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Abstract. We take a look at the current implementation of NTRU submitted to
the NIST post-quantum standardization project, and identify two strong sources of
leakage in the unpacking of the secret key. The strength of the leakages is due to
the target processor handling data with very different Hamming weight depending
on parts of the secret key. We focus on using only these strong leakages, present a
single-trace side-channel attack that reliably recovers a large portion of the secret
key, and use lattice reduction techniques to find the remaining parts. Further, we
show how small changes to the implementation greatly reduces the leakage without
any overhead.
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1 Introduction

Most of today’s public-key cryptosystems base their security on the assumed difficulty of
computing factors or discrete logarithms. It is well known that if a large enough quantum
computer is built, it can be used to solve these problems in polynomial time, and the
assumption no longer holds [Sho94]. Post-Quantum cryptography (PQC) is a research
area in cryptography based on problems that are believed to be hard, regardless of the
existence of quantum computers.

The ongoing NIST Post-Quantum Cryptography standardization process is a project
which intends to specify one or more quantum-resistant public-key cryptographic algorithms.
The project started out with 69 submitted candidates and has gone through several rounds
during which candidates have been evaluated based on their security, performance and
other relevant characteristics. Currently, the project is in its third round, in which four
main finalists are left in the Key Encapsulation Mechanism (KEM) category. These finalists
are Classic McEliece, CRYSTALS-KYBER, NTRU and SABER.

Over the last decades, the amount of small embedded systems such as Internet of
Things (IoT) devices has increased by a staggering amount. The fact that these systems are
relevant for PQC is reflected in that NIST has asked for a focus on ARM Cortex-M4 when
evaluating the performance of the PQC candidates [Moo]. With the increased amount of
such devices, side-channel attacks have become one of the main threats against the security
of these systems. A setting where an adversary can gain physical access to such a device
in order to measure a side-channel is far from unrealistic, and for some side-channels like
electromagnetic radiation (EM) getting close to the device might be enough. In the 3rd
round of the process, NIST has requested an increased focus on resistance to side-channel
attacks [MAAT20].

Side-channel attacks are attacks where an adversary exploits information that leaks
through some measurable side-channel, the most common such channels being power
consumption and timing. If the execution time of an implementation is dependent on
some secret information, an adversary could measure the execution time and use these


mailto:{amund.askeland, sondre.ronjom}@uib.no

2 A Side-Channel Assisted Attack on NTRU

measurements to launch an attack. Fortunately, a simple and effective countermeasure
to timing attacks is to make implementations such that they run in constant time. For
the finalists, there has been a focus on implementing all computations that handle secret
information in constant time, together with research on exploiting the timing side-channel
for these finalists [GIJN20].

Power analysis attacks are side-channel attacks where the adversary can measure
the power consumption of a device running an implementation and use it to launch an
attack. There is a wide range of types of power-analysis attacks, one of the simplest being
Simple Power Analysis (SPA). SPA is a technique that involves directly interpreting power
consumption measurements to recover secret information [KJJ99]. SPA typically requires
strong leakages to be successful, like those from an implementation executing different
instructions based on a key-bit. More advanced Power analysis attacks like Correlation
Power Analysis (CPA) or Differential Power Analysis (DPA) can be used in a wider range
of situations, for example where the measured power consumption leaks information about
some intermediate value or when the leakage is small. Typically the effectiveness of DPA
or CPA depends on having access to several measurements, while SPA gains less from
having more measurements.

Protecting against power analysis attacks is less straightforward, and usually more
expensive than countermeasures for timing attacks. A quite advanced countermeasure is
masking, which effectively randomizes the computation of the cryptographic algorithm
by splitting intermediate values into several shares [RRVV15]. Out of the four finalists,
currently only SABER has a masked implementation intended to be resistant to first-order
side-channel attacks [BDK*20]. While implementations that do not employ advanced
countermeasures like masking are often referred to as "unprotected', there are naturally
large differences in how easily attacked such implementations are. A focus by the designer
of an implementation to make the expected secret-dependant leakage as small as possible is
important. Such a focus can be enough to make attacks like SPA impractical, or drastically
increase the number of measurements an adversary needs.

Several power analysis attacks using various techniques have been launched on the
different NIST PQC candidates. In [RSRCB20] the authors present a side-channel assisted
chosen chiphertext attack, and demonstrate it on KYBER. In [NDGJ21] a side-channel
attack on the masked implementation of SABER is presented. In [SKL120] the authors
present single-trace side-channel attacks on the message encoding of several of the NIST
PQC finalists, and discuss how it their attack can also be applied to NTRU. Their proposed
attack on NTRU relies on dividing measurements into two groups where the Hamming
weight is 0 or 1, for which they use machine learning based analysis. Side-channel attacks
on the PQC finalists continues to be an important research topic especially considering
the ongoing standardization process.

1.1 Contribution

In this paper, we point out two very strong sources of leakage in the submitted implemen-
tation of NTRU and present a side-channel assisted attack to exploit them. Both of the
leakages stem from the target processor handling data with Hamming weight of either 0
or the bus width during unpacking of the secret key. Since this is the largest difference in
Hamming weight we could have, the leakages are very easily measurable. Compared to
other power-analysis attacks on NTRU [AKJ 18, SKL.*20, HCY19] we rely only on these
very strong sources of leakage, which makes for a very reliable and practical attack. The
nature of the leakages we exploit is such that it does not leak the entire secret key, but
we are able to recover the remaining parts using lattice reduction techniques. We also
show how the strength of the leakage allows for single-trace EM attacks, and suggest an
alternative implementation to limit the leakage.
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Figure 1: Description of NTRU PKE from [CDH™]

1.2 Organization of the paper

In Section 2 we give the necessary background on NTRU and a standard lattice reduction
attack against it. Section 3 describes some expected leakage points in the NTRU imple-
mentation, and describes the attack. In Section 4 we present some measurements and run
the attack in practice. Section 5 presents a change to the implementation, along with
measurements that show the effect of the change. Section 6 briefly discusses an alternative
approach to the attack. Finally, Section 7 concludes the paper.

2 Preliminaries

2.1 NTRU

The NTRU submisstion to the NIST PQC standardization process is a KEM based on
Hoffstein, Pipher and Silverman’s public-key encryption scheme (PKE) [HPS98]. The
PKE is parameterized by coprime positive integers (n, p, ¢), sample spaces (L¢, Lg, Ly, L)
and an injection Lift : £, — Z[z] [CDHT]. We define ®; as the polynomial z — 1 and
®,, as the polynomial (z™ — 1)/(x — 1). Key-generation, encryption and decryption is
performed as in Figure 1. Here Sample fg samples two random polynomials, f and g,
with coefficients in Z, and degree at most n — 2. Here p = 3, which makes f and g trinary
polynomials. The polynomial h is the public key. Subscripts , and , are used to denote
inverses with coefficients in Z, and Z,, respectively.

From the PKE a Key Encapsulation Mechanism (KEM) with IND-CCA2 security can
be constructed [CDH']. The KEM uses the routines from the PKE and two hash functions
(Hy, Hs) in its KeyGen, Encapsulate and Decapsulate routines as shown in Figure 2.

The submitted versions of NTRU are ntruhps2048509, ntruhps2048677, ntruhps-
4096821, and ntruhrss701 where n is 509, 677, 821, and 701 respectively. There are some
differences between NTRU-HRSS and NTRU-HPS, the most notable one from this paper’s
point of view being that the public key is generated as h = 3®, - g - f;, mod (¢, ®1®,,)
instead of as in Figure 1.
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KeyGen(seed)

1. ((f,f,,h,),h) < KeyGen'(seed)
2. 5 4g{0,1}256

3. return ((f,f,,hy, s), h)

Encapsulate(h) Decapsulate((f, f,, hy, s), c)

1. coins g {0,1}2°6 1. (r,m, fail) < Decrypt((f,£,, hy),c)
2. (r,m) < Sample rm(coins) 2. k1 + Hyi(r,m)

3. ¢ + Encrypt(h, (r,m)) 3. ko < Hs(s,c)

4. k + Hy(r,m) 4. if fail = 0 return ky

5. return (c, k) 5. else return ko

Figure 2: Description of NTRU KEM from [CDH']

2.2 Lattice-Based Attacks on NTRU

We now represent the polynomials as vectors, and note that we can find a matrix H
such that f H = g (mod ¢). For NTRU-HPS this matrix is simply the circulant matrix
generated from h multiplied with the modular multiplicative inverse of 3 modulo ¢. For
NTRU-HRSS we also need to account for the multiplication of ®;. We can construct
a matrix B as in Equation 1, and we will then have that there is a vector k such that
Equation 2 holds. The rows of B form the basis of a lattice referred to as the NTRU public
lattice, which has dimension 2n. From Equation 2 it is clear that this lattice contains the
vector (f,g), as well as vectors corresponding to rotations of f and g. Using the Gaussian
heuristic, it can be shown that these vectors are probably the shortest in the lattice [HGO07].

B= ((I) qI~{I) S

(f,k)B = (f.g) 2)

Finding the shortest vector in a lattice is referred to as the shortest vector problem (SVP),
which is the basis for the security in NTRU. Techniques for solving SVP involve lattice
reduction, i.e finding another basis for the same lattice spanned by shorter vectors. One of
the most performant algorithms for lattice reduction is the BKZ algorithm [SE94, CN11].
BKZ is parameterized by a block size, 8, which impacts both the running time and the
probability of finding the shortest vector. In order to estimate the smallest block size
required to solve SVP we can use an estimator like the one from [APS15], the estimated
block size will also be closely related to the expected running time.

3 The Attack

The implementations we focus on come from the Round 3 submission package [Sch] to the
NIST Post-Quantum standardization project. Our attack is applicable to all implemen-
tations within the submission package (all the versions, and their Reference/Optimized
implementations). We assume that the implementations are executed on a processor that
uses two’s complement for representing negative numbers (an assumption we share with the
implementation itself) and that the power consumption of the processor leak information
about the Hamming weight of the data being processed.
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3.1 Point of Attack

As we are interested in recovering the secret key, it is natural to focus on the decapsulation
procedure of the KEM implementation. This procedure takes in a ciphertext and a secret
key where the secret key consists of packed versions of f, f,, h, and s. Here s is a random
32-byte value that is used in case the decryption fails. In order to reduce the size of the
secret key, groups of five coefficients from the trinary polynomials (f and f,) are packed into
one byte of the secret key. We refer to groups of five consecutive coefficients as quintuples
from now on. The packing of the trinary polynomials is performed as in Equation 3,

4
b= ¢;-3 (3)
=0

where b is a byte of the secret key, and ¢; are the coeflicients of a quintuple. Unpacking of
a quintuple then follows straight-forwardly from

ci = |b/3"] mod 3. (4)

In the implementation from the submission package, the unpacking is done in two steps
where the last step is to reduce all coefficients modulo 3. This reduction is performed in a
loop over all coefficients using the C-function mod3() shown in Listing 1.

At line 8 of the mod3() function, r will be in {0,1,2,3,4}. The last three lines is a
constant-time version of if (r < 3) return r; else return r-3;. We note that at
line 11, ¢ will have a Hamming weight of W or W —1if r < 3 and 0 or 1 if » > 3, where W
is the bus width of the target processor. Commonly W = 32 or W = 64. Further, we note
that ¢ will have a weight of W or 0, and ~ ¢ will have the opposite weight of c. Since the
difference in weight between W and 0 is the maximum we can have, we can expect that it
will be easy to distinguish between the cases » < 3 or r > 3 at line 8. For convenience we
will refer to the case r > 3 at line 8 as a coefficient being partially reduced, which is what
we expect to be able to recognise in measurements.
static uintl6_t mod3(uintl6_t a) {

uintl6_t r;
intl6_t t, c;

r = (a>> 8) + (a & 0xff);
r=(r>> 4) + (r & 0xf);
r=(r>> 2) + (r & 0x3);
r=(r>> 2) + (r & 0x3);
t =r — 3;

c =1t >> 15;

return (c&r) T (~c&t);

Listing 1: mod3() implementation

After f has been unpacked from the secret key, a transformation on its coefficients is
performed to map them from Zs to Z,. The function for doing this is shown in listing
2. Here we note that the intermediate result - (r->coeffs[i] »1) will have a Hamming
weight of W if the coefficient was 2 or a weight of 0 if the coeflicient was 0 or 1. From this
we can expect to find all coefficients with a value of 2.

/* Map {0, 1, 2} — {0,1,q—1} in place x*/
void poly Z3 to_Zq(poly x*r) {
int i;
for (i=0; i<NTRU N; i++) {
r—>coeffs [i] = r—>coeffs[i] | ((—(r—>coeffs[i]>>1)) & (NTRU Q-1));
}

7}

Listing 2: poly_Z3_to_Zq() implementation
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We note that the two points of leakage described above should be very strong as the
cases we have to differentiate between have very different Hamming weight. We also
expect that there will be smaller leakages present, for example we could try to differentiate
between a Hamming weight of 0 and 1 in both functions, but these are much smaller and
likely to be harder to exploit. The idea of this attack will be to only rely on the strongest
points of leakage, in order to have a stronger attack that does not rely on high quality or
a large number of measurements.

3.2 Partial Key-Recovery

As described, we have identified two interesting parts of the implementation where we
expect to find strong leakage resulting in information about the coefficients of f and f,,.
The easiest leakage to interpret is the mapping from Zs to Z,, where we expect to find
all coeflicients with a value of 2. This mapping not performed on f,, so we will only have
this information available for f. Since f is sampled randomly we expect that 1/3 of the
coefficients can be recovered here.

The second piece of information we expect to find is whether a coefficient is partially
reduced or not. To make use of this information, we divide the partially reduced coeflicients
into two cases depending on the value of r at line 8 in listing 1. If r = 3, the coefficient is
a zero that has been unpacked as a nonzero value. From equations 3 and 4 we see that
this corresponds to coefficients with value zero that have nonzero coefficients behind it
within a quintuple. If r = 4, the coefficient has the value 1, but has been unpacked as a
value, ¢, satisfying |¢/16] + (¢ mod 16) = 16 + 3k where k is an integer larger than zero.
There are 26 values smaller than 3° that satisfies this, the smallest of them being 79. We
note that since 79 > 3%, we can guarantee that any partially reduced coefficients found in
the three last positions in a quintuple have the value zero.

A simple approach to decide all the coefficients we can with the available information, is
to go through all candidates for a quintuple and see if what was observed in measurements
is consistent with the candidate. All quintuple candidates that does not match the
observations can be thrown away, and if all the remaining candidates agree on a coefficient
this coefficient can be decided with certainty. This approach also allows us to find the
expected number of fully recovered coefficients for both f and f,, which is 75.3 % and
13.5 % respectively. These percentages are approximations, since the calculations assume
that all quintuples are equally probable, and does not take into account that the length of
the key is not divisible by 5. A python-script for performing this calculation is available in
the Appendix.

In addition to being able to decide a number of coefficients with certainty, we also find
constraints for many of the undecided coefficients. If we for example find that the last
three coeflicients, c¢s, 3, ¢4 of a quintuple are neither partially reduced nor have the value
2, we can say with certainty that they have to satisfy 1 > ¢ > ¢35 > ¢4 > 0. Algebraically
we can express this as cyc3 = ¢4 and cacg = c3. Other constraints we might encounter
include coefficients of f, which can only take values 0 or 2, which can be expressed as
c? +¢; =0 (mod 3).

3.3 Full Key-Recovery

In order to fully recover the secret key f, we will rely on lattice reduction methods as
described in Section 2.2. The recovered coeflicients can be used in such a way that if we
have recovered m coefficients, we can construct a lattice with dimension 2(n — m + 1),
compared to 2n without any known coefficients. This is done by splitting f into a known
and an unknown part, and precalculating the product of the known part and the public
key. We also note that although the entire secret key used by the KEM consists of f, f,,,
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Figure 3: BKZ block size estimates

h, and some random bytes s, recovering f will be enough to construct all of those values
except for s which is not needed by an adversary.

Using the estimator from [APS15] we can estimate the block-size, 3, required for BKZ-3
to solve SVP for a given NTRU parameter set and m. For simplicity we will here limit
estimates of the complexity of an attack to estimations of 8. For reference in [ADH"19]
Albrecht et al. ran BKZ-81 and BKZ-112 in 1h 23m and 60h, respectively (or 8h 36m and
2554h measured in CPU-time). Figure 3 shows our estimates of the required block size for
different percentages of recovered coefficients, estimates are lower-capped at 8 = 40.

Ideally we would have liked to utilize the extra constraints on the coefficients of f that
we find, but we have been unable to find a good method of incorporating these extra
constraints into the lattice. In some cases guessing a few coefficients might be beneficial,
but then there is no guarantee that the lattice is correct.

4 Experiments

The goal of our experiments will be to validate that the expected leakages outlined
in Section 3.1 are present, and easily measurable as expected. We will also use the
measurements to recover a large portion of f and run BKZ to recover all coefficients.

4.1 Setup

For our experiments we use an STMF32F303-based target board. STM32F303 is a
microcontroller based around the 32-bit ARM cortex-m4 processor core, which is commonly
used in embedded systems such as IoT devices. The specific target board comes with the
ChipWhisperer Pro [Inc], which is the equipment we use for most of our measurements.
The ChipWhisperer is quite ideal for experimentation, but does not necessarily represent
the most realistic setup. One of the main reasons for this is that the ChipWhisperer
supplies the clock signal for the target board, meaning the sampling frequency is perfectly
synchronized with the target’s clock frequency. To investigate the practicality of this
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Figure 4: Left: ChipWhisperer setup. Right: Oscilloscope setup

attack, we will also do measurements with an oscilloscope. The measurements done with
the ChipWhisperer will be voltage measurements over a shunt-resistor placed between
the target processor and its supply. The oscilloscope measurements will done with an
EM-probe, which measures the magnetic field radiating from the target device. A 20dB
amplifier and a low-pass filter is connected between the EM-probe and the oscilloscope, and
the EM-probe will be held at a distance of roughly 5 mm from the target microcontroller.

The target device is programmed with the implementation of ntruhps2048509 from
the submission package [Sch]. We compile the implementation using arm-none-eabi-gcc,
with optimization flag -0s. The two different setups are shown in Figure 4.

4.1.1 A Note on Measurements

It is easy to get lost in what is actually being measured here. For the ChipWhisperer we
will measure the voltage over a shunt resistor in series with the target processor. This
voltage will in turn be proportional to the current draw of the target processor. Assuming
we have a constant supply voltage, the measured voltage will be proportional to the power
consumption.

The oscilloscope setup will measure a voltage over the EM-probe. This voltage will be
proportional to the rate of change of the magnetic flux through the probe, which (ignoring
any noise sources) will be proportional to the rate of change in the current draw of the
target device. From this we can see that the measurements done with the oscilloscope
setup will essentially be the derivative of the measurements from the ChipWhisperer setup.
Although referring to the measurements as power consumption measurements might not
be strictly correct, the origin of the measured values will be closely related to the power
consumption of the target device.

4.2 Direct Measurements

We use the ChipWhisperer setup to take a single measurement of the power consumption
of the target device during execution of the decapsulation procedure. Figure 5 shows large
parts of this measurement, together with subtraces corresponding to a single execution
of mod3() and a single round in poly_z3_to_zq(). There are n subtraces for each of the
two, in the case of this particular measurement n = 509.

Figure 6 shows the 509 different subtraces for the different rounds in the loop of the
poly_z3_to_zq() function. The subtraces where the coefficients had the value 2 has been
coloured red, and we can clearly see that the subtraces fall into two groups. Note that the
colouring naturally does not represent information that would be available to an adversary,
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Figure 5: Full trace and subtraces

but has been used to clarify the plot. The two groups clearly formed by the subtraces is
what an adversary would use to recover this information.

In the same manner, Figure 7 shows the 509 different subtraces for calls to the mod3()
function. Here the traces corresponding to partially reduced coefficients have been coloured
red. Again, we see that there is a large difference in the power consumption, and that the
two cases are easily distinguishable.

4.3 EM Measurements

We use the oscilloscope setup to take a single measurement with the EM-probe. Figure 8
shows the 509 subtraces corresponding to the execution of poly_z3_to_zq(), and Figure 9
shows subtraces corresponding to executions of mod3(). The subtraces have been coloured
in the same manner as for the ChipWhisperer setup.

Compared to the measurements done with the ChipWhisperer, it is far less obvious
that the subtraces can be distinguished into two groups. However if we plot the Root-
Mean-Square (RMS) values for parts of the subtraces, as shown in the lower parts of the
figures, the difference is more clear.

4.4 Full Key-Recovery

We generate some sets of keys for ntruhps2048509, run our side-channel attack to recover
the available information, and use the techniques outlined in Section 3.2 to recover a
number of coefficients of f. Using the recovered coefficients, we launch a lattice reduction
attack as outlined in Section 3.3 to recover the full key. We use the BKZ implementation
from fpylll [dt21]. In practice, we run BKZ with increasing block-sizes, 3, starting at
£ = 10 until we recover the secret key. Table 4.4 sums the results from these experiments.
Note that the running time has been purposefully left out, as little effort was put into
speeding up the process and the experiments was run on a standard laptop. For reference
experiment 1 took 1m 43 s and experiment 3 took 1h 18m, the main reason for the large
time difference was that experiment 3 had to be run with a higher floating point precision,
and could therefore not utilize the hardware it was run on.



10 A Side-Channel Assisted Attack on NTRU

0.44

0.21

0.01

—0.2 1

-0.4 1

T T T T T
0 10 20 30 40

Figure 6: Subtraces showing difference in power consumption, poly_z3_to_zq()
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Table 1: Results from running BKZ-f on partially recovered keys

Experiment # | Recovered Coeflicients | Percentage | Required g

1 393 77.4 42
2 373 73.4 51
3 377 74.2 52
4 377 74.2 52
5 386 76.0 41
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Figure 10: Subtraces, alternative mod3() implementation

Alternative Implementation

The two identified leakage points are expected to be very strong since the target processor
will handle data with very different Hamming weight depending on the secret coefficients. In
Listing 3 we present a functionally equivalent implementation of mod3(), that should result

in

a lower leakage. The instruction count between the two implementations is comparable,

with the alternative implementation shown below using slightly fewer instructions when
compiled with arm-none-eabi-gcc.

2

static uintl6_t mod3_alt(uintl6_t a)

uintl6_t r;

r = (a>> 8) + (a & 0xff);

r=(r>> 4) + (r & 0xf);

r=(r>> 2) + (r & 0x3);

r=(r>> 2) + (r & 0x3);

r = ((r>2) + (r)) & 0x3; // Map 4 —> 1
return (r + ((r+1)>>2)) & 0x3; // Map 3 — 0

Listing 3: Alternative mod3() implementation

We rerun parts of our earlier experiments with this alternative implementation of mod3().
The results are shown in Figure 10, as before the red subtraces correspond to coefficients
that are partially reduced. As can be seen, there is a much lower difference in the power
consumption between the red and blue subtraces compared to the original implementation.

6

Exploiting More of the Leakage

While the leakages related to f enables us to recover sufficiently many coefficients in order
to attack NTRU directly using lattice reduction, additional information about f and f,
deduced from the leakage is not exploited in the above attack. Although we were unable
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to craft a dedicated algorithm exploiting this extra information and beat the direct attack,
we briefly mention it here as a potential new and interesting research direction.

Since the two polynomials are inverses, ff, =1 (mod (3, ®,,)), we can set up a system

of n — 1 bilinear equations with 2(n — 1) — m — m,, unknowns where m and m,, are the
number of known coefficients of f and f,,, respectively. In addition to the leaked coefficients
we have some extra constraints on the possible values of a quintuple. This can further be
modelled as additional non-linear equations in 5 or less coefficient variables. Note that for
this particular system, we know additionally that the remaining unknown coefficients of f
are in {0,1}.
Crafting a dedicated method for exploiting leakage from a polynomial and its inverse, such
as a dedicated algebraic method able to exploit this structure, is left as an interesting open
general problem that may have future applications in side-channel cryptanalysis of lattice
based schemes.

7 Conclusion and Future Research

We have presented a single trace SPA attack on the NTRU implementation submitted to
the NIST PQC standardization process. Although the implementation does not include
any advanced countermeasures like masking, we point out that there are two very strong
sources of leakage that makes an especially easy target for such attacks. In fact, the
leakages that the attack relies on is so strong that subtraces can easily be divided into
two sets using the naked eye. On average the SPA attack allows us to recover about 75 %
of the secret key polynomial f, and 13 % of its inverse f,. We consider the problem of
recovering the entire secret key by utilizing the partially recovered f and f, an interesting
one for future research. In this work we use lattice-reduction techniques to recover the
remaining parts of f. Further we presented an alternative implementation that removes
one of the strong sources of leakage, without any time-penalty.
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Appendix

The following python script includes functions for recovering keys based on measurements,
and a calculation of the expected number of recovered coefficients.

# First few lines of mod3() function
def is_partially_reduced(a):
r = (a > 8) + (a & Oxff)
r = (r > 4) + (r & 0xf)
r = (r > 2) + (r & 0x3)
r = (r > 2) + (r & 0x3)
return r >= 3

© 00 O Uk W=

# These functions recover quintuples from measurements
def recover_quintuple_f (measured_part_red, measured_twos):
valid_candidates = [] # list of valid quintuples
for quint in range (3%*5):
candidate = [(quint//(3**i))%3 for i in range(5)]
cand_twos = [candidate[i] == 2 for i in range(5)]
cand_part_red = \
[is_partially_reduced ((quint//(3*xi)))
for i in range(5)]

# Python is fine with comparing lists

if measured_part_red == cand_part_red \

and measured_twos == cand_twos:
valid_candidates.append(candidate)

# Now we have all valid candidates.

# If they agree on a coefficient we can decide it
n_cand = len(valid_candidates)

sum_cand = [ sum([valid_candidates[i][j] for i \
in range(n_cand)]) for j in range (5)]

# We represent undecided coefficients as "4"
recovered = [sum_cand[i]l/n_cand if (sum_cand[i]\

/n_cand).is_integer () else 4 for i in range (5)]
return recovered

# Same as above, except we don’t know position of twos
def recover_quintuple_fp(measured_part_red):
valid_candidates = []
for quint in range (3**5):
candidate = [(quint//(3*%i))%3 for i in range(5)]
cand_part_red = [is_partially_reduced(\
(quint//(3**i))) for i in range (5)]

if measured_part_red == cand_part_red:
valid_candidates.append(candidate)

n_cand = len(valid_candidates)
sum_cand = [ sum([valid_candidates[i][j] for i imn \
range(n_cand)]) for j in range (5)]

recovered = [sum_cand[i]l/n_cand if (sum_cand[i]\
/n_cand).is_integer () else 4 for i in range(5)]
return recovered
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55
56
57
58
59
60
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62
63
64
65
66
67
68
69
70
71
72
73
74

# A loop to find expected number of recovered

# coefficients. Assuming quintuples are equally

# probable, and that key-length is divisible by 5

total_recovered_f = 0

total_recovered_fp = 0

for i in range (3%%5):
# What we would have observed in measurements
measured_twos = [2 == (i//(3**xj))%3 for j in range(5)]
measured_part_red = [is_partially_reduced ((i//(3**3j)))\
for j in range(5)]

recovered_f = recover_quintuple_f (measured_part_red, \
measured_twos)
recovered_fp = recover_quintuple_fp(measured_part_red)

for j in range(5):
total_recovered_f += recovered_f[j] < 4
total_recovered_fp += recovered_fp[j]l < 4
print ("Expected percentage of recovered coefficients:")
print ("f:", 100*total_recovered_f/(3**5 * 5))
print ("f_p:", 100*total_recovered_£fp/(3**5 * 5))
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