
LLVM-based Circuit Compilation
for Practical Secure Computation

(Full Version)?

Tim Heldmann, Thomas Schneider, Oleksandr Tkachenko,
Christian Weinert, and Hossein Yalame

Technical University of Darmstadt, Germany
tim.heldmann@stud.tu-darmstadt.de

{schneider,tkachenko,weinert,yalame}@encrypto.cs.tu-darmstadt.de

Abstract. Multi-party computation (MPC) allows two or more parties to
jointly and securely compute functions over private inputs. Cryptographic
protocols that realize MPC require functions to be expressed as Boolean or
arithmetic circuits. Deriving such circuits is either done manually, or with
hardware synthesis tools and specialized MPC compilers. Unfortunately,
such existing tools compile only from a single front-end language and
neglect decades of research for optimizing regular compilers.

In this paper, we make MPC practical for developers by automating
circuit compilation based on the compiler toolchain LLVM. For this,
we develop an LLVM optimizer suite consisting of multiple transform
passes that operate on the LLVM intermediate representation (IR) and
gradually lower functions to circuit level. Our approach supports various
front-end languages (currently C, C++, and Fortran) and takes advantage
of powerful source code optimizations built into LLVM. We furthermore
make sure to produce circuits that are optimized for MPC, and even offer
fully automated post-processing for efficient post-quantum MPC.

We empirically measure the quality of our compilation results and compare
them to the state-of-the-art specialized MPC compiler HyCC (Büscher
et al., CCS’2018). For all benchmarked HyCC example applications (e.g.,
biomatch and linear equation solving), our highly generalizable approach
achieves similar quality in terms of gate count and composition.

Keywords: MPC · Circuit Compilation · LLVM · Hardware Synthesis.

1 Introduction

Multi-party computation (MPC) allows two or more parties to jointly compute
functions over their respective inputs, while the privacy of the inputs is ensured
and nothing but the functions’ output is revealed. First cryptographic protocols to
realize MPC were proposed already in the 1980’s by Yao [64] and Goldreich, Micali,

? Please cite the conference version of this paper published at ACNS’21 [26].

2 T. Heldmann et al.

and Widgderson [23]. However, it took until 2004 for MPC to be implemented ef-
ficiently [42] and see adoption for privacy-preserving applications, e.g., private set
intersection [29,50] and privacy-preserving machine learning (PPML) [7,49,20,47].

The widespread adoption of MPC is unfortunately compromised by the re-
quirement to implement the functions to be computed as Boolean or arithmetic
circuits. This process is tedious and error-prone when done by hand, and ad-
ditionally requires an extensive understanding of the underlying cryptographic
protocols to build circuits that can be evaluated efficiently.

To address this issue, previous works tried to develop toolchains for automatic
compilation of high-level code to circuit representations. Most notably, the
specialized MPC compiler HyCC [13] compiles ANSI C to optimized Boolean
and arithmetic circuits. However, works like HyCC allow compilation only from a
very limited subset of a single front-end language and more importantly neglect
decades of research that went into building and optimizing conventional compilers
like GCC and the versatile LLVM toolchain [39], which we leverage in this paper.

Other works like TinyGarble [57] and [17] rely on logic synthesis tools (e.g.,
Synopsis Design Compiler [58] or Yosys-ABC [63,1]) to generate net lists of Boolean
circuits. However, logic synthesis tools require knowledge of hardware description
languages like Verilog or VHDL, and were built to optimize electronic circuits in
terms of clock cycle usage, routing, and placing [59]. To match the cost metrics
relevant for efficient MPC and restrict circuit generation to the supported basic
gate types, it is nevertheless possible to re-purpose such tools by providing custom
constraints and technology libraries.

Our Contributions. In this paper, we aim at making MPC practical for
software developers by automating circuit compilation based on the compiler
toolchain LLVM [39]. For this, we design and implement an LLVM optimizer
suite consisting of multiple transform passes that gradually lower functions to
circuit level. For example, the passes remove conditional branching and array
accesses, eliminate constant logic, and replace low-level instructions with optimal
building blocks that we obtain via logic synthesis tools.

Our LLVM optimizer suite operates entirely on the level of the LLVM in-
termediate representation (IR). Thus, we naturally facilitate compilation from
numerous existing front-ends for a wide range of programming languages. We
currently support a subset of C, C++, and Fortran, and give a road map for ex-
tensions to additional high-level languages like Rust. Furthermore, our approach
takes advantage of powerful source code optimizations built into LLVM, which
can swiftly deliver significant improvements in terms of resulting circuit sizes
and therefore MPC performance.

To bridge the gap from LLVM-IR to MPC frameworks, we provide a converter
to the widely known Bristol circuit format [60] that can be evaluated, e.g.,
by ABY [18] and MOTION [11]. Instead of converting LLVM-IR to Bristol,
it is also possible to further compile via LLVM back-ends to a conventional
architecture like x86. Besides testing for functional correctness, such circuit-based
binaries have further applications in mitigating cache side-channel attacks [43].

LLVM-based Circuit Compilation for Practical Secure Computation 3

Even though we construct our circuits from optimal building blocks, the assem-
bled result might not be overall optimal. Therefore, to compete with sophisticated
circuit-level optimizations delivered by specialized MPC compilers like HyCC [13],
we add fully automated post-processing. For this, we convert Bristol to Verilog
net lists, apply optimization passes of synthesis tools [63,1,58], and convert back
to Bristol. By defining different constraint sets and technology libraries, we not
only support size-optimized Boolean circuits considering the free-XOR [36] and
half-gates technique [66], but also cost metrics for post-quantum secure MPC [12].
Our approach is generic and can easily be adjusted for further cost metrics that
might be of interest, e.g., garbling under standard assumptions [24].

Finally, we empirically measure the quality of our compilation results and com-
pare them to the specialized MPC compiler HyCC [13]. For this, we benchmark
example applications similar as in the HyCC repository (e.g., biomatch and linear
equation solving via Gaussian elimination) as well as additional implementations.
Our LLVM-based approach achieves similar or even better quality in terms of
gate count and composition, while also providing a richer feature set and the
benefits of extensibility to other high-level languages as well as MPC cost metrics.

In short, we summarize our contributions as follows:

1. Design and implementation of an LLVM-based toolchain for circuit compila-
tion from various high-level languages (currently a subset of C, C++, and
Fortran) publicly available at https://encrypto.de/code/LLVM.

2. Fully automated post-processing of Bristol circuits via logic synthesis tools
to optimize for (post-quantum) MPC-relevant cost metrics [36,66,12].

3. Empirical performance evaluation showing similar or better quality compared
to the specialized MPC compiler HyCC [13].

Outline. We introduce the necessary MPC as well as compiler background
in § 2 and discuss related works in § 3. In § 4, we present our LLVM-based circuit
compilation toolchain and propose fully automated post-processing in § 5. We
evaluate our results in § 6 before concluding with a comprehensive outlook in § 7.

2 Preliminaries

We introduce the necessary background on MPC (cf. § 2.1), LLVM (cf. § 2.2),
and logic synthesis (cf. § 2.3).

2.1 Multi-Party Computation

Multi-party computation (MPC) allows N mutually distrusting parties to jointly
compute functions over their respective inputs. In addition to the correctness
of the function output, MPC guarantees privacy of the inputs as nothing but
the function output is revealed. Two seminal cryptographic protocols that re-
alize MPC and are still highly relevant are Yao’s garbled circuits [64] and the
protocol by Goldreich, Micali, and Wigderson (GMW) [23]. The work by Beaver,
Micali, and Rogaway (BMR) [5] extends the idea of Yao from the two- to the

https://encrypto.de/code/LLVM

4 T. Heldmann et al.

multi-party case. All these protocols obliviously evaluate Boolean circuit repre-
sentations of the desired functionality. While Yao/BMR evaluate the circuit in a
constant-round protocol, the number of communication rounds for GMW depends
on the multiplicative depth of the circuit. In this work, we for now focus on the
compilation of size-optimized Boolean circuits for the first approach (Yao/BMR),
while an extension to depth-optimized circuits for GMW is straightforward.

Yao’s Garbled Circuits / BMR. In Yao’s protocol [64], one party (the gar-
bler) generates a garbled circuit corresponding to a Boolean circuit by encrypting
the truth table of each gate. The other party (the evaluator) then evaluates (de-
crypts) the circuit received from the garbler. Transferring the required keys
corresponding to the chosen inputs is done via a cryptographic protocol called
oblivious transfer (OT) [31]. Today’s most efficient solution for garbled circuits
is a combination of free-XOR [36] and half-gates [66]. With these optimizations,
each AND gate requires the transfer of two ciphertexts, whereas XOR gates are
essentially free (no communication necessary). BMR [5] is an extension of Yao’s
protocol to the multi-party case, where all parties garble and evaluate the circuit
such that no subset of parties learns anything about the intermediate values.

Post Quantum Yao. A post-quantum version of Yao’s protocol was recently
proposed in [12], where the adversary has access to a quantum computer. The
authors proved Yao’s protocol in the quantum world under the assumption
that the used encryption scheme is PQ-IND-CPA. They assume the quantum
adversary has only access to a quantum random oracle and does not make queries
to the encryption oracle in superposition. Since the free-XOR optimization [36]
was established under a weaker assumption, it cannot be applied in the quantum
world, and thus the cost of XOR is the same as for AND gates.

Bristol Circuit Format. Circuit descriptions specify either the transfer of
data on register level (RTL) or a list of gates, wires, and their connections (net list).
The most commonly used circuit format for MPC is the Bristol format [60,3],
which is a plain text net list format. Each line in a Bristol file represents a
single INV, AND or XOR gate. Each gate can have one or two inputs and has
exactly one output, all of which are specified via IDs. Every output ID is unique,
in static single assignment (SSA) form, and all IDs are in ascending order. The
number of input as well as output wires is specified in the header of the file.

Frameworks. There exist many MPC frameworks [53] implementing different
protocols and considering different adversaries w.r.t. the ratio of honest/dishonest
parties (honest/dishonest majority or full threshold) and the behaviour (semi-
honest, covert, malicious). MPC frameworks take either a (subset) of a high-level
language language, a domain specific programming language, or a net list as
input. Our approach generates circuits in the Bristol net list format, which we
empirically evaluate using the state-of-the-art framework MOTION [11].

2.2 LLVM

LLVM started as a research project in 2004 with the goal to enable lifelong
program analysis and transformation for arbitrary software [39]. While originally
being an acronym for low-level virtual machine, the LLVM project now spans

LLVM-based Circuit Compilation for Practical Secure Computation 5

different sub projects including, e.g., the specification for the LLVM intermediate
representation (LLVM-IR), the LLVM-IR optimizer, and the Clang C/C++
front-end. The intended LLVM workflow to generate binaries is as follows:

1. Compile source code with a compatible front-end to LLVM-IR.
2. Use the LLVM optimizer to optimize the LLVM-IR.
3. Use a back-end to compile the optimized LLVM-IR to an executable binary.

Due to the strict separation between the toolchain steps, LLVM is highly
extensible. Especially the default optimization passes can be extended with
custom language- or hardware-specific passes. In the following, we introduce
the LLVM-IR and optimization passes in more detail.

LLVM Intermediate Representation (LLVM-IR). The LLVM-IR is
the connection between the front- and back-ends. It exists in three forms:
as (i) in-memory IR used by the compiler, (ii) bytecode for just-in-time compilers,
and (iii) a human readable assembly language. While all of them are equivalent,
and can be converted losslessly, all further mentions of LLVM-IR refer to the
assembly language.

LLVM-IR is a static single assignment (SSA)-based, strictly typed representa-
tion of the translated source code. For translating to LLVM-IR, features common
in non-SSA-based languages must to be transformed. One typical problem here is
the differing state of variables depending on previously run parts of the program,
as occurs with branching. The solution for SSA restrictions in LLVM-IR are
so-called ϕ-nodes. Such nodes are instructions that evaluate differently depending
on which part of the program was executed last. The same problem occurs when
dealing with loops, which often can also be resolved via loop unrolling.

LLVM Optimizer. The LLVM optimizer is intended to perform LLVM-IR
to LLVM-IR transformations. It utilizes optimizer passes that run on specific
parts of the LLVM-IR. The optimizer comes with a set of language independent
optimizations [41], but can be extended with additional passes. Passes can be
categorized as analysis and transform passes. Analysis passes generate additional
information about LLVM-IR code without any modifications. Transform passes,
on the other hand, are allowed to modify the LLVM-IR, possibly invalidating
previously run analyses in the process.

2.3 Logic Synthesis for MPC Circuit Compilation

Logic synthesis tools take a function description in a hardware description
language (HDL) such as Verilog or VHDL as input, and transform it to the
respective target technologies, e.g., look-up tables (LUTs) for field programmable
gate arrays (FPGAs) or Boolean gates for application-specific integrated cir-
cuits (ASICs). Since creating hand-optimized Boolean circuits for MPC is an
error-prone and time-consuming task, it is a promising and natural approach
to utilize existing logic synthesis tools. However, software developers are rarely
familiar with HDLs and re-purposing such tools for performing MPC-specific
optimizations requires the development of custom ASIC technology libraries. In

6 T. Heldmann et al.

this work, we utilize the open-source Yosys-ABC synthesis tool [63,1]. In contrast
to previous works [17,19], we not only create optimized building blocks, but pro-
vide a fully automated compilation and MPC-optimization workflow from several
high-level programming languages. Furthermore, we are the first to develop a
custom ASIC technology library for post-quantum MPC [12].

3 Related Work

Our LLVM-based circuit compilation toolchain allows software developers to use
multiple different general-purpose programming languages to produce circuits
for MPC. To the best of our knowledge, we are the first to utilize LLVM for
such an endeavour. The recently initiated CIRCT project [40] instead aims at
replacing HDLs like Verilog with IR as a portable format between hardware
design tools and utilizes the LLVM infrastructure for offering transform passes
between different abstractions as well as architectures. On the other hand, there
exist multiple tools that allow developers to generate circuits from a single high-
level or domain-specific language. In the following, we first give an overview of
and comparison between these tools. Then, we briefly review MPC frameworks
that evaluate such generated circuits or can be programmed with custom MPC-
specific languages, and choose one of them for benchmarking circuits generated
via our LLVM toolchain (cf. § 6.2).

3.1 Circuit Generation

The following approaches generate circuits from high-level code, but like our LLVM-
based circuit compilation approach abstract away the circuit evaluation.

Dedicated Compilers for MPC. TinyGarble [57,17] uses logic synthesis
to generate efficient Boolean circuits for MPC from Verilog net lists. However,
since TinyGarble’s optimization process requires a Verilog net list, it is reliant
on an external high-level synthesis (HLS) tool to compile high-level code. Our
approach is designed to be compatible with various LLVM front-ends for compiling
high-level languages, and focuses on the generation of circuits from LLVM-IR.
Since many programmers are unfamiliar with HDLs, we target a much larger
community of software developers.

CBMC-GC is an extension of CBMC [15]. It converts ANSI C to a Boolean
circuit [28] and proves that the generated circuit is equivalent to the input program.
While being compatible with ANSI C, CBMC-GC has limitations in terms of
variable naming and is restricted to inputs from two parties. Not only is our
approach input and variable name agnostic, as the circuit’s inputs are generated
depending on the function’s signature, but it is also not limited to ANSI C.
Furthermore, we make use of the source code optimization suite of LLVM. Starting
circuit synthesis from optimized code can be very advantageous (cf. § 4.1).
Although our implementation does not have a formal verification proof, the
correctness of our compiler can be tested easily, e.g., by running a test suite after
compiling the transformed LLVM-IR code via LLVM back-ends to x86 binaries.

LLVM-based Circuit Compilation for Practical Secure Computation 7

HyCC [13] is a compiler that extends CBMC-GC for hybrid circuits that
contain Boolean and arithmetic parts for efficient mixed-protocol evaluation. For
this, it partitions an ANSI C program into modules using a heuristic and then as-
signs the most suitable MPC protocol in terms of runtime and/or communication.
Furthermore, HyCC applies sophisticated circuit-level optimizations to increase
efficiency. Currently, our toolchain generates only Boolean circuits and does not
support automatic protocol selection. Manual switching of protocols can be im-
plemented in the “gateify” pass (cf. § 4.3), and automated protocol selection can
be added by developing an optimization pass based on the work of [32] (cf. § 7).
Instead of transform passes that perform circuit-level optimizations, we optimize
circuits via post-processing by utilizing logic synthesis tools (cf. § 5).

The portable circuit format (PCF) compiler [37] generates circuits in the PCF
format using bytecode generated by LCC [22] from ANSI C. This allows for
optimizations on the bytecode level such as dead gate removal and constant
propagation. Then, it uses an internal language to translate instructions from the
bytecode to a Boolean circuit. In comparison to net list formats, PCF features
loops and recursion, removing the need for recursive function inlining as well as
loop unrolling. We also make use of bytecode-level optimizations and additionally
feature circuit-level post-processing. In contrast to our toolchain, PCF relies on
the LCC compiler, which supports only ANSI C.

High-Level Synthesis. High-level synthesis (HLS) is an approach for de-
signing circuits in a high-level language by specifying the desired behavior. The
exact translation into a chip design is controlled by a compiler. HLS systems
usually require expert knowledge, as they rely on domain-specific programming
languages like Verilog [61,16] instead of C, C++, or Fortran.

Another difference between HLS tools and our approach is that their goal is
to create electrical circuits, which have different cost metrics than MPC. In HLS,
much thought is given to routing and placement algorithms, which is of limited
use for optimizing circuits for MPC. Being designed with MPC applications in
mind, our approach leads to better extensibility and less overhead.

Domain-Specific Languages. PAL [46] compiles a domain-specific lan-
guage (DSL) into a size-optimized Boolean circuit. The scalable KSS compiler [38]
generates Boolean circuits from a DSL by employing a constant propagation
optimization method. SMCL [48], L1 [56], and Wysteria [51] are custom high-level
languages for describing MPC that support the combination of different MPC
protocols. Wysteria additionally provides a tool for circuit compilation. However,
it is based on functional programming and therefore tedious to learn by developers
who are trained in imperative programming.

Obliv-C [65] and EzPC [14] extend a general-purpose programming language
with MPC-specific functionality descriptions, e.g., secret/public variables and
oblivious if, and automatically compile executables. Also, EzPC supports auto-
matic protocol assignment for mixed-protocol computation and uses the ABY
framework [18] to compile executable binaries.

8 T. Heldmann et al.

3.2 MPC Frameworks for Circuit Evaluation

There exist many MPC frameworks that allow users to run MPC protocols. They
take as input a circuit description or a domain-specific language for MPC. For a
comprehensive overview, we refer to [25]. Here, we briefly describe popular MPC
frameworks and justify the choice for our benchmarks (cf. § 6.2).

Fairplay [42] was the first framework for secure two-party computation
and FairplayMP [6] is its extension to multiple parties. Both use the secure
function description language (SFDL) to describe functions and convert to the
secure hardware description language (SHDL). Sharemind [8] implements 3-party
additive secret sharing with honest majority and is a proprietary software pro-
grammed with SecreC. TASTY [27] is a framework for two parties that allows to
mix garbled circuits with homomorphic encryption for applications implemented
using a subset of Python. FastGC [30] is a two-party framework that is imple-
mented in Java and uses garbled circuits. It allows gate-level pipelining of the
circuit, which reduces the memory overhead. Frigate [45] consists of an efficient
compiler and an interpreter. The compiler takes a custom C-style language and
ensures the correctness of the generated circuits.

ABY [18] and ABY3 [44] are mixed-protocol MPC frameworks written in C++
for two- and three-party computation, respectively. FRESCO is a Java MPC
framework that implements additive secret sharing schemes. EMP toolkit [62]
implements a few MPC protocols and oblivious transfer in C++, and provides
a low-level API for cryptographic primitives. PICCO [67] compiles an input
description written in a custom extension of C to C and runs it using N -party
threshold MPC. JIFF [9] is a framework for information-theoretically secure MPC
written in JavaScript, which allows to use it in web applications. MPyC [55] is
a Python framework for N -party computation based on secret sharing protocols.
MP-SPDZ [34] implements multiple MPC protocols and cryptographic primitives
in different security models. SCALE-MAMBA [2] is a framework for N -party
mixed-protocol maliciously secure MPC that compiles a Python-like language to
bytecode that is parsed by a “virtual machine” that runs MPC protocols.

In this work, we use the MOTION framework [11] for benchmarking the
circuits generated by our LLVM toolchain (cf. § 6.2). MOTION is an N -party
mixed-protocol MPC framework implemented as a C++ library. It supports
the BMR [5] as well as the GMW protocol [23] (cf. § 2.1). It guarantees semi-
honest security against all but one corrupted parties (full threshold). MOTION
provides a user-friendly API for evaluating circuits in the Bristol format [60,3],
which is also the format our toolchain produces.

4 LLVM-based Circuit Compilation

We now present our LLVM-based circuit compilation approach. For this, we
first give an intuitive overview of our optimizer suite of LLVM transform passes
that ultimately compile high-level programs to Bristol circuit representations.
Afterwards, each transform pass is described in detail.

LLVM-based Circuit Compilation for Practical Secure Computation 9

4.1 Overview

In this section, we give an intuition for our transformation pipeline that consists
of a suite of LLVM-IR transform passes.

Using a compatible LLVM front-end (e.g., Clang for C and C++, or Flang
for Fortran), we first compile the given code to LLVM-IR code. At this point,
we can apply all source code optimizations shipped by LLVM and additionally
perform loop unrolling. For example, the control flow simplifying pass “simplify-
cfg” removes unused branches and pre-computes constant branching logic. The
instruction combine pass “instcombine” simplifies Boolean or arithmetic instruc-
tions. For example, the function return b^(a*b/a); operating on integers a and b
always returns 0. The LLVM optimizer detects this in 117 ms, while HyCC [13]
takes 25 s to generate a circuit with 6,416 gates. The output of this stage is the
basis for circuit generation and will be referred to as the “base function”.

As branching is not trivially supported on circuit level, we then proceed with
eliminating all branches. This is done by our so-called “phi remove” pass, described
in § 4.2. For this, we have to inline all basic blocks (i.e., blocks of sequentially
executed instructions), and swap ϕ-nodes to select instructions (the LLVM-IR
representation of a ternary expression).

Now that all code is contained in one basic block, our “gateify” pass, described
in § 4.3, replaces all instructions with “circuit-like” functions. A circuit-like
function is a function that first disassembles the inputs into single bits, evaluates
the function exactly as a circuit consisting of primitive gates, and reassembles
the result to the required datatype.

Next in line is the “array to multiplexer” pass. Its basic concept is similar
to the gateify pass as it swaps arrays for calls to functions that behave like
multiplexers and thus enable oblivious data accesses on circuit level. The exact
differences are described in § 4.4.

Since at this point the program’s code is distributed over various external
functions, we now apply the “merge function” pass (cf. § 4.5). It takes all the
different external function calls, merges their content into a single function, and
wires the outputs to inputs accordingly. The resulting function behaves very
similar to a circuit consisting of primitive gates that represents the same function.

To further reduce the size of the generated function, and therefore the circuit,
a final pass is applied. The “constant logic elimination” pass, described in § 4.6,
simplifies logic instructions, by either pre-computing the result in case of two
constant operands, or passing the corresponding value or constant in case of one
constant operand, or both operands being the same. Lastly, if the result of an
instruction is never used, it is removed entirely.

The LLVM-IR code consisting of only gate-like instructions can then be triv-
ially converted to the Bristol format, using our LLVM-to-Bristol converter (cf. § 4.7).
Then, we convert Bristol to a Verilog net list and apply our post-processing using
logic synthesis tools (cf. § 5). This results in an even smaller circuit that we
convert back to Bristol. The latter constitutes the final result of our toolchain.

10 T. Heldmann et al.

4.2 Phi Remove Pass

The LLVM-IR is in static single assignment (SSA) form (cf. § 2.2). Therefore,
conditional branching is difficult to represent, as variables can have different values
depending on the evaluation of condition statements. The LLVM-IR solution for
this problem are ϕ-nodes that take different values depending on the previously
evaluated basic block. While the basic premise of SSA holds true for circuits, ϕ-
nodes must be replaced. Instead of calculating only one path depending on the
branch condition and generating the value in the ϕ-node depending on the source
basic block, we evaluate both branches regardless of the condition and replace
ϕ-nodes with a multiplexer. The selection bit of the multiplexer is the result of
the branching condition.

This approach works flawlessly for two-way branching, e.g., regular if/else
instructions. The LLVM-IR specification, however, allows for an arbitrary number
of values to be taken by a ϕ-node, as a basic block can be branched to by any
number of other basic blocks. This can be especially useful when trying to
represent switch/case instructions. It requires analysis of the conditions leading
to the branch, as well as a multiplexer tree instead of a single multiplexer.

To summarize, the phi remove pass identifies two-way branches, recursively
descends the basic blocks, replaces ϕ-nodes with ternary select instructions (which
are handled later), and splices the instruction lists of the basic block together
with the goal to ultimately achieve a function that only has one basic block.

4.3 Gateify Pass

The “gateify” pass iterates through every function of the module and identifies
supported instructions. Once such an instruction is found, the pass creates a
new “circuit-like” function with the same behavior. The exact instructions of
this new function are defined by our building blocks. In App. A we elaborate
on how we utilized hardware synthesis tools similar to [57,17] in order to obtain
optimal circuits for primitive instructions that can serve as building blocks.

As Boolean MPC circuits rely on bitwise operations while LLVM-IR uses
static types larger than one bit, it is necessary to disassemble the static compound
types like i8 or i32 into 8 or 32 i1 types, respectively. This disassembly process
is done as a prephase inside the new function. The computation of the result
is then done by applying the instructions specified in the circuit description of
the building block. Once all circuit instructions have been copied, the result is
then given as i1 types that have to be reassembled to a compound type. This
reassembly process is the postphase of the building block.

The newly created function signature and return value are matched to be equal
to the operands and result of the replaced instruction. The original instruction
is then deleted and all uses of the calculated result are replaced with the result
returned by the newly created function. Internally, the new function is assigned
the attribute “gate” to mark it as a circuit-like function. This will be important
to identify mergeable functions later.

LLVM-based Circuit Compilation for Practical Secure Computation 11

4.4 Array to Multiplexer Pass

The “array to multiplexer” pass is required for source languages that support
arrays as a construct and corresponding front-ends use the LLVM-IR array
construction to represent them. For example, LLVM-IR code generated by Clang
for C and C++ will use the LLVM-IR array construct. On the other hand, Fortran
instead of arrays has the concept of multidimensional fields, which behave similar
but are not represented as arrays in LLVM-IR.

The pass first analyzes the array usage of a given function. During this
analysis, all stores to constant positions are mapped out. If the same position is
written multiple times, the updated values are saved as well.

However, if a value should be stored to a position unknown at compile
time, every single position could be affected. To support stores to variable
positions, every position of the array can be updated with the result of a ternary
instruction, similar to this: i == unkownPos ? newValue : array[i]. This updates
every position with its own value, except the one position where the condition
evaluates to true, leading to this position being updated to the new value.

Once all stores are mapped out, the analysis result is used to replace all reads
from a constant position with the value that is at the corresponding position at
the time the read occurs. This value is the last update that happened to that
position before the read occurred. If a value is loaded from a position that is not
known during the compilation, the whole array is given to a multiplexer tree,
with the position disassembled to bits as the decision bits of the multiplexer tree
in the corresponding layer.

4.5 Merge Pass

The “merge” pass creates a single circuit from all circuit-like functions. It first
creates its own prephase, disassembling every parameter of the base function to
provide as primitives for the merged function. Then, it clones the instructions
of all circuit-like functions in the new merged function, excluding the pre- and
postphase. As the instructions of the base function were topologically sorted, it
is guaranteed that the first instruction to clone will only access primitives or
constants. Following functions will either reference primitives or intermediate
results that have already been disassembled.

After successfully cloning every instruction of a building block, it is necessary
to map the cloned instructions such that their references match the context of
the function they got cloned into. The output bits of every instruction are saved
and mapped to the corresponding inputs of any instruction that references them.
Once the return statement is reached, a postphase is added that reassembles the
output bits to match the return type of the base function.

4.6 Constant Logic Elimination Pass

The “constant logic elimination” pass cleans up the merged function. It iterates
through every instruction in the merged function. Due to the gateify pass, every

12 T. Heldmann et al.

instruction is either an AND, XOR, or INV instruction. In case both operands
for an AND or XOR instruction are constants, the result is computed, and every
instruction referencing the result updated to use the pre-computed value instead.
The original instruction is then removed. In case one operand is a constant,
a lookup table determines whether to keep the instruction or replace it with
a constant or the operand. Once all logic gates with constant operands are
eliminated, a last pass is done to remove instructions with unused results.

4.7 Export to Bristol Format

After all passes are executed, the resulting LLVM-IR file contains a fully merged
function with exactly one basic block. This file can then be passed to our “LLVM-
IR to Bristol” converter. The converter will skip past the disassembly phase and
locate the gate operations. Each line is then converted to a line in the Bristol
file, until the end of the gate section is reached. As it is idiomatic to the Bristol
format to state the amount of gates and wires in the beginning of the file, as well
as the amount of parameters and the bit width of the result, they are calculated
and prepended. Finally, the unique references between LLVM-IR instructions are
mapped to wire identifiers in ascending order while ensuring that result bits are
mapped to the highest numbered wire identifiers.

5 Post-Processing Circuits for MPC

In § 4, we described our LLVM-based circuit compilation approach that gradu-
ally lowers high-level implementations to circuit level. Specifically, our “gateify”
transform pass (cf. § 4.3) replaces all low-level LLVM-IR instructions with
functionally equivalent building blocks. We designed these building blocks to
be optimal according to MPC-relevant cost metrics, as was previously done
in [57,17,19,33] (cf. App. A). However, we did not develop a transform pass
that performs optimizations on the overall circuit, i.e., across building blocks.
Therefore, our generated circuits are likely larger than those generated by spe-
cialized MPC compilers like HyCC [13] that include such optimizations, e.g., to
replace highly redundant circuit parts.

To not reinvent the wheel, we instead propose to utilize HDL synthesis tool
on the output of our LLVM-based circuit compilation for global optimizations.
For this, we create a fully automated pipeline that first converts Bristol circuit
descriptions to Verilog net lists, applies optimization passes of logic synthesis
tools [63,1,58], and converts back to Bristol. By defining different constraint sets
and technology libraries, we not only support size-optimized Boolean circuits
considering the free-XOR [36] and half-gates technique [66], but also cost metrics
for post-quantum secure MPC [12] (cf. § 6). Additionally, this approach is generic
and can easily be adjusted for further cost metrics that might be of interest, e.g.,
garbling under standard assumptions [24].

The conversion from Bristol to Verilog net lists is trivial due to their similarity
in terms of structure and abstraction level. Yosys-ABC [63,1] then generates a

LLVM-based Circuit Compilation for Practical Secure Computation 13

net list output under synthesis objectives, which are provided by the developer
to optimize the parameters like minimizing the delay or limiting the area of
a synthesized circuit. We therefore develop customized technology libraries of
basic gates, which include synthesis parameters like timing and area to guide
the mapping. Concretely, we want to output a functionally equivalent yet op-
timized Boolean circuit net list consisting of only 2-input AND and XOR as
well as INV gates. For the conversion back to Bristol, we utilize existing tooling
from SCALE-MAMBA [2], which we extend to parse custom Verilog modules.

In the following, we detail our custom constraints and technology libraries.
The performance (both in terms of runtime and circuit quality improvement) is
evaluated in § 7.

5.1 Customized Logic Synthesis for MPC

Regarding MPC protocols, we focus on Yao and BMR in this work (cf. § 2.1),
and therefore Boolean circuits. The relevant cost metric for both protocols is the
multiplicative size, i.e., the number of AND gates in the circuit. In contrast, the
cost of XOR evaluation is negligble [36]. We configure Yosys-ABC to minimize
the multiplicative size by setting the XOR and INV gate area to 0 and for AND
gates to a high non-zero value.

5.2 Customized Logic Synthesis for Post-Quantum MPC

In the post-quantum setting, the previously discussed free-XOR optimization [36]
is not applicable (cf. § 2.1). Therefore, the relevant cost metric shifts from
multiplicative size to the total gate count.

In order to meet our goal in post-quantum MPC, we design a customized
library containing 2-input XOR as well as non-XOR gates. We set the area of
all gates to an equal non-zero value and synthesize circuits considering area
optimization as the main restriction. By doing so, we provide highly optimized
circuits for post-quantum MPC that can moreover be conveniently compiled from
various high-level languages.

6 Evaluation

We evaluate our LLVM-based approach to MPC circuit compilation in two as-
pects. First, we provide a complexity analysis of our transform passes. Then,
we measure the quality of the generated circuits with respect to MPC cost
metrics in comparison with HyCC [13] and provide concrete runtime as well as
communication overheads when executing such circuits with the recent MPC
framework MOTION [11]. The implementation of our toolchain is publicly avail-
able at https://encrypto.de/code/LLVM.

https://encrypto.de/code/LLVM

14 T. Heldmann et al.

Table 1. Complexity of our passes. I is the number of instructions, B the number of
basic blocks, A the number of array slots, and N the size of the largest building block.

Pass ϕ-Remove Gateify Array2MUX Merge C. Log. Elim. Total

Complexity O(I + B) O(I ·N) O(I ·A) O(I2 ·N2) O(I ·N) O(I2 ·N2)

6.1 LLVM Transform Passes Complexity Analysis

The runtime of our transform passes depends on the number of instructions,
basic blocks, and the size of the required building blocks. A summary of all
complexities analyzing the worst case for each pass can be found in Tab. 1. Note
that it is impossible for the worst case to occur simultaneously in all passes.

Let I be the number of instructions in the base function, B the number of
basic blocks, N the size of the biggest utilized building block, and A the largest
number of elements in an array.

Phi Remove Pass. The phi remove pass’s runtime mainly depends on the
size and the number of basic blocks in the function. It recursively descends
through all B basic blocks, replacing each ϕ-instruction with a ternary one. Once
all the ϕ-instructions are replaced, the basic block merging is linear in complexity,
as all instructions are saved in a doubly linked list, where we can splice the
instructions of any basic block into any other basic block. Since in the worst case
all I instructions are ϕ-instructions, this leads to a complexity of O(I + B).

Gateify Pass. The gateify pass’s runtime depends on the number of instruc-
tions and the size of the building blocks replacing them. Once an instruction
has been replaced at least once, we can reference the building block for all
identical instructions later on. But since we cannot universally assume duplicate
instructions, the complexity class is O(I ·N).

Array to Multiplexer Pass. The array to multiplexer pass iterates through
all I instructions to identify getelementptr instructions. The modification step
can then either forward constant reads with a complexity of O(1), or create a
multiplexer tree. For arrays with A elements, this tree has size 2dlog2(A)e− 1 ≈ A.
The total complexity is therefore O(I ·A).

Merge Pass. The merge gate function pass copies all instructions from the
building blocks into a single function. While all other passes operate on the base
function, this pass copies and re-maps every instruction in the building block
functions. It can also not rely on the same splicing technique as the phi remove
pass as the splice instruction is moving and not copying the instructions, and we
might need to reference the building block again later. This leads to a complexity
of O(I2 ·N2), which makes the merge pass the bottleneck.

Constant Logic Elimination Pass. The constant logic elimination pass
goes through all now O(I · N) instructions and pre-computes as well as prop-
agates the logic if possible. Then, all unused computations are removed. This
means O(I ·N) instructions are inspected/modified.

LLVM-based Circuit Compilation for Practical Secure Computation 15

Table 2. Compile time of different programs in seconds, compiled with HyCC [13]
and LLVM, and with post-processing for minimizing the number of AND gates (LLVM+)
and the total number of gates for more efficient post-quantum MPC (LLVM PQ+).

Program HyCC [13] LLVM LLVM+ LLVM PQ+

Euclid 1.34 0.68 5.59 5.26
Dummy 2.20 1.32 10.73 10.88
Gauss 11.81 11.08 127.76 125.14
Biomatch 12.20 14.11 152.16 147.80

6.2 LLVM Compilation Performance and Quality Analysis

We now measure the quality of the circuits generated by our LLVM-based
toolchain (cf. § 4) with respect to MPC cost metrics, and especially the benefits
of our fully automated post-processing (cf. § 5). Furthermore, we benchmark
these circuits with the recent MPC framework MOTION [11] to analyze concrete
runtime as well as communication overheads.

All these aspects we also compare to the HyCC compiler [13] to demonstrate
that our very extensible approach can compete with or even outperform spe-
cialized MPC tools. Therefore, we mainly base our evaluation on applications
written in C from the HyCC repository that we detail below.

Benchmark Applications. The “Euclid” benchmark calculates the squared
Euclidean distance between two points. This is a small and simple program, which
shows basic translation capabilities.

The “biomatch” benchmark is similar to Euclid, but additionally calculates
the square root of the result using Heron’s method [21] with a cutoff at 20
iterations. This benchmark is used to show loop unroll handling and how highly
repetitive functions can be greatly optimized with our post-processing approach.

The “Gauss” benchmark is a linear equation solver for up to 4 variables. It
implements a forward elimination and backward substitution. This shows the
difference if non-repetitive loops are unrolled and translated.

Additionally, we implement a “dummy” application that showcases as many
supported features as possible in a comprehensive manner. The code for this
application is attached in App. B.

Compile Time. In Tab. 2, we provide the runtime of the compilation
for HyCC and our LLVM toolchain as well as the post-processing steps, measured
on four cores of an Intel Xeon Gold 6144 CPU @ 3.50 GHz and 32 GB of RAM.

The compilation times of both approaches are comparable. For smaller ap-
plications (Euclid, dummy), LLVM is about twice as fast as HyCC. On the
other hand, for a larger application (biomatch), HyCC is slightly faster. This
is due to the comparatively high complexity of our merge pass (cf. § 6.1) when
handling large and redundant circuits, which is currently the bottleneck in our
optimizer suite. Finally, we observe that the respective post-processing steps add
a significant overhead of factor 10x on top of the basic compilation. However, we

16 T. Heldmann et al.

Table 3. Circuit size of different programs compiled with HyCC and LLVM, and
with post-processing for minimizing the number of AND gates (LLVM+) and the total
number of gates for more efficient post-quantum MPC (LLVM PQ+).

Number of gates in thousands formatted as “non-XOR/total”

Program HyCC [13] LLVM LLVM+ LLVM PQ+

Euclid 1.47 / 5.24 1.99 / 6.46 1.47 / 6.97 1.47 / 5.26
Dummy 1.59 / 5.30 2.19 / 6.05 1.74 / 7.40 1.74 / 5.78
Gauss 39.15 / 114.18 39.40 / 114.33 38.91 / 133.49 38.91 / 113.42
Biomatch 22.67 / 67.93 47.14 / 135.99 27.66 / 81.72 27.69 / 78.23

note that this is a one-time cost that occurs only before deployment when the
development of an application is finalized.

Circuit Size and Composition. In Tab. 3, we show the circuit sizes and the
composition of the compilation results. The basic compilation step with LLVM
based on our transform passes already delivers circuits in the same order of
magnitude as HyCC. However, they are concretely less efficient for MPC in terms
non-free AND gates (by factor 1.3x to 2.1x). Especially the biomatch circuit is
only half the size when compiled with HyCC. This is due to the fact that HyCC
has circuit-level optimizations, making it possible to remove the highly redundant
instructions coming from loop unrolling.

However, our fully automatic post-processing significantly lowers this disad-
vantage, making the Gauss application even more efficient than when compiled
with HyCC. In terms of post-processing for post-quantum MPC, we have to com-
pare the total number of gates (cf. § 2.1). There, our post-quantum post-processing
manages to reduce the size by up to factor 1.7x compared to the regular LLVM
output and improves up to factor 1.3x upon the already post-processed version
for MPC considering free-XOR [36].

Concrete Efficiency. In Tab. 4, we present the performance measurements
when executing the circuits with the BMR protocol (cf. § 2.1) in the recent MO-
TION framework [11] for up to N = 5 parties. The goal of this evaluation is
to determine how the differences in circuit quality effect concrete performance,
especially in comparison with the circuits generated by HyCC [13]. All bench-
marks were performed on machines with an Intel Core i9-7960X CPU @ 2.80 GHz
and 128 GB of RAM. Each party has a dedicated machine, communicating
via 10 Gbit/s Ethernet with 1.25 ms RTT. Additionally, we simulate a 100 Mbit/s
WAN connection with 100 ms RTT to model secure computation over the Internet.

As expected, the performance strongly correlates with the size of the gen-
erated circuit. We can observe that while the runtime and communication
for LLVM-generated circuits is already in the same ballpark as HyCC, our
post-processing diminishes the additional overhead such that our circuits perform
almost equally (Euclid, dummy, biomatch), and sometimes even better (Gauss).
The biggest impact of post-processing can again be seen for the biomatch appli-

LLVM-based Circuit Compilation for Practical Secure Computation 17

Table 4. Communication and runtime for running our applications using the BMR
protocol [5] in the MOTION framework [11] with N parties.

Program N
Communication [MB] Runtime LAN [s] Runtime WAN [s]

HyCC [13] LLVM LLVM+ HyCC [13] LLVM LLVM+ HyCC [13] LLVM LLVM+

2 0.88 1.17 0.88 0.18 0.22 0.19 1.14 1.20 1.17
3 0.97 1.29 0.97 0.24 0.26 0.22 1.32 1.37 1.26
4 1.06 1.41 1.06 0.27 0.33 0.28 1.38 1.56 1.40

Euclid

5 1.15 1.54 1.15 0.34 0.36 0.31 1.57 1.86 1.58

2 0.95 1.29 1.03 0.19 0.23 0.20 1.13 1.26 1.20
3 1.04 1.42 1.14 0.24 0.26 0.26 1.22 1.31 1.32
4 1.14 1.55 1.24 0.29 0.30 0.29 1.37 1.59 1.43

Dummy

5 1.24 1.69 1.35 0.35 0.37 0.33 1.57 1.84 1.76

2 22.45 22.59 22.31 1.79 1.92 1.80 3.97 3.98 3.90
3 24.84 24.99 24.68 1.86 1.90 1.90 7.44 7.67 7.65
4 27.23 27.40 27.06 2.16 2.19 2.16 12.14 11.65 10.95

Gauss

5 29.62 29.80 29.43 2.47 2.51 2.56 15.79 16.24 15.48

2 13.01 27.01 15.86 1.97 3.69 1.79 3.81 6.43 4.00
3 14.39 29.88 17.55 1.94 3.73 2.04 6.20 10.32 6.30
4 15.78 32.76 19.24 2.15 4.05 2.14 8.35 15.53 9.23

Biomatch

5 17.16 35.64 20.93 2.50 4.57 2.46 11.34 19.67 12.23

cation, where we are able to cut runtime and communication almost by half by
removing highly redundant parts of the circuit.

7 Conclusion & Outlook

Our LLVM-based approach to MPC circuit compilation is promising, especially
in terms of extensibility, usability, and circuit quality. Supporting different non-
domain specific programming languages (currently C, C++, and Fortran), we
make MPC practical for various software developer communities.

In the following, we give a comprehensive outlook by discussing remaining
limitations regarding LLVM-IR language support, extensions to other front-ends,
and the generation of hybrid circuits for mixed-protocol MPC.

Language Support. Our LLVM optimizer-based approach currently does
not support structs and recursive functions. Struct support can be added as
part of the gateify pass (cf. § 4.3), or a dedicated struct remove pass. Partial
inlining of recursive functions has been a field of interest of the LLVM community
since 2015 [4] as it can increase performance of recursive programs [54]. With
exception of tail call optimized recursion, however, no optimization pass has been
developed until now.

Extension to other Front-Ends. The highlight of our approach is its
independence of the compiled high-level language, as we only operate on LLVM-
IR, which is shared among all front-ends. Unfortunately, front-ends for different
programming languages compile to vastly different LLVM-IR code. For example,
a simple program that returns the addition of two integers compiles to ∼17 kB
of LLVM-IR code when written in Rust, while a C version is only ∼2 kB. This

18 T. Heldmann et al.

is because Clang almost directly translates C code to LLVM-IR, while Rust
makes heavy use of LLVM’s intrinsic functions (e.g., llvm.sadd.with.overflow.*).
In case of errors like overflow, underflow, type errors, out of bounds memory
accesses, or similar, probably unwanted behavior, the code tries to recover or
terminate the program with a meaningful error message. Translating all these
extra steps in a circuit would lead to massive circuits.

We suggest to develop a transform pass that tries to remove most of the
checks and error states. Thus, only circuit logic for essential parts of the program
is generated, while keeping the program and circuit equivalent for valid inputs.

Hybrid Circuits. HyCC [13] generates Boolean and arithmetic circuits for
mixed-protocol MPC. In contrast, our work only studies size-optimized Boolean
circuits. A first step for achieving parity in this regard would be to equip
the gateify pass with suitable building blocks (e.g., depth-optimized Boolean
circuits for GMW [23]) and to allow direct translation of arithmetic LLVM-IR
operations like add. As for finding the optimal protocol selection, we propose to
implement a suitable heuristic that gathers and analyzes all relevant information
during an immutable pass and divides/annotates the program in a module/anal-
ysis pass. Any of this would also require a significant extension of the Bristol
format to support arithmetic operations and annotations for protocol conversions.

Acknowledgments. We thank the anonymous reviewers for their helpful
comments. This project was co-funded by the Deutsche Forschungsgemein-
schaft (DFG) – SFB 1119 CROSSING/236615297 and GRK 2050 Privacy &
Trust/251805230, and by the German Federal Ministry of Education and Re-
search and the Hessian Ministry of Higher Education, Research, Science and
the Arts within their joint support of the National Research Center for Applied
Cybersecurity ATHENE. It has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
program (grant agreement No. 850990 PSOTI).

References

1. ABC: A system for sequential synthesis and verification. http://www.eecs.

berkeley.edu/~alanmi/abc/

2. Aly, A., Cong, K., Cozzo, D., Keller, M., Orsini, E., Rotaru, D., Scherer, O., Scholl,
P., Smart, N., Tanguy, T.: SCALE–MAMBA v1. 10: Documentation (2020)

3. Archer, D., Abril, V.A., Lu, S., Maene, P., Mertens, N., Sijacic, D., Smart, N.:
Bristol Fashion MPC circuits. https://homes.esat.kuleuven.be/~nsmart/MPC/
(2020)

4. Barrio, P., Carruth, C., Molloy, J.: Recursion inlining in LLVM. https://www.llvm.
org/devmtg/2015-04/slides/recursion-inlining-2015.pdf (2015)

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: STOC (1990)

6. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: A system for secure multi-party
computation. In: CCS (2008)

http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.eecs.berkeley.edu/~alanmi/abc/
https://homes.esat.kuleuven.be/~nsmart/MPC/
https://www.llvm.org/devmtg/2015-04/slides/recursion-inlining-2015.pdf
https://www.llvm.org/devmtg/2015-04/slides/recursion-inlining-2015.pdf

LLVM-based Circuit Compilation for Practical Secure Computation 19

7. Boemer, F., Cammarota, R., Demmler, D., Schneider, T., Yalame, H.: MP2ML: A
mixed-protocol machine learning framework for private inference. In: ARES (2020)

8. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: ESORICS (2008)

9. Boston University: JIFF: JavaScript implementation of federated functionalities.
https://github.com/multiparty/jiff/ (2015)

10. Boyar, J., Damg̊ard, I., Peralta, R.: Short non-interactive cryptographic proofs.
Journal of Cryptology (2000)

11. Braun, L., Demmler, D., Schneider, T., Tkachenko, O.: MOTION - A framework for
mixed-protocol multi-party computation. ePrint (2020), https://ia.cr/2020/1137

12. Büscher, N., Demmler, D., Karvelas, N.P., Katzenbeisser, S., Krämer, J., Rathee,
D., Schneider, T., Struck, P.: Secure two-party computation in a quantum world.
In: ACNS (2020)

13. Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., Schneider, T.: HyCC:
Compilation of hybrid protocols for practical secure computation. In: CCS (2018)

14. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: Pro-
grammable, efficient, and scalable secure two-party computation for machine learn-
ing. In: EuroS&P (2019)

15. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS (2004)

16. Coussy, P., Morawiec, A.: High-level synthesis: from algorithm to digital circuit.
Springer (2008)

17. Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni,
S.: Automated synthesis of optimized circuits for secure computation. In: CCS
(2015)

18. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

19. Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner,
M.: Pushing the communication barrier in secure computation using lookup tables.
In: NDSS (2017)

20. Fereidooni, H., Marchal, S., Miettinen, M., Mirhoseini, A., Möllering, H., Nguyen,
T.D., Rieger, P., Sadeghi, A.R., Schneider, T., Yalame, H., Zeitouni, S.: SAFELearn:
Secure aggregation for private federated learning. In: Deep Learning and Security
Workshop (2021)

21. Fowler, D., Robson, E.: Square root approximations in old babylonian mathematics:
YBC 7289 in context. Historia Mathematica (1998)

22. Fraser, C.W., Hanson, D.R.: A retargetable C compiler: design and implementation.
Addison-Wesley (1995)

23. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: STOC (1987)

24. Gueron, S., Lindell, Y., Nof, A., Pinkas, B.: Fast garbling of circuits under standard
assumptions. In: CCS. pp. 567–578. ACM (2015)

25. Hastings, M., Hemenway, B., Noble, D., Zdancewic, S.: SoK: General purpose
compilers for secure multi-party computation. In: S&P (2019)

26. Heldmann, T., Schneider, T., Tkachenko, O., Weinert, C., Yalame, H.: LLVM-based
circuit compilation for practical secure computation. In: ACNS (2021)

27. Henecka, W., Kögl, S., Sadeghi, A., Schneider, T., Wehrenberg, I.: TASTY: Tool
for automating secure two-party computations. In: CCS (2010)

28. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: CCS (2012)

https://github.com/multiparty/jiff/
https://ia.cr/2020/1137

20 T. Heldmann et al.

29. Huang, Y., Evans, D., Katz, J.: Private set intersection: Are garbled circuits better
than custom protocols? In: NDSS (2012)

30. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: USENIX Security (2011)

31. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently.
In: CRYPTO (2003)

32. Ishaq, M., Milanova, A.L., Zikas, V.: Efficient MPC via program analysis: A
framework for efficient optimal mixing. In: CCS (2019)

33. Javadi, M., Yalame, H., Mahdiani, H.: Small constant mean-error imprecise adder/-
multiplier for efficient VLSI implementation of MAC-based applications. In: IEEE
Transactions on Computers (2020)

34. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In: CCS
(2020)

35. Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: CANS (2009)

36. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and
applications. In: ICALP (2008)

37. Kreuter, B., Shelat, A., Mood, B., Butler, K.: PCF: A portable circuit format for
scalable two-party secure computation. In: USENIX Security (2013)

38. Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious
adversaries. In: USENIX Security (2012)

39. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program
analysis & transformation. In: Code Generation and Optimization (2004)

40. LLVM Community: CIRCT / Circuit IR compilers and tools. https://github.
com/llvm/circt (2020)

41. LLVM Project: LLVM’s analysis and transform passes. https://llvm.org/docs/
Passes.html (2020)

42. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - Secure two-party computation
system. In: USENIX Security (2004)

43. Mantel, H., Scheidel, L., Schneider, T., Weber, A., Weinert, C., Weißmantel, T.:
RiCaSi: Rigorous cache side channel mitigation via selective circuit compilation. In:
CANS (2020)

44. Mohassel, P., Rindal, P.: ABY3: A mixed protocol framework for machine learning.
In: CCS (2018)

45. Mood, B., Gupta, D., Carter, H., Butler, K.R.B., Traynor, P.: Frigate: A validated,
extensible, and efficient compiler and interpreter for secure computation. In: Euro
S&P (2016)

46. Mood, B., Letaw, L., Butler, K.: Memory-efficient garbled circuit generation for
mobile devices. In: FC (2012)

47. Nguyen, T.D., Rieger, P., Yalame, H., Möllering, H., Fereidooni, H., Marchal, S.,
Miettinen, M., Mirhoseini, A., Sadeghi, A.R., Schneider, T., Zeitouni, S.: FLGUARD:
Secure and private federated learning. ePrint (2021), https://ia.cr/2021/025

48. Nielsen, J.D., Schwartzbach, M.I.: A domain-specific programming language for
secure multiparty computation. In: Workshop on Programming Languages and
Analysis for Security (2007)

49. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: Improved mixed-protocol
secure two-party computation. In: USENIX Security (2020)

50. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: Fast, malicious
private set intersection. In: EUROCRYPT (2020)

51. Rastogi, A., Hammer, M.A., Hicks, M.: Wysteria: A programming language for
generic, mixed-mode multiparty computations. In: S&P (2014)

https://github.com/llvm/circt
https://github.com/llvm/circt
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html
https://ia.cr/2021/025

LLVM-based Circuit Compilation for Practical Secure Computation 21

52. Robertson, J.E.: A new class of digital division methods. Transactions on Electronic
Computers (1958)

53. Rotaru, D.: awesome-mpc. https://github.com/rdragos/awesome-mpc#

frameworks (2020)
54. Rugina, R., Rinard, M.C.: Recursion unrolling for divide and conquer programs.

In: Languages and Compilers for Parallel Computing (2000)
55. Schoenmakers, B.: MPyC: Secure multiparty computation in Python. https://

github.com/lschoe/mpyc/blob/master/README.md (2018)
56. Schropfer, A., Kerschbaum, F., Muller, G.: L1 - An intermediate language for mixed-

protocol secure computation. In: Computer Software and Applications Conference
(2011)

57. Songhori, E.M., Hussain, S.U., Sadeghi, A., Schneider, T., Koushanfar, F.: Tiny-
Garble: Highly compressed and scalable sequential garbled circuits. In: S&P (2015)

58. Synopsis: DC Ultra. https://www.synopsys.com/implementation-and-signoff/
rtl-synthesis-test/dc-ultra.html (2020)

59. Tatsuoka, M., Watanabe, R., Otsuka, T., Hasegawa, T., Zhu, Q., Okamura, R.,
Li, X., Takabatake, T.: Physically aware high level synthesis design flow. In: DAC
(2015)

60. Tillich, S., Smart, N.: (Bristol Format) Circuits of basic functions suitable for MPC
and FHE. https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html

(2020)
61. Verilog.com: Verilog Resources. https://verilog.com/ (2020)
62. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient multiparty computa-

tion toolkit. https://github.com/emp-toolkit (2016)
63. Wolf, C.: Yosys open synthesis suite. http://www.clifford.at/yosys/
64. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS

(1986)
65. Zahur, S., Evans, D.: Obliv-C: A language for extensible data-oblivious computation.

ePrint (2015), https://ia.cr/2015/1153
66. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data transfer

in garbled circuits using half gates. In: EUROCRYPT (2015)
67. Zhang, Y., Steele, A., Blanton, M.: PICCO: A general-purpose compiler for private

distributed computation. In: CCS (2013)

A Optimized Building Blocks

We provide details of the building blocks used by our LLVM toolchain during
the gateify pass (cf. § 4.3). To obtain these building blocks, we utilize logic
synthesis tools [63,1,58] with our custom technology libraries (cf. § 5.2) to
optimize (multiplicative) size and restrict the types of basic gates. The most
common building blocks are addition, subtraction, multiplication, and (integer)
division, multiplexer for array accesses, and comparator, which we detail in the
following. Tab. 5 shows a summary of the circuit size complexities, i.e., the
number of non-linear (AND) gates. Moreover, we show the actual circuit sizes
for standard 32 bit integers generated by the synthesis tool.

Addition/Subtraction. To perform addition of two l-bit values, the tra-
ditional ripple carry adder (RCA), in which the carry out of one stage is fed
directly to the carry-in of the next stage, has a multiplicative size of l− 1 [35,10].

https://github.com/rdragos/awesome-mpc#frameworks
https://github.com/rdragos/awesome-mpc#frameworks
https://github.com/lschoe/mpyc/blob/master/README.md
https://github.com/lschoe/mpyc/blob/master/README.md
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://verilog.com/
https://github.com/emp-toolkit
http://www.clifford.at/yosys/
https://ia.cr/2015/1153

22 T. Heldmann et al.

Table 5. Multiplicative complexity of building blocks for bit length l. Concrete sizes
for l = 32 as used in § 4.3.

Building block ADD SUB MULT DIV MUX CMP

Multiplicative complexity (# non-XOR) l − 1 l − 1 l2 − l l2 + 2l + 1 l l
Concrete size (l = 32) 31 31 993 1264 32 32

The subtractor can be viewed as a special case of adder as the subtraction of
two values a and b can be represented as a − b̄ + 1 where b̄ denotes the two’s
complement representation of b.

Multiplication. In classic logic synthesis, a multiplier outputs a 2l-bit prod-
uct of two l-bit inputs. The best approach for this multiplier is the textbook
method with the size of 2l2 − l [35]. However, in many programming languages
and MPC protocols, multiplication is defined as a l → l operation, where the
product of two l unsigned integers is l-bit. Generating a l→ l multiplication with
logic synthesis tools give us a circuit size of l2 − l [45,28].

Division. The division operation computes the quotient and remainder of
two binary integer numbers. The standard approach for the division is similar
to the text-book multiplication, where the divisor is iteratively shifted and
subtracted from the remainder. By doing so, one division operation can be built
with complexity of 2l2 AND gates. Restoring division can help us in hardware
synthesis to have a complexity of l2 + 2l + 1 [52].

Multiplexer. A 2-to-1 MUX was proposed in [36] with a size of l. The tree
architecture for an m-to-1 MUX has size (m− 1)l.

Comparator. The standard comparator circuit checks whether one l-bit
number is greater than another with a size of l. We implement this comparator
as described in [36].

B Dummy Application

In Listing 1 we provide the C++ code for our dummy application that we
use for benchmark purposes in addition to applications from the HyCC reposi-
tory (cf. § 6.2). It showcases as many supported features as short as possible.

Listing 1. Dummy application that covers many supported features.

1 #include <stdio.h>

2

3 int dummy (int a, int b, int c) {

4 int array [8];

5 for (int i=0; i<8; i++) {

6 array[i] = a + b * i;

7 }

8 int ret =0;

9 if (c < array[c]) {

10 ret = array [2] + array [3];

11 }

LLVM-based Circuit Compilation for Practical Secure Computation 23

12 else {

13 ret = array [0] * array [1];

14 }

15 return ret;

16 }

17

18 int main(){

19 int a, b, c;

20 scanf("%d\n%d\n%d", &a, &b, &c);

21 printf("DummyFunction: %d\n", dummy(a, b, c));

22 }

	LLVM-based Circuit Compilation for Practical Secure Computation[0.5em](Full Version)

