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Abstract. The amount of encrypted Internet traffic almost doubles ev-
ery year thanks to the wide adoption of end-to-end traffic encryption
solutions such as IPSec, TLS and SSH. Despite all the benefits of user
privacy the end-to-end encryption provides, the encrypted internet traffic
blinds intrusion detection system (IDS) and makes detecting malicious
traffic hugely difficult. The resulting conflict between the user’s privacy
and security has demanded solutions for deep packet inspection (DPI)
over encrypted traffic. The approach of those solutions proposed to date
is still restricted in that they require intensive computations during con-
nection setup or detection. For example, BlindBox, introduced by Sherry
et al. (SIGCOMM 2015) enables inspection over the TLS-encrypted traf-
fic without compromising users’ privacy, but its usage is limited due to
a significant delay on establishing an inspected channel. PrivDPI, pro-
posed more recently by Ning et al. (ACM CCS 2019), improves the over-
all efficiency of BlindBox and makes the inspection scenario more viable.
Despite the improvement, we show in this paper that the user privacy of
Ning et al.’s PrivDPI can be compromised entirely by the rule generator
without involving any other parties, including the middlebox. Having ob-
served the difficulties of realizing efficiency and security in the previous
work, we propose a new DPI system for encrypted traffic, named “Prac-
tical and Privacy-Preserving Deep Packet Inspection (P2DPI)”. P2DPI
enjoys the same level of security and privacy that BlindBox provides. At
the same time, P2DPI offers fast setup and encryption and outperforms
PrivDPI. Our results are supported by formal security analysis. We im-
plemented our P2DPI and comparable PrivDPI and performed extensive
experimentation for performance analysis and comparison.

Keywords: Deep Packet Inspection; Searchable Encryption; Intrusion Detec-
tion System; Exfiltration System
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1 Introduction

Network middlebox systems are widely adopted to protect both network opera-
tors and end users. Network intrusion detection, intrusion prevention and exfil-
tration systems are typical examples of middlebox solutions protecting networks
from internal and external attacks. Middlebox systems execute deep packet in-
spection (DPI) to evaluate packet payloads and examine their compliance to
policies (e.g., a security policy and an information management policy). Once
a non-compliance is detected, a middlebox triggers an appropriate action to
maintain the network’s security. In particular, intrusion detection systems (IDS)
and intrusion prevention systems (IPS) identify and prevent malicious attempts
such as malware intrusions and security policy violations by monitoring network
traffic. They raise an alert for security auditors and perform automated pro-
tective actions following a predefined set of rules. Exfiltration systems identify
specific signatures such as document watermarks and prevent the leakage of the
company’s intellectual properties.

Although DPI takes a vital role as a primary security control over the orga-
nizational network, the demand for user privacy significantly restricts the usage
of DPI. Nowadays, almost all traffic on the Internet is encrypted. According to
Google trend [1], all top 100 sites on the Internet support the HTTPS, which
offers end-to-end encryption. Among them, 96 websites use the HTTPS as de-
fault. Moreover, this is an on-going trend as the concerns on user privacy increase.
DPI’s function is significantly disrupted by the end-to-end encryption, such as
the TLS protocol, because encryption makes the traditional packet inspection
infeasible. When the end-to-end encryption is applied to the traffic, only two
ends (e.g., a client and a server) can share the contents. Any system in the
middle is inaccessible to what is encrypted.

Due to this, the middlebox technologies (see [21, 18, 10, 22]) naturally evolve
to inspect encrypted traffic. A well-known solution in this direction is using
“interception proxy” [10, 17, 9], which behaves like an adversary in the man-in-
the-middle (MITM) attack. The solution interrupts the authentication process
between a client and a server. Therefore, a proxy breaks an end-to-end secure
connection into two parts: user-to-proxy (i.e. the proxy behaves as the server
to the client) and proxy-to-server (i.e. the proxy plays the role of the client to
the server). It may not work well if either the client or the server uses digital
certificates [10] with a well-established certificate chain. Moreover, this approach
compromises user privacy since all the traffic between a client and a server
is accessible at the proxy, which is a third party. These downsides became a
significant concern in taking this approach.

Dixon et al. [6] proposed an alternative deployment model where all mid-
dlebox functionalities are performed at the host by the end user to control and
monitor their traffic. This host-based model does not hide the rules from the
end user. However, hiding the rules is considered as an important compatibility
requirement for a modern IDS. First of all, according to Paxson [20], hiding the
detection rules from the end user makes evading IDS at the user more difficult
for an attacker. Second, according to [22], the detection rule sets are important
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intellectual property for IDS vendors. Maintaining their rule sets more compet-
itive in the market can be one of the essential business priorities of the vendors.
Therefore, keeping the detection rules secret is important from the business point
of view.

Because of the apparent disadvantages of an intercepting proxy, researchers
seek another approach that allows deep packet inspection while preserving user
privacy. They observed that these two controversial properties, DPI and protect-
ing user’s privacy, can be achieved if encryption permits searching – this is the
well-known searchable encryption [24, 11, 7]. Searchable encryption enables mid-
dlebox systems for pattern matching of encrypted packets with encrypted search
keywords or tokens [13, 8, 22, 5]. Note that in this solution, all search operations
are done without decryption of encrypted packets. Moreover, search tokens are
generated only by negotiating them with users. Therefore, only limited numbers
of patterns of violation approved by the users are matched with the encrypted
traffic for the detection. This constraint enforces the middleboxes do the task
only allowed to them by users and minimizes the potential leakage of user’s
private data.

Unfortunately, such middlebox solutions are still immature and suffer from
their drawbacks. The main drawback is low performance due to a heavy compu-
tational overhead. The existing solutions require a slow set up time (around 97s)
for an initial connection [22, 13] or impractical inspection speed performance [5].

Recently, PrivDPI is proposed by Ning et al. [18]. It significantly improves the
efficiency of Sherry et al’s BlindBox [22] using reusable obfuscation. However,
unlike their claim, it does not achieve the same privacy level as the contents
communicated between client and server can be compromised by a third party.
We demonstrate in a later section that PrivDPI does not guarantee the same
level of privacy as BlindBox does by presenting an attack that compromises the
security of “Preprocessing Protocol”. Our attack is based on the fact that a rule
generator in PrivDPI plays more than merely creating rules to execute a simple
exhaustive message search attack on the encrypted traffic, which did not apply
to Sherry et al.’s BlindBox.

Therefore, constructing a deep packet inspection system that is efficient
enough for practical use, but preserves user privacy by providing end-to-end
encryption which does not allow abuse of inspection capability leaves as an es-
sential problem.

1.1 Our Contributions

We provide a new protocol, which we call “Practical and Privacy-preserving Deep
Packet Inspection (P2DPI)”. P2DPI aims to offer the same level of privacy that
BlindBox [22] does. Therefore, it guarantees that any third party, including a
rule generator and a middlebox, cannot compromise the privacy of two end users
(e.g., a client and a server). Moreover, the middlebox can only inspect a limited
amount of information that is negotiated with the end users. At the same time,
P2DPI is practical from an efficiency perspective as it does not have a significant
delay when the connection is set-up.
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Earlier, PrivDPI aimed to achieve those goals, retaining security and privacy
at the same level as those of BlindBox, but improving efficiency. However, we
observed that PrivDPI is susceptible to an exhaustive message search attack,
which did not apply to BlindBox. Therefore, P2DPI is the first protocol that truly
achieves those goals at the same time. P2DPI uses a key-homomorphic pseudo-
random function (KH-PRF) to exchange the obfuscated detection rules between
a user and a middlebox without revealing their obfuscation keys. Employing
KH-PRF brings a significant improvement to the DPI system. In particular,
P2DPI turns out to be more efficient than BlindBox while maintaining the same
security level. Compared to PrivDPI, P2DPI significantly improves both security
and efficiency.

In particular, our paper presents followings:

– Security Analysis on PrivDPI [18]: We provide our security analysis
on PrivDPI. We show that PrivDPI is susceptible to an exhaustive message
search attack. That is, in PrivDPI, if a binary message (0 or 1) is encrypted,
the adversary can easily tell which message was encrypted. This vulnerabil-
ity enables a third party, who is the other than two end users, to permit
exhaustive search over the messages. We will present a detailed analysis of
the PrivDPI protocol in Section 3.

– Presenting P2DPI: We propose P2DPI, which resolves the security issues of
PrivDPI. P2DPI retains the MBSE (middlebox searchable encryption) secu-
rity for user privacy and provides formal security proof. Therefore, the user’s
private data cannot be compromised by any parties, including a middlebox
and a rule generator. Thus, P2DPI achieves the same level of security as
BlindBox does. Moreover, P2DPI is more efficient than PrivDPI. Compared
to PrivDPI, the encryption time is 3.5 times faster. For example, P2DPI
reduces encryption time from 55 ms to 16 ms for 1000 message tokens. The
setup time of P2DPI is also slightly reduced due to the reduced computa-
tional overhead. The detection time of P2DPI keeps equivalent to that of
the previous best solutions, PrivDPI and BlindBox.

– Empirical analysis: We provide empirical analysis on P2DPI. For the com-
parison, we implement both P2DPI and PrivDPI and compare the computa-
tional overhead. We used C language to implement the protocols, and python
is partially used to simulate digital signatures.

We highlight that P2DPI does not have any downsides from security and
efficiency perspectives when we compare it with PrivDPI [18].

This paper is organized as follows. An overview of our P2DPI together with
a description of the relevant threat model is given in Section 2. In Section 3, we
present an attack that compromises the user privacy of PrivDPI. In Section 4,
we briefly describe concepts and cryptographic tools, which will be used in our
protocol. Section 5 is the central part of the paper, which discusses components
and construction of the proposed P2DPI protocol. Security and performance of
the proposed protocol are analyzed in Sections 6 and 7, respectively. Section 8
provides an overview of related work. We conclude our work in Section 9.
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2 System Overview

2.1 System Architecture

Fig. 1. P2DPI System.

P2DPI system consists of four parties: Rule generator (RG), Middlebox
(MB), Sender (S) and Receiver (R) as depicted in Figure 1. The detailed de-
scriptions of each party are as follows.

RG is a party that supplies detection rules to MB. RG communicates with MB
only for deploying and updating the detection rules. Usually, RG is considered to
be honest-but-curious. It generates the detection rules reliably, but it can behave
maliciously or coerced by a malicious party to compromise users’ privacy.

MB is an intrusion detection system or an exfiltration system, which inspects
encrypted traffic sent from S to R. Organizations deploy MB in their networks.
MB receives (encrypted) detection rules from RG. MB is honest-but-curious for
the communication between S and R.

S and R are end users who communicate securely with each other using TLS-like
protocols. They do not want to reveal the full content of their communication
to MB nor RG. Our solution assumes that at least one of them, either S or R, is
honest. Both S and R are curious about the detection rules. The roles of S and R
are exchangeable since they usually establish a bidirectional channel. We assume
that both S and R cannot be malicious at the same time. (That is, either S or
R is honest at least.) This is a common assumption that IDS and exfiltration
systems premise. We will discuss this in more details in the following subsection
(Section 2.2).

As illustrated in Figure 1, P2DPI protocol between a sender (S) and a re-
ceiver (R) is initiated by exchanging detection rules in obfuscated format with
MB. After MB and S/R successfully share the detection rules, MB computes
session rules, which is used for the inspection only for this connection, from the
obfuscated rules. S tokenizes traffic and encrypts each token, which is denoted
as encrypted tokens to send them to R using the same encryption that is used
in the session rules. Therefore, MB can match the detection rules to the packet
payloads while both are encrypted. The encrypted tokens must be validated
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whether they are truly matched with the data which are delivered via an en-
crypted channel (e.g., TLS encryption for HTTPS service). This can be verified
that one of S and R, which is honest to MB. Note that we assume that R is
honest in Figure 1.

The communications among MB, S and R in the P2DPI protocol are taking
place together with TLS (Transport Layer Security), which is a transport layer
protocol. However, inspection is not necessarily performed in the same layer.
DPI is usually performed in the network layer rather than the transport layer as
it needs direct access to the data (payload) and the header information of each
packet [22]. From the inspection perspective, P2DPI is no different from the
original DPI except that packet inspection is conducted over encrypted traffic
using detection rules in an obfuscated format.

2.2 Threat Model

Typical Threats to MB (IDS): There are common threats to all IDS solutions
[13, 5, 22, 18]. We cannot enforce security in any IDS system if both endpoints
are malicious, i.e., both S and R collude for malicious activities. This is because
the colluding endpoints may bypass any control using side channels [20] or place
a backdoor in the communication system to encrypt traffic to hide its patterns.
Note that assuming at least one endpoint is honest is the default in the previous
work such as BlindBox [22] and PrivDPI [18].

We remark that the said assumption is reflected in the operation of current
IDS systems. As exemplified in [22], many recent exfiltration detection systems
exercise the prevention of “accidental exfiltration” to get rid of the situation
when their users accidentally transmit a wrong file, such as a company’s con-
fidential document, as an email attachment. (If this case is removed, the users
can be considered honest.) The assumption and exercise are based in the fact
that users comply with the company’s policy and do not have any intention to
bypass or trick IDS systems, while incidents usually happen due to their careless
behaviors as pointed out in Verizon’s report [25]. From now on, we assume that
the receiver R is the honest end-user.

The authors of BlindBox [22] point out that the detection rules in the IDS
and exfiltration systems must be kept hidden from both S and R, which is also
applied to our P2DPI system. Otherwise, S and R can manipulate the content
to evade the detection rules used by the IDS and exfiltration systems. This
is necessary even if we assume that one of S and R is honest. For example, a
malicious website that lures inside workers to access their site may want to know
detection rules to bypass the IDS.

Threats to Users (S and R): By collaborating RG, MB provides intrusion
detection and exfiltration normally by inspecting the traffic (see [22]). We assume
that MB and RG are curious about the contents of data sent from S and R.
The users S and R want to preserve their communication confidentiality while
agreeing for deep packet inspection. Here, S and R limit the inspection capability
of MB and RG by restricting the number of detection rules. Therefore, MB and



P2DPI: Practical and Privacy-Preserving Deep Packet Inspection 7

RG execute the deep packet inspection without compromising the confidentiality
of communication between S and R more than S and R agree.

2.3 Overview of Our Techniques

The key challenge in P2DPI is securely hiding the information between parties.
MB and RG want to hide the detection rules from S and R. At the same time, S
and R do not want to reveal their shared key to MB and RG. These requirements
mandate that the detection rules must be delivered to S and R in an encrypted
format4, but S and R need to encrypt the detection rules using their key without
knowing their content. In other words, S and R need to update the key for the
encrypted detection rules given by MB and RG without decrypting them. Note
that this is a well-known practice in cryptography, called “key-homomorphic
encryption.”

More precisely, let C = Enc(K1,M) be a ciphertext, where a message M is
encrypted using a secret key K1. In key-homomorphic encryption, an updater
updates C to C ′ = Enc(K1 · K2,M) using a key K2, which is owned by the
updater, without decrypting C. Because the key-homomorphic encryption does
not require decryption in this process and does not have the key K1, the updater
cannot get M . We will define key-homomorphic encryption more formally in
Section 4.1.

We will use the key-homomorphic encryption to exchange the information
without revealing each other’s secret. Let KSR be a shared key between S and
R, and let Mrule be a detection rule. The biggest challenge in our protocol is that
MB needs to know Enc(KSR,Mrule) without having KSR or revealing Mrule to
S and R. To achieve this, MB first computes Cdpi = Enc(KMB ,Mrule) and asks
S and R to update it to C ′dpi = Enc(KMB ·KSR,Mrule). When MB receives C ′dpi
back from S and R, it can compute Enc(KSR,Mrule) by computing Enc((KMB ·
KSR) ·KMB

−1,Mrule) using its knowledge of KMB and key homomorphism.
Note that key-homomorphic encryption algorithms already exist [3]. There-

fore, we can simplify the DPI technique by adopting one of the existing ones.
Moreover, those algorithms are proven to be secure so that they mathematically
guarantee that the requirements we aforementioned are satisfied. In Section 4,
we review a slightly generalized version, “key-homomorphic PRF” (which, of
course, covers the definition key-homomorphic encryption).

3 Security Analysis of PrivDPI

In this section, we show that PrivDPI, recently proposed by Ning et al.[18],
cannot achieve user privacy, contrary to their claim that “PrivDPI retains the
same security and privacy guarantee” as BlindBox. (Section 1.1 of [18].)

4 We slightly abused the term ”encrypt” as the rules actually obfuscated rather than
encrypted. However, we use this term in this subsection only as we explain obfusca-
tion is achieved by Key-homomorphic encryption in a high-level view.
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As described in Section 2.1, there are four parties involved in the typical
setting of DPI protocols (including BlindBox, PrivDPI and ours): Sender (S),
Receiver (R), Middlebox (MB) and Rule generator (RG). S and R are end users,
who communicate with each other over an encrypted channel. MB inspects the
channel using the detection rules generated by RG. In particular, S and R will
send and receive a data token t by encrypting it using the same key k. MB will
determine whether the encrypted traffic contains t by checking if the encrypted
token of t is equivalent to the encrypted detection rule of r.

According to Sherry et al., their BlindBox protocol should not be used in a
setting where both RG and MB are controlled (coerced) by an adversary [22].
However, they did mention that even if one of RG and MB is coerced by the
adversary, end users in BlindBox should remain protected from the attack that
their traffic is inspected by more rules than they have agreed. Informally, it can
be achieved as follows.

Suppose that 1000 rules are agreed among RG, MB and S/R. Let R be a set
that contains those obfuscated rules and sig(R) be their signatures signed by RG.
MB should be able to inspect the encrypted traffic using each rule r ∈ R only.
(Note that S and R do not know the content of r.) This is possible in BlindBox
through the following steps: 1) After verifying the signature associated with r,
S provides MB with obfuscation of AES with the hard-coded key k; 2) MB can
compute AESk(r) without knowing k.

To have a feeling for the security of this scheme, consider the two cases below.

First, assume that MB is compromised, but RG is not. Since S and R can
verify whether the detection rules R are from RG using their signatures sig(R)
and the public key of RG. MB cannot add any malicious detection rule on its
own.

Second, assume that RG is compromised, but MB is not: It is also impossible
for RG to compute AESk(r′) for a new rule r′ /∈ R, since RG does not know k.
RG cannot generate it on its own. Hence, as long as MB refuses to include r′ in
R (secretly), the privacy for S and R is attained.

Now, we investigate the security of Ning et al.’s PrivDPI [18]. For a clear
exposition, we describe the “Preprocessing” protocol of PrivDPI, which is used
to setup obfuscated rules among S, R and MB, as follows. (Note that we only
changed the notions for users, C (Client) and S (Server) in [18] to S and R,
respectively. Other notations remain as they are.)

Preprocessing Protocol of PrivDPI [18]

Input: MB has inputs ({si, Ri, sig(Ri)}i∈[N ]) (from RG), where Ri = gαri+si

(here, ri is a rule, and α and si are values for “blinding” ri); S and R have
common inputs k.

1. S computes KS = gk (using her k), and sends KR to MB. Similarly, R
computes KR = gk (using her k) and sends KR to MB.

2. MB checks whether KS equals KR . If not, it halts and outputs ⊥. Otherwise,
it sends ({Ri, Sig(Ri)}i∈[N ]) to S.

3. S does as follows:
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(a) For i ∈ [N ], check if Sig(Ri) is a valid signature on Ri using the public
key of the signature scheme used by RG. If not, halt and output ⊥.

(b) Compute Ki = (Ri · KS)k = gkαri+ksi+k
2

for i ∈ [N ]. Finally, send
{Ki}i∈[N ] to MB.

4. For i ∈ [N ], MB verifies whether the equation e(Ki, g) = e(Ri · KS ,KS)
holds. If not, it halts and outputs ⊥. Otherwise, for i ∈ [N ], it calculates the

reusable obfuscated rule Ii = Ki/(KS)si = gkαri+k
2

for future use.

RG’s attack proceeds as follows. RG simply observes the communication be-
tween MB and S in the above protocol, then it obtains KS and Ki = gkαri+ksi+k

2

from it. This is possible because those parameters are not encrypted. However,
since RG knows α, ri and si, it can get gk

2

by computing Ki/K
αri+si
S . The con-

sequence of getting this value is that RG can compute the additional session rule

S′i for any rule r′i by computing S′i = K
αr′i
S gk

2

= gkαr
′
i+k

2

. In other words, RG
can produce a session rule for a new rule which is different from those processed
in the Preprocessing Protocol. Therefore, PrivDPI does not guarantee the same
security that BlindBox provides.

Moreover, this attack can be extended to compromise the middlebox search-
able encryption (MBSE) security through an “exhaustive message search” at-
tack: RG selects a rule representing low entropy data such as temperature, date
or even binary number and creates an obfuscated rule on its own. Then it ex-
haustively searches the encrypted traffic for the corresponding message (i.e., its
decryption) that matches the rule. The consequence of this attack is that RG can
break the indistinguishability of two sequences of the encrypted traffic, which
compromises the MBSE security. (Note that MBSE security is formally defined
in Section 6.)

The difference in processing rules between BlindBox and PrivDPI is that in
BlindBox, RG creates rules only, while in PrivDPI, RG generates extra values
along with the rules used in the preprocessing protocol which involve MB and
end users. Hence, as long as MB refuses to process RG’s rules that were not
agreed, the user privacy is achieved in BlindBox, However, RG in PrivDPI can
compromise the rule processing on its own even if MB refuses to collude with
RG.

The above attack implies that there is a problem in the analysis of the MBSE
security of PrivDPI. Note that MBSE security does not have any restriction as
to who can be an adversary, that is, it guarantees the user privacy from any
adversary, including MB and RG. In the attack game for MBSE security, the
adversary generates rules and queries them (to the challenger) to get obfuscated
rules. This reflects the real situation of BlindBox, where RG does not generate
any other values except rules. Hence, the security proof of BlindBox [23] works for
the case in which RG or MB can be an adversary. However, in the preprocessing
protocol of PrivDPI, RG generates its internal values like α and si, which are
not given to the adversary in the MBSE security proof for PrivDPI [18]. In
other words, their proof does not address the real privacy issues that can arise
in PrivDPI.
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One may argue that RG must be fully trusted. However, this is not the case,
as it is assumed to be some external party like a non-profit generation, and it
can be coerced by an adversary (such as a totalitarian government), according
to Sherry et al. [22]. Also, we envision that in terms of functionality for DPI
in general, making RG generate parameters that will be used by other parties,
including MB, in a fully-trusted way is cumbersome. Contrary to the authors’
claim, PrivDPI did not achieve the same level of the security that BlindBox
delivers because BlindBox does not allow this attack and does not give trust to
RG while PrivDPI does.

4 Preliminaries

In this section, we overview main techniques for designing our protocol, review
cryptographic primitives and summarize various notations, which will be used
to describe our protocol.

4.1 Key-homomorphic PRF

Naor et al.’s pseudorandom function (PRF) based on the DDH (Decisional Diffie-
Hellman) assumption [16], which we call “key-homomorphic PRF”, is an essential
component of the P2DPI protocol. First, we review the definition of PRF as
follows.

Definition 1 (Pseudorandom Function (PRF) [3]) An efficiently computable
function F : K × X → Y, where K is a key space, X is an input space and Y is
an output space, is PRF if no efficient adversary can distinguish F from a truly
random function given only a black-box access to F .

We also review the definition of the DDH assumption as follows.

Definition 2 (DDH assumption) Let Gp be a finite cyclic group of prime
order p, generated by g. The DDH assumption holds if, given {g, gc1 , gc2 , T ∈ Gp}
for uniform c1 and c2 from Zp, there is no probabilistic polynomial time (PPT)
algorithm that can determine whether T is gc1c2 or a random integer from Gp
with non-negligible probability.

Now, we review the definition of key-homomorphic PRF.

Definition 3 (Key-Homomorphic Function [16]) Suppose that k ∈ Zp is
chosen uniformly at random. Also, specify a one-way function H : X → Gp.
Then, the key-homomorphic function FKH is defined as follows:

FKH(k, x) := H(x)k.

The above key-homomorphic function has the following properties, which are
all proven in [3].
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Property 1. (PRF): IfH is modelled as a random oracle, the key-homomorphic
function FKH is PRF. That is, the advantage of a PPT adversary A in distin-
guishing FPRF from a random function is negligibly small.

Due to the above property, we call the key-homomorphic function as “key-
homomorphic PRF”.

Property 2. (Key Homomorphism): For any k1, k2 ∈ Zp and any x ∈ X ,

FKH(k1, x) · FKH(k2, x) = FKH(k1 + k2, x).

Property 3. (Commutativity): For any k1, k2 ∈ Zp and any x ∈ X ,

FKH(k1, x)k2 = FKH(k1, x) · . . . · FKH(k1, x)︸ ︷︷ ︸
k2 times

= FKH(k1 + ...+ k1︸ ︷︷ ︸
k2 times

, x)

= FKH(k1 · k2, x).

Similarly, FKH(k2, x)k1 = FKH(k1 · k2, x).
Throughout the paper, we utilize H(x, k) = (gH1(x)h)k where g, h ∈ Gp,

x ∈ X , k ∈ Zp and H1(·) is a programmable random oracle.5 Note that some
other constructions of key-homomorphic PRFs can be found in [16] and [3].

4.2 Notations

The P2DPI protocol uses various keys, each of which has a different purpose.
We summarize them as follows.

– kMB : This key is created by RG and securely shared with MB. It is used to
hide the detection rules from S and R (by making them indistinguishable from
random values of the same length). Note that disclosing this key will allow S
and R to bypass the inspection by leaking detection rules.

– kSR: This key is a shared key between S and R and used to obfuscate their
communication. The disclosure of this key allows an adversary to potentially
read packets sent from S to R through an exhaustive message search attack.
This key is also used to update the key for obfuscating detection rules sent
by MB. Its value is not revealed to MB during the update because of the
key-homomorphic property of our protocol.

– kSSL: This is a session key used for a secure channel established by the
SSL/TLS protocol. We assume that this key is managed by the SSL/TLS
protocol.

The detection rules in P2DPI can be represented using the following formats:

5 in this version of the paper, the definition H(x, k) = (gH1(x))k in the previous version
[12] is revised to H(x, k) = (gH1(x)h)k due to the malleability of the previous choice.
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– ri: A detection rule (in a plain text format), generated by RG.

– Ri: An obfuscated detection rule by RG. ri is obfuscated to Ri using the
key-homomorphic PRF by the key, kMB , which is allocated to each MB.

– sig(Ri): A signature of obfuscated detection rule Ri using the private
key of RG. The signature can be verified using RG’s public key.

– Ii: An intermediate obfuscated detection rule. Because Ri is obfuscated
using the key-homomorphic PRF, its key can be updated from kMB to kMB ·
kSR, here kSR is a shared obfuscation key between S and R, which is agreed
during the handshake process. Ii corresponds to ri, but it is obfuscated using
the updated key kMB · kSR.

– Si: A session rule, which is used during packet inspection. Si corresponds to
ri, but it is obfuscated using the key kSR, the shared key between S and R.

5 P2DPI Protocol

In this section, we describe our P2DPI protocol.

5.1 Rule Setup

In the rule setup stage, RG generates a secret key kMB for MB, and S and R
generate and share the other key kSR to prepare a deep packet inspection. Also,
kSSL is created and shared for the SSL/TLS encryption channel between S and
R.

The main idea of the rule setup algorithm (Algorithm 1) is to allow each party
to obfuscate detection rules using their own keys so that the rule hiding security
holds. This means that RG and MB obfuscate rules using kMB , and users S
and R additionally update the key of already obfuscated rules Ri’s from kMB to
kMB ·kSR using the key-homomorphic property. Now, knowing the intermediate
obfuscated rules Ii’s and the key kMB , MB removes kMB from Ii’s and generates
session rules Si’s, which are obfuscated under the key kSR only. MB uses the
session rules to inspect packets sent from S to R. Algorithm 1 describes the
procedure.

5.2 Encryption

P2DPI requires the traffic T from S to R to be parsed to ti and obfuscates to
hide the content and match it against the session rules Si for all i ∈ [Nr]. (Note
that Si’s are negotiated and obfuscated in the rule setup (Algorithm 1).) Hence,
the encryption phase involves two processes: extracting tokens and obfuscate
tokens as follows

Extracting tokens: Our detection algorithm uses tokenization methodology of
BlindBox [22].



P2DPI: Practical and Privacy-Preserving Deep Packet Inspection 13

Algorithm 1: Rule Setup

1. RG generates g, h ∈ Gp where Gp is a finite cyclic group of prime order p. It also
selects randomization key kMB ∈ Zp, which is securely shared with MB, and
obfuscates ri to Ri with kMB as follows: For i ∈ [Nr] where Nr is the total number
of detection rules, compute

Ri = (gH1(ri)h)kMB .

RG then signs Ri to sig(Ri) using its private key and sends a set of detection rules
{(Ri, sig(Ri)|i ∈ [Nr]} to MB.

2. S and R send a connection request to MB.
3. MB sends {Ri, sig(Ri)|i ∈ [Nr]} to S and R.
4. Both S and R verify sig(Ri) using the RG’s public key. If they are valid, either S or

R generates kSR and shares it with the other using key sharing protocol of
SSL/TLS handshake. Otherwise, they output ⊥.

5. Both S and R compute a set of intermediate obfuscated rules

{Ii = Ri
kSR = (gH1(ri)h)kMB ·kSR |i ∈ [Nr]}.

S and R return {Ii|i ∈ [Nr]} to MB.
6. MB checks whether {Ii|i ∈ [Nr]} sent from S and R are identical. If not, it

disconnects the connection between S and R. If they are identical, MB computes a
set of session rules {Si = (Ii)

1/kMB = (gH1(ri)h)kSR |i ∈ [Nr]}.

– Windows-based tokenization method extracts tokens from a packet using a
simple sliding window algorithm. In particular, it parses a bytestream by a
fixed length. We follow BlindBox and use 8-byte windows. For example, the
words “strictly confidential” are parsed as “strictly”, “trictly ”, “rictly c”,
“ictly co”, “ctly con”, “tly conf”, “ly confi” and so on.

– Delimiter-based tokenization parses a text-based payload using delimiters such
as punctuation or space. For example, “strictly confidential” can be parsed
using spacing to “strictly” and “confidential”. The words “login.php” can be
parsed into “login” and “php”, where “.” is the delimiter.

Transforming tokens: Our encryption algorithm is similar to the encryption
mechanism of BlindBox [22] except that one of the AES computation is replaced
by key-homomorphic encryption. We let H2 : {0, 1}n2 × Gp → {0, 1}n3 be a
programmable random oracle. In particular, tokens ti’s extracted from the traffic
T are transformed into encrypted tokens Ti’s by running Algorithm 2 given
below:

Note that the counter c is used to hide patterns of the encrypted tokens simi-
lar to DPIEnc of BlindBox. Because the outputs of H1 and H2 are deterministic,
MB may learn a pattern of encrypted data if there are the same inputs. Hence,
the counter c+ i is used to avoid this problem. Also, since the random counter
c is shared and increased by one at every step, it saves the communication over-
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Algorithm 2: Encryption

1. Given a traffic T = {t1, ..., tNt}, S selects a random counter c and sets
Ti = H2(c + i, (gH1(ti)h)kSR) for all i ∈ [Nt].

2. S sends (c, {Ti|i ∈ [Nt]) to R (through MB).
3. S sends T to R via the HTTPS connection through MB.

head and allows MB to prepare the matching detection rules from H2(c+ i, Sj)
even before it receives encrypted tokens.

5.3 Detection

Our detection algorithm only requires Nr AES computations for each token,
where Nr is the number of the detection rules negotiated in the rule setup
algorithm. Therefore, the computations required for running detection algorithm
are identical to those of BlindBox and PrivDPI. The following (Algorithm 3)
describes the detection algorithm.

Algorithm 3: Detection

1. MB receives (c, {Ti|i ∈ [Nt]}) from S.
2. For all i, i′ ∈ [Nt], for all j ∈ [Nr], MB computes H2(c + i, Sj) and compares the

result with Ti′ if i = i′ .
3. Upon finding a match, MB raises an alert.

5.4 Validation

A malicious sender may try to evade detection by creating encrypted tokens,
which do not represent the actual traffic. To deal with this issue, we assume
that at least one of S and R is honest. This is a realistic assumption because
numerous Internet applications follow the client-server model. Our solution can
be used to protect honest web servers from malicious clients or honest clients
from malicious web servers. The validation process (Algorithm 4), where R is
assumed to be honest, is described as follows.

6 Security Analysis

In this section, we provide security analyses on the proposed P2DPI protocol.
We first review the definition of MBSE security and define rule hiding security.
Based on these definitions, we prove the privacy and security of our protocol.
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Algorithm 4: Validation

1. R receives ({ti|i ∈ [Nt]}, {Ti|i ∈ [Nt]}, c) from S.
2. R tokenizes and encrypts {ti|i ∈ [Nt]} into {T ′i |i ∈ [Nt]} using kSR,
3. If {Ti|i ∈ [Nt]} 6= {T ′i |i ∈ [Nt]}, R warns MB.

6.1 Definitions of Middlebox Searchable Encryption and Its
Security

Middlebox searchable encryption (MBSE) [22, 24] is a protocol involving inter-
actions among RG, MB, S and R. MBSE is used to hide traffic between S and
R from MB (i.e., user privacy).

Middlebox Searchable Encryption (MBSE) First, we define a (generic)
MBSE scheme formally as follows.

Definition 4 (MBSE) Middlebox searchable encryption consists of five algo-
rithms, namely Setup, RuleEnc, Encrypt and Match:

– Setup [1λ → (sk, pk)] accepts a security parameter 1λ and outputs an encryp-
tion key sk and a public parameter pk.

– RuleEnc [(sk, r, pk) → S)] accepts sk and r from a message space M, and
outputs an obfuscated rule S.

– Encrypt [(sk, T , pk) → (param, ET )] accepts sk and a set of tokens T =
{t1, ..., tn} fromM for n = poly(λ) and outputs encryption parameters param
and encrypted tokens ET = {T1, ..., Tn}.

– Match [(param, ET , S) → I] accepts param, ET and S. It outputs the set
of indices I = {i|ti = r}.

Correctness For any sufficiently large security parameter λ, for any poly-
nomial number n = poly(λ), for all {t1, ..., tn} ∈ Mn, for every rule r ∈
M, if S is the output of RuleEnc(sk, r, pk) and (param, ET ) is the output of
Encrypt(sk, T , pk) where sk and pk are the outputs of Setup(λ). Match(param, ET , S)
outputs the set of index I. For every index id1 such that r = tidi the probability
that id1 ∈ I is 1. For every index id2 such that r 6= tid2 , the probability that
id2 ∈ I is negligible.

User privacy User privacy guarantees the confidentiality of packets commu-
nicated between S and R through “MBSE security”. (In other words, MBSE
security guarantees the privacy of end users.) This means that the encrypted
packets sent from S to R (or R to S) can be checked by MB against a set of
detection rules generated by RG while the content of the packets that do not
match detection rules remain confidential. The definition of the MBSE security
is based on the indistinguishability game in which the adversary, having obtained
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encrypted tokens of two sequences of tokens of the same length of its choice, tries
to distinguish them. It is assumed that the adversary can choose any number of
rules and obtains their encryption, but those rules are not included in the sets of
tokens used for the encryption query. A formal definition for the MBSE security
is given as follows.

Definition 5 (MBSE Security) Let A be a stateful PPT adversary. Consider
the following security game ExpMBSE

A (1λ):

– Init: The challenger C runs Setup with a security parameter 1λ to generate
rule encryption keys sk and public parameter pk. It sends pk to A.

– Query: A queries C with a set of rules {r1, ..., rq}. C invokes RuleEnc with sk
and returns {S1, ..., Sq} to A.

– Challenge:A generates two sets of tokens T0 = {t0,1, ..., t0,n} and T1 = {t1,1, ..., t1,n}
from the message space M such that ∀i ∈ [q], ri /∈ T0 ∪ T1. It sends both to
C. C randomly sets β ∈ {0, 1} and runs Encrypt for Tβ to get (param, ET ). C
returns (param, ET ) to A.

– Guess: A outputs β′. If β = β′, A wins and the game outputs 1. Otherwise,
the game outputs 0.

We say that MBSE is secure if for all PPT stateful adversaries A, there exists
a negligible function negl such that

Pr[ExpMBSE
A (1λ) = 1] =

1

2
+ negl(λ).

6.2 Definitions of Rule hiding and Its Security

Rule hiding prevents S and R from knowing the current detection rules so that
they cannot bypass the detection mechanism. First, we define a rule hiding
scheme formally as follows:

Definition 6 (Rule Hiding Scheme) A rule-hiding scheme consists of two
algorithms, namely Setup and Eval.

– Setup[1λ → (sk, pp)] accepts a security parameter 1λ. It selects a rule hiding
key sk in Zp and publishes the public parameters pp for Eval.

– Eval [(sk, r) → R )] accepts a rule hiding key sk and a rule r from the
message space R. It outputs the obfuscated rule R of r.

Our rule hiding security model follows the typical indistinguishability game:
An end user, acting as an adversary, is allowed to know some hidden rules in
Query phase, but cannot get any information about the target hidden rules given
in Challenge phase. (In our protocol, the end user cannot query any rules to MB,
but the user may observe the behavior of MB and may get some information
about the (censored) rules. Our security model reflects this by allowing queries
from the adversary.) As follows in the formal definition of the rule hiding security.



P2DPI: Practical and Privacy-Preserving Deep Packet Inspection 17

Definition 7 (Rule Hiding Security) Let A be a stateful PPT adversary.
Consider the following security game ExpRHA (1λ) consisting of four steps (Init,
Query, Challenge, Guess):

– Init: The challenger C runs Setup with a security parameter 1λ to generate a
rule hiding key sk.

– Query: A queries C for rules ri, where i = [n − 1]. For each ri, C returns the
obfuscated Ri to A.

– Challenge: A generates two rules r0,n and r1,n such that r0,n and r1,n were
never queried before and sends them to C. C randomly selects β ∈ {0, 1}. C
returns Rβ,n to A.

– Guess: A outputs β′ ∈ {0, 1}, if β = β′, A wins and the game outputs 1.
Otherwise, it outputs 0.

We say that P2DPI holds a rule hiding security if for all PPT stateful A,
there exists a negligible function negl such that:

Pr[ExpRHA (1λ) = 1] =
1

2
+ negl(λ).

6.3 Proof of MBSE Security

To prove the MBSE security (user privacy) of the P2DPI protocol, we extract
an MBSE scheme from it, which we denote by MBSEP2DPI , as follows.

Let H2 : {0, 1}n2 × Gp → {0, 1}n3 be a programmable random oracle with
salts, which takes n2 bits as a salt and a group element and outputting n3 bits.
MBSEP2DPI is determined by the following algorithms:

– Setup[1λ → (kSR, pk)] accepts a security parameter 1λ. It selects encryption
key kSR in Zp. It publishes the description of a pseudorandom function FKH
and a random oracle H2 as public parameters pk.

– RuleEnc[(kSR, r, pk) → S] accepts (kSR, r, pk) and calculates a session rule S
where

S = FKH(kSR, xi)

– Encrypt [(kSR, {t1, ..., tn},pk) → (param, {T1, ..., Tn})] accepts kSR , pk and
a set of tokens {t1, ..., tn} from the message space M for n = poly(λ) and it
outputs a param = c0 and the encrypted tokens {T1, ..., Tn}, where

Ti := H2(c0 + i, FKH(kSR, xi)).

– Match [(param, ET , S) → I] accepts the initial counter c0 from param, a
session rule S and encrypted tokens {Ti|i ∈ [n]} and outputs the set of indexes

I = {i|S = Ti, 1 ≤ i ≤ n}.

We show that P2DPI provides user privacy by proving the MBSE security
of the above MBSEP2DPI scheme:
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Theorem 1. (MBSE Security of MBSEP2DPI) For a key-homomorphic PRF
FKH(kSR, xi) (in which H1 is assumed as a random oracle), the MBSEP2DPI

scheme is MBSE-secure assuming that H2 is a random oracle.

Pr[ExpMBSE
A,P2DPI(1

λ) = 1] ≤ 1

2
+ negl(λ)

Proof. A programmable random oracleH2 and a pseudorandom function FKH(kSR, xi).
We let Tt = {tt,i|tt,i ∈ T0 ∪ T1}. We can prove that the security of MBSE using
the following games:

– GameMBSE
0 : This is the original game defined in Definition 6.2.

– GameMBSE
1 : This is identical with GameMBSE

0 except that for all xi ∈ {r1, . . . rq}∪
T0 ∪ T1, FKH(kSR, xi) replaced to a random value RVi with the restriction
that it preserves equality (i.e. if xi = xj(∈ X), then RVi = RVj (∈ Gp)).

– GameMBSE
2 : This is identical with GameMBSE

1 except that for all xi ∈ T0∪T1,
H2(c0 + i, FKH(kSR, xi)) replaced to random values RV ′i with the restriction
that it preserves equality on i and xi.

GameMBSE
0 and GameMBSE

1 is identical because the outputs of FKH(kSR, ·)
are uniformly distributed and preserve equality. Because the adversary does not
have kSR, it cannot compute FKH(kSR, y) = (gH1(y)h)kSR for y /∈ {r1, . . . rq} ∪
T0 ∪ T1 to test whether the returns are random or pseudo-random.

GameMBSE
1 and GameMBSE

2 is identical because H2 is a random oracle. Be-
cause of the incremental counter, the adversary receives identical random values
if t0,i = t1,j and i = j for t0,i ∈ T0 and t1,j ∈ T0. Otherwise, it always receives
different random values.

6.4 Proof of Rule Hiding Security

To prove the rule hiding security of the P2DPI protocol, we extract a rule hiding
scheme from the protocol, which we denote by RHP2DPI , as follows.

Let H1 : {0, 1}n1 → Zp be a programmable random oracle taking n1 bits
as an input and outputting an element in Zp. RHP2DPI is determined by the
following algorithms:

– Setup[1λ → (kMB , pp)] accepts a security parameter 1λ. It selects an obfus-
cation key kMB in Zp. It publishes the description of a function H1 and a
generator g as public parameters pp.

– Eval [(kMB , r, pp) → R] accepts kMB , pp and a rule r from the message space
R. It outputs the obfuscated rule R where

R := (gH1(r)h)kMB .

We prove that rule hiding security holds for our P2DPI protocol by showing that
the rule hiding security of the above is reduced to the PRF security.
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Theorem 2. (Rule hiding of P2DPI) Suppose DDH Assumption holds. Then,
RHP2DPI satisfies the rule hiding security or

Pr[ExpRHA,P2DPI(1
λ) = 1] ≤ 1

2
+ neglDDH(λ).

Proof. Note that the function used to create R in the above RHP2DPI is the key-
homomorphic function FKH(k, x) = (gH1(x)h)k, where k is set as kMB . Hence,
we can simulate the rule-hiding game ExpRHA,P2DPI(1

λ) for A using a PRF ad-
versary B for FKH: Whenever A queries rules ri’s in Query phase, B forwards
them to its oracle (which is either a random function or a prf) to get the an-
swers and forwards them back to A. When A queries rules (r0,n, r1,n) in Guess
phase, B selects b ∈ {0, 1} at random and forwards rb,n its oracle to get the

target rule and forwards it back to A. Thus, we obtain Pr[ExpRHA,P2DPI(1
λ) =

1] ≤ Pr[ExpPRFB (1λ) = 1]. Since FKH is shown to be secure PRF according to
[16] and [3] under the DDH assumption in the random oracle model, we have
Pr[ExpPRFB (1λ) = 1] ≤ 1

2 + neglDDH(λ), obtaining the bound in the theorem
statement.

The proof implies that the adversary (i.e., the end user) cannot distinguish
an obfuscated rule R from a random value even if it knows some other obfuscated
rules Ri = (gH1(ri)h)kKB for i = 1, . . . , q, where q is the number of rule queries.
Therefore, rule hiding security holds.

7 Performance Evaluation

We implemented Sender (S), Receiver (R), Rule Generator (RG) and MiddleBox
(MB) of our P2DPI protocol and evaluated their performance. The performance
analysis of our P2DPI was conducted on a machine whose base OS is Ubuntu
18.04LTS, equipped with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz 3.60GHz
with 16.0 GB memory. We used the C programming language to implement
P2DPI. For the big number and elliptic curve operations, we used the OpenSSL
library [19]. We also used the Python ECDSA package [4] for a digital signature.
The followings are implementation descriptions for each P2DPI component.

S and R: We implemented an SSL client as the sender (S) using the OpenSSL
library. We did not analyze the Validation algorithm in the receiver because it
is identical to the Encryption algorithm of the sender.

RG: In our P2DPI, we simply used Snort Emerging Threats to construct detec-
tion rules ri. The rule generator RG uses the OpenSSL library to compute Ri
from ri and the Python ECDSA package to sign Ri to produce sig(Ri).

MB: We implemented the middlebox MB also using the OpenSSL library to re-
alize the cryptographic operations that are required for the Setup and Detection
algorithms.
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7.1 Experiment Environments

In this section, we compare our performance results with those of PrivDPI. Ac-
cording to [18], PrivDPI was implemented using Python. However, we used the C
programming language to implement our P2DPI. Therefore, for the fair compar-
ison which does not depend on the performance variations from the underlying
programming languages, we implemented PrivDPI using C.

Our P2DPI requires hash and elliptic curve operations. We used the bench-
mark command of OpenSSL to compare the performance of several candidate
algorithms. We implemented hash functions H1 and H2 using the AES algo-
rithm to model programmable random oracles. More specifically, H1 and H2 are
constructed as follows:

H1(x) := AES128x(Salt), H2(y, h) := AES128h mod 2128(y),

where Salt in H1(·) is a salt value that is fixed for the implementation; h is a
coordinate of a group element over the prime field prime256v1 ; and x and y are
from the domains of keywords and counters.

We employed AES since it is fast as the most modern CPUs provide a hard-
ware accelerator for it, such as AES-NI instructions. (We utilized EVP CIPHER
object in the OpenSSL library in order to accelerate the encryption by the hard-
ware accelerator.) We used CBC mode for the AES operation.

For elliptic curve operations, such as scalar multiplications, we used the NIST
P256 curve, which was one of the fastest options we can use with the OpenSSL
library.

7.2 Rule Setup

In P2DPI, RG, MB and S/R interact with each other to exchange the detection
rules, which are created by RG, in an obfuscated format to prepare for the
packet inspection among S, R and MB. We select 2,000 rules from “emerging-
trojan.rules”, which contains 5,565 keywords and each of which is tokenized by
the size of 8 bytes from Snort emerging threats rule. The number of keywords
for each rule is given in Table 1. Rule Setup can be divided into two parts.
One is rule preparation permitted by RG, which is executed only when there is
an update of detection rules, which probably once in a few days. The other is
session rule exchange between MB and S/R, which is performed whenever there
is a new connection request between a sender (S) and a receiver (R). Note that
the session rule exchange is more critical to the system’s usability as it impacts
the initial handshake to establish a secure communication channel between the
users (S and R). We separately measure the rule preparation and session rule
exchange times to estimate the computational overhead of RG and a delay in
session establishment.

P2DPI shows the security improvement mentioned above without sacrificing
performance. The computational overhead imposed on Rule Setup is almost
identical. It is even slightly reduced in P2DPI compared to PrivDPI. We compare
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Table 1. Rule Sizes

# of Rules 1 500 1000 1500 2000

# of Keywords 8 1366 2727 4156 5565

the processing times of rule preparation and session rule exchange in Tables 2
and 3. Because the times taking for signing and verification overwhelm in those
computations and blind the difference between P2DPI and PrivDPI, we also
measured the overhead without signature schemes to present the difference. The
times estimated without the signature scheme are denoted using “(w/o Sign)”.

As shown in Table 2, with 1,000 rules containing 2,727 keywords, the rule
preparation time of PrivDPI took about 704 ms with signature generation in the
estimation, and 52 ms without signature generation and these are respectively
reduced slightly to 698 ms and 46 ms in our P2DPI. The reduction is caused by
the difference in the rule generation mechanism. Compared to P2DPI, PrivDPI
needs an additional randomization parameter, si, for each keyword and stores it
to deliver it to MB. This requirement causes this difference, although it is not
significant.

The session rule exchange time is presented in Table 3. The session rule
exchange time of P2DPI is still slightly less than that of PrivDPI as it needs
less computation on elliptic curves. With 1,000 rules, the session rule exchange
process of P2DPI takes 2.84 seconds with signature verification and 0.30 seconds
without signature verification. In PrivDPI, the same process takes 2.87 seconds
and 0.33 seconds, which are slightly slower than P2DPI.

Table 2. Rule Generation Time by RG (ms)

# of
P2DPI

P2DPI
PrivDPI

PrivDPI
Rules (w/o Sign) (w/o Sign)

1 1.631 0.378 1.915 0.662

500 351.780 23.073 354.765 26.058

1000 698.084 45.921 704.071 51.908

1500 1038.264 70.417 1043.622 75.776

2000 1385.290 93.604 1393.663 101.977

Bandwidth: Compared with the plain TLS allowing no inspection, P2DPI con-
sumes more bandwidth as it requires exchanging obfuscated detection rules in
the Rule Setup. We present the additional bandwidth required for Rules Setup
between MB and S (or MB and R) in Table 4. It should be noted that this band-
width consumption is almost identical to that of PrivDPI except that P2DPI
requires one fewer group elements per connection in the Rule Setup compared
with PrivDPI.
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Table 3. Session Rule Exchange Timebetween MB and S/R (ms)

# of
P2DPI

P2DPI
PrivDPI

PrivDPI
Rules (w/o Sign) (w/o Sign)

1 4.270 1.426 4.798 1.954

500 1419.184 148.895 1438.990 168.701

1000 2835.729 296.774 2868.596 329.641

1500 4317.805 449.506 4362.262 493.963

2000 5741.694 601.072 5804.661 664.039

Table 4. Bandwidth (KBytes)

# of Rules 1 500 1000 1500 2000

Bandwidth 1.2 206.9 413.1 628.0 840.4

Bandwidth (w/o Sign) 1.1 174.9 349.1 532.0 712.4

7.3 Encryption

P2DPI provides faster encryption compared with PrivDPI. This is because P2DPI
has less elliptic curve operations to encrypt each token. Similar to the rule setup
algorithm, P2DPI needs only one scalar multiplication although PrivDPI needs
one scalar multiplication and one point addition. Ours may be still slower than
the encryption of BlindBox, which does not require any elliptic curve opera-
tion. However, the performance gap is reduced when we compare the encryption
speed of P2DPI with that of PrivDPI. More precisely, the encryption of P2DPI is
about 3.5 times faster than PrivDPI. The efficiency improvement originates from
the way both implementations of P2DPI and PrivDPI use the EC POINT MUL
operation in the OpenSSL library, which is to realize the scalar multiplication
over elliptic curve: In P2DPI, S and R apply scalar multiplications to the fixed
generator g, while in PrivDPI, S and R apply them to an arbitrary point gα. On
the other hand, in PrivDPI, S and R encrypt a token ti to gk·α·ti+k

2

to enable
MB to match it with the encrypted rules (See preprocessing protocol of PrivDPI
in Section 3). Because S and R know the shared key k and the token ti, but they
do not know α, they need to receive the public parameter A = gα from MB right
after the connection is established. Then, they will start to encrypt all tokens
by computing Ak·ti · gk2 .

The distinction stems from the above difference between the design of P2DPI
and that of PrivDPI. To be precise, encrypting tokens requires a scalar multipli-
cation over the generator g to gH1(ti)·kSR and add hkSR to compute gH1(ti)·kSR ·
hkSR in P2DPI, while that requires a scalar multiplication over the arbitrary
point A = gα in PrivDPI. Our micro-analysis showed that the computation of
the former case is 5.5 times faster than that of the latter case. In particular,
the scalar multiplication over a generator takes around 8 µs, while that over
an arbitrary point takes 44 µs in the well-known OpenSSL library. Therefore,
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performing scalar multiplications over the fixed generator, g, turns out to be a
significant improvement in the encryption algorithm of P2DPI over PrivDPI.

Table 5. Encryption Time (ms)

# of tokens P2DPI PrivDPI

1k tokens 15.227 55.229

2k tokens 33.586 109.434

3k tokens 46.945 163.826

4k tokens 62.480 218.338

5k tokens 76.122 272.535

We estimated loading time of P2DPI for some popular websites6, which are
BBC (British Broadcasting Corporation, 4.4 MB), BOA (Bank of America, 6.5
MB) and NYT (the New York Times, 10.5 MB). As shown in Figure 2, the
loading time for those pages is not prohibitively slow, which ranges from 1.1 s to
2.3 s with 1k rules and from 1.4 s to 2.6 s with 2k rules. This result shows that
P2DPI provides much faster loading time compared to that of PrivDPI, which
ranges from 3.3 s to 7.5 s with 1k rules and from 3.6 s to 7.8 s with 2k rules. It
should be noted that signature validation time is not included in the loading time
as the validations are only needed when S and R receive updated or new rules;
also, webpages are tokenized by 8 bytes on average. The estimation shows that
P2DPI is more practical, compared with PrivDPI and BlindBox. We excluded
BlindBox in the comparison as it obviously requires several tens of seconds only
for the connection setup according to [18, 22].

Fig. 2. Loading Times of Popular Websites (s)

6 We assume that image files (e.g., *.jpg and *.png) and video streams (e.g., *.mp4)
are not monitored. The sizes of webpages referred to here do not include those of
image files or streaming videos.
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7.4 Detection

We note that there is no theoretical difference in detection algorithms among our
P2DPI, BlindBox and PrivDPI. Like BlindBox and PrivDPI, P2DPI provides the
fastest detection over encrypted tokens in the literature. The detection depends
on both the number of detection rules and the number of tokens. The results are
shown in Table 6.

Table 6. P2DPI Detection Time (ms)

The number The number of rules (# of Keywords)
of tokens 1 rule (8) 1000 rules (2727 )

1 token 0.037 0.807

1k tokens 4.229 490.541

8 Related Work

BlindBox: Sherry et al. [22] introduced the first practical DPI solution over
encrypted traffic. While BlindBox is capable of fast packet inspection, it has a
few drawbacks. BlindBox requires detection rules to be encrypted by a secret
key, which is exchanged between a sender and a receiver (i.e. a user/client and a
server) but cannot be disclosed to the middlebox as our P2DPI does. To achieve
this, BlindBox uses oblivious transfer [15, 2] and the Yao’s garbling scheme [26],
which are computationally expensive and cause substantial latency when the
connection is initiated. For example, BlindBox requires 97 seconds to process
3,000 detection rules, which contain around 10,000 keywords. BlindBox seems
to be not suitable for applications requiring frequent re-connections such as
web browsing, where a new TLS/SSL connection is established for each HTTP
request.

BlindIDS: BlindIDS from Canard et al. [5] does not require any additional
computation to set-up a connection. It also provides market-compliance. Blin-
dIDS randomizes the detection rules, i.e. it makes them indistinguishable from
random values of the same length. However, BlindIDS is based on a searchable
encryption scheme constructed from bilinear maps (i.e. pairing). Meaning that
actual inspection time is many orders of magnitude slower than BlindBox. For
example, an inspection of one token using one rule becomes more than 34,000
times slower. This makes BlindIDS impractical.

Outsourced Middleboxes: Middlebox functions can be outsourced to a cloud
[13, 8], which might be outside of organization networks. This system architec-
ture makes BlindBox more practical since sessions between gateways last longer.
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However, this does not overcome the fundamental drawback of BlindBox for
applications requiring frequent re-connections.

Other Approaches: Yan et al.’s scheme prepares detection rules using a ran-
domization algorithm [27]. Their scheme does not suffer from a long delay at the
setup stage. However, it requires the “admin server” to create a randomization
key for senders and receivers, and deliver the randomized rules to middleboxes.
This system leaks information about users’ communication if middleboxes and
the admin server collude. Similarly, a system proposed in [9], termed “SGX-box”,
facilitates the middlebox with special hardware to get the user’s session keys in
real time. However, the problems of this approach are that the middlebox should
be always online to provide the inspection service, and a secure channel between
the user and the middlebox must be established.

Multi-context TLS protocol (mcTLS) [17] was introduced to alleviate the
concern of data privacy. It enforces middlebox to obtain approvals from both a
client and a server for the inspection. However, it is still based on the MITM
approach, which requires to share TLS session keys with middlebox. It also
requires more computational and communication overheads for the inspection.

The deep learning technology is used to classify encrypted traffic [14]. How-
ever, it only classifies the traffic using its protocol and some other characteristics.
It cannot be applicable to check the contents of the traffic.

Expressiveness of detection rules: P2DPI uses exact keyword matching for
detection. In other words, it matches keywords (i.e., detection rules) against the
traffic and raises alerts if they are matched. Full IDS systems require more ex-
pressive rules such as regular expressions or scripts rather than the keywords
only. According to Sherry et al. [22], a single keyword exact matching can cover
1.6 - 5 % of the policies that general HTTP IDS applications require. If multiple
keywords are used for exact matching, the coverage increases to 29 - 67 % de-
pending on the HTTP IDS applications. The regular expressions and scripts can
be covered by first applying exact keyword matching, then partially decrypting
the traffic where keywords are matched to apply the rules written in regular
expressions or scripts to the traffic. However, to the best of our knowledge, there
has been no efficient algorithm to support the expressive rules without decryp-
tion for the scenario P2DPI, BlindBox and PrivDPI support.

9 Conclusion

In this paper, we introduced a new deep packet inspection protocol, P2DPI.
We discussed that the existing solutions for the deep packet inspection exhibit
either impractical performance on initiating encryption channel [22] or weaker
security, which cannot meet the security level that the deep packet inspection
(DPI) system commonly requires. Notably, we showed that the user privacy of
PrivDPI [18] cannot be guaranteed against the rule generator. P2DPI resolves
the security problem and achieves the required security level of the DPI protocol,
originally suggested in [22]. Besides, from the efficiency perspective, P2DPI out-
performs PrivDPI, which is the most efficient DPI protocols in the literature, to
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the best of our knowledge. P2DPI additionally improves the packet encryption
time about 3.5 times. Our result is supported by the formal security analysis
and the performance analysis based on our implementation results.
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