
Somewhere Statistical Soundness, Post-Quantum Security,
and SNARGs for P

Yael Tauman Kalai∗

Microsoft Research
Vinod Vaikuntanathan†

MIT
Rachel Yun Zhang‡

MIT

June 11, 2021

Abstract

We introduce the notion of a somewhere statistically sound (SSS) interactive argument,
which is a hybrid between a statistically sound proof and a computationally sound proof (a.k.a.
an argument).

• First, we show that Kilian’s protocol, instantiated with a computationally non-signaling
PCP (Brakerski, Holmgren, and Kalai, STOC 2017) and a somewhere statistically binding
hash family (Hubacek and Wichs, ITCS 2015), is an SSS argument.

• Secondly, we show that the soundness of SSS arguments can be proved in a straight-line
manner, implying that they are also post-quantum sound if the underlying assumption is
post-quantum secure. This provides a straightforward proof that Kilian’s protocol, instan-
tiated this way, is post-quantum sound under the post-quantum hardness of LWE (though
we emphasize that a computationally non-signaling PCP exists only for deterministic lan-
guages, and more generally, for specific subclasses of non-deterministic languages such as
NTISP, but not for all of NP).

• We put forward a natural conjecture that constant-round SSS arguments can be soundly
converted into non-interactive arguments via the Fiat-Shamir transformation. We argue
that SSS arguments evade the current Fiat-Shamir counterexamples, including the one
for Kilian’s protocol (Bartusek, Bronfman, Holmgren, Ma and Rothblum, TCC 2019) by
requiring additional properties from both the hash family and the PCP.

As an additional result, we show that by using a computationally non-signaling PCP and a some-
where statistically binding hash family, one can efficiently convert any succinct non-interactive
argument (SNARG) for BatchNP into a SNARG for P.

∗E-mail:yael@microsoft.com
†E-mail:vinodv@csail.mit.edu
‡E-mail:rachelyz@mit.edu

Contents

1 Introduction 1
1.1 Somewhere Statistically Sound Interactive Arguments 1

1.1.1 SSS and Straight-Line Soundness . 3
1.1.2 SSS and Fiat-Shamir Friendliness . 4

1.2 Instantiating an SSS version of Kilian . 4
1.3 From BMW/KRR Back to Kilian . 5
1.4 SNARGs: from BatchNP to P. 6

2 Preliminaries 7
2.1 Straight-Line Reductions . 7
2.2 Probabilistically Checkable Proofs . 8
2.3 Hash Function Families with Local Opening . 10
2.4 Converting a PCP into a Succinct Interactive Argument 11

3 Somewhere Statistically Sound Interactive Arguments 14

4 Kilian’s Protocol is Somewhere Statistically Sound 15
4.1 The BMW Heuristic with SSB Hash Families . 16
4.2 Kilian with No-Signaling PCP and `-SSB Hashing . 18

5 SNARG for P 20
5.1 BatchNP . 21
5.2 SNARG for P . 22

i

1 Introduction

In the past decade, there has been a significant effort to construct efficiently verifiable, succinct, and
non-interactive argument systems (also called SNARGs).1 One way of constructing such argument
systems is by first constructing a public-coin interactive proof or argument system, and then
eliminating the interaction using the celebrated Fiat-Shamir paradigm [FS86].

The Fiat-Shamir paradigm provides a generic way of converting any public-coin interactive
protocol into a non-interactive one, in the common random string (CRS) model. Loosely speaking,
the Fiat-Shamir paradigm converts an interactive proof (P,V) for a language L to a non-interactive
argument (P ′,V ′) for L in the CRS model. The CRS consists of randomly chosen hash functions
h1, . . . , h` from a hash family H, where ` is the number of rounds in the protocol (P,V). To
compute a non-interactive proof for x ∈ L, the non-interactive prover P ′(x) generates a transcript
corresponding to (P,V)(x), denoted by (α1, β1, . . . , α`, β`), by emulating P(x) and replacing each
verifier message βi by βi = hi(α1, β1, . . . , αi−1, βi−1, αi). The verifier V ′(x) accepts if and only if
V(x) accepts this transcript and βi = hi(α1, β1, . . . , αi−1, βi−1, αi) for every i ∈ [`].

This paradigm has been extremely influential in practice, and its soundness has been extensively
studied. For statistically sound proofs, this paradigm is believed to be sound, at least under strong
computational assumptions [KRR17, CCRR18, HL18, CCH+19]. Moreover, for some protocols
such as the Goldwasser-Kalai-Rothblum protocol [GKR08] and several zero-knowledge protocols
for NP such as Blum’s Hamiltonicity protocol [Blu86] and the GMW 3-coloring protocol [GMW91],
this paradigm is provably sound under the polynomial or sub-exponential hardness of learning with
errors (LWE) [CCH+19, PS19, JKKZ21, HLR21], which are standard assumptions.

On the other hand, for computationally sound proofs (known as arguments) the situation is
quite grim. There are (contrived) examples of interactive arguments for which the resulting non-
interactive argument obtained by applying the Fiat-Shamir paradigm is not sound, no matter
which hash family is used [Bar01a, GK05]. Moroever, recently it was shown that the Fiat-Shamir
paradigm is not sound when applied to the celebrated Kilian’s protocol [BBH+19]. This begs the
following question:

Does there exist an interesting class of interactive arguments for which the Fiat-
Shamir paradigm is sound?

1.1 Somewhere Statistically Sound Interactive Arguments

We introduce a family of interactive arguments that we call somewhere statistically sound (SSS).
In what follows, we always assume (w.l.o.g) that the first message in the protocol is sent by the
verifier. An interactive argument (P,V) is said to be SSS if for every legal first message β1, there
exists a third message β2 = T (β1) sent by the verifier such that the following two properties hold:

• For every PPT (cheating) prover P∗, conditioned on the first three messages being
(β1,P∗(β1), T (β1)) the remaining protocol is statistically sound with overwhelming proba-
bility. Namely, for any x /∈ L and any PPT P∗, with overwhelming probability, any (even all

1An argument system is a computationally sound proof system.

1

powerful) cheating prover cannot convince the verifier to accept x /∈ L except with negligible
probability, conditioned on the first three messages being (β1,P∗(β1), T (β1)).

• The pair (β1, T (β1)) is efficiently sampable and is computationally indistinguishable from a
random pair (β1, β2) of the verifier’s first two messages. We emphasize that this in particular
implies that the function T has to be computationally inefficient.

As we argue below, SSS interactive arguments are of great interest for several reasons.

1. First, we prove that such protocols are post-quantum sound, if the assumption that they rely
on is post-quantum secure. We note that in general, interactive protocols that are proven
classically secure under post-quantum assumptions are not post-quantum secure. This is
because the proof of security often relies on the rewinding technique, which is not generally
applicable in the quantum setting due to the fact that quantum states are not clonable [Wat09,
Unr12]. We show that SSS arguments have a straight-line proof of soundness (i.e., without
rewinding the cheating prover), and are thus immediately post-quantum sound. We elaborate
on this in Section 1.1.1.

2. Second, we prove that Kilian’s protocol, instantiated with (a repeated version of) a
somewhere-statistically-binding (SSB) hash family [HW15] (for which constructions based
on the LWE assumption exist) and a PCP with computational non-signaling soundness, is
SSS. We elaborate on this in Section 1.2. Combined with (1), this provides a rather sim-
ple proof of post-quantum soundness of Kilian’s protocol, comprehensible to a “quantum
dummy.”2

We note that this instantiation of Kilian’s protocol is only for deterministic languages and
for specific classes of non-deterministic languages (such as BatchNP or the class NTISP(t, s)3)
since a computationally non-signaling PCP with the desired parameters exists only for such
languages (where for languages in BatchNP the communication complexity grows with the
length of a single witness and for NTISP(t, s) the communication complexity grows with the
space s). Proving that the classical Kilian protocol [Kil92] is post-quantum sound for all of
NP was a grand challenge, and was only very recently resolved by Chiesa, Ma, Spooner and
Zhandry [CMSZ21] using highly non-trivial quantum techniques.

3. Finally, we conjecture that any SSS interactive argument is Fiat-Shamir friendly; meaning
that for any SSS interactive argument (P,V) there exists a hash family H such that applying
the Fiat-Shamir paradigm w.r.t. H to (P,V) results with a sound non-interactive argument.

We emphasize that we do not prove this claim, only conjecture it. We believe that it is a
promising path for obtaining the first SNARG for all deterministic languages based on a stan-
dard post-quantum secure assumption. In particular, we conjecture that Kilian’s protocol,
with the instantiations above (SSB hash family and PCP with computational non-signaling
soundness) is Fiat-Shamir friendly.

2https://simons.berkeley.edu/events/quantum-lectures-crypto-dummies
3The class NTISP(t, s) consists of all the languages that are decidable by a non-deterministic Turing machine

running in time t and space s.

2

https://simons.berkeley.edu/events/quantum-lectures-crypto-dummies

This is in contrast with the recent work [BBH+19] that showed that in general, Kilian’s
protocol is not Fiat-Shamir friendly. We remark that it was already suggested in [BBH+19]
to use an SSB hash family as one step to evade their impossibility result. We suggest that
the Fiat-Shamir transform indeed works using (repeated) SSB hashing combined with a
(computationally) non-signaling PCP, giving us succinct non-interactive arguments for all of
P (and even more, as described above). We leave this as an important open problem, and
believe it worth significant cycles from the community.

We believe an additional conceptual contribution of this work is our view of the first two messages
of the Kilian’s protocol, using an SSB hash function and a non-signaling PCP, as an instantiation
of the 2-message protocol of Kalai, Raz and Rothblum [KRR14] (itself a provable version of an idea
originally due to Biehl, Meyer and Wetzel [BMW99]). Using this view, we show how to construct a
SNARG for P (and for NTISP) from any SNARG for BatchNP. We elaborate on this in Section 1.3.

1.1.1 SSS and Straight-Line Soundness

In a nutshell, the reason that any SSS protocol is post-quantum sound is due to the fact that it
has straight-line soundness, meaning that a successfully cheating prover can be used in a black
box way to break some complexity assumption.

Theorem 1.1 (Informal). Any SSS interactive argument has a straight-line soundness proof.

Loosely speaking, we prove this theorem as follows. Fix any SSS interactive argument (P,V)

for a language L. We construct a (uniform) PPT black-box reduction R, that takes as input a
pair (β1, β2), and distinguishes between the case that β2 = T (β1) and the case that β2 is chosen at
random, given black-box and staight-line access to any cheating prover P∗.

The reduction R works as follows: It runs the cheating prover with β1, and then upon recieving
α1 = P∗(β1), it sends P∗ the challenge β2. The reduction then continues emulating the honest
verifier until the end of the protocol. If the transcript is accepting, then R outputs 1 (indicating
that β2 is random), and otherwise it outputs 0. By the assumption that P∗ is convincing with
non-negligible probability, if β1 and β2 are random then the transcript is accepting with non-
negligible probability. On the other hand, by the SSS property, if β2 = T (β1), then the transcript
is accepted with only negligible probability. Thus, the reduction R outputs 1 with probability that
is non-negligibly larger in the case that β2 is random, as desired.

We note that any interactive argument that has a straight-line soundness proof is immediately
post-quantum sound, assuming that the underlying assumption is post-quantum secure. This is the
case since the analysis above extends readily to the quantum setting. As mentioned above, this is in
contrast to the standard analysis which uses rewinding, and hence often fails in the post-quantum
setting.

Claim 1.2 (Informal). Any SSS interactive argument that is proven sound under an assump-
tion A is also post-quantum sound if assumption A holds w.r.t. quantum adversaries.

This property makes SSS arguments particularly appealing, given the major effort by the com-
munity to make cryptographic protocols post-quantum secure.

3

1.1.2 SSS and Fiat-Shamir Friendliness

Another reason why SSS arguments are of interest is that we believe (and conjecture) that such
protocols are “Fiat-Shamir friendly.”

Conjecture 1.3. Any constant round SSS interactive argument (P,V) is Fiat-Shamir friendly.

Recall that we believe that any (constant round) statistically sound proof is Fiat-Shamir
friendly, whereas we know that this is false for computationally sound proofs. Thus, it is natural
to ask whether the hybrid class of all (constant round) SSS interactive arguments is Fiat-Shamir
friendly.

We note that all known negative results for the Fiat-Shamir paradigm [Bar01b, GK03, CMSZ21]
are for arguments that are not SSS. In particular, these interactive arguments are constructed by
adding an additional accepting clause, such that if the prover can predict the verifier’s next message
then he can easily convince the verifier to accept this alternative clause (even false statements).
This does not harm soundness in the interactive setting since the interactive prover cannot predict
the verifier’s next message and hence cannot use this additional clause. On the other hand, when
Fiat-Shamir is applied, the prover can, by definition, use the description of the hash function to
predict the verifier’s next message, harming the soundness of the non-interactive protocol and thus
demonstrating the insecurity of the Fiat-Shamir paradigm.

Crucially, we emphasize that this additional clause makes the resulting argument not SSS. This
is the case since this additional clause inherently does not have statistical soundness, since it must
use a succinct argument, as the witness (which is the the Fiat-Shamir hash function) can be larger
than the communication complexity. Importantly, we note that even if this clause is SSS the entire
protocol is not, since this clause is executed after the first two messages.

We note that Bartusek et al. [BBH+19] give an instantiation of Kilian’s protocol for the triv-
ial (empty) language for which applying the Fiat-Shamir paradigm provably results in a sound
protocol. Their instantiation employs an SSB hash function and a particular PCP for the empty
language, and the protocol is in fact SSS. Indeed, our conjecture is a stronger statement, namely
that the notion of somewhere statistical soundness is sufficient to apply Fiat-Shamir soundly.

1.2 Instantiating an SSS version of Kilian

We show an instantiation of Kilian’s protocol which is SSS. Specifically, we prove that if we use
a PCP that has computational non-signaling soundness, and denote its query complexity (or more
precisely, its locality) by `, and if we tree-commit to this PCP ` times using ` somewhere statistically
binding (SSB) hash functions [HW15], then the resulting protocol is SSS. In particular, we obtain
the following corollary.

Theorem 1.4 (Informal). Kilian’s protocol is SSS, and thus has post-quantum soundness, if
we use a PCP with computational non-signaling soundness with locality `, and if the prover
tree-commits to this PCP using ` post-quantum SSB hash functions.

Hubáček and Wichs [HW15] constructed an SSB hash family assuming the hardness of LWE.
This hash family is post-quantum secure assuming the post-quantum hardness of LWE. Moreover,

4

[KRR14, BHK17] constructed a PCP with computational non-signaling soundness for all determin-
istic languages and BatchNP languages, where for languages in DTIME(t) the query complexity (or
more precisely, the locality) is polylog(t), and for BatchNP languages it is m ·polylog(N), where m
is the length of a single witness and N is the number of instances in the batch. These two results,
together with Theorem 1.4, imply the following corollary.

Corollary 1.5 (Informal). There exists an instantiation of Kilian’s protocol that is SSS, and
thus post-quantum sound, for all deterministic computations and BatchNP languages, as-
suming the post-quantum hardness of LWE. For DTIME(t) languages the communication
complexity grows with polylog(t) and for BatchNP languages the communicaiton complexity
grows with m · polylog(N), where m is the length of a single witness and N is the number of
instances in the batch.

More generally, we prove that if the PCP is S-computational non-signaling,4 with locality `,
and if we tree-commit to this PCP using ` hash functions that are SSB with S-security (i.e., even
a poly(S)-size adversary cannot break the SSB with probability non-negligible in S), then the re-
sulting Kilian’s protocol is SSS. We note that [BKK+18] constructed a PCP with 2s-computational
non-signaling soundness (with locality O(s)) for any language in NTISP(t, s). In addition, the SSB

from [HW15] is 2s-secure (where the key size grows with s) assuming the sub-exponential hardness
of LWE. We thus obtain the following corollary.

Corollary 1.6 (Informal). There exists an instantiation of Kilian’s protocol for all languages
in NTISP(t, s) that is SSS, and thus post-quantum sound, where the communication complexity
grows with s, assuming the sub-exponential post-quantum hardness of LWE.

As mentioned above, we conjecture that this instantiation is Fiat-Shamir friendly, and leave
the proof (or refutation) of this conjecture as an important open problem.

1.3 From BMW/KRR Back to Kilian

We take a somewhat anachronistic view and see Kilian’s four-message, public-coin interactive
argument as a natural interpolation of the Biehl-Meyer-Wetzel (BMW) heuristic. Recall that the
BMW heuristic takes any PCP and any single-sever PIR scheme, and uses them to construct a
two-message (succinct) argument where each PCP query is sent to the prover as a PIR query (see
Section 2.4 for more details). The BMW heuristic is not known to be sound in general [DLN+04,
DHRW16]; however, it is known to be computationally sound if the PCP is computational non-
signaling [KRR13, BHK17]. The protocol is privately verifiable since the verifier needs to run the
PIR decoding on the prover’s message, in a sense decrypting it.

To see the relation to Kilian’s protocol with an SSB hash and a non-signaling PCP, recall that
an SSB hash family is a hash family H where each hash seed s is associated with an index i ∈ [N],
where N is the length of the input, such that hs(x) is statistically binding on xi, and one can
extract xi from the hash value hs(x) given a trapdoor t that is generated together with s (see
Section 2.3, Definition 2.9). In our instantiation of Kilian’s protocol, we hash the PCP with ` SSB

4We remark that for any S1 < S2, any PCP that is S1-computational non-signaling is also S2-computational
non-signaling.

5

hash functions, where ` is the locality parameter of the PCP. Namely, the verifier’s first message
is s1, . . . , s` and the prover’s respons is (hs1(π), . . . , hs`(π)). By the semantic security property
of a SSB hash family, and its inversion property given the trapdoor, this hash function can be
thought of as a PIR scheme. Thus, these first two messages of Kilian’s protocol are nothing but an
instantiation of the BMW heuristic.

We know that this heuristic is not sound in general [DLN+04, DHRW16], yet it is sound if the
underlying PCP has non-signaling soundness [KRR14, BHK17]. Indeed, until very recently, almost
all two-message succinct arguments that were proven sound under standard assumptions relied on
this heuristic (and used non-signaling PCPs). The main downside of this approach is that it yields
a privately verifiable (a.k.a. designated verifier) argument. Converting this protocol to a publicly
verifiable one is a major open problem. One attempt was made in [KPY19], which converted it
to being publicly verifiable by relying on zero-testable encryption scheme, and a construction
of this cryptographic primitive was given under a complexity assumption on groups with bilinear
maps. This left open the problem of relying on more standard and ideally post-quantum secure
assumptions.

Our instantiation of Kilian’s protocol can be thought of as a way of converting the BMW

protocol to a publicly verifiable one, albeit at a cost of adding two rounds. In this instantiation,
we execute the BMW heuristic, but the verifier never decrypts the PIR answer. Instead, we view
the PIR answer as a commitment to the PCP, and we add two messages, where the verifier sends
PCP queries in the clear, and the prover decommits to the answers. These additional messages
are in lieu of the verifier decrypting the PIR answers by himself.

In summary, consider the goal of constructing a post-quantum-secure publicly verifiable
SNARG for all of P. One could either start with a privately verifiable SNARG for all of P, namely
the KRR protocol whose security relies on the LWE assumption, and try to make it publicly ver-
ifiable using, e.g., techniques from [KPY19]. However, it is currently unclear how to apply these
techniques outside of the bilinear maps world. We advocate an alternate path, namely, first do
round-expansion of KRR into a Kilian-like protocol (while instantiating the CRHF with an SSB

hash family, and instantiating the PCP with a computational non-signaling PCP), and then round-
reduce it using Fiat-Shamir.

1.4 SNARGs: from BatchNP to P.

This view of the first two messages of the Kilian protocol as an instantiation of KRR, leads us
to our final contribution, which is an alternative pathway to getting a SNARG for all of P. We
show a reduction from constructing succinct non-interactive arguments (SNARGs) for P into the
potentially simpler goal of constructing SNARGs for BatchNP. The starting point is the two-round
preamble where the verifier sends the prover the description of an SSB hash function, and the
verifier replies with the root of the Merkle hash of a non-signaling PCP. The key observation is
that the remainder of the protocol can be a proof of the following BatchNP statement (which can
be communicated in the first two rounds as well): for every possible query set Q generated by the
PCP verifier, there are values of πQ as well as openings oQ such that (a) (πQ, oQ) constitutes a valid
Merkle path; and (b) the PCP verifier accepts (Q, πQ).

We argue that this 2-message protocol is sound since if the instance being proven is false then by

6

the soundness of KRR the answers that are committed to by the hash root are rejecting, and hence
by the somewhere-statistical binding property, the resulting BatchNP statement is false. Therefore,
it seems that all we need to instantiate this approach is a SNARG for BatchNP.

There are several issues that come up in making this idea work. First, if the PCP has negli-
gible soundness error, then the number of possible query sets generated by the verifier is super-
polynomially large, meaning that the (honest) prover runtime is superpolynomial. Fortunately, all
known PCP constructions (including the one from [KRR14]) have the property that each query
set can be partitioned into a set of “tests,” where the queries in each test and their corresponding
answers can be verified on their own, and importantly, the number of possible tests is polynomial.5

Therefore, our BatchNP statement should rather be that for every test ζ there are values of πζ as
well as openings oζ such that (a) (πζ , oζ) constitutes a valid Merkle path; and (b) the PCP verifier
accepts (ζ, πζ). Note that this BatchNP statement is polynomially large.

Secondly, even though we ensured that the number of instances in the BatchNP statement is
polynomial, this polynomial, denoted by N , is at least as large as the runtime of the underlying
P computation. Note that even though the proof length scales only poly-logarithmically with N ,
the verifier runtime scales at least linearly with N since the verifier needs to at least read the
entire statement. To solve this, we observe that in our case, the BatchNP statement actually has
a succinct description. Thus, if there are succinct, easy to verify, proofs for succinctly specified
BatchNP statements, we are back in business. We note that even if this is not the case, if the
verifier’s verdict function can be computed by a circuit that has depth only polylog(N) (but
size poly(N)), then again we are in business since we can use the SNARG for bounded depth
computations (from sub-exponential LWE) [JKKZ20], and delegate this computation back to the
prover.

Third and finally, note that the BatchNP proof system must have adaptive soundness since
the prover gets to choose the BatchNP statement, in particular the Merkle root, after he recieves
the CRS/first message of the BatchNP proof. Since the Merkle root is small in size, this can be
easily handled by complexity leveraging. We therefore only require non-adaptive soundness with
appropriate security. We elaborate on this in Section 5.

2 Preliminaries

2.1 Straight-Line Reductions

In what follows we define the notion of straight-line soundness, and more generally straight-line
reductions.

Definition 2.1. (Straight-Line Reductions) We say that an interactive argument (P,V) for a
language L = {Ln}n∈N is t = t(n)-straight-line sound if there is a PPT black box reduction R
and a non-interactive t-decisional complexity assumption [GK16],6 such that R, given oracle
access to any cheating prover P∗ that breaks soundness with probability 1/poly(t), interacts

5For example, the tests in the PCP of [BFLS91] (and in the PCP of [KRR14]) are either low-degree tests or
consistency tests.

6We focus on decisional assumptions for simplicity, and because our reductions are from decisional assumptions.

7

with P∗ once (without rewinding) by sending P∗ a single message for each round, and using
the transcript obtained, breaks the assumption.

More generally, we say that a primitive is t-straight-line secure (or t-secure via a straight-
line reduction, or its security proof is straight line) if there is a PPT black box reduction R
and a non-interactive t-decisional complexity assumption7 such that R, given oracle access
to any adversary A that breaks the security of the primitive, interacts with A once (without
rewinding), and using the transcript obtained, breaks the assumption.

Definition 2.2 ([GK16]). An assumption is a t-decisional complexity assumption if it is asso-
ciated with two probabilistic polynomial-time distributions (D0,D1), such that for any poly(t)-
size algorithm A there exists a negligible function µ such that for any n ∈ N,∣∣∣∣ Pr

x←D0(1n)
[A(x) = 1]− Pr

x←D1(1n)
[A(x) = 1]

∣∣∣∣ ≤ µ(t(n)).

2.2 Probabilistically Checkable Proofs

We recall the definition of a probabilistically checkable proof (PCP) and that of a non-signaling
PCP. Intuitively, a PCP is a function Π that takes as input a proof (for example, a witness w
for an NP statement x), and converts it into another proof π = Π(x,w) which can be verified by
a randomized verifier that reads only a few of its bits. For simplicity, in the rest of this paper
we focus on deterministic laguages. We choose to do so since the landscape when considering
non-deterministic languages is much more complicated, and we value simplicity and clarity over
obtaining the most general results possible. That said, we refer the reader to Remark 2.6 about
the non-deterministic setting.

In what follows we define the notion of PCP for deterministic languages (though traditionally
PCPs are mainly considered for non-deterministic languages). For a function t(·), we consider the
language LU (t) = {LU (t(n))}n∈N such that for any (deterministic) Turing machine M and input
x, (M,x) ∈ LU (t) if and only if M on input (M,x) outputs 1 within t(|(M,x)|) time steps.

In both the following definition and many other places in this paper, we will use another
parameter κ, which will denote the security parameter used in various primitives. We will consider
only the domain where κ is relatively small compared to t, i.e. poly(κ) ≤ t ≤ exp(κ). Eventually,
we will take κ = polylog(t).

Definition 2.3 (PCP). A probabilisitically checkable proof (PCP) for LU (t) = {LU (t(n))}n∈N is
a triple (Πt,QPCP,t,VPCP,t) with the following syntax:

• Πt is a deterministic algorithm that takes as input an instance (M,x) ∈ LU (t), runs in
time polynomial in t, and outputs a proof string π. We denote by L = |π|.

• QPCP,t is a probabilistic query generation algorithm which takes as input a security
parameter 1κ, runs time poly(κ, log t), and generates a set of queries q1, . . . , q` ∈ [L].

7It will be clear what the t-decisional complexity assumption is in each context.

8

• VPCP,t is a deterministic polynomial-time verification algorithm that takes as input
an instance (M,x), a set of queries (q1, . . . , q`) and a corresponding set of answers
(a1, . . . , a`), and outputs 0 (reject) or 1 (accept).

We require the following properties to hold:

1. (Perfect) Completeness: For every (M,x) ∈ LU (t),

Pr[VPCP,t((M,x), (q1, . . . , q`), (πq1 , . . . , πq`)) = 1] = 1 ,

where π = Πt(M,x), and where the probability is over (q1, . . . , q`)← QPCP,t(1
κ).

2. Soundness: For every (M,x) /∈ LU (t), and for every (possibly malicious) string π∗ ∈
{0, 1}∗,

Pr[VPCP,t((M,x), (q1, . . . , q`), (π
∗
q1 , . . . , π

∗
q`

)) = 1] ≤ 2−κ ,

where the probability is over (q1, . . . , q`)← QPCP,t(1
κ).

Remark 2.4. We also consider a stronger notion of PCP soundness known as non-signaling
soundness, and more specifically computational non-signaling soundness. The precise definition
is not needed in order to understand our result, since we use it in a black box way. We
note that each such PCP is associated with a locality parameter `, which for simplicity can be
thought of as the query complexity. We refer the reader to [KRR14, BHK17] for the precise
definition.

Theorem 2.5 ([KRR14, BHK17]). For any poly(n) ≤ t(n) ≤ exp(n), there exists a computa-
tional non-signaling PCP for LU (t) with locality ` = κ · polylog(t), where the PCP proof has
size L(n) = poly(t(n)) and can be generated in time poly(t(n)). Furthermore, on input (M,x),
(q1, . . . , q`), and (a1, . . . , a`), VPCP,t runs in time |(M,x)| · poly(`).

Moreover, there exists a poly-time Turing machine U such that each query set Q =

(q1, . . . , q`) ∈ QPCP,t(1
κ) can be partitioned into θ = κ · polylog(t) tests ζ1 ∪ . . . ∪ ζθ, where

for every j ∈ [θ] there exists a set of indices Ij ⊆ [`] such that ζj = Q|Ij , and the PCP verifier
accepts a set of answers A = (a1, . . . , a`) if and only if U((M,x), Q|Ij , A|Ij) = 1 for every
j ∈ [θ]. There are a total of poly(t) many possible tests ζ.

Remark 2.6. We note that computational non-signaling PCPs also exist for some NP lan-
guages. In particular [BHK17] constructed a computational non-signaling PCP for the class
BatchNP. More specifically, for any NP language L they constructed a computational non-
signaling PCP for L⊗N with locality m · polylog(N), where m is the length of a single witness
for instances in L, and N is the number of NP instances in the batch. In addition, [BKK+18]
constructed for each language in NTISP(t, s), the class of problems that can be solved non-
deterministically in time t and space s, a 2s-computational non-signaling PCP with locality
s ·polylog(t). A 2s-computational non-signaling PCP is a weaker notion than a computational
non-signaling PCP. More generally, for every S1 < S2, an S1-computational non-signaling
PCP is also an S2-computational non-signaling PCP. Computational non-signaling is short-
hand for t-computational non-signaling, where poly(t) is the runtime of the honest prover.

9

2.3 Hash Function Families with Local Opening

In what follows, we assume L ≤ 2κ.

Definition 2.7 (Hash Family). A hash family is a pair of PPT algorithms (Gen,Hash), where

• Gen(1κ, L) takes as input a security parameter κ in unary and an input length L, and
outputs a hash key hk ∈ {0, 1}`hk.

• Hash(hk, x) takes as input a hash key hk ∈ {0, 1}`hk and an input x ∈ {0, 1}L and outputs
an element rt ∈ {0, 1}`hash.

Here, `hk = `hk(κ) = poly(κ) and `hash = `hash(κ) = poly(κ) are parameters associated with the
hash family.

Definition 2.8 (Hash Family with Local Opening). A hash family with local opening is a hash
family (Gen,Hash), along with two additional PPT algorithms (Open,Verify) with the following
syntax:

• Open(hk, x, j) takes as input a hash key hk ∈ {0, 1}`hk, x ∈ {0, 1}L, and an index j ∈ [L]

and outputs an opening o ∈ {0, 1}`o, where `o = `o(κ) = poly(κ).

• Verify(hk, rt, j, u, o) takes as input a hash key hk ∈ {0, 1}`hk, a hash value rt ∈ {0, 1}`hash,
an index j ∈ [L], a value u ∈ {0, 1}, and an opening o ∈ {0, 1}`o, and outputs 1 or 0

indicating accept or reject, respectively.

These algorithms should satisfy the property:

• Correctness of Opening: For every x ∈ {0, 1}L and j ∈ [L],

Pr[Verify(hk,Hash(hk, x), j, xj ,Open(hk, x, j)) = 1] = 1,

where the probability is over hk← Gen(1κ, L).

In our construction, we will require hash functions with local openings that have an additional
special property, that for any index i ∈ [L] one can generate a hash key such that a hash value
is statistically binding at position i: namely, all the preimages of a hashed value have the same
value at position i. These hash functions are called somewhere statistically binding and were
first defined in [HW15]. We will also require that the statistically bound value at position i can be
recovered via an invert function that is efficient with the aid of a trapdoor.8

Definition 2.9 (SSB Hash Family). A S = S(κ)-hiding somewhere statistically binding (SSB)
hash family is a hash family with local opening (Gen,Hash,Open,Verify), where

• Gen(1κ, L, i) takes as additional input an index i ∈ [L] and outputs a hash key hk ∈
{0, 1}`hk as well as a trapdoor td ∈ {0, 1}`td,

8This additional function Invert was not part of the definition of a SSB hash family originally given in [HW15],
but their construction satisfies this property.

10

along with an additional PPT algorithm Invert:

• Invert(td, rt) takes as input a trapdoor td ∈ {0, 1}`td and a hash value rt ∈ {0, 1}`hash, and
outputs a value u ∈ {0, 1,⊥}.

These algorithms should satisfy the following properties:

• S-Index Hiding: For any poly(S(κ))-size adversary A = (A1,A2) there exists a negligi-
ble function µ such that for any L ≤ 2κ,

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣

i1, i2, state← A1(1
κ)

b
$← {0, 1}

(hk, td)← Gen(1κ, L, ib)

b′ ← A2(hk, state)

 =
1

2
+ µ(S(κ)).

• Correctness of Inversion: For any κ ∈ N, L ≤ 2κ, and any i ∈ [L] and x ∈ {0, 1}L,

Pr[Invert(td,Hash(hk, x)) = xi] = 1,

where the probability is over (hk, td)← Gen(1κ, L, i).

• Somewhere Statistically Binding:9 For any κ ∈ N, L ≤ 2κ, i ∈ [L] and rt ∈ {0, 1}`hash,

Pr[∃ u 6= Invert(td, rt), o s.t. Verify(hk, rt, i, u, o) = 1] = 0,

where the probability is over (hk, td)← Gen(1κ, L, i).

Hubáček and Wichs constructed SSB hash functions assuming the existence of a leveled ho-
momorphic encryption scheme, and their construction satisfies our stronger variant with trapdoor
opening as well.

Theorem 2.10 ([HW15]). Assuming the sub-exponential hardness of the learning with errors
(LWE) problem, there exists a 2κ

ε
-hiding SSB hash family for some ε > 0. The 2κ

ε
-hiding is

via a straight-line reduction (see Definition 2.1).

2.4 Converting a PCP into a Succinct Interactive Argument

In this section, we review two known methods for converting a PCP into a succinct argument.
The first is Kilian’s protocol [Kil92], which results in a 4-message, publicly verifiable succinct
argument. The second is the BMW protocol [BMW99], which results in a 2-message, privately
verifiable succinct argument.

Kilian’s Protocol. Kilian’s transformation uses a hash family with local opening and a PCP

scheme to construct a 4-round succinct argument, given in Figure 1.
9We remark that our definition of somewhere statistically binding is different and slightly stronger than the

original notion given in [HW15], which states that for any κ ∈ N, L ∈ N, i ∈ [L] and rt ∈ {0, 1}`hash , Pr[∃ u 6=
u′, o, o′ s.t. Verify(hk, rt, i, u, o) = Verify(hk, rt, i, u′, o′) = 1] = 0, where the probability is over hk ← Gen(1κ, L, i).
The difference is that in our definition, there are certain “invalid” hash values (for which Invert outputs ⊥) which
should have no valid openings, but in theirs, they simply require that there are at most one valid opening for every
hash value.

11

Kilian’s Protocol

Fix any hash family with local opening H = (Gen,Hash,Open,Verify) and a PCP scheme
(Πt,QPCP,t,VPCP,t) for the language LU (t) = {LU (t(n))}n∈N. Denote the length of a PCP proof by
L = L(n). On input (M,x) ∈ LU (t) and security parameter 1κ, the 4-message protocol (PKilian,VKilian)
proceeds as follows.

• First verifier’s message: VKilian samples hk← Gen(1κ, L), and sends hk to the prover.

• First prover’s meessage: PKilian computes the PCP proof π = Πt(M,x), and its hash value
rt = Hash(hk, π). It sends rt to the verifier.

• Second verifier’s message: VKilian computes a set of queries (q1, . . . , q`)← QPCP,t(1
κ), and sends

(q1, . . . , q`) to the prover.

• Second prover’s message: PKilian computes for every i ∈ [`] the opening oi = Open(hk, π, qi),
and sends {πqi , oi}i∈[`] to the verifier.

• Verdict: VKilian accepts if and only if VPCP,t((M,x), (q1, . . . , q`), (πq1 , . . . , πq`)) = 1 and for every
i ∈ [`], Verify(hk, rt, qi, πqi , oi) = 1.

Figure 1: Kilian’s Protocol (PKilian,VKilian) for LU (t)

The BMW Heuristic. The BMW heuristic allows one to query a PCP proof using a private
information retrieval (PIR) scheme, which we define below.

Definition 2.11 ([CGKS95, KO97]). A 1-server private information retrieval (PIR) scheme is a
tuple of PPT algorithms (Query,Answer,Reconstruct) with the following syntax:

• Query(1κ, L, q) takes as input a security parameter κ in unary, an input size L, and an
index q ∈ [L], and outputs a query q̂ along with a trapdoor td.

• Answer(q̂, x) takes as input a query q̂ and a database x ∈ {0, 1}L, and outputs an answer
â.

• Reconstruct(td, â) takes as input a trapdoor td and an answer â, and outputs a plaintext
a.

These algorithms should satisfy the following properties:

• Correctness: For every κ, L ∈ N and q ∈ [L],

Pr[Reconstruct(td,Answer(q̂, x)) = xq] = 1,

where the probability is over (q̂, td)← Query(1κ, q, L).

• S-Privacy: For any poly(S(κ))-size adversary A = (A1,A2) there exists a negligible

12

function µ such that for every κ, L ∈ N,

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣

q0, q1, state← A1(1
κ, L)

b
$← {0, 1}

(q̂, td)← Query(1κ, L, qb)

b′ ← A2(q̂, state)

 =
1

2
+ µ(S(κ)).

Kushilevitz and Ostrovsky [KO97] constructed the first sublinear-communication single-server
PIR scheme which was followed up by several other works [GR05, Lip05, BV11, DGI+19].

Theorem 2.12 ([BV11, DGI+19]). For any function S : N → N, there exists a S-private
1-server PIR scheme with polylog(L) query complexity for length-L databases, under the S-
hardness of the LWE, Quadratic Residuosity, or DDH assumptions. Moreover, these schemes
are S-straight-line secure (see Defintion 2.1).

Fix any 1-server PIR scheme (Query,Answer,Reconstruct) and any PCP scheme
(Πt,QPCP,t,VPCP,t) for LU (t). The BMW heuristic is a 2-message succinct argument for
LU (t), defined in Figure 2.

The BMW Protocol

Let (Πt, QPCP,t,VPCP,t) be a PCP for LU (t), and let κ be such that poly(κ) ≤ t ≤ exp(κ). On input
(M,x), the 2-message protocol (PBMW,VBMW) proceeds as follows:

• Verifier: VBMW computes (q1, . . . , q`) ← QPCP,t(1
κ). For each i ∈ [`], it generates (q̂i, tdi) ←

Query(1κ, L, qi), where L is the length of the PCP. It sends {q̂i}i∈` to the prover.

• Prover: PBMW computes the PCP string π = Πt(M,x), and for each i ∈ [`], it computes âi =

Answer(q̂i, π). It sends {âi}i∈[`] to the verifier.

• Verdict: VBMW computes ai = Reconstruct(tdi, âi) for each i ∈ [`], and accepts if and only if
VPCP,t((M,x), (q1, . . . , q`), (a1, . . . , a`)) = 1.

Figure 2: The BMW Protocol (PBMW, VBMW) for LU (t)

Theorem 2.13 ([KRR14, BHK17]). The protocol (PBMW,VBMW) has the following guarantees
for poly(n) ≤ t = t(n) ≤ exp(n):

• Completeness: For every (M,x) ∈ LU (t),

Pr[(PBMW,VBMW)(M,x) = 1] = 1,

where the probability is over the random coin tosses of VBMW.

13

• Straight-Line Soundness: Suppose the underlying PCP (Πt,QPCP,t,VPCP,t) has com-
putational non-signaling soundness (see Remark 2.4), and assume that 2−κ = negl(t).
Let t′ be such that t′(κ) = t. Then, assuming the PIR scheme has t′-privacy, for every
poly(t)-size cheating prover P∗, there exists a negligible function µ such that for every
(M,x) /∈ LU (t),

Pr[(P∗,VBMW)(M,x) = 1] ≤ µ(t).

Moreover, the soundness is t′-straight-line (Definition 2.1).10

Remark 2.14. More generally, as we mentioned in Remark 2.6, [BHK17] constructed a
computational non-signaling PCP for the class BatchNP with locality ` = m · polylog(N),
where m is the length of a single witness and N is the number of instances in the batch. As
a corollary they concluded that the BMW heuristic can be instantiated securely for this class,
where the communication complexity grows with the locality `.11 In addition, [BKK+18]
constructed a 2s-computational non-signaling PCP for the class NTISP(t, s) with locality s.
As a corollary, they concluded that the BMW heuristic can be instantiated securely for this
class if the underlying PIR scheme is 2s-private.12 We note that both proofs are t-straight-line
sound, where t is the running time of the honest prover (given the witnesses) and where the
claim is that a poly(t)-size cheating prover cannot break soundness with probability better
than negl(t).

3 Somewhere Statistically Sound Interactive Arguments

Definition 3.1. An interactive argument (P,V) for a language L = {Ln}n∈N is t = t(n)-
statistically sound if for every (unbounded) cheating prover P∗ there exists a negligible function
µ such that for every x 6∈ L,

Pr[(P∗,V)(x) = 1] ≤ µ(t).

Definition 3.2. An interactive argument (P,V) for a language L = {Ln}n∈N is t = t(n)-
somewhere statistically sound (SSS) if for every first verifier message β1, there exists a second
verifier message T (β1) such that:

• Somewhere Statistically Sound: For every poly(t)-size (cheating) prover P∗, condi-
tioned on the first three messages being (β1,P∗(β1), T (β1)), the remaining protocol is
t-statistically sound with overwhelming probability 1− negl(t).

Moreover, this condition holds in a straight-line manner (Definition 2.1); i.e., there is
a black box reduction R and a t-decisional complexity assumption such that R, given
oracle access to a poly(t)-size cheating prover P∗ that finds P∗(β1) for which the protocol
beginning with (β1,P∗(β1), T (β1) is not t-statistically sound, sends this prover a single
query β1, and uses the response P∗(β1) to break the assumption.

10Note that the t′-privacy of the PIR scheme is a t′-decisional assumption. Moreover, if we use one of the PIR schemes
from Theorem 2.12 then it further reduces (via a striaght-line reduction) to a standard t′-decisional assumption, such
as t′-hardness of LWE, QR, or DDH.

11We mention that to obtain adaptive soundness they need to rely on a PIR scheme that is 2m-private. This is in
contrast to LU for which adaptive soundness can be obtained assuming t′-privacy of the PIR scheme.

12They also obtained adaptive soundness under this assumption.

14

• Efficient Sampleability: The distribution (β1, T (β1)), for a random β1, is efficiently
sampleable.

• Computational Indistinguishability: For any poly(t)-size distinguisher D,∣∣∣∣Pr
β1

[D(β1, T (β1)) = 1]− Pr
β1,β2

[D(β1, β2) = 1]

∣∣∣∣ ≤ negl(t).

We remark that this is a strong definition: our cheating prover proceeds in two stages, a stage-1
P∗ which is computationally bounded and produces the second message; and a stage-2 P∗∗ who
produces the rest of the transcript, and has no computational limitations. How could one possibly
use a cheating prover (P∗,P∗∗) to break a computational assumption when P∗∗ is unbounded?
While this seems mysterious at first sight, we remark that similar situations arise in other places,
e.g., in the proof of the [KRR14] protocol. Indeed, we will use similar ideas in our reduction.

Theorem 3.3. Any t-SSS interactive argument (P,V) is t-straight-line sound.

Proof. To prove straight-line soundness, we will define a straight-line reduction from the some-
where statistically sound and computational indistinguishability assumptions to the t-soundness of
(P,V). Then, combining with the fact that there is a straight-line reduction from some t-decisional
complexity assumption to the somewhere statistically sound property (and using the fact that
the computational indistinguishability property is a t-decisional complexity assumption since pairs
(β1, T (β1)) are efficiently sampleable), we obtain that there is a straight-line reduction from the
base assumptions to the t-soundness of (P,V).

Suppose that there is a poly(t)-size cheating prover P∗ and x 6∈ L such that Pr[(P∗,V)(x) =

1] = δ(t), where δ is a non-negligible function. Now, given (β1, β2), in which either β2 = T (β1)

or β2 is random, reduction R simulates an interaction of V with P∗ using the first two verifier
messages β1 and β2. If the resulting transcript is accepting, R outputs 1. Otherwise, it outputs 0.

Note that
Pr
β1,β2

[(P∗,V)(x) = 1] = δ(t),

so the distinguishing advantage of the reduction is

δ(t)− Pr
β1

[(P∗,V)(x) = 1 | β2 = T (β1)],

which under the somewhere statistically sound assumption is δ(t)−negl(t), which is non-negligible.
This means that the somewhere statistically sound and computationally indistinguishability prop-
erties cannot simultaneously hold.

4 Kilian’s Protocol is Somewhere Statistically Sound

In this section, we show that Kilian’s protocol, when instantiated with a computational non-
signaling PCP and a specific hash family we call `-SSB, is a SSS interactive argument.

15

4.1 The BMW Heuristic with SSB Hash Families

The key idea in our instantiation of Kilian’s protocol is that the first two messages in Kilian’s
protocol can be viewed as a run of the BMW protocol. Specifically, the hash function we use in
Kilian’s protocol is several SSB hash functions, each of which acts as a PIR scheme, as follows:

• Query(1κ, L, q) calls (hkSSB, tdSSB) ← GenSSB(1κ, L, q) and outputs (q̂, td), where q̂ = hkSSB
and td = tdSSB.

• Answer(q̂, π) takes as input q̂ = hkSSB and π ∈ {0, 1}L and produces â = rt =

HashSSB(hkSSB, π).

• Reconstruct(td, â) takes as input td = tdSSB and â = rt and outputs InvertSSB(tdSSB, rt).

Claim 4.1. (GenSSB,HashSSB, InvertSSB) is an S-private PIR scheme if
(GenSSB,HashSSB,OpenSSB,VerifySSB, InvertSSB) is an S-hiding SSB hash family.

Proof. The correctness condition of the PIR scheme follows from the correctness of InvertSSB, and
the PIR scheme has S-privacy if the SSB hash family is S-hiding.

Note that the first (verifier) message of Kilian’s protocol is the choice of a single hash function,
while the first message of the BMW protocol consists of many PIR queries (or in our case, SSB
hash keys) corresponding to the many locations that the PCP verifier accesses the PCP string. We
will reconcile the two by defining a new hash family, in which each hash function consists of `
parallel SSB hash functions, to use in Kilian’s protocol. We call this hash family a `-somewhere
statistically binding hash family (`-SSB), and remark that a straightforward repetition of an SSB
hash family gives us `-SSB. For completeness, we write down the construction in Figure 3 and
mention some of its properties.

Lemma 4.2. The `-SSB hash family H`-SSB defined in Figure 3 satisfies the following prop-
erties:

• S-Index Hiding: Assuming ` = O(S(κ)), for any poly(S(κ))-size adversary A = (A1,A2)

there exists a negligible µ such that for any κ ∈ N,

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣

i01, . . . , i
0
` , i

1
1, . . . , i

1
` , state← A1(1

κ)

b
$← {0, 1}

(hk`-SSB, td`-SSB)← Gen`-SSB(1κ, L, {ibj}j∈[`])
b′ ← A2(hk`-SSB, state)

 =
1

2
+ µ(S(κ)).

• Correctness of Inversion: For any κ ∈ N, L ≤ 2κ, i1, . . . , i` ∈ [L] and x ∈ {0, 1}L,

Pr[Invert`-SSB(td`-SSB,Hash(hk`-SSB, x)) = (xi1 , . . . , xi`)] = 1.

where the probability is over (hk`-SSB, td`-SSB)← Gen`-SSB(1κ, L, {ibj}j∈[`]).

16

An `-SSB Hash Family

Let HSSB = (GenSSB,HashSSB,OpenSSB,VerifySSB, InvertSSB) be an S-hiding SSB hash family. The `-SSB
hash family

H`-SSB = (Gen`-SSB,Hash`-SSB,Open`-SSB,Verify`-SSB, Invert`-SSB),

is defined as follows:

• Gen`-SSB(1κ, L, (i1, . . . , i`)) samples for every j ∈ [`] a pair (hkSSB,j , tdSSB,j)← GenSSB(1κ, L, ij). It
outputs hk`-SSB = (hkSSB,1, . . . , hkSSB,`) and td`-SSB = (tdSSB,1, . . . , tdSSB,`).

• Hash`-SSB(hk`-SSB, π) takes as input a hash key hk`-SSB = (hkSSB,1, . . . , hkSSB,`) and an input x ∈
{0, 1}L and outputs rt = (rt1, . . . , rt`), where rtj = HashSSB(hkSSB,j , x) for every j ∈ [`].

• Open`-SSB(hk`-SSB, x, k) takes as input a hash key hk`-SSB = (hkSSB,1, . . . , hkSSB,`), x ∈ {0, 1}L, and
an index k ∈ [L], and outputs the opening o = (o1, . . . , o`), where oj ← OpenSSB(hkSSB,j , x, k).

• Verify`-SSB(hk`-SSB, rt, k, u, o) takes as input a hash key hk`-SSB = (hkSSB,1, . . . , hkSSB,`), rt =

(rt1, . . . , rt`), k ∈ [L], u ∈ {0, 1}, and an opening o = (o1, . . . , o`), and outputs 1 if and only
if VerifySSB(hkSSB,j , rtj , k, u, oj) = 1 ∀j ∈ [`].

• Invert`-SSB(td`-SSB, rt) takes as input td`-SSB = (tdSSB,1, . . . , tdSSB,`) and rt = (rt1, . . . , rt`) and
outputs the ` values (InvertSSB(tdSSB,1, rt1), . . . , InvertSSB(tdSSB,`, rt`)).

Figure 3: The `-SSB Hash Family (Gen`-SSB,Hash`-SSB,Open`-SSB,Verify`-SSB, Invert`-SSB)

• `-Somewhere Statistically Binding: For any κ ∈ N, L ≤ 2κ, i1, . . . , i` ∈ [L], and
rt ∈ {0, 1}`·`hash,

Pr[∃ (u1, . . . , u`) 6= Invert`-SSB(td`-SSB, rt), (o1, . . . , o`) s.t.

Verify`-SSB(hk`-SSB, rt, ij , uj , oj) = 1 ∀j ∈ [`]] = 0.

where the probability is over (hk`-SSB, td`-SSB)← Gen`-SSB(1κ, L, {ij}j∈[`]).

Note that if we instantiate the Kilian protocol with an `-SSB hash family and a PCP with
computational non-signaling soundness, then by Theorem 2.13 and Claim 4.1, the statistically
committed answers will be rejecting with high probability. This is summarized in the following
corollary.

Corollary 4.3 (Corollary of Theorem 2.13). For poly(n) ≤ t = t(n) ≤ exp(n), let
(Πt,QnsPCP,t,VnsPCP,t) be a PCP for LU (t) with computational non-signaling soundness, and
let H`-SSB be the `-SSB hash family given in Figure 3, where ` is the size of a PCP query
generated by QnsPCP,t(1

κ). Assume that κ satisfies 2−κ = negl(t) and that the underlying SSB

hash family instantiated with security parameter κ is t′-hiding, where t′ is such that t′(κ) = t.

17

Then for any poly(t)-size adversary A and for any (M,x) 6∈ LU (t),

Pr

VnsPCP,t((M,x), Q, Invert`-SSB(td`-SSB, rt)) = 1

∣∣∣∣∣∣∣
Q← QnsPCP,t(1

κ, L)

(hk`-SSB, td`-SSB)← Gen`-SSB(1κ, L,Q)

rt← A((M,x, t), hk`-SSB)

 = negl(t).

(1)

Moreover, this is proven via a straight-line reduction (Definition 2.1).13

4.2 Kilian with No-Signaling PCP and `-SSB Hashing

We instantiate Kilian’s protocol with two ingredients: a computational non-signaling PCP

(Πt,QnsPCP,t,VnsPCP,t) for LU (t) as given in Theorem 2.5, and the `-SSB hash family given in
Figure 3. The resulting protocol is described in Figure 4.

Kilian’s protocol instantiated with a computational non-signaling PCP and an `-SSB hash family

Let ε ∈ (0, 1) be a small constant, and let κ = κ(n) = (log t(n))2/ε. Let (Πt,QnsPCP,t,VnsPCP,t) be a com-
putational non-signaling PCP for LU (t), and let (Gen`-SSB,Hash`-SSB,Open`-SSB,Verify`-SSB, Invert`-SSB)

be a `-SSB hash family. On input (M,x), the 4-message protocol (PnsKilian,VnsKilian) proceeds as follows.

• First verifier’s message: VnsKilian samples Q ← QnsPCP,t(1
κ) and (hk`-SSB, td`-SSB) ←

Gen`-SSB(1κ, L,Q), and sends hk`-SSB to the prover.

• First prover’s meessage: PnsKilian computes the PCP proof π = Πt(M,x) and its hash value
rt = Hash`-SSB(hk`-SSB, π). It sends rt to the verifier.

• Second verifier’s message: VnsKilian computes a set of queries (q1, . . . , q`) ← QnsPCP,t(1
κ), and

sends (q1, . . . , q`) to the prover.

• Second prover’s message: PnsKilian computes for every i ∈ [`] the opening oi =

Open`-SSB(hk`-SSB, π, qi), and sends {πqi , oi}i∈[`] to the verifier.

• Verdict: VnsKilian accepts if and only if VnsPCP,t((M,x), (q1, . . . , q`), (πq1 , . . . , πq`)) = 1 and for every
i ∈ [`], Verify`-SSB(hk`-SSB, rt, qi, πqi , oi) = 1.

Figure 4: The Protocol (PnsKilian,VnsKilian)(M,x) for LU (t)

With these ingredients, the resulting Kilian’s protocol is an SSS argument, as we show below.

Lemma 4.4. Let poly(n) ≤ t = t(n) ≤ exp(n). Assuming the underlying SSB hash family
is 2κ

ε
-hiding, (PnsKilian,VnsKilian) is a t-SSS interactive argument. Moreover, the somewhere

statistical soundness and computational indistinguishability properties (Definition 3.2) are
t-straight-line secure, i.e. there is a black box reduction from the 2κ

ε
-hiding of the SSB hash

family to the two properties.
13Note that the S-Index-Hiding property of the SSB is a non-interactive S-decisional assumption.

18

Proof. For (hk`-SSB, td`-SSB) ← Gen`-SSB(1κ, L,Q), define T (hk`-SSB) = Q. We will show that
(PnsKilian,VnsKilian) satisfies the properties in Definition 3.2. We will use the fact that 2κ

ε
=

2((log t)
2/ε)ε = tlog t = ω(t). In particular, the `-SSB hash family is 2κ

ε
-index-hiding by Lemma 4.2

(using that ` = |Q| = κ · polylog(t) = polylog(t) = o(2κ
ε
) from Definition 2.3), which means that it

is index hiding against poly(t(n))-size adversaries (with probability negl(t(n))).

• Somewhere Statistically Sound: The somewhere statistically sound property of Defini-
tion 3.2 is equivalent to the condition that for every poly(t)-size P∗ = (P∗1 ,P∗2),

Pr

 VnsPCP,t((M,x), Q, (a1, . . . , a`)) = 1

∧ Verify`-SSB(hk`-SSB, rt, qj , aj , oj) = 1 ∀j ∈ [`]

∣∣∣∣∣∣∣∣∣∣
Q← QnsPCP,t(1

κ)

(hk`-SSB, td`-SSB)← Gen`-SSB(1κ, L,Q)

(rt, state)← P∗1 (hk`-SSB)

{aj , oj}j∈[`] ← P∗2 (Q, state)



≤ Pr

VnsPCP,t((M,x), Q, Invert`-SSB(td`-SSB, rt)) = 1

∣∣∣∣∣∣∣
Q← QnsPCP,t(1

κ)

(hk`-SSB, td`-SSB)← Gen`-SSB(1κ, L,Q)

rt, state← P∗1 (hk`-SSB)


= negl(t),

where the last equality follows from Corollary 4.3 and the fact that the `-SSB hash family is
2κ

ε
-hiding (which is t(n)-index hiding, as argued above). Furthermore, the reduction from

the 2κ
ε
-hiding of the `-SSB hash family to the somewhere statistical soundness is black box,

i.e. the proof is straight-line.

• Efficient Sampability: A pair (β1, T (β1)) can be sampled in the following manner: first
sample Q← QnsPCP,t(1

κ), and then sample (hk`-SSB, td`-SSB)← Gen`-SSB(1κ, L,Q). Set β1 =

hk`-SSB and T (β1) = Q. This can be done in poly(κ, log t) + poly(κ, logL, `) = polylog(t) ≤
poly(n) time.

• Computational Indistinguishability: In the formatted case, the pair (β1, T (β1)) is a pair
(hk`-SSB, Q) where Q ← QnsPCP,t(1

κ) and (hk`-SSB, td`-SSB) ← Gen`-SSB(1κ, L,Q). Mean-
while, in the random case, the pair (β1, β2) is a pair (hk′`-SSB, Q) where Q,Q′ ← QnsPCP,t(1

κ)

and (hk′`-SSB, td
′
`-SSB) ← Gen`-SSB(1κ, L,Q′). The indistinguishability of these two pairs for

poly(t)-size distinguishers (and with probability non-negligible in t) follows from the t(n)-
index hiding property of the `-SSB hash family via a black box reduction: The reduction picks
Q ← QnsPCP,t(1

κ) at random. Then, to distinguish between hk`-SSB ← Gen`-SSB(1κ, L,Q)

and hk`-SSB ← Gen`-SSB(1κ, L,Q′) for an independent Q′ ← QnsPCP,t(1
κ), it feeds the pair

(Q, hk`-SSB) to the distinguisher, and answers according to its response.

It follows from Theorem 3.3 that our instantiation of Kilian’s protocol is straight-line sound.

Theorem 4.5. For poly(n) ≤ t = t(n) ≤ exp(n), the protocol given in Figure 4 satisfies the
following properties:

19

• Correctness: For any (M,x) ∈ LU (t) and ε > 0,

Pr[(PnsKilian,VnsKilian)(M,x) = 1] = 1.

• Soundness: Assuming that the underlying SSB hash family is 2κ
ε
-hiding, the argument

(P∗nsKilian,V∗nsKilian) for LU (t) is t-straight-line sound. In particular, for any (M,x) 6∈ LU (t)

and any poly(t)-size cheating prover P∗nsKilian,

Pr[(P∗nsKilian,VnsKilian)(M,x) = 1] = negl(t).

• Runtimes: The prover runs in time poly(t). The verifier runs in time n · polylog(t).
The communication complexity is polylog(t).

Proof. Correctness is straightforward, and t-straight-line soundness follows immediately from The-
orem 3.3 and Lemma 4.4. The complexity claims follow from the following points:

• By Theorem 2.5, the size of the PCP proof is poly(t), so PnsKilian can compute the hash and
openings in time poly(t).

• The size of a single SSB hash and opening is poly(κ) = polylog(t), and the number of such SSB

hashes and openings is ` = κ · polylog(t) = polylog(t), for a total communication complexity
of polylog(t).

• The verifier can check that all the answers and openings are consistent with rt in time
polylog(t). He also runs VnsPCP,t, which takes time n · poly(`) = n · polylog(t), for a to-
tal verifier runtime of n · polylog(t).

Recall that the SSB hash family from Theorem 2.10 is sub-exponentially straight-line hiding
assuming the sub-exponential hardness of LWE. Using this particular SSB hash family in the `-SSB
hash family, we obtain the following corollary:

Corollary 4.6. Using the SSB hash family from Theorem 2.10, the argument (P∗nsKilian,V∗nsKilian)

for LU (t) is t-straight-line sound for some ε > 0 assuming the sub-exponential hardness of
LWE.

5 SNARG for P

In this section, we present the construction of a SNARG for P, assuming the existence of a SNARG
for BatchNP. Essentially, the honest prover in our SNARG first runs the BMW protocol on a
computationally no-signaling PCP with SSB hash functions to produce a short commitment rt to
the entire PCP. She then provides a short proof that all possible verifier tests have accepting
answers and openings. This final task is precisely a BatchNP statement: the claim that a given
verifier test has accepting answers and openings is an NP statement, as the answers and openings
serve as the witness; now the claim that all possible verifier tests have accepting answers and
openings is a BatchNP statement. We begin by defining BatchNP.

20

5.1 BatchNP

For an NP relation R with corresponding language L, define

R⊗N = {((x1, . . . , xN), (w1, . . . , wN)) : (xi, wi) ∈ R ∀i ∈ [N] ∧ |x1| = · · · = |xN |}

and
L⊗N = {(x1, . . . , xN) : xi ∈ L ∀i ∈ [N] ∧ |x1| = · · · = |xN |}.

The class BatchNP consists of languages L⊗N for L ∈ NP.
In our application, we will be interested in the case where N is much larger than m, the size of

a single instance xi. In order for the verifier to digest the BatchNP instance, we will require that
there is a succinct representation of the instance.

Definition 5.1. (Succinct Description of a Set) A set S ⊆ {0, 1}m of size N has a succinct
description if there exists a short string 〈S〉 ∈ {0, 1}poly(m,logN) and a uniform PPT Turing
machine B that on input 〈S〉 and i ∈ [N], outputs the i’th element of S.

SNARGs for BatchNP. Our SNARG for P relies on the existence of a SNARG for BatchNP,
which we define below. In our definition, we make the additional requirement that the verifier
is super-efficient, i.e., runs in time poly(m, logN), if the BatchNP statement can be succinctly
described using poly(m, logN) bits. This differs from the traditional notion of a SNARG for
BatchNP, which allows the verifier enough time to read the entire BatchNP instance (which is of
size N ·m), and only requires that the proof string sent over is very short.

We remark that this succinctness condition is not needed, and all we need is that the verifier’s
verdict function can be computed by a circuit of poly(m, logN) depth. In this case, the verifier’s
verdict function can be delegated by using the recent SNARG for bounded depth computations
from sub-exponential LWE [JKKZ21].

Definition 5.2. (SNARG for BatchNP) A SNARG for a language L ∈ BatchNP with corre-
sponding relation R is a tuple of PPT algorithms (SetupL,PL,VL) with the following syntax:

• SetupL(1λ, 1m, N) takes as input a security parameter λ and NP instance size m in unary,
as well as a batch size N (in binary), and outputs a common reference string crs.

• PL(crs, X,W) takes as input a crs ∈ {0, 1}poly(λ,m,logN), an instance X = (x1, . . . , xN) ∈
{0, 1}N×m, and a witness W = (w1, . . . , wN), and outputs a short proof σ ∈
{0, 1}poly(λ,m,logN).

• VL(crs, 〈X〉, σ) takes as input the crs ∈ {0, 1}poly(λ,m,logN), a short description
〈X〉 ∈ {0, 1}poly(λ,m,logN) of the instance X = (x1, . . . , xN) ∈ {0, 1}N×m, and σ ∈
{0, 1}poly(λ,m,logN), and outputs 1 or 0 indicating accept or reject.

These algorithms should satisfy the following properties:

• Correctness: If (X,W) ∈ R, then

Pr

[
VL(crs, 〈X〉, σ) = 1

∣∣∣∣∣crs← SetupL(1λ, 1m, N)

σ ← PL(crs, X,W)

]
= 1.

21

• S-Soundness: For all λ,m,N and all poly(S(λ,m,N))-size cheating prover P∗L, and for
any X 6∈ L,

Pr

[
VL(crs, 〈X〉, σ) = 1

∣∣∣∣∣crs← SetupL(1λ, 1m, N)

σ ← P∗L(crs)

]
= negl(S(λ,m,N)).

5.2 SNARG for P

In what follows, rather than constructing a SNARG only for languages in P, we construct a SNARG
for LU (t), for every poly(n) ≤ t ≤ exp(n). To this end, let (Πt,QnsPCP,t,VnsPCP,t) be the compu-
tational non-signaling PCP for LU (t) from Theorem 2.5. Let L be the size of the PCP and ` be
the locality. Let N = poly(t) be the number of possible tests ζ (see Theorem 2.5), and let τ be
the size of each test (where we pad tests that are not long enough), so that each test ζ can be
written as (ζ1, . . . , ζτ) with ζi ∈ [L]. Let UnsPCP,t be the Turing machine that checks each test, as
in Theorem 2.5.

Fix an `-SSB hash family

(Gen`-SSB,Hash`-SSB,Open`-SSB,Verify`-SSB, Invert`-SSB)

(see Construction 3).
Let R be the NP relation where (y, w) ∈ R if

1. y = (ζ, (M,x), hk`-SSB, rt) ∈ [L]τ × {0, 1}n × {0, 1}`·`hk × {0, 1}`·`hash ;

2. w = ((u1, . . . , uτ), (o1, . . . , oτ)) ∈ {0, 1}τ × {0, 1}τ ·`·`o ;

3. UnsPCP,t((M,x), ζ, (u1, . . . , uτ)) = 1; and

4. Verify`-SSB(hk`-SSB, rt, ζi, ui, o`-SSB,i) = 1 ∀i ∈ [τ].

Let L be the corresponding language. Notice that the size of an instance is m = τ · logL+ n+ ` ·
(`hk + `hash). When κ (and thus `, `hk, `hash) is polylog(t), then m = polylog(t) + n.

Define BatchL := L⊗N . Let B be a poly-time Turing machine that takes as input 〈Y 〉, which
is a succinct description of an element in BatchL, and an index j ∈ [N], and outputs the j’th NP

statement defined by 〈Y 〉. More specifically, 〈Y 〉 = ((M,x), hk`-SSB, rt), and B(〈Y 〉, j) = (ζj , 〈Y 〉),
where ζj is the j’th possible test (enumerating them in some order). We let Y denote the BatchLU
instance corresponding to 〈Y 〉.

Theorem 5.3. For poly(n) ≤ t = t(n) ≤ exp(n), the algorithms (SetupLU (t),PLU (t),VLU (t))
defined in Figure 5 satisfy the following properties:

• Correctness: For every (M,x) ∈ LU (t),

Pr

[
VLU (t)(crs, (M,x), σ) = 1

∣∣∣∣∣crs← SetupLU (t)(1
κ, 1λ)

σ ← PLU (t)(crs, (M,x))

]
= 1.

22

SNARG for LU (t)

Fix a SNARG (SetupBatchL,PBatchL,VBatchL) for BatchL, as in Definition 5.2. For ε > 0, define κ =

(log t)2/ε and let λ = polylog(t) be such that S(λ,m,N) ≥ 2`·`hash .

• SetupLU (t)(1
κ, 1λ) takes as input κ and λ in unary. It samples

Q = (q1, . . . , q`)← QnsPCP,t(1
κ), and (hk`-SSB, td`-SSB)← Gen`-SSB(1κ, L,Q) .

It also samples
crsBatchL ← SetupBatchL(1λ, 1m, N) ,

and outputs crs = (hk`-SSB, crsBatchL).

• PLU (t) takes as input the crs = (hk`-SSB, crsBatchL) and an instance (M,x). It computes

π ← Πt(M,x) and rt = Hash`-SSB(hk`-SSB, π) .

It then computes σBatchL ← PBatchL(crsBatchL, Y,W), where

Y = {(ζj , (M,x), hk`-SSB, rt)}j∈[N]

(i.e. 〈Y 〉 = ((M,x), hk`-SSB, rt)) and

W = {((πζj,1 , . . . , πζj,τ), (oζj,1 , . . . , oζj,τ))}j∈[N] ,

where oq = Open`-SSB(hk`-SSB, π, q). It outputs σ = (rt, σBatchL).

• VLU (t) takes as input crs = (hk`-SSB, crsBatchL), instance (M,x), and σ = (rt, σBatchL). It runs and
outputs the result of VBatchL(crs, 〈Y 〉, σBatchL), where 〈Y 〉 = ((M,x), hk`-SSB, rt).

Figure 5: SNARG (SetupLU (t),PLU (t),VLU (t))(M,x) for LU (t)

• Soundness: Assuming that there exists ε > 0 such that the underlying SSB hash
family is 2κ

ε
-hiding, and assuming the existence of λ = polylog(t) such that the BatchNP

SNARG is S-sound for S(λ,m,N) ≥ 2`·`hash, where ` = κ · polylog(t) is the size of the
queries produced by QnsPCP,t(1

κ) and `hash is the size of the output of the SSB hash family,
for any poly(t)-size P∗ and (M,x) 6∈ LU (t),

Pr

[
VLU (t)(crs, (M,x), σ)) = 1

∣∣∣∣∣crs← SetupLU (t)(1
κ, 1λ)

σ ← PLU (t)(crs, (M,x))

]
= negl(t).

• Runtimes: The prover runs in time poly(t). The verifier runs in time poly(n, log t),
and the communication complexity is poly(n, log t).

Proof of Theorem 5.3. Correctness is straightforward. For the complexity analysis, note that the
prover first hashes the PCP, which takes time poly(t), and then emulates the prover from the
BatchL SNARG, which definitionally runs in time poly(λ,m,N) = poly(t) (Definition 5.2). The

23

proof string σ satisfies |σ| = |rt| + |σBatchL| = poly(κ) + poly(λ,m, logN) = poly(n, log t). The
verifier simply emulates VBatchL, which runs in time poly(λ,m, logN) = poly(n, log t). We now
focus on proving soundness.

Suppose for the sake of contradiction that there is a poly(t)-size prover P∗ and (M,x) 6∈ LU (t)

for which there is non-negligible δ such that

Pr

[
VLU (t)(crs, (M,x), σ)) = 1

∣∣∣∣∣crs← SetupLU (t)(1
κ, 1λ)

σ ← P∗(crs, (M,x))

]
= δ(t).

This is equal to

δ(t) = Pr

[
VLU (t)(crs, (M,x), σ)) = 1

∧ VnsPCP,t((M,x), Q, Invert`-SSB(td`-SSB, rt)) = 1

∣∣∣∣∣ crs← SetupLU (t)(1
κ, 1λ)

σ = (rt, σBatchL)← P∗(crs, (M,x))

]

+ Pr

[
VLU (t)(crs, (M,x), σ)) = 1

∧ VnsPCP,t((M,x), Q, Invert`-SSB(td`-SSB, rt)) = 0

∣∣∣∣∣ crs← SetupLU (t)(1
κ, 1λ)

σ = (rt, σBatchL)← P∗(crs, (M,x))

]

≤ Pr

[
VnsPCP,t((M,x), Q, Invert`-SSB(td`-SSB, rt)) = 1

∣∣∣∣∣ crs← SetupLU (t)(1
κ, 1λ)

σ = (rt, σBatchL)← P∗(crs, (M,x))

]

+ Pr

VLU (t)(crs, (M,x), σ)) = 1

∣∣∣∣∣∣∣
crs← SetupLU (t)(1

κ, 1λ)

σ = (rt, σBatchL)← P∗(crs, (M,x)) s.t.

VnsPCP,t((M,x), Q, Invert`-SSB(td`-SSB, rt)) = 0

 .
By Corollary 4.3 and the fact that a 2κ

ε
= tlog t-hiding `-SSB hash family is t-hiding, the first term

above is negl(t). In the above and what follows, Q denotes the ` locations the `-SSB hash family
are binding on (used to generate hk`-SSB), and td`-SSB is the trapdoor generated alongside hk`-SSB.

Let δ′ = δ − negl. Then, the above is equivalent to:

δ′(t) ≤ Pr

VLU (t)(crs, (M,x), σ)) = 1

∣∣∣∣∣∣∣
crs← SetupLU (t)(1

κ, 1λ)

σ = (rt, σBatchL)← P∗(crs, (M,x)) s.t.

VnsPCP,t((M,x), Q, Invert`-SSB(td`-SSB, rt)) = 0



= Pr

VBatchL(crsBatchL, 〈Y 〉, σBatchL)) = 1

∣∣∣∣∣∣∣
crs = (hk`-SSB, crsBatchL)← SetupLU (t)(1

κ, 1λ)

σ = (rt, σBatchL)← P∗(crs, (M,x)) s.t.

Y 6∈ BatchL

 ,
where 〈Y 〉 denotes ((M,x), hk`-SSB, rt), and the equality follows from the facts that VLU (t) simply
runs VBatchL, and that VnsPCP,t((M,x), Q, Invert`-SSB(td`-SSB, rt)) = 0 implies that Y 6∈ BatchL,
since there is at least one test ζ ⊂ Q for which UnsPCP,t(ζ, Invert`-SSB(td`-SSB, rt)

∣∣
ζ
) = 0.

We will use P∗ to break the S-security of the BatchL SNARG as follows. By an averaging
argument, there is some hk∗`-SSB for which P∗(crs, (M,x)) outputs (rt, σBatchL) with Y 6∈ BatchL and
VBatchL(crsBatchL〈Y 〉, σBatchL) = 1 with probability ≥ δ′(t) conditioned on crs = (hk∗`-SSB, crsBatchL).
Furthermore, there is some rt∗ for which, with probability ≥ δ′(t)

2`·`hash
, this occurs and the rt output by

24

P∗ is equal to rt∗. In particular, Y ∗ 6∈ BatchL where Y ∗ is defined by 〈Y ∗〉 = ((M,x), hk∗`-SSB, rt
∗) 6∈

BatchL.

Pr

VBatchL(crsBatchL, 〈Y ∗〉, σBatchL)) = 1

∧ rt = rt∗

∣∣∣∣∣∣∣
crsBatchL ← SetupBatchL(1λ, 1m, N)

crs := (hk∗`-SSB, crsBatchL)

σ = (rt, σBatchL)← P∗(crs, (M,x))


≥ δ′(t)

2`·`hash
≥ δ′′(S(λ,m,N)),

where δ′′ is a non-negligible function (such δ′′ exists since we assumed S(λ,m,N) ≥ 2`·`hash).
Then, a cheating prover for the BatchL SNARG, given Y ∗ 6∈ BatchL, can run P∗ on inputs
crs = (hk∗`-SSB, crsBatchL) and (M,x), where crsBatchL ← SetupBatchL(1κ, 1m, N), to get (rt, σBatchL).
When the Merkle root rt that P∗ output is equal to rt∗, he outputs σBatchL, which fools VBatchL with
probability non-negligible in S(λ,m, n). Furthermore, this BatchL SNARG cheating prover runs
in time poly(t) ≤ poly(S(λ,m, n)), as S(λ,m, n) ≥ 2`·`hash = 2polylog(t) = ω(t). This contradicts the
S-security of the BatchL SNARG.

References

[Bar01a] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, volume 0,
pages 106–115, 2001. 1

[Bar01b] Boaz Barak. How to go beyond the black-box simulation barrier. In FOCS, pages
106–115, 2001. 4

[BBH+19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Rothblum.
On the (in)security of kilian-based snargs. In Dennis Hofheinz and Alon Rosen, editors,
Theory of Cryptography - 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 522–551. Springer, 2019. 1, 3, 4

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computa-
tions in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium
on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
21–31, 1991. 7

[BHK17] Zvika Brakerski, Justin Holmgren, and Yael Tauman Kalai. Non-interactive delegation
and batch NP verification from standard computational assumptions. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 474–482, 2017. 5, 6, 9, 13,
14

[BKK+18] Saikrishna Badrinarayanan, Yael Tauman Kalai, Dakshita Khurana, Amit Sahai, and
Daniel Wichs. Succinct delegation for low-space non-deterministic computation. In

25

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 709–721,
2018. 5, 9, 14

[Blu86] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, pages 1444–1451, 1986. 1

[BMW99] Ingrid Biehl, Bernd Meyer, and Susanne Wetzel. Ensuring the integrity of agent-based
computations by short proofs. In Proceedings of the Second International Workshop
on Mobile Agents, MA ’98, pages 183–194, London, UK, UK, 1999. Springer-Verlag.
3, 11

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In FOCS, pages 97–106, 2011. 13

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 1082–1090. ACM, 2019. 1

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-shamir and cor-
relation intractability from strong kdm-secure encryption. In Advances in Cryptology
- EUROCRYPT 2018 - 37th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3,
2018 Proceedings, Part I, pages 91–122, 2018. 1

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private informa-
tion retrieval. In 36th Annual Symposium on Foundations of Computer Science,
Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 41–50, 1995. 12

[CMSZ21] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum
succinct arguments. IACR Cryptol. ePrint Arch., 2021:334, 2021. 2, 4

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part III, volume 11694 of Lecture Notes in Computer
Science, pages 3–32. Springer, 2019. 13

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In Advances in Cryptology - CRYPTO 2016 - 36th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part III, pages 93–122, 2016. 5, 6

26

[DLN+04] Cynthia Dwork, Michael Langberg, Moni Naor, Kobbi Nissim, and Omer Reingold.
Succinct proofs for NP and spooky interactions. Unpublished manuscript, 2004. http:
//www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf. 5, 6

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986. 1

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the fiat-shamir
paradigm. In FOCS, pages 102–, 2003. 4

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In Éva Tardos, editor, 46th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 553–562. IEEE Computer Society, 2005. 1

[GK16] Shafi Goldwasser and Yael Tauman Kalai. Cryptographic assumptions: A position
paper. In Theory of Cryptography - 13th International Conference, TCC 2016-A,
Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pages 505–522, 2016. 7,
8

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
interactive proofs for muggles. In STOC, pages 113–122, 2008. 1

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity, or all languages in np have zero-knowledge proof systems. Journal of the
ACM, 38(1):691–729, 1991. 1

[GR05] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with
constant communication rate. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Program-
ming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15,
2005, Proceedings, volume 3580 of Lecture Notes in Computer Science, pages 803–
815. Springer, 2005. 13

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way func-
tions (or: One-way product functions and their applications). In Mikkel Thorup, editor,
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018, pages 850–858. IEEE Computer Society, 2018. 1

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-shamir via list-
recoverable codes (or: Parallel repetition of gmw is not zero-knowledge). Cryptology
ePrint Archive, Report 2021/286, 2021. https://eprint.iacr.org/2021/286. 1

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure func-
tion evaluation with long output. In Tim Roughgarden, editor, Proceedings of the

27

http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
http://www.cs.bgu.ac.il/~kobbi/papers/spooky_sub_crypto.pdf
https://eprint.iacr.org/2021/286

2015 Conference on Innovations in Theoretical Computer Science, ITCS 2015,
Rehovot, Israel, January 11-13, 2015, pages 163–172. ACM, 2015. 2, 4, 5, 10, 11

[JKKZ20] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. Snargs for
bounded depth computations and PPAD hardness from sub-exponential LWE. IACR
Cryptol. ePrint Arch., 2020:980, 2020. 7

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Zhang. Snargs for
bounded depth computations and PPAD hardness from sub-exponential LWE. 2021.
1, 21

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In STOC, pages 723–732, 1992. 2, 11

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS, pages 364–373, 1997. 12, 13

[KPY19] Yael Tauman Kalai, Omer Paneth, and Lisa Yang. How to delegate computations
publicly. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23-26, 2019, pages 1115–1124. ACM, 2019. 6

[KRR13] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 565–574, 2013. 5

[KRR14] Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations:
the power of no-signaling proofs. In STOC, pages 485–494. ACM, 2014. 3, 5, 6, 7, 9,
13, 15

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of fiat-shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II,
volume 10402 of Lecture Notes in Computer Science, pages 224–251. Springer, 2017.
1

[Lip05] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In
Jianying Zhou, Javier López, Robert H. Deng, and Feng Bao, editors, Information
Security, 8th International Conference, ISC 2005, Singapore, September 20-23,
2005, Proceedings, volume 3650 of Lecture Notes in Computer Science, pages 314–
328. Springer, 2005. 13

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances
in Cryptology - CRYPTO 2019, Proceedings, Part I, volume 11692 of Lecture Notes
in Computer Science, pages 89–114. Springer, 2019. 1

28

[Unr12] Dominique Unruh. Quantum proofs of knowledge. In David Pointcheval and Thomas
Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture
Notes in Computer Science, pages 135–152. Springer, 2012. 2

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–
58, 2009. 2

29

	Introduction
	Somewhere Statistically Sound Interactive Arguments
	SSS and Straight-Line Soundness
	SSS and Fiat-Shamir Friendliness

	Instantiating an SSS version of Kilian
	From BMW/KRR Back to Kilian
	SNARGs: from BatchNP to ¶.

	Preliminaries
	Straight-Line Reductions
	Probabilistically Checkable Proofs
	Hash Function Families with Local Opening
	Converting a PCP into a Succinct Interactive Argument

	Somewhere Statistically Sound Interactive Arguments
	Kilian's Protocol is Somewhere Statistically Sound
	The BMW Heuristic with SSB Hash Families
	Kilian with No-Signaling PCP and -SSB Hashing

	SNARG for ¶
	BatchNP
	SNARG for ¶

