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Abstract. Property-preserving hash functions allow for compressing long inputs x0 and x1 into
short hashes h(x0) and h(x1) in a manner that allows for computing a predicate P (x0, x1) given
only the two hash values without having access to the original data. Such hash functions are said
to be adversarially robust if an adversary that gets to pick x0 and x1 after the hash function has
been sampled, cannot find inputs for which the predicate evaluated on the hash values outputs the
incorrect result.
In this work we construct robust property-preserving hash functions for the hamming-distance
predicate which distinguishes inputs with a hamming distance at least some threshold t from those
with distance less than t. The security of the construction is based on standard lattice hardness
assumptions.
Our construction has several advantages over the best known previous construction by Fleischhacker
and Simkin (Eurocrypt 2021). Our construction relies on a single well-studied hardness assumption
from lattice cryptography whereas the previous work relied on a newly introduced family of com-
putational hardness assumptions. In terms of computational effort, our construction only requires
a small number of modular additions per input bit, whereas the work of Fleischhacker and Simkin
required several exponentiations per bit as well as the interpolation and evaluation of high-degree
polynomials over large fields. An additional benefit of our construction is that the description
of the hash function can be compressed to λ bits assuming a random oracle. Previous work has
descriptions of length O(`λ) bits for input bit-length `.
We prove a lower bound on the output size of any property-preserving hash function for the
hamming distance predicate. The bound shows that the size of our hash value is not far from
optimal.

1 Introduction

Efficient algorithms that compress large amounts of data into small digests that preserve certain prop-
erties of the original input data are ubiquitous in computer science and hardly need an introduction.
Sketching algorithms [AMS96], approximate membership data structures [Blo70], locality-sensitive hash
functions [IM98], streaming algorithms [Mut03], and compressed sensing [Don06] are only a few among
many examples.

Commonly, these algorithms are studied in benign settings where no adversarial parties are present.
More concretely, these randomized algorithms usually state their (probabilistic) correctness guarantees
by quantifying over all inputs and arguing that with high probability over the chosen random coins,
the algorithm will behave as it should. Importantly, the inputs to the algorithm are considered to be
independent of the random coins used.

In real world scenarios, however, the assumption of a benign environment may not be justified and
an adversary may be incentivized to manipulate a given algorithm into outputting incorrect results by
providing malicious inputs. Adversaries that choose their inputs adaptively after the random coins of
the algorithm have been sampled, were previously studied in the context of sketching and streaming
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algorithms [MNS08, HW13, NY15, CPS19, BLV19, BEJWY20, BEY20, FS21]. These works show that
algorithms which work well in benign environments are not guaranteed to work well in the presence of
adaptive malicious inputs and several algorithms with security guarantees against malicious inputs were
proposed.

The focus of this work are adversarially robust property-preserving hash (PPH) functions recently
introduced by Boyle, LaVigne, and Vaikuntanathan [BLV19], which allow for compressing long inputs
x0 and x1 into short hashes h(x0) and h(x1) in a manner that allows for evaluating a predicate P (x0, x1)
given only the two hash values without having access to the original data. A bit more concretely, a
PPH function for a predicate P : X ×X → {0, 1} is composed of a deterministic compression function
h : X → Y and an evaluation algorithm Eval : Y × Y → {0, 1}. Such a pair of functions is said to be
adversarially robust if no computationally bounded adversary A, who is given a random (h,Eval) from
an appropriate family, can find inputs x0 and x1, such that P (x0, x1) 6= Eval(h(x0), h(x1)).

BLV constructed PPH functions that compress inputs by a constant factor for the gap hamming
predicate, which distinguishes inputs with very small hamming distance from those with a large distance4.
For inputs that have neither a very small or very large distance, their construction provided no guarantees.

Subsequently Fleischhacker and Simkin [FS21] constructed PPH functions for the exact hamming
distance predicate, which distinguishes inputs with distance at least t from those with distance less
than t. Their construction compresses arbitrarily long inputs into hash values of size O(tλ), where λ
is the computational security parameter. Unfortunately, their construction is based on a new family of
computational assumptions, which is introduced in their work, meaning that the security of their result is
not well understood. From a computational efficiency point of view, their construction is rather expensive.
It requires O(`) exponentiations for hashing a single `-bit long input and evaluating the predicate on the
hashes requires interpolating and evaluating high-degree polynomials over large fields.

1.1 Our Contribution

In this work we present a new approach for constructing PPH functions for the exact hamming distance
predicate, which improves upon the result of Fleischhacker and Simkin in several ways.

The security of our construction relies on a well-studied hardness assumption from the domain of
lattice-based cryptography. Both hashing an input and evaluating a predicate on hash values only involves
fast operations, such as modular additions, xor, and evaluating a few t-wise independent hash functions.
The size of our hash values is Õ(λ2t) bits. We present a lower bound of Ω(t log(`/t)) on the size of the
hash value of any PPH function for the exact hamming distance predicate, showing that our result is
not far from optimal.

Our hash functions can be described by a uniformly random bit string of sufficient length. This means
that, assuming a random oracle, these descriptions can compressed into λ bits by replacing it with a
short seed. This compression is not applicable to the work of Fleischhacker and Simkin, since their hash
function descriptions are Θ(`λ)-long bit strings with a secret structure that is only known to the sampling
algorithm.

1.2 Technical Overview

Let x0 and x1 be two `-bit strings, which we would like to compress using a hash function h in a
manner that allows us to use h(x0) and h(x1) to check whether d(x0, x1) < t, where d is the hamming
distance and t is some threshold. We start with a simple observation from the work of Fleischhacker and
Simkin [FS21]. We can encode bit strings x = x1x2 . . . x` into sets X = {2i − xi | i = 1, . . . , `} and for
x0, x1 ∈ {0, 1}` we have that d(x0, x1) < t, if and only if |X0 4X1| < 2t. Thus, from now on we can focus
on hashing sets and constructing a property-preserving hash function for the symmetric set difference,
which turns out to be an easier task.

Conceptually, our construction is inspired by Invertible Bloom Lookup Tables (IBLTs), which were
introduced by Goodrich and Mitzenmacher [GM11]. This data structure allows one to encode a set into
an Õ(t) sketch with the following properties: Two sketches can be subtracted from each other, resulting
in a new sketch that corresponds to an encoding of the symmetric set difference of the original sets. If a
4 We do not care about the exact size of their gap, since we will focus on a strictly stronger predicate in this
work.
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sketch contains at most O(t) many set elements, then it can be decoded with high probability, meaning
that the elements within it can be fully recovered.

Given this data structure, one could attempt the following construction of a PPH function for the
symmetric set difference predicate. Given an input set, encode it as an IBLT. To evaluate the symmetric
set difference predicate on two hash values, subtract the two given IBLTs and attempt to decode the
resulting data structure. If decoding succeeds, then count the number of decoded elements and check,
whether it’s more or less than 2t. If decoding fails, then conclude that the symmetric set difference is too
large. The main issue with this construction is that IBLTs do not provide any correctness guarantees for
inputs that are chosen adversarially. Thus, the main contribution of this work is to construct a robust
set encoding similar to IBLTs that remains secure in the presence of an adversary.

Our robust set encoding is comprised of “random” functions ri : {0, 1}∗ → {1, . . . , 2t} for i = 1, . . . , k
and a “special” collision-resistant hash function A. To encode a set X, we generate an initially empty
k × 2t matrix H. Each element x ∈ X is then inserted by adding A(x) in each row i to column ri(x) in
H, i.e., H[i, ri(x)] = H[i, ri(x)] + A(x) for i = 1, . . . , k. To subtract two encodings, we simply subtract
the two matrices entry-wise. To decode a matrix back into a set, we repeatedly look for entries in H that
contain a single hash value A(x), i.e., for cells i, j with |H[i, j]| = A(x) for some x, and peel them away.
That is, whenever we find such an entry, we find x corresponding to A(x) and then remove x from all
positions, where it was originally inserted in H. Then we repeat the process until the matrix H is empty
or until the process gets stuck, because no cell contains a single set element by itself.

To prove security of our construction, we will show two things. First, we will show that no adversary
can find a pair of sets that have a small symmetric set difference, where the peeling process will get
stuck. Actually, we will show something stronger, namely that such pairs do not exist with overwhelming
probability over the random choices of r1, . . . , rk. Secondly, we will need to show that no (computationally
bounded) adversary can find inputs, which decode incorrectly. In particular, we will have to argue that
the peeling process never decodes an element that was not actually encoded, i.e., that the sum of several
hash values in some cell H[i, j] never looks like A(x) for some single set element x. To argue that such
a bad sum of hash values does not exist, one would need to pick the output length of A too big in
the sense that our resulting PPH function would not be compressing. Instead, we will show that for
an appropriate choice of A these sums may exist, but finding them is hard and can be reduced to the
computational hardness of solving the Short Integer Solution Problem [Ajt96], a well-studied assumption
from lattice-based cryptography.

2 Preliminaries

This section introduces notation, some basic definitions and lemmas that we will use throughout this
work. We denote by λ ∈ N the security parameter and by poly(λ) any function that is bounded by a
polynomial in λ. A function f in λ is negligible, if for every c ∈ N, there exists some N ∈ N, such that
for all λ > N it holds that f(λ) < 1/λc. We denote by negl(λ) any negligible function. An algorithm is
PPT if it is modeled by a probabilistic Turing machine with a running time bounded by poly(λ).

We write ei to denote the i-th canonical unit vector, i.e. the vector of zeroes with a one in position i,
and assume that the dimension of the vector is known from the context. For a row vector v, we write vᵀ
to denote its transpose. Let n ∈ N, we denote by [n] the set {1, . . . , n}. Let X,Y be sets, we denote by |X|
the size of X and by X4Y the symmetric set difference of X and Y , i.e., X4Y = (X ∪Y ) \ (X ∩Y ) =
(X \ Y ) ∪ (Y \ X). We write x ← X to denote the process of sampling an element of X uniformly at
random. For x, y ∈ {0, 1}n, we write w(x) to denote the Hamming weight of x and we write d(x, y) to
denote the Hamming distance between x and y, i.e., d(x, y) = w(x⊕ y). We write xi to denote the i-th
bit of x.

2.1 Property-Preserving Hash Functions

The following definition of property-preserving hash functions is taken almost verbatim from [BLV19]. In
this work, we consider the strongest of several different security notions that were proposed in [BLV19].

Definition 1 (Property-Preserving Hash). For a λ ∈ N an η-compressing property-preserving hash
function family Hλ = {h : X → Y } for a two-input predicate requires the following three efficiently
computable algorithms:
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Sample(1λ)→ h is an efficient randomized algorithm that samples an efficiently computable random hash
function from H with security parameter λ.

Hash(h, x)→ y is an efficient deterministic algorithm that evaluates the hash function h on x.
Eval(h, y0, y1)→ {0, 1}: is an efficient deterministic algorithm that on input h, and y0, y1 ∈ Y outputs a

single bit.

We require that H must be compressing, meaning that log |Y | ≤ η log |X| for 0 < η < 1.

For notational convenience we write h(x) for Hash(h, x).

Definition 2 (Direct-Access Robustness). A family of PPH functions H = {h : X → Y } for a
two-input predicate P : X×X → {0, 1} is a family of direct-access robust PPH functions if, for any PPT
adversary A it holds that,

Pr

[
h← Sample(1λ);

(x0, x1)← A(h)
: Eval(h, h(x0), h(x1)) 6= P (x0, x1)

]
≤ negl(λ),

where the probability is taken over the internal random coins of Sample and A.

Two-Input Predicates. We define the following two-input predicates, which will be the main focus of
this work.

Definition 3 (Hamming Predicate). For x, y ∈ {0, 1}n and t > 0, the two-input predicate is defined
as

HAMt(x, y) =

{
1 if d(x, y) ≥ t
0 Otherwise

2.2 Lattices

In the following we recall some lattice hardness assumptions and the relationships between them. We
start by revisiting one of the most well-studied computational problems.

Definition 4 (Shortest Independent Vector Problem). For an approximation factor of γ :=
γ(n) ≥ 1, the (n, γ)-SIVP is defined as follows: Given a lattice L ⊂ Rn, output n linearly indepen-
dent lattice vectors, which have all euclidean length at most γ · λn(L), where λn(L) is the minimum
possible.

Starting with the celebrated work of Lenstra, Lenstra, and Lovász [LLL82], a long line of research
works [ADRS15, ASD18, ALNS20] has been dedicated to finding fast algorithms for solving the exact
and approximate shortest independent vector problem. All existing algorithms for finding any poly(n)-
approximation run in time 2Ω(n) and it is believed that one can not do better asymptotically as is
captured in the following assumption.

Assumption 5. For large enough n, there exists no 2o(n)-time algorithm for solving the (n, γ)-SIVP
with γ = poly(n).

A different computationally hard problem that has been studied extensively is the short integer
solution problem.

Definition 6 (Short Integer Solution Problem). For parameters n,m, q, β2, β∞ ∈ N, the (n,m, q,
β2, β∞)-SIS problem is defined as follows: Given a uniformly random matrix A ∈ Zn×mq , find s ∈ Zm
with ‖s‖2 ≤ β2 and ‖s‖∞ ≤ β∞, such that Asᵀ = 0.

It was shown by Micciancio and Peikert that the difficulty of solving the SIS problem fast on average
is related to the difficulty of solving the SIVP in the worst-case.

Theorem 1 (Worst-Case to Average-Case Reduction for SIS [MP13]). Let n, m := m(n), and
β2 ≥ β∞ ≥ 1 be integers. Let q ≥ β2 · nδ for some constant δ > 0. Solving the (n,m, q, β2, β∞)-SIS
problem on average with non-negligible probability in n is at least as hard as solving the (n, γ)-SIVP in
the worst-case to within γ = max(1, β2 · β∞/q) · Õ (β2

√
n).
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Combining the above result with Assumption 5, we get the following corollary.

Corollary 2. Let n ∈ Θ(λ) and m = poly(λ) be integers, let β∞ = 2, and let β2 =
√
m+ ν for some

constant ν. Let q > β2 · nδ for some constant δ > 0. If Assumption 5 holds, then for large enough λ,
there exists no PPT adversary that solves the (n,m, q, β2, β∞)-SIS problem with non-negligible (in λ)
probability.

3 Robust Set Encodings

In this section, we define our notion of robust set encodings. The encoding transforms a possibly large
set into a smaller sketch. Given two sketches of sets with a small enough symmetric set difference, one
should be able to decode the symmetric set difference. The security of our encodings guarantees that no
computationally bounded adversary can find a pair of sets where decoding either returns the incorrect
result or fails even though the symmetric set difference between the encoded sets is small.

Definition 7 (Robust Set Encodings). A robust set encoding for a universe U is comprised of the
following algorithms:

Sample(1λ, t)→ f is an efficient randomized algorithm that takes the security parameter λ and threshold
t as input and returns an efficiently computable set encoding function f sampled from the family E.

Encode(f,X)→ y is an efficient deterministic algorithm that takes set encoding function f and set X ⊂
U as input and returns encoding y.

Decode(f, y0, y1)→ X ′/⊥ is an efficient deterministic algorithm that takes set encoding function f and
two set encodings y0, y1 as input and returns set X ′ or ⊥.

We denote by LenE : N×N→ N the function that describes the length of the encoding for a given security
parameter λ and threshold t. For any two sets X0, X1 we use X ′ ← Diff(f,X0, X1) as a shorthand
notation for

X ′ ← Decode(f,Encode(f,X0),Encode(f,X1)).

We say a set encoding is robust, if for any PPT adversary A and any threshold t ∈ N it holds that,

Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

:
X ′ 6∈ {X0 4X1,⊥}

∨ (|X0 4X1| < t ∧X ′ = ⊥)

 ≤ negl(λ),

where the probability is taken over the random coins of the adversary A and Sample.

3.1 Instantiation

In this section we construct a set encoding for universe [m] with m = poly(λ) by modifying Invertible
Bloom Lookup Tables [GM11] to achieve security against adaptive malicious inputs. Since we are only
encoding polynomially large sets and can leverage the cryptographic hardness of the SIS problem, we can
get away with only maintaining a matrix of hash values in our sketch and we do not require the additional
counter or value fields that were present in the original construction of Goodrich and Mitzenmacher. Refer
to Figure 1 for a full description of the construction. Before we prove that the construction is a robust
set encoding we will first prove a few of its properties that will be useful in the following.

The following lemma effectively states that given the difference of two encodings there will always be
a least one element that can can be peeled if the symmetric set difference is small enough.

Lemma 3. Let R be a family of t-wise independent hash functions r : [m]→ [2t] and let k ≥ 2 log3/em.
With probability at least 1 − 2−Ω(k), it simultaneously holds for all sets T ⊆ [m] with 0 < |T | ≤ t that
there is at least one x ∈ T and one index i ∈ [k] such that ri(x) 6= ri(y) for all y ∈ T \ {x}. Here the
probability is taken over the random choice of the ri’s.
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Sample(1λ, t)

foreach i ∈ [k]

ri ←R.Sample(1λ)

R := (r1, . . . , rk)

A← Zn×mq

return f := (R,A)

Encode(f,X)

H := (0n)k×2t ∈ (Znq )k×2t

foreach x ∈ X
foreach i ∈ [k]

H[i, ri(x)] := H[i, ri(x)] +Aeᵀx

return y := H

Decode(f,H0, H1))

H := H0 −H1

X ′ := ∅
do

Z :=

(x,w)

∣∣∣∣∣∣∣
∃(i, j) ∈ [k]× [2t].

∧H[i, j] = w

∧ w ∈ {Aeᵀx,−Aeᵀx}


X ′ := X ′ ∪ {x | ∃w. (x,w) ∈ Z}
H := Peel(f,H,Z)

while Z 6= ∅

if H = (0n)k×2t

return X ′

else

return ⊥

Peel(f,H,Z)

foreach (x,w) ∈ Z
foreach i ∈ [k]

H[i, ri(x)] := H[i, ri(x)]− w
return H

Fig. 1. Construction of robust set encodings for universe Zm.

Proof. Let E denote the event that there is a set T with 0 < |T | ≤ t such that for all x ∈ T and all
i ∈ [k], there is a y ∈ T \ {x} with ri(x) = ri(y). We show that Pr[E] is small. The proof follows from a
union bound over all T ⊆ [m] with 2 ≤ |T | ≤ t. So fix one such T . Let ET denote the event that there is
no i ∈ [k] and x ∈ T such that ri(x) 6= ri(y) for all y ∈ T \ {x}. Then by a union bound, we have

Pr[E] ≤ Pr
[⋃
T⊆[m]

ET

]
≤
∑
T⊆[m]

Pr[ET ].

To bound Pr[ET ], notice that conditioned on ET , the number of distinct hash values |{ri(x) | x ∈ T}|
for the ith hash function is at most |T |/2, as every hash value is hit by either 0 or at least 2 elements
from T . Now define an event ET,S for every k-tuple S = (S1, . . . , Sk) where Si is a subset of |T |/2 values
in [k]. The event ET,S occurs if ri(x) ∈ Si for every x ∈ T and every i ∈ [k]. If ET happens then at least
one event ET,S happens. Thus

Pr[ET ] ≤ Pr
[⋃
S

ET,S ] ≤
∑
S

Pr[ET,S ].

To bound Pr[ET,S ], notice that by t-wise independence, the values ri(x) are independent and fall
in Si with probability exactly |T |/(2 · 2t). Since this must happen for every i and every x ∈ T , we get
that Pr[ET,S ] ≤ (|T |/(4t))|T |k and Pr[ET ] ≤

(
2t
|T |/2

)k
(|T |/(4t))|T |k. A union bound over all T gives us

Pr[E] ≤
∑t
j=2

(
m
j

)(
2t
j/2

)k
(j/(4t))jk. Using the bound

(
n
k

)
≤ (en/k)k for all 0 ≤ k ≤ n and the bound(

m
j

)
≤ mj , we finally conclude:

Pr[E] ≤
t∑

j=2

(
m

j

)(
2t

j/2

)k
(j/(4t))jk

≤
t∑

j=2

mj(4et/j)jk/2(j/(4t))jk
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=

t∑
j=2

mj(e/3)jk/2(3j/(4t))jk/2

For k ≥ 2 log3/em we have (e/3)k/2 ≤ 1/m. The above is thus bounded by

Pr[E] ≤
t∑

j=2

(3j/(4t))jk/2

≤
t∑

j=2

(3/4)jk/2

For any k ≥ 2, the terms in this sum go down by a factor at least 4/3 and thus is bounded by 2−Ω(k). ut

In the next lemma we show that correctly peeling one layer of elements during decoding leads to a
state that is equivalent to never having inserted those elements in the first place.

Lemma 4. For any security parameter λ, any threshold t, any encoding function f ← Sample(1λ, t),
any pair of subsets X0, X1 ⊆ [m] and any set

Z ⊆ {(x,Aeᵀx) | x ∈ X0 \X1} ∪ {(x,−Aeᵀx) | x ∈ X1 \X0}

and X := {x | ∃w. (x,w) ∈ Z} it holds that

Peel(Encode(f,X0)− Encode(f,X1), Z) = Encode(f,X0 \X)− Encode(f,X1 \X).

Proof. Let Hb := Encode(f,Xb), H ′b := Encode(f,X ′b \X) and H := Peel(f,H0 −H1, Z) For any (i, j) ∈
[k]× [2t], let Si,j = {x ∈ [m] | ri(x) = j}. Then for each (i, j) ∈ [k]× [2t] we have

H[i, j] =H0[i, j]−H1[i, j]−
∑

x∈X∩Si,j

Z(x) (1)

=
∑

x∈X0∩Si,j

Aeᵀx −
∑

x∈X1∩Si,j

Aeᵀx −
∑

x∈X∩Si,j

Z(x) (2)

=
∑

x∈X0∩Si,j

Aeᵀx −
∑

x∈X1∩Si,j

Aeᵀx −
∑

x∈X∩X0∩Si,j

Z(x) −
∑

x∈X∩X1∩Si,j

Z(x) (3)

=
∑

x∈X0∩Si,j

Aeᵀx −
∑

x∈X1∩Si,j

Aeᵀx −
∑

x∈X∩X0∩Si,j

Aeᵀx +
∑

x∈X∩X1∩Si,j

Aeᵀx (4)

=
∑

x∈(X0\X)∩Si,j

Aeᵀx −
∑

x∈(X1\X)∩Si,j

Aeᵀx (5)

=H ′0[i, j]−H ′1[i, j], (6)

where we denote by Z(x) the unique value w such that (x,w) ∈ Z. Equations 1 and 2 follow from the
definitions of Peel and Encode respectively. Equations 3 and 5 follow from the fact that X is a subset
of the symmetric set difference of X0 and X1. Equation 4 follows from the fact that w = (−1)bAeᵀx iff
x ∈ Xb. Finally, Equation 6 follows again from the definition of Encode. ut

The following lemma essentially states that during the decoding process we will never peel an element
that is not in the symmetric set difference and all elements will be peeled correctly, i.e., the decoding
algorithm correctly identifies whether an element is from X0 or from X1.

Lemma 5. For an encoding function f ← Sample(1λ, t) and two sets X0, X1, let Z1, Z2, . . . denote the
sequence of sets peeled during the execution of

Decode(f,Encode(f,X0),Encode(f,X1)).

Let further Xc
b = Xb \ {y | ∃w. (y, w) ∈ Z1 ∪ · · · ∪ Zc−1}. If the (n,m, q,

√
m+ 3, 2)-SIS problem is hard,

then for any PPT algorithm A, it holds that

Pr

[
f := Sample(1λ, t);

(X0, X1)← A(f)
∃c. Zc 6⊆

{(x,Aeᵀx) | x ∈ Xc
0 \Xc

1}
∪{(x,−Aeᵀx) | x ∈ Xc

1 \Xc
0}

]
≤ negl(λ).
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Proof. Let A be an arbitrary PPT algorithm with

Pr

[
f := Sample(1λ, t);

(X0, X1)← A(f)
∃c. Zc 6⊆

{(x,Aeᵀx) | x ∈ Xc
0 \Xc

1}
∪{(x,−Aeᵀx) | x ∈ Xc

1 \Xc
0}

]
= ε(λ).

We construct an algorithm B that solves (n,m, q,
√
m+ 3, 2)-SIS as follows. B receives as input a ran-

dom matrix A ∈ Zn×mq , samples ri ← R for i ∈ [k] and invokes A on f = (A, (r1, . . . , rk)). Once
A outputs X0, X1, B runs H0 := Encode(f,X0) and H1 := Encode(f,X1) and then starts to execute
Decode(f,H0, H1). Let Zc denote the set Z in the c-th iteration of the main loop of Decode. In each
iteration, if

Zc 6⊆ {(x,Aeᵀx) | x ∈ Xc
0 \Xc

1} ∪ {(x,−Aeᵀx) | x ∈ Xc
1 \Xc

0},

then B stops the decoding process and proceeds as follows.
Let Si,j = {x ∈ [m] | ri(x) = j}.By definition of Z, there must exists at least one element (x,w) ∈ Zc,

such that
H[i, j] = (−1)bAeᵀx and x 6∈ Xc

b \Xc
1−b (7)

for some cell (i, j) and some bit b. B identifies one such cell by exhaustive search and outputs the vector

s :=
∑

y∈Xc
0∩Si,j

ey −
∑

y∈Xc
1∩Si,j

ey − (−1)bex.

If the decoding procedure terminates without such a Zc occurring, B outputs ⊥.
To analyze the success probability of B, consider that by Lemma 4 and since Zc is the first set in

which an element as specified above exists, we have that H = Encode(f,X ′0)− Encode(f,X ′1), i.e.

(−1)bAeᵀx = H[i, j] =
∑

y∈Xc
0∩Si,j

Aeᵀy −
∑

y∈Xc
1∩Si,j

Aeᵀy

Thus, whenever B outputs a vector s, it holds that Asᵀ = 0. Furthermore, this vector consists of the
sum of at most m unique canonical unit vectors and one additional canonical unit vector. This implies
that ‖s‖2 ≤

√
m+ 3 and ‖s‖∞ ≤ 2. It remains to argue that s is non-zero. The vector s is zero, iff∑

y∈Xc
0∩Si,j

ey −
∑

y∈Xc
1∩Si,j

ey = (−1)bex.

Observe that, since we are summing up canonical unit vectors, this can hold only if x ∈ Xc
b \ Xc

1−b.
However, by Equation 7 this does not occur, therefore s is non-zero.

We can conclude that B solves (n,m, q,
√
m+ 3, 2)-SIS, with probability ε(λ). Since (n,m, q,

√
m+ 3,

2)-SIS is assumed to be hard, ε(λ) must be negligible. ut

The following lemma states that with overwhelming probability the decoding process will output
either ⊥ or a subset of the symmetric set difference, even for maliciously chosen sets X0, X1.

Lemma 6. If the (n,m, q,
√
m+ 3, 2)-SIS problem is hard, then for any PPT adversary A it holds that

Pr

 f := Sample(1λ, t);

(X0, X1)← A(f);
X ′ := Diff(f,X0, X1)

: X ′ 6= ⊥ ∧ X ′ 6⊆ X0 4X1

 ≤ negl(λ)

Proof. Let Z1, Z2, . . . denote the sequence of sets peeled during the execution of

Decode(f,Encode(f,X0),Encode(f,X0)).

If an algorithm outputs X0, X1, such that X ′ 6⊆ X0 4X1, there must exist an x ∈ X ′ such that

x′ 6∈ X0 4X1 = (X0 \X1) ∪ (X1 \X0).

Since X ′ := {x | ∃w. (x,w) ∈ Z1∪ . . . }, this can only happen with negligible probability by Lemma 5. ut
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The following lemma states that with overwhelming probability the decoding process will never output
a strict subset of the symmetric set difference, even for maliciously chosen sets X0, X1.

Lemma 7. If the (n,m, q,
√
m+ 3, 2)-SIS problem is hard, then for any PPT adversary A it holds that

Pr

 f := Sample(1λ, t);

(X0, X1)← A(f);
X ′ := Diff(f,X0, X1)

: X ′ ( X0 4X1

 ≤ negl(λ)

Proof. Let A be a PPT an adversary for the above experiment. We construct an adversary B against
(n,m, q,

√
m+ 3, 2)-SIS as follows. B is given matrix A, samples ri ← R for i ∈ [k] and invokes A

on f = (A, (r1, . . . , rk)). Adversary A returns X0 and X1 and B computes X ′ := Diff(f,X0, X1). If
X ′ ( X0 4 X1, then B computes X ′b = Xb \ X ′ for b ∈ {0, 1} and finds an index i, j such that there
exists an x ∈ X ′0 4X ′1 with ri(x) = j. B returns

s :=
∑

y∈X′
0∩Si,j

ey −
∑

y∈X′
1∩Si,j

ey.

Since every canonical unit vector appears at most once in the sum above, it follows that ‖s‖2 ≤
√
m and

‖s‖∞ = 1. Further, since, by construction, there exists at least one y ∈ (X ′0∩Si,j)4 (X ′1∩Si,j) it follows
that s 6= 0.

To analyze the probability that Asᵀ = 0 we consider the following. Let H ′ be the value of the matrix
H when the decoding procedure terminates. By Lemma 5 and Lemma 4 it holds with overwhelming
probability that H ′ = H ′0−H ′1 = Encode(f,X ′0)−Encode(f,X ′1). However, since the decoding terminates
successfully, it must also hold that H ′ = (0n)k×2t. It follows that for all i, j, we have H ′0[i, j]−H ′1[i, j] = 0
and therefore As = 0 with overwhelming probability. Since (n,m, q,

√
m+ 3, 2)-SIS is assumed to be hard

the lemma follows. ut

By combining Lemma 6 and Lemma 7 we obtain the following corollary stating that with overwhelm-
ing probability the decoding process will output either the correct symmetric set difference or the error
symbol ⊥.

Corollary 8. If the (n,m, q,
√
m+ 3, 2)-SIS problem is hard, then for any PPT adversary A it holds

that

Pr

 f := Sample(1λ, t);

(X0, X1)← A(f);
X ′ := Diff(f,X0, X1)

: X ′ 6∈ {X0 4X1,⊥}

 ≤ negl(λ)

The following lemma states that with overwhelming probability the decoding process will not output
⊥ if the symmetric set difference is small.

Lemma 9. If the (n,m, q,
√
m+ 3, 2)-SIS problem is hard, then for any PPT adversary A it holds that

Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

: |X0 4X1| < t ∧X ′ = ⊥

 ≤ negl(λ)

Proof. Let A be an arbitrary PPT algorithm. By Lemma 5 and Lemma 4 it holds that in each iteration
c we have H = Hc,0 − Hc,1, where Hc,b = Encode(f,Xc,0, Xc,1) and Xc,b = Xb \ {x | ∃w. (x,w) ∈
Z1∪· · ·∪Zc−1}. Since it must hold that |X04X1| < t it in particular holds that |Xc,04Xc,1| < t in each
iteration. By Lemma 3, in each iteration where Xc,14Xc,2 6= ∅ it holds that Zc 6= ∅ with overwhelming
probability. Therefore, the decoding process terminates after at most t steps, with X ′ = X04X1. Since
each peeling step was correct with overwhelming probability it must hold that H = (0n)k×2t. ut

Given the above lemmas, we can now easily prove the following theorem.

Theorem 10. Let R be a family of t-wise independent hash functions r : [m] → [2t] and let k ≥
max{λ, 2 log3/em}. Then the construction in Figure 1 is a robust set encoding for universe [m] if the
(n = n(λ),m, q,

√
m+ 3, 2)-SIS problem is hard.
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Sample(1λ)

f ← E .Sample(1λ, 2t)

return h := f

Hash(h, x)

X := {2i− xi | i ∈ [`]}
y := E .Encode(h,X)

return y

Eval(h, y0, y1)

X ′ := E .Decode(h, y0, y1)
if X ′ = ⊥ or

∣∣X ′∣∣ ≥ 2t

return 1

else

return 0

Fig. 2. A family of direct-access robust PPHs for the predicate HAMt over the domain {0, 1}` for any ` ∈ N.

Proof. Let A be an arbitrary PPT algorithm, using Corollary 8, Lemma 9 and a simple union bound we
can conclude that

Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

:
X ′ 6∈ {X0 4X1,⊥}
∨ (|X0 4X1| < t ∧X ′ = ⊥)


≤ Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

: X ′ 6∈ {X0 4X1,⊥}


+ Pr

f ← Sample(1λ, t);

(X0, X1)← A(f, t);
X ′ ← Diff(f,X0, X1)

: |X0 4X1| < t ∧X ′ = ⊥


≤ negl(λ).

Remark 1. Instantiated as specified, the construction has keys that consist of k many t-wise independent
hash functions and a matrix A ∈ Zm×nq , leading to a key length of kt · logm+mn · log q. Note that the
entire key can be represented by a public uniformly random kt · logm+mn · log q bit string. Assuming
the existence of a random oracle, this string can be replaced by a short λ bit seed.

4 Construction

In this section we construct property-preserving hash functions for the exact hamming distance predicate
based on robust set encodings.

4.1 PPH for the Hamming Distance Predicate

Theorem 11. Let ` = poly(λ) and t ≤ `. Let E be a robust set encoding for universe [2`] with encod-
ing length LenE . Then, the construction in Figure 2 is a LenE(λ, 2t)/`-compressing direct-access robust
property-preserving hash function family for the two-input predicate HAMt and domain {0, 1}`.

Proof. Let A be an arbitrary PPT adversary against the direct-access robustness of H. We construct an
adversary B against the robustness of E as follows. Upon input e, B invokes A on input h := f . When A
outputs x0, x1, B outputs X0 := {2i− x0,i | i ∈ [`]} and X1 := {2i− x1,i | i ∈ [`]}. We note that it holds
that

Pr

[
h← Sample(1λ);

(x0, x1)← A(h)
: Eval(h, h(x0), h(x1)) 6= HAMt(x0, x1)

]
(8)

=Pr


f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
y0 := E .Encode(f,X0);

y1 := E .Encode(f,X1)

: Eval(f, y0, y1) 6= HAMt(x0, x1)

 (9)
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=Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:
(d(x0, x1) ≥ t ∧X ′ 6= ⊥ ∧ |X ′| < 2t)

∨(d(x0, x1) < t ∧ (X ′ = ⊥ ∨ |X ′| ≥ 2t))

 (10)

=Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:
(|X0 4X1| ≥ 2t ∧X ′ 6= ⊥ ∧ |X ′| < 2t)

∨(|X0 4X1| < 2t ∧ (X ′ = ⊥ ∨ |X ′| ≥ 2t))

 (11)

=Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:

(|X0 4X1| ≥ 2t ∧X ′ 6= ⊥ ∧ |X ′| < 2t)

∨(|X0 4X1| < 2t ∧X ′ 6= ⊥ ∧ |X ′| ≥ 2t)

∨(|X0 4X1| < 2t ∧X ′ = ⊥)

 (12)

=Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:
(X ′ 6= ⊥ ∧ |X0 4X1| 6= |X ′|)
∨(|X0 4X1| < 2t ∧X ′ = ⊥)

 (13)

≤Pr

f ← E .Sample(1λ, 2t);

(X0, X1)← B(f);
X ′ := Diff(f,X0, X1)

:
X ′ 6∈ {X0 4X1,⊥}
∨(|X0 4X1| < 2t ∧X ′ = ⊥)

. (14)

(15)

Here Equation 9 follows from the definition of Sample and Hash and Equation 10 follows from the
definition of Eval as well as the exact hamming distance predicate. Equation 11 follows from the definition
of the sets X0, X1: for each position i where the x0,i = x1,i, the sets share an element, whereas for every
position where x0,i 6= x1,i, one of them contains the element 2i and the other 2i − 1, thus d(x0, x1) =
t ⇐⇒ |X04X1| = 2t. Equations 12 and 13 follow by first splitting the bottom clause and then rewriting
the top two clauses.

Finally, since E is a robust set encoding it holds by assumption that the probability in Equation 14
is negligible and the theorem thus follows.

Corollary 12. Instantiating the construction from Figure 2 using the robust set encoding from Section 3
with k = n = λ and q =

√
λ(2`+ 3) leads to a 2tkn log q

` = tλ2 log(λ(2`+3))
` compressing PPH for exact

hamming distance.

5 Lower Bound

In this section, we show a lower bound on the output length of a PPH for exact Hamming distance. We
prove the lower bound by reduction from indexing. In the indexing problem, there are two parameters
k and m. The first player Alice is given a string x = (x1, . . . , xm) ∈ [k]m, while the second player Bob is
given an integer i ∈ [m]. Alice sends a single message to Bob and Bob should output xi. The following
lower bound holds:

Lemma 13 ([MNSW98]). In any one-way protocol for indexing in the joint random source model with
success probability at least 1−δ over a uniform random string x and uniform random index i, Alice must
send a message of size Ω((1− δ)m log k −m) in expectation.

Here the joint random source model means that Alice and Bob have shared randomness that is drawn
independently of their inputs. Note that we have strengthened the lemma a bit over the original result,
to allow the failure probability to be “on average” over a uniform random index. The proof of the above
lemma is very short using modern techniques:

Proof. Let X = (X1, . . . , Xm) be a uniform random string over [k]m and let I be a uniform random index
in [m]. Let R be a random variable giving the shared randomness between Alice and Bob (independent
of their inputs) drawn from some universe R of finite bit strings. Let π : [k]m × R → {0, 1}∗ give
Alice’s message in a protocol and let τ : {0, 1}∗ × [m]×R → [k] be Bob’s decoding. That is, π(X,R) is
Alice’s message and τ(π(X,R), I, R) is Bob’s output. Assume PrX,I,R[τ(π(X,R), I, R) = XI ] ≥ 1 − δ.
For every i ∈ [m], let δi = PrX,R[τ(π(X,R), i, R) 6= Xi]. Then

∑m
i=1 δi/m ≤ δ. Thus given Alice’s
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message π(X,R), Bob may reconstruct Xi except with probability δi by computing τ(π(X,R), i, R). By
Fano’s inequality, this implies that H(Xi | π(X,R), R) ≤ Hb(δi) + δi log k ≤ 1 + δi log k (here Hb(·)
denotes binary entropy). Therefore, we have H(X | π(X,R), R) ≤

∑m
i=1 1+ δi log k ≤ m+ δm log k. But

H(X | R) = m log k. Thus H(π(X,R)) ≥ H(π(X,R) | R) ≥ I(X;π(X,R) | R) = H(X | R) − H(X |
R, π(X,R)) ≥ (1− δ)m log k −m. Since the entropy of a bit string is no more than its expected length,
the lower bound follows.

Using the above lemma, we prove the following lower bound:

Theorem 14. Any PPH for the exact Hamming distance predicate on `-bit strings with threshold t and
success probability at least 1− δ(This means that the direct access robustness error is at most δ.), must
have an output length of Ω((1− δ)(t− 1) log(`/t)− t) bits.

Proof. Assume that there exists a PPH-family H for the predicate HAMt and input length ` with t ≤ `
and direct robustness error at most δ.Let s denote the output length of H. We then use H to solve
indexing with parameters k = b`/tc and m = t−1. When Alice receives a string x ∈ [k]m, she constructs
a binary string y consisting of m chunks of k bits. If mk < `, she pads this string with 0’s. Each chunk
in y has a single 1 in position xi and 0’s elsewhere. She then computes the hash value h(y), where h is
sampled from H using joint randomness, and sends it to Bob, costing s bits.

From his index i ∈ [m], Bob constructs k bit strings z1, . . . , zk of length `, such that zj has a 1 in the
position corresponding to the j’th position of the i’th chunk of y, and 0 everywhere else. He then computes
the hash values h(z1), . . . , h(zk) (using the joint randomness to sample h) and runs Eval(h, h(y), h(zj)).
Bob outputs as his guess for xi, an index j, such that Eval(h, h(y), h(zj)) = 0. Notice that the Hamming
distance between zj and y is m+ 1 ≥ t if j 6= xi and it is m− 1 < t otherwise. Thus if all k evaluations
are correct, Bob succeeds in reporting xi. The probability that all evaluations are correct is at least
1−δ, since otherwise an adversary could break the direct access robustness of H with probability greater
than δ by sampling x and i uniformly at random, simulating the above protocol, checking for which zj
the evaluation is correct and outputting y, zj . Thus, Bob is correct with probability at least 1 − δ. By
Lemma 13, we conclude s = Ω((1− δ)(t− 1) log(`/t)− t).

Remark 2. We note that for δ = negl(λ), t > 2, and ` > 4t the lower bound from Theorem 14 simplifies
to Ω(t log(`/t)).
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