?
= q

(j)
t2 . Hence, the

search pattern leakage in VH-DSSE is not a full |Q| × |Q| binary matrix as the standard
search pattern leakage LEq in the literature. Effectively, LSrchVH-DSSE is only the list of small
square sub-matrices at the diagonal of LEq. In the extreme case where cj = 1 for all j,
LSrchVH-DSSE is reduced to only the diagonal entries in the |Q| × |Q| search pattern binary
matrix LEq, namely the search pattern is completely hidden in such cases. We also
stress that LSrchVH-DSSE does not reveal the timestamps of the insertions/deletions related
to w .

5.2.3 Update leakage:

LUpdtVH-DSSE = ⊥.
To see, when an update query (op, (w , ID)) is issued on the encrypted database EDB ,

the server always receives a new ciphertext ct and appends it to buf. If buf is not full
(|buf| 6= 2blogNc) at this point, then VH-DSSE.Update completes. As SKE is RoR-
secure, ct does not reveal any information to the server. If buf is full, and let ˆEDB i

be the first empty index in the current EDB = ( ˆEDBmin, . . . , ˆEDBblogNc). The server
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VH-DSSE.Update(K, op, (w , ID), τ ; EDB)

Client:

1 : Set kv′ = (w , (ID, op))

2 : Send ct = SKE.Enc(Kbuf , kv
′) to the server, τ += 1

Server:

3 : Parse EDB as (β, buf, stash, ( ˆEDBmin, . . . , ˆEDBblogNc))

4 : Append ct to buf

5 : Let min be the integer such that 2min ≤ logN < 2min+1

6 : if |buf| = 2min+1 then // buf is full

7 : Find the minimum j such that ˆEDBj = φ

8 : Send (buf, stash, ( ˆEDBmin, . . . , ˆEDBj−1)) to the client

Client:

9 : Set X ← φ

10 : for i = min to j − 1 do :

11 : Parse ˆEDB i as (T0, T1)

12 : X ← X ∪ SKE.DecAll(K[i], T0) ∪ SKE.DecAll(K[i], T1)

13 : K[i]← ⊥, stash[i] = ⊥
14 : Let DBj = X ∪ SKE.DecAll(Kbuf , buf) ∪ SKE.DecAll(Kstash, stash)

15 : for all kv = (w , (ID, add)) ∈ DBj

16 : if ∃kv′ = (w , (ID, del)) ∈ DBj

17 : Replace both of them with dummy entries

18 : (K[j], τ [j], ˆEDBj)← dprfMM.Setup(1λ,DBj)

19 : Parse K[j] as (KPRF[j],KSKE[j], stash[j])

20 : foreach kv′ ∈ stash[j] :

21 : kv′ := SKE.Enc(Kstash, kv
′)

22 : Update the j-th entries in K, stash with ((KPRF[j],KSKE[j]), stash[j])

23 : Re-encrypt all entries in stash[i] ∀ i 6= j and pad stash to f(N) elements

24 : Send ( ˆEDBj , stash) to the server

Server:

25 : Store ˆEDBj and stash; set buf ← φ

26 : for i = min to j − 1 do

27 : Set ˆEDB i ← φ

Figure 4: VH-DSSE.Update Protocol

sends back (stash, buf, ( ˆEDBmin, . . . , ˆEDB i−1)) to the client, who runs dprfMM.Setup on
a database of size 2i. The client will send the resulting encrypted index ˆEDB i and
updated stash, buf back to the server. The only leakage LStpdprfMM = |DB | = 2i is due to
dprfMM.Setup. But this information is known by the server before seeing the update
query anyway, as it knows the first empty index is ˆEDB i. Therefore, the update leakage
is ⊥.
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5.2.4 Forward and Backward Privacy:

Given the search and update leakage described above, it is not hard to see that our
scheme satisfies forward privacy (Definition 2.3), as the update leakage LUpdtVH-DSSE = ⊥
is independent of the updated keyword w and the update operation op. Similarly, our
scheme is both BP-I and BP-I∗ backward-private (Definition 2.4), which is the first one
(without relying on ORAM) in the literature, to the best of our knowledge.

5.2.5 Volume-Hiding:

Informally, VH-DSSE is volume-hiding (Definition 3.2) as the leakage profile LVH-DSSE =

(LStpVH-DSSE, LSrchVH-DSSE, LUpdtVH-DSSE) does not include the response length leakage.

5.3 Security Proofs

Theorem 5.1. Our VH-DSSE construction in Figures 2 to 4 is adaptively-secure with
respect to the leakage function LVH-DSSE = (LStpVH-DSSE, LSrchVH-DSSE, LUpdtVH-DSSE), assuming
SKE is RoR-secure and dprfMM is adaptively-secure with respect to the leakage function
L′dprfMM = (LDSize,LEq).12

The proof of Theorem 5.1 is given in Appendix E.

Theorem 5.2. VH-DSSE, whose leakage profile being LVH-DSSE = (LStpVH-DSSE, LSrchVH-DSSE,

LUpdtVH-DSSE), is volume-hiding.

Proof. We have shown that VH-DSSE is adaptively-secure with respect to the leakage
function LVH-DSSE = (LStpVH-DSSE, LSrchVH-DSSE, LUpdtVH-DSSE). It remains to show that LVH-DSSE

is a volume-hiding leakage profile according to Definition 3.1.
To do so, we argue that LVH-DSSE is identically distributed regardless of the value

b in the VolHA,L(1λ) game. To see, in the setup phase of the VolHA,L(1λ) game, the
adversaryA chooses two databases DB0,DB1 with the same size and the same maximum
volume. Therefore, it sees the same LStp leakage in the setup phase regardless of b. The
update leakage LUpdt is ⊥, which is also identical regardless of the bit b. The search
leakage LSrch only depends on the search pattern. Note that in the query phase, the
challenger always returns LSrch(DB ,w0) to A (it ignores q1 = w1). So the search pattern
will also be the same regardless of b, thus completing the proof.

Theorem 5.3. VH-DSSE is forward-private, and both BP-I and BP-I∗ backward-private.

Proof. Forward-privacy is straightforward as LStpVH-DSSE = ⊥. For backward-privacy, note
that if the search leakage LSrch of a DSSE scheme can be derived from (TimeDB(w), aw)
(resp. Updates(w)), then it is BP-I (resp. BP-I∗) backward-private. Both (TimeDB(w), aw)
and Updates(w) imply LEq while LSrchVH-DSSE only contains a subset of LEq as discussed
in Section 5.2. Hence, BP-I and BP-I∗ backward-privacy follow immediately.

6 Efficiency and Correctness of VH-DSSE

6.1 Efficiency

VH-DSSE outputs an encrypted index EDB = (β, buf, stash, ( ˆEDBmin, . . ., ˆEDBblogNc)),

where ˆEDB i is the output of dprfMM.Setup on a database of size 2i. The size of buf
and stash are both Θ(logN). All entries in DB either resides in one of ˆEDB i or in buf
or in stash. Because the server storage of dprfMM is linear, VH-DSSE has server storage

12See Appendix C for a discussion on the leakage function L′dprfMM.
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Θ(N). Notice that because we use lazy deletion strategy, the size of the (current)
database N = N0 + k where N0 is the size of the initial database and k is total number
of update operations so far.

In terms of client-side storage, VH-DSSE requires the client to locally store one
key per ˆEDB i instance. It is straightforward to reduce the local storage to Θ(1) by
generating the key for each instance using a PRF. The security proof can be adjusted
easily by introducing an additional hybrid that replaces this PRF with a random function.

VH-DSSE.Search returns (buf, stash) to the client and invokes dprfMM.Search on each
ˆEDB i instance with length parameter `i = dβ2ie. The search complexity (both compu-

tation and communication) of dprfMM.Search is Θ(`i). Assuming β = maxw∈W |DB(w)|
|DB| =

`max

|DB| , then the search complexity of VH-DSSE is Θ(`max + logN).

As for update complexity, after 2j updates on an initially empty database, the client
has run dprfMM.Setup once for a database of size 2j , twice for 2j−1, etc., all the way down
to 2j−min times for size 2min, where min ∈ Θ(log logN). The computational complexity
of dprfMM.Setup is linear, so the amortized cost of dprfMM.Setup-related operations per
update after N update is Θ(logN). In the meantime, the client rebuilds Θ(logN)-
size stash after every Θ(logN) updates. As discussed in Section 4.3, the amortized
complexity of stash handling is Θ(1). Overall, the update complexity (both computation
and communication) of VH-DSSE.Update is Θ(logN) amortized.

A summary of the efficiency of VH-DSSE is given in Table 1.

6.2 Correctness

As discussed in Section 4.3, VH-DSSE does not achieve perfect correctness. However,
we can still prove that VH-DSSE achieves certain correctness guarantees.

6.2.1 Worst-case Correctness

Theorem 6.1 (Worst-Case Correctness). VH-DSSE achieves the following worst-case
correctness guarantees:

1. (1, β)-correctness for all keywords;

2. (1, 1)-correctness for keyword w if its volume `w ≤ dβ log |DB |e.

Proof. The proof is straightforward. For all search queries, VH-DSSE.Search always
sends buf, stash to the client and returns dβ2ie entries from ˆEDB i of size 2i from
dprfMM.Search. The correctness of dprfMM guarantees that if there are `w ,i match-

ing documents for keyword w in ˆEDB i, dprfMM.Search returns min(`w ,i, dβ2ie) ones

from ˆEDB i (and the smallest EDB i is of size logN).
Let `w ,buf and `w ,stash be the number of matching documents for keyword w in

buf and stash, respectively. The total number of matching documents returned by
VH-DSSE is ˜̀

w = `w ,buf + `w ,stash +
∑

min(`w ,i, dβ2ie). If `w ≤ dβ logNe, then we have
min(`w ,i, dβ2ie) ≥ `w ,i for all i. Hence,

˜̀
w = `w ,buf + `w ,stash +

∑
min(`w ,i, dβ2ie)

≥ `w ,buf + `w ,stash +
∑

`w ,i = `w .

Therefore, VH-DSSE achieves (1, 1)-correctness for keyword w if `w ≤ dβ logNe.
Let I ′ denote the set of indices such that `w ,i ≤ dβ2ie, i ∈ I ′. We can bound the

ratio
˜̀
w

`w
as follows:
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˜̀
w

`w
=
`w ,buf + `w ,stash +

∑
i∈I′ min(`w ,i, dβ2ie) +

∑
i/∈I′ min(`w ,i, dβ2ie)

`w ,buf + `w ,stash +
∑
i∈I′ `w ,i +

∑
i/∈I′ `w ,i

=
(`w ,buf + `w ,stash +

∑
i∈I′ `w ,i) +

∑
i/∈I′dβ2ie

(`w ,buf + `w ,stash +
∑
i∈I′ `w ,i) +

∑
i/∈I′ `w ,i

≥
∑
i/∈I′dβ2ie∑
i/∈I′ 2

i
≥ β

The last but one inequality holds because (`w ,buf +`w ,stash+
∑
i∈I′ `w ,i) ≥ 0 and `w ,i ≤ 2i

for all i. The lower-bound is reached when all `w matching documents for w fully occupy
one or more ˆEDB i instances. Hence, VH-DSSE guarantees that at least β-fraction of
matching documents will be returned for all keywords.

6.2.2 Average-case Correctness

Theorem 6.1 analyzes the correctness guarantee of VH-DSSE in the worst-case scenario,
in which the matching documents of a particular keyword are concentrated in some ˆEDB i

instances. In practice, we expect that the matching documents are evenly distributed
across all ˆEDB i because in Step (7) of VH-DSSE.Setup, a random permutation is applied
before the entries are assigned into ˆEDB i. Therefore, VH-DSSE achieves a much better
correctness guarantee in the average sense. We formalize it in Theorem 6.2 below.

Theorem 6.2 (Average-Case Correctness). Let DB be a database such that `w =
|DB(w)| ∈ O(|DB |) for all w ∈ W, where `w is the number of matching documents
for keyword w. When VH-DSSE is applied to DB, it achieves (1 − negl(λ), 1 − o(1))-
correctness.

The proof of Theorem 6.2 turns out to be surprisingly complicated. The extra
assumption that `w ∈ O(|DB |) is relevant to some technical difficulties in the proof.13

For ease of exposition, we first outline a natural and simple proof strategy. We discuss
the difficulties we encounter when instantiating the proof strategy into a complete proof,
before presenting the actual one.

6.2.3 Outline of Proof of Theorem 6.2 and Technical Challenges.

We will use the following notations. Let DB denote a database of N = |DB | =∑
w∈W |DB(w)| keyword-document pairs, and EDB = ( ˆEDBmin, ˆEDBmin +1, . . .) de-

note the output encrypted database from VH-DSSE.Setup(1λ,DB). Let I = {im1
, im2

, . . .}
be the set of indices such that i ∈ I iff ˆEDB i 6= φ. Without loss of generality, let’s assume
im1

> im2
> . . . in decreasing order. Let Xw ,i denote the random variable counting the

number of matching documents for keyword w in ˆEDB i, where the randomness comes
from VH-DSSE.Setup.

Recall that in VH-DSSE.Search, the server always returns dβ2ie = d`max · 2i/Ne
entries from ˆEDB i. By the correctness of the underlying dprfMM scheme, the number
of matching documents returned by the server from ˆEDB i for the search keyword w
is min(Xw ,i, d`max · 2i/Ne). To prove that VH-DSSE achieves (1 − negl(λ), 1 − o(1))
correctness, it suffices to show that Xw ,i ≥ E[Xw ,i](1−o(1)) for all i ∈ I with probability
1 − negl(λ). Further notice that Xw ,i follows hypergeometric distribution H(2i, N, `w )
for i ∈ I. We can then use the well-known tail-bound of hypergeometric distribution
(cf., Lemma B.1 in Appendix B.1) to compute Pr[Xw ,i ≥ E[Xw ,i]−δi] for some carefully
selected value δi ∈ o(E[Xw ,i]). Let Ew ,i denote the event that Xw ,i ≥ E[Xw ,i]−δi. The
proof of Theorem 6.2 boils down to showing Pr[

∧
i∈I Ew ,i] > 1− negl(λ).

13This assumption holds for many database distributions (e.g., Zipf-distribution) in practice.
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While the intuition above is simple, instantiating it into a complete proof is non-
trivial as we face at least three challenges below. First, although we know the largest
index im1

∈ I satisfies N/2 < 2im1 ≤ N , the second largest index im2
∈ I can range

from 1 to im1
− 1. Thus, we are not able to give a useful bound on 2im2 (i.e., the size

of ˆEDB im2
) and E[Xw ,im2

] = `w · 2im2/N . It is not clear how to use the tail-bound of
hypergeometric distribution to estimate Pr[Ew ,im2

] (and in general Pr[Ew ,i]i∈I,i6=im1
)

without knowing the concrete value of im2
. Second, by careful computation, one can

verify that Pr[Ew,i] = Pr[Xw ,i ≥ E[Xw ,i] − δi] > 1 − negl(λ) does not hold for small
i (say, 2i ∈ o(N)), if δi ∈ o(E[Xw ,i]). Third, even if we can compute Pr[Ew ,i] for all
i ∈ I and make sure that they are all larger than 1 − negl(λ), we should notice that
Pr[
∧
i∈I Ew ,i] 6=

∏
i∈I Pr[Ew ,i] because the events Ew ,i are dependent.14

These difficulties complicate the probability analysis in our actual proof. First,
instead of computing Pr[

∧
i∈I Ew ,i] directly (the third challenge), we will prove by in-

duction that if Pr[
∧k−1
j=1 Ew ,imj

] > 1 − negl(λ), then Pr[Ew ,imk
|
∧k−1
j=1 Ew ,imj

] > 1 −
negl(λ). This is sufficient to show that Pr[

∧k
j=1Ew ,imj

] = Pr[Ew ,imk
|
∧k−1
j=1 Ew ,imj

] ·
Pr[
∧k−1
j=1 Ew ,imj

] > 1−negl(λ). Second, our induction stops as long as N −
∑k
j=1 2imj ∈

o(N) instead of exhausting all indices i ∈ I. The rationale behind is the following ob-

servation: 1/2 · (N −
∑k−1
j=1 2imj ) < 2imk ≤ N −

∑k−1
j=1 2imj . This guarantees that during

induction, we always have 2imk ∈ O(N). Hence, we can estimate the size of ˆEDB imk
(the first challenge) and at the same time avoid the issue that Pr[Ew,i] < 1 − negl(λ)
for small i (the second challenge). Finally, the revised proof strategy above requires us
to give not only a lower-bound of Xw ,i but also an upper-bound. Therefore, we need to

replace Ew ,i with Êw ,i denoting the event that E[Xw ,i]− δi ≤ Xw ,i ≤ E[Xw ,i] + δi.

6.2.4 Proof of Theorem 6.2.

Proof. In VH-DSSE.Setup, a random permutation is applied to DB before they are
partitioned into sets of sizes of power of 2 (Line 3, Fig. 2). This is equivalent to selecting
the key-value pairs into ˆEDB im1

, ˆEDB im2
, . . . without replacement. Hence, Xw ,i follows

hypergeometric distribution H(2i, N, `w ) for i ∈ I. Let EXw ,i = E[Xw ,i] = `w ·2i/N be
the expected value of Xw ,i. The core of our proof is the following proposition regarding
the random variables {Xw ,i}i∈I .

Proposition 6.3. For all k such that N −
∑k
j=1 2imj ∈ O(N) and imk ∈ I,

Pr[

k∧
j=1

Êw ,imj
] > 1− negl(λ), (*)

where Êw ,imj
denote the event that −δj ≤ Xw ,imj

− EXw ,imj
≤ δj for some δj ∈

o(EXw ,imj
).

Given Proposition 6.3 (which will be proven in Appendix F), it is easy to prove Theo-
rem 6.2 as follow. Notice that in VH-DSSE.Search, the server always returns d`max ·2i/Ne
key-value pairs from ˆEDB i, and the total number of matching documents for keyword
w in ˆEDB i is Xw ,i. Therefore, the total number of matching documents returned by

the server from EDB for the search keyword w is ˆ̀
w =

∑
i∈I min(Xw ,i, d`max · 2i/Ne),

which can be bounded by:

ˆ̀
w ≥

∑
i∈I′

min(Xw ,i, d`max ·2i/Ne) ≥
∑
i∈I′

(EXw ,i−o(EXw ,i)) =

(∑
i∈I′

EXw ,i

)
(1−o(1)),

14This can be seen easily by observing that
∑
i∈I Xw,i = `w = |DB(w)|.
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where I ′ ⊆ I denote the set of indices in eq. (*). The second inequality follows from
Proposition 6.3 and the fact that ∀i ∈ I, EXw ,i = `w · 2i/N ≤ d`max · 2i/Ne.

Lastly, note that
∑
i∈I′ EXw ,i =

∑
i∈I′ `w · 2i/N = `w/N(N −

∑
i∈I\I′ 2

i) =

`w/N(N − o(N)) = `w (1− o(1)), which concludes the proof of Theorem 6.2.

7 Final Construction: Multi-Copy Scheme VH-DSSEk

The main limitation of VH-DSSE is that it suffers from noticeable correctness error.
We propose a simple-yet-effective solution: run k parallel instances of VH-DSSE with
independent randomness. If each individual copy of VH-DSSE returns a constant random
fraction of matching documents, we are guaranteed that with high probability, all the
matching documents will be returned by at least one of these copies. The security of
the resulting multi-copy scheme VH-DSSE in Figure 5 follows directly from the privacy
of each single-copy scheme.

Multi-Copy Scheme VH-DSSEk

Run k parallel copies of the single-copy scheme VH-DSSE = (VH-DSSE.Setup,
VH-DSSE.Search, VH-DSSE.Update) in Figures 2 to 4 with the following modifi-
cation: the client’s output in VH-DSSE.Search is the union of the outputs from the
k parallel instances.

Figure 5: VH-DSSEk Protocol

Theorem 7.1. Suppose that the underlying single-copy scheme is adaptively-secure
with respect to the leakage function LVH-DSSE = (LStpVH-DSSE, LSrchVH-DSSE, LUpdtVH-DSSE) (The-
orem 5.1), forward private, BP-I and BP-I∗ backward-private (Theorem 5.3). Then,
VH-DSSEk is also adaptively-secure with respect to the same leakage function, forward-
private, and both BP-I and BP-I∗ backward-private.

Proof. The proof follows directly from the security theorems of the single-copy scheme, i.e.
(Theorem 5.1 and Theorem 5.3).

Theorem 7.2. VH-DSSEk achieves the following correctness guarantees, if k ∈ ω(log λ):

1. (1, β)-correctness for all keywords;

2. (1, 1)-correctness for keyword w if its volume `w ≤ dβ log |DB |e;

3. (1− negl(λ), 1− negl(λ))-correctness for keyword w if its volume `w ∈ ω(log λ).

The proof of Theorem 7.2 is given in ??.

8 Conclusions and Future Works

In this work, we further the research of volume-hiding structured encryption. We present
formal definitions for volume-hiding dynamic SSE and present the first efficient con-
structions VH-DSSE and VH-DSSEk. Our result fills the gap between existing defensive
mechanisms (volume-hiding primitives) and recent volumetric attacks. Meanwhile, both
VH-DSSE and VH-DSSEk satisfy the strongest notions of backward-privacy, which are
also the first ones in the literature.

22



One future direction is to efficiently de-amortize VH-DSSE(k) and to propose new
volume-hiding DSSE schemes with better efficiency. In addition, designing volume-
hiding structured encryption schemes for other dynamic data structures (other than
multi-maps) and more expressive queries are also challenging.
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A (Delegatable) Pseudorandom Function and RoR-
Secure Symmetric-key Encryption Scheme

Let KeyGen(1λ) ∈ {0, 1}λ be a key generation function, and PRF : {0, 1}λ × {0, 1}` →
{0, 1}`′ be a pseudorandom function (PRF) family. PRF is a secure PRF family if for
all PPT adversaries A, the following holds:

|Pr[K ← KeyGen(1λ);APRF(K,·)(1λ) = 1]− Pr[AR(·)(1λ) = 1]| ≤ negl(λ),

where R(·) denotes a truly random function.
A family of delegatable PRF enables the owner of the secret key K to delegate

an untrusted party to compute PRF(K,x) for all values x ∈ S where S is a sub-
set of the input space X . The delegation is done by deriving a token tokenS by
PRF.Delegate(K,S). With tokenS one can compute PRF.Eval(tokenS , x) = PRF(K,x)
for all x ∈ S, without accessing K. The security requirement is that given tokenS ,
all values PRF(K,x), x /∈ S remains indistinguishable from truly random ones. We
consider delegatable PRF for (fixed-size) subsets of strings with matching prefixes.
Let prefix denote a string and ` be a positive integer. The token generation algo-
rithm outputs tokenprefix,` = PRF.Delegate(K, (prefix, `)) with which one can compute
PRF(K,x) = PRF.Eval(tokenprefix, i) for all x = prefix||i||0 and x = prefix||i||1 where
i ∈ [1, `] that share the same common prefix. The classical GGM construction [25]
of PRF can be used to implement such delegatable PRFs [41]. It is also easy to see
that when ` is fixed, the resulting tokens for fixed-length prefixes are computationally
indistinguishable from random values.

A symmetric-key encryption scheme SKE consists of three algorithms (KeyGen, Enc,
Dec). Let KeyGen(1λ) ∈ {0, 1}λ is a probabilistic key generation function that takes a
security parameter λ as input and returns a secret key K; Enc is a probabilistic algorithm
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that takes as input a key K and a message m and generates a ciphertext ct; Dec is a
deterministic algorithm that takes as input a key K and a ciphertext ct and recovers m
if K was used to encrypt m into ct. For notation simplicity, we additionally introduce
a helper function DecAll that decrypts a set of ciphertexts. We require SKE to satisfy
real-or-random security (RoR). Informally, a symmetric-key encryption scheme is RoR-
secure if the ciphertexts are indistinguishable from random strings of the same length,
even to an adversary that can adaptively query an encryption oracle.

B Probability Distributions

B.1 Hypergeometric Distribution

A hypergeometric distribution describes the process of sampling without replacement.
A random variable X following the hypergeometric distribution H(n1, n,m) describes
the process of counting how many defectives are sampled when n1 items are randomly
selected without replacement from a population of n items of which m are defective.

The probability mass functions of X is Pr[X = k] =
(n−mn1−k)(

m
k )

( nn1
)

. The expected value

E[X] is n1
m
n .

Lemma B.1 (Tail Bound of Hypergeometric Distribution [33]). Let X be a random
variable following the hypergeometric distribution H(n1, n,m). Let γ ≥ 2. Then

Pr[X − E[X] > γ] < e−2(γ2−1)αn1,n,m (1)

and
Pr[X − E[X] < −γ] < e−2(γ2−1)αn1,n,m (2)

where

αn1,n,m = max

((
1

n1 + 1
+

1

n− n1 + 1

)
,

(
1

m+ 1
+

1

n−m+ 1

))
.

The proof of this Lemma can be found in [33, Theorem 1].

B.2 Zipf-Distribution

Originally, Zipf’s law is an empirical law that models the rank-frequency distribution
of words in human languages such as English. It is observed that similar relationships
also occur in other rankings of human-created systems. Following [37], we present its
definition in the context of key-value database below.

Definition B.1 (Zipf-Distributed Database). We say that the response lengths of a
keyword-document database DB is Za,b-distrubted, if the normalized frequency of the

r-th most frequent keyword is r−b

Ha,b
, where N =

∑
|DB(w)|w∈W and Ha,b is the harmonic

number
∑a
i=1 i

−b.

For instance, if we assume that DB is Z|W|,1-distributed, then the normalized fre-

quency of the i-th most frequent keyword is 1/i
H|W|,1

= 1/i

(1+ 1
2 +···+ 1

|W| )
where |W| is the

size of the keyword space.
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C Modified Static Volume-hiding SSE scheme dprfMM [55]

Let SKE = (KeyGen,Enc,Dec) be an RoR-secure symmetric encryption scheme and PRF
be a family of secure delegatable pseudorandom function. This construction is parame-
terized by a constant α > 0 and a function g(n) ∈ ω(1).

� (K, τ,EDB)← dprfMM.Setup(1λ,DB):

1. Randomly select a PRF key KPRF ← PRF.KeyGen(1λ);

2. Randomly select an encryption key KSKE ← SKE.KeyGen(1λ);

3. Create two empty arrays T0, T1 of length t = (1 + α)n where n = |DB |;
4. Initialize stash← φ;

5. For each w ∈ W and each i ∈ [1, |DB(w)|]:
(a) Let (w , ID) be the i-th entry in DB(w), namely DB(w)[i] = (w , ID);

(b) Insert (w , ID) using the Cuckooo hashing with a stash insertion algorithm
where (w , ID) is assigned to one of T0[PRF(KPRF, (w ||i||0))], T1[PRF(KPRF, (w ||i||1))]
or stash; If stash contains more than f(n) ∈ ω(1) items, abort.

6. For each empty location in T0 and T1, insert (⊥,⊥);

7. For each i ∈ [t], b ∈ {0, 1}:
– Set Tb[i]← SKE.Enc(KSKE, Tb[i]);

8. Set the private key as K ← (KPRF,KSKE, stash);

9. Set EDB ← (T0, T1), set τ = φ;

10. Return (K, τ,EDB).

� dprfMM.Search(K, q, τ, `; EDB , `):
Client:

1. Parse K as (KPRF,KSKE, stash);

2. Compute tokenq,` ← PRF.Delegate(KPRF, (q, `));

3. Send tokenq,` to the server.

Server:

1. For each i ∈ [1, `], b ∈ {0, 1}:
– Compute ab,i = PRF(KPRF, (q||i||b)) = PRF.Eval(tokenq,`, (i||b));

2. Send response = {T0[a0,i], T1[a1,i]}i∈[1,`] to the client.

Client:

1. Parse K as (KPRF,KSKE, stash), parse response as {ct0,i, ct1,i}i∈[1,`];

2. Set result = φ;

3. For each i ∈ [1, `], b ∈ {0, 1}:
(a) Set (w ′, ID′)← SKE.Dec(KSKE, ctb,i);

(b) If w ′ = q, then result = result ∪ ID′;

4. For each (w ′, ID′) ∈ stash:

– If w ′ = q, result = result ∪ ID′;

5. Return result.
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As discussed in Section 4.3, we make two modifications to the original dprfMM scheme
in [55]. First, the setup algorithm does not abort even if the size of stash is ω(1). Second,
we make the response length as an explicit input of the search protocol. These differences
are highlighted in blue above.

The leakage profile of dprfMM presented above is L′dprfMM = (LStpdprfMM,LSrchdprfMM) =

(LDSize,LEq). In contrast, the leakage profile in the original paper [55] further includes
LMRL because the response length is fixed to be `max = maxq∈W |DB(q)| in the original
scheme. Because the interface of the search protocol is changed to take the response
length as an explicit input, the RealDSSEA and IdealDSSESim,L game need to be modified
accordingly. The modifications are highlighted in Figure 1. To be specific, the adversary
A additionally chooses a length parameter `k when it adaptively chooses search queries
qk in Line 3, Figure 1. This length parameter `k is also an explicit input to SimSearch.
With such modifications, SimSearch is required to simulate the real search protocol
for any response length because `k is adaptively chosen by A. We stress that `k should
not be considered as part of LSrchdprfMM because it is directly chosen by the adversary in the
security games. That said, we do not claim that the modified dprfMM scheme remains
volume-hiding as per the original definition in [55], since the input interface has changed.

D Volume-Hiding Leakage Functions for Static SSE [55]

We want to quantitatively compare Definition 3.1 with the one for static databases
in [55]. For this purpose, we present the definition of volume-hiding leakage functions
in [55] below. We slightly rephrased their syntax for easier comparison.

Definition D.1 ( [55]). The signature of a (single-keyword) encrypted database is the
sequence of pairs (w , len(DB ,w))w∈W where len(DB ,w) = |DB(w)| is the number of
matching documents in DB associated with the keyword w .

Now we are ready to define the sVolHηA,L(1λ, N, `max) game for leakage functions

L = (LStp,LSrch), adversary A, and η ∈ {0, 1}, which proceeds in the following steps:

� Setup phase: A generates two pairs of keyword-volume pairs S0 = {(w , `(0,w))}w∈W
and S1 = {(w , `(1,w))}w∈W with the following constraints:

–
∑

w∈W `(0,w) =
∑

w∈W `(1,w) = N ;

– maxw∈W `(0,w) = maxw∈W `(1,w) = `max.

The challenger C receives S0, S1 from the adversaryA and generates a database DB
with the signature Sη. Specifically, the challenger C generates len(DB ,w) = `(η,w)

arbitrary values for each keyword w ∈ W. The challenger C then sends LStp(DB)
to the adversary.

� Query phase: The challenger C and the adversary A repeat the following steps for
poly(λ) times:

– A adaptively chooses keywords w1, . . . ,wt for search operations. For each
wi, the challenger will compute the (stateful) leakage function LSrch(DB ,wi)
which is returned to the adversary A.

� Output phase: A outputs a bit b′ ∈ {0, 1}.

We denote by pA,Lη (N, `max) the probability that A outputs 1 when playing the game

sVolHηA,L(1λ, N, `max).

The advantage of A in the game sVolHA,L is defined as AdvsVolH
A,L = |pA,L0 (N, `max)−

pA,L1 (N, `max)|.
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Definition D.2 (Volume-Hiding Leakage Functions for Static SSE [55]). A leakage
function L = (LStp, LSrch) is volume-hiding if the advantage of the adversary in the
above game is 0.

Now, we are ready to formally prove the statement given in Section 3.3.

Theorem D.1. Let Σ be a DSSE scheme with leakage profile L = (LStp,LSrch,LUpdt)
and A be an adversary. Suppose the advantage of A in the sVolHA,L′ game is p, where
L′ = (LStp,LSrch). There must exist an adversary B whose advantage in the VolHA,L
game is at least p.

Proof. We describe how to construct the adversary B from A. B invokes A and plays
the role of the challenger in the sVolH game. It simulates the three phases of the sVolH
game as follows:

� Setup Phase: B receives two sets of keyword-volume pairs S0, S1 from A and
generates two databases DB0 and DB1 with the signatures S0 and S1, respectively.
Specifically, the challenger C generates len(DB ,w) = `(η,w) arbitrary values for
each keyword w ∈ W. B forwards DB0,DB1 to its own challenger, who randomly
selects a bit b and returns LStp(DBb) to B. B directly forwards LStp(DBb) to A.

� Query Phase: B receives search query wi from A. B constructs its own query
((type0 = Search,wi), (type1 = Search,wi)) and forwards it to its own challenger.
B forwards the received search leakage LSrch(DBb,wi) back to A.

� Output Phase: B outputs whatever A outputs.

It is easy to verify that B has simulated the sVolH game for A perfectly. Now it
remains to analyze the advantage of B in the VolH game. According to our assumption,

we have AdvsVolH
A,L′ = |pA,L

′

0 − pA,L
′

1 | = p.

AdvVolH
A,L = |2 Pr[b′ = b]− 1|

= |2 Pr[b′ = 1|b = 1] · Pr[b = 1] + 2 Pr[b′ = 0|b = 0] · Pr[b = 0]− 1|
= |Pr[b′ = 1|b = 1] + Pr[b′ = 0|b = 0]− 1|
= |Pr[b′ = 1|b = 1] + (1− Pr[b′ = 1|b = 0])− 1|

= |pA,L
′

1 − pA,L
′

0 | = p

E Missing Proof of Theorem 5.1.

sketch. Based on our assumption, there exists a simulator SimdprfMM = (SimSetupdprfMM,
SimSearchdprfMM). We construct Sim = (SimSetup,SimSearch,SimUpdate) using SimdprfMM

and then show that for any PPT adversary A, the random variables RealVH-DSSE
A and

IdealVH-DSSE
Sim,LVH-DSSE

are negligibly-distinguishable.

� SimSetup(LStpVH-DSSE(DB0))
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1 : Parse LStpVH-DSSE as (N, β)

2 : Set ctr = N, Set EDB as an empty set of vectors

3 : Let bblogNc · · · b0 be the binary representation of N

4 : Let min be the integer such that 2min ≤ logN < 2min+1

5 : // Run a fresh instance of SimdprfMM = (SimSetupdprfMM, SimSearchdprfMM) for each bi = 1

6 : for i = blogNc to min do :

7 : if bi = 1 then

8 : (sti, ˆEDB i)← SimSetup
(i)
dprfMM(1λ, 2i)

9 : ctr = ctr − 2i

10 : Fill stash with f(N) random strings

11 : Fill buf with ctr random strings

12 : Set EDB = (β, buf, stash, ( ˆEDBmin, . . . , ˆEDBblogNc))

13 : Set stS = (stmin, . . . , stblogNc, N, β, buf, stash)

14 : return (stS ,EDB)

� SimUpdate(stS ,LUpdtVH-DSSE(EDBk−1,wk))
1 : ct∗ ← {0, 1}|ct|, extract N from stS , N = N + 1

2 : Compute sizebuf , min from N as in the real algorithm

3 : if sizebuf = 2min+1

4 : Identify the first index i that does not have a running instance of SimdprfMM

5 : for j = min to i− 1 do

6 : Stop the simulator Sim
(j)
dprfMM for the j-th instance

7 : (sti, ˆEDB i)← SimSetup
(i)
dprfMM(1λ, 2i)

8 : Replace stash with f(N) fresh random strings, set buf ← φ

9 : t∗ = (ct∗, ˆEDB i)

10 : else

11 : t∗ = ct∗

12 : Update N, buf, stash, stmin, . . . , sti in stS and return t∗

Before we present the construction of SimSearch, we first establish the following
notations. Let qk = wk be the latest search query and Qk = {q1, . . . , qk} be the sequence
of all search queries issued so far. Qk can be partitioned into {. . . , Q(j−1), Q(j)}, where
j = blogNc and Q(i) denote the sequence of search queries when the largest non-
empty encrypted index in EDB was i. Therefore, qk is the last query in Q(j). Let Mj

be a |Q(j)| × |Q(j)| binary matrix such that Mj [x][y] = 1 if and only if qx−|Q(j)|+k =

qy−|Q(j)|+k. Looking ahead, SimSearch will use Mj , which is part of LSrchVH-DSSE, to simulate
the search leakage of qk.

� SimSearch(stS ,LSrchVH-DSSE(EDBk−1,wk))
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1 : Extract N, β from stS , set t∗ = φ

2 : Set j = blogNc; compute min from N as in the real algorithm

3 : Let bj · · · b0 be the binary representation of N

4 : Extract Mj from LSrchVH-DSSE(EDBk−1,wk)

5 : for i = j to min do :

6 : if bi = 1 // There must be an active running instance of Sim
(i)
dprfMM

7 : Extract (sub)search pattern M
(i)
j in the lifespan of Sim

(i)
dprfMM from Mj

8 : Append SimSearch
(i)
dprfMM(sti,M

(i)
j ) to t∗ and update sti

9 : return t∗

We now argue for all PPT adversary A,

|Pr[RealDSSEA (1λ) = 1]− Pr[IdealDSSESim,L (1λ)]| ≤ negl(λ).

To do so, we use the following sequence of games:

� Game0 is identical to RealDSSEA (1λ).

� Game1 replaces the RoR-secure SKE encryption scheme with a random function.

� Game2 replaces all dprfMM algorithms with SimdprfMM.

Game0 and Game1 are computationally indistinguishable due to the RoR-security of
SKE. Game1 and Game2 are computationally indistinguishable due to the security of
dprfMM. It is easy to verify that Game2 is the same as IdealDSSESim,L (1λ).

F Missing Proof of Proposition 6.3.

Before we proceed, we first give a concrete expression of δj as follows:

δj =

{
γim1

if j = 1∑j−1
k=1 δk + γimj if j ≥ 2,

where γimj =
√
EXw ,imj

· polylog(λ) =
√

(`w · 2imj /N) · polylog(λ) ∈ o(EXw ,imj
). We

can upper bound the value of δj as follows, which will be used in our proof.

Claim F.1. For j ≥ 1, we have δj ≤ 2j−1 · δ1.

Proof. Note that ∀j, γimj > γimj+1
. For j = 1, 2, it is easy to see δ1 ≤ 20δ1, δ2 =

δ1 + γim2
< 21δ1. For j > 2, we have δj =

∑j−1
k=1 δk + γimj = δj−1 +

∑j−2
k=1 δk + γimj =

δj−1 + (δj−1 − γimj−1
) + γimj < 2δj−1 < 2j−1 · δ1.

Now we are ready to prove Proposition 6.3.

Proof. Base Case: The base case, Pr[Êw ,im1
] > 1− negl(λ), concerns the largest index

im1
in I. By plugging γim1

=
√

(`w · 2im1/N) · polylog(λ) ∈ o(EXw ,im1
), n1 = 2im1 ,

n = N , m = `w into Equations (1) and (2) in Lemma B.1, we get

Pr[Xw ,im1
− EXw ,im1

∈ [−γim1
, γim1

]] ≥ 1− 2e
−2α

2
im1 ,N,`w

((`w ·2im1 /N)·polylog(λ)−1)
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Notice that α2im1 ,N,`w
= max

((
1

2im1 +1
+ 1

N−2im1 +1

)
,
(

1
`w+1 + 1

N−`w+1

))
> 1

`w+1

and N/2 < 2im1 ≤ N . Therefore,

Pr[Xw ,im1
− EXw ,im1

∈ [−γim1
, γim1

]] ≥ 1− 2e
−2α

2
im1 ,N,`w

((`w ·2im1 /N)·polylog(λ)−1)

Pr[Êw ,im1
] > 1− 2e−2 1

`w+1 ·((`w ·2
im1 /N)·polylog(λ)−1)

= 1− 2e−O(polylog(λ))

= 1− negl(λ) (**)

With Equation (**), we have concluded the proof of the base case.

Inductive Step: We want to show that if Pr[
∧k
j=1 Êw ,imj

] > 1 − negl(λ) and N −∑k
j=1 2imj ∈ O(N) for some k ≥ 1, then Pr[

∧k+1
j=1 Êw ,imj

] > 1− negl(λ). The base case

above corresponds to k = 1.
Let N (imk+1

) = N−
∑k
j=1 2imj denote the total number of key-value pairs remaining

in { ˆEDB imk+1
, ˆEDB imk+2

, . . .}. Let `
(imk+1

)
w = `w −

∑k
j=1Xw ,imj

denote the total

number of matching results for w remaining in { ˆEDB imk+1
, ˆEDB imk+2

, . . .}. According

to our inductive hypothesis, N (imk+1
) ∈ O(N).

The conditional random variable Xw ,imk+1
|
∧k
j=1 Êw ,imj

follows hypergeometric dis-

tribution H(2imk+1 , N (imk+1
), `

(imk+1
)

w ) and E[Xw ,imk+1
|
∧k
j=1 Êw ,imj

] = `
(imk+1

)

w ·2imk+1

N
(imk+1

) .

Hence, we can apply Lemma B.1 again:

Pr
[
Xw ,imk+1

− E[Xw ,imk+1
|
∧k
j=1 Êw ,imj

] ∈ [−γimk+1
, γimk+1

]|
∧k
j=1 Êw ,imj

]
≥1− 2e

−2α
2
imk+1 ,N

(imk+1
)
,`

(imk+1
)

w

(γ2
imk+1

−1)

>1− 2e
−2 1

`
(imk+1

)

w +1

·(γ2
imk+1

−1)

(***)

Conditioned on the event
∧k
j=1 Êw ,imj

, then `
(imk+1

)
w falls in range [`w−

∑k
j=1(EXw ,imj

+

δj), `w −
∑k
j=1(EXw ,imj

− δj)], namely:

`w −
k∑
j=1

(EXw ,imj
+ δj) ≤ `

(imk+1
)

w ≤ `w −
k∑
j=1

(EXw ,imj
− δj)

`w

(
N−

∑k
j=1 2

imj

N

)
−
∑k
j=1 δj ≤ `

(imk+1
)

w ≤ `w
(
N−

∑k
j=1 2

imj

N

)
+
∑k
j=1 δj (****)

According to our hypothesis that N −
∑k
j=1 2imj ∈ O(N), there exists a constant

c such that N (imk+1
) = N −

∑k
j=1 2imj = cN . The inequality above simplifies to

c`w −
∑k
j=1 δj ≤ `

(imk+1
)

w ≤ c`w +
∑k
j=1 δj . Given the upper bound of δj that we

have proven earlier, we have
∑k
j=1 δj ≤

∑k
j=1(2j−1 · δ1) = (2k − 1)δ1. Observe that

k ≤ |I| ∈ o(logN) and our assumption that `w ∈ O(N). So 2k = 2o(logN) = No(1) and∑k
j=1 δj < No(1) · δ1 ∈ o(`w ). Hence `

(imk+1
)

w ∈ O(`w ).

Recall γimk+1
=
√

(`w · 2imk+1 /N) · polylog(λ). Then γ2
imk+1

= (`w · 2imk+1/N) ·

polylog(λ). Recall our observation that 1/2 · N (imk+1
) < 2imk+1 ≤ N (imk+1

), and

N (imk+1
) = cN . Therefore the R.H.S. of Equation (***) simplifies to 1− negl(λ). Equa-

tion (***) is equivalent to saying that condition on the event
∧k
j=1 Êw ,imj

, with proba-

bility 1−negl(λ), Xw ,imk+1
−E[Xw ,imk+1

|
∧k
j=1 Êw ,imj

] is at least −γimk+1
(and at most

34



γimk+1
). We can bound the range of E[Xw ,imk+1

|
∧k
j=1 Êw ,imj

] using Equation (****).

E[Xw ,imk+1
|
k∧
j=1

Êw ,imj
] =

`
(imk+1

)
w · 2imk+1

N (imk+1
)

∈

[
(c`w −

∑k
j=1 δimj ) · 2imk+1

cN
,

(c`w +
∑k
j=1 δimj ) · 2imk+1

cN

]

∈

[
EXw ,imk+1

−
(
∑k
j=1 δimj ) · 2imk+1

cN
,EXw ,imk+1

+
(
∑k
j=1 δimj ) · 2imk+1

cN

]

∈

EXw ,imk+1
−

k∑
j=1

δimj , EXw ,imk+1
+

k∑
j=1

δimj


The last step follows from the fact that 2imk+1 ≤ N (imk+1

) = cN .
This means condition on the event

∧k
j=1 Êw ,imj

, the random variable Xw ,imk+1
(i.e.,

the number of matching entries in ˆEDB imk+1
) is at least EXw ,imk+1

−
∑k+1
j=1 δj (and at

most EXw ,imk+1
+
∑k+1
j=1 δj) with probability 1− negl(λ).

Finally, EXw ,imk+1
= `w · 2imk+1/N ∈ O(`w ) and

∑k+1
j=1 γimj ∈ o(`w ). So we

have proved that Pr[Êw ,imk+1
|
∧k
j=1 Êw ,imj

] > 1 − negl(λ) and thus Pr[
∧k+1
j=1 Êw ,imj

] =

Pr[Êw ,imk+1
|
∧k
j=1 Êw ,imj

] · Pr[
∧k
j=1 Êw ,imj

] > 1− negl(λ).

35


	Introduction
	Our Contributions
	Related Work

	Preliminary
	(Dynamic) Symmetric Searchable Encryption
	Typical Leakage Functions.

	Forward and Backward Privacy

	Our Definitions
	Security Definition for Volume-Hiding DSSE
	Intuition and Explanation of Our Definitions
	Comparisons with Previous Definitions.
	Compare with KM19 eurocrypt/KamaraM19.
	Compare with PPYY19 ccs/PatelPYY19.


	Technical Roadmap
	Review of dprfMM@CCS'19 ccs/PatelPYY19
	Difficulties in Making dprfMM@CCS'19 Dynamic
	Our Approach
	Another way to Make dprfMM ccs/PatelPYY19 Dynamic.
	Handling Stashes.
	Achieving Volume-Hiding.
	Correctness.


	Our Single-Copy VH-DSSE Construction
	Formal Description.
	Leakage Function of VH-DSSE
	Setup leakage:
	Search leakage:
	Update leakage:
	Forward and Backward Privacy:
	Volume-Hiding:

	Security Proofs

	Efficiency and Correctness of VH-DSSE
	Efficiency
	Correctness
	Worst-case Correctness
	Average-case Correctness
	Outline of Proof of thm:correctness2 and Technical Challenges.
	Proof of thm:correctness2.


	Final Construction: Multi-Copy Scheme VH-DSSEk
	Conclusions and Future Works
	(Delegatable) Pseudorandom Function and RoR-Secure Symmetric-key Encryption Scheme
	Probability Distributions
	Hypergeometric Distribution
	Zipf-Distribution

	Modified Static Volume-hiding SSE scheme dprfMM ccs/PatelPYY19 
	Volume-Hiding Leakage Functions for Static SSE ccs/PatelPYY19
	Missing Proof of Theorem 5.1.
	Missing Proof of Proposition 6.3.

