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Abstract
Micro-architectural leakage is a reality even on low- to mid-

range commercial processors. Dealing with it is expensive,
because micro-architectural leakage is often only discovered
after implementation choices have been made (i.e. when eval-
uating the concrete implementation). We demonstrate that it
is feasible, using a recent leakage modelling technique, to re-
verse engineer significant elements of the micro-architectural
leakage of a mid-range commercial processor in a “grey-box”
setting. Our approach first recovers the micro-architectural
features of each stage in the pipeline, and the leakage of
elements that are known to produce glitches. To put our re-
verse engineered micro-architectural leakage in context, we
compare and contrast a leakage analysis of a relevant piece of
masking code. More specifically, we compare the leakage that
we would anticipate given our analysis, and predictions of the
to-date most sophisticated leakage simulators (e.g. ELMO and
MAPS) on the same piece of code. Our research demonstrates
that reverse engineering of micro-architectural components
(and their leakage) is clearly feasible using available side-
channel leakage, and following, it should be possible to build
more accurate leakage simulators.

1 Introduction

Securing a specific implementation on a concrete device is
never a trivial task. Take power analysis [13] for instance:
despite 20 years of research on countermeasures (in particu-
lar masking on closed-source commercial processors), it is
still only with hindsight (based on costly evaluation results)
that developers realise that specific assumptions of masking
schemes are not fulfilled in practice.

In recent years, a proposal to help with this misery has
attracted some attention: instead of testing the security on
the physical device, leakage simulators like [6, 18, 22] have
surfaced, which all claim to capture significant leakage of the
respective devices that they apply to. A comprehensive survey
of existing simulators was recently published [3]. This survey

puts forward a range of challenges that are yet to be solved,
among which is the inclusion of more micro-architectural
effects (of the resp. processor).

The challenge, to include more micro-architectural effects,
is a non-trivial one when working with many interesting cores.
Processor manufacturers typically do not make a full hard-
ware description available (we call this a grey-box setting),
and state-of-the-art mid-range cores all feature pipelining
(thus multiple instructions execute in parallel). Even if a full
hardware description was available, it is clear that power sim-
ulations of a full core executing a masking scheme are infea-
sible (e.g. [9] is able to work with a single S-box only). Thus
a methodology that enables to capture the relevant micro-
architectural leakage would be desirable.

Side-channel leakage has been used in the past for reverse
engineering of both programs and hardware [4, 10, 12, 20, 23].
In these works the authors used standard DPA style attacks
(with and without using device leakage models) to confirm
hypotheses about the internals of the respective devices/imple-
mentations, which were relatively simple. In order to tackle
devices that feature pipelining, and/or a more interesting mem-
ory subsystem, a better approach is needed. In recent work [8],
Gao and Oswald pick up the methodology from [18] and ex-
tend it so it can work with (arbitrarily) complex nested models.
They define so called collapsed models, that enable testing
if a reduced model is relatively complete to an assumed full
model.

We show that this idea can not only be used to reason about
nested leakage models, but that it is actually a tool for reverse
engineering. We use it to dissect the captured leakage from a
mid-range processor and reveal its micro-architectural leak-
age characteristics. Doing so is all but straightforward, [8]
are clear that the test itself provides “clues” about the internal
mechanisms, but one needs to design additional confirmatory
experiments to actually verify the micro-architectural mean-
ing of these clues (this ties in with another recent paper [17]).

Our contributions. We demonstrate how the methodology
in [8] can be utilised to dissect the leakage of a mid-range
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processor to reveal its micro-architectural elements and their
leakage. We detail our methodology, and demonstrate it on an
existing commodity processor. The target processor is NXP
LPC1313, an off-the-shelf ARM Cortex-M3 processor. For
this processor, ARM provides an obfuscated reference design
code for academic usage, which underpins [6]. However, our
leakage model is completely built in a grey-box scenario,
because there is no guarantee that the LPC1313 (licensed
and produced by NXP) implements the reference design as
provided by ARM.

To put our results into the context of the existing leakage
simulation literature, we then compare leakage predictions
that are based on the reverse-engineered micro-architectural
leakage with the predictions of the most sophisticated simula-
tors ELMO, and MAPS1.

Whilst our methodology currently involves intensive man-
ual effort, we argue such effort is worthwhile, because:

• it enriches our understanding of micro-architecture ef-
fects in relevant processor architectures,

• it significantly improves the state-of-the-art leakage mod-
elling of micro-architectural elements

• it showcases that many existing leakage models and tools
miss significant micro-architectural effects.

Although our work currently needs a lot of manual effort (we
leave it as an open question to identify what can be automated
at this point), it is clear that given time and measurements,
our method can tackle at least existing mid-range processors.
Thus an important question that is raised by our work is can
manufacturers still keep (part of) the micro-architecture of
their products as a secret?

1.1 Tooling

Throughout this paper, we preserve the same experimental
setup:

• Target: NXP LPC1313 (ARM Cortex-M3) running at 1
MHz with only Thumb instructions

• Measurement point: voltage at a 100 Ohm shunt resistor
at the VCC end

• Pre-processing: on-board 22db amplifier (NXP
BGA2801)

• Oscilloscope: Picoscope 5243D running at 250 MSa/s

1ELMO* [22] offers an extension to ELMO that captures some more
leakage from the memory subsystem. ELMO offers also such an extension (in
the follow-up development), yet both are drawn from experimental guesses.
Nevertheless, our focus in this paper still lies in pipelined core, where the
entire ELMO family sticks with the original ELMO model [18].

Unless stated otherwise, each tested code snippet takes 50k
traces. Our setup ensures leakage does not last for more than 1
cycle, which helps to identify how leakage changes from cycle
to cycle. Thus, most experimental results in the following two
sections have been cropped to the exact cycle, which contains
250 sample points.

As a reverse engineering tool we use the methodology from
[8]. In a nutshell, this means that for two sets of variables (i.e.
operands from processor instructions), which correspond to
the nested regression models m1 ⊂ m2, we test if the explana-
tory power (as provided by the F-test) of m1 is as high as
the explanatory power of m2. If so then we consider m1 as
complete relative to m2. We define one of the models to be
an overly conservative set (i.e. we include, with reasoning,
many/all of the operands from prior and future instructions)
and we define the other model as a subset of the larger model.
The test hence helps us to “narrow” down which operands/-
values are truly presented in the execution at any given time
point.

1.2 Methodology and Paper Organisation

In the following three sections, we discuss step by step how to
reverse engineer the micro-architectural leakage elements of
a close-sourced commercial processor. In contrast to previous
works that captured only simple micro-architectural leakage
(e.g. [6, 18, 21, 22]), we aim to comprehensively recover all
micro-architectural leakage.

Restricted by a closed source setting, we cannot take ad-
vantage of a detailed hardware description, but we can utilise
publicly available architectural information to guide our anal-
ysis. Therefore, our methodology is based on the following
key steps:

1. Build an abstract diagram from the public available in-
formation (e.g. architecture reference [14], ISA [15] etc.)
and make some safe architectural inferences (Section 2).

2. Recover the relevant micro-architectural details through
analysing the side-channel leakage. Specify the data flow
for each instruction and construct a micro-architectural
leakage model for each pipeline stage (Section 3).

3. Evaluate the overall micro-architectural leakage for
the target processor, further adding more subtle micro-
architectural leakages (e.g. glitches) or discarding non-
significant factors (Section 4).

We then challenge the resulting micro-architectural leakage
model of our M3 by a comprehensive comparison in Section 5,
and we conclude this paper in Section 6.
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2 Step 1: Identifying Safe Architectural As-
sumptions

Although exploring every concrete detail is not possible in a
grey-box scenario, there is always some public information
available that can be used to construct an initial, abstract
architectural view. For instance, from Figure 1, reproduced
from [14, Figure 1.2], we know the Cortex-M3 processors
use a 3-stage pipeline [14]: the stages are termed Fe(tch),
De(code), and Ex(ecute). More specifically, while executing
instruction i− 2, instruction i− 1 is being decoded by the
instruction decoder, and instruction i is being fetched from the
memory to the instruction register. Since there is no dedicate
write-back stage, the Arithmetic Logic Unit (ALU) output
is written-back to the register file (or memory) immediately
after the Execute stage.

Figure 1: The Cortex-M3 pipeline [14, Figure 1.2].

Although not directly provided in [14], we believe the fol-
lowing details can be safely inferred

• A set of pipeline registers exists between stages, mean-
ing, for example, an instruction register between Fetch
and Decode and pipeline register(s) between Decode
and Execute.

• Figure 1 explicitly claims that “register read” occurs
within the Decode stage; this implies the pipeline regis-
ters between Decode and Execute stores control signals
and operands read from the register file.

• Many Thumb instructions [15] use 2 operands, which
suggests the register file should have at least 2 read ports;
this implies there are (at least) 2 operand pipeline regis-
ters between Decode and Execute.

PC
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Figure 2: Hypothetical micro-architecture: Fetch and De-
code.

3 Step 2: Recovering major micro-
architectural leakage elements

Previous works such as [17,21] have shown that side-channel
leakage can reveal some micro-architectural details. In this
spirit, but utilising the F-test methodology for nested models,
we set out to recover the major micro-architectural leakage
elements of the LPC core. We do so by analysing each of
three pipeline stages separately.

3.1 Fetch
The Fetch stage fetches one or several instructions from the
memory to the instruction register (i.e. block Fe in Figure
1). Based on the publicly information provided in the ARM
reference manual, we envision the micro-architecture of the
Fetch stage to look as depicted in Figure 2a.

Functionally, the fetched instruction’s address is stored in
Program Counter (PC, aka R15 in ARM): therefore we plot
F.1 which sends PC value to the instruction memory. PC can
be incremented automatically (F.2), or accepts new address for
branching (from ALU or decoder). F.3 loads the instruction(-
s) to the instruction register, which marks the beginning of
Decode. We plot all wires in this stage as blue lines in Figure
2a.

In terms of micro-architectural ambiguity, there is none in
Figure 2a. In fact, the wires F.1-3 are fully determined by the
value of PC. Unless the program performs data dependent
branches, all leakage from this stage is constant between exe-
cutions. We further exclude the leakage from data dependent
branches in our analysis: compared with leakage modelling,
information flow analysis is a much easier solution for that
issue.

3.2 Decode
The Decode stage starts from translating the fetched instruc-
tion into the control logic, and ends with sending the pre-
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loaded operand(-s) to the pipeline register(-s)(i.e. block De in
Figure 1).

Figure 2b plots our view of the micro-architecture for the
Decode stage. The decoder translates the instruction (D.1)
into control signals, including the register indices for the pre-
loaded operands (D.2-D.4) and potential immediate numbers
(D.8). The corresponding operands are loaded from the reg-
ister file (D.5-D.7), then sent to the pipeline registers (D.9-
D.10). The pipeline registers rs1 and rs2 mark the beginning
of Execute. All the wires in this stage are plotted as purple
lines: if the signal is directly read from a register, we use solid
line; otherwise, we use dash line to represent the fact that this
signal might be affected by glitches (analysed in Section 4.2).
Note that there should also be a few pipeline registers storing
the control signals and the immediate number: as they are not
data-dependent, we simply omit those in Figure 2b.

Unlike Fetch, there are a few ambiguities in the Decode
stage: first, it is unclear how many read ports/operands should
exist in Figure 2b. Considering most Thumb instructions take
at most 2 operands, previous tools often assume the register
file has 2 read ports [6, 18] (i.e. connected to D.5 and D.6).
We also started with a similar architecture, but identified some
instructions that access one extra register. From side-channel
leakage alone, we cannot conclude whether there is another
read port (i.e. D.7), or such leakage is from a multiplexing
route of the existing ports or even an unexpected access from
glitches. Either way, we proceed our analysis assuming there
are 3 read ports (which is leakage equivalent to the other
options).

With multiple read ports existing in the micro-architecture,
the next question to ask is which operand is loaded from which
port. Thus, we design the following experiments and try to
find the answer from analysing the realistic measurements.

Testing the read ports. We denote $a as the the low reg-
ister ra where a randomised operand A is stored in. The 3
reading ports in Figure 2b (marked as Data1−3, connected
to D.5-7), we denote them as port1, port2 and port3 respec-
tively. As we can see from the following code snippet, when
executing the first eors, the second instruction enters the De-
code stage. According to Figure 2b, operands C and D should
occupy two read ports on the register files (therefore also two
connected buses D.5 and D.6), while the previous values on
these ports should be A and B. Thus, within the cycle that
is decoding the second instruction, as long as we observe a
leakage that corresponds to the interaction of A and C, it is
expected that A and C should share the same reading port/-
operand bus.

1 Testing_port:
2 ...
3 eors $a,$b
4 INSTR $c, $d
5 nop

6 eors $0,$0 //$0=register that stores 0
7 ...

Formally speaking, let us assume in eors $a,$b, A takes
port 1 (i.e. D.5)2. From here, whenever an interaction is de-
tected between A and C, we set C to port 1. Otherwise, if an
interaction is detected between A and D, we set D to port 1.

By using a collapsed nested F-test between two models M0
and M1 we can test if the simplified model (M1) is sufficient
to explain the observed leakage, or if the larger model M0
is necessary. Notice that we do not restrict the larger model
to any conventional leakage assumption (e.g. Hamming dis-
tance between operands). Whilst we do not want to detail
the full methodology and notation of [8] we now provide
some more explanation to keep this paper reasonably self
contained. What is called the model M0 can be understood as
a regression equation in the variables A and C that contains
all possible interaction terms that can arise from A and C. It is
therefore a multinomial with 22n terms (if both A and C are n
bit variables), whereby β is a coefficient vector of length 22n.
The smaller model M1 includes both A and C, but not their
interactions. It is therefore a multinomial with 2n+1 variables
(the β here is again the corresponding coefficient vector). The
model M1 is included in the model M0 because all terms of
M1 are included in M0. In terms of a statistical analysis, the
model M1 is too large to really work with. The idea of “col-
lapsing models” introduced in [8] enables however practical
leakage testing. If M1 is accepted (i.e. p-value higher than the
statistical threshold), we say there is no strong evidence of
A and C interact with each other, therefore it is less likely A
and C shares the same reading port/operand bus in the micro-
architecture. Otherwise, A is clearly interacting with C: if the
interaction is indeed coming from the micro-architecture3, it
is likely A and C share the same reading port/operand bus.

• M0 = β{AC}, AC = {x|x = a||c,a ∈ A,c ∈C}

• M1 = β{A,C} (similarly BD, AD, BC)

Altogether we tested 55 Thumb instructions, which cov-
ers almost the entire instruction set (versus 23 cryptography-
relevant instructions in ELMO [18]). Table 1 gives a concise
summary of the instructions and our findings through leakage
analysis, which we explain subsequently.

Results. Our analysis shows that the decoding leakage (i.e.
which operand is loaded through which port) strongly depends
on the instruction encoding. More specifically, the column En-
coding in Table 1 demonstrates the encoding bit-field of each
instruction: ARM often uses Rd to represent the destination

2If it is the other way around, what we learned is a “mirrored specifica-
tion”, which will be remedied by a mirrored leakage model later.

3In theory, it is also possible that the interaction is caused by glitches,
or physical defaults such as coupling [5]. In our experiments, we find the
magnitude of wire transition leakage is usually larger than the other options,
which makes it possible to make a distinction.
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Group Assembler Encoding Decoding Executing
Operand Type Rd Rm Rn Port 1 Port 2 Port 3 RS_1 RS_2

ALU

0 MOVS Rd, #<imm8> I 10-8 - - Rd - - - -

1

INSTR_a Rd, Rm(, #<imm3/5>) II 2-0 5-3 - Rd Rm - Rm -
INSTR_b Rd, Rm(, #<imm3/5>) II 2-0 5-3 - Rd Rm - - Rm
INSTR Rd, Rd, #<imm8> I 10-8 - - Rd - - Rd -
INSTR Rd, Rm III 7,2-0 6-3 - Rd Rm - - Rm

2

INSTR Rd, Rm II 2-0 5-3 - Rd Rm - Rd Rm
INSTR Rd, Rn, Rm IV 2-0 8-6 5-3 Rd Rm Rn Rn Rm
ADD Rdn, Rm III 7,2-0 6-3 - Rdn Rm - Rdn Rm
MUL Rdm, Rn IV 2-0 - 5-3 Rdm Rn - Rdm Rn

LOAD

Imm LDR(H/B) Rd, [Rn, #<imm>] IV 2-0 - 5-3 Rd Rn - Rn -
Reg LDR(H/B) Rd, [Rn, Rm] IV 2-0 8-6 5-3 Rd Rn Rm Rn Rm

Multiple LDM Rn!, <loreglist> V - - 10-8 - - Rn Rn -
Pop POP <loreglist> - - - - - - C -

STORE

Imm STR(H/B) Rd, [Rn, #<imm>] IV 2-0 - 5-3 Rd Rn - Rn Rd
Reg STR Rd, [Rn, Rm] IV 2-0 8-6 5-3 Rd Rn Rm Rn->Rd Rm

Multiple STM Rn!, <loreglist> V - - 10-8 - - Rn Rn -
Push PUSH <loreglist> - - - - - - C -

Table 1: Summary of tested Thumb-16 instructions.

register and Rm/Rn represent the source registers. The assem-
bler instruction uses those explicitly, yet did not explicitly
explain the distinction (especially for Rm and Rn), or whether
it links to any micro-architecture element. From our following
analysis, it seems there is at least some connection.

Let us first look at some concrete F-test results as given
in Figure 3. In this figure, the black dashed line gives the
F-test threshold, and any of the coloured lines that exceed
the threshold indicates that the corresponding term cannot
be dropped (or in other words, it needs to be included as
a micro-architectural leakage element). There are six sub-
figures, which correspond to different cases:

• adds$c,#1 (Type I): only interaction AC appears, which
suggests C is loaded to port 1.

• eors$c,$d (Type II): as expected, this group shows in-
teraction AC and BD, even if Rd is not required by the
functionality (e.g. rsbsRd ,Rm). Required or not, C/D is
loaded to port 1/2 respectively.

• adds$c,$d (Type III): as showed in Table 1, the only
difference here is both C and D can come from a high
register (R8−13). Although the interaction is significantly
weaker, we saw the same interaction as Type II in Figure
3 (i.e. A→C and B→ D).

• muls$c,$d (Type IV): unlike the previous cases, Type
IV explicitly uses another register Rn (see Table 1). For
mul and ldr, the leakage form is consistent: Rd (C) is
connected to port 1 and Rn (D) is connected to port 2,
therefore all transitions of AC and BD remain the same.
We assume Rm (if used) is loaded from the extra port 3.
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Figure 3: Leakage analysis on register access in the decoding
stage.
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• adds$e,$c,$d (Type IV, exceptional): 3-register instruc-
tions (i.e. adds,subs) are exceptional: they connect Rm
instead of Rn to port 2. Rd is still loaded, yet not interact-
ing with operand A or B. Although no concrete evidence,
we set Rd to port 1 and leave Rn to port 3.

• eors$a,$b→ ldm$d, [loreglist] (Type V): this group
shows no interaction; we assume Rn connects to port 3.

push and pop do not load any operand (other than the non-data-
dependent stack register SP) in the decoding stage, therefore
have been excluded from the decoding part of Table 1. Cor-
responding to the 3 purple dash lines (D.5-D.7) in Figure 2b,
Table 1 documents the operand on each port for each instruc-
tion. Note that in a grey-box scenario, Table 1 represents the
“reasonable conjectures” from leakage analysis: without re-
viewing the source code, this is the best possible guess we can
come up with. D.9 and D.10 connect to the pipeline registers
rs1 and rs2, which will be inspected in the Execute stage.

3.3 Execute
On the contrary, the Execute stage is relatively simple:
preloaded operands start from the pipeline register (E.1 and
E.2 in Figure 4a), then go through the computation logic
within the ALU. The ALU’s output (E.4) is then sent back to
the register file or memory, depending on the specific instruc-
tion. There might be some more complicated computation
logic (e.g. the multiplier in Figure 1), but from a leakage point
of view, since they all connect to the pipeline registers, we
simply combine everything into the equivalent ALU. Most
previous tools assume there are two pipeline registers that
store the operands: in our analysis, we found that 2 registers
could already explain our observed leakage, therefore we stick
with 2 registers in Figure 4a.

In previous tools, Execute is often regarded as the critical
part: for instance, ELMO [18] captures the leakage/transition
leakage from the 2 operands on the data buses E.1 and E.2 in
Figure 4a. MAPS [6] on the other hand, captures the transition
leakage on the pipeline registers rs1 and rs2, as well as the
destination register transition in the register file (the assign-
ment for rs1 and rs2 may or may not be identical to NXP’s
implementation). Both tools ignore the Fetch and Decode
stage and focus on part of the Execute stage’s leakage. Recall
that our analysis in the previous section did not reveal D.9 or
D.10. Even if we knew what appears on D.9 and D.10, the
pipeline registers rs1 and rs2 could still preserve their own
values (driven by their control signal). Thus, the fundamental
question to answer in this stage, is which value enters rs1/rs2?

We can perform a similar analysis as for the Decode stage.
Specifically, let us consider the following code snippet:

1 Testing_rs1rs2:
2 ...
3 eors $a,$b

ALU

Shifter

rs
2

rs
1

Imm/
Control 
signal

E.1 E.2

E.3

E.4

To register 
file/memory

(a) Execute.

Memory

Addr

W buffer

Write busRead bus

Data bus

(b) Memory.

Figure 4: Hypothetical micro-architecture: Execute and
Memory.

4 INSTR $c,$d
5 nop
6 eors $0,$0 //$0=register that stores 0
7 ...

Assuming eors sets rs1 to A and rs2 to B, as the latter eors
should have the same micro-architectural effect as the previ-
ous one, thus it would set both rs1 and rs2 to 0. We have tested
beforehand that nop does not touch the pipeline registers in
our target core, which is also confirmed in [17]. The purpose
of having this nop is separating the pipelined leakage: in a 3-
stage processor, when executing the latter eors, it is expected
that the target instruction INSTR has already committed its
result, therefore does not further affect the leakage. Thus, we
can test if the operands A or B still affects the leakage for the
latter eors: if so, the pipeline register transits as

rs1 : A→ A→ 0,HD = A

otherwise, we further test whether C or D affects the leakage.
If C is presented in the leakage, it suggests:

rs1 : A→C→ 0,HD =C

Considering the observed leakage for executing the latter eors
is not affected by the decoding stage of INST R, we can have
a higher confidence that C enters rs1.

Following this approach, we have tested all instructions in
Table 1. A few representative results are presented in Figure
5, namely:

• movs $c,#imm does not store the immediate in pipeline
registers, therefore both rs1 and rs2 keep their previous
values (i.e. A and B).

• There are two types of 1-operand ALU instructions (Ta-
ble 1): mov, shift-s, and add/sub use only rs1, while
neg/mvn, reverse, and extend instructions utilise only
rs2.
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Figure 5: Pipeline register analysis in the executing stage.

• 2-operand ALU instructions always use both rs1 and
rs2. Further analysing the transition shows that the left
operand always goes to rs1: that is to say, Rd goes to rs1
if Rd contains a necessary operand; otherwise Rn enters
rs1 (i.e. INSTR Rd, Rn, Rm).

• For ldr-s, the base address (Rn) enters rs1, while the off-
set (if not constant), goes to rs2. If the offset is constant,
rs2 preserves its previous value.

• For str-s, the first cycle works the same way as ldr, while
the second cycle sends Rd to rs1.

• pop and push clear rs1 with the address in SP, which
according to our assumption, should be a constant.

It is worthwhile to mention that most our results in Ta-
ble 1 regarding the pipeline registers are consistent with
Le Corre, Großschädl and Dinu’s observations in [6]4. The
fact that their conclusion is drawn from analysing the semi-
obfuscated source code of Cortex-M3 from ARM is reassur-
ing: our technique did successfully recover the underlying
micro-architecture elements. The only exception we found
is shift-s: in MAPS [6], the target operand is always set to
rs2; while our test suggests the operand goes to rs1. Either
this difference is because NXP indeed changed the design, or
ARM has multiple versions of Cortex-M3 design.

4Available in their code repository, not in the paper.

3.4 Memory sub-system

It is well known that the memory subsystem produces various
“unexpected” issues [9, 17, 19, 21, 22]. The main challenge
is that while the ISA specifies what should happen in the
processor, it certainly does not specify the detailed design
of any asynchronous component (i.e. the memory). More
specifically, in our case, ARM specifies the memory interface
through the AMBA APB Protocol [16]: the protocol defines
how the processor should communicate with the peripheral,
performing read/write operations. However, the peripheral is
asynchronous (aka self-timed) to the processor, therefore the
response time as well as internal interactions are completely
up to the peripheral. Take ldr/str instructions for instance,
although it is often assumed they take 2 cycles, in practice,
the situation is much more complicated. The peripheral can
prolong the transfer by adding wait states [16], or for certain
instructions, the ALU can proceed without the peripheral
finishing its task.

As a consequence, without a timing-accurate memory sim-
ulator, the chance of constructing a timing-accurate leakage
model for the memory sub-system seems gloomy. In Figure
4b, we construct a hypothetical view that captures various
known issues (e.g. from [17,22]). Specifically, we assume our
memory system works as follows:

• Each load/store produces leakage on the entire word
(32-bit), even if the target is only one byte (see Section
5.2 [17]).

• The memory system has only one (shared) address bus
(specified by [16]).

• The memory buses preserve their values until the next
access (recommended in [16]).

• Read and write share the same data bus (consistent with
Section 5.1 [17]).

• There is also a dedicate bus/buffer that holds the write
value (our own experiments).

Although Figure 4b does not specify the timing behaviour,
fortunately, the accurate timing is not required for many ap-
plication scenarios (e.g. leakage simulators [6, 18, 22]/ver-
ifiers [2]): for developers, it is essential to learn why such
leakage appears, but less crucial when. Take two adjacent
store instructions for instance, as long as we know there exists
a transition leakage on the write bus, we do not necessar-
ily care about whether this leakage appears at clock cycle
x or x+ y. Whilst a more detailed investigation on timing
characteristics might be possible, they becomes increasingly
unrewarding in a grey-box setting.
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4 Step 3: Refining the micro-architectural
leakage model

In the previous section, we reverse engineered where operands
are stored in the micro-architecture, and we developed a first
understanding of the interactions between operands across
the three pipeline stages. Now we set out to refine this under-
standing and characterise the interactions.

4.1 Considering components with stable sig-
nals

Fetch. Stable signals are from micro-architectural compo-
nents that do not have glitches. Because we assume our target
program does not contain any “data-dependent branches”, we
do not need to consider elements from this stage.

Decode. Because we do not consider data dependent in-
structions, we can also exclude all purple wires before the reg-
ister file (D.1-4, D.8) as they do not produce data-dependent
leakage (i.e. remain the same between each execution). After
accessing the register file, each purple wire must be consid-
ered, as it carries an operand that varies from trace to trace.

Based on the information in Table 1, we can build a simpli-
fied micro-architectural leakage model that only contains the
“stable” signals in the circuit for D.5-D.7 (aka read ports 1-3).
The outputs of two operand MUX-s are trickier: when rs1 is
updated, D.9 carries the updated value. However, when rs1
preserves its previous value (e.g. rsbs Rd, Rm), we cannot de-
termine the value on D.9 easily. Considering the same leakage
could come from various equivalent micro-architectures, we
consider them separately in Section 4.2. Thus, the assumed
micro-architectural leakage for the decoding stage is:

Ld = β{port1⊗ port ′1, port2⊗ port ′2, port3⊗ port ′3}

where port ′1 represents the value on port 1 from the previous
instruction decoding. If both values on port 1 are not constant,

port1⊗ port ′1 = {(x||y)|x ∈ port1,y ∈ port ′1}

Otherwise, if one of the values is a constant, this term can be
simplified to only port1 or port ′1. This leakage is a super set
of both the standard HW and HD model, covering not only
the leakage of the values but also any transition occurring on
the wire.

Using again the collapsed F-test [8], we can interrogate if
this model explains all observable leakage (in the decoding
stage). Figure 6 plots the evaluation for the same instructions
in Figure 3: for all but one instruction Ld is correct. Only for
the 3-operand adds, the test result suggests Ld cannot explain
all the observed leakage within this decoding stage.
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Figure 6: Model completeness analysis in the decoding stage.

Execute. Similarly, for the Execute stage, we ignore the
immediate number and the control signals, and focus on the
wires E.1, E.2 and E.4. Obviously, the entire leakage of this
stage depends on the two operands in rs1 and rs2.

Unlike the Decode stage, these two operands deliberately
interact with each other in the ALU. Thus, it is expected
that there is some cross-operand leakage. Considering that
the ALU is a relatively complicated piece of combinational
logic where multiple computations run in parallel (i.e. not
“gated” [9, 19]), finding the exact form of LE presents its own
challenge. Therefore, we leave LE conservatively as:

LE = β{rs1⊗ rs2⊗ rs′1⊗ rs′2}

Clearly LE includes all possible glitchy states on the red wires
in Figure 4a. The data-dependent bits in the Current Program
Status Register (CPSR) rely on the ALU’s output, and are
therefore also covered by LE . For conciseness we refer to
[8] where one of the examples analyses just this situation;
besides, Figure 8 and 9 both evaluate the entire leakage model,
including the execute leakage here.

Register write-back. Although a write-back stage does not
exist in this 3-stage pipeline, updating the destination register
still happens after the Execute stage: thus, we need a sepa-
rate micro-architectural leakage element LWB to capture such
leakage. Denote the ALU output from the last cycle as Res
and the previous value of the destination register as Rd . The
register write-back leakage element LWB can be written as:
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LWB = β{Res⊗Rd}
Note that Res is defined by the ISA and Rd is architecturally
visible, therefore does not take any further investigation.

Memory. Following Section 3.4, we denote Bus as the
shared bus and Busw as the dedicate write bus, where Addr
represents the address bus. The micro-architectural leakage
of the memory subsystem is :

LM = β{Bus⊗Bus,Busw⊗Bus′w,Addr⊗Addr′}

Although some of above leakage only appears for memory
access instructions, considering the APB protocol explicitly
recommends to keep the remaining values on the bus [16],
we always keep LM as part of the leakage model, even if the
instruction does not access memory.

4.2 Glitch & Multiplexer
Glitchy register access. The lower left figure in Figure 6
suggests that considering only the stable signals is not always
enough. In a more realistic scenario, the situation can be even
worse: in order to achieve a concrete understanding of which
operand is read from which port, we deliberately designed
our setup (see Section 3.2) to avoid various “known issues”.
For instance, it is reported back in 2017 by Papagiannopoulos
and Veshchikov that some processors might implicitly access
an adjacent register while accessing a target register [21]. It
was latter explained in [9] such leakage is likely to be caused
by the address decoding in the register file. When setting up
our experiments, we deliberately use only the odd registers
(i.e. r1,r3,r5,r7): although there is no guarantee that such
LSB-neighbouring effect is the only type of neighbouring
effect in our target processor, within 50k traces, we did not
find this effect in our analysis.

Nonetheless, the so-called “neighbouring effect” [21] can
be extended to more general glitchy accesses within the reg-
ister file: in a 3-stage core, considering the decoding and
operand pre-loading are happening in the same cycle, it is
expected that the signal glitch starts even earlier, say from
the decoded register addresses (i.e. D.2-D.4 in Figure 2b).
Back to our exceptional adds: as one can see in Table 1, the
previous eors loaded Rm from bit 5-3 of the instruction, while
the current adds requires Rm from bit 8-6 instead. Consider-
ing this change of field needs to be initiated by the decoder,
we can expect that for a short time after the clock edge, the
decoder still outputs Rm as the bit 5-3 of the new adds instruc-
tion (i.e. Rn = C), and then switches back to bit 8-6, which
gives Rm = D. In other words, although the stable signal on
port2 changes as:

B→ D

the glitchy signal switches through:

B→C→ D

which might give the transition of B⊗C and C⊗D.
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Figure 7: Glitchy register access in the decoding stage.

As we can see in Figure 7, the interaction C ⊗ D is
clearly visible in the upper-left. Without including this micro-
architectural leakage our constructed leakage model does not
fully explain the observed leakage.

The lower half of Figure 7 demonstrates another case of
this effect. Specifically, if we try the following code:

1 glitchy_reg:
2 ...
3 eors r5,r7 //r5=C, r7=D
4 adds r3,#1 //r1=A, r3=B
5 ...

Following our discussion above, when decoding adds, there
might be a short time period when the decoder still decodes
in the style of eors. According to Table 1, this means the
immediate number 1 will be taken as register r1 (bit 2-0 from
the instruction eors). In the lower left of Figure 7, clearly value
A is loaded in this cycle. In fact, as the signal transition goes
C→ A→ B, there could be interaction of C⊗A and A⊗B,
which is exactly what we see in Figure 7. Our completeness
test confirms that we can capture all of this micro-architectural
leakage as long as these terms are added in.

Taking glitches into consideration, we add one glitchy term
for each port: for port 1, denoted as port1g, representing the
glitchy accessed value on port 1. The glitchy decoding stage
leakage can be regarded as

LDg = LD +β{port1g⊗ port1, port1g⊗ port ′1}

where port1g could be:

• Implicitly access caused by decoding: decoding the cur-
rent instruction in the previous style
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• Implicitly access caused by register address: the neigh-
bouring effect, needs to be tested on the specific device

port2g can be added following the similar rules. Considering
such an effect has a relatively small magnitude and enormous
test space (i.e. the entire decoding space must be consid-
ered), we did not further identify which factor must be added
and which can perhaps be ignored. A conservative micro-
architectural leakage model will include everything, if more
implementation details were available then certain elements
could be excluded (and the resulting model checked via the
F-test).

Multiplexer. Grey-box simulators usually discard them, be-
cause their contribution to the overall leakage is relatively
limited. We follow this approach in our work here 5.

4.3 Putting it all together
We constructed a micro-architectural leakage model for each
of the three pipeline stages, and the memory subsystem.
The overall device leakage is then the sum of the micro-
architectural leaks: L = LD + LE + LM + LWB, and we can,
using the F-Test methodology, enquire if it is possible to drop
or simplify some terms. Because we know that the micro-
architectural leakage from the memory subsystem is always
significant, there is no point in trying to simplify or drop this.
However, we can check if the decode and execute leakage
is significant enough (when considering it as all the pipeline
stages are active). With the same code in Section 3.2 (“Test-
ing_port”), we first test if removing LD or LE can provide a
valid model: as we can see in the left half of Figure 8, both
fail our test easily, which suggests both stages’ leakage must
be kept.

Thus, we further test in the right half of Figure 8 if using a
linear model (i.e. a weighted HW/HD model) is good enough.
The upper right figure suggests if the executed instruction is
eors, having a linear LD or a linear LE passes F-test, although
LD and LE cannot be linear at the same time. This is in fact
consistent with the observations in [8]: if the instruction is
relatively simple, using a linear model of the ALU inputs/out-
put can be a valid option. The lower right of Figure 8 shows
that for an adds instruction, the execute stage must utilise a
non-linear model. But, the decoding leakage LD can always
be set to linear in our experiments: considering the decoding
stage only contains buses that load values and flip from one
value to another, this is quite natural. Hence we always restrict
the decoding leakage LD to be a linear micro-architectural
leakage element, denoted as LDl . Similarly, as the write-back
logic is relatively simple, we also simplify LWB to be a linear
micro-architectural leakage element (LWBl). Because of the

5One recent white-box tool, Coco [9]), takes a conservative approach: if
we have MUX(s,a,b) (where s is the selecting signal), they simply allow any
possible leakage by considering a⊗b⊗ s.

known byte-wise interactions on the memory bus [17], LM is
left without any restriction.

L = LDl +LE +LWBl +LM
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Figure 8: Feature selection for our leakage model.

4.3.1 Check and Double Check

Up to this point, our entire evaluation has been built only
for our simple test snippet (i.e. “eors→ INST R”). We hence
need to double check how well our micro-architectural leak-
age model explains what happens in more complex code se-
quences, and whether we (accidentally) included some board
specific effects. Before moving on and looking at implemen-
tations of masking, we show how well our derived micro-
architectural leakage model copes with a code sequence that
computes the Midori MixColumns [1]: as a linear layer with
only elements 0 and 1, the code consists only a few eors in-
structions, where the entire operation can be performed easily
within the 8 low registers (i.e. no high registers/load/store).
Figure 9 plots the evaluation results on two evaluation boards
that share the same core and measurement setups.
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Figure 9: Model evaluation for Midori’s linear matrix.
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We plot in fact two models: the simpler one where we
exclude glitches, and the model where glitches are included.
Our results show that the micro-architectural leakage model
that includes glitches explains the observed leakage on both
boards (i.e. no board effects [18]), whereas the model without
glitches consistently fails the same cycle on both boards.

5 A practical use case: evaluating masking

In the previous sections we reverse engineered the micro-
architectural leakage for each pipeline stage, and we provided
some evidence that our reverse engineered leakage elements
(i.e. the leakage contributions that we identified before) ex-
plain the observed leakage. One way of utilising our results
is by viewing them as the “input” to build much more so-
phisticated leakage simulators. With this in mind we com-
pare and contrast the leakage predictions of our reverse engi-
neered micro-architectural leakage model of the LPC 1313
(ARM Cortex-M3) processor with the existing simulators
ELMO [18](ELMO* [22]) and MAPS [6], plus the implicit
model in scVerif [2].

Before proceeding further, we summarise the leakage mod-
els of these competitors to keep this article self contained:

• ELMO. For most instructions, ELMO [18] defines the
leakage to be a linear function of the values on the two
operand buses plus the bit-flips 6. Note that it is not clear
from the paper how ELMO learns which operand goes
to which bus: as the target M0 core is a commercial one
(source code not available), it is likely ELMO answers
this question with a sensible guess (that is to say, could
be wrong for certain instructions).

• ELMO*. The so-called ELMO* [22] is a specific ex-
tension of ELMO, that aims at capturing a) the mem-
ory leakage and b) the dominating state transitions. The
former produces significant leakage which is explicitly
excluded from ELMO’s model [18], but has been veri-
fied to be a true concern in practice [7, 22]. The latter,
however, could be explained in various ways: here we
propose a different explanation for the observed leakage
in [22]. Considering we are using a different platform
(ARM Cortex-M3 versus ARM Cortex-M0 in [22]), plus
the fact that both platforms are close-sourced, it is fairly
possible that both explanations are correct/wrong.

• MAPS. Unlike ELMO, MAPS [6] defines the leakage
from the obfuscated HDL code for the ARM Cortex-M3
reference implementation (not manufacturer specific).
Within the simulator MAPS, the leakage is restricted to
all architectural registers bit-flips plus the bit-flips of the
two pipeline registers.

6A few instructions are allowed to have second order interactions, details
see [18]

• scVerif. Technically speaking, scVerif [2] is a frame-
work where users can program their own leakage model
and verify certain security properties. That being said,
there is a concrete leakage model in the proposal (for
ARM M0+). Specially, they define 4 “revenant effects”—
opA,opB,opR,opW—which are in concept, the pipeline
registers rs1,rs2 and the read/write buffers/buses in our
model. The leakage of eors Rd, Rn instruction is then
defined as:

– Combination of revenants. opA⊗opB⊗Rd⊗Rn
(same as our leakage model for the Execute stage)

– Destination register bit-flip.

– Pipeline register bit-flip. opA⊗Rd and opB⊗Rn;
both are in fact already covered by the “combina-
tion of revenants”.

Again, there is no guarantee the provided model oper-
ates opA and opB correctly, as this is specified by the
predefined leakage model (therefore out of the scope
of [2]).

5.1 Decoding port leakage
Many of the listed tools do not define any explicit decoding
leakage. However, ELMO (and ELMO*) always set rs1 = Rd
and rs2 = Rm, even if Rd is never used in certain instructions
(e.g. movs Rd , Rm in Table 1). This is not correct (at least on
the core that we utilised), but if we consider the “operand
buses” in ELMO to be the decoding read ports, then decod-
ing leakage is captured by ELMO (and ELMO*), albeit in a
different clock cycle.

The following code snippet is from a 2-share bitwise ISW
multiplication [11], where a1(b1) and a2(b2) represent the
two input shares of a(b). Leakage reports from ELMO 7 and
MAPS are:

• ELMO. Line 7 is leaking from the first operand’s bit-flip
(r2 = a2 ∗b1→ r6 = a1 ∗b1).

• MAPS. No leakage.

1 ISWd2:
2 ... // r1=a1*b2+r, r2=a2, r3=b1,
3 ... // r6=a1*b1, r9=output address
4 ands r2, r3 // r2=a2*b1
5 eors r1, r2 // r1=a1*b2+r+a2*b1
6 mov r2, r9 // Get back output address
7 eors r6, r1 // r6=a1*b1+a1*b2+r+a2*b1
8 ...

According to Table 1, line 7 should not show any leakage
from rs1, since line 6 never loaded r2 to rs1. However, the
decoding stages of line 6 and 7 load these operands into port1,

7The ELMO* [22] extension does not find any additional leakage.
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Figure 10: Experiments with 50k traces on 2-share bitwise
ISW multiplication.

which suggests a leakage can be found in the decoding cycle
of line 7. The right half of Figure 10 illustrates the correlation
trace using HW (a1⊕a2): the correlation peaks appear in the
execute cycle of line 6 (i.e. the decoding cycle of line 7).
Besides, the TVLA trend in the left half of Figure 10 shows
such leakage is relatively weak: it takes more than 20k traces
before the leakage can be stably detected.

To show that missing out on the explicit inclusion of decod-
ing leakage matters, we further investigate a 3-share bitwise
ISW multiplication (where no first order leakage found in this
implementation).

1 ISWd3:
2 ...
3 mov r7, r9 //r7=a3
4 mov r5, r11 //r5=b3
5 ands r5, r7 //r5=a3*b3
6 ands r4, r6 //r6=a2*b2
7 ands r3, r1 //r3=a1*b1
8 ldr r7, [r0, #0] //r7=r12
9 ...

In theory, there should not be any attack that combines less
than three intermediates (leakage points), which increases the
required number of traces. We show that a third order attack
indeed does not succeed with a too limited number of traces
in the upper-left of Figure 11)8.

However, given our micro-architectural leakage model we
may safely assume that the processor will inadvertedly com-
bine masking shares for us. Indeed, even the simpler ELMO
model can predict such leakage: specifically, the first operand
bit-flip from line 6 and 7 gives the leakage of a1⊕a2, which
should reveal the secret a if combined with the leakage of
line 3 (i.e. a3). We have also confirmed this leakage in Figure
11: the upper-right figure shows using this combination, the
correct key can be found within 10k traces.

8Our implementation only uses LSB to compute the bit-sliced S-box;
therefore the measured trace has been averaged 50 times before analysis, in
order the increase the SNR.
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Figure 11: Experiments with 50k traces on 3-share bitwise
ISW multiplication.

With the decoding leakage added in, our micro-
architectural leakage model extensively expands the region
of potential leakage: considering the execute cycle of line 7,
we learned from Table 1 that ldr does load r7 in the decoding
cycle, which provides the leakage of a3. As a consequence,
we can use the second order moment of the measurements
from line 7 alone, which avoids the combination of noise
from different time samples. In our experiments, this is
indeed the best option: the correct key guess can be found
with only 1k traces.

5.2 Pipeline registers assignment

When it comes to the pipeline registers, things become quite
different: as we can see in Table 1, many instructions do not
follow the default rs1 = Rd and rs2 = Rm setup. Considering
the pipeline registers may even preserve through a few in-
structions, this is clearly an issue if some previous operand is
believed to be cleared out of the context while in reality it is
sitting somewhere within the processor.

1 Scverif_Ref:
2 ... // r1=output address
3 ... // r5=a2+r,r3=a1+r
4 str r5, [r1, #4] //
5 pop {r4-r5} // Reload r4 and r5
6 eors r3, r3 // Clear r3
7 ...
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Figure 12: Experiments with 50k traces on 2-share mask
refresh from scVerif.

The above code is from a 2-share refreshing gadget veri-
fied by scVerif [2]. Clearly, any transition between r3 and
r5 leaks the secret a. Let us focus on line 5: scVerif treats
pop as several load-s, where each load clears both rs1 and
rs2 (see [2, Alg.3]). According to Table 1, pop on our target
device only clears rs1, but not rs2. Thus, when executing line
6, rs2 remains the previous value set by line 4. According to
Table 1, there is a transition between a2 + r and a1 + r on rs2.
Leakage reports from ELMO and MAPS are:

• ELMO/ELMO* [22]. No leakage.

• MAPS. Leakage from line 6, pipeline registers9.

Here we begin to witness the benefit of having the accurate
pipeline register assignment: MAPS clearly pointed out this
leakage, while neither ELMO and ELMO* finds any leakage.
This is because both ELMO and ELMO* stick with ELMO’s
leakage model, which also believes pop clears both rs1 and
rs2. At least on our target device, this is not the case: as we
can see in the right half of Figure 12, a clear correlation peak
in line 6 suggests rs2 still keeps the value from line 4. Since
this transition is from rs2 (v.s. the port transition in Figure
10), the left half of Figure 12 shows its leakage is much easier
to detect compared with Figure 10.

6 Conclusion

We utilised a recent statistical tool for leakage model build-
ing to reverse engineer a micro-architectural leakage model
of a mid-range commodity processor (the NXP LPC1313).
This model explains how operands are assigned to (assumed)
micro-architectural elements, and therefore to some extent
provides an in-depth picture of how the Thumb instruction
set (or perhaps even their reference design) was implemented
by NXP.

Using such a reverse engineered micro-architectural leak-
age model we showed that existing simulators still miss out

9MAPS needs the command line argument “-p” to calculate the pipeline
registers’ leakage.

on leakage, and a next step should be to integrate our reverse
engineered micro-architecture into the framework provided
by existing simulators (e.g. ELMO or ELMO*).

Our research also raises the question whether manufactur-
ers whish to keep such information confidential. If so, then
even a commodity processor such as part of the LPC family
should clearly implement strong side-channel countermea-
sures to make side-channel based reverse engineering (such
as ours) impossible. Another, arguably more academic, point
of view would be to say that this information should be public
(no security by obscurity). In this case we would see it as good
practice if manufacturers would make micro-architectural in-
formation available, to enable more secure implementations,
and the easy building of better simulators (i.e. without reverse
engineering) for the benefit of implementers and eventually
consumers.
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