
Probabilistic Dynamic Input Output Automata1

Pierre Civit2

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France3

pierre.civit@lip6.fr4

Maria Potop-Butucaru5

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France6

maria.potop-butucaru@lip6.fr7

Abstract8

We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic9

systems. Our work extends dynamic I/O Automata formalism [1] to probabilistic setting. The10

original dynamic I/O Automata formalism included operators for parallel composition, action hid-11

ing, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion.12

They can model mobility by using signature modification. They are also hierarchical: a dynamic-13

ally changing system of interacting automata is itself modeled as a single automaton. Our work14

extends to probabilistic settings all these features. Furthermore, we prove necessary and su�-15

cient conditions to obtain the implementation monotonicity with respect to automata creation16

and destruction. Our work lays down the premises for extending composable secure-emulation17

[3] to dynamic settings, an important tool towards the formal verification of protocols combining18

probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure19

distributed computation, cybersecure distributed protocols etc).20

2012 ACM Subject Classification C.2.4 Distributed Systems21

Keywords and phrases distributed dynamic systems, probabilistic automata, foundations22

Digital Object Identifier 10.4230/LIPIcs...23

1 Introduction24

Distributed computing area faces today important challenges coming from modern applic-25

ations such as cryptocurrencies and blockchains which have a tremendous impact in our26

society. Blockchains are an evolved form of the distributed computing concept of replicated27

state machine, in which multiple agents see the evolution of a state machine in a consistent28

form. At the core of both mechanisms there are distributed computing fundamental elements29

(e.g. communication primitives and semantics, consensus algorithms, and consistency models)30

and also sophisticated cryptographic tools. Recently, [5] stated that despite the tremendous31

interest about blockchains and distributed ledgers, no formal abstraction of these objects32

has been proposed. In particular it was stated that there is a need for the formalization33

of the distributed systems that are at the heart of most cryptocurrency implementations,34

and leverage the decades of experience in the distributed computing community in formal35

specification when designing and proving various properties of such systems. Therefore, an36

extremely important aspect of blockchain foundations is a proper model for the entities37

involved and their potential behavior. The formalisation of blockchain area has to combine38

models of underlying distributed and cryptographic building blocks under the same hood.39

© P. Civit and M. Maria Potop-Butucaru;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.civit$@$lip6.fr
mailto:maria.potop-butucaru$@$lip6.fr
https://doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Probabilistic Dynamic Input Output Automata

The formalisation of distributed systems has been pioneered by Lynch and Tuttle [6]. They40

proposed the formalism of Input/Output Automata to model deterministic distributed system.41

Later, this formalism is extended with Markov decision processes [7] to give Probabilistic42

Input/Output Automata [9] in order to model randomized distributed systems. In this model43

each process in the system is a automaton with probabilistic transitions. The probabilistic44

protocol is the parallel composition of the automata modeling each participant. This45

framework has been further extended in [2] to task-structured probabilistic Input/Output46

automata specifically designed for the analysis of cryptographic protocols. Task-structured47

probabilistic Input/Output automata are Probabilistic Input/Output automata extended48

with tasks structures that are equivalence classes on the set of actions. They define the49

parallel composition for this type of automata. Inspired by the literature in security area they50

also define the notion of implementation. Informally, the implementation of a Task-structured51

probabilistic Input/Output automata should look "similar" to the specification whatever the52

external environment of execution. Furthermore, they provide compositional results for the53

implementation relation. Even thought the formalism proposed in [2] has been already used54

in the verification of various cryptographic protocols this formalism does not capture the55

dynamicity in blockchains systems such as Bitcoin or Ethereum where the set of participants56

dynamically changes. Moreover, this formalism does not cover blockchain systems where57

subchains can be created or destroyed at run time [8].58

Interestingly, the modelisation of dynamic behavior in distributed systems is an issue that59

has been addressed even before the born of blockchain systems. The increase of dynamic60

behavior in various distributed applications such as mobile agents and robots motivated the61

Dynamic Input Output Automata formalism introduced in [1]. This formalisms extends the62

Input/Output Automata formalism with the ability to change their signature dynamically63

(i.e. the set of actions in which the automaton can participate) and to create other I/O64

automata or destroy existing I/O automata. The formalism introduced in [1] does not cover65

the case of probabilistic distributed systems and therefore cannot be used in the verification66

of blockchains such as Algorand [4].67

Our contribution. In order to cope with dynamicity and probabilistic nature of68

blockchain systems we propose an extension of the formalisms introduced in [2] and [1]. Our69

extension use a refined definition of probabilistic configuration automata in order to cope70

with dynamic actions. The main result of our formalism is as follows: the implementation71

of probabilistic configuration automata is monotonic to automata creation and destruction.72

Our work is an intermediate step before defining composable secure-emulation [3] in dynamic73

settings.74

Paper organization. The paper is organized as follow. Section 2 is dedicated to75

a brief introduction of the notion of probabilistic measure an recalls notations used in76

defining Signature I/O automata of [1]. Section 3 builds on the frameworks proposed in77

[1] and [2] in order to lay down the preliminaries of our formalism. More specifically, we78

introduce the definitions of probabilistic signed I/O automata and define their composition79

and implementation. In Section 4 we extend the definition of configuration automata proposed80

in [1] to probabilistic configuration automata then we define the composition of probabilistic81

configuration automata and prove its closeness. The key result of our formalisation, the82

monotonicity of PSIOA implementations with respect to creation and destruction, is presented83

in Section 5. The Appendix of the paper includes of the proofs and the intermediary results84

needed to the proof of our key result.85

P. Civit and M. Potop-Butucaru XX:3

2 Preliminaries86

Preliminaries on probability and measure. We assume our reader is comfortable with87

basic notions of probability theory, such as ‡-fields and (discrete) probability measures. An88

extended abstract is provided in Appendix. A measurable space is denoted by (S, Fs), where89

S is a set and Fs is a ‡-algebra over S. A measure space is denoted by (S, Fs, ÷) where ÷ is90

a measure on (S, Fs). The product measure space (S1, Fs1 , ÷1) ¢ (S2, Fs2 , ÷2) is the measure91

space (S1 ◊ S2, Fs1 ¢ Fs2 , ÷1 ¢ ÷2), where Fs1 ¢ Fs2 is the smallest ‡-algebra generated by92

sets of the form {A ◊ B|A œ Fs1 , B œ Fs2} and ÷1 ¢ ÷2 is the unique measure s. t. for every93

C1 œ Fs1 , C2 œ Fs2 , ÷1 ¢ ÷2(C1 ◊ C2) = ÷1(C1)÷2(C2).94

A discrete probability measure on a set S is a probability measure ÷ on (S, 2S), such that,95

for each C µ S, ÷(S) =
q

cœC ÷({c}). We define Disc(S) to be, the set of discrete probability96

measures on S. In the sequel, we often omit the set notation when we denote the measure of97

a singleton set. For a discrete probability measure ÷ on a set S, supp(÷) denotes the support98

of ÷, that is, the set of elements s œ X such that ÷(s) ”= 0. Given set S and a subset C µ S,99

the Dirac measure ”C is the discrete probability measure on S that assigns probability 1 to100

C. For each element s œ S, we note ”s for ”{s}.101

Signature I/O Automata (SIOA). Our framework builds on top of Signature I/O102

Automata (SIOA) introduced in [1]. We assume the existence of a countable set Autids103

of unique signature input/output automata identifiers, an underlying universal set Auts of104

SIOA, and a mapping aut : Autids æ Auts. aut(A) is the SIOA with identifier A. We use105

"the automaton A" to mean "the SIOA with identifier A". We use the letters A, B, possibly106

subscripted or primed, for SIOA identifiers. The executable actions of a SIOA A are drawn107

from a signature sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)), called the state signature,108

which is a function of the current state q of A.109

We node in(A)(q), out(A)(q), int(A)(q) pairwise disjoint sets of input, output, and internal110

actions, respectively. We define ext(A)(q), the external signature of A in state q, to be111

ext(A)(q) = (in(A)(q), out(A)(q)).112

We define local(A)(q), the local signature of A in state q, to be local(A)(q) = (out(A)(q), in(A)(q)).113

For any signature component, generally, the ‚. operator yields the union of sets of actions114

within the signature, e.g., „sig(A) : q œ Q ‘æ „sig(A)(q) = in(A)(q) fi out(A)(q) fi int(A)(q).115

Also define acts(A) =
t

qœQ
„sig(A)(q), that is acts(A) is the "universal" set of all actions that116

A could possibly execute, in any state. In the same way UI(A) =
t

qœQ in(A)(q), UO(A) =117
t

qœQ out(A)(q), UH(A) =
t

qœQ int(A)(q), UL(A) =
t

qœQ
[local(A)(q), UE(A) =

t
qœQ

„ext(A)(q).118

3 Probabilistic Signature I/O Automata119

In the following we extend the definition of Signature I/O Automata introduced in [1] to120

probabilistic settings. We therefore, combine the formalisme in [1] with the Probabilistic I/O121

Automata defined in [9]. We will define the composition of PSIOA, measures for executions122

and traces and the notion of a environment for a PSIOA. Moreover, we extend the operators123

hidden and renaming to a PSIOA.124

I Definition 1 (probabilistic signature I/O automata). A probabilistic signature I/O automata125

(PSIOA) A = (Q, q̄, sig(A), D), where:126

(a) Q is a countable set of states, (Q, 2Q) is a measurable space called the state space,127

XX:4 Probabilistic Dynamic Input Output Automata

and q is the start state.128

(b) sig(A) : q œ Q ‘æ sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q) is the signature129

function that maps each state to a triplet of countable input, output and internal set of130

actions.131

(d) D µ Q ◊ acts(A) ◊ Disc(Q) is the set of probabilistic discrete transitions where132

’(q, a, ÷) œ D : a œ „sig(A)(q). If (q, a, ÷) is an element of D, we write q
aæ ÷ and action133

a is said to be enabled at q. The set of states in which action a is enabled is denoted by134

Ea. For B ™ A, we define EB to be
t

aœB Ea. The set of actions enabled at q is denoted135

by enabled(q). If a single action a œ B is enabled at q and q
aæ ÷, then this ÷ is denoted136

by ÷(A,q,B). If B is a singleton set {a} then we drop the set notation and write ÷(A,q,a).137

In addition A must satisfy the following conditions:138

E1 (Input action enabling) ’x œ Q : ’a œ in(A)(q), ÷÷ œ Disc(Q) : (q, a, ÷) œ D.139

T1 Transition determinism: For every q œ Q and a œ A there is at most one ÷ œ Disc(Q)140

such that (q, a, ÷) œ D.141

For every PSIOA A = (Q, q̄, sig(A), D), we note states(A) = Q, start(A) = q̄, steps(A) =142

D.143

I Definition 2 (fragment, execution and trace of PSIOA). An execution fragment of a PSIOA144

A = (Q, q̄, sig(A), D) is a finite or infinite sequence – = q0a1q1a2... of alternating states and145

actions, such that:146

1. If – is finite, it ends with a state.147

2. For every non-final state qi, there is ÷ œ Disc(Q) and a transition (qi, ai+1, ÷) œ D s. t.148

qi+1 œ supp(÷).149

We write fstate(–) for q0 (the first state of –), and if – is finite, we write lstate(–) for150

its last state. We use Frags(A) (resp., Frags�ú(A)) to denote the set of all (resp., all finite)151

execution fragments of A. An execution of A is an execution fragment – with fstate(–) = q̄.152

Execs(A) (resp., Execsú(A)) denotes the set of all (resp., all finite) executions of A. The153

trace of an execution fragment –, written trace(–), is the restriction of – to the external154

actions of A. We say that — is a trace of A if there is – œ Execs(P) with — = trace(–).155

Traces(A) (resp., Tracesú(A)) denotes the set of all (resp., all finite) traces of A.156

I Definition 3 (reachable execution). Let A = (Q, q̄, sig(A), D) be a PSIOA. A state q is157

said reachable if it exists a finite execution that ends with q.158

The aim of I/O formalism is to model distributed systems as composition of automata and159

prove guarantees of the composed system by composition of the guarantees of the di�erent160

elements of the system. In the following we define the composition operation for PSIOA.161

I Definition 4 (Compatible signatures). Let S be a set of signatures. Then S is compatible162

i�, ’sig, sigÕ œ S, where sig = (in, out, int), sigÕ = (inÕ, outÕ, intÕ) and sig ”= sigÕ, we have:163

1. (in fi out fi int) fl intÕ = ÿ, and 2. out fl outÕ = ÿ.164

I Definition 5 (Composition of Signatures). Let � = (in, out, int) and �Õ = (inÕ, outÕ, intÕ)165

be compatible signatures. Then we define their composition � ◊ � = (in fi inÕ ≠ (out fi166

outÕ), out fi outÕ, int fi intÕ).167

Signature composition is clearly commutative and associative.168

I Definition 6 (partially compatible at a state). Let A = (A1, ..., An) be a set of PSIOA.169

A state of A is an element q = (q1, ..., qn) œ Q = Q1 ◊ ... ◊ Qn. We say A1, ..., An are170

P. Civit and M. Potop-Butucaru XX:5

partially-compatible at state q (or A is) if {sig(A1)(q1), ..., sig(An)(qn)} is a set of compatible171

signatures. In this case we note sig(A)(q) = sig(A1)(q1) ◊ ... ◊ sig(An)(qn) and we note172

÷(A,q,a) œ Disc(Q), s. t. for every action a œ „sig(A)(q), ÷(A,q,a) = ÷1 ¢ ... ¢ ÷n œ Disc(Q)173

that verifies for every j œ [1, n] :174

If a œ sig(Aj)(qj), ÷j = ÷(Aj ,qj ,a).175

Otherwise, ÷j = ”qj176

while ÷(A,q,a) = ”q if a /œ „sig(A)(q).177

I Definition 7 (pseudo execution). Let A = (A1, ..., An) be a set of PSIOA. A pseudo178

execution fragment of A is a finite or infinite sequence – = q0a1q1a2... of alternating states179

of A and actions, such that:180

If – is finite, it ends with a n-uplet of state.181

For every non final state qi, A is partially-compatible at qi.182

For every action ai, ai œ „sig(A)(qi≠1).183

For every state qi, with i > 0, qi œ supp(÷(A,qi≠1,ai)).184

A pseudo execution of A is a pseudo execution fragment of A with q0 = (q̄A1 , ..., q̄An).185

I Definition 8 (reachable state). Let A = (A1, ..., An) be a set of PSIOA. A state q of A is186

reachable if it exists a pseudo execution – of A ending on state q.187

I Definition 9 (partially-compatible PSIOA). Let A = (A1, ..., An) be a set of PSIOA.188

The automata A1, ..., An are ¸-partially-compatible with ¸ œ N if no pseudo-execution –189

of A with |–| Æ ¸ ends on non-partially-compatible state q. The automata A1, ..., An190

are partially-compatible if A is partially-compatible at each reachable state q, i. e. A is191

¸-partially-compatible for every ¸ œ N.192

I Definition 10 (Compatible PSIOA). Let A = (A1, ..., An) be a set of PSIOA with Ai =193

((Qi, FQi), sig(Ai), Di). We say A is compatible if it is partially-compatible for every state194

q = (q1, ..., qn) œ Q1 ◊ ... ◊ Qn.195

Note that a set of compatible PSIOA is also a set of partially-compatible automata.196

I Definition 11 (PSIOAs composition). If A = (A1, ..., An) is a compatible set of PSIOAs,197

with Ai = (Qi, q̄i, sig(Ai), Di), then their composition A1||...||An, is defined to be A =198

(Q, q̄, sig(A), D), where:199

Q = Q1 ◊ ... ◊ Qn200

q̄ = (q̄1, ..., q̄n)201

sig(A) : q = (q1, ..., qn) œ Q ‘æ sig(A)(q) = sig(A1)(q1) ◊ ... ◊ sig(An)(qn). ,202

D µ Q ◊ A ◊ Disc(Q) is the set of triples (q, a, ÷(A,q,a)) so that q œ Q and a œ „sig(A)(q)203

To solve the non-determinism we use schedule that allows us to chose an action in a204

signature. To do so, we adapt the definition of task of [2] to the dynamic setting. We assume205

the existence of a subset Autids0 µ Autids that represents the "atomic ententies" that will206

constitute the configuration automata introduced in the next section.207

I Definition 12 (Constitution). For every A œ Autids, we note208

constitution(A) :
;

states(A) æ P(Autids0) = 2Autids0

q ‘æ constitution(A)(q)209

For every A œ Autids0, for every q œ states(A), constitution(A)(q) = {A}.210

XX:6 Probabilistic Dynamic Input Output Automata

For every A = (A1, ..., An) œ (Autids0)n, A = A1||...||An for every q œ states(A),211

constitution(A)(q) = A.212

I Definition 13 (Task). A task T is a pair (id, actions) where id œ Autids0 and actions is213

a set of action labels. Let T = (id, actions), we note id(T) = id and actions(T) = actions.214

I Definition 14 (Enabled task). Let A œ Autids. A task T is said enabled in state q œ215

states(A) if :216

id(T) œ constitution(A)(q)217

It exists a unique local action a œ „loc(A)(q) fl actions(T) (noted a œ T to simplify)218

enabled at state q (that is it exists ÷ œ Disc(Q) s. t. (q, a, ÷) œ D.219

In this case we say that a is triggered by T at state q.220

We are not dealing with a schedule of a specific automaton anymore, which di�ers from221

[2]. However the restriction of our definition to "static" setting matches their definition.222

I Definition 15 (schedule). A schedule fl is a (finite or infinite) sequence of tasks.223

I Definition 16. Let A be a PSIOA. Given µ œ Disc(Frags(A)) a discrete probability224

measure on the execution fragments and a task schedule fl, apply(µ, fl) is a probability225

measure on Frags(A). It is defined recursively as follows.226

1. applyA(µ, ⁄) := µ. Here ⁄ denotes the empty sequence.227

2. For every T and – œ Fragsú(A), apply(µ, T)(–) := p1(–) + p2(–), where:228

p1(–) =
;

µ(–Õ)÷(A,qÕ,a)(q) if – = –Õaq, qÕ = lstate(–Õ) and a is triggered by T
0 otherwise229

p2(–) =
;

µ(–) if T is not enabled after –
0 otherwise230

3. 3. If fl is finite and of the form flÕT , then applyA(µ, fl) := applyA(applyA(µ, flÕ), T).231

4. 4. If fl is infinite, let fli denote the length-i prefix of fl and let pmi be applyA(µ, fli). Then232

applyA(µ, fl) := lim
iæŒ

pmi.233

tdistA(µ, fl) : TracesA æ [0, 1], is defined as tdistA(µ, fl)(E) = apply(”q̄, fl)(trace≠1
A (E)),234

for any measurable set E œ FT racesA .235

We write tdistA(µ, fl) as shorthand for tdistA(applyA(µ, fl)) and tdistA(fl) for tdistA(applyA(”(x̄), fl)),236

where ”(x̄) denotes the measure that assigns probability 1 to x̄. A trace distribution of A is237

any tdistA(fl). We use TdistsA to denote the set {tdistA(fl) : fl is a task schedule }.238

We removed the subscript A when this is clear in the context.239

In the following we introduce the notion of a environment for a PSIOA.240

I Definition 17 (Environment). A probabilistic environment for PSIOA A is a PSIOA E241

such that A and E are partially-compatible.242

I Definition 18 (External behavior). The external behavior of a PSIOA A, written as243

ExtBehA, is defined as a function that maps each environment E for A to the set of trace244

distributions TdistsA||E .245

We introduce in the following the hiding and renaming operators for PSIOA.246

I Definition 19 (hiding on signature). Let sig = (in, out, int) be a signature and acts a set247

of actions. We note hide(sig, acts) the signature sigÕ = (inÕ, outÕ, intÕ) s. t.248

P. Civit and M. Potop-Butucaru XX:7

inÕ = in249

outÕ = out \ acts250

intÕ = int fi (out fl acts)251

I Definition 20 (hiding on PSIOA). Let A = (Q, q̄, sig(A), D) be a PSIOA. Let hiding-252

actions a function mapping each state q œ Q to a set of actions. We note hide(A, hiding-253

actions) the PSIOA (Q, q̄, sigÕ(A), D), where sigÕ(A) : q œ Q ‘æ hide(sig(A)(q), hiding-254

actions(q)).255

It should be noted that hiding and composition are commutative. A formal proof can be256

found in the Appendix.257

I Definition 21. (State renaming for PSIOA) Let A be a PSIOA with QA as set of states,258

let QAÕ be another set of states and let ren : QA æ QAÕ be a bijective mapping. Then259

ren(A) is the automaton given by:260

start(ren(A)) = ren(start(QA))261

states(ren(A)) = ren(states(QA))262

’qAÕ œ states(ren(A)), sig(ren(A))(qAÕ) = sig(A)(ren≠1(qAÕ))263

’qAÕ œ states(ren(A)), ’a œ sig(ren(A))(qAÕ), if (ren≠1(qAÕ), a, ÷) œ DA, then (qAÕ , a, ÷Õ) œ264

Dren(A) where ÷Õ œ Disc(QAÕ , FQAÕ) and for every qAÕÕ œ states(ren(A)), ÷Õ(qAÕÕ) =265

÷(ren≠1(qAÕÕ)).266

I Definition 22. (State renaming for PSIOA execution) Let A and AÕ be two PSIOA s.267

t. AÕ = ren(AÕ). Let – = q0a1q1... be an execution fragment of A. We note ren(–) the268

sequence ren(q0)a1ren(q1)....269

4 Probabilistic Configuration Automata270

Towards the extension of the formalism to dynamic settings, in this section we introduce the271

Probabilistic Configuration Automata (PCA) that combines the PSIOA framework defined272

above and the notion of configuration of [1]. The main key result we prove here is the273

closeness of PCA closeness under composition.274

I Definition 23 (Configuration). A configuration is a pair (A, S) where275

A = (A1, ..., An) is a finite sequence of PSIOA identifiers (lexicographically ordered 1),276

and277

S maps each Ak œ A to an sk œ states(Ak).278

In distributed computing, configuration usually refers to the union of states of all the279

automata of the system. Here, the notion is di�erent, it captures a set of some automata280

(A) in their current state (S).281

I Definition 24 (Compatible configuration). A configuration (A, S) is compatible i�, for282

all A, B œ A, A ”= B: 1. sig(A)(S(A)) fl int(B)(S(B)) = ÿ, and 2. out(A)(S(A)) fl283

out(B)(S(B)) = ÿ284

I Definition 25 (Intrinsic attributes of a configuration). Let C = (A, S) be a compatible285

task-configuration. Then we define286

1 lexicographic order will simplify projection on product of probabilistic measure for transition of compos-
ition of automata

XX:8 Probabilistic Dynamic Input Output Automata

auts(C) = A represents the automata of the configuration,287

map(C) = S maps each automaton of the configuration with its current state,288

out(C) =
t

AœA out(A)(S(A)) represents the output action of the configuration,289

in(C) = (
t

AœA in(A)(S(A))) ≠ out(C) represents the input action of the configuration,290

int(C) =
t

AœA int(A)(S(A)) represents the internal action of the configuration,291

ext(C) = in(C) fi out(C) represents the external action of the configuration,292

sig(C) = (in(C), out(C), int(C)) is called the intrinsinc signature of the configuration,293

CA(C) = (aut(A1)||...||aut(An)) represents the composition of all the automata of the294

configuration,295

US(C) = (S(A1), ..., S(An)) represents the states of the automaton corresponding to the296

composition of all the automata of the configuration,297

Here we define a reduced configuration as a configuration deprived of the automata298

that are in the very particular state where their current signatures are the empty set. This299

mechanism will allows us to capture the idea of destruction.300

I Definition 26 (Reduced configuration). reduce(C) = (AÕ, S
Õ), where A

Õ = {A|A œ301

A and sig(A)(S(A)) ”= ÿ} and S
Õ is the restriction of S to A

Õ, noted S � A
Õ in the re-302

maining.303

A configuration C is a reduced configuration i� C = reduce(C).304

We recall that we assume the existence of a countable set Autids of unique PSIOA305

identifiers, an underlying universal set Auts of PSIOA, and a mapping aut : Autids æ Auts.306

aut(A) is the PSIOA with identifier A. We will define a measurable space for configuration.307

We note for every Ï œ P(Autids), QÏ = QÏ1 ◊ ... ◊ QÏn and FQÏ = FQÏ1
¢ ... ¢ FQÏ|Ï|

308

We note Qaut =
t

ÏœP(Autids) QÏ, the set of all possible state sets cartesian product for309

each possible family of automata. FQaut = {
t

iœ[1,k] ci|„ œ P(P(Autids)), ci œ FQÏi
„ =310

Ï1, ..., Ïk, Ïi œ P(Autids)} (Qaut, FQaut) is a measurable space.311

We note Qconf = {(A, S)|A œ P(Autids), ’Ai œ A, S(Ai) œ Qi}, the set of all possible312

configurations.313

Let f =
;

Qconf æ Qaut

(A, S) ‘æ QCA((A,S)) = S(A1) ◊ ... ◊ S(An)314

We note FQconf = {f≠1(P)|P œ FQaut}.315

(Qconf , FQconf) is a measurable space316

We will define some probabilistic transition from configurations to others where some317

automata can be destroyed or created. To define it properly, we start by defining "preserving318

transition" where no automaton is neither created nor destroyed and then we define above319

this definition the notion of configuration transition.320

I Definition 27 (Preserving distribution). A preserving distribution ÷p œ Disc(Qconf) is a321

distribution verifying ’(A, S), (AÕ, S
Õ) œ supp(÷p), A = A

Õ. The unique family of automata322

ids A of the configurations in the support of ÷p is called the family support of ÷p.323

We define a companion distribution as the natural distribution of the corresponding324

family of automata at the corresponding current state. Since no creation or destruction325

occurs, these definitions can seem redundant, but this is only an intermediate step to define326

properly the "dynamic" distribution.327

P. Civit and M. Potop-Butucaru XX:9

I Definition 28 (Companion distribution). Let C = (A, S) be a compatible configuration328

with A = (A1, ..., An) and S : Ai œ A ‘æ qi œ QAi (with A partially-compatible at state329

q = (q1, ..., qn) œ QA = QA1 ◊ ... ◊ QAn). Let ÷p be a preserving distribution with A as330

family support. The probabilistic distribution ÷(A,q,a) is a companion distribution of ÷p if for331

every qÕ = (qÕ
1, ..., qÕ

n) œ QA, for every S
ÕÕ : Ai œ A ‘æ qÕÕ

i œ QAi ,332

÷(A,q,a)(qÕ) = ÷p((A, S
ÕÕ)) ≈∆ ’i œ [1, n], qÕÕ

i = qÕ
i,333

that is the distribution ÷(A,q,a) corresponds exactly to the distribution ÷p.334

This is "a" and not "the" companion distribution since ÷p does not explicit the start335

configuration.336

Now, we can naturally define a preserving transition (C, a, ÷p) from a configuration C337

via an action a with a companion transition of ÷p. It allows us to say what is the "static"338

probabilistic transition from a configuration C via an action a if no creation or destruction339

occurs.340

I Definition 29 (preserving transition). Let C = (A, S) be a compatible configuration,341

q = US(C) and ÷p œ P (Qconf , FQconf) be a preserving transition with As as family support.342

Then say that (C, a, ÷p) is a preserving configuration transition, noted C
a

Ô ÷p if343

As = A344

÷(A,q,a) is a companion distribution of ÷p345

For every preserving configuration transition (C, a, ÷p), we note ÷(C,a),p = ÷p.346

The preserving transition of a configuration corresponds to the transition of the composi-347

tion of the corresponding automata at their corresponding current states.348

Now we are ready to define our "dynamic" transition, that allows a configuration to create349

or destroy some automata.350

At first, we define reduced distribution that leads to reduced configurations only, where351

all the automata that reach a state with an empty signature are destroyed.352

I Definition 30 (reduced distribution). A reduced distribution ÷r œ Disc(Qconf , FQconf)353

is a probabilistic distribution verifying that for every configuration C œ supp(÷r), C =354

reduced(C).355

Now, we generate reduced distribution with a preserving distribution that describes what356

happen to the automata that already exist and a family of new automata that are created.357

I Definition 31 (Generation of reduced distribution). Let ÷p œ Disc(Qconf) be a preserving358

distribution with A as family support. Let Ï µ Autids. We say the reduced distribution359

÷r œ Disc(Qconf) is generated by ÷p and Ï if it exists a non-reduced distribution ÷nr œ360

Disc(Qconf), s. t.361

(Ï is created with probability 1)362

’(AÕÕ, S
ÕÕ) œ Qconf , if A

ÕÕ ”= A fi Ï, then ÷nr((AÕÕ, S
ÕÕ)) = 0363

(freshly created automata start at start state)364

’(AÕÕ, S
ÕÕ) œ Qconf , if ÷Ai œ Ï ≠ A so that, S

ÕÕ(Ai) ”= q̄i, then ÷nr((AÕÕ, S
ÕÕ)) = 0365

(The non-reduced transition match the preserving transition)366

’(AÕÕ, S
ÕÕ) œ Qconf , s. t. A

ÕÕ = A fi Ï and ’Aj œ Ï, S
ÕÕ(Aj = xj), ÷nr((AÕÕ, S

ÕÕ)) =367

÷p(A, S
ÕÕÁA))368

XX:10 Probabilistic Dynamic Input Output Automata

(The reduced transition match the non-reduced transition)369

’cÕ œ Qconf , if cÕ = reduce(cÕ), ÷r(cÕ) = �(cÕÕ,cÕ=reduce(cÕÕ))÷nr(cÕÕ), if cÕ ”= reduce(cÕ), then370

÷r(cÕ) = 0371

I Definition 32 (Intrinsic transition). Let (A, S) be arbitrary reduced compatible config-372

uration, let ÷ œ Disc(Qconf), and let Ï ™ Autids, Ï fl A = ÿ. Then ÈA, SÍ a=∆Ï ÷ if ÷ is373

generated by ÷p and Ï with (A, S) a
Ô ÷p.374

The assumption of deterministic creation is not restrictive, nothing prevents from flipping375

a coin at state s0 to reach s1 with probability p or s2 with probability 1 ≠ p and only create376

a new automaton in state s2 with probability 1, while the action create is not enabled in377

state s1.378

I Definition 33 (Probabilistic Configuration Automaton). A probabilistic configuration auto-379

maton (PCA) K consists of the following components:380

1. A probabilistic signature I/O automaton psioa(K). For brevity, we define states(K) =381

states(psioa(K)), start(K) = start(psioa(K)), sig(K) = sig(psioa(K)), steps(K) =382

steps(psioa(K)), and likewise for all other (sub)components and attributes of psioa(K).383

2. A configuration mapping config(K) with domain states(K) and such that config(K)(x)384

is a reduced compatible configuration for all qK œ states(K).385

3. For each qK œ states(K), a mapping created(K)(x) with domain sig(K)(x) and such386

that ’a œ sig(K)(q), created(K)(q)(a) ™ Autids387

4. A hidden-actions mapping hidden-actions(K) with domain states(K) and such that388

hidden-actions(K)(qK) ™ out(config(K)(qK)).389

and satisfies the following constraints390

1. If config(K)(q̄K) = (A, S), then ’Ai œ A, S(Ai) = q̄i391

2. If (qK , a, ÷) œ steps(K) then config(K)(qK) a=∆Ï ÷Õ, where Ï = created(K)(qK)(a)392

and ÷(y) = ÷Õ(config(K)(y)) for every y œ states(K)393

3. If qK œ states(K) and config(K)(qK) a=∆Ï ÷Õ for some action a, Ï = created(K)(x)(a),394

and reduced compatible probabilistic measure ÷Õ œ P (Qconf , FQconf), then (qK , a, ÷) œ395

steps(K) with ÷(y) = ÷Õ(config(K)(y)) for every y œ states(K).396

4. For all qK œ states(K) , sig(K)(qK) = hide(sig(config(K)(qK)), hidden-actions(qK)),397

which implies that398

(a) out(K)(qK) ™ out(config(K)(qK)),399

(b) in(K)(qK) = in(config(K)(qK)),400

(c) int(K)(qK) ´ int(config(K)(qK)), and401

(d) out(K)(qK) fi int(X)(qK) = out(config(K)(qK)) fi int(config(K)(qK))402

4 (d) states that the signature of a state qK of K must be the same as the signature403

of its corresponding configuration config(K)(qK), except for the possible e�ects of hiding404

operators, so that some outputs of config(K)(qK) may be internal actions of K in state qK .405

Additionally, we can define the current constitution of a PCA, which is the union of the406

current constitution of the element of its current corresponding configuration.407

I Definition 34 (Constitution of a PCA). Let K be a PCA. For every q œ states(K),408

constitution(K)(q) = constitution(psioa(K))(q) =
t

Aœauts(config(K)(q)) constitution(A)(map(config(K)(q))(A)).409

We note UA(K) =
t

qœK constitution(K)(q) the universal set of atomic components of410

K.411

P. Civit and M. Potop-Butucaru XX:11

In the following we lay down the formalism needed to prove that probabilistic configuration412

automata are closed under composition.413

I Definition 35 (Union of configurations). Let C1 = (A1, S1) and C2 = (A2, S2) be con-414

figurations such that A1 fl A2 = ÿ. Then, the union of C1 and C2, denoted C1 fi C2, is415

the configuration C = (A, S) where A = A1 fi A2 (lexicographically ordered) and S agrees416

with S1 on A1, and with S2 on A2. It is clear that configuration union is commutative417

and associative. Hence, we will freely use the n-ary notation C1 fi ... fi Cn (for any n Ø 1)418

whenever ’i, j œ [1 : n], i ”= j, auts(Ci) fl auts(Cj) = ÿ.419

I Definition 36 (PCA partially-compatible at a state). Let X = (X1, ..., Xn) be a family of420

PCA. We note psioa(X) = (psioa(X1), ..., psioa(Xn)). The PCA X1, ..., Xn are partially-421

compatible at state qX = (qX1 , ..., qXn) œ states(X1) ◊ ... ◊ states(Xn) i�:422

1. ’i, j œ [1 : n], i ”= j : auts(config(Xi)(qXi)) fl auts(config(Xj)(qXj)) = ÿ.423

2. {sig(X1)(qX1), ..., sig(Xn)(qXn)} is a set of compatible signatures.424

3. ’i, j œ [1 : n], i ”= j : ’a œ „sig(Xi)(qXi) fl „sig(Xj)(qXj) : created(Xi)(qXi)(a) fl425

created(Xj)(qXj)(a) = ÿ.426

4. ’i, j œ [1 : n], i ”= j : constitution(Xi)(qXi) fl constitution(Xj)(qXj) = ÿ427

We can remark that if ’i, j œ [1 : n], i ”= j : auts(config(Xi)(qXi))flauts(config(Xj)(qXj)) =428

ÿ and {sig(X1)(qX1), ..., sig(Xn)(qXn)} is a set of compatible signatures, then config(X1)(qX1)fi429

... fi config(Xn)(qXn) is a reduced compatible configuration.430

If X is partially-compatible at state qX, for every action a œ „sig(psioa(X))(qX), we431

note ÷(X,qX,a) = ÷(psioa(X),qX,a) and we extend this notation with ÷(X,qX,a) = ”qX if a /œ432

„sig(psioa(X))(qX).433

I Definition 37 (pseudo execution). Let X = (X1, ..., Xn) be a set of PCA. A pseudo434

execution fragment of X is a pseudo execution fragment of psioa(A), s. t. for every non final435

state qi, X is partially-compatible at state qi (namely the conditions (1) and (3) need to be436

satisfied)437

A pseudo execution – of X is a pseudo execution fragment of X with fstate(–) =438

(q̄X1 , ..., q̄Xn).439

I Definition 38 (reachable state). Let X = (X1, ..., Xn) be a set of PSIOA. A state q of X440

is reachable if it exists a pseudo execution – of X ending on state q.441

I Definition 39 (partially-compatible PCA). Let X = (X1, ..., Xn) be a set of PCA. The442

automata X1, ..., Xn are ¸-partially-compatible with ¸ œ N if no pseudo-execution – of443

X with |–| Æ ¸ ends on non-partially-compatible state q. The automata X1, ..., Xn are444

partially-compatible if X is partially-compatible at each reachable state q, i. e. X is445

¸-partially-compatible for every ¸ œ N.446

I Definition 40 (compatible PCA). Let X = (X1, ..., Xn) be a set of PCA. The automata447

X1, ..., Xn are compatible if the automata X1, ..., Xn are partially-compatible for each state448

of states(X1) ◊ ... ◊ states(Xn).449

I Definition 41 (Composition of configuration automata). Let X1, ..., Xn, be compatible (resp.450

partially-compatible) configuration automata. Then X = X1||...||Xn is the state machine451

consisting of the following components:452

1. psioa(X) = psioa(X1)||...||psioa(Xn) (where the composition can be the one dedicated453

to only partially-compatible PCA).454

XX:12 Probabilistic Dynamic Input Output Automata

2. A configuration mapping config(X) given as follows. For each x = (x1, ..., xn) œ455

states(X), config(X)(x) = config(X1)(x1) fi ... fi config(Xn)(xn).456

3. For each x = (x1, ..., xn) œ states(X), a mapping created(X)(x) with domain „sig(X)(x)457

and given as follows. For each a œ „sig(X)(x), created(X)(x)(a) =
t

aœ„sig(Xi)(xi),iœ[1:n] created(Xi)(xi)(a).458

4. A hidden-action mapping hidden-actions(X) with domain states(X) and given as follows.459

For each x = (x1, ..., xn) œ states(X), hidden-actions(x) =
t

iœ[1:n] hidden-actions(xi)460

We define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) = sig(sioa(X)), steps(X) =461

steps(sioa(X)), and likewise for all other (sub)components and attributes of sioa(X).462

I Theorem 42 (PCA closeness under composition). Let X1, ..., Xn, be compatible or partially-463

compatible PCA. Then X = X1||...||Xn is a PCA.464

5 Monotonicity of implementations with respect to automata465

creation and destruction466

This section lays down the formalism to prove the key notion of our framework: the467

monotonicity of implementations with respect to automata creation and destruction. We will468

introduce the equivalence classes of executions, the notion of schedule and implementation469

and finally our key result.470

I Definition 43 (Execution correspondence relation, SABE)). Let A, B be PSIOA, let E be an471

environment for both A and B. Let –, fi be executions of automata A||E and B||E respectively.472

Then –S(ABE)fi if473

1. A is permanently o� in – ≈∆ B is permanently o� in fi. A is permanently on in – ≈∆474

B is permanently on in fi.475

2. (*) A is turned o� in – ≈∆ B is turned o� in fi. If (*), we can note – = –˚
1 –2 and476

–1 = –Õ˚
1 aq1, where „sig(A)(lstate(–1) � A) = ÿ, „sig(A)(lstate(–Õ

1) � A) ”= ÿ and we can477

note fi = fi˚
1 fi2 similarly.478

3. fi � E = – � E . If (*), fii � E = –i � E for i œ {1, 2}.479

4. traceB||E(fi) = traceA||E(–). If (*) traceB||E(fii) = traceA||E(–i) for i œ {1, 2}.480

5. ext(A)(fstate(–) � A) = ext(B)(fstate(fi) � B) ; ext(A)(lstate(–) � A) = ext(B)(lstate(fi) �481

B).482

SABE is sometimes written SAB hen the environment is clear in the context.483

I Definition 44 (equivalence class). Let A be a PSIOA. Let E be an environment of A. Let484

– be an execution fragment of A||E . We note –AE = {–Õ|–ÕSA–}485

When this is clear in the context, we note –A or even – for –AE and –̃ for –̃A.486

In the following we introduce the notion of schedule.487

I Definition 45 (simple schedule notation). Let fl = T ¸, T ¸+1, ..., T h be a schedule, i. e. a488

sequence of tasks. For every q, qÕ œ [¸, h], q Æ qÕ, we note:489

hi(fl) = h the highest index in fl490

li(fl) = ¸ the lowest index in fl491

fl|q = T ¸...T q492

q|fl = T q...T h493

q|fl|qÕ = T q...T qÕ
494

P. Civit and M. Potop-Butucaru XX:13

By doing so, we implicitly assume an indexation of fl, ind(fl) : ind œ [li(fl), hi(fl)] ‘æ495

T ind œ fl. Hence if fl = T 1, T 2, ..., T k, T k+1, ..., T q, T q+1..., T h, flÕ =k |fl, flÕÕ =q |flÕ, then496

flÕÕ =q |fl.497

I Definition 46 (Schedule partition and index). Let fl be a schedule. A partition p of fl is a498

sequence of schedules (finite or infinite) p = (flm, flm+1, ..., fln, ...) so that fl can be written499

fl = flm, flm+1, ..., fln, We note min(p) = m and max(p) = card(p) + m ≠ 1.500

A total ordered set (ind(fl, p), ª) µ N2 is defined as follows :501

ind(fl, p) = {(k, q) œ (Nú)2|k œ [min(p), max(p)], q œ [li(flk), hi(flk)]} For every ¸ =502

(k, q), ¸Õ = (kÕ, qÕ) œ ind(fl, p):503

If k < kÕ, then ¸ ª ¸Õ504

If k = kÕ, q < qÕ, then ¸ ª ¸Õ505

If k = kÕ and q = qÕ, then ¸ = ¸Õ. If either ¸ ª ¸Õ or ¸ = ¸Õ, we note ¸ ∞ ¸Õ.506

I Definition 47 (Schedule notation). Let fl be a schedule. Let p be a partition of fl. For507

every ¸ = (k, q), ¸Õ = (kÕ, qÕ) œ ind(fl, p)2, ¸ ∞ ¸Õ, we note (when this is allowed):508

fl|(p,¸) = fl1, ..., flk|q509

(p,¸)|fl = (q|flk), ...510

¸|fl|(p,¸Õ) = (q|flk), ..., (flkÕ |q)511

The symbol p of the partition is removed when it is clear in the context.512

I Definition 48 (A-partition of a schedule). Let A be a PCA or a PSIOA. Let flAE be a513

schedule. Since each task of flAE is either a task of UA(A) or not. It is always possible514

to build the unique partition of flAE : (fl1
A, fl2

E , fl3
A, fl4

E ...) where flk
A is a sequence of tasks of515

UA(A) only and fl2k
E does not contain any task of UA(A). We call such a partition, the516

A-partition of flAE .517

I Definition 49 (Environment corresponding schedule). Let A and B be two PCA or518

two PSIOA. Let flAE and flBE be two schedules. Let (fl1
A, fl2

E , fl3
A, fl4

E ...) (resp. flBE :519

(fl1
B, fl2Õ

E , fl3
B, fl4Õ

E , ...)) be the A-partition (resp. B-partition) of flAE (resp. flBE). We say520

that flAE and flBE are AB-environment-corresponding if for every k, fl2k
E = fl2kÕ

E .521

In the following we introduce the notions of implementation and tenacious implementation522

and the conditions under which the monotonicity theorem holds.523

I Definition 50 (Ss
AB). Let A, B be PSIOA. Let E be an environment of both A and B.524

Let fl and flÕ be two schedule. We say that flSs
(A,B,E)fl

Õ if :525

for every executions –, fi of A||E and B||E respectively, s. t. –SABEfi, then526

applyA||E(”(q̄A,q̄E), fl)(–) = applyB||E(”(q̄B ,q̄E), flÕ)(fi).527

I Definition 51 (Tenacious implementation). Let A, B be PSIOA. We say that A tena-528

ciously implements B, noted A Æten B, i� for every schedule fl, it exists a AB-environment-529

corresponding schedule flÕ s. t. for every environment E of both A and B, for every ¸ = (2k, q),530

¸Õ = (2kÕ, qÕ) œ ind(fl, p) fl ind(flÕ, pÕ) , (¸|fl|¸Õ)Ss
(A,B,E)(¸|flÕ|¸Õ)531

I Definition 52 (CAB-corresponding configurations). (see figure ??) Let � ™ Autids, and532

A, B be SIOA identifiers. Then we define �[B/A] = (� \ A) fi {B} if A œ �, and �[B/A] = �533

if A /œ �. Let C, D be configurations. We define C CAB D i� (1) auts(D) = auts(C)[B/A],534

(2) for every AÕ /œ auts(C)\{A} : map(D)(AÕ) = map(C)(AÕ), and (3) ext(A)(s) = ext(B)(t)535

XX:14 Probabilistic Dynamic Input Output Automata

where s = map(C)(A), t = map(D)(B). That is, in CAB-corresponding configurations, the536

SIOA other than A, B must be the same, and must be in the same state. A and B must have537

the same external signature. In the sequel, when we write � = �[B/A], we always assume538

that B /œ � and A /œ �.539

I Definition 53 (Creation corresponding configuration automata). Let X, Y be configuration540

automata and A, B be SIOA. We say that X, Y are creation-corresponding w.r.t. A, B i�541

1. X never creates B and Y never creates A.542

2. Let — œ tracesú(X) fl tracesú(Y), and let – œ execsú(X), fi œ execsú(Y) be such that543

traceA(–) = traceA(fi) = —. Let x = last(–), y = last(fi), i.e., x, y are the last544

states along –, fi, respectively. Then ’a œ „sig(X)(x) fl „sig(Y)(y) : created(Y)(y)(a) =545

created(X)(x)(a)[B/A].546

I Definition 54 (Hiding corresponding configuration automata). Let X, Y be configuration547

automata and A, B be PSIOA. We say that X, Y are hiding-corresponding w.r.t. A, B i�548

1. X never creates B and Y never creates A.549

2. Let — œ tracesú(X) fl tracesú(Y), and let – œ execsú(X), fi œ execsú(Y) be such that550

traceA(–) = traceA(fi) = —. Let x = last(–), y = last(fi), i.e., x, y are the last states551

along –, fi, respectively. Then hidden-actions(Y)(y) = hidden-actions(X)(x).552

I Definition 55 (A-fair PCA). Let A œ Autids. Let X be a PCA. We say that X is553

A-fair if for every states qX , qÕ
X , s. t. config(X)(qX) \ A = config(X)(qÕ

X) \ A, then554

created(X)(qX) = created(X)(qÕ
X) and hidden-actions(X)(qX) = hidden-actions(X)(qÕ

X).555

I Definition 56 (A-conservative PCA). Let X be a PCA, A œ Autids. We say that X is556

A-conservative if it is A-fair and for every state qX , Cx = config(X)(qX) s. t. A œ aut(CX)557

and map(CX)(A) , qA, hidden-actions(X)(qX) = hidden-actions(X)(qX) \ „ext(A)(qA).558

I Definition 57 (corresponding w. r. t. A, B). Let A, B œ Autids, XA and XB be PCA we559

say that XA and XB are corresponding w. r. t. A, B, if they verify:560

config(XA)(q̄XA) CAB config(XB)(q̄XB).561

X, Y are creation-corresponding w.r.t. A, B562

X, Y are hiding-corresponding w.r.t. A, B563

XA (resp. XB) is a A-conservative (resp. B-conservative) PCA.564

(No creation from A and B)565

’qXA , œ states(XA), ’act verifying act /œ sig(config(XA)(qXA)\{A})·act œ sig(config(XA)(qXA)),566

created(XA)(qXA)(act) = ÿ and similarly567

’qXB , œ states(XB), ’actÕ verifying actÕ /œ sig(config(XB)(qXB)\{B})·actÕ œ sig(config(XB)(qXB)),568

created(XB)(qXB)(actÕ) = ÿ569

I Theorem 58 (Implementation monotonicity wrt creation/destruction). Let A, B be PSIOA.570

Let XA, XB be PCA corresponding w.r.t. A, B.571

If A tenaciously implements B (A Æten B) then XA tenaciously implements XB (XA Æten572

XB).573

References574

1 Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata: A formal and575

compositional model for dynamic systems. 249:28–75.576

P. Civit and M. Potop-Butucaru XX:15

2 Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira,577

and Roberto Segala. Task-Structured Probabilistic {I/O} Automata. Journal of Computer578

and System Sciences, 94:63—-97, 2018.579

3 Ran Canetti, Ling Cheung, Dilsun Kaynar, Nancy Lynch, and Olivier Pereira. Composi-580

tional security for task-PIOAs. Proceedings - IEEE Computer Security Foundations Sym-581

posium, pages 125–139, 2007.582

4 Jing Chen and Silvio Micali. Algorand: A secure and e�cient distributed ledger. Theor.583

Comput. Sci., 777:155–183, 2019.584

5 Maurice Herlihy. Blockchains and the future of distributed computing. In Elad Michael585

Schiller and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on586

Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017,587

page 155. ACM, 2017.588

6 Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. A theory of atomic589

transactions. Lecture Notes in Computer Science (including subseries Lecture Notes in590

Artificial Intelligence and Lecture Notes in Bioinformatics), 326 LNCS:41–71, 1988.591

7 Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming.592

Wiley series in probability and mathematical statistics. John Wiley & Sons, 1 edition, 1994.593

8 Alejandro Ranchal-Pedrosa and Vincent Gramoli. Platypus: O�chain protocol without594

synchrony. In Aris Gkoulalas-Divanis, Mirco Marchetti, and Dimiter R. Avresky, editors,595

18th IEEE International Symposium on Network Computing and Applications, NCA 2019,596

Cambridge, MA, USA, September 26-28, 2019, pages 1–8. IEEE, 2019.597

9 Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.598

PhD thesis, Massachusettes Institute of technology, 1995.599

Probabilistic Dynamic Input Output Automata1

Pierre Civit2

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France3

pierre.civit@lip6.fr4

Maria Potop-Butucaru5

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France6

maria.potop-butucaru@lip6.fr7

Abstract8

We present probabilistic dynamic I/O automata, a framework to model dynamic probabilistic9

systems. Our work extends dynamic I/O Automata formalism [1] to probabilistic setting. The10

original dynamic I/O Automata formalism included operators for parallel composition, action hid-11

ing, action renaming, automaton creation, and behavioral sub-typing by means of trace inclusion.12

They can model mobility by using signature modification. They are also hierarchical: a dynamic-13

ally changing system of interacting automata is itself modeled as a single automaton. Our work14

extends to probabilistic settings all these features. Furthermore, we prove necessary and su�-15

cient conditions to obtain the implementation monotonicity with respect to automata creation16

and destruction. Our work lays down the premises for extending composable secure-emulation17

[3] to dynamic settings, an important tool towards the formal verification of protocols combining18

probabilistic distributed systems and cryptography in dynamic settings (e.g. blockchains, secure19

distributed computation, cybersecure distributed protocols etc).20

2012 ACM Subject Classification C.2.4 Distributed Systems21

Keywords and phrases distributed dynamic systems, probabilistic automata, foundations22

Digital Object Identifier 10.4230/LIPIcs...23

1 Introduction24

Distributed computing area faces today important challenges coming from modern applic-25

ations such as cryptocurrencies and blockchains which have a tremendous impact in our26

society. Blockchains are an evolved form of the distributed computing concept of replicated27

state machine, in which multiple agents see the evolution of a state machine in a consistent28

form. At the core of both mechanisms there are distributed computing fundamental elements29

(e.g. communication primitives and semantics, consensus algorithms, and consistency models)30

and also sophisticated cryptographic tools. Recently, [5] stated that despite the tremendous31

interest about blockchains and distributed ledgers, no formal abstraction of these objects32

has been proposed. In particular it was stated that there is a need for the formalization33

of the distributed systems that are at the heart of most cryptocurrency implementations,34

and leverage the decades of experience in the distributed computing community in formal35

specification when designing and proving various properties of such systems. Therefore, an36

extremely important aspect of blockchain foundations is a proper model for the entities37

involved and their potential behavior. The formalisation of blockchain area has to combine38

models of underlying distributed and cryptographic building blocks under the same hood.39

© P. Civit and M. Maria Potop-Butucaru;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.civit$@$lip6.fr
mailto:maria.potop-butucaru$@$lip6.fr
https://doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Probabilistic Dynamic Input Output Automata

The formalisation of distributed systems has been pioneered by Lynch and Tuttle [6]. They40

proposed the formalism of Input/Output Automata to model deterministic distributed system.41

Later, this formalism is extended with Markov decision processes [7] to give Probabilistic42

Input/Output Automata [9] in order to model randomized distributed systems. In this model43

each process in the system is a automaton with probabilistic transitions. The probabilistic44

protocol is the parallel composition of the automata modeling each participant. This45

framework has been further extended in [2] to task-structured probabilistic Input/Output46

automata specifically designed for the analysis of cryptographic protocols. Task-structured47

probabilistic Input/Output automata are Probabilistic Input/Output automata extended48

with tasks structures that are equivalence classes on the set of actions. They define the49

parallel composition for this type of automata. Inspired by the literature in security area they50

also define the notion of implementation. Informally, the implementation of a Task-structured51

probabilistic Input/Output automata should look "similar" to the specification whatever the52

external environment of execution. Furthermore, they provide compositional results for the53

implementation relation. Even thought the formalism proposed in [2] has been already used54

in the verification of various cryptographic protocols this formalism does not capture the55

dynamicity in blockchains systems such as Bitcoin or Ethereum where the set of participants56

dynamically changes. Moreover, this formalism does not cover blockchain systems where57

subchains can be created or destroyed at run time [8].58

Interestingly, the modelisation of dynamic behavior in distributed systems is an issue that59

has been addressed even before the born of blockchain systems. The increase of dynamic60

behavior in various distributed applications such as mobile agents and robots motivated the61

Dynamic Input Output Automata formalism introduced in [1]. This formalisms extends the62

Input/Output Automata formalism with the ability to change their signature dynamically63

(i.e. the set of actions in which the automaton can participate) and to create other I/O64

automata or destroy existing I/O automata. The formalism introduced in [1] does not cover65

the case of probabilistic distributed systems and therefore cannot be used in the verification66

of blockchains such as Algorand [4].67

Our contribution. In order to cope with dynamicity and probabilistic nature of68

blockchain systems we propose an extension of the formalisms introduced in [2] and [1]. Our69

extension use a refined definition of probabilistic configuration automata in order to cope70

with dynamic actions. The main result of our formalism is as follows: the implementation71

of probabilistic configuration automata is monotonic to automata creation and destruction.72

Our work is an intermediate step before defining composable secure-emulation [3] in dynamic73

settings.74

Paper organization. The paper is organized as follow. Section 2 is dedicated to75

a brief introduction of the notion of probabilistic measure an recalls notations used in76

defining Signature I/O automata of [1]. Section 3 builds on the frameworks proposed in77

[1] and [2] in order to lay down the preliminaries of our formalism. More specifically, we78

introduce the definitions of probabilistic signed I/O automata and define their composition79

and implementation. In Section 4 we extend the definition of configuration automata proposed80

in [1] to probabilistic configuration automata then we define the composition of probabilistic81

configuration automata and prove its closeness. The key result of our formalisation, the82

monotonicity of PSIOA implementations with respect to creation and destruction, is presented83

in Section 8. This result is based on intermediate results presented in sections 5, 6 and 7.84

P. Civit and M. Potop-Butucaru XX:3

2 Preliminaries on probability and measure85

We assume our reader is comfortable with basic notions of probability theory, such as ‡-fields86

and (discrete) probability measures. A measurable space is denoted by (S, Fs), where S is87

a set and Fs is a ‡-algebra over S that is Fs ™ P(S), is closed under countable union and88

complementation and its members are called measurable sets (P(S) denotes the power set89

of S). A measure over (S, Fs) is a function ÷ : Fs æ RØ0, such that ÷(ÿ) = 0 and for every90

countable collection of disjoint sets {Si}iœI in Fs, ÷(
t

iœI Si) = �iœI÷(Si). A probability91

measure (resp. sub-probability measure) over (S, Fs) is a measure ÷ such that ÷(S) = 1 (resp.92

÷(S) < 1). A measure space is denoted by (S, Fs, ÷) where ÷ is a measure on (S, Fs).93

The product measure space (S1, Fs1 , ÷1) ¢ (S2, Fs2 , ÷2) is the measure space (S1 ◊94

S2, Fs1 ¢ Fs2 , ÷1 ¢ ÷2), where Fs1 ¢ Fs2 is the smallest ‡-algebra generated by sets of95

the form {A ◊ B|A œ Fs1 , B œ Fs2} and ÷1 ¢ ÷2 is the unique measure s. t. for every96

C1 œ Fs1 , C2 œ Fs2 , ÷1 ¢ ÷2(C1 ◊ C2) = ÷1(C1)÷2(C2). If S is countable, we note P(S) = 2S .97

If S1 and S2 are countable, we note have 2S1 ¢ 2S2 = 2S1◊S2 .98

A discrete probability measure on a set S is a probability measure ÷ on (S, 2S), such that,99

for each C µ S, ÷(S) =
q

cœC ÷({c}). We define Disc(S) to be, the set of discrete probability100

measures on S. In the sequel, we often omit the set notation when we denote the measure of101

a singleton set. For a discrete probability measure ÷ on a set S, supp(÷) denotes the support102

of ÷, that is, the set of elements s œ X such that ÷(s) ”= 0. Given set S and a subset C µ S,103

the Dirac measure ”C is the discrete probability measure on S that assigns probability 1 to104

C. For each element s œ S, we note ”s for ”{s}.105

If {mi}iœI is a countable family of measures on (S, Fs), and {pi}iœI is a family of non-106

negative values, then the expression
q

iœI pimi denotes a measure m on (S, Fs) such that,107

for each C œ Fs, m(C) =
q

iœI mifi(C). A function f : X æ Y is said to be measurable108

from (X, FX) æ (Y, FY) if the inverse image of each element of FY is an element of FX ,109

that is, for each C œ FY , f≠1(C) œ FX . In such a case, given a measure ÷ on (X, FX),110

the function f(÷) defined on FY by f(÷)(C) = ÷(f≠1(C)) for each C œ Y is a measure on111

(Y, FY) and is called the image measure of ÷ under f .112

3 PSIOA113

3.1 Action Signature114

We use the signature approach from [1].115

We assume the existence of a countable set Autids of unique probabilistic signature116

input/output automata (PSIOA) identifiers, an underlying universal set Auts of PSIOA,117

and a mapping aut : Autids æ Auts. aut(A) is the PSIOA with identifier A. We use "the118

automaton A" to mean "the PSIOA with identifier A".. We use the letters A, B, possibly119

subscripted or primed, for PSIOA identifiers. The executable actions of a PSIOA A are drawn120

from a signature sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q)), called the state signature,121

which is a function of the current state q of A.122

in(A)(q), out(A)(q), int(A)(q) are pairwise disjoint sets of input, output, and internal123

actions, respectively. We define ext(A)(q), the external signature of A in state q, to be124

ext(A)(q) = (in(A)(q), out(A)(q)).125

We define local(A)(q), the local signature of A in state q, to be local(A)(q) = (out(A)(q), in(A)(q)).126

XX:4 Probabilistic Dynamic Input Output Automata

For any signature component, generally, the ‚. operator yields the union of sets of actions127

within the signature, e.g., „sig(A) : q œ Q ‘æ „sig(A)(q) = in(A)(q) fi out(A)(q) fi int(A)(q).128

Also define acts(A) =
t

qœQ
„sig(A)(q), that is acts(A) is the "universal" set of all actions that129

A could possibly execute, in any state. In the same way UI(A) =
t

qœQ in(A)(q), UO(A) =130
t

qœQ out(A)(q), UH(A) =
t

qœQ int(A)(q), UL(A) =
t

qœQ
[local(A)(q), UE(A) =

t
qœQ

„ext(A)(q).131

3.2 PSIOA132

We combine the SIOA of [1] with the PIOA of [9]:133

I Definition 1. A PSIOA A = (Q, q̄, sig(A), D), where:134

(a) Q is a countable set of states, (Q, 2Q) is a measurable space called the state space,135

and q is the start state.136

(b) sig(A) : q œ Q ‘æ sig(A)(q) = (in(A)(q), out(A)(q), int(A)(q) is the signature137

function that maps each state to a triplet of countable input, output and internal set of138

actions.139

(d) D µ Q ◊ acts(A) ◊ Disc(Q) is the set of probabilistic discrete transitions where140

’(q, a, ÷) œ D : a œ „sig(A)(q). If (q, a, ÷) is an element of D, we write q
aæ ÷ and action141

a is said to be enabled at q. The set of states in which action a is enabled is denoted by142

Ea. For B ™ A, we define EB to be
t

aœB Ea. The set of actions enabled at q is denoted143

by enabled(q). If a single action a œ B is enabled at q and q
aæ ÷, then this ÷ is denoted144

by ÷(A,q,B). If B is a singleton set {a} then we drop the set notation and write ÷(A,q,a).145

In addition A must satisfy the following conditions:146

E1 (Input action enabling) ’x œ Q : ’a œ in(A)(q), ÷÷ œ Disc(Q) : (q, a, ÷) œ D.147

T1 Transition determinism: For every q œ Q and a œ A there is at most one ÷ œ Disc(Q)148

such that (q, a, ÷) œ D.149

Notation150

For every PSIOA A = (Q, q̄, sig(A), D), we note states(A) = Q, start(A) = q̄, steps(A) = D.151

3.3 Execution, Trace152

We use the classic notions of execution and trace from [9].153

I Definition 2 (fragment, execution and trace of PSIOA). An execution fragment of a PSIOA154

A = (Q, q̄, sig(A), D) is a finite or infinite sequence – = q0a1q1a2... of alternating states and155

actions, such that:156

1. If – is finite, it ends with a state.157

2. For every non-final state qi, there is ÷ œ Disc(Q) and a transition (qi, ai+1, ÷) œ D s. t.158

qi+1 œ supp(÷).159

We write fstate(–) for q0 (the first state of –), and if – is finite, we write lstate(–) for160

its last state. We use Frags(A) (resp., Frags�ú(A)) to denote the set of all (resp., all finite)161

execution fragments of A. An execution of A is an execution fragment – with fstate(–) = q̄.162

Execs(A) (resp., Execsú(A)) denotes the set of all (resp., all finite) executions of A. The163

trace of an execution fragment –, written trace(–), is the restriction of – to the external164

P. Civit and M. Potop-Butucaru XX:5

actions of A. We say that — is a trace of A if there is – œ Execs(P) with — = trace(–).165

Traces(A) (resp., Tracesú(A)) denotes the set of all (resp., all finite) traces of A.166

I Definition 3 (reachable execution). Let A = (Q, q̄, sig(A), D) be a PSIOA. A state q is167

said reachable if it exists a finite execution that ends with q.168

3.4 Compatibility and composition169

Tha main aim of IO formalism is to compose several automata A = (A1, ..., An) and obtain170

some guarantees of the system by composition of the guarantees of the di�erent elements171

of the system. Some syntaxic rules have to be satisfied before defining the composition172

operation.173

I Definition 4 (Compatible signatures). Let S be a set of signatures. Then S is compatible174

i�, ’sig, sigÕ œ S, where sig = (in, out, int), sigÕ = (inÕ, outÕ, intÕ) and sig ”= sigÕ, we have:175

1. (in fi out fi int) fl intÕ = ÿ, and 2. out fl outÕ = ÿ.176

I Definition 5 (Composition of Signatures). Let � = (in, out, int) and �Õ = (inÕ, outÕ, intÕ)177

be compatible signatures. Then we define their composition � ◊ � = (in fi inÕ ≠ (out fi178

outÕ), out fi outÕ, int fi intÕ).179

Signature composition is clearly commutative and associative.180

I Definition 6 (partially compatible at a state). Let A = (A1, ..., An) be a set of PSIOA.181

A state of A is an element q = (q1, ..., qn) œ Q = Q1 ◊ ... ◊ Qn. We say A1, ..., An are182

partially-compatible at state q (or A is) if {sig(A1)(q1), ..., sig(An)(qn)} is a set of compatible183

signatures. In this case we note sig(A)(q) = sig(A1)(q1) ◊ ... ◊ sig(An)(qn) and we note184

÷(A,q,a) œ Disc(Q), s. t. for every action a œ „sig(A)(q), ÷(A,q,a) = ÷1 ¢ ... ¢ ÷n œ Disc(Q)185

that verifies for every j œ [1, n] :186

If a œ sig(Aj)(qj), ÷j = ÷(Aj ,qj ,a).187

Otherwise, ÷j = ”qj188

while ÷(A,q,a) = ”q if a /œ „sig(A)(q).189

I Definition 7 (pseudo execution). Let A = (A1, ..., An) be a set of PSIOA. A pseudo190

execution fragment of A is a finite or infinite sequence – = q0a1q1a2... of alternating states191

of A and actions, such that:192

If – is finite, it ends with a n-uplet of state.193

For every non final state qi, A is partially-compatible at qi.194

For every action ai, ai œ „sig(A)(qi≠1).195

For every state qi, with i > 0, qi œ supp(÷(A,qi≠1,ai)).196

A pseudo execution of A is a pseudo execution fragment of A with q0 = (q̄A1 , ..., q̄An).197

I Definition 8 (reachable state). Let A = (A1, ..., An) be a set of PSIOA. A state q of A is198

reachable if it exists a pseudo execution – of A ending on state q.199

I Definition 9 (partially-compatible PSIOA). Let A = (A1, ..., An) be a set of PSIOA.200

The automata A1, ..., An are ¸-partially-compatible with ¸ œ N if no pseudo-execution –201

of A with |–| Æ ¸ ends on non-partially-compatible state q. The automata A1, ..., An202

are partially-compatible if A is partially-compatible at each reachable state q, i. e. A is203

¸-partially-compatible for every ¸ œ N.204

XX:6 Probabilistic Dynamic Input Output Automata

Figure 1 The family transition is obtain by the transitions of the automata of the family.

I Definition 10 (Compatible PSIOA). Let A = (A1, ..., An) be a set of PSIOA with Ai =205

((Qi, FQi), sig(Ai), Di). We say A is compatible if it is partially-compatible for every state206

q = (q1, ..., qn) œ Q1 ◊ ... ◊ Qn.207

Of course a set of compatible PSIOA is also a set of partially-compatible automata. The208

latter allows us to extend the formalism of [1] which will be useful later.209

I Definition 11 (PSIOAs composition). If A = (A1, ..., An) is a compatible set of PSIOAs,210

with Ai = (Qi, q̄i, sig(Ai), Di), then their composition A1||...||An, is defined to be A =211

(Q, q̄, sig(A), D), where:212

Q = Q1 ◊ ... ◊ Qn213

q̄ = (q̄1, ..., q̄n)214

sig(A) : q = (q1, ..., qn) œ Q ‘æ sig(A)(q) = sig(A1)(q1) ◊ ... ◊ sig(An)(qn). ,215

D µ Q ◊ A ◊ Disc(Q) is the set of triples (q, a, ÷(A,q,a)) so that q œ Q and a œ „sig(A)(q)216

I Definition 12 (partially-compatible PSIOA composition). If A = (A1, ..., An) is a partially-217

compatible set of PSIOA, with Ai = ((Qi, FQi), sig(Ai), Di), then their partial-composition218

A1||...||An, is defined to be A = ((Q, FQ), sig(A), D), where:219

Q = {q œ Q1 ◊ ... ◊ Qn|q is a reachable state of A}.220

q̄ = (q̄1, ..., q̄n)221

sig(A) : q = (q1, ..., qn) œ Q ‘æ sig(A)(q) = sig(A1)(q1) ◊ ... ◊ sig(An)(qn).222

D µ Q ◊ A ◊ Disc(Q) is the set of triples (q, a, ÷(A,q,a)) so that q œ Q and a œ „sig(A)(q)223

P. Civit and M. Potop-Butucaru XX:7

3.5 Measure for executions and traces224

To solve the non-determinism we use schedule that allows us to chose an action in a signature.225

To do so, we adapt the definition of task of [2] to the dynamic setting. We assume the226

existence of a subset Autids0 µ Autids that represents the "atomic ententies" that will227

constitute the configuration automata introduced in the next section.228

I Definition 13 (Constitution). For every A œ Autids, we note229

constitution(A) :
;

states(A) æ P(Autids0) = 2Autids0

q ‘æ constitution(A)(q)230

For every A œ Autids0, for every q œ states(A), constitution(A)(q) = {A}.231

For every A = (A1, ..., An) œ (Autids0)n, A = A1||...||An for every q œ states(A),232

constitution(A)(q) = A.233

In the next section we will define the constitution mapping for a new kind of automata,234

with a "dynamic" constitution that can change from one state to another one.235

I Definition 14 (Task). A task T is a pair (id, actions) where id œ Autids0 and actions is236

a set of action labels. Let T = (id, actions), we note id(T) = id and actions(T) = actions.237

I Definition 15 (Enabled task). Let A œ Autids. A task T is said enabled in state q œ238

states(A) if :239

id(T) œ constitution(A)(q)240

It exists a unique local action a œ „loc(A)(q) fl actions(T) (noted a œ T to simplify)241

enabled at state q (that is it exists ÷ œ Disc(Q) s. t. (q, a, ÷) œ D.242

In this case we say that a is triggered by T at state q.243

We are not dealing with a schedule of a specific automaton anymore, which di�ers from244

[2]. However the restriction of our definition to "static" setting matches their definition.245

I Definition 16 (schedule). A schedule fl is a (finite or infinite) sequence of tasks.246

We use the measure of [2].247

I Definition 17. Let A be a PSIOA. Given µ œ Disc(Frags(A)) a discrete probability248

measure on the execution fragments and a task schedule fl, apply(µ, fl) is a probability249

measure on Frags(A). It is defined recursively as follows.250

1. applyA(µ, ⁄) := µ. Here ⁄ denotes the empty sequence.251

2. For every T and – œ Fragsú(A), apply(µ, T)(–) := p1(–) + p2(–), where:252

p1(–) =
;

µ(–Õ)÷(A,qÕ,a)(q) if – = –Õaq, qÕ = lstate(–Õ) and a is triggered by T
0 otherwise253

p2(–) =
;

µ(–) if T is not enabled after –
0 otherwise254

3. 3. If fl is finite and of the form flÕT , then applyA(µ, fl) := applyA(applyA(µ, flÕ), T).255

4. 4. If fl is infinite, let fli denote the length-i prefix of fl and let pmi be applyA(µ, fli). Then256

applyA(µ, fl) := lim
iæŒ

pmi.257

tdistA(µ, fl) : TracesA æ [0, 1], is defined as tdistA(µ, fl)(E) = apply(”q̄, fl)(trace≠1
A (E)),258

for any measurable set E œ FT racesA .259

XX:8 Probabilistic Dynamic Input Output Automata

Figure 2 Non-deterministic execution: The scheduler allows us to solve the non-determinism,

by triggering an action among the enabled one. We give an example with an automaton

A = (Q, q̄ = q0, sig(A), DA) and the tasks Tg, To, Tp, Tb (for green, orange, pink, blue) with

the respective actions {a}, {d}, {b, bÕ}, {c, cÕ}, and the tasks Tgo, Tbo with the respective actions

{a, d}, {c, cÕ, d}. At state q0, sig(A)(q0) = (ÿ, {a}, {d}). Hence both a and d are enabled local action

at q0, which means both Tg and To are enabled at state q0, but Tgo is not enabled at state q0 since

it does not solve the non-determinism (a and d are enabled local action at q0). At state q1, Tp is

enabled but neither To or Tb. We give some results: apply(”q0 , Tg)(q0, a, q1,v
) = 1

apply(”q0 , TgTp)(q0, a, q1,v, b, q2,w
) = apply(apply(”q0 , Tg), Tp)(q0, a, q1,v, b, q2,w

) = 1/2

apply(”q0 , TgTpTb)(q0, a, q1,v, b, q2,w, c, q3,w
) = apply(apply(”q0 , TgTp), Tb)(q0, a, q1,v, b, q2,w, c, q3,w

) =

3/8

apply(”q0 , TgTpToTb)(q0, a, q1,v, b, q2,w, c, q3,w
) = 3/8, since To is not enabled at state q2,w

.

We write tdistA(µ, fl) as shorthand for tdistA(applyA(µ, fl)) and tdistA(fl) for tdistA(applyA(”(x̄), fl)),260

where ”(x̄) denotes the measure that assigns probability 1 to x̄. A trace distribution of A is261

any tdistA(fl). We use TdistsA to denote the set {tdistA(fl) : fl is a task schedule }.262

We removed the subscript A when this is clear in the context.263

3.6 Implementation264

I Definition 18 (Environment). A probabilistic environment for PSIOA A is a PSIOA E265

such that A and E are partially-compatible.266

I Definition 19 (External behavior). The external behavior of a PSIOA A, written as267

ExtBehA, is defined as a function that maps each environment E for A to the set of trace268

distributions TdistsA||E .269

I Definition 20 (Comparable PSIOA). Two PSIOA A1 and A2 are comparable if UI(A1) =270

UI(A2) and UO(A1) = UO(A2).271

I Definition 21. If A1 and A2 are comparable then A1 is said to implement A2 , written as272

A1 Æ A2 if, for every environment E for both A1 and A2 , ExtBehA1(E) ™ ExtBehA2(E).273

P. Civit and M. Potop-Butucaru XX:9

This definition of implementation as a functional map from environment automata gives274

us the desired compositionality result for task-PSIOAs.275

I Theorem 22. Suppose A1, A2 and B are PSIOAs, where A1, A2 are comparable and276

A1 Æ A2 . If B is compatible with A1, A2 then A1||B Æ A2||B.277

Proof. Immediate with the associativity of the parallel composition. Indeed, if E is an278

environment for both A1||B and A2||B, then E Õ = B||E is an environment for both A1279

and A2. Since A1 Æ A2, for any schedule fl, it exists a corresponding schedule flÕ, s. t.280

tdistA1||EÕ(fl) = tdistA2||EÕ(fl). Thus, for any schedule fl, it exists a corresponding schedule281

flÕ s. t. tdistA1||B||E(fl) = tdistA2||B||E(fl), that is A1||B Æ A2||B. J282

3.7 Hiding operator283

We anticipate the definition of configuration automata by introducing the classic hiding284

operator.285

I Definition 23 (hiding on signature). Let sig = (in, out, int) be a signature and acts a set286

of actions. We note hide(sig, acts) the signature sigÕ = (inÕ, outÕ, intÕ) s. t.287

inÕ = in288

outÕ = out \ acts289

intÕ = int fi (out fl acts)290

I Definition 24 (hiding on PSIOA). Let A = (Q, q̄, sig(A), D) be a PSIOA. Let hiding-291

actions a function mapping each state q œ Q to a set of actions. We note hide(A, hiding-292

actions) the PSIOA (Q, q̄, sigÕ(A), D), where sigÕ(A) : q œ Q ‘æ hide(sig(A)(q), hiding-293

actions(q)).294

I Lemma 25 (hiding and composition are commutative). Let siga = (ina, outa, inta), sigb =295

(inb, outb, intb) be compatible signature and actsa, actsb some set of actions, s. t. (actsa fl296

outa) fl „sigb = ÿ and (actsb fl outb) fl „sigb = ÿ, then sigÕ
a , hide(sig, acta) , (inÕ

a, outÕ
a, intÕ

a)297

and sigÕ
b , hide(sigb, actb) , (inÕ

b, outÕ
b, intÕ

b) are compatible. Furthermore, if outb flactsa = ÿ298

,and outa fl actsb = ÿ then sigÕ
a ◊ sigÕ

b = hide(siga ◊ sigb, acta fi actb).299

Proof. compatibility: After hiding operation, we have:300

inÕ
a = ina, inÕ

b = inb301

outÕ
a = outa \ actsa, outÕ

b = outb \ actsb302

intÕ
a = inta fi (outa fl actsa), intÕ

b = intb fi (outb fl actsb)303

Since outa fl outb = ÿ, a fortiori outÕ
a fl outÕ

b = ÿ. inta fl „sigb = ÿ, thus if (outa fl actsa) fl304

„sigb = ÿ, then intÕ
a fl „sigb = ÿ and with the symetric argument, intÕ

b fl „siga = ÿ. Hence,305

sigÕ
a and sigÕ

b are compatible.306

commutativity:307

After composition of sigÕ
c = sigÕ

a ◊ sigÕ
b operation, we have:308

outÕ
c = outÕ

afioutÕ
b = (outa\actsa)fi(outb\actsb). If outbflactsa = ÿ and outaflactsb = ÿ,309

then outÕ
c = (outa fi outb) \ (actsa fi actsb).310

inÕ
c = inÕ

a fi inÕ
b \ outÕ

c = ina fi inb \ outÕ
c311

intÕ
c = intÕ

a fi intÕ
b = inta fi (outa fl actsa)intb fi (outb fl actsb) = inta fi intb fi (outa fl312

actsa) fi (outb fl actsb). If outb fl actsa = ÿ and outa fl actsb = ÿ, then intÕ
c =313

inta fi intb fi ((outa fi outb) fl (actsa fi actsb).314

and after composition of sigd = siga ◊ sigb315

XX:10 Probabilistic Dynamic Input Output Automata

outd = outa fi outb316

ind = ina fi inb \ outd317

intd = inta fi intb318

Finally, after hiding operation sigÕ
d = hide(sigd, actsa fi actsb) we have :319

inÕ
d = ind320

outÕ
d = outd \ actsa fi actsb = (outa fi outb) \ (actsa fi actsb)321

intÕ
d = intd fi (outd fl (actsa fi actsb)) = (inta fi intb) fi (outd fl (actsa fi actsb))322

Thus, if outb fl actsa = ÿ and outa fl actsb = ÿ323

inÕ
d = inÕ

c324

outÕ
d = outÕ

c325

intÕ
d = intÕ

c326

J327

I Remark. We can restrict hiding operation to set of actions include in the set of output328

actions of the signature (act ™ out). In this case, since we alreay have outa fl outb = ÿ by329

compatibility, we immediatly have outa fl actsb = ÿ and outb fl actsa = ÿ. Thus to obtain330

compatibility, we only need inb fl actsa = ÿ and ina fl actsb = ÿ. Later, the compatibility of331

PCA will implicitly assume this predicate (otherwise the PCA could not be compatible).332

3.8 State renaming operator333

We anticipate the definition of isomorphism between PSIOA that di�ers only syntactically.334

I Definition 26. (State renaming for PSIOA) Let A be a PSIOA with QA as set of states,335

let QAÕ be another set of states and let ren : QA æ QAÕ be a bijective mapping. Then336

ren(A) is the automaton given by:337

start(ren(A)) = ren(start(QA))338

states(ren(A)) = ren(states(QA))339

’qAÕ œ states(ren(A)), sig(ren(A))(qAÕ) = sig(A)(ren≠1(qAÕ))340

’qAÕ œ states(ren(A)), ’a œ sig(ren(A))(qAÕ), if (ren≠1(qAÕ), a, ÷) œ DA, then (qAÕ , a, ÷Õ) œ341

Dren(A) where ÷Õ œ Disc(QAÕ , FQAÕ) and for every qAÕÕ œ states(ren(A)), ÷Õ(qAÕÕ) =342

÷(ren≠1(qAÕÕ)).343

I Definition 27. (State renaming for PSIOA execution) Let A and AÕ be two PSIOA s.344

t. AÕ = ren(AÕ). Let – = q0a1q1... be an execution fragment of A. We note ren(–) the345

sequence ren(q0)a1ren(q1)....346

I Lemma 28. Let A and AÕ
be two PSIOA s. t. AÕ = ren(AÕ). Let – be an execution347

fragment of A. The sequence ren(–) is an execution fragment of A.348

Proof. Let qjaj+1qj+1 be a subsequence of –. ren(qj) œ states(AÕ) by definition, aj œ349

sig(AÕ)(ren(qj)) since sig(AÕ)(ren(qj)) = sig(A)(qj), and ÷(AÕ,ren(qj),aj+1)(ren(qj+1)) =350

÷(A,qj ,aj+1)(qj+1) > 0. J351

4 Probabilistic Configuration Automata352

We combine the notion of configuration of [1] with the probabilistic setting of [9].353

P. Civit and M. Potop-Butucaru XX:11

4.1 configuration354

I Definition 29 (Configuration). A configuration is a pair (A, S) where355

A = (A1, ..., An) is a finite sequence of PSIOA identifiers (lexicographically ordered 1),356

and357

S maps each Ak œ A to an sk œ states(Ak).358

In distributed computing, configuration usually refers to the union of states of all the359

automata of the system. Here, the notion is di�erent, it captures a set of some automata360

(A) in their current state (S).361

I Definition 30 (Compatible configuration). A configuration (A, S) is compatible i�, for362

all A, B œ A, A ”= B: 1. sig(A)(S(A)) fl int(B)(S(B)) = ÿ, and 2. out(A)(S(A)) fl363

out(B)(S(B)) = ÿ364

I Definition 31 (Intrinsic attributes of a configuration). Let C = (A, S) be a compatible365

task-configuration. Then we define366

auts(C) = A represents the automata of the configuration,367

map(C) = S maps each automaton of the configuration with its current state,368

out(C) =
t

AœA out(A)(S(A)) represents the output action of the configuration,369

in(C) = (
t

AœA in(A)(S(A))) ≠ out(C) represents the input action of the configuration,370

int(C) =
t

AœA int(A)(S(A)) represents the internal action of the configuration,371

ext(C) = in(C) fi out(C) represents the external action of the configuration,372

sig(C) = (in(C), out(C), int(C)) is called the intrinsinc signature of the configuration,373

CA(C) = (aut(A1)||...||aut(An)) represents the composition of all the automata of the374

configuration,375

US(C) = (S(A1), ..., S(An)) represents the states of the automaton corresponding to the376

composition of all the automata of the configuration,377

Here we define a reduced configuration as a configuration deprived of the automata378

that are in the very particular state where their current signatures are the empty set. This379

mechanism will allows us to capture the idea of destruction.380

I Definition 32 (Reduced configuration). reduce(C) = (AÕ, S
Õ), where A

Õ = {A|A œ381

A and sig(A)(S(A)) ”= ÿ} and S
Õ is the restriction of S to A

Õ, noted S � A
Õ in the re-382

maining.383

A configuration C is a reduced configuration i� C = reduce(C).384

We recall that we assume the existence of a countable set Autids of unique PSIOA385

identifiers, an underlying universal set Auts of PSIOA, and a mapping aut : Autids æ Auts.386

aut(A) is the PSIOA with identifier A. We will define a measurable space for configuration.387

We note for every Ï œ P(Autids), QÏ = QÏ1 ◊ ... ◊ QÏn and FQÏ = FQÏ1
¢ ... ¢ FQÏ|Ï|

388

We note Qaut =
t

ÏœP(Autids) QÏ, the set of all possible state sets cartesian product for389

each possible family of automata. FQaut = {
t

iœ[1,k] ci|„ œ P(P(Autids)), ci œ FQÏi
„ =390

Ï1, ..., Ïk, Ïi œ P(Autids)} (Qaut, FQaut) is a measurable space.391

We note Qconf = {(A, S)|A œ P(Autids), ’Ai œ A, S(Ai) œ Qi}, the set of all possible392

configurations.393

1
lexicographic order will simplify projection on product of probabilistic measure for transition of compos-

ition of automata

XX:12 Probabilistic Dynamic Input Output Automata

Let f =
;

Qconf æ Qaut

(A, S) ‘æ QCA((A,S)) = S(A1) ◊ ... ◊ S(An)394

We note FQconf = {f≠1(P)|P œ FQaut}.395

(Qconf , FQconf) is a measurable space396

4.2 Configuration transition397

We will define some probabilistic transition from configurations to others. where some398

automata can be destroyed or created. To define it properly, we start by defining "preserving399

transition" where no automaton is neither created nor destroyed and then we define above400

this definition the notion of configuration transition.401

I Definition 33 (Preserving distribution). A preserving distribution ÷p œ Disc(Qconf) is a402

distribution verifying ’(A, S), (AÕ, S
Õ) œ supp(÷p), A = A

Õ. The unique family of automata403

ids A of the configurations in the support of ÷p is called the family support of ÷p.404

We define a companion distribution as the natural distribution of the corresponding405

family of automata at the corresponding current state. Since no creation or destruction406

occurs, these definitions can seem redundant, but this is only an intermediate step to define407

properly the "dynamic" distribution.408

I Definition 34 (Companion distribution). Let C = (A, S) be a compatible configuration409

with A = (A1, ..., An) and S : Ai œ A ‘æ qi œ QAi (with A partially-compatible at state410

q = (q1, ..., qn) œ QA = QA1 ◊ ... ◊ QAn). Let ÷p be a preserving distribution with A as411

family support. The probabilistic distribution ÷(A,q,a) is a companion distribution of ÷p if for412

every qÕ = (qÕ
1, ..., qÕ

n) œ QA, for every S
ÕÕ : Ai œ A ‘æ qÕÕ

i œ QAi ,413

÷(A,q,a)(qÕ) = ÷p((A, S
ÕÕ)) ≈∆ ’i œ [1, n], qÕÕ

i = qÕ
i,414

that is the distribution ÷(A,q,a) corresponds exactly to the distribution ÷p.415

This is "a" and not "the" companion distribution since ÷p does not explicit the start416

configuration.417

Figure 3 A preserving distribution is matching its companion distribution.

I Lemma 35 (Joint preserving probability distribution for union of configuration). Let AX ,418

AY , AZ = AX fi AY be family of automata. Let CX = (AX , SX) and CY = (AY , SY) be419

P. Civit and M. Potop-Butucaru XX:13

two compatible configurations. Let CZ = (AZ , SZ) = CX fi CY be a compatible configuration.420

Let AX (resp. AY and AZ) the automaton issued from the composition of automata in AX421

(resp. AY and AZ). Let qX (resp. qY and qZ) be the current states of AX at configuration422

CX (resp. AY at configuration CY and AZ at configuration CZ)423

Let ÷X
p and ÷Y

p be preserving distributions that have ÷(X,qX ,a) and ÷(Y,qY ,a) as companion424

distribution. We note ÷Z
p the preserving distributions that have ÷(Z,qZ ,a) as companion425

distribution.426

For every configuration C Õ
Z = (AZ , S

Õ
Z) = C Õ

X fi C Õ
Y , with C Õ

X = (AX , S
Õ
X) and C Õ

Y =427

(AY , S
Õ
Y), ÷Z

p (C Õ
Z) = (÷X

p ¢ ÷Y
p)((C Õ

X , C Õ
Y)).428

Proof. We have ÷(AZ ,qZ ,a) = ÷(AX ,qX ,a) ¢ ÷(AY ,qY ,a). Parallely, ÷X
p and ÷Y

p are preserving429

distributions that have ÷(AX ,qX ,a) and ÷(AY ,qY ,a) as companion distribution, while ÷Z
p is430

preserving distributions that have ÷(AZ ,qZ ,a) as companion distribution. J431

Now, we can naturally define a preserving transition (C, a, ÷p) from a configuration C432

via an action a with a companion transition of ÷p. It allows us to say what is the "static"433

probabilistic transition from a configuration C via an action a if no creation or destruction434

occurs.435

I Definition 36 (preserving transition). Let C = (A, S) be a compatible configuration,436

q = US(C) and ÷p œ P (Qconf , FQconf) be a preserving transition with As as family support.437

Then say that (C, a, ÷p) is a preserving configuration transition, noted C
a

Ô ÷p if438

As = A439

÷(A,q,a) is a companion distribution of ÷p440

For every preserving configuration transition (C, a, ÷p), we note ÷(C,a),p = ÷p.441

The preserving transition of a configuration corresponds to the transition of the composi-442

tion of the corresponding automata at their corresponding current states.443

No we are ready to define our "dynamic" transition, that allows a configuration to create444

or destroy some automata.445

At first, we define reduced distribution that leads to reduced configurations only, where446

all the automata that reach a state with an empty signature are destroyed.447

I Definition 37 (reduced distribution). A reduced distribution ÷r œ Disc(Qconf , FQconf)448

is a probabilistic distribution verifying that for every configuration C œ supp(÷r), C =449

reduced(C).450

Now, we generate reduced distribution with a preserving distribution that describes what451

happen to the automata that already exist and a family of new automata that are created.452

I Definition 38 (Generation of reduced distribution). Let ÷p œ Disc(Qconf) be a preserving453

distribution with A as family support. Let Ï µ Autids. We say the reduced distribution454

÷r œ Disc(Qconf) is generated by ÷p and Ï if it exists a non-reduced distribution ÷nr œ455

Disc(Qconf), s. t.456

(Ï is created with probability 1)457

’(AÕÕ, S
ÕÕ) œ Qconf , if A

ÕÕ ”= A fi Ï, then ÷nr((AÕÕ, S
ÕÕ)) = 0458

(freshly created automata start at start state)459

’(AÕÕ, S
ÕÕ) œ Qconf , if ÷Ai œ Ï ≠ A so that, S

ÕÕ(Ai) ”= q̄i, then ÷nr((AÕÕ, S
ÕÕ)) = 0460

XX:14 Probabilistic Dynamic Input Output Automata

(The non-reduced transition match the preserving transition)461

’(AÕÕ, S
ÕÕ) œ Qconf , s. t. A

ÕÕ = A fi Ï and ’Aj œ Ï, S
ÕÕ(Aj = xj), ÷nr((AÕÕ, S

ÕÕ)) =462

÷p(A, S
ÕÕÁA))463

(The reduced transition match the non-reduced transition)464

’cÕ œ Qconf , if cÕ = reduce(cÕ), ÷r(cÕ) = �(cÕÕ,cÕ=reduce(cÕÕ))÷nr(cÕÕ), if cÕ ”= reduce(cÕ), then465

÷r(cÕ) = 0466

I Definition 39 (Intrinsic transition). Let (A, S) be arbitrary reduced compatible config-467

uration, let ÷ œ Disc(Qconf), and let Ï ™ Autids, Ï fl A = ÿ. Then ÈA, SÍ a=∆Ï ÷ if ÷ is468

generated by ÷p and Ï with (A, S) a
Ô ÷p.469

Figure 4 An intrinsinc transition where A1 is destroyed deterministically and A4 is created

deterministically.

The assumption of deterministic creation is not restrictive, nothing prevents from flipping470

a coin at state s0 to reach s1 with probability p or s2 with probability 1 ≠ p and only create471

a new automaton in state s2 with probability 1, while the action create is not enabled in472

state s1.473

4.3 Probabilistic Configuration Automata474

I Definition 40 (Probabilistic Configuration Automaton). A probabilistic configuration auto-475

maton (PCA) K consists of the following components:476

1. A probabilistic signature I/O automaton psioa(K). For brevity, we define states(K) =477

states(psioa(K)), start(K) = start(psioa(K)), sig(K) = sig(psioa(K)), steps(K) =478

steps(psioa(K)), and likewise for all other (sub)components and attributes of psioa(K).479

2. A configuration mapping config(K) with domain states(K) and such that config(K)(x)480

is a reduced compatible configuration for all qK œ states(K).481

3. For each qK œ states(K), a mapping created(K)(x) with domain sig(K)(x) and such482

that ’a œ sig(K)(q), created(K)(q)(a) ™ Autids483

4. A hidden-actions mapping hidden-actions(K) with domain states(K) and such that484

hidden-actions(K)(qK) ™ out(config(K)(qK)).485

and satisfies the following constraints486

P. Civit and M. Potop-Butucaru XX:15

1. If config(K)(q̄K) = (A, S), then ’Ai œ A, S(Ai) = q̄i487

2. If (qK , a, ÷) œ steps(K) then config(K)(qK) a=∆Ï ÷Õ, where Ï = created(K)(qK)(a)488

and ÷(y) = ÷Õ(config(K)(y)) for every y œ states(K)489

3. If qK œ states(K) and config(K)(qK) a=∆Ï ÷Õ for some action a, Ï = created(K)(x)(a),490

and reduced compatible probabilistic measure ÷Õ œ P (Qconf , FQconf), then (qK , a, ÷) œ491

steps(K) with ÷(y) = ÷Õ(config(K)(y)) for every y œ states(K).492

4. For all qK œ states(K) , sig(K)(qK) = hide(sig(config(K)(qK)), hidden-actions(qK)),493

which implies that494

(a) out(K)(qK) ™ out(config(K)(qK)),495

(b) in(K)(qK) = in(config(K)(qK)),496

(c) int(K)(qK) ´ int(config(K)(qK)), and497

(d) out(K)(qK) fi int(X)(qK) = out(config(K)(qK)) fi int(config(K)(qK))498

4 (d) states that the signature of a state qK of K must be the same as the signature499

of its corresponding configuration config(K)(qK), except for the possible e�ects of hiding500

operators, so that some outputs of config(K)(qK) may be internal actions of K in state qK .501

Figure 5 A PCA life cycle.

Additionnaly, we can define the current constitution of a PCA, which is the union of the502

current constitution of the element of its current corresponding configuration.503

I Definition 41 (Constitution of a PCA). Let K be a PCA. For every q œ states(K),504

constitution(K)(q) = constitution(psioa(K))(q) =505

XX:16 Probabilistic Dynamic Input Output Automata

Figure 6 Example of Configuration Automaton execution. We illustrate succession of configura-

tions mapped with the configuration automaton X. We denote ’xi œ states(X), Ci = ÈAi, SiÍ =

Config(X)(xi), C0
a

=∆ÿ C1
i

=∆V C2...C6
do

=∆ÿ C7
d

=∆ÿ C8
b

=∆ÿ C9. The automata included in

the configuration are either {U} or {U, V }. The internal action i of U aims to create the automaton

V . do represents a destruction order, while d is a destruction action. The step (sV , d, sÕ
V) is so that

„sig(V)(sÕ
V) = ÿ

, thus ÈA8, S8Í does not handle V because of reduction.

t
Aœauts(config(K)(q)) constitution(A)(map(config(K)(q))(A)).506

We note UA(K) =
t

qœK constitution(K)(q) the universal set of atomic components of507

K.508

4.4 Compatibility, composition509

I Definition 42 (Union of configurations). Let C1 = (A1, S1) and C2 = (A2, S2) be con-510

figurations such that A1 fl A2 = ÿ. Then, the union of C1 and C2, denoted C1 fi C2, is511

the configuration C = (A, S) where A = A1 fi A2 (lexicographically ordered) and S agrees512

with S1 on A1, and with S2 on A2. It is clear that configuration union is commutative513

and associative. Hence, we will freely use the n-ary notation C1 fi ... fi Cn (for any n Ø 1)514

whenever ’i, j œ [1 : n], i ”= j, auts(Ci) fl auts(Cj) = ÿ.515

I Definition 43 (PCA partially-compatible at a state). Let X = (X1, ..., Xn) be a family of516

PCA. We note psioa(X) = (psioa(X1), ..., psioa(Xn)). The PCA X1, ..., Xn are partially-517

compatible at state qX = (qX1 , ..., qXn) œ states(X1) ◊ ... ◊ states(Xn) i�:518

1. ’i, j œ [1 : n], i ”= j : auts(config(Xi)(qXi)) fl auts(config(Xj)(qXj)) = ÿ.519

2. {sig(X1)(qX1), ..., sig(Xn)(qXn)} is a set of compatible signatures.520

3. ’i, j œ [1 : n], i ”= j : ’a œ „sig(Xi)(qXi) fl „sig(Xj)(qXj) : created(Xi)(qXi)(a) fl521

P. Civit and M. Potop-Butucaru XX:17

created(Xj)(qXj)(a) = ÿ.522

4. ’i, j œ [1 : n], i ”= j : constitution(Xi)(qXi) fl constitution(Xj)(qXj) = ÿ523

We can remark that if ’i, j œ [1 : n], i ”= j : auts(config(Xi)(qXi))flauts(config(Xj)(qXj)) =524

ÿ and {sig(X1)(qX1), ..., sig(Xn)(qXn)} is a set of compatible signatures, then config(X1)(qX1)fi525

... fi config(Xn)(qXn) is a reduced compatible configuration.526

If X is partially-compatible at state qX, for every action a œ „sig(psioa(X))(qX), we527

note ÷(X,qX,a) = ÷(psioa(X),qX,a) and we extend this notation with ÷(X,qX,a) = ”qX if a /œ528

„sig(psioa(X))(qX).529

I Definition 44 (pseudo execution). Let X = (X1, ..., Xn) be a set of PCA. A pseudo530

execution fragment of X is a pseudo execution fragment of psioa(A), s. t. for every non final531

state qi, X is partially-compatible at state qi (namely the conditions (1) and (3) need to be532

satisfied)533

A pseudo execution – of X is a pseudo execution fragment of X with fstate(–) =534

(q̄X1 , ..., q̄Xn).535

I Definition 45 (reachable state). Let X = (X1, ..., Xn) be a set of PSIOA. A state q of X536

is reachable if it exists a pseudo execution – of X ending on state q.537

I Definition 46 (partially-compatible PCA). Let X = (X1, ..., Xn) be a set of PCA. The538

automata X1, ..., Xn are ¸-partially-compatible with ¸ œ N if no pseudo-execution – of539

X with |–| Æ ¸ ends on non-partially-compatible state q. The automata X1, ..., Xn are540

partially-compatible if X is partially-compatible at each reachable state q, i. e. X is541

¸-partially-compatible for every ¸ œ N.542

I Definition 47 (compatible PCA). Let X = (X1, ..., Xn) be a set of PCA. The automata543

X1, ..., Xn are compatible if the automata X1, ..., Xn are partially-compatible for each state544

of states(X1) ◊ ... ◊ states(Xn).545

I Definition 48 (Composition of configuration automata). Let X1, ..., Xn, be compatible (resp.546

partially-compatible) configuration automata. Then X = X1||...||Xn is the state machine547

consisting of the following components:548

1. psioa(X) = psioa(X1)||...||psioa(Xn) (where the composition can be the one dedicated549

to only partially-compatible PCA).550

2. A configuration mapping config(X) given as follows. For each x = (x1, ..., xn) œ551

states(X), config(X)(x) = config(X1)(x1) fi ... fi config(Xn)(xn).552

3. For each x = (x1, ..., xn) œ states(X), a mapping created(X)(x) with domain „sig(X)(x)553

and given as follows. For each a œ „sig(X)(x), created(X)(x)(a) =
t

aœ„sig(Xi)(xi),iœ[1:n] created(Xi)(xi)(a).554

4. A hidden-action mapping hidden-actions(X) with domain states(X) and given as follows.555

For each x = (x1, ..., xn) œ states(X), hidden-actions(x) =
t

iœ[1:n] hidden-actions(xi)556

We define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) = sig(sioa(X)), steps(X) =557

steps(sioa(X)), and likewise for all other (sub)components and attributes of sioa(X).558

I Theorem 49 (PCA closeness under composition). Let X1, ..., Xn, be compatible or partially-559

compatible PCA. Then X = X1||...||Xn is a PCA.560

Proof. We need to show that X verifies all the constraints of definition 40.561

(Constraint) 1: The demonstration is basically the same as the one in [1], section 5.1,562

proposition 21, p 32-33. Let q̄X and (A, S) = config(X)(q̄X). By the composition of563

XX:18 Probabilistic Dynamic Input Output Automata

psioa, then q̄X = (q̄X1 , ..., q̄Xn). By definition, config(X)(q̄X) = config(X1)(q̄X1) fi ... fi564

config(Xn)(q̄Xn). Since for every j œ [1 : n], Xj is a configuration automaton, we apply565

constraint 1 to Xj to conclude S(A¸) = q̄A¸ for every A¸ œ auts(config(Xj)(q̄Xj). Since566

(auts(config(X1)(q̄X1), ..., auts(config(Xn)(q̄Xn)) is a partition of A by definition of567

composition, S(A¸) = q̄A¸ for every A¸ œ A which ensures X verifies constraint 1.568

(Constraint 2) Let (x, a, ÷) be an arbitrary element of steps(X). We will establish569

config(X)(x) a=∆Ï ÷Õ with Ï = created(X)(x)(a) and ÷Õ(config(X)(y)) = ÷(y) for570

every state y œ states(X). For brevity, let Ai = sioa(Xi) for i œ [1 : n]. Now571

(x, a, ÷) œ steps(X). So (x, a, ÷) œ steps(sioa(X)) by definition. Also by Definition 48,572

sioa(X) = sioa(X1)||...||sioa(Xn) = A1||...||An. From definition of sioa composition,573

there exists a nonempty „a
e ™ [1 : n] such that ’i œ „a

e , a œ „sig(Ai)(xi) and ’j œ „a
n =574

([1 : n] \ „a
e), a /œ „sig(Aj)(xj).575

So, (x, a, ÷) œ steps(A1||...||An. Since x œ states(A1||...||An), we can write x, as576

(x1, ..., xn) where xi œ states(Ai) for i œ [1 : n]. In the same way, we can write577

÷ = ÷1 ¢ ... ¢ ÷n where for each i œ „a
e , ÷i = ÷xi,a (x aæ ÷i) and j œ „a

n, ÷j = ”xj .578

We have (
w

iœ„a
e

a œ „sig(Ai)(xi) · (xi, a, ÷i) œ steps(Ai)) · (
w

jœ[1:n]\„a
e

a /œ „sig(Aj)(xj) ·579

÷j = ”xj (a)580

Each Xi, i œ [1 : n], is a configuration automaton. Hence, by (a) and constraint 2581

applied to each Xi, with i œ „, we have:
w

iœ„a
n

config(Xi)(xi)
a=∆Ïi ÷Õ

i with Ïi =582

created(Xi)(xi)(a) and ÷Õ
i(config(X)(yi)) = ÷i(yi) for every state yi œ states(Xi), and583 w

jœ„a
n

config(Xj)(xj) a=∆ÿ ”Õ
xj

.584

Since X1, ..., Xn are compatible, we have that config(X1)(x1) fi ... fi config(Xn)(xn) and585

config(X1)(y1) fi ... fi config(Xn)(yn) are both reduced compatible configurations for586

every y = (y1, ..., yn) s. t. yk œ supp(÷k) for each k œ [1 : n].587

By definition, Ï = created(X)(x)(a) =
t

iœ„a
e

created(Xi)(xi)(a).588

Thereafter, we obtain589

(
t

kœ[1:n] config(Xk)(xk)) a=∆„ ÷Õ) where ÷Õ = ÷Õ
1 ¢ ... ¢ ÷Õ

n.590

For every y œ states(X), ÷Õ(config(X)(y)) = ÷(y)591

Finally, we obtain config(X)(x) a=∆created(X)(x)(a) ÷Õ with ÷Õ(config(X)(y)) = ÷(y) for592

every y œ states(X).593

(Constraint 3) Let x be an arbitrary state in states(X) and ÷Õ an arbitrary probability594

measure on the configuration with a support corresponding to reduced compatible config-595

uration such that config(X)(x) a=∆Ï ÷Õ for some action a with Ï = created(X)(x)(a).596

We must show ÷÷x,a œ P (QX , FQX) : (x, a, ÷x,a) œ steps(X) (x aæ ÷x,a) and for every597

state y œ states(X), ÷Õ(config(X)(y)) = ÷x,a(y).598

We can write x as (x1, ..., xn) where xi œ states(Xi) for i œ [1 : n]. Since X1, ..., Xn are599

compatible, we have, by compatibility of configuration automata, that auts(config(Xi)(xi))fl600

auts(config(Xj)(xj)) = ÿ, ’i, j œ [1 : n], i ”= j, (thus, all SIOA in these configurations are601

unique) and that config(X1)(x1) fi ... fi config(Xn)(xn) is a reduced compatible config-602

uration. Also, from configuration composition, config(X)(x) =
t

iœ[1:n] config(Xi)(xi),603

that is
t

iœ[1:n] config(Xi)(xi)
a=∆Ï ÷Õ. (a)604

From definition of sioa composition, there exists a nonempty „a
e ™ [1 : n] such that605

’i œ „a
e , a œ „sig(Ai)(xi) and ’j œ „a

ne = ([1 : n] \ „a
e), a /œ „sig(Aj)(xj).606

We have config(X)(x) a=∆Ï ÷Õ. with ÷Õ = ÷Õ
1 ¢ ... ¢ ÷Õ

n and for every i œ „a
e supp(÷Õ

i) ™607

{cÕ||÷cÕÕ, (cÕ = reduced(cÕÕ))·(auts(cÕÕ) = auts(config(Xi)(xi))fiÏi)·(’A œ Ïi, maps(cÕÕ)(A) =608

x̄A)} with Ïi = created(Xi)(xi)(a) and for every j œ „a
ne = ([1 : n] \ „a

e), ÷Õ
j =609

”Config(Xj)(xj)610

We have for every i œ „a
e config(Xi)(xi)

a=∆Ïi ÷Õ
i, which means for every i œ „a

e ,611

P. Civit and M. Potop-Butucaru XX:19

(xi, a, ÷i) œ steps(Xi) with for every yi ÷i(yi) = ÷Õ
i(config(Xi)(yi)).612

For every j œ „a
ne = [1 : n] \ „a

e , we note ÷j = ”xj .613

From this, x = (x1, ..., xn), ÷ = ÷1 ¢ ... ¢ ÷n, and definition of configuration composition,614

we conclude (x, a, ÷) œ steps(X) and for every y œ states(Y), ÷(y) = ÷Õ(config(X)(y))615

(Constraint 4).616

For every i œ [1, n], we note hXi = hidden-actions(Xi)(qXi) and h =
t

iœ[1,n] hXi .617

Since {Xi|i œ [1, n]} are partially-compatible in state qX = (qX1 , ..., qXn), we have both618

{config(Xi)(qXi)|i œ [1, n]} compatible and ’i, j œ [1, n], in(config(Xi)(qXi)) fl hXj =619

ÿ. By compatibility, ’i, j œ [1, n], out(config(Xi)(qXi)) fl out(config(Xj)(qXj)) =620

int(config(Xi)(qXi))fl „sig(config(Xj)(qXj)) = ÿ, which finally gives ’i, j œ [1, n], „sig(config(Xi)(qXi))fl621

hXj = ÿ.622

Hence, we can apply commutativity to obtain hide(sig(config(X1)(qX1))◊....◊config(Xn)(qXn), hX1fi623

... fi hXn) = hide(sig(config(X1)(qX1)), hX1) ◊ ... ◊ hide(sig(config(Xn)(qXn)), hXn).624

That is sig(psioa(X))(qX) = sig(psioa(X1))(qX1)) ◊ ◊ sig(psioa(Xn))(qXn)) because625

of (1) is compatible with sig(psioa(X))(qX) = hide(sig(config(X)(x)), h) because of (2)626

and (4).627

Furthermore h µ config(X)(qX), since hXi µ config(Xi)(qXi).628

This terminates the proof.629

J630

5 Projection631

This section aims to formalise the idea of a PCA XA considered without an internal PSIOA632

A. This PCA will be noted YA = XA \ {A}. This is an important step in our reasoning633

since we will be able to formalise in which sense XA and psioa(XA \ {A})||A are similar.634

5.1 projection on configurations635

At first we need some particular precautions to define properly the probabilistic spaces.636

The next definition captures the idea of probabilistic measure deprived of a psioa A.637

I Definition 50 (probabilistic measure projection). Let A = (A1, ..., An) be a (lexically638

ordered) family of PSIOA partiall-compatible at state q = (q1, ..., qn) œ QA1 ◊ ... ◊ QAn . Let639

A
s = (As1 , ..., Asn) µ A. We note :640

q \ {Ak} = (q1, ..., qk≠1, qk+1, ..., qn) if Ak œ A and q \ {Ak} = q otherwise.641

q \ A
s = (q \ {Asn}) \ (As \ {Asn}) (recursive extension of the previous item).642

q � Ak = qk if Ak œ A only.643

q � A
s = q \ (A \ A

s) (recursive extension of the previous item).644

Let qÕ = q \ A
s and qÕÕ = q � A

s if A
s µ A. Let A

Õ = A \ A
s and A

ÕÕ = A
s µ A. Let645

aÕ œ „sig(AÕ)(qÕ) and aÕÕ œ „sig(AÕÕ)(qÕÕ). We note646

÷(A,q,aÕ) \ A
s , ÷(AÕ,qÕ,aÕ) and647

÷(A,q,aÕÕ) � A
s , ÷(AÕÕ,qÕÕ,aÕÕ) if A

s µ A.648

Then we apply this notation to preserving distributions.649

I Definition 51 (preserving distribution projection). Let ÷p be a preserving distribution. Let650

A = (A1, ..., An) its family support. Let H be its set of companion distributions of ÷p (s.651

XX:20 Probabilistic Dynamic Input Output Automata

Figure 7 State projection

Figure 8 Family transition projection

t. for every ÷ œ H, ÷ = ÷1 ¢ ... ¢ ÷n with ÷i œ Disc(QAi)).Then ÷p \ A
s is the preserving652

distribution with A \ A
s as familiy support and H Õ = {÷ \ A

s|÷ œ H} as companion653

distribution set. If A
s µ A, then ÷p � A

s is the preserving distribution with A � A
s as654

familiy support and H ÕÕ = {÷ � A
s|÷ œ H} as companion distribution set.655

I Definition 52 (intrinsinc transition projection). Let ÷ œ Disc(Qconf) generated by Ï and656

÷p œ Disc(Qconf). We note ÷ \ A
s the probabilistic measure on configurations generated by657

Ï \ A
s and ÷p \ A

s and we note ÷ � A
s the probabilistic measure on configurations generated658

by Ï � A
s and ÷p � A

s .659

Then we can easily determine some results when projection is applied.660

I Lemma 53 (family distribution projection). (see figure 11) Let A = (A1, ..., An), let661

÷ = ÷1 ¢ ... ¢ ÷n with ÷i œ Disc(QAi) for every i œ [1, n] . Let ÷Õ = ÷ \ {Ak}. Let662

QÕ
A = {q \ {Ak}|q œ QA}.663

For every qÕ œ QÕ
A, ÷Õ(qÕ) = �(qœQA,q\{Ak}=qÕ)÷(q)664

Proof. This comes directly from the law of total probability. The Bayes law gives ÷Õ(qÕ) =665 q
÷(qÕ|q)÷(q) with ÷(qÕ|q) = ”qÕ=q\{Ak}. Thus ÷(q) =

q
qÕ=q\{Ak} ÷(q). J666

I Lemma 54 (preserving distribution projection). (see figure 12) Let ÷p be a preserving667

distribution with A = (A1, ..., An) as family support . Let CY be a configuration (÷p \668

{Ak})(CY) = �(CX ,CX \{Ak}=CY)÷p(CX).669

P. Civit and M. Potop-Butucaru XX:21

Figure 9 Preserving distribution projection

Figure 10 Intrinsinc transition projection

Proof. We can apply lemma 53 for every pair (÷, ÷ \{Ak}) s. t. ÷ is a companion distribution670

of ÷p (and ÷\{Ak} is a companion distribution of ÷p \{Ak} by definition). Then we substitute671

in the sum of 53 every state q by the corresponding configuration. J672

I Lemma 55 (reduced distribution projection). Let ÷p be a preserving distribution with673

A = (A1, ..., An) as family support . Let ÷r be generated by Ï and ÷p. Let CY be a674

configuration.675

(÷p \ {Ak})(CY) = �(CX ,CX \{Ak}=CY)÷p(CX).676

Let CY be a configuration (÷r \ {Ak})(CY) = �(CX ,CX \{Ak}=CY)÷r(CX).677

Proof. For a preserving transition, we get (÷p \ {Ak})(CY) = �(CX ,CX \{Ak}=CY)÷p(CX) for678

XX:22 Probabilistic Dynamic Input Output Automata

Figure 11 total probability law for family transition projection

Figure 12 total probability law for preserving configuration distribution and its companion

distribution

every configuration CY from lemma 54. By definition 38, it follows the same relation for679

the non-reduced transition which is matching the preserving transition. It follows the same680

relation for the reduced transition which is matching the non-reduced transition. J681

I Lemma 56 (projection on an intrinsinc transition). Let C be a configuration, P an automaton682

a œ „sig(C\P), Ï µ Autids and ÷ œ Disc(Qconf), s. t. C
a=∆Ï ÷r. Then , C\{P} a=∆(Ï\{P })683

P. Civit and M. Potop-Butucaru XX:23

(÷r \ {P}).684

Proof. We note auts(C) = A = (A1, ..., An), S = auts(C) and A = A1||...||An. We note685

q = (S(A1), ..., S(An)). Since a is enabled in C \ {P}, (q \ {P}, a, ÷) is a transition of A686

(unique from q and a by transition determinism), while (q, a, ÷ \ {P}) is a transition of AÕ687

the automaton issued from the composition of automata in A \ {P}. This comes from the688

definition of composition 11. Now ÷r is generated from Ï and ÷p where ÷ is a companion689

distribution of ÷p. In the same way, ÷r \ {P} is generated from Ï \ {P} and ÷p \ {P} where690

÷ \ {P} is a companion distribution of ÷p \ {P}.691

Thus, C \ {P} a
Ô (÷p \ {P}) and then C \ {P} a=∆(Ï\{P }) (÷r \ {P}).692

J693

5.2 projection on PCA694

Now we can define our PCA deprived of a PSIOA.695

I Definition 57 (A-fair PCA). Let A œ Autids. Let X be a PCA. We say that X is696

A-fair if for every states qX , qÕ
X , s. t. config(X)(qX) \ A = config(X)(qÕ

X) \ A, then697

created(X)(qX) = created(X)(qÕ
X) and hidden-actions(X)(qX) = hidden-actions(X)(qÕ

X).698

A A-fair PCA is a PCA s. t. we can deduce its current properties from its current699

configuration deprived of A. This allows the next definition to be well-defined.700

I Definition 58 (X \ {P}). (see figure 13) Let P œ Autids. Let X be a P -fair PCA. We701

note X \ {P} the automaton Y , verifying:702

it exists a total map µs : states(X) æ states(Y) and µd : Disc(QX , FQX) æ Disc(QY , FQY)703

s. t.704

µs(q̄X) = q̄Y705

if config(X)(x) = (A, S), config(Y)(µs(x)) = (A \ {P}, S � (A \ {P}))706

sig(Y)(µs(x)) = sig(X)(x) \ P .707

’x œ states(X), ’a œ sig(Y)(µs(x)), created(Y)(µs(x))(a) = created(X)(x)(a) \ {P}708

’x œ states(X), ’a œ sig(Y)(µs(x)) if (x, a, ÷) œ step(X), (µs(x), a, µd(÷)) œ step(Y)709

where µd(÷)(y) = �x,µs(x)=y÷(x).710

’x œ states(X), if A œ auts(config(X)(qX)), then711

hidden-actions(Y)(µs(x)) = hidden-actions(X)(x)\out(A)(maps(config(X)(qX))(A),712

otherwise hidden-actions(Y)(µs(x)) = hidden-actions(X)(x).713

In the remaining, if we consider a PCA X deprived of a PSIOA A we always implicitly714

assume that X is A-fair.715

Here we prove a serie of lemma to show that Y = X \ {P} is indeed a PCA. by verifying716

all the constraints.717

I Lemma 59 (corresponding transition measure for projection). Let P be a PSIOA. Let718

X be a P -fair PCA. Let Y = X \ {P}. Let (qX , a, ÷X) be a transition of X where719

a œ act(config(X)(qX) \ {P}). Let ÷Õ
X s. t. Config(X)(qX) a=∆ÏX ÷Õ

X with ÷X(qÕ
X) =720

÷Õ
X(config(X)(qÕ

X)) for every qÕ
X and ÏX = created(X)(qX)(a) (which exists by definition).721

Then (qY = µs(qX), a, ÷Y = µd(÷X)) is a transition of Y and Config(Y)(qY) a=∆ÏY ÷Õ
Y722

with ÷Õ
Y = ÷Õ

X \ {P}, ÷Y (qÕ
Y) = ÷Õ

Y (config(Y)(qÕ
Y)) for every qÕ

Y and ÏY = (ÏX \ {P}) =723

created(Y)(qY)(a).724

XX:24 Probabilistic Dynamic Input Output Automata

Proof. At first, by definition of Y , Config(Y)(qY = µs(qX)) = Config(X)(qX)\{P}. Then,725

since a œ act(config(X)(qX) \ {P}), we can apply lemma 56. Thus Config(Y)(qY) a=∆ÏY726

÷Õ
Y with ÷Õ

Y = ÷Õ
X \ {P} and ÏY = (ÏX \ {P}). By definition, created(Y)(qY)(a) =727

created(X)(qX)(a) \ {P}, thus ÏY = created(Y)(qY)(a).728

Let qY be a state of Y . By definition of Y = X\{P}, (µd(÷X))(qY) = �qX ,µs(qX)=qY
÷X(qX).729

By assumption, ÷X(qX) = ÷Õ
X(config(X)(qX)), thus (µd(÷X))(qY) = �qX ,µs(qX)=qY

÷Õ
X(config(X)(qX)).730

We substitue qX with config(X)(qX) in the sum and obtain (µd(÷X))(qY) = �config(X)(qX),config(X)(qX)\{P }=config(Y)(qY)÷
Õ
X(config(X)(qX))731

since µs(qX) = qY if and only if config(X)(qX) \ {P} = config(Y)(qY) by definition of732

Y = X \ {P}. Therafter, we use the lemma 55 and get (µd(÷X))(qY) = ÷Õ
Y (config(Y)(qY))733

with ÷Õ
Y = ÷Õ

X \ {P}.734

J735

I Lemma 60 (extension of a preserving transition). Let CY be a configuration, P an automaton736

that is not contained in AY = auts(CY), a œ „sig(CY), s. t. CY
a

Ô ÷Y,p with AY as family737

support and ÷ as companion distribution.738

Then for every qP œ states(P), for every configuration CX = (auts(CY)fi{P}, maps(CY)fi739

{(P, qp)}) we have CX
a

Ô ÷Õ
X,p with AX = AY fi {P} as family support and ÷Õ

as companion740

distribution where741

÷Õ = ÷Õ ¢ ÷qP ,a if a œ „sig(P)(qp) or ÷ = ÷ ¢ ”qP otherwise.742

Proof. Let AY = auts(CY) and AY the automaton issued from the composition of mathbfAY .743

Let AX = auts(CX) = auts(CY) fi {P} and AX the automaton issued from the composition744

of mathbfAX .745

Let (q, a, ÷) be transition of AY , then by definition of composition, for every qP œ states(P)746

for the unique state qÕ, s. t. both qÕ \ {P} = q and qÕ � P = qP . Then, by definition 11747

of composition (qÕ, a, ÷Õ) is a transition of AX with ÷Õ ÷Õ = ÷ ¢ ÷qP ,a if a œ „sig(P)(qp) or748

÷Õ = ÷ ¢ ”qP otherwise.749

Then ÷Õ is a companion distribution of ÷X,p, while ÷ is a companion distribution of750

÷Y,p. J751

I Lemma 61 (extension of an intrinsinc transition). Let CY be a configuration, ÏY µ Autids,752

P an automaton that is not contained in auts(CY) fi ÏY , a œ „sig(CY), s. t. CY
a=∆ÏY ÷Y753

where ÷Y is generated by ÷Y,p and ÏY where ÷ is a companion distribution of ÷Y,p.754

Then for every qP œ states(P), for every configuration CX = (auts(CY)fi{P}, maps(CY)fi755

{(P, qp)}), for every set ÏX , s. t. ÏY = ÏX \ {P}, we have CX
a=∆ÏX ÷X where ÷X is756

generated by ÷X,p and ÏX with ÏY = ÏX \ {P} where ÷Õ
is a companion distribution of ÷X,p757

with ÷Õ = ÷ ¢ ÷qP ,a if a œ „sig(P)(qp) or ÷Õ = ÷ ¢ ”qP otherwise.758

Proof. Immediate from last lemma and definition of intrinsic transition generated by a759

preserving transition and a set of automata ids. J760

I Lemma 62 (existence of intrinsinc transition). Let X be a PCA, P œ Autids and Y =761

X \ {P}.762

÷y œ States(Y), ÷Õ
Y œ Disc(Qconf , FQconf), a œ „sig(Config(Y)(y)), ÏY = created(Y)(y)(a)763

s. t.764

Config(Y)(y) a=∆ÏY ÷Õ
Y implies765

P. Civit and M. Potop-Butucaru XX:25

It exists ÷x œ States(X), µs(x) = y, ÷Õ
X œ Disc(Qconf , FQconf), ÷Õ

Y = (÷Õ
X \ {P}), a œ766

„sig(Config(X)(x) \ {P}), ÏX = created(X)(x)(a) s. t.767

Config(X)(x) a=∆ÏX ÷Õ
X .768

Proof. By definition of Y , if y œ states(Y), it exists x œ states(X), µs(x) = y, config(X)(x)\769

P = config(Y)(y) and created(X)(x)(a) = created(Y)(y)(a)\P . If P œ auts(config(X)(x))770

with maps(config(X)(x))(P) = qp, we can apply the lemma 61.771

We obtain Config(X)(x) a=∆created(X)(x)(a) ÷Õ
X and ÷Õ

X = ÷Õ
Y \P . If P /œ auts(config(X)(x)),772

the conclusion is the same. J773

Now we are able to demonstrate the theorem of the section that claims the PCA set is774

closed under projection.775

I Theorem 63 (X \ {P} is a PCA). Let P œ Autids. Let X be a P -fair PCA, then776

Y = X \ {P} is a PCA.777

Proof. (Constraint 1) By definition, config(Y)(q̄Y) = config(X)(µs(q̄X)). Since the778

constraint 1 is respected by X, it is a fortiori respected by Y .779

(Constraint 2) Let (qY , a, ÷Y) œ steps(Y). By definition of Y , we know it exists780

(qX , a, ÷X) œ steps(X) with ÷Y = µd(÷X) and qY = µs(qX). Then, because of constraint 2781

ensured by X, we obtain config(X)(qX) a=∆ÏX ÷Õ
X with ÷X(qÕ

X) = ÷Õ
X(Config(X)(qÕ

X))782

for every qÕ
X œ states(X), ÏX = created(X)(qX)(a).783

Finally, we can apply lemma 59 to obtain that config(Y)(y) a=∆ÏY ÷Õ
Y with ÷Y (qÕ

Y) =784

÷Õ
Y (Config(Y)(qÕ

Y)) for every qÕ
Y œ states(Y), ÏY = created(Y)(qY)(a).785

(Constraint 3) ÷y œ States(Y), ÷Õ
Y œ Disc(Qconf , FQconf), a œ „sig(Config(Y)(y)), ÏY =786

created(Y)(y)(a) s. t.787

Config(Y)(y) a=∆ ÷Õ
Y788

Because of lemma 62, it implies it exists x, µs(x) = y, s. t.789

config(X)(x) a=∆ÏX ÷Õ
X with ÷Õ

Y = ÷Õ
X \ P , ÏX = created(X)(x)(a) and ÏY = ÏX \ P .790

Since X respect the constraint 3 of PCIOA, we obtain that (x, a, ÷X) exists with ÷X(x) =791

÷Õ
X(config(X)(x)).792

Then we get (y = µs(x), a, ÷Y = µd(÷X)) by definition of Y .793

We can use the lemma 59 to deduce that ÷Y (yÕ) = ÷Õ
Y (config(Y)(yÕ)) for every yÕ œ794

states(Y).795

(Constraint 4) By definition sig(Y)(qY = µs(qX)) , hide(sig(config(Y)(qY), hidden-796

actions(Y)(qY)) where hidden-actions(Y)(qY) , hidden-actions(X)(qX)\out(A)(map(config(X)(qX))(A)),797

if (*) A œ auts(config(X)(qX)), hidden-actions(Y)(qY) , hidden-actions(X)(qX) oth-798

erwise (**), Since X is supposed to be P -fair, even if it exists qÕ
X , s. t. µs(qÕ

X) = qY ,799

then hidden-actions(X)(qX) = hidden-actions(X)(qÕ
X), so hidden-actions(Y)(qY)) is800

well-defined.801

Furthermore, if (*), hidden-actions(X)(qX)\out(A)(map(config(X)(qX))(A)) ™ out(config(X)(qX))\802

out(A)(map(config(X)(qX))(A)) Because of compatibility of config(X)(qX), out(A)(map(config(X)(qX))(A))fl803

out(config(Y)(qY)) = ÿ, thus out(config(X)(qX))\out(A)(map(config(X)(qX))(A)) =804

out(config(Y)(qY)), which means hidden-actions(Y)(qY)) ™ out(config(Y)(qY)).805

otherwise (**) we have hidden-actions(Y)(qY)) = hidden-actions(X)(qX)) ™ out(config(X)(qX))806

and out(config(X)(qX)) = out(config(Y)(qY))807

Thus hidden-actions(Y)(qY)) ™ out(config(Y)(qY))808

J809

XX:26 Probabilistic Dynamic Input Output Automata

6 Reconstruction810

In last section, we have shown that Y = X \ A was a PCA. In this section we want to811

show that, (as long as no re-creation of A occurs), psioa(X \ {A})||A and X are linked by812

an homomorphism. This concept is formalised in theorems 78 and 82. Hence it is always813

possible to transfer a reasoning on X into a reasoning on psioa(X \ {A})||A if no re-creation814

of A occurs.815

6.1 Simpleton wrapper816

I Definition 64 (Simpleton wrapper). (see figure 14) Let A be a PSIOA. We note Ãsw the817

simpleton wrapper of A as the following PCA:818

It exists a bijection rensw :
;

QA æ QÃsw

qA ‘æ q̃Ãsw = rensw(qA) s. t. psioa(Ãsw) =819

rensw(A), that is psioa(Ãsw) di�ers from A only syntactically.820

’q̃Ãsw œ states(Ãsw), config(Ãsw)(q̃Ãsw) = reduced({A}, S : A ‘æ qA = ren≠1
sw (qA))821

’q̃Ãsw œ states(Ãsw), ’a œ „sig(Ãsw)(q̃sw
Ã), hidden-actions(Ãsw)(q̃Ãsw) = ÿ and822

created(Ãsw)(q̃Ãsw)(a) = ÿ.823

We can remark that when Ãsw enters in q̃„
Ãsw = rensw(q„

A) where „sig(Ãsw)(q̃„
Ãsw) = ÿ , this824

matches the moment where A enters in q„
A where „sig(A)(q„

A) = ÿ, s. t. the corresponding825

configuration is the empty one.826

I Lemma 65. Let A be a PSIOA. Let Ãsw
its simpleton wrapper with psioa(Ãsw) =827

rensw(A). Let µ œ Disc(frags(Ãsw)) applyÃsw (rensw(µ), fl)(rensw(–)) = applyA(µ, fl)(–).828

Proof. By induction. The only key point is that (i) ’q œ states(A), constitution(Ãsw)(rensw(q)) =829

constitution(A)(q) and (ii) for q„ s. t. sig(A)(q„) = ÿ, constitution(tildeAsw)(rensw(q„)) =830

ÿ which means that (*) T is enabled in q i� T is enabled in rensw(q) and that (**) a is831

triggered by T in state q i� a is triggered by T in state rensw(q).832

By induction on |fl|.833

Basis: applyA(µ, ⁄)(–) = µ(–), while applyÃsw (rensw(µ), ⁄)(rensw(–))) = rensw(µ)(rensw(–)) =834

µ(–).835

Let assume this is true for fl1. We consider –s+1 = –s˚as+1qs+1 and fl2 = fl1T .836

applyA(µ, fl1T)(–s+1) = applyA(applyA(µ, fl1), T)(–s+1) = p1(–s+1) + p2(–s+1)837

p1(–s+1) =
;

applyA(µ, fl1)(–s) · ÷(A,qs,as+1)(qs+1) if –s+1 = –s˚as+1qs+1, as+1 triggered by T enabled
0 otherwise838

p2(–s+1) =
;

applyA(µ, fl1)(–s+1) if T is not enabled after –s+1

0 otherwise839

Parallely, we have840

applyÃsw (rensw(µ), fl1T)(rensw(–s+1)) = applyÃsw (applyÃsw (rensw(µ), fl1), T)(rensw(–s+1)) =841

pÕ
1(rensw(–s+1)) + pÕ

2(rensw(–s+1))842

pÕ
1(rensw(–s+1)) =

I
applyÃsw (rensw(µ), fl1)(rensw(–s)) · ÷(Ãsw,rensw(qs),as+1)(rensw(qs+1)) if (úú)
0 otherwise

843

pÕ
2(rensw(–s+1)) =

;
applyÃsw (rensw(µ), fl1)(rensw(–s+1)) if T is not enabled after rensw(–s+1)
0 otherwise844

P. Civit and M. Potop-Butucaru XX:27

with (**) : rensw(–s+1) = rensw(–s)as+1rensw(qs+1), as+1 triggered by T .845

We have : T enabled after – ≈∆ T enabled after rensw(–). The leftward terms are equal846

by induction hypothesis, since |fl1| = |fl2| ≠ 1. Since the probabilistic distributions are in847

bijection we can obtain the equality for rightward terms. The conditions are matched in the848

same manner because of signature bijection a. Thus we can conclude that pÕ
1(rensw(–s+1)) =849

p1(–s+1) and pÕ
2(rensw(–s+1)) = p2(–s+1), which leads to the result.850

J851

6.2 Partial-compatibility852

In this section, we show that (XA \ {A}) and Ãsw are partially-compatible and that (XA \853

{A})||Ãsw mimics XA as long as no creation of A occurs (see figure 15).854

In this subsection we show that psioa(X \ {A}) and A are partially-compatible if minor855

conditions are respected. We will use the notation Z = (psioa(X \ {A}), A) and in case of856

partiall-compatibility of Z, Z = psioa(X \ {A})||A.857

I Definition 66 (A-conservative PCA). Let X be a PCA, A œ Autids. We say that X is858

A-conservative if it is A-fair and for every state qX , Cx = config(X)(qX) s. t. A œ aut(CX)859

and map(CX)(A) , qA, hidden-actions(X)(qX) = hidden-actions(X)(qX) \ „ext(A)(qA).860

A A-conservative PCA is a PCA that does not hide any output action that could be an861

external action of A. This allows the compatibility between X \ A and A.862

This allows the compatibility between X \ A and Ãsw.863

I Definition 67 (µA
z and µA

e mapping). Let A œ Autids, X be a A-fair PCA, Y = X \864

A. Let Ãsw be the simpleton wrapper of A, where psioa(Ãsw) = rensw(A). Let q„
A œ865

states(A) the (assumed) unique state s. t. „sig(A)(q„
A) = ÿ. We note µA

z : states(X) æ866

states(Y) ◊ states(Ãsw) s. t. ’x œ states(X), µA
z (x) = (µA

s (x), rensw(qA)) with qA =867

map(config(X)(x))(A) if A œ (auts(config(X)(x))) and qA = q„
A otherwise.868

For every alternating sequence – = x0, a1, s1, a2... of states of and actions of X –X , we869

note µA
e (–X) the alternating sequence – = µA

z (x0), a1, µA
z (x1), a2,870

The symbol A is omitted when this is clear in the context.871

I Lemma 68 (preservation of signature compatibility of configurations). Let A œ Autids.872

Let X be a A-conservative PCA, Y = X \ A. Let qX œ states(X), CX = config(X)(qX),873

AX = aut(CX), SX = map(CX).874

If A œ AX and qA = SX(A), then sig(CY) and sig(Ãsw)(rensw(qA)) are compatible and875

sig(CX) = sig(CY) ◊ sig(Ãsw)(rensw(qA)).876

If A /œ AX , then sig(CY) and sig(Ãsw)(rensw(q„
A)) are compatible and sig(CX) =877

sig(CY) ◊ sig(Ãsw)(rensw(q„
A)).878

Proof. Let A œ Autids Let X and Y \ {A} be PCA. Let qX œ states(X). Let CX =879

config(X)(qX), AX = auts(CX) and SX = map(CX). Let qY œ states(Y), qY = µs(qX).880

Let CY = config(Y)(qY), AY = auts(CY) and SY = map(CY). By definition of Y ,881

CY = CX \ {A}.882

Case 1: A œ AX883

XX:28 Probabilistic Dynamic Input Output Automata

Since X is a PCA, CX is a compatible configuration, thus ((AY , SY) fi (A, qA)) is a884

compatible configuration. Finally sig(CY) and sig(A)(qA) are compatible with sig(A)(qA) =885

sig(Ãsw)(rensw(q„
A)) .886

By definition of intrinsinc attributes of a configuration, that are constructed with the887

attributes of the automaton issued from the composition of the family of automata of the888

configuration, we have AX = AY fi {A} and sig(CX) = sig(CY) ◊ sig(A)(qA), that is889

sig(CX) = sig(CY) ◊ sig(Ãsw)(rensw(qA)).890

Case 2: A /œ AX891

Since X is a PCA, CX is a compatible configuration, thus CY = CX is a compatible con-892

figuration. Finally sig(CY) and sig(A)(q„
A) = (ÿ, ÿ, ÿ) = sig(A)(qA) = sig(Ãsw)(rensw(q„

A))893

are compatible.894

By definition of intrinsinc attributes of a configuration, that are constructed with895

the attributes of the automaton issued from the composition of the family of automata896

of the configuration (here AY and AX = AY), we have sig(CX) = sig(CY). Fur-897

thermore, sig(Ãsw)(rensw(q„
A)) = sig(A)(q„

A) = (ÿ, ÿ, ÿ). Thus sig(CX) = sig(CY) ◊898

sig(Ãsw)(rensw(q„
A)) J899

I Lemma 69 (preservation of signature). Let A œ Autids. Let X be a A-conservative900

PCA, A œ Autids, Y = X \ {A}. For every qX œ states(X), we have sig(X)(qX) =901

sig(Y)(qY) ◊ sig(Ãsw)(rensw(qA)) with (qY , rensw(qA)) = µA
z (qX).902

Proof. The last lemma 68 tell us for every qX œ states(X), we have sig(config(X)(qX)) =903

sig(config(Y)(qY)) ◊ sig(Ãsw)(rensw(qA)) with (qY , rensw(qA)) = µz(qX). Since X is904

A-conservative, we have (*) sig(X)(qX) = hide(sig(config(X)(qX)), acts) where acts ™905

(out(X)(qX) \ (ext(A)(qA)). Hence sig(Y)(qY) = hide(sig(config(Y)(qY)), acts). Since906

(**) acts fl ext(A)(qA) = ÿ , sig(Y)(qY) and sig(A)(qA) are also compatible. We have907

sig(config(X)(qX)) = sig(config(Y)(qY))◊sig(A)(qA) = sig(config(Y)(qY))◊sig(Ãsw)(rensw(qA))908

which gives because of (*) hide(sig(config(X)(qX)), acts) = hide(sig(config(Y)(qY)), acts)◊909

sig(A)(qA), that is sig(X)(qX) = sig(Y)(qY)◊sig(A)(qA) = sig(Y)(qY)◊sig(Ãsw)(rensw(qA)).910

J911

I Lemma 70 (preservation of partial-compatibility at any reachable state). Let A œ Autids,912

X be a A-conservative PCA, Y = X \ {A}, Z = (psioa(Y), Ãsw) Let z = (y, q̃Ãsw) œ913

states(Y) ◊ states(Ãsw) and x œ states(X) s. t. µz(x) = z. Then Z is partially compatible914

at state z (in the sense of definition 43).915

Proof. Since X is a A-conservative PCA, the previous lemma 69 ensures that sig(Y)(y)916

and sig(A)(qA) = sig(Ãsw)(rensw(qA)) are compatible, thus by definition Z is partially917

compatible at state z. J918

We show that reconstruction preserves probabilistic distribution of corresponding trans-919

ition.920

I Lemma 71 (preservation of transition). Let A œ Autids, X be a A-conservative PCA, Y =921

X \ {A}, Z = (Y, Ãsw). Let qZ = (qY , q̃Ãsw) œ states(Y) ◊ states(Ãsw) and qX œ states(X)922

s. t. µz(qX) = qZ . Let a œ sig(X)(x) = sig(Y)(y) ◊ sig(Ãsw)(q̃Ãsw) , verifying923

(No creation from A) If both A œ map(config(X)(qX)) and a /œ sig((config(X)(qX) \924

A)),then created(X)(x)(a) = ÿ925

P. Civit and M. Potop-Butucaru XX:29

If we are in one of this case926

1. A œ auts(config(X)(x))927

2. A /œ auts(config(X)(x)) and A /œ created(X)(x)(a) (X does not create A with probability928

1)929

Then for every qÕ
X œ states(X), ÷(X,qX ,a)(qÕ

X) = ÷(Z,qz,a)(µz(qÕ
X)).930

Proof. By lemma 69, we have sig(X)(qX) = sig(Y)(qY) ◊ sig(A)(qA) = sig(Y)(y) ◊931

sig(Ãsw)(q̃Ãsw = rensw(qA)).932

We note ÏX = created(X)(qX)(a), ÏY = created(X)(qX)(a) \ A. We note AX =933

auts(config(X)(qX)), AY = auts(config(Y)(qY)), SX = map(config(X)(qX)), SY =934

map(config(Y)(qY)), AX (resp. AY) the composition of automata in AX (resp. AY).935

If a /œ sig(config(X)(qX) \ A) · a œ sig(A)(qA), then ÏX = ÏY = ÿ.936

Since X (resp. Y) is a PCA and (qX , a, ÷(X,qX ,a)) œ DX (resp. if a œ sig(Y)(qY),937

(qY , a, ÷(Y,qY ,a)) œ DX) the constraint says that it exists ÷(CX ,a) (resp. ÷(CY ,a)) reduced938

configuration distribution s. t. config(X)(qX) =∆ÏX ÷(CX ,a) (resp. config(Y)(qY) =∆ÏY939

÷(CY ,a)) where for every qÕ
X œ states(X), ÷(CX ,a)(config(X)(qÕ

X)) = ÷(X,qX ,a)(qÕ
X) (resp.940

qÕ
Y œ states(Y), ÷(CY ,a)(config(Y)(qÕ

Y)) = ÷(Y,qY ,a)(qÕ
Y)) and ÷(CX ,a) (resp. ÷(CY ,a)) gen-941

erated from ÏX (resp. ÏY) and ÷(CX ,a),p (resp. ÷(CY ,a),p) with companion distribution942

÷(AX ,qX ,a) œ Disc(QAX) (resp. ÷(AY ,qY ,a) œ Disc(QAY)).943

If a œ sig(A)(qA), it exists ÷(A,qA,a) œ Disc(QA), (qA, a, ÷(A,qA,a)) œ DA. By con-944

struction of Y = X \ {A}, if A œ AX , ÷(AX ,qX ,a) = ÷(AY ,qY ,a) ¢ ÷(A,qA,a) and otherwise945

÷(AX ,qX ,a) = ÷(AY ,qY ,a). Finally, also by construction of Y = X \ {A} we know that for every946

a œ sig(Y)(qY), for every qÕ
X œ states(X), ÷(X,qX ,a)(qÕ

X) = ÷(Y,qY ,a)(µs(qÕ
X)).947

1. A œ auts(config(X)(x)). We know that ÷AX ,qX ,a = ÷AY ,qY ,a ¢ ÷(A,qA,a). This means948

that for every configuration C Õ
X = C Õ

Y fi C Õ
A with C Õ

X = (AX , S
Õ
X), C Õ

Y = (AY S
Õ
Y), C Õ

A =949

(A, {(A, qÕ
A)}), ÷(CX ,a),p(C Õ

X) = (÷(CY ,a),p ¢ ÷(A,qA,a)))(C Õ
Y , C Õ

A). Since we assume no950

creation from A, we also have for every configuration C ÕÕ
X = C ÕÕ

Y fiC ÕÕ
A with C ÕÕ

X = (AÕÕ
X , S

ÕÕ
X),951

C ÕÕ
Y = (AÕÕ

Y S
ÕÕ
Y), C ÕÕ

A = (A, qÕÕ
A), ÷(CX ,a)(C ÕÕ

X) = (÷(CY ,a) ¢ ÷(A,qA,a)))(C ÕÕ
Y , C ÕÕ

A). Hence for952

every states qÕÕ
X , qÕÕ

Z = (qÕÕ
Y , qÕÕ

A) = µz(qÕÕ
X), ÷(X,qX ,a)(qÕÕ

X) = (÷(Y,qY ,a)¢÷(A,qA,a)))(qÕÕ
Y , qÕÕ

A) =953

(÷(Y,qY ,a) ¢ ÷(rensw(A),rensw(qA,a))))(qÕÕ
Y , rensw(qÕÕ

A)) = ÷(Z,qZ ,a)(µz(qÕÕ
X)), which ends the954

proof for this case.955

2. A /œ auts(config(X)(qX)) and A /œ created(X)(x)(a) . In this case ÏX = ÏY because956

we assume no creation of A and we obtain ÷(CX ,a) = ÷(CY ,a). Furthermore, qA = q„
A and957

thus a /œ „sig(A)(qA), i. e. ÷(Z,qZ ,a)(µz(qÕ
X)) = (÷(Y,qY ,a) ¢ ”rensw(qA,a))(qÕÕ

Y , rensw(qÕÕ
A)) =958

(÷(Y,qY ,a) ¢ ”q„
A

)(µs(qÕ
X), q„

A) = ÷(Y,qY ,a)(µs(qÕ
X)) = ÷(X,qX ,a)(qÕ

X) which ends the proof959

for this case.960

J961

I Definition 72 (A-twin). Let A œ Autids. Let X, X Õ be PCA. We say that X Õ is a A-962

twin of X if it di�ers from X at most only by its start states q̄XÕ reachable by X s. t.963

A œ config(X Õ)(q̄XÕ) and map(config(X Õ)(q̄XÕ))(A) = q̄A. If X Õ is a A-twin of X and964

Y = X \ A and Y Õ = X Õ \ A, we slightly abuse the notation and say that Y Õ is a A-twin of965

Y Õ.966

I Lemma 73 (0-partial-compatibility after reconstruction). Let A œ Autids. Let X be a PCA967

A-conservative. Let Y = X \ A. Let Y Õ
be a A-twin of Y .968

XX:30 Probabilistic Dynamic Input Output Automata

Then Y Õ
and Ãsw

are 0-partially-compatible (In the sense of definition 46).969

Proof. Since qX œ states(X) and X is a PCA, CX , config(X)(qX) is a compatible config-970

uration by definition, which implies sig(config(Y)(qY Õ)) and sig(rensw(A))(rensw(q̄A)) are971

compatible signatures and equally for sig(config(Y Õ)(q̄Y Õ)) and sig(rensw(A))(rensw(q̄A))972

. Since X is A-conservative, sig(Y Õ)(q̄Y Õ) and sig(A)(q̄A) = sig(rensw(A))(rensw(q̄A)) are973

compatible signatures. (a compatible output of sig(config(X)(qX)) cannot become an974

internal action of sig(Y Õ)(µs(qX)) non-compatible with sig(A)(map(CX)(A))). J975

I Lemma 74 (partial surjectivity 1). Let A œ Autids. Let X be a PCA A-conservative. Let976

Y = X \ A. Let Y Õ
be a A-twin of Y . Let Z = (Y Õ, Ãsw).977

Let – = q0, a1, ..., ak, qk
be a pseudo execution of Z. Let assume qs

Ãsw ”= rensw(q„
A) for978

every s œ [0, k]. Then it exists –̃ œ frags(X), s. t. µe(–̃) = –. If Y Õ = Y , it exists979

–̃ œ execs(X), s. t. µe(–̃) = –.980

Proof. By induction on each prefix –s = q0, a1, ..., as, qs with s Æ k.981

Basis: For Y = Y Õ, µz(q̄X) = (q̄Y , rensw(q̄A)) For Y ”= Y Õ, it exists qÕ
X s. t. µz(qÕ

X) =982

(q̄Y Õ , rensw(q̄A)) by definition of A-twin. Hence µe(qÕ
X) = (q̄Y Õ , rensw(q̄A))983

Induction: we assume this is true for s and we show it implies this true for s + 1.984

We note –̃s s. t. µe(–̃s) = –s. We also note q̃s = lstate(–̃s) and we have by induction985

assumption µz(q̃s) = qs = (qs
Y , qs

A). Because of preservation of signature compatibility,986

sig(X)(q̃s)) = sig(Y)(qs
Y)) ◊ sig(rensw(A))(qs

rensw(A))). Hence ak+1 œ sig(X)(q̃s). Finally987

we can use preservation of transition since no creation of A can occur to conclude. J988

I Theorem 75 (Partial-compatibility after resconstruction). Let A œ Autids. Let X be a PCA989

A-conservative. Let Y = X \ A. Let Y Õ
be a A-twin of Y . Let Z = (Y Õ, Ãsw). Then Y Õ

and990

Ãsw
are partially-compatible.991

Proof. Let qZ = (qY Õ , qÃsw) be a reachable state of Z. Case 1) qÃsw = q„
Ãsw . The com-992

patibility is immediate since sig(Ãsw)(q„
Ãsw) = ÿ. Case 2) qÃsw ”= q„

Ãsw . Since qÃsw is993

reachable, it exists a pseudo execution – of Z with lstate(–) = qÃsw . Since A cannot be994

re-created after destruction by neither Y or Ãsw we can use the previous lemma to show995

it exists –̃ œ frags(X), s. t. µe(–̃) = –. Thus, lstate(–) = µz(lstate(–̃)) which means996

Z is partially-compatible at lstate(–). Hence Z is partially-compatible at every reachable997

state, which means Y Õ and Ãsw are partially-compatible. We can legitimately note Z Õ =998

Y Õ||Ãsw. J999

Since Z
Õ = (Y Õ, Ãsw) is partially-compatible, we can legitimately note Z Õ = Y Õ||Ãsw,1000

which will be the standard notation in the remaining.1001

6.3 Probabilisitc distribution preservation without creation1002

I Lemma 76 (partial surjectivity 2). Let A œ Autids. Let X be a PCA A-conservative. Let1003

Y = X \ A. Let Y Õ
be a A-twin of Y . Let Z = Y Õ||Ãsw

.1004

Let – = q0, a1, ..., ak, qk
be a an execution of Z. Let assume (a) qs

Ãsw ”= rensw(q„
A) for1005

every s œ [0, kú] (b) qs
Ãsw = q„

Ãsw for every s œ [kú + 1, k] (c) for every s œ [kú + 1, k ≠ 1], for1006

every q̃s
, s. t. µz(q̃s) = qs

, A /œ created(X)(q̃s)(as+1). Then it exists –̃ œ frags(X), s. t.1007

µe(–̃) = –. If Y Õ = Y , it exists –̃ œ execs(X), s. t. µe(–̃) = –.1008

P. Civit and M. Potop-Butucaru XX:31

Proof. We already know this is true up to kú because of lemma 74. We perform the1009

same induction than the one of the previous lemma on partial surjectivity: We note –̃s1010

s. t. µe(–̃s) = –s. We also note q̃s = lstate(–̃s) and we have by induction assumption1011

µz(q̃s) = qs = (qs
Y , qs

A). Because of preservation of signature compatibility, sig(X)(q̃s)) =1012

sig(Y)(qs
Y)) ◊ sig(rensw(A))(rensw(qs

A)). Hence ak+1 œ sig(X)(q̃s). Now we use the1013

assumption (c), that says that A /œ created(X)(q̃s)(as+1) to be able to apply preservation of1014

transition since no creation of A can occurs. J1015

I Lemma 77. Let A œ Autids. Let X be a PCA A-conservative. Let Y = X \ A. Let Y Õ
be1016

a A-twin of Y . Let Z
Õ = (Y Õ, Ãsw).1017

1. Y Õ
and Ãsw

are partially-compatible, thus we can legitimately note Z Õ = Y Õ||Ãsw
.1018

2. Furthermore, for every execution fragment – œ frags(X), with µz(fstate(–)) œ states(Z Õ)1019

verifying1020

No creation of A: If A /œ auts(config(X)(qs
X)) then A /œ created(X)(qs

X)(as+1).1021

No creation from A: ’s, verifying as+1 /œ sig(config(X)(qs
X)\A)·as+1 œ sig(Ãsw)(qs

Ãsw),1022

with µz(qs
X) = qZ = (qs

Y , qs
Ãsw), created(X)(qs

X)(a) = ÿ.1023

then µe(–) œ frags(Z).1024

Proof. By induction on the size s of a prefix –s of –. Basis: The result is immediate by1025

assumption for –s = q0
X , since µz(q0

X) is assumed to be a state of Z . Induction: We assume1026

this is true for –s and we want to show this is also true for –s+1 = –s˚as+1qs+1. We have1027

signature preservation for qs and µz(qs), thus as+1 œ sig(Z). Moreover, we have transition1028

preservation, thanks to the assumptions, thus µz(qs+1) œ supp(÷Z,µz(qs),a)) which means1029

that µe(–s+1) is an execution of –s+1, this ends the induction and the proof. J1030

I Theorem 78 (Preserving probabilistic distribution without creation). Let A œ Autids. Let1031

X be a A-conservative PCA. Let Y = X \ A. Let Y Õ
be a A-twin of Y . Let Z Õ = Y Õ||Ãsw

.1032

Let E be an environment of X. Let fl be a schedule.1033

For every execution fragment – = q0a1q1...qk œ frags(X||E) with µz(q0) œ states(Z),1034

verifying:1035

No creation of A: For every s œ [0, k ≠ 1], if A /œ auts(config(X)(qs
X)) then A /œ1036

created(X)(qs
X)(as+1).1037

No creation from A: ’s œ [0, k ≠ 1], verifying as+1 /œ sig(config(X)(qs
X) \ A) · as+1 œ1038

sig(Ãsw)(qs
Ãsw , with µz(qs

X) = qZÕ = (qs
Y Õ , qs

Ãsw), created(X)(qs
X)(a) = ÿ.1039

then for every qX œ states(X) s. t. µz(qX) œ states(Z Õ), applyX||E(”(qX ,qE), fl)(–) =1040

apply(ZÕ||E)(”(µz(qX),qE), fl)(µe(–)).1041

Proof. We recall that for every s œ [0, k ≠ 1], if (qs
ZÕ , qs

E) = (µz(qs
X), qs

E), ÷(X,qs
X ,as+1)(qs+1

X) =1042

÷(ZÕ,qs
ZÕ ,as+1)(µz(qs+1

X)), since qs
ZÕ = µz(qs

X). Hence ÷(X,qs
X ,as+1)(qs+1

X) ¢ ÷(E,qs
E ,as+1)(qs+1

E) =1043

÷(ZÕ,qs
ZÕ ,as+1)(µz(qs+1

X)) ¢ ÷(E,qs
E ,as+1)(qs+1

E), which gives ÷(X||E,(qs
X ,qs

E),as+1)((qs+1
X , qs+1

E)) =1044

÷(ZÕ||E,(qs
ZÕ ,qs

E),as+1)((µz(qs+1
X), qs+1

E)) and finally ÷(X||E,qs,as+1)(qs+1)) = ÷(ZÕ||E,qs,as+1)(µz(qs+1)).1045

By induction on |fl|.1046

Basis: applyX||E(”(qX ,qE), ⁄) = ”(qX ,qE), while applyZÕ||E(”µz(qX),qE , ⁄) = ”(µz(qX),qE) and1047

µe((qX , qE)) = (µz(qX), qE).1048

Let assume this is true for fl1. We consider –s+1 = –s˚as+1qs+1 and fl2 = fl1T .1049

XX:32 Probabilistic Dynamic Input Output Automata

applyX||E(”(qX ,qE), fl1T)(–s+1) = applyX||E(applyX||E(”(qX ,qE), fl1), T)(–s+1) = p1(–s+1)+1050

p2(–s+1)1051

p1(–s+1) =
;

applyX||E(”(qX ,qE), fl1)(–s) · ÷X(qs+1) if –s+1 = –s˚as+1qs+1, as+1 triggered by T enabled
0 otherwise1052

p2(–s+1) =
;

applyX||E(”(qX ,qE), fl1)(–s+1) if T is not enabled after –s+1

0 otherwise1053

with ÷X = ÷(X||E,qs,as+1)1054

Parallely, we have1055

applyZÕ||E(”(µz(qX),qE), fl1T)(µe(–s+1)) = applyZÕ||E)(applyZÕ||E(”(µz(qX),qE), fl1), T)(µe(–s+1)) =1056

pÕ
1(µe(–s+1)) + pÕ

2(µe(–s+1))1057

pÕ
1(µe(–s+1)) =

;
applyZÕ||E(”(µz(qX),qE), fl1)(µe(–s)) · ÷ZÕ(µz(qs+1)) if (úú)
0 otherwise1058

pÕ
2(µe(–s+1)) =

;
applyZÕ||E(”(µz(qX),qE), fl1)(µe(–s+1)) if T is not enabled after µe(–s+1)
0 otherwise1059

with ÷ZÕ = ÷(ZÕ||E,µz(qs),as+1) and (**) : µe(–s+1) = µe(–s)as+1µz(qs+1), as+1 triggered by T1060

We have : T enabled after – ≈∆ T enabled after µe(–). The leftward terms are1061

equal by induction hypothesis, since |fl1| = |fl2| ≠ 1. Using transition preservation we can1062

obtain the equality for rightward terms. The conditions are matched in the same manner1063

because of sigature homomorphism and we assume no creation from or of A . Thus we1064

can conclude that pÕ
1(µe(–s+1)) = p1(–s+1) and pÕ

2(µe(–s+1)) = p2(–s+1), which leads to1065

apply(X||E)(”(qX ,qE), fl1T)(–s+1) = applyZÕ||E(”(µz(qX),qE), fl1T)(µe(–s+1)), which terminates1066

the proof. J1067

6.4 Partial homomorphism1068

I Definition 79 (configuration-equivalents states). Let X be a PCA. Let q, qÕ œ states(X).1069

We say that q and qÕ are configuration-equivalents i� config(X)(q) = config(X)(qÕ). The1070

PCA X is said configuration-equivalence-free if for every configuration-equivalents pair (q, qÕ),1071

q = qÕ.1072

I Lemma 80 (injectivity of µz (modulo configuration-equivalence)). Let A œ Autids. Let1073

X be a A-conservative configuration-equivalence-free PCA, Y = X \ A, .Y Õ
a A-twin of Y .1074

Then µz is an injection.1075

Proof. Let (qY , q̃Ãsw) be a states of Y Õ||Ãsw. Let qX and qÕ
X s. t. µz(qX) = µz(qÕ

X) =1076

(qY , q̃Ãsw). We will show that qX = qÕ
X , by showing they are configuration-equivalent. At fist1077

config(X)(qX) \ A = config(X \ A)(qY) = config(X)(qÕ
X) \ A . Then config(X)(qX) =1078

config(X)(qX)\A = config(X)(qÕ
X) if A /œ aut(config(X)(qX)). So we treat the case where1079

A œ aut(config(X)(qX)) and aut(config(X)(qX)(A) = qA. In this case config(X)(qX) =1080

(config(X)(qX)\A)fi{(A, qA)} = config(X)(qÕ
X). Thus qX , qÕ

X are configuration-equivalent,1081

so if X is configuration-equivalence-free, then qX = qÕ
X . Hence, µz is an injective function. J1082

I Lemma 81 (injectivity of µe (modulo configuration-equivalence)). Let A œ Autids. Let X1083

be a A-conservative configuration-equivalence-free PCA, Y = X \ A, .Y Õ
a A-twin of Y .1084

Then µe is an injection.1085

P. Civit and M. Potop-Butucaru XX:33

Proof. Let – = q0a1...qsas+1qs+1.... We have µe(–) = µz(q0), a1, ...µz(qs)as+1µz(qs+1)...1086

with µz an injection and identity function on actions an injection too. Thus µe is an1087

injection. J1088

I Theorem 82 (partial bijectivity). Let A œ Autids. Let X be a A-conservative, configuration-1089

equivalence-free PCA. Let Y = X \ A. Let Y Õ
be a A-twin of Y . Let Z Õ = psioa(Y Õ)||A.1090

Let – = q0, a1, ..., ak, qk
be an execution fragment of Z Õ

where (a) qs
A ”= q„

A for every1091

s œ [0, kú] (b) qs
A = q„

A for every s œ [kú + 1, k] (c) for every s œ [kú + 1, k ≠ 1], for every q̃s
,1092

s. t. µz(q̃s) = qs
, A /œ created(X)(q̃s)(as+1). Then it exists a unique –̃ œ frags(X), s. t.1093

µe(–̃) = –. If Y Õ = Y , it exists a unique –̃ œ execs(X), s. t. µe(–̃) = –.1094

Proof. We use partial surjectivity 2 for existence and partial injectivity for uniqueness. J1095

6.5 Composition and projection are commutative1096

I Definition 83 (ƒ relation between PCA states). Let U = ((QU , FQU), q̄U , sig(U), DU),1097

V = ((QV , FQV), q̄V , sig(V), DV) be two PCA. Let (qU , qV) œ QU ◊ QV s. t.1098

config(U)(qU) = config(V)(qV)1099

hidden-actions(U)(qU) = hidden-actions(V)(qV)1100

(sig(U)(qU) = sig(V)(qV))1101

’a œ sig(U)(qU) fi sig(V)(qV), created(U)(qU)(a) = created(V)(qV)(a)1102

then we say that qU ƒ qV1103

The third point is implied by the two first points.1104

I Lemma 84. Let U = ((QU , FQU), q̄U , sig(U), DU), V = ((QV , FQV), q̄V , sig(V), DV) be1105

two PCA. Let ((qU , qV), (qÕ
U , qÕ

V)) œ (QU ◊ QV)2
s. t.1106

config(U)(qU) = config(V)(qV)1107

’a œ „sig(U)(qU) = „sig(V)(qV), created(U)(qU)(a) = created(V)(qV)(a)1108

config(U)(qÕ
U) = config(V)(qÕ

V)1109

then ’a œ sig(U)(qU) = sig(V)(qV), ÷(U,qU ,a)(qÕ
U) = ÷(V,qV ,a)(qÕ

V).1110

Proof. We know that config(U)(qU) = config(V)(qV) , C and config(U)(qÕ
U) = config(V)(qÕ

V) ,1111

C Õ.1112

Thus if it exists a reduced configuration distribution ÷Õ an action a and Ï µ Autids1113

s. t. C
a=∆Ï ÷Õ, then both (qU , a, ÷(U,qU ,a)) œ DU with ÷(U,qU ,a)(qÕ

U) = ÷Õ(C Õ) and1114

created(U)(qU)(a) = Ï and (qV a, ÷(V qV ,a)) œ DV with ÷(V,qV ,a)(qÕ
V) = ÷Õ(C Õ), created(V)(qV)(a) =1115

Ï that is1116

÷(U,qU ,a)(qÕ
U) = ÷(V,qV ,a)(qÕ

v) and created(U)(qU)(a) = created(V)(qV)(a).1117

Also if it exists (qU , a, ÷(U,qU ,a)) œ DU , then it exists a reduced configuration distribution1118

÷Õ, s. t. C
a=∆Ï ÷Õ with Ï = created(U)(qU)(a) = created(V)(qV)(a) and ÷(U,qU ,a)(qÕ

U) =1119

÷Õ(C Õ). Thus it exists (qV a, ÷(V qV ,a)) œ DV with ÷(V,qV ,a)(qÕ
V) = ÷Õ(C Õ) = ÷(U,qU ,a)(qÕ

U).1120

Hence we obtain for every ((qU , qV), (qÕ
U , qÕ

V) œ (QU ◊ QV)2, s. t.1121

config(U)(qU) = config(V)(qV)1122

’a œ „sig(U)(qU) = „sig(V)(qV), created(U)(qU)(a) = created(V)(qV)(a)1123

config(U)(qÕ
U) = config(V)(qÕ

V)1124

XX:34 Probabilistic Dynamic Input Output Automata

then ’a œ sig(U)(qU) = sig(V)(qV), ÷(U,qU ,a)(qÕ
U) = ÷(V,qV ,a)(qÕ

V). J1125

I Definition 85 (ƒ relation between PCA). Let U = ((QU , FQU), q̄U , sig(U), DU), V =1126

((QV , FQV), q̄V , sig(V), DV) be two PCA where it exists an isomorphism isoQUV : QU æ QV1127

(isoQV U = (isoQUV)≠1 : QV æ QU) s. t.1128

q̄V = isoQUV (q̄U)1129

for every (qU , qV) œ QU ◊ QV , s. t. qV = isoQUV (qU), qU ƒ qV1130

for every ((qU , qV), (qÕ
U , qÕ

V) œ (QU ◊ QV)2, s. t. qV = isoQUV (qU) and qÕ
V = isoQUV (qÕ

U),1131

’a œ sig(U)(qU) fi sig(V)(qV), ÷(U,qU ,a)(qÕ
U) = ÷(V,qV ,a)(qÕ

V).1132

then we say that U ƒ V1133

I Lemma 86. Let A œ Autids. Let X be a A-conservative PCA. Let E be a PCA compatible1134

with X.1135

1. E is compatible with Y Õ
.1136

2. Let qE œ states(E), CE = config(E)(qE). Let qX œ states(X), CX = config(X)(qX).1137

If it exists qÕ
X œ states(X), s. t. A œ auts(config(X)(qÕ

X)), then (CX fi CE) \ A =1138

(CX \ A) fi CE .1139

3. Let U = (X||E) \ A and V = (X \ A)||E. Let qX œ states(X) and qE œ states(E).1140

Let qU = µA
s ((qX , qE)) and qV = (µA

s (qX), qE). If it exists qÕ
X œ states(X), s. t.1141

A œ auts(config(X)(qÕ
X)), then1142

qU ƒ qV1143

q̄U = µA
s ((q̄X , q̄E)) and q̄V = (µA

s (q̄X), q̄E)1144

Proof. 1. E is partially compatible with X for every state (qE , qX) œ states(E) ◊ states(X),1145

thus this is a fortiori true for every state (qE , qY) œ states(E) ◊ states(Y), since the1146

configurations are the same excepting A is absent in config(Y)(qY = µA
s (qX)). Thus E1147

is partially compatible with Y Õ for every state (qE , qY) œ states(E) ◊ states(Y), which1148

means E is compatible with Y Õ.1149

2. We note AE = auts(CE), SE = map(CE) and AX = auts(CX) and SX = map(CX).1150

Since E is partially compatible with X for every state (qE , qX) œ states(E) ◊ states(X),1151

If it exists qÕ
X œ states(X), s. t. A œ auts(config(X)(qÕ

X)), then A /œ AE . Hence1152

(AX fi AE) \ A = (AX \ A) fi AE , thus we obtain (CX fi CE) \ A = (CX \ A) fi CE .1153

3. Let U = (X||E) \ A and V = (X \ A)||E . Since E is partially compatible with X1154

for every state (qE , qX) œ states(E) ◊ states(X), If it exists qÕ
X œ states(X), s. t.1155

A œ auts(config(X)(qÕ
X)), then A /œ AE .1156

config(U)(qU) = (config(X)(qX) fi config(E)(qE)) \ A = (config(X)(qX) \ A) fi1157

config(E)(qE)) = config(V)(qV)1158

We note qA = map(config(X)(qX))(A) if A œ auts(config(X)(qX)), qA = q„
A oth-1159

erwise. We note hX = hidden-actions(X)(qX) and hE = hidden-actions(E)(qE)1160

and h = (hX fi hE) \ „ext(A)(qA)) and hÕ = (hX \ „ext(A)(qA)) fi hE . Since X1161

and E are partially-compatible in state (qX , qE), we have both config(X)(qX) and1162

config(E)(qE) compatible and in(config(X)(qX)) fl hE = in(config(E)(qE)) fl hX = ÿ.1163

By compatibility, out(config(X)(qX)) fl out(config(E)(qE)) = int(config(X)(qX)) fl1164

„sig(config(E)(qE)) = „sig(config(X)(qX))flint(config(E)(qE))ÿ, which gives „loc(config(X)(qX))fl1165

hE = „loc(config(E)(qE))flhX = ÿ and finally „sig(config(X)(qX))flhE = „sig(config(E)(qE))fl1166

hX = ÿ. This lead us to h = hÕ.1167

We have sig(U)(qU) = hide(sig(config(U)(qU), h) and sig(V)(qV) = hide(sig(config(V)(qV), hÕ)1168

Since config(U)(qU) = config(V)(qV) and h = hÕ, sig(U)(qU) = sig(V)(qV).1169

P. Civit and M. Potop-Butucaru XX:35

Since E is compatible with X, if it exists qÕ
X , s. t. A œ auts(config(X)(qÕ

X)), E1170

never creates A. for every a œ sig(qU), created(U)(qU)(a) = (created(X)(qX)(a) fi1171

created(E)(qE)(a))\A = (created(X)(qX)(a)\A)ficreated(E)(qE)(a) = created(V)(qV)(a)1172

By definition of projection and composition, we have q̄U = µA
s ((q̄X , q̄E)) and q̄V =1173

(µA
s (q̄X), q̄E).1174

J1175

I Theorem 87 (Projection and composition are commutative). Let A œ Autids. Let X be1176

a PCA. where it exists qÕ
X œ states(X), s. t. A œ auts(config(X)(qÕ

X)). Let E be an1177

environment for X. (X||E) \ A ƒ (X \ A)||E.1178

Proof. Let U = (X||E)\A = ((QU , FQU), q̄U , sig(U), DU) and V = (X\A)||E = ((QV , FQV), q̄V , sig(V), DV).1179

We have to show that there is an isomorphism iso between U = (X||E)\A = ((QU , FQU), q̄U , sig(U), DU)1180

and V = (X \A)||E = ((QV , FQV), q̄V , sig(V), DV), s. t. it exists a bijection isoQUV between1181

(QU , FQU) and (QV , FQV), where1182

q̄V = isoQUV (q̄U)1183

for every (qU , qV) œ QU ◊ QV , s. t. qV = isoQUV (qU), qU ƒ qV1184

for every ((qU , qV), (qÕ
U , qÕ

V) œ (QU ◊ QV)2, s. t. qV = isoQUV (qU) and qÕ
V = isoQUV (qÕ

U),1185

’a œ sig(U)(qU) fi sig(V)(qV), ÷(U,qU ,a)(qÕ
U) = ÷(V,qV ,a)(qÕ

V).1186

Let qX , qÕ
X œ states(X) and qE , qÕ

E œ states(E). Let qU = µA
s ((qX , qE)), qÕ

U = µA
s ((qÕ

X , qÕ
E)),1187

qV = (µA
s (qX), qE) and qÕ

V = (µA
s (qÕ

X), qÕ
E).1188

At first we need to show there is a bijection between QU and QV . We note isoQUV :1189

µs((qX , qE)) ‘æ (µs(qX), qE) and isoQV U : (µs(qX), qE) ‘æ µs((qX , qE)) Thus mutual surjec-1190

tion is obvious, we need to show these are also injection. If isoQV U (qV) = isoQV U (qÕ
V), this1191

implies qU = qÕ
U , which implies qX \ A = qÕ

X \ A and so qV = qÕ
V . For the same reasons1192

If isoQUV (qU) = isoQUV (qÕ
U), this implies qV = qÕ

V , which implies qX \ A = qÕ
X \ A and so1193

qU = qÕ
U .1194

Second, the choice of isoQUV andisoQV U gives the same criteria of the last lemma.1195

Third, we already know that for every ((qU , qV), (qÕ
U , qÕ

V) œ (QU ◊ QV)2, s. t. qV =1196

isoQUV (qU) and config(V)(qÕ
V) = config(U)(qÕ

U), ’a œ sig(U)(qU) = sig(V)(qV), ÷(U,qU ,a)(qÕ
U) =1197

÷(V,qV ,a)(qÕ
V).1198

It rest to show that if config(V)(qÕ
V) = config(U)(qÕ

U) and qÕ
U œ supp(÷(U,qU ,a)),1199

then qÕ
V = isoQUV (qÕ

U). Because of constraint 3 of PCA, if qÕÕ
U œ supp(÷(U,qU ,a)) and1200

config(U)(qÕÕ
U) = config(U)(qÕÕ

U), then qÕÕ
U = qÕ

U and in the same manner, if qÕÕ
V œ supp(÷(UV qV ,a))1201

and config(V)(qÕÕ
V) = config(V)(qÕÕ

V), then qÕÕ
V = qÕ

V . Moreover config(V)(isoQV U (qÕ
U)) =1202

config(U)(qÕ
U), so we necessarily have qÕ

V = isoQUV (qÕ
U), which means qÕ

U ƒ qÕ
V . Fi-1203

nally, we obtain for every ((qU , qV), (qÕ
U , qÕ

V) œ (QU ◊ QV)2, s. t. qV = isoQUV (qU)1204

and config(V)(qÕ
V) = config(U)(qÕ

U), ’a œ sig(U)(qU) = sig(V)(qV), ÷(U,qU ,a)(qÕ
U) =1205

÷(V,qV ,a)(qÕ
V).1206

J1207

There is an isomorphism between (X||E) \ A and (X \ A)||E and the syntactic name of1208

each state is arbitrary, which justify the choice of the sign ƒ.1209

XX:36 Probabilistic Dynamic Input Output Automata

7 Travel from one probabilistic space to another1210

In last section we have shown that the probability distribution of X||E was preserved by1211

Ãsw||(X \ {A}||E), as long as A was not re-created by X.1212

In this section we take an interest in PCA XA and XB that di�er only on the fact that1213

B supplants A in XB. We define some equivalence classes on set of executions. These1214

equivalence classes will allow us to transfer some reasoning on a situation on an execution –1215

of A||psioa(XA \ A||E) into an execution –̃ of XA||E .1216

7.1 Correspondence between two PCA1217

We formalise the idea that two configurations are the same excepting the fact that the process1218

B supplants A but with the same external signature. The next definition comes from [1].1219

I Definition 88 (CAB-corresponding configurations). (see figure 16) Let � ™ Autids, and1220

A, B be PSIOA identifiers. Then we define �[B/A] = (�\A)fi{B} if A œ �, and �[B/A] = �1221

if A /œ �. Let C, D be configurations. We define C CAB D i� (1) auts(D) = auts(C)[B/A],1222

(2) for every AÕ /œ auts(C)\{A} : map(D)(AÕ) = map(C)(AÕ), and (3) ext(A)(s) = ext(B)(t)1223

where s = map(C)(A), t = map(D)(B). That is, in CAB-corresponding configurations, the1224

SIOA other than A, B must be the same, and must be in the same state. A and B must have1225

the same external signature. In the sequel, when we write � = �[B/A], we always assume1226

that B /œ � and A /œ �.1227

I Proposition 1. Let C, D be configurations such that C CAB D. Then ext(C) = ext(D).1228

Proof. The proof is in [1], section 6, p. 38. J1229

I Remark. It is possible to have to configurations C, D s. t. C CAA D. That would mean1230

that C and D only di�er on the state of A (s or t) that has even the same external signature1231

in both cases ext(A)(s) = ext(A)(t), while we would have int(A)(s) ”= int(A)(t).1232

I Lemma 89 (Same configuration). Let A, B œ Autids. Let XA, XB be A-fair and B-fair1233

PCA respectively, where XA never contains B and XB never contains A. Let YA = XA \{A},1234

YB = XB \ {B}. Let xa, xb s. t. config(XA)(xa) CAB config(XB)(xb). Let ya = µs(xa),1235

yb = µs(xb)1236

Then config(YA)(ya) = config(YB)(yb).1237

Proof. By projection, we have config(YA)(ya) CAB config(YB)(yb) with each configuration1238

that does not contain A nor B, thus for config(YA)(ya) and config(YB)(yb) contain the1239

same set of automata ids (rule (1) of CAB) and map each automaton of this set to the same1240

state (rule (2) of CAB). J1241

Now, we formalise the fact that two PCA create some PSIOA in the same manner,1242

excepting for B that supplants A.1243

I Definition 90 (Creation corresponding configuration automata). Let X, Y be configuration1244

automata and A, B be SIOA. We say that X, Y are creation-corresponding w.r.t. A, B i�1245

1. X never creates B and Y never creates A.1246

P. Civit and M. Potop-Butucaru XX:37

2. Let — œ tracesú(X)fltracesú(Y) a finite trace of both X and Y , and let – œ execsú(X), fi œ1247

execsú(Y) a finite execution of both X and Y be such that traceA(–) = traceA(fi) = —.1248

Let x = last(–), y = last(fi), i.e., x, y are the last states along –, fi, respectively. Then1249

’a œ „sig(X)(x) fl „sig(Y)(y) : created(Y)(y)(a) = created(X)(x)(a)[B/A].1250

I Lemma 91 (Same creation). Let A, B œ Autids. Let XA, XB be A-fair and B-fair PCA1251

respectively, where XA never contains B and XB never contains A.1252

Let YA = XA \ A, YB = XB \ B1253

Let (xa, xb) œ states(XA) ◊ states(XB) and act œ sig(XA)(xa) fl sig(XB)(xb) s. t.1254

created(XB)(xb)(act) = created(XA)(xa)(act)[B/A].1255

Let ya = µs(xa), yb = µs(xb)1256

Then created(YB)(xb)(act) = created(YA)(xa)(act)1257

Proof. By definition of PCA projection, we have created(YB)(xb)(act) = (created(XB)(xb)(act))\1258

B = (created(XA)(xa)(act)[B/A]) \ B = created(XA)(xa)(act) \ A = created(YA)(xa)(act).1259

J1260

I Definition 92 (Hiding corresponding configuration automata). Let X, Y be configuration1261

automata and A, B be PSIOA. We say that X, Y are hiding-corresponding w.r.t. A, B i�1262

1. X never creates B and Y never creates A.1263

2. Let — œ tracesú(X) fl tracesú(Y), and let – œ execsú(X), fi œ execsú(Y) be such that1264

traceA(–) = traceA(fi) = —. Let x = last(–), y = last(fi), i.e., x, y are the last states1265

along –, fi, respectively. Then hidden-actions(Y)(y) = hidden-actions(X)(x).1266

I Lemma 93 (Same hidden-actions). Let A, B œ Autids. Let XA, XB be A-fair and B-fair1267

PCA respectively, where XA never contains B and XB never contains A.1268

Let YA = XA \ A, YB = XB \ B1269

Let xa, xb s. t. hidden-actions(XB)(xb)(act) = hidden-actions(XA)(xa) and if A œ1270

auts(config(XA)(xa))), then ext(A)(map(A)(xa)) = ext(B)(map(A)(xb)).1271

Let ya = µA
s (xa), yb = µB

s (xb)1272

Then hidden-actions(YB)(xb) = hidden-actions(YA)(xa)1273

Proof. By definition of PCA projection, we have hidden-actions(YB)(xb)(act) = (hidden-1274

actions(XB)(xb)(act))\out(B)(map(config(XB)(xb))) = (hidden-actions(XA)(xa))\out(B)(map(config(XB)(xb))) =1275

hidden-actions(XA)(xa) \ out(A)(map(config(XA)(xa))) = hidden-actions(YA)(xa). J1276

I Definition 94. Let QU , QV be sets of states and Acts be a set of actions. Let – (resp.1277

–Õ) be an alternating sequence of states of QU (resp. QV) and actions of Acts so that1278

– = q0, a1, q1...an, qn, –Õ = qÕ0, aÕ1, qÕ1...aÕn,Õ qn and for every i œ [0, n], qi ƒ qÕi and for every1279

i œ [1, n], ai = aÕi, then we say that – ƒ –Õ.1280

I Definition 95 (÷u bij ÷v). Let U and V be PCA. Let QU = states(U), QV = states(V)1281

be sets of states and Acts be a set of actions. Let (÷u, ÷v) œ Disc(QU) ◊ Disc(QV) . We1282

note ÷u bij ÷v if supp(÷u) and supp(÷v) are in bijection where for every qÕ
u œ supp(÷u) it1283

exists a unique qÕ
v œ supp(÷v) s. t. config(U)(qÕ

u) = config(V)(qÕ
v) and for every (qÕ

u, qÕ
v) œ1284

supp(÷u) ◊ supp(÷v) s. t. config(U)(qÕ
u) = config(V)(qÕ

v), we have ÷u(qÕ
u) = ÷v(qÕ

v).1285

XX:38 Probabilistic Dynamic Input Output Automata

I Lemma 96. Let A, B œ Autids. Let XA, XB be A-fair and B-fair PCA respectively, where1286

XA never contains B and XB never contains A.Let YA = XA \ A, YB = XB \ B.1287

Let (qYA , qYB) œ QYA ◊ QYB and an action a s. t.1288

config(YA)(qYA) = config(YB)(qYB)1289

act œ sig(config(YA)(qYA) = sig(config(YB)(qYB)1290

created(YA)(act)(qYA) = created(YB)(qYB)(act)1291

, then ÷(YA,qYA ,act) bij ÷(YB,qYB ,act)1292

Proof. We note Ca , config(YA)(qYA) and Cb , config(YB)(qYB). Since qYA ƒ qYB , C ,1293

Ca = Cb, and hence sig , sig(Ca) = sig(Cb) and for every. Since Ï , created(YA)(qYA)(act) =1294

created(YB)(qYB)(act). Thus there is a unique ÷p s. t. C
a

Ô ÷p and a unique ÷r generated1295

by Ï and ÷p s. t. C
a=∆Ï ÷p. Because of constraint 3, it exists (qYA , act, ÷a) œ DYA1296

and (qYA , act, ÷b) œ DYB s. t. for every for every C Õ œ supp(÷r), it exists a unique state1297

qÕ
YA

œ supp(÷a) (resp. qÕ
YB

œ supp(÷b)) of YA (resp. YB) s. t. config(YA)(qÕ
YA

) = C Õ (resp.1298

config(YA)(qÕ
YA

) = C Õ) and ÷a(qÕ
YA

) = ÷r(C Õ) (resp. ÷b(qÕ
YÂ

) = ÷r(C Õ). Thus supp(÷a) and1299

supp(÷b) are in bijection where for every qÕ
YA

œ supp(÷a) it exists a unique qÕ
YB

œ supp(÷b) s.1300

t. config(YA)(qÕ
YA

) = config(YB)(qÕ
YB

) and for every (qÕ
YA

, qÕ
YB

) œ supp(÷a) ◊ supp(÷b) s. t.1301

config(YA)(qÕ
YA

) = config(YB)(qÕ
YB

), we have ÷a(qÕ
YA

) = ÷b(qÕ
YB

) . Thus ÷a bij ÷b J1302

I Definition 97 (÷u ƒ ÷v). Let U and V be PCA. Let QU = states(U), QV = states(V)1303

be sets of states and Acts be a set of actions. Let (÷u, ÷v) œ Disc(QU) ◊ Disc(QV) . We1304

note ÷u ƒ ÷v if supp(÷u) and supp(÷v) are in bijection where for every qÕ
u œ supp(÷u) it1305

exists a unique qÕ
v œ supp(÷v) s. t. qÕ

u ƒ qÕ
v and for every (qÕ

u, qÕ
v) œ supp(÷u) ◊ supp(÷v) s. t.1306

qÕ
u ƒ qÕ

v, we have ÷u(qÕ
u) = ÷v(qÕ

v).1307

I Definition 98 (corresponding w. r. t. A, B). Let A, B œ Autids, XA and XB be PCA we1308

say that XA and XB are corresponding w. r. t. A, B, if they verify:1309

config(XA)(q̄XA) CAB config(XB)(q̄XB).1310

XA, XB are creation-corresponding w.r.t. A, B1311

XA, XB are hiding-corresponding w.r.t. A, B1312

XA (resp. XB) is a A-conservative (resp. B-conservative) PCA.1313

(No creation from A and B)1314

’qXA , œ states(XA), ’act verifying act /œ sig(config(XA)(qXA)\{A})·act œ sig(config(XA)(qXA)),1315

created(XA)(qXA)(act) = ÿ and similarly1316

’qXB , œ states(XB), ’actÕ verifying actÕ /œ sig(config(XB)(qXB)\{B})·actÕ œ sig(config(XB)(qXB)),1317

created(XB)(qXB)(actÕ) = ÿ1318

I Lemma 99. Let A, B œ Autids. Let XA, XB be corresponding w. r. t. A , B. Let1319

YA = XA \ A, YB = XB \ B.1320

Let (–a, –b) œ execs(YA) ◊ execs(YB), s. t. –a ƒ –b
, where lstate(–a) = qYA and1321

lstate(–b) = qYB and act œ sig(config(YA)(qYA) = sig(config(YB)(qYB).1322

then ÷(YA,qYA ,act) ƒ ÷(YB,qYB ,act))1323

Proof. We already have ÷(YA,qYA ,act) bij ƒ ÷(YB,qYB ,act)), by the previous lemma. Let1324

(qÕ
YA

, qÕ
YB

) œ supp(÷(YA,qYA ,act))◊supp(÷(YB,qYB ,act))), s. t. config(YA)(qYA) = config(YB)(qYB).1325

hidden-actions(YB)(qÕ
YB

) = hidden-actions(YA)(qÕ
YA

), because of hiding-corresponding1326

w.r.t. A, B.1327

P. Civit and M. Potop-Butucaru XX:39

created(YB)(qÕ
YB

) = created(YA)(qÕ
YA

), because of creation-corresponding w.r.t. A, B.1328

This ends the proof.1329

J1330

I Lemma 100. Let A, B œ Autids. Let XA, XB be PCA corresponding w. r. t. A, B . Let1331

YA = XA \ A, YB = XB \ B. Then B̃sw
and YA are partially compatible. (Symetrically, Ãsw1332

and YB are partially compatible.)1333

Proof. By induction. Basis At first B̃sw and YB are 0-partially-compatible. Moreover,1334

we have config(YB)(q̄YB) = config(YA)(q̄YA), thus B̃sw and YA are 0-partially-compatible.1335

Induction: Now we want to show that every pseudo-execution of (B̃sw, YA) ends on a partially-1336

compatible state. Let –a = qa,0act0, ..., act¸qa,¸ be a pseudo-execution of (B̃sw, YA). We will1337

show by induction that P ¸ : it exists a unique execution –b = qb,0act0, ..., act¸qb,¸ of YB||B̃sw,1338

s. t.1339

–b ƒ –a and1340

’s œ [1, ¸], ÷((Y Õ
A,B̃sw),q(a,s≠1),acts) ƒ ÷((Y Õ

B,B̃sw),q(b,s≠1),acts).1341

We assume P ¸≠1 to be true and we show it imples P ¸ We have ÷((Y Õ
A,B̃sw),q(a,s¸≠1),acts) ƒ1342

÷((Y Õ
B,B̃sw),q(b,¸≠1),acts) from the last lemma. Because of this, if qb,¸ œ supp(÷((Y Õ

B,B̃sw),q(b,¸≠1),acts)),1343

then it exists qa,¸ œ supp(÷((Y Õ
A,B̃sw),q(a,¸≠1),acts)) s. t. q(a,¸) ƒ q(b,¸), that shows P ¸. Hence P ¸1344

is true for every ¸ œ N. Furthermore, qb,¸ is a state of YB||B̃sw. Thus (B̃sw, YA) are partially-1345

compatible at state q(a,¸). We conclude that that every pseudo-execution of (B̃sw, YA) ends1346

on a partially-compatible state, which ends the proof.1347

J1348

I Definition 101. Let A, B œ Autids. Let XA, XB be PCA corresponding w. r. t. A, B .1349

Let YA = XA \A, YB = XB \B. Let Y Õ
A be a A-twin of YA and Y Õ

B be a B-twin of YB. We say1350

that Y Õ
A and Y Õ

B are AB-co-twin of YA and YB if it exists –a œ execs(YA) and –b œ execs(YB),1351

s. t. (1) lstate(–a) = q̄Y Õ
A

(2) lstate(–b) = q̄Y Õ
B

and (3) –a ƒ –b.1352

I Lemma 102. Let A, B œ Autids. Let XA, XB be PCA corresponding w. r. t. A, B . Let1353

YA = XA \ A, YB = XB \ B. Let Y Õ
A and Y Õ

B be AB-co-twin of YA and YB.1354

Then B̃sw
and Y Õ

A are partially compatible. (Symetrically, Ãsw
and Y Õ

B are partially1355

compatible.)1356

Proof. Immediate from previous lemma, since q̄Y Õ
A

is reachable by YA. J1357

I Theorem 103 ((B̃sw||Y Õ
A) ƒ (B̃sw||Y Õ

B)). Let A, B œ Autids. Let XA, XB be PCA1358

corresponding w. r. t. A, B . Let YA = XA \ A, YB = XB \ B. Let Y Õ
A and Y Õ

B be AB-co-twin1359

of YA and YB1360

B̃sw
and Y Õ

A are partially compatible. (Symetrically, Ãsw
and Y Õ

B are partially compatible.)1361

and for every (–a, –b) œ frags(B̃sw||Y Õ
A) ◊ frags(B̃sw||Y Õ

B) s. t. –a ƒ –b
, for every1362

(µa, µb) œ Disc(frags(B̃sw||Y Õ
A)) ◊ Disc(frags(B̃sw||Y Õ

B)) s. t. µa ƒ µb
and for every1363

sequence of tasks fl, apply(B̃sw||Y Õ
B)(µa, fl)(–b) = apply(B̃sw||Y Õ

A)(µb, fl)(–a).1364

Proof. We reuse the property P ¸ that we proved to be true for every ¸ œ N.1365

P ¸: For every –a = qa,0act0, ..., act¸qa,¸ being an execution of B̃sw||YA). it exists a unique1366

execution –b = qb,0act0, ..., act¸qb,¸ of Y Õ
B||B̃sw s. t.1367

XX:40 Probabilistic Dynamic Input Output Automata

–b ƒ –a and1368

’s œ [1, ¸], ÷((Y Õ
A,B̃sw),q(a,s≠1),acts) ƒ ÷((Y Õ

B,B̃sw),q(b,s≠1),acts).1369

Furthermore, the equality of probability of corresponding states gives the equality of1370

corresponding executions for the same schedule.1371

We show it by induction on the size of fl exactly as we did in the theorem of preservation1372

of probabilistic distribution without creation.1373

Basis: apply(B̃sw||Y Õ
B)(µb, ⁄)(–b) = µb(–b), while apply(B̃sw||Y Õ

A)(µa, ⁄)(–a) = µa(–a) =1374

µb(–b).1375

Let assume this is true for fl1. We consider –a,s+1 = –a,s˚as+1qa,s+1, –b,s+1 =1376

–b,s˚as+1qb,s+1 and fl2 = fl1T .1377

apply(B̃sw||Y Õ
B)(µb, fl1T)(–b,s+1) = apply(B̃sw||Y Õ

B)(apply(B̃sw||Y Õ
B)(µb, fl1), T)(–b,s+1) = p1(–b,s+1)+1378

p2(–b,s+1)1379

p1(–b,s+1) =
I

apply(B̃sw||Y Õ
B)(µb, fl1)(–b,s) · ÷b(qb,s+1) if –b,s+1 = –b,s˚as+1qb,s+1, as+1 triggered by T

0 otherwise
1380

p2(–b,s+1) =
I

apply(B̃sw||Y Õ
B)(µb, fl1)(–b,s+1) if T is not enabled after –b,s+1

0 otherwise
1381

with ÷b = ÷((B̃sw||Y Õ
B),qb,s,as+1)1382

Parallely, we have1383

apply(B̃sw||Y Õ
A)(µa, fl1T)(–a,s+1) = apply(B̃sw||Y Õ

A)(apply(B̃sw||Y Õ
A)(µa, fl1), T)(–a,s+1) = pÕ

1(–a,s+1)+1384

pÕ
2(–a,s+1)1385

pÕ
1(–a,s+1) =

I
apply(B̃sw||Y Õ

A)(µa, fl1)(–a,s) · ÷a(qa,s+1) if –a,s+1 = –a,s˚as+1qa,s+1, as+1 triggered by T

0 otherwise
1386

pÕ
2(–a,s+1) =

I
apply(B̃sw||Y Õ

A)(µa, fl1)(–a,s+1) if T is not enabled after –a,s+1

0 otherwise
1387

with ÷a = ÷((B̃sw||Y Õ
A),qa,s,as+1)1388

We have : T enabled after –a ≈∆ T enabled after –b, since constitution((B̃sw||Y Õ
A))(lstate(–a)) =1389

constitution((B̃sw||Y Õ
B))(lstate(–b)) The leftward terms are equal by induction hypothesis,1390

since |fl1| = |fl2| ≠ 1. Since the probabilistic distributions are in bijection we can ob-1391

tain the equality for rightward terms. The conditions are matched in the same manner1392

because of signature equality. Thus we can conclude that pÕ
1(–a,s+1) = p1(–b,s+1) and1393

pÕ
2(–a,s+1)) = p2(–b,s+1), which leads to the result.1394

J1395

7.2 Handle destruction1396

I Definition 104 (Ending on creation). Let KA be a PCA. We say that – œ frags(KA) ends1397

on A creation i� – = (–Õaq) and A œ map(config(KA)(q)) and A /œ map(config(KA)(lstate(–Õ))).1398

I Definition 105 (Ending on destruction). Let KA be a PCA. We say that – œ frags(KA)1399

ends on A destruction i� – = (–Õaq) and A /œ map(config(KA)(q)) and A œ map(config(KA)(lstate(–Õ))).1400

I Definition 106 (No creation). Let KA be a PCA. We say that – œ frags(KA) does not1401

create A if no prefix –Õ of – ends on A creation.1402

P. Civit and M. Potop-Butucaru XX:41

I Definition 107 (No destruction). Let KA be a PCA. We say that (–) œ frags(KA) does1403

not destroy A if no prefix –Õ of – ends on A destruction.1404

I Definition 108 (Permanence). Let A be a PSIOA. Let KA be a PCA. Let – œ frags(KA).1405

We say that A is permanently present in – if A œ map(config(KA)(fstate(–))) and – does1406

not destroy A. We say that A is permanently absent in – if A /œ map(config(KA)(fstate(–)))1407

and – does not create A. We say that – is A-permanent if A is either permanently present1408

or permanently absent in –.1409

Let B be another PSIOA partially-compatible with A and – œ frags(A||B). We say1410

that A is permanently on in – if ’j œ [0, |–|], „sig(A)(qj
A) ”= ÿ and permanently o� in – if1411

’j œ [0, |–|], „sig(A)(qj
A) = ÿ.1412

I Definition 109 (Segment). Let A be a PSIOA. Let KA be a PCA. Let – œ frags(KA).1413

We say that –Õ is a A-filled-segment if –Õ = –˚aq, A is permanently present in – but not in1414

–Õ. and map(config(KA)(fstate(–)))(A) = q̄A. We say that –Õ is a A-unfilled-segment if1415

–Õ = –˚aq, A is permanently absent in – but not in –Õ. We say –Õ is a A-segment if it is1416

either A-filled-segment or a A-unfilled-segment.1417

Let B be another PSIOA partially-compatible with A and –Õ œ frags(A||B). We say1418

that A is turned o� in –Õ = –˚aq, if A is permanently on in – but not in –Õ. We say that1419

–Õ is a A-segment if it is turned o� in –Õ and fstate(–Õ) � A = q̄A.1420

I Definition 110. Let A be a PSIOA. Let Ãsw its simpleton wrapper. Let E be an1421

environment of Ãsw. Let –̃ = q̃0a1q̃1... be an execution of Ãsw||E with PSIOA(Ãsw) =1422

rensw(A) where each state q̃j = (q̃j
Ãsw , q̃j

E). We note “A
e (–) = q0a1q1... the execution of1423

A||PSIOA(E) s. t. for every j, qj = (qj
A, qj

EÕ) = (ren≠1
sw (q̃j

Ãsw), q̃j
E).1424

I Lemma 111. Let A be a PSIOA. Let Ãsw
its simpleton wrapper. Let E be an environment1425

of Ãsw
. Let –̃ be an execution of Ãsw||E with PSIOA(Ãsw) = rensw(A), let – = “A

e (–) the1426

corresponding execution of A||PSIOA(E).1427

Then1428

1. A is permanently on in – ≈∆ A is permanently present in –̃.1429

2. A is permanently o� in – ≈∆ A is permanently absent in –̃.1430

3. – is a A-segment ≈∆ –̃ is a A-filled-segment.1431

4. – = –1˚–2
where –1

is a A-segment and A is permanently o� in –2 ≈∆ –̃ = –̃1˚–̃21432

where –̃1
is a A-filled-segment and A is permanently absent in –̃2

and “A
e (–̃i) = –i

for1433

i œ {1, 2}.1434

Proof. 1. A is permanently present in –̃ =∆ for every j œ [0, n], A œ aut(Ãsw)(q̃j
Ãsw)).1435

Since each state of Ãsw is mapped to a reduced configuration, for every j œ [0, n]1436

map(config(Ãsw)(q̃j
Ãsw))(A) ”= q„

A . Thus, for every j œ [0, n], if (qj
A, qj

E) = “A
e (q̃j

Ãsw , q̃j
E),1437

then qj
A ”= q„

A, which means A is permanently on in –. We obtained A is permanently1438

present in –̃ =∆ A permanently on in –.1439

A is not permanently present in –̃ =∆ it exists j œ [0, n], A /œ aut(config(Ãsw)(q̃j
Ãsw)).1440

If (qj
A, qj

E) = “A
e (q̃j

Ãsw , q̃j
E), with A /œ aut(config(Ãsw)(q̃j

Ãsw)), then qj
A = q„

A, which1441

means A is not permanently on in –. By contraposition, A is permanently on in –1442

=∆ A is permanently present in –̃.1443

We obtained A is permanently on in – ≈∆ A is permanently present in –̃.1444

2. A is permanently absent in –̃ =∆ for every j œ [0, n], A /œ aut(config(X)(q̃j
Ãsw)).1445

Thus for every j œ [0, n] where (qj
A, qj

E) = µz(q̃j
Ãsw , q̃j

E), qj
A = q„

A, which means A is1446

XX:42 Probabilistic Dynamic Input Output Automata

permanently o� in –. We obtained A is permanently absent in –̃ =∆ A permanently1447

o� in –.1448

A is not permanently absent in –̃ =∆ it exists j œ [0, n], A œ aut(config(Ãsw)(q̃j
Ãsw)).1449

Since each state of Ãsw is mapped to a reduced configuration, map(config(Ãsw)(q̃j
Ãsw))(A) ”=1450

q„
A. Thus if (qj

A, qj
E) = “A

e (q̃j
Ãsw , q̃j

E), then qj
A ”= q„

A, which means A is not permanently1451

o� in –. By contraposition, A is permanently o� in – =∆ A is permanently absent in1452

–̃.1453

We obtained A is permanently o� in – ≈∆ A is permanently absent in –̃.1454

3. |–̃| = |–|.1455

(Case 1) –̃ = –̃Õ˚aq̃n ≈∆ – = –Õ˚aqn. A is permanently present in –̃Õ ≈∆ A is1456

permanently on in –̃Õ and A is not permanently present in –̃ ≈∆ A is not permanently1457

on in –̃. Thus – is a A-segment ≈∆ is a A-filled-segment.1458

(Case 2) –̃ = q̃0 ≈∆ – = q0. In this case – is not a A-segment and –̃ is not a1459

A-filled-segment.1460

We obtained – is a A-segment ≈∆ –̃ is a A-filled-segment.1461

4. By conjonction of (2) and (3)1462

J1463

I Lemma 112. Let A be a PSIOA. Let X be a A-conservative PCA. Let X Õ
be a A-twin1464

of X. Let Y Õ = X Õ \ {A}. Let (–̃, –) œ frags(X Õ) ◊ frags(Ãsw||Y Õ), s. t. no creation of A1465

occurs in –̃ and µA
e (–̃) = –. Then1466

1. A is permanently present in – ≈∆ A is permanently present in –̃.1467

2. A is permanently absent in – ≈∆ A is permanently absent in –̃.1468

3. – is a A-filled-segment ≈∆ –̃ is a A-filled-segment.1469

4. – = –1˚–2
where –1

is a A-filled-segment and A is permanently present in –2 ≈∆1470

–̃ = –̃1˚–̃2
where –̃1

is a A-filled-segment and A is permanently absent in –̃2
and1471

µA
e (–̃i) = –i

for i œ {1, 2}.1472

Proof. For each state (qj
Ãsw , qj

Y Õ) = µz(qj
XÕ), config(Ãsw||Y Õ)((qj

Ãsw , qj
Y Õ)) = config(X Õ)(qj

XÕ),1473

which gives the result immediatly. J1474

I Lemma 113. Let A be a PSIOA. Let X be a A-conservative PCA. Let Y = X \ {A}. Let1475

Y Õ
be a A-twin of PCA. Let (–̃, –) œ frags(X) ◊ frags(A||psioa(Y Õ)), s. t. “A

e (µA
e (–̃)) = –.1476

Then1477

1. A is permanently on in – ≈∆ A is permanently present in –̃.1478

2. A is permanently o� in – ≈∆ A is permanently absent in –̃.1479

3. – is a A-segment ≈∆ –̃ is a A-filled-segment.1480

4. – = –1˚–2
where –1

is a A-segment and A is permanently o� in –2 ≈∆ –̃ = –̃1˚–̃21481

where –̃1
is a A-filled-segment and A is permanently absent in –̃2

and µA
e (–̃i) = –i

for1482

i œ {1, 2}.1483

Proof. By conjonction of the two last lemma. J1484

I Definition 114 (Projection of configuration automaton into a contained SIOA). Let A be1485

a PSIOA. Let – = x0a1x1...xiai+1xi+1... be an execution of a configuration automaton X.1486

Then – �� A is a sequence of executions of A, and results from the following steps:1487

1. insert a “delimiter” $ after an action ai whose execution causes A to set its signature to1488

empty,1489

P. Civit and M. Potop-Butucaru XX:43

2. remove each xiai+1 such that A /œ auts(X)(xi),1490

3. remove each xiai+1 such that ai+1 /œ „sig(A)(map(config(X)(xi))(A)),1491

4. if – is finite, x = last(–), and A /œ auts(X)(x), then remove x,1492

5. replace each xi by map(config(X)(xi))(A). – �� A is, in general, a sequence of several1493

(possibly an infinite number of) executions of A, all of which are terminating except the1494

last. That is, – �� A = –1$...$–k where (’j, 1 Æ j < k : –j œ texecs(A)) · –k œ execs(A).1495

I Definition 115 (Prefix relation among sequences of executions). Let –1$...$–k and ”1$...$”¸1496

be sequences of executions of some SIOA. Define –1$...$–k Æ ”1$...$”¸ i� k Æ ¸ · (’j, 1 Æ1497

j < k : –j = ”j) · –k Æ ”k. If –1$...$–k Æ ”1$...$”¸ and –1$...$–k ”= ”1$...$”¸ then we write1498

–1$...$–k < ”1$...$”¸.1499

I Definition 116 (Trace of a sequence of executions straceA(–1$...$–k))). Let –1$...$–k be a1500

sequence of executions of some SIOA A. Then straceA(–1$...$–k) is traceA(–1)$...$traceA(–k),1501

i.e., a sequence of traces of A, corresponding to the sequence of executions –1$...$–k.1502

I Definition 117 (A-partition of an execution). Let A be a PSIOA. Let KA be a PCA. Let1503

– be an execution of KA. A A-partition of – is a sequence (–1, –2, ..., –n) of execution1504

fragments s. t. – = –1˚–2...˚–n and1505

’i œ [1 : n] \ {1, n} –i is a A segment.1506

Either –n is a A-segment or is A-permanent.1507

Either –1 is a A-segment or is A-permanent and n = 1.1508

I Lemma 118. Let A be a PSIOA. Let KA be a PCA. Let – be a finite execution of KA. It1509

exists a unique A-partition of –.1510

Proof. By induction on the number k of states in –. Basis: – = q0. (–1) with –1 = q0 is1511

the unique partition of – with n = 1. If A is present in q0, and A is permanently present,1512

otherwise A is absent in –1, and A is permanently absent –1. Induction: We assume the1513

predicate is true for k states in – and we want to show this is also true for –Õ = –˚ak+1qk+1.1514

We have (–1, ..., –n) the unique A-partition of –. By definition, –n is either a A-segment or1515

a A-permanent. We deal with 8 cases:1516

A is present in qk+1.1517

–n is a A-segment.1518

� –n is a A-filled-segment. (–1, ..., –n, (qkak+1qk+1)) is a A-partition of –Õ, with1519

(qkak+1qk+1) a A-unfilled-segment. Unicity: (–1, ..., –n˚ak+1qk+1) is not a partition1520

since –n˚ak+1qk+1 is neither a A-segment nor A-permanent1521

� –n is a A-unfilled-segment. (–1, ..., –n, (qkak+1qk+1)) is a A-partition of –Õ, with1522

(qkak+1qk+1) a A-permanent execution fragment where A is permanently present.1523

Unicity: (–1, ..., –n˚ak+1qk+1) is not a partition since –n˚ak+1qk+1 is neither a1524

A-segment nor A-permanent.1525

–n is A-permanent1526

� A is permanently absent in –n . (–1, ..., –n˚ak+1qk+1) is a A-partition of –Õ, with1527

–n˚ak+1qk+1 a A-unfilled-segment. Unicity: (–1, ..., –n, (qkak+1qk+1)) is not a1528

partition since –n is not a segment.1529

� A is permanently present in –n. (–1, ..., –n˚ak+1qk+1) is a A-partition of –Õ, with1530

A permanently present in –n˚ak+1qk+1. Unicity: (–1, ..., –n, (qkak+1qk+1)) is not1531

a partition since –n is not a segment.1532

A is absent in qk+11533

–n is a A-segment1534

XX:44 Probabilistic Dynamic Input Output Automata

� –n is a A-filled-segment. (–1, ..., –n, (qkak+1qk+1)) is a A-partition of –Õ, with1535

A permanently absent in (qkak+1qk+1). Unicity: (–1, ..., –n˚ak+1qk+1) is not a1536

partition since –n˚ak+1qk+1 is neither a A-segment nor A-permanent.1537

� –n is a A-unfilled-segment. (–1, ..., –n, (qkak+1qk+1)) is a A-partition of –Õ, where1538

(qkak+1qk+1) is a A-filled-segment. Unicity: (–1, ..., –n˚ak+1qk+1) is not a partition1539

since –n˚ak+1qk+1 is neither a A-segment nor A-permanent.1540

–n is A-permanent1541

� A is permanently absent in –n . (–1, ..., –n˚ak+1qk+1) is a A-partition of –Õ, with1542

A permanently absent in –n˚ak+1qk+1. Unicity: (–1, ..., –n, (qkak+1qk+1)) is not1543

a partition since –n is not a segment.1544

� A is permanently present in –n . (–1, ..., –n˚ak+1qk+1) is a A-partition of –Õ,1545

where –n˚ak+1qk+1 is a A-filled-segment. Unicity: (–1, ..., –n, (qkak+1qk+1)) is not1546

a partition since –n is not a segment.1547

We covered all the possibilities and at each time, it exists a unique A-partition, By1548

induction this is true for every finite execution.1549

J1550

I Lemma 119. Let A be a PSIOA. Let KA be a PCA. Let – be an execution of KA. Let1551

(–1) be the A-partition of –.1552

if – is an unfilled segment that is ends on A creation, then1553

A is absent at fstate(–) and – �� A = map(config(KA)(lstate(–))(A).1554

otherwise, either1555

A is present at fstate(–) and – �� A = (–1 �� A) or1556

A is absent at fstate(–) and – �� A is the empty sequence.1557

Proof. if – is an unfilled segment that is ends on A creation.1558

A is absent at fstate(–): We apply the rule (2) until lstate(–) excluded and we apply1559

the rule (5) for lstate(–).1560

otherwise, either1561

A is present at fstate(–): – �� A = (–1 �� A) (this a totology since – = –1)1562

A is absent at fstate(–): We apply the rule (2) until lstate(–) excluded and we apply1563

the rule (4) for lstate(–).1564

J1565

I Lemma 120. Let A be a PSIOA. Let KA be a PCA. Let – be an execution of KA. Let1566

(–1, –2) be the A-partition of –., where –1
ends on A-creation, then1567

A is absent at fstate(–) and – �� A = (–2 �� A).1568

Proof. Since n = 2, –1 is a segment, so this is a A-unfilled-segment, we apply the rule (2)1569

until lstate(–1) excluded and we apply the projection to the rest of execution fragment that1570

is to –2. J1571

I Lemma 121. Let A be a PSIOA. Let KA be a PCA. Let – be an execution of KA. Let1572

(–1, –2, ..., –n) be the A-partition of –.1573

if – ends on an unfilled segment that is ends on A creation, then either1574

A is present at fstate(–) and1575

– �� A = (–1 �� A)(–3 �� A)...(–2Án/2Ë≠1 �� A)˚map(config(KA)(lstate(–))(A)) or1576

P. Civit and M. Potop-Butucaru XX:45

A is absent at fstate(–) and1577

– �� A = (–2 �� A)(–4 �� A)...(–2(Ân/2Ê) �� A)˚map(config(KA)(lstate(–))(A)1578

otherwise either1579

A is present at fstate(–) and – �� A = (–1 �� A)(–3 �� A)...(–2Án/2Ë≠1 �� A) or1580

A is absent at fstate(–) and – �� A = (–2 �� A)(–4 �� A)...(–2(Ân/2Ê) �� A)1581

Proof. By induction on the size n of the A ≠ partition. We already proved the basis. in the1582

last two lemma. We assume this is true for integer n and we show this is true for n + 1: Let1583

–Õ = –1˚–2˚...–n˚–n+1 = –˚–n+1 Case 1 If –Õ ends on an unfilled segment that is ends1584

on A creation, then –n is a filled-segment. Case 1a If A is present in fstate(–), then –Õ ��1585

A = – �� A˚map(config(KA)(lstate(–))(A) – �� A = (–1 �� A)(–3 �� A)...(–2Án/2Ë≠1 ��1586

A)˚map(config(KA)(lstate(–))(A) and we refind the waited value. Case 1b If A is absent1587

in fstate(–), then (–2 �� A)(–4 �� A)...(–2(Ân/2Ê) �� A)˚map(config(KA)(lstate(–))(A)1588

and we refind the waited value.1589

Case 2 –Õ does not end on A creation.1590

Case 2a A is present in fstate(–)1591

Case 2ai n even (2Án/2Ë ≠ 1 = n ≠ 1 and 2Á(n + 1)/2Ë ≠ 1 = n + 1) We have –n unfilled-1592

segment and A present in –n+1, thus –Õ �� A = – �� A˚(–n+1 �� A) = (–1 �� A)(–3 ��1593

A)...(–2Án/2Ë≠1 �� A)(–2Án+1/2Ë≠1 �� A) and we find the waited value.1594

Case 2aii n odd (2Án/2Ë ≠ 1 = n and 2Án + 1/2Ë ≠ 1 = n) We have –n filled-segment and1595

A absent in –n+1, thus –Õ �� A = – �� A = (–1 �� A)(–3 �� A)...(–2Án/2Ë≠1 �� A) = (–1 ��1596

A)(–3 �� A)...(–2Án+1/2Ë≠1 �� A) and we find the waited value.1597

Case 2b A is absent in fstate(–)1598

Case 2bi n even (2Ân/2Ê = n and 2Ân + 1/2Ê = n) We have –n filled-segment and A1599

absent in –n+1, thus –Õ �� A = – �� A = (–1 �� A)(–3 �� A)...(–2Ân/2Ê �� A) = (–1 ��1600

A)(–3 �� A)...(–2Ân+1/2Ê �� A) and we find the waited value.1601

Case 2bii n odd (2Ân/2Ê = n≠1 and 2Ân+1/2Ê = n+1) We have –n unfilled-segment and1602

A present in –n+1, thus –Õ �� A = – �� A˚(–n+1 �� A) = (–1 �� A)(–3 �� A)...(–2Ân/2Ê ��1603

A)˚(–n+1 �� A) = (–1 �� A)(–3 �� A)...(–2Ân+1/2Ê �� A) and we find the waited value.1604

All the cases have been covered.1605

J1606

7.3 S̄AB, SAB relation1607

Here we define a relation between executions – and fi that captures the fact that they are1608

the same excepting for internal aspects of A and B. To define this relation, we needed to1609

take particular cares with destruction and creation of A and B.1610

I Definition 122 (Execution correspondence relation, SABE)). Let A, B be PSIOA, let E1611

be an environment for both A and B. Let –, fi be executions of automata A||E and B||E1612

respectively.1613

Then we say that – is in relation S(ABE) with fi, denoted –S(ABE)fi if1614

1. A is permanently o� in – ≈∆ B is permanently o� in fi. A is permanently on in – ≈∆1615

B is permanently on in fi.1616

XX:46 Probabilistic Dynamic Input Output Automata

2. (*) A is turned o� in – ≈∆ B is turned o� in fi. If (*), we can note – = –˚
1 –2 and1617

–1 = –Õ˚
1 aq1, where „sig(A)(lstate(–1) � A) = ÿ, „sig(A)(lstate(–Õ

1) � A) ”= ÿ and we can1618

note fi = fi˚
1 fi2 similarly.1619

3. fi � E = – � E . If (*), fii � E = –i � E for i œ {1, 2}.1620

4. traceB||E(fi) = traceA||E(–). If (*) traceB||E(fii) = traceA||E(–i) for i œ {1, 2}.1621

5. ext(A)(fstate(–) � A) = ext(B)(fstate(fi) � B) ; ext(A)(lstate(–) � A) = ext(B)(lstate(fi) �1622

B).1623

SABE is sometimes written SAB hen the environment is clear in the context.1624

The definition captures the fact that – and fi only di�ers in the internal state and internal1625

actions of A and B. The conditions (1) and (2) say that A and B are destroyed in the same1626

tempo in – and fi. The condition (3) says – and fi are the same executions from the common1627

environment’s point of view, condition (4) says the trace are equal, that is the actions can1628

only di�ers in in the internal actions of A and B.1629

I Remark. It is possible to have (–, –Õ) œ execs(A||E)2 and –SAAE–Õ, that is –Õ and – only1630

di�ers on internal state and internals action of A. We note SAE to simplify SAAE or even1631

SA when the environment is clear in the context .1632

I Lemma 123. For every PSIOA A, for every environment E of A, SA is an equivalence1633

relation on frags(A||E).1634

Proof. The conjonction of equivalence relations is an equivalence relation. (1), (2) are1635

equivalence relation since the predicates are linked by the the equivalence relation ≈∆. (3)1636

(4) and (5) are equivalence relation since the predicates are linked by the the equivalence1637

relation =. J1638

I Lemma 124. Let A, B be PSIOA, let E be an environment for both A and B Let (–, –Õ) œ1639

frags(A||E), (fi, fiÕ) œ frags(B||E), s. t. –SA–Õ
, fiSBfiÕ

and –ÕSABfiÕ1640

Then –SABfi.1641

Proof. Each relation is true for –Õ and fiÕ. By equivalence, each relation stay true for – and1642

fi. By conjonction of all the relations, the relation stays true for SAB. J1643

I Definition 125 (Execution correspondence relation, S̄AB)). Let A, B be PSIOA. Let KA, KB1644

be PCA. Let –, fi be execution fragments of configuration automata KA, KB respectively.1645

Then we say that – is in relation S̄AB with fi, denoted –S̄ABfi i�1646

1. The partitions (–1, ..., –n) and (fi1, ..., fin) of – and fi respectively have the same size n.1647

2. ’i œ [1 : n], (*) A œ auts(config(KA)(fstate(–i))) ≈∆ B œ auts(config(KB)(fstate(fii)))1648

and (**) B œ auts(config(KB)(lstate(–i))) ≈∆ B œ auts(config(KB)(lstate(fii)))1649

3. ’i œ [1 : n], for every automaton aut ”= {A, B} fii �� aut = –i �� aut.1650

4. ’i œ [1 : n] traceKB (fii) = traceKA(–i)1651

5. ’i œ [1 : n], if (*) ext(A)(map(config(KA)(fstate(–i)))(A)) = ext(B)(map(config(KB)(fstate(fii)))(B))1652

; if (**) ext(A)(map(config(KA)(lstate(–i)))(A)) = ext(B)(map(config(KB)(lstate(fii)))(B)).1653

I Remark. It is possible to have (–, –Õ) œ execs(KA)2 and –S̄AA–Õ, that is –Õ and – only1654

di�ers on internal state and internals action of KA. We note S̄A to simplify S̄AA .1655

I Lemma 126. Let A œ Autids, KA be a PCA. S̄A is an equivalence relation on frags(KA).1656

P. Civit and M. Potop-Butucaru XX:47

Proof. The conjonction of equivalence relations is an equivalence relation. (2) is an equival-1657

ence relation since the predicates are linked by the the equivalence relation ≈∆. (1), (3),1658

(4) and (5) are equivalence relation since the predicates are linked by the the equivalence1659

relation =. J1660

I Lemma 127. Let A œ Autids, KA be a PCA. Let (–, –Õ) œ frags(KA), (fi, fiÕ) œ1661

frags(KB), s. t. –S̄A–Õ
, fiS̄BfiÕ

and –ÕS̄ABfiÕ1662

Then –S̄ABfi.1663

Proof. Each relation is true for –Õ and fiÕ. By equivalence, each relation stay true for – and1664

fi. By conjonction of all the relations, the relation stays true for S̄AB. J1665

I Proposition 2. Let –, fi be executions of configuration automata KA, KB respectively. If1666

–S̄ABfi, then traceKA(–) = traceKB (fi)1667

Proof. By clause 1 and 5 of the definition S̄AB . J1668

Equivalence class:1669

I Definition 128 (equivalence class). Let A be a PSIOA. Let E be an environment of A. Let1670

– be an execution fragment of A||E . We note –AE = {–Õ|–ÕSA–} Let KA be a PCA. Let –̃1671

be an execution fragment of KA. We note –̃A = {–̃Õ|–̃ÕS̄A–̃}.1672

When this is clear in the context, we note –A or even – for –AE and –̃ for –̃A.1673

I Lemma 129. Let A be a PSIOA. Let KA be a PCA. Let – be an execution of KA. Let1674

(–1, –2, ..., –n) be the A-partition of –.1675

– = {–̃1˚–̃2˚...–̃n|–̃iS̄A–i’i œ [1 : n]}1676

Proof. By induction on the size n of the partition. The basis is a tautology. Induction we1677

assume this is true for integer n. Let –Õ = –˚–n+1 and (–1, ..., –n) the A-partition of – and1678

(–1, ..., –n, –n+1) the A-partition of –Õ. We show –Õ = {–̃1˚–̃2˚...–̃n˚–̃n+1|–̃iS̄A–i’i œ [1 :1679

n + 1]} by double inclusion.1680

Let –̃Õ œ –Õ with (–̃1, –̃2, ..., –̃n, –̃n+1) as A-partition. We have –̃Õ = –̃Õ˚
a –̃Õ

b with –̃Õ
a œ –.1681

By construction, the conditions (2), (3), (4), (5), (6) of definition of S̄AB are met for –̃n+11682

and –n+1. The condition (1) is met since (–̃n+1) is the A-partition of –̃n+1 and (–n+1) is the1683

A-partition of –n+1. Hence –̃n+1S̄AB–n+1. Thus –Õ µ {–̃1˚–̃2˚...–̃n˚–̃n+1|–̃iS̄A–i’i œ1684

[1 : n + 1]}.1685

Let –̃Õ = –̃1˚–̃2˚...–̃n˚–̃n+1 with –̃iS̄A–i’i œ [1 : n + 1]. Thus (–̃1, –̃2, ..., –̃n, –̃n+1) is1686

the A-partition of –̃Õ. By construction, the conditions (2), (3), (4), (5), (6) of definition of1687

S̄AB are met for each i for –̃i and –i. The condition (1) is also met by construction with1688

a size of n + 1. Thus –̃Õ œ –Õ. We have shown that if the claim was true for a partition of1689

size n, it was also true for a partition of size n + 1. Furthermore, the claim is true for n = 1.1690

Thus, by induction this is true for every integer n which ends the proof.1691

J1692

I Lemma 130 (µe preserves the equivalence relation intra automaton). Let A be a PSIOA.1693

Let XA be a A-conservative PCA. Let E be an environment of XA. Let –̃, –̃Õ
be execution1694

fragments of PCA XA||E s. t. no creation of A occurs in –̃. We note E Õ = (XA \ A)||E =1695

(XA||E) \ A. We have µe(–̃), µe(–̃Õ) œ frags(Ãsw||E Õ) and1696

XX:48 Probabilistic Dynamic Input Output Automata

–̃S̄A–̃Õ ≈∆ µe(–̃)S̄Aµe(–̃Õ).1697

Proof. For every state q̃j = (q̃j
XA

, q̃j
XA

) and qj = µA
z (q̃j) = (q̃j

Ãsw , q̃j
EÕ), config(XA||E)(q̃j) =1698

config(Ãsw||E Õ)(qj). Namely A œ auts(config(XA||E)(q̃j)) ≈∆ A œ auts(config(Ãsw||E Õ)(qj)).1699

Thus the respect of condition (1) is equivalent and we can reason by segment of the partition.1700

For the same reason, the respect of condition (1) is equivalent. Since the configuration are1701

the same and the actions are the same, the respect of condition (3) is equivalent. Since the1702

actions are the same, then the external actions are the same and the respect of condition1703

(4) is equivalent. Since the configuration are the same, the external signature of A in1704

case of presence is the same and the respect of condition (5) is equivalent. Thus for every1705

i œ {1, 2, 3, 4, 5}, –̃ and –̃Õ respect the condition i of S̄A ≈∆ µe(–̃) and µe(–̃Õ) respect the1706

condition i of S̄A. This gives a fortiori –̃S̄A–̃Õ ≈∆ µe(–̃)S̄Aµe(–̃Õ). J1707

I Lemma 131 (“ preserves the equivalence relation intra automata). Let A be a PSIOA. Let1708

Ãsw
be its simpleton wrapper. Let E be an environment of Ãsw

and E Õ = psioa(E).1709

Let –̃, –̃Õ
be execution fragments of PCA Ãsw||E We have “e(–̃), “e(–̃Õ) œ frags(A||E Õ)1710

and1711

–̃S̄A–̃Õ ≈∆ “e(–̃)S̄AEÕ“e(–̃Õ).1712

Proof. We have to deal with 4 cases:1713

(–̃1) is a A-partition of –̃ where A is permanently absent in –̃1. This is equivalent to1714

A is permanently o� in “e(–̃1). We have –̃S̄A–̃Õ ≈∆ –̃ = –̃Õ ≈∆ “e(–̃) = “e(–̃Õ) ≈∆1715

“e(–̃)SAEÕ“e(–̃)Õ.1716

(–̃1) is a A-partition of –̃ where A is permanently present in –̃1. This is equivalent to A1717

is permanently on in “e(–̃1).1718

A is permanently present in –̃Õ because they have the same size of partition. Thus A is1719

permanently on in both “e(–̃Õ) and “e(–̃), which implies that conditions (1) and (2) are1720

met for SA. Also if the conditions (1) and (2) are met for SAB, with A permanently on1721

in “e(–̃) and “e(–̃)Õ, then the second condition is met for S̄A with (**) true , while the1722

condition (1) is verified with size 1. So the conditions (1) and (2) for S̄A are equivalent1723

to the conditions (1) and (2) for SAEÕ . The conditions (3) and (4) for S̄A are equivalent1724

to the condition (3) for SAEÕ . The condition (5) for S̄A is equivalent to the condition (4)1725

for SAEÕ since the actions are not modified by “e. The condition (6) for S̄A is equivalent1726

to the condition (5) for SAEÕ .1727

Thus –̃S̄A–̃Õ ≈∆ “e(–̃)SA“e(–̃)Õ.1728

(–̃1) is a A-partition of –̃ where –̃1 ends on A destruction.1729

This is the same than in the previous point, excepting that the fact that –̃1 is a A-1730

filled-segment is equivalent to the fact that “e(–̃1) is a A-segment and the conditions the1731

conditions (1) and (2) for S̄A are equivalent to the conditions (1) and (2) for SAEÕ with1732

(**) false.1733

(–̃1, –̃2) is a A-partition of –̃ where –̃1 ends on A destruction and A is permanently1734

absent in –̃2.1735

This is the conjonction of the two last points.1736

J1737

I Lemma 132 (µe preserves the equivalence relation intra automaton). Let A be a PSIOA.1738

Let XA be a A-conservative PCA. Let E be an environment of XA. Let –̃, –̃Õ
be execution1739

fragments of PCA XA||E s. t. no creation of A occurs in –̃. We note E Õ = psioa(XA \ A||E).1740

P. Civit and M. Potop-Butucaru XX:49

We have “e(µe(–̃)), “e(µe(–̃Õ)) œ frags(A||E Õ) and1741

–̃S̄A–̃Õ ≈∆ “e(µe(–̃))S̄AEÕ“e(µe(–̃Õ)).1742

Proof. By conjonction of the two last lemma. J1743

I Lemma 133 (µe preserves the equivalence class). Let A be a PSIOA. Let XA be a A-1744

conservative configuration-equivalence-free PCA. Let E be an environment of XA.1745

Let –̃ be an execution fragments of PCA XA||E s. t. no creation of A occurs in –̃.1746

Then µe(–̃) = µe(–̃).1747

Proof. We have1748

µe(–̃) = µe({–̃Õ œ frags(XA||E)|–̃ÕS̄A–̃}) = {µe(–̃Õ)|–̃Õ œ frags(XA||E), –̃ÕS̄A–̃})1749

and1750

µe(–̃) = {–Õ œ frags(Ãsw||E Õ)|–ÕS̄Aµe(–̃)} with E Õ = XA \ {A}||E .1751

Since –̃Õ does not create A, because of partial bijectivity, µe(–̃) = {µe(–̃Õ)|–̃Õ œ frags(XA||E), µe(–̃Õ)S̄Aµe(–̃)}1752

Furthermore, –̃S̄A–̃Õ ≈∆ µe(–̃)SAµe(–̃Õ) from the lemma. of preservation of S̄ relation1753

by µe.1754

So µe(–̃) = µe(–̃).1755

J1756

I Lemma 134 (“e preserves the equivalence class). Let A be a PSIOA. Let Ãsw
be its simpleton1757

wrapper. Let E be an environment of Ãsw
and E Õ = psioa(E). Let –̃ œ frags(Ãsw||E)1758

Then “e(–̃) = “e(–̃).1759

Proof. We have1760

“e(–̃) = “e({–̃Õ œ frags(Ãsw||E)|–̃ÕS̄A–̃}) = {“e(–̃Õ)|–̃Õ œ frags(Ãsw||E), –̃ÕS̄A–̃})1761

and1762

“e(–̃) = {–Õ œ frags(A||E Õ)|–ÕSAEÕ“e(–̃)}.1763

Because of bijectivity of “e, “e(–̃) = {“(–̃Õ)|–̃Õ œ frags(Ãsw||E), “e(–̃Õ)SAEÕ“e(–̃)}1764

Furthermore, –̃S̄A–̃Õ ≈∆ “e(–̃)SAEÕ“e(–̃Õ) from the lemma of preservation of S relation1765

by “e.1766

So “e(–̃) = “e(–̃).1767

J1768

I Lemma 135 (“e ¶ µe preserves the equivalence class). Let A be a PSIOA. Let XA be a1769

A-conservative configuration-equivalence-free PCA. Let E be an environment of XA.1770

Let –̃ be an execution fragments of PCA XA||E s. t. no creation of A occurs in –̃.1771

Then “e(µe(–̃)) = “e(µe(–̃)).1772

Proof. By conjonction of the two last lemma. J1773

XX:50 Probabilistic Dynamic Input Output Automata

I Theorem 136 (Preserving probabilistic distribution without creation for equivalence class).1774

Let A œ Autids. Let X be a A-conservative PCA. Let X Õ
be a A-twin of A. Let Y Õ = X Õ \ A.1775

Let Z = Ãsw||Y Õ
. Let E be an environment of X Õ

. Let E Õ = psioa(Y Õ||E). Let fl be a schedule.1776

For every execution fragment – = q0a1q1...qk œ frags(X||E), verifying:1777

No creation of A: For every s œ [0, k ≠ 1], if A /œ auts(config(X)(qs
X)) then A /œ1778

created(X)(qs
X)(as+1).1779

No creation from A: ’s œ [0, k ≠ 1], verifying as+1 /œ sig(config(X)(qs
X) \ A) · as+1 œ1780

sig(A)(qs
A), with µz(qs

X) = qZ = (qs
Y , qs

A), created(X)(qs
X)(a) = ÿ.1781

then applyX||E(”(qX ,qE), fl)(–) = apply(Z||E)(”(µz(qX),qE), fl)(µe(–)) = apply(A||EÕ)(”(“s(µz(qX),qEÕ)), fl)(“e(µe(–))).1782

Proof. We already have applyX||E(”(qX ,qE), fl)(–) = apply(Z||E)(”(µz(qX),qE), fl)(µe(–)). Thus1783 q
–Õœ– applyX||E(”(qX ,qE), fl)(–Õ) =

q
–Õœ– apply(Z||E)(”(µz(qX),qE), fl)(µe(–Õ)). Hence, applyX||E(”(qX ,qE), fl)(–) =1784

apply(Z||E)(”(µz(qX),qE), fl)(µe(–Õ)). Furthermore, we know that µe(–̃) = µe(–̃), thus applyX||E(”(qX ,qE), fl)(–) =1785

apply(Z||E)(”(µz(qX),qE), fl)(µe(–Õ)).1786

In the same manner, we obtain the second result with “e(µe(–̃)) = “e(µe(–̃)).1787

J1788

7.4 Implementation monotonicity without creation1789

I Lemma 137 (S̄AB-balanced distribution witout creation). Let A, B be PSIOA. Let KA,1790

KB be PCA corresponding w. r. t. A and B. Let K Õ
A, K Õ

B be AB-co-twin of KA andKB.1791

Let E Õ
A = K Õ

A \ A, E Õ
B = K Õ

B \ B, E ÕÕ
A = psioa(E Õ

A) and E ÕÕ
B = psioa(E Õ

B) . Let E ÕÕ = E ÕÕ
A (or1792

E ÕÕ = E ÕÕ
B, it does not matter).1793

Let fl, flÕ
be schedule s. t. for every executions –, fi of A||E ÕÕ

and B||E ÕÕ
, verifying1794

–SABEÕÕfi, applyA||EÕÕ(”(q̄A,q̄EÕÕ), fl)(–) = applyB||EÕ(”(q̄B,q̄EÕÕ), flÕ)(fi).1795

Let qKA s. t. µA
z (qKA) = (rensw(q̄A), q̄EÕ

A
). Let qKB s. t. µB

z (qKB) = (rensw(q̄B), q̄EÕ
B

).1796

Then for every execution fragments –̃, fĩ of K Õ
A and K Õ

B, verifying –̃S̄ABfĩ and –̃ does1797

not create A, we have:1798

applyKÕ
A

(”qKA
, fl)(–̃) = applyKÕ

B
(”qKB

, flÕ)(fĩ).1799

Proof. Let –̃, fĩ be execution fragments of K Õ
A and K Õ

B, verifying –̃S̄ABfĩ with –̃ that does1800

not create A.1801

We have1802

applyKÕ
A

(”qKA
, fl)(–̃) = applyÃsw||EÕ

A
(”µA

z (qKA), fl)(µA
e (–̃)) = applyA||EÕÕ(”(q̄A,q̄EÕÕ), flÕ)(“A

e (µA
e (–̃))) =1803

applyA||EÕÕ(”(q̄A,q̄EÕÕ), flÕ)(“A
e (µA

e (–̃)))1804

applyKÕ
B

(”qKB
, flÕ)(fĩ) = applyB̃sw||EÕ

B
(”µB

z (qKB), flÕ)(µB
e (fĩ)) = applyB||EÕÕ(”(q̄A,q̄EÕÕ), flÕ)(“B

e (µB
e (fĩ))) =1805

applyB||EÕÕ(”(q̄A,q̄EÕÕ), flÕ)(“B
e (µB

e (fĩ))).1806

Hence we have applyKÕ
A

(”qKA
, fl)(–̃) = applyKÕ

B
(”qKB

, flÕ)(fĩ)1807

J1808

I Definition 138 (Ss
ABE relation for schedules). Let A, B be PSIOA. Let E be an environment1809

of both A and B. Let fl and flÕ be two schedules. We say that flSs
(A,B,E)fl

Õ if :1810

for every executions –, fi of A||E and B||E respectively, s. t. –SABEfi,1811

P. Civit and M. Potop-Butucaru XX:51

applyA||E(”(q̄A,q̄E), fl)(–) = applyB||E(”(q̄B ,q̄E), flÕ)(fi).1812

This definition says that each member of each pair of corresponding classes of equivalence1813

deserve the same probability measure.1814

I Theorem 139 (Monotonicity of Ss relation without creation). Let A, B be PSIOA. Let XA,1815

XB be PCA corresponding w. r. t. A and B. Let E be an environment for both XA, XB.1816

Let X Õ
A||E Õ

, X Õ
B||E Õ

be AB-co-twin of XA||E and XB||E. Let E ÕÕ
A = psioa(X Õ

A \ A||E Õ) and1817

E ÕÕ
B = psioa(X Õ

B \ B||E Õ) Let E ÕÕ = E ÕÕ
A (or E ÕÕ = E ÕÕ

B, it does not matter).1818

Let fl, flÕ
be schedule s. t. flSs

(A,B,EÕÕ)fl
Õ
. Then for every (–, fi) œ execs(X Õ

A||E Õ) ◊1819

execs(X Õ
B||E Õ) that does not create A and B s. t. –S(XÕ

AXÕ
BEÕ)fi1820

applyXÕ
A||EÕ(”(q̄XÕ

A
,q̄EÕ), fl)(–) = applyXÕ

B||EÕ(”(q̄XÕ
B

,q̄EÕ), flÕ)(fi).1821

Proof. By application of previous lemma with KA = XA||E and KB = XB||E , since projection1822

and composition are commutative. J1823

8 Monotonicity of implementation w. r. t. PSIOA creation and1824

destruction1825

In last section we have shown a weak version of our final monotonicity theorem (160), where1826

we only consider executions that do not create A (see theorem 139).1827

Here we want to show this is also true with the creation of A and B.1828

8.1 schedule notations1829

I Definition 140 (simple schedule notation). Let fl = T ¸, T ¸+1, ..., T h, ... be a schedule, i. e.1830

a sequence of tasks, beginning with T ¸ and terminating by T h if fl is finite with ¸, h œ Nú.1831

For every q, qÕ œ [¸, h], q Æ qÕ, we note:1832

hi(fl) = h the highest index in fl (hi(fl) = Ê if fl is infinite)1833

li(fl) = ¸ the lowest index in fl1834

fl[q] = T q1835

fl|q = T ¸...T q1836

q|fl = T q...T h...1837

q|fl|qÕ = T q...T qÕ
1838

By doing so, we implicitly assume an indexation of fl, ind(fl) : ind œ [li(fl), hi(fl)] ‘æ1839

T ind œ fl. Hence if fl = T 1, T 2, ..., T k, T k+1, ..., T q, T q+1..., T h, ..., flÕ =k |fl, flÕÕ =q |flÕ, then1840

flÕÕ =q |fl.1841

I Definition 141 (Schedule partition and index). Let fl be a schedule. A partition p of fl is a1842

sequence of schedules (finite or infinite) p = (flm, flm+1, ..., fln, ...) so that fl can be written1843

fl = flm, flm+1, ..., fln, We note min(p) = m and max(p) = card(p) + m ≠ 1 (if p is infinite,1844

max(p) = Ê).1845

A total ordered set (ind(fl, p), ª) µ N2 is defined as follows :1846

ind(fl, p) = {(k, q) œ (Nú)2|k œ [min(p), max(p)], q œ [li(flk), hi(flk)]} For every ¸ =1847

(k, q), ¸Õ = (kÕ, qÕ) œ ind(fl, p):1848

XX:52 Probabilistic Dynamic Input Output Automata

If k < kÕ, then ¸ ª ¸Õ1849

If k = kÕ, q < qÕ, then ¸ ª ¸Õ1850

If k = kÕ and q = qÕ, then ¸ = ¸Õ. If either ¸ ª ¸Õ or ¸ = ¸Õ, we note ¸ ∞ ¸Õ.1851

For every ¸ = (k, q) œ ind(fl, p), we note ¸+1 the smaller element (according to ª) of ind(fl, p)1852

that is greater than ¸. For convenience, we extend ind(fl, p) with {(k, 0) œ (Nú)2|k Æ card(p)}1853

, where (k + 1, 0) , (k, card(flk)).1854

I Definition 142 (Schedule notation). Let fl be a schedule. Let p be a partition of fl. For1855

every ¸ = (k, q), ¸Õ = (kÕ, qÕ) œ ind(fl, p)2, we note (when this is allowed):1856

fl[p, ¸] = flk[q]1857

fl|(p,¸) = fl1, ..., flk|q1858

(p,¸)|fl = (q|flk), ...1859

¸|fl|(p,¸Õ) = (q|flk), ..., (flkÕ |q)1860

The symbol p of the partition is removed when it is clear in the context.1861

I Definition 143 (Environment). Let V be a PCA (resp a PSIOA). An environment E for V1862

is a PCA (resp. a PSIOA) partially-compatible with V s. t. UA(E) fl UA(V) = ÿ1863

I Definition 144 (V-partition of a schedule). Let V be a PCA or a PSIOA. Let flVE be a1864

schedule. Let p = (fl1
V , fl2

E , fl3
V , fl4

E ...) be a partition of flVE where each fl2k+1
V is a sequence1865

of tasks of UA(V) only and each fl2k
E does not contain any task of UA(V). We call such a1866

partition, a V-partition of flVE .1867

I Proposition 3. Let flVE be a schedule. It exists a unique V-partition of flVE .1868

Proof. Since UA(E) fl UA(V) = ÿ the partition exists. The uniqueness is also due to the1869

fact that UA(E) fl UA(V) = ÿ. J1870

Thus, in the remaining we say the V-partition of a schedule.1871

I Definition 145 (Environment corresponding schedule). Let V and W be two PCA or1872

two PSIOA. Let flVE and flWE be two schedules. Let (fl1
V , fl2

E , fl3
V , fl4

E ...) (resp. flWE :1873

(fl1
W , fl2Õ

E , fl3
W , fl4Õ

E , ...)) be the V-partition (resp. W-partition) of flVE (resp. flWE). We1874

say that flVE and flWE are VW-environment-corresponding if for every k, fl2k
E = fl2kÕ

E .1875

Environment corresponding schedules only di�er on the tasks that do not concerns the1876

environment.1877

I Definition 146 (Ss
ABE relation for schedules). Let A, B be PSIOA. Let E be an environment1878

of both A and B. Let fl and flÕ be two schedule. We say that flSs
(A,B,E)fl

Õ if :1879

for every executions –, fi of A||E and B||E respectively, s. t. –SABEfi,1880

applyA||E(”(q̄A,q̄E), fl)(–) = applyB||E(”(q̄B ,q̄E), flÕ)(fi).1881

This definition says that each member of each pair of corresponding classes of equivalence1882

deserve the same probability measure.1883

8.2 sub-classes according to the schedule1884

I Definition 147. Let X be an automaton, let – be an execution of X, and fl = flÕT1885

be a schedule of X. We say that – match fl i� – œ supp(applyX(”fstate(–), fl)) but – /œ1886

supp(applyX(”fstate(–), flÕ)).1887

P. Civit and M. Potop-Butucaru XX:53

If – œ supp(applyX(”fstate(–), ⁄)), we say that – match ⁄ (the empty sequence).1888

I Definition 148. Let – be an execution. Let fl be a schedule, p be a fixed partition of fl,1889

¸1, ¸2, ¸≠
1 , ¸≠

2 , ¸+
1 , ¸+

2 œ ind(fl, p) , we note :1890

–(¸1,fl) = {–̃ œ –|–̃ matches fl|¸1}1891

–(¸1,¸2,fl) = {–̃ œ –|–̃ matches ¸1 |fl|¸2}1892

–(¸1,[¸≠
2 ,¸+

2],fl) = {–̃ œ –|÷¸2 œ [¸≠
2 , ¸+

2], –̃ matches ¸1 |fl|¸2}1893

I Lemma 149. Let X be a PSIOA, – be an execution of X , fl be a schedule ofX, p be1894

a fixed partition of fl. {–¸+,fl fl supp(applyX(”fstate(–), fl))|¸+ œ ind(fl, p)} is a partition of1895

– fl supp(applyX(”fstate(–), fl))}.1896

Proof. empty intersection: Let ¸, ¸Õ œ ind(fl, p). Let – œ –¸,fl, we show that – /œ –¸Õ,fl.1897

By contradiction, we assume the contrary: thus, – œ supp(applyX(”fstate(–), fl|¸)), – œ1898

supp(applyX(”fstate(–), fl|¸Õ)) but – /œ supp(applyX(”fstate(–), fl|¸≠1)) and – /œ supp(applyX(”fstate(–), fl|¸Õ≠1)).1899

If ¸ = ¸Õ + 1 or ¸Õ = ¸ + 1, the contradiction is immediate.1900

Without lost of generality, we assume ¸Õ ª ¸ + 1. Since – œ supp(applyX(”fstate(–), fl|¸)),1901

– œ supp(applyX(”fstate(–), fl|¸Õ)), all the tasks in ¸Õ+1|fl|¸ are not enabled in lstate(–),1902

but this is in contradiction with the fact that both – œ supp(applyX(”fstate(–), fl|¸Õ)) and1903

– /œ supp(applyX(”fstate(–), fl|¸≠1)).1904

complete union: Let –Õ = –ÕÕ˚aqÕ œ supp(applyX(”fstate(–), fl)), with qÕÕ = lstate(–ÕÕ).1905

We show it exists ¸ œ ind(fl, p), so that –Õ matches fl|¸. By contradiction, it means –Õ1906

matches fl|¸ for every ¸ œ ind(fl, p), namely –Õ matches fl|0 = ⁄ (the empty sequence) and1907

that for every task T in fl, T is not enabled in qÕÕ. Thus applyX(”fstate(–), ⁄)(–Õ) > 0,1908

which is in contradiction with –Õ ”= fstate(–). If –Õ = q0 and for every task T in fl, T is1909

not enabled in q0, then –Õ matches fl0 = 0.1910

J1911

I Lemma 150. Let X be a PSIOA, – be an execution of X , fl be a schedule of X, p be a1912

fixed partition of fl.1913

applyX(”fstate(–), fl)(–) =
q

¸+œind(fl,p) applyX(”fstate(–), fl)(–¸+)1914

Proof. {–¸+,flflsupp(applyX(”fstate(–), fl))|¸+ œ ind(fl, p)} is a partition of –flsupp(applyX(”fstate(–), fl))},1915

which gives applyX(”fstate(–), fl)(–) =
q

¸+œind(fl,p)
q

¸+œind(fl,p) applyX(”fstate(–), fl)(–¸+)1916

that is the result. J1917

I Definition 151 (A-brief-partition). Let A be a PSIOA, X be PCA, Let fl be a schedule of1918

X. Let – œ frags(X). Let p = (–̃s1
, –̃s2

, ...–̃sm be the A-partition of – A A-brief-partition1919

of – is a sequence –1, –2, ..., –n. s. t.1920

– = –1˚–2˚...–n1921

’i œ [1, n], ÷!(¸i, hi) œ [1, m]2, –i = –̃s¸i ˚...–̃shi
1922

’i œ [1, n ≠ 1], ¸i+1 = hi + 11923

I Lemma 152. Let A be a PSIOA, X be PCA, Let fl be a schedule of X. Let –12 = –1˚–21924

a non single state execution of X that matches fl, where (–1, –2) is a A-brief-partition of1925

–12
. Let ¸2 = max(ind(fl, p)) where p is any partition of fl.1926

applyX(”fstate(–), fl)(–12) =
q

0ª¸1ª¸2
apply(fl|¸1)(–1

¸1,fl) · apply((¸1+1)|fl)(–2)1927

Proof. applyX(”fstate(–), fl|¸2)(–12) =
q

–1Õ˚–2Õœ–12 apply(fl|¸2)(–1Õ˚–2Õ) =1928

XX:54 Probabilistic Dynamic Input Output Automata

q
–1Õœ–1

q
–2Õœ–2 apply(fl|¸2)(–1Õ˚–2Õ) =1929

q
–1Õœ–1

q
–2Õœ–2 apply(fl|¸1(–1Õ))(–1Õ) · apply((¸1(–1Õ)+1)|fl|¸2)(–2Õ) =1930

q
0ª¸1ª¸2

q
–1Õœ–1

(¸1,fl)

q
–2Õœ–2 apply(fl|¸1)(–1Õ) · apply((¸1+1)|fl|¸2)(–2Õ) =1931

q
0ª¸1ª¸2

q
–1Õœ–1

(¸1,fl)
apply(fl|¸1)(–1Õ) ·

q
–2Õœ–2 apply((¸1+1)|fl|¸2)(–2Õ) =1932

q
0ª¸1ª¸2

apply(fl|¸1)(–1
¸1,fl) · apply((¸1+1)|fl|¸2)(–2) J1933

I Lemma 153 (Total probability law with all the possible cuts). Let A be a PSIOA, X be1934

PCA, Let fl be a schedule of X. Let –(1,n) = –1˚–2˚...–(n≠1)˚–n
an execution of X that1935

matches fl, where (–1, –2, ..., –n) is a A-brief-partition of –(1,n)
. Let ¸n = max(ind(fl, p))1936

where p is any partition of fl.1937

applyX(”fstate(–(1,n)), fl)(–(1,n))) =1938

ÿ

¸1,¸2,...,¸n≠1
0ª¸1ª¸2ª...ª¸n≠1ª¸n

�(–1, ¸1, fl)[�iœ[2:n≠1]�Õ(–i, ¸i≠1, ¸i, fl)]�ÕÕ(–n, ¸n≠1, fl)1939

with1940

�(–1, ¸1, fl) = applyX(”fstate(–1), fl|¸1)(–1
¸1,fl),1941

�Õ(–i, ¸i≠1, ¸i, fl) = applyX(”fstate(–i),(¸i≠1+1) |fl|¸i)(–i
(¸i≠1,¸i,fl))) and1942

�ÕÕ(–n, ¸n≠1, fl) = applyX(”fstate(–n),(¸n≠1+1) |fl)(–n)1943

Proof. By induction on the size of the brief-partition. Basis is true by the previous lemma.1944

We assume the predicate true for n ≠ 1 and we show this implies the predicate is true for1945

integer n.1946

Let (–1, ..., –n≠1, –n) be a A-brief-partition of –1n.1947

We note –(1,n) = –1˚–(2,n). (–2, ..., –n) is clearly a A-brief-partition of –(2,n) of size1948

n ≠ 1, (–1, –(2,n)) is a A-brief-partition of –1n with size 2 lower or equal than n.1949

Now applyX(”fstate(–), fl)(–(1,n)) =1950

ÿ

¸1

0ª¸1ª¸n

applyX(”fstate(–1), fl|¸1)(–1
(¸1,fl)) · applyX(”fstate(–2n), (¸1+1|fl))(–(2,n)))1951

by induction hypothesis.1952

We note flÕ =¸1+1 |fl, and reuse the induction hypothesis, which gives1953

applyX(”fstate(–(2,n)), flÕ)(–(2,n))) =1954

ÿ

¸2,...,¸n≠1
0ª¸2ª...ª¸n≠1ª¸n

�(–2, ¸2, flÕ)[�iœ[3:n≠1]�Õ(–i, ¸i≠1, ¸i, flÕ)]�ÕÕ(–n, ¸n≠1, flÕ)1955

ÿ

¸2,...,¸n≠1
0ª¸2ª...ª¸n≠1ª¸n

�Õ(–2, ¸1, ¸2, fl)[�iœ[3:n≠1]�Õ(–i, ¸i≠1, ¸i, fl)]�ÕÕ(–n, ¸n≠1, fl)1956

P. Civit and M. Potop-Butucaru XX:55

We compose the last two results to obtain1957

applyX(”fstate(–(1,n)), fl)(–(1,n))) =1958

ÿ

¸1,¸2,...,¸n≠1
0ª¸1ª¸2ª...ª¸n≠1ª¸n

�(–1, ¸1, fl)[�iœ[2:n≠1]�Õ(–i, ¸i≠1, ¸i, fl)]�ÕÕ(–n, ¸n≠1, fl)1959

, which is the desired result.1960

J1961

I Lemma 154. Let A, B be PSIOA. Let E be an environment of both A and B. Let fl1962

and flÕ
be AB-environment-corresponding schedule with p the A-partition of fl and pÕ

the1963

B-partition of flÕ
s. t. for every (k, q) œ N2

, for every ¸ = (2k, q) œ ind(fl, p) fl ind(flÕ, pÕ),1964

(fl|¸)Ss
(A,B,E)(flÕ|¸).1965

Then1966

for every ˜̧= (2k̃, q̃) œ ind(fl, p) fl ind(flÕ, pÕ) with (k̃, q̃) œ N2
:1967

q¸∞˜̧
¸œind(fl,p) applyA||E(”(q̄A,q̄E), fl|˜̧)(–¸,fl|˜̧) =

q¸∞˜̧
¸œind(flÕ,pÕ) applyB||E(”(q̄B ,q̄E), flÕ|˜̧)(fi¸,flÕ|˜̧) and1968

for every ˜̧= (2k̃, q̃) œ ind(fl, p) fl ind(flÕ, pÕ) with (k̃, q̃) œ N ◊ Nú
, for every ¸ = (2k, q) œ1969

ind(fl, p) fl ind(flÕ, pÕ) with (k, q) œ N ◊ Nú
and ¸ ∞ ˜̧:1970

applyA||E(”(q̄A,q̄E), fl|˜̧)(–¸,fl|˜̧) = applyB||E(”(q̄B ,q̄E), flÕ|˜̧)(fi¸,flÕ|˜̧)1971

Proof. By induction on k.1972

We deal with two induction hypothesis for every ˜̧ú = (2k̃ú, q̃ú) œ ind(fl, p) fl ind(flÕ, pÕ)1973

with (k̃ú, q̃ú) œ N ◊ N.1974

IH1(˜̧ú) : for every ˜̧= (2k̃, q̃) œ ind(fl, p) fl ind(flÕ, pÕ) with (k̃, q̃) œ N ◊ N and ˜̧∞ ˜̧ú1975

q¸∞˜̧
¸œind(fl,p) applyA||E(”(q̄A,q̄E), fl|˜̧)(–¸,fl|˜̧) =

q¸∞˜̧
¸œind(flÕ,pÕ) applyB||E(”(q̄B ,q̄E), flÕ|˜̧)(fi¸,flÕ|˜̧) and1976

IH2(˜̧ú) : for every ˜̧ = (2k̃, q̃) œ ind(fl, p) fl ind(flÕ, pÕ) with (k̃, q̃) œ N ◊ N ’(k, q) œ1977

N ◊ Nú, ’¸ = (2k, q) œ ind(fl, p) fl ind(flÕ, pÕ) , s. t. ¸ ∞ ˜̧∞ ˜̧ú1978

applyA||E(”(q̄A,q̄E), fl|˜̧)(–¸,fl|˜̧) = applyB||E(”(q̄B ,q̄E), flÕ|˜̧)(fi¸,flÕ|˜̧)1979

Basis: Let –Õ œ supp(apply(”(q̄A,q̄E), ⁄)) fl –, then {–Õ} = –(0,fl) = {(q̄A, q̄E)}. Similarly if1980

fiÕ œ supp(apply(”(q̄B ,q̄E), ⁄)) fl fi, then {fiÕ} = fi(0,fl) = {(q̄B , q̄E)}.1981

Thus applyA||E(”(q̄A,q̄E),0 |fl)(–0,fl) = applyA||E(”(q̄A,q̄E),0 |fl)(–) and applyB||E(”(q̄B ,q̄E),0 |flÕ)(fi0,flÕ) =1982

applyB||E(”(q̄B ,q̄E), fi0,flÕ)(fi).1983

Hence applyA||E(”(q̄A,q̄E),0 |fl)(–0,fl) = applyB||E(”(q̄B ,q̄E),0 |flÕ)(fi0,flÕ), which means that1984

IH1(0) and IH2(0) are true.1985

Induction:1986

Let ˜̧= (2k̃, q̃), ˜̧Õ = (2k̃Õ, q̃Õ) œ ind(p, fl) fl ind(pÕ, flÕ) with k̃, q̃, k̃Õ, q̃Õ œ N and ˜̧ª ˜̧Õ.1987

We note that1988

q¸∞˜̧Õ

¸œind(fl,p) applyA||E(”(q̄A,q̄E), fl|˜̧Õ)(–¸,fl|˜̧Õ) =1989

applyA||E(”(q̄A,q̄E), fl|˜̧Õ)(–) ≠
q¸∞˜̧

¸œind(fl,p) applyA||E(”(q̄A,q̄E), fl|˜̧)(–¸,fl|˜̧) (*)1990

and1991

XX:56 Probabilistic Dynamic Input Output Automata

q¸∞˜̧Õ

¸œind(flÕ,pÕ) applyB||E(”(q̄B ,q̄E), fl|˜̧Õ)(fi¸,flÕ|˜̧Õ) =1992

applyB||E(”(q̄B ,q̄E), flÕ|˜̧Õ)(fi) ≠
q¸∞˜̧

¸œind(fl,p) applyB||E(”(q̄B ,q̄E), flÕ|˜̧)(fi¸,flÕ|˜̧) (**)1993

We assume IH1(¸) and IH2(¸) to be true for every ¸ = (2k, q) with k, q œ N s. t.1994

¸ œ ind(fl, p) fl ind(flÕ, pÕ) and ¸ ∞ ˜̧.1995

We need to consider two cases:1996

Case 1: ˜̧+ 1 = (2k̃, q̃ + 1): Case 2: ˜̧+ 1 ”= (2k̃, q̃ + 1)1997

Case 1: We evaluate (*) and (**) with ˜̧Õ = ˜̧+ 11998

applyA||E(”(q̄A,q̄E), fl|˜̧+1)(–˜̧+1,fl|˜̧+1
) = applyA||E(”(q̄A,q̄E), fl|˜̧+1)(–)≠

q¸∞˜̧
¸œind(fl,p) applyA||E(”(q̄A,q̄E), fl|˜̧)(–¸,fl|˜̧)1999

and similarly2000

applyB||E(”(q̄B ,q̄E), flÕ|˜̧+1)(fi ˜̧+1,flÕ|˜̧+1
) = applyB||E(”(q̄B ,q̄E), flÕ|˜̧+1)(fi)≠

q¸∞˜̧
¸œind(flÕ,pÕ) applyB||E(”(q̄B ,q̄E), flÕ|˜̧)(fi¸,flÕ|˜̧)2001

Thus, we apply IH1(˜̧) and the equality applyA||E(”(q̄A,q̄E), fl|˜̧+1)(–) = applyB||E(”(q̄B ,q̄E), flÕ|˜̧+1)(fi)2002

by assumption to obtain both IH1(˜̧Õ) and IH2(˜̧Õ).2003

Case 2: We evaluate (*) and (**) with ˜̧Õ = (2(k + 1), 0),2004

We apply IH1(˜̧) and the equality applyA||E(”(q̄A,q̄E), fl|˜̧Õ)(–) = applyB||E(”(q̄B ,q̄E), flÕ|˜̧Õ)(fi)2005

by assumption to obtain IH1(˜̧Õ).2006

Then, we can evaluate (*) and (**) with ˜̧Õ = (2(k + 1), 0) and ˜̧ÕÕ = (2(k + 1), 1),2007

apply IH1(˜̧Õ) and the equality applyA||E(”(q̄A,q̄E), fl|˜̧ÕÕ)(–) = applyB||E(”(q̄B ,q̄E), flÕ|˜̧ÕÕ)(fi) by2008

assumption to obtain both IH1(˜̧ÕÕ) and IH2(˜̧ÕÕ)2009

By induction, we obtain the desired result:2010

for every ˜̧= (2k̃, q̃) œ ind(fl, p) fl ind(flÕ, pÕ) with (k̃, q̃) œ N2:2011
q¸∞˜̧

¸œind(fl,p) applyA||E(”(q̄A,q̄E), fl|˜̧)(–¸,fl|˜̧) =
q¸∞˜̧

¸œind(flÕ,pÕ) applyB||E(”(q̄B ,q̄E), flÕ|˜̧)(fi¸,flÕ|˜̧) and2012

for every ˜̧= (2k̃, q̃) œ ind(fl, p) fl ind(flÕ, pÕ) with (k̃, q̃) œ N ◊ Nú, for every ¸ = (2k, q) œ2013

ind(fl, p) fl ind(flÕ, pÕ) with (k, q) œ N ◊ Nú and ¸ ∞ ˜̧:2014

applyA||E(”(q̄A,q̄E), fl|˜̧)(–¸,fl|˜̧) = applyB||E(”(q̄B ,q̄E), flÕ|˜̧)(fi¸,flÕ|˜̧)2015

J2016

I Lemma 155 (subdivision in sub-classes of probability distribution correspondence). Let A,2017

B be PSIOA. Let E be an environment of both A and B. Let fl and flÕ
be AB-environment-2018

corresponding schedule with p the A-partition of fl and pÕ
the B-partition of flÕ

s. t. for2019

every (k, q), (kÕ, qÕ) œ N2
, for every ¸ = (2k, q), ¸Õ = (2kÕ, qÕ) œ ind(fl, p) fl ind(flÕ, pÕ),2020

(¸|fl|¸Õ)Ss
(A,B,E)(¸|flÕ|¸Õ).2021

Then2022

for every ¸ = (2k, q), ¸Õ = (2kÕ, qÕ) œ ind(fl, p) fl ind(flÕ, pÕ) with (k, q), (kÕ, qÕ) œ N ◊ Nú2023

and ¸ ∞ ˜̧:2024

applyA||E(”(q̄A,q̄E),¸ |fl|¸Õ)(–(¸,¸Õ,¸|fl|¸Õ)) = applyB||E(”(q̄B ,q̄E),¸ |flÕ|¸Õ)(fi(¸,¸Õ,¸|flÕ|¸Õ))2025

Proof. We apply the previous lemma with fl̃ =¸ |fl and fl̃Õ =¸ |flÕ . J2026

P. Civit and M. Potop-Butucaru XX:57

8.3 Implementation2027

I Definition 156 (Strong implementation). Let A, B be PSIOA. We say that A strongly2028

implements B i� for every environment E of both A and B, for every schedule fl , it exists an2029

AB-environment-corresponding schedule flÕ, s. t. for every ¸ = (2k, q): (fl|¸)Ss
(A,B,E)(flÕ|¸).2030

The impementation says that for each schedule dedicated to A||E there is a counterpart2031

dedicated to B||E so that each corresponding equivalence classes have the same probability2032

measure. Hence there is no statistical experimentation for an environment to distinguish A2033

from B. Also the definition requires that the relationship stays true for every prefix cut at2034

an environment’s task at an arbitrary (even) index.2035

I Definition 157 (Tenacious implementation). Let A, B be PSIOA. We say that A tena-2036

ciously implements B, noted A Æten B, i� for every schedule fl, it exists a AB-environment-2037

corresponding schedule flÕ s. t. for every environment E of both A and B, for every ¸ = (2k, q),2038

¸Õ = (2kÕ, qÕ) œ ind(fl, p) fl ind(flÕ, pÕ) , (¸|fl|¸Õ)Ss
(A,B,E)(¸|flÕ|¸Õ)2039

The tenacious implementation is a variant of strong implementation where the relationship2040

stays true for every su�x cut at an environment’s task at an arbitrary index. Moreover, the2041

choice of the corresponding schedule does not depend of the environment. Hence, to stay2042

indistinguishable by the environment A and B do not need to change their "strategy", the2043

same pair of corresponding schedule is enough to prevent the distinction of A and B by any2044

environment with any "strategy".2045

8.4 Implementation Monotonicity2046

I Lemma 158 (Corresponding-environment relation is preserved in the upper level). Let A, B2047

be PSIOA. Let XA, XB be PCA corresponding w.r.t. A, B. Let fl, flÕ
be AB-environment-2048

corresponding schedules. fl, flÕ
are also XAXB-environment-corresponding schedules.2049

Proof. We note YA = XA \A and YB = XB \B. It is su�cient to partition each sub-schedule2050

fl2k
E into tasks with id in UA(YA) = UB(YB) and tasks with id not in UA(YA) = UB(YB). If2051

fl2k
E begins (resp. ends) by a sequence of tasks with ids in UA(YA), we can combine them2052

with tasks of fl2k≠1
A (resp. fl2k+1

A) to obtain a sequence of tasks in UA(XA). The other tasks2053

are not in UA(XA). If fl2k
E begins (resp. ends) by a sequence of tasks with ids in UA(YB),2054

we can combine them with tasks of fl2k≠1
B (resp. fl2k+1

B) to obtain a sequence of tasks in2055

UA(XB). The other tasks are not in UA(XB). J2056

I Lemma 159 (Ss monotonocity wrt creation and destruction). Let A, B be PSIOA. Let XA,2057

XB be PCA corresponding w.r.t. A, B. Let fl, flÕ
be AB-environment-corresponding schedules2058

s. t. for every environment E ÕÕ
of both A and B, for every ¸ = (2k, q), ¸Õ = (2kÕ, qÕ) œ2059

ind(fl, p) fl ind(flÕ, pÕ), (¸|fl|¸Õ)Ss
(A,B,EÕÕ)(¸|flÕ|¸Õ).2060

Then for every environment E of both XA and XB, for every ¸ = (2k, q), ¸Õ = (2kÕ, qÕ) œ2061

ind(fl, p) fl ind(flÕ, pÕ), (¸|fl|¸Õ)Ss
(XA,XB,E)(¸|flÕ|¸Õ).2062

Proof. By induction.2063

We assume this is true up to ¸+ Æ 2k and we show this is also true for 2k + 1 and 2k + 2.2064

XX:58 Probabilistic Dynamic Input Output Automata

We have two cases: The first case is A never created, where the results is true because of2065

homorphism without creation. Thus we investigate only the second case A is created at least2066

once :2067

We note ¸4 = (2k4, q4) = max(ind(fl, p)) = max(ind(flÕ, pÕ)) (potentially q4 = 0), – =2068

–13˚–4 (resp. fi = fi13˚fi4)where –13 (resp fi13) ends on A (resp. B) creation.2069

Because of lemma 153, we have both2070

applyXA||E(”fstate(–), fl)(–) =2071

q¸3ª¸4
¸3œind(fl,p) applyXA||E(”fstate(–), fl|¸3)(–13

(¸3,fl)) · applyXA||E(”fstate(–4), (¸3+1|fl))(–4) and2072

applyXB||E(”fstate(fi), flÕ)(fi) =2073

q¸3ª¸4
¸3œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸3)(fi13

(¸3,fl)) · applyXB||E(”fstate(fi4), (¸3+1|flÕ))(fi4).2074

Since –13 (resp. fi13) ends on A (B) creation, –13
¸3,fl ”= ÿ only if ¸3 = (2k3, q3) with2075

(k3, q3) œ N ◊ Nú.2076

We already have for every ¸3 = (2k3, q3),2077

applyXA||E(”fstate(–4), (¸3+1|fl))(–4) = applyXB||E(”fstate(fi4), (¸3+1|flÕ))(fi4) for every ¸3 =2078

(2k3, q3) œ ind(fl, p) by the theorem 139 of preservation of probabilistic distribution without2079

creation.2080

Indeed, we note Y Õ3
A (resp. Y Õ3

B) the A-twin (resp. B-twin) PCA of YA = XA \ A (resp.2081

YB = XB \ B) where the initial state is µA
s (lstate(–13) � XA) (resp. µB

s (lstate(fi13) � XB)),2082

we note E3
Õ the PCA equal to E except that its initial state is (lstate(fi13) � E and we note2083

E3ÕÕ
A = Y Õ3

A ||psioa(E3Õ), E3ÕÕ
B = Y Õ3

B ||psioa(E3Õ) and E3ÕÕ = E3ÕÕ
A or E3ÕÕ = E3ÕÕ

B arbitrarily.2084

The premises of the lemma give2085

applyA||E3ÕÕ(”fstate(“e(µe(–4)), (¸3+1|fl))(“e(µe(–4)) = applyB||E3ÕÕ(”fstate(“e(µe(fi4)), (¸3+1|flÕ))(“e(µe(fi4))2086

for every ¸3 = (2k3, q3) œ ind(fl, p). And the theorem 139 of preservation of probabilistic2087

distribution without creation gives for every ¸3 = (2k3, q3) œ ind(fl, p):2088

applyXA||E(”fstate(–4), (¸3+1|fl))(–4) = applyXB||E(”fstate(fi4), (¸3+1|flÕ))(fi4) for every ¸3 =2089

(2k3, q3) œ ind(fl, p) .2090

Then we consider several cases:2091

Case 1: A (resp. B) not destroyed (originally absent) in –13 (resp. fi13)2092

In this case –13 = {–13} and fi13 = {fi13} with –13 ƒ fi13. Since A and B are absent, all2093

the tasks of odd index are ignored, hence2094

applyXA||E(”fstate(–), fl|¸3)(–13
(¸3,fl)) = applyXA||E(”fstate(–), flÕÕ|¸3)(–13

(¸3,flÕÕ)) and2095

applyXB||E(”fstate(fi), flÕ|¸3)(fi13
(¸3,flÕ)) = applyXB||E(”fstate(fi), flÕÕ|¸3)(fi13

(¸3,flÕÕ)) with flÕÕ =2096

fl0
Efl2

E ...fl2úÂcard(p)/2Ê.2097

Since –13 ƒ fi13, applyXA||E(”fstate(–), flÕÕ|¸3)(–13
(¸3,flÕÕ)) = applyXB||E(”fstate(fi), flÕÕ|¸3)(fi13

(¸3,flÕÕ))2098

for every ¸3 = (2k3, q3) œ ind(fl, p) (Moreover it exists at most one ¸ú
3 = (2kú

3 , qú
3), s. t.2099

applyXA||E(”fstate(–), flÕÕ|¸ú
3
)(–13

(¸ú
3 ,flÕÕ)) = applyXA||E(”fstate(–), flÕÕ|¸ú

3
)(–13) ”= 0).2100

Hence either applyXA||E(”fstate(–), fl)(–) = applyXB||E(”fstate(fi), flÕ)(fi) = 0 or applyXA||E(”fstate(–), fl)(–) =2101

applyXA||E(”fstate(–), fl|¸ú
3
)(–13

(¸ú
3 ,fl)) · applyXA||E(”fstate(–4), (¸ú

3+1|fl))(–4) and2102

applyXB||E(”fstate(fi), flÕ)(fi) = applyXB||E(”fstate(fi), flÕ|¸ú
3
)(fi13

(¸ú
3 ,fl))·applyXB||E(”fstate(fi4), (¸ú

3+1|flÕ))(fi4).2103

In both cases applyXA||E(”fstate(–), fl)(–) = applyXB||E(”fstate(fi), flÕ)(fi) which terminates2104

P. Civit and M. Potop-Butucaru XX:59

case 1.2105

Case 2: A (resp. B) destroyed.2106

We note –13 = –12˚–3 (resp. fi13 = fi12˚fi3) where –12 (resp. fi12) ends on A (resp. B)2107

destruction.2108

Here again, since –13 (resp. fi13) ends on A (resp. B) creation , if –13
¸3,fl ”= ÿ (resp.2109

fi13
¸3,flÕ ”= ÿ), then ¸3 = (2k3, q3) with (k3, q3) œ N ◊ Nú.2110

Let ¸3 = (2k3, q3) with (k3, q3) œ N ◊ Nú. Because of lemma 153, we have2111

applyXA||E(”fstate(–), fl|¸3)(–13
(¸3,fl)) =2112

q¸2ª¸3
¸2œind(fl,p) applyXA||E(”fstate(–), fl|¸2)(–12

(¸2,fl))·applyXA||E(”fstate(–3), (¸2+1|fl|¸3))(–3
(¸2+1,¸3,fl))2113

and2114

applyXB||E(”fstate(fi), flÕ|¸3)(fi3
(¸3,flÕ)) =2115

q¸2ª¸3
¸2œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸2)(fi12

(¸2,flÕ))·applyXB||E(”fstate(fi), (¸2+1|flÕ|¸3))(fi3
(¸2+1,¸3,fl)).2116

Since –12 (resp. fi12) ends on A (resp. B) destruction, all task of A (resp. B) are ignored2117

after the destruction. Thus, if –12
¸2,fl ”= ÿ (resp. fi12

¸2,flÕ ”= ÿ), then ¸2 = (2k2 + 1, q3) with2118

(k2, q2) œ N ◊ Nú.2119

For the same reason, for every ¸2 = (2k2 + 1, q2) œ N ◊ Nú, ¸+
2 = (2k2 + 2, 0), we have2120

(–3
(¸2,¸3,fl)) = (–3

(¸+
2 ,¸3,fl)),2121

(fi3
(¸2,¸3,fl)) = (fi3

(¸+
2 ,¸3,fl))2122

Thus we obtain2123

applyXA||E(”fstate(–), fl|¸3)(–13
(¸3,fl)) =

qk2<k3
k2

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(fl,p) applyXA||E(”fstate(–), fl|¸2)(–12
(¸2,fl))·2124

applyXA||E(”fstate(–3), (¸+
2 +1|fl|¸3))(–3

((¸+
2 +1),¸3,fl)) =

qk2<k3
k2

applyXA||E(”fstate(–3), (¸+
2 +1|fl|¸3))(–3

((¸+
2 +1),¸3,fl))·2125

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(fl,p) applyXA||E(”fstate(–), fl|¸2)(–12
(¸2,fl)).2126

We obtain the symetric result for fi13, hence :2127

applyXA||E(”fstate(–), fl|¸3)(–13
(¸3,fl)) =

qk2<k3
k2

applyXA||E(”fstate(–3), ((2k2+2,1)|fl|¸3))(–3
((2k2+2,1),¸3,fl))·2128

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(fl,p) applyXA||E(”fstate(–), fl|¸2)(–12
(¸2,fl)).2129

applyXB||E(”fstate(fi), flÕ|¸3)(fi13
(¸3,flÕ)) =

qk2<k3
k2

applyXB||E(”fstate(fi3), ((2k2+2,1)|flÕ|¸3))(fi3
((2k2+2,1),¸3,flÕ))·2130

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸2)(fi12
(¸2,flÕ)).2131

In this case –3 = {–3}, fi3 = {fi3} and –3 ƒ fi3. Since A and B are absent in –3 and fi32132

respectively (excepting at the last state) all the tasks of odd index are ignored. Thus, for2133

each (2k2 + 2, 1) ª (2k3, q3),2134

applyXA||E(”fstate(–3), ((2k2+2,1)|fl|¸3))(–3
((2k2+2,1),¸3,fl)) = applyXB||E(”fstate(fi3), ((2k2+2,1)|flÕ|¸3))(fi3

((2k2+2,1),¸3,flÕ)).2135

So we still need to show that for every k2 s. t. (2k2 + 2, 1) ª (2k3, q3),2136

¸2∞¸+
2ÿ

¸2=(2k2+1,q2)œind(fl,p)
applyXA||E(”fstate(–), fl|¸2)(–12

(¸2,fl)) =
¸2∞¸+

2ÿ

¸2=(2k2+1,q2)œind(flÕ,pÕ)
applyXB||E(”fstate(fi), flÕ|¸2)(fi12

(¸2,flÕ))

(1)2137

Case 2a: A (resp. B) created only once (in lstate(–3) and in lstate(fi3)) (originally2138

XX:60 Probabilistic Dynamic Input Output Automata

present).2139

In this case –12 = fi12 and the result is immediate by the theorem 139 of preservation of2140

probabilistic distribution without creation.2141

Indeed, we note YA = XA \ A andYB = XB \ B and we note E ÕÕ
A = YA||psioa(E),2142

E ÕÕ
B = YB||psioa(E) and E ÕÕ = E ÕÕ

A or E ÕÕ = E ÕÕ
B arbitrarily.2143

The premises of the lemma give2144

applyA||EÕÕ(”fstate(“A
e (µA

e (–)), fl|¸2)(“A
e (µA

e (–12))) = applyB||EÕÕ(”fstate(“B
e (µB

e (fi)), flÕ|¸2))(“B
e (µB

e (fi12)))2145

for every ¸2 = (2k2, q2) œ ind(fl, p) with no creation of A and B in –12 and fi12 respect-2146

ively. Thus we can apply the theorem 139 of preservation of probabilistic distribution2147

to obtain applyXA||E(”fstate(–), fl|¸2)(–12
(¸2,fl)) = applyXB||E(”fstate(fi), flÕ|¸2)(fi12

(¸2,flÕ)) for every2148

¸2 = (2k2, q2) œ ind(fl, p), which allows to verify the equation 1, which terminates the2149

induction and the proof for case 2a.2150

Case 2b: A (resp. B) created twice. We note –12 = –1˚–2 (resp. fi12 = fi1˚fi2) where2151

–1 (resp. fi1) ends on A (resp. B) creation. For every k2, we note ¸≠
2 (k2) = (2k2 + 1, 1) and2152

¸+
2 (k2) = (2k2 + 2, 0). We fix k2. Let ¸2, s. t. ¸≠

2 (k2) ∞ ¸2 ∞ ¸+
2 (k2).2153

Because of lemma 153, we have:2154

applyXA||E(”fstate(–), fl|¸2)(–12
(¸2,fl)) =2155

q¸1ª¸2
¸1œind(fl,p) applyXA||E(”fstate(–), fl|¸1)(–1

(¸1,fl))·applyXA||E(”fstate(–2), ((¸1+1|fl|¸2))(–2
(¸1+1,¸2,fl)).2156

and2157

applyXB||E(”fstate(fi), flÕ|¸2)(fi12
(¸2,flÕ)) =2158

q¸1ª¸2
¸1œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸1)(fi1

(¸1,flÕ))·applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸2))(fi2
(¸1+1,¸2,flÕ)).2159

Hence,2160

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(fl,p) applyXA||E(”fstate(–), fl|¸2)(–12
(¸2,fl)) =2161

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(fl,p)
q¸1ª¸2

¸1œind(fl,p) applyXA||E(”fstate(–), fl|¸1)(–1
(¸1,fl))·2162

applyXA||E(”fstate(–2), ((¸1+1|fl|¸2))(–2
(¸1+1,¸2,fl))2163

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸2)(fi12
(¸2,flÕ)) =2164

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(flÕ,pÕ)
q¸1ª¸2

¸1œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸1)(fi1
(¸1,flÕ))·2165

applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸2))(fi2
(¸1+1,¸2,flÕ))2166

Since –1 (resp. fi1) ends on A (resp. B) creation, it can match fl|¸1 only if ¸1 = (2k1, q1).2167

Thus apply(”fstate(–), fl|¸1)(–1
(¸1,fl)) ”= 0 and ¸1 ª ¸2 implies ¸1 ª ¸≠

2 and apply(”fstate(fi), flÕ|¸1)(fi1
(¸1,flÕ)) ”=2168

0 and ¸1 ª ¸2 implies ¸1 ª ¸≠
2 .2169

Thus,2170

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(fl,p) applyXA||E(”fstate(–), fl|¸2)(–12
(¸2,fl)) =2171

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(fl,p)
q¸1ª¸≠

2
¸1œind(fl,p) applyXA||E(”fstate(–), fl|¸1)(–1

(¸1,fl))·2172

applyXA||E(”fstate(–2), ((¸1+1|fl|¸2))(–2
(¸1+1,¸2,fl))2173

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸2)(fi12
(¸2,flÕ)) =2174

q¸2∞¸+
2

¸2=(2k2+1,q2)œind(flÕ,pÕ)
q¸1ª¸≠

2
¸1œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸1)(fi1

(¸1,flÕ))·2175

applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸2))(fi2
(¸1+1,¸2,flÕ))2176

which gives:2177

P. Civit and M. Potop-Butucaru XX:61

q¸≠
2 ª¸2∞¸+

2
¸2œind(fl,p) applyXA||E(”fstate(–), fl|¸2)(–12

(¸2,fl)) =2178

q¸1ª¸≠
2

¸1œind(fl,p) applyXA||E(”fstate(–), fl|¸1)(–1
(¸1,fl))·2179

q¸≠
2 ∞¸2∞¸+

2
¸2œind(fl,p) applyXA||E(”fstate(–2), ((¸1+1|fl|¸2))(–2

(¸1+1,¸2,fl))2180

q¸≠
2 ∞¸2∞¸+

2
¸2œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸2)(fi12

(¸2,flÕ)) =2181

q¸1ª¸≠
2

¸1œind(flÕ,pÕ) applyXB||E(”fstate(fi), flÕ|¸1)(fi1
(¸1,flÕ))·2182

q¸≠
2 ∞¸2∞¸+

2
¸2œind(flÕ,pÕ) applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸2))(fi2

(¸1+1,¸2,flÕ))2183

By induction hypothesis, applyXA||E(”fstate(–), fl|¸1)(–1
(¸1,fl)) = applyXB||E(”fstate(fi), flÕ|¸1)(fi1

(¸1,flÕ))2184

for every ¸1 ª (2k2 + 1, 1) ª (2k2 + 2, 0) ª (2k3, q3) ª (2k4, q4).2185

So we need to show that for every ¸1 ª ¸≠
22186

¸≠
2 ∞¸2∞¸+

2ÿ

¸2œind(fl,p)
applyXA||E(”fstate(–2), ((¸1+1|fl|¸2))(–2

(¸1+1,¸2,fl)) =

¸≠
2 ∞¸2∞¸+

2ÿ

¸2œind(flÕ,pÕ)
applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸2))(fi2

(¸1+1,¸2,flÕ))

that is, applyXA||E(”fstate(–2), ((¸1+1|fl|¸+
2

))(–2)≠applyXA||E(”fstate(–2), ((¸1+1|fl|¸≠
2 ≠1))(–2) =2187

applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸+
2

))(fi2) ≠ applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸≠
2

≠ 1))(fi2).2188

To do so, we will show that:2189

applyXA||E(”fstate(–2), ((¸1+1|fl|¸+
2

))(–2) = applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸+
2

))(fi2)
applyXA||E(”fstate(–2), ((¸1+1|fl|¸≠

2 ≠1))(–2) = applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸≠
2 ≠1))(fi2)

(2)2190

We note YA = XA \ A and YB = XB \ B. We note Y Õ
A (resp. Y Õ

B) the A-twin (resp.2191

B-twin) of YA (resp. YB) with µA
s (lstate(–1) � XA) (resp. µB

s (lstate(fi1) � XB)) as initial2192

state. We note E Õ the PCA equal to E excepting that its initial state is lstate(–1) � E .2193

We note E ÕÕ
A = Y Õ

A||psioa(E Õ), E ÕÕ
B = Y Õ

B||psioa(E Õ) and E ÕÕ = E ÕÕ
A or E ÕÕ = E ÕÕ

B arbitrarily.2194

Since ¸1 = (2k1, q1), ¸≠
2 ≠ 1 = (2k2, 0), ¸+

2 = (2k2 + 1, 0), we have for every E ÕÕ,2195

applyA||EÕÕ(”fstate(“e(µe(–2))), ((¸1+1|fl|¸+
2

))(“e(µe(–2))) = applyB||EÕÕ(”fstate(“e(µe(fi2))), ((¸1+1|flÕ|¸+
2

))(“e(µe(fi2)))2196

and applyA||EÕÕ(”fstate(“e(µe(–2))), ((¸1+1|fl|¸≠
2 ≠1))(“e(µe(–2)) = applyB||EÕÕ(”fstate(“e(µe(fi2))), ((¸1+1|flÕ|¸≠

2
≠2197

1))(“e(µe(fi2))).2198

Moreover, since –2 (resp. fi2) does not create A (resp. B) we can apply the theorem 1392199

of preservation of probabilistic distribution without creation to show 2.2200

Hence applyXA||E(”fstate(–2), ((¸1+1|fl|¸+
2

))(–2)≠applyXA||E(”fstate(–2), ((¸1+1|fl|¸≠
2 ≠1))(–2) =2201

applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸+
2

))(fi2) ≠ applyXB||E(”fstate(fi2), ((¸1+1|flÕ|¸≠
2

≠ 1))(fi2).2202

This implies that applyXA||E(”fstate(–), fl)(–) = applyXB||E(”fstate(fi), flÕ)(fi) in very case,2203

which ends the induction and the proof.2204

J2205

I Theorem 160 (Implementation monotonicity wrt creation/destruction). Let A, B be PSIOA.2206

Let XA, XB be PCA corresponding w.r.t. A, B.2207

XX:62 Probabilistic Dynamic Input Output Automata

If A tenaciously implements B (A Æten B) then XA tenaciously implements XB (XA Æten2208

XB).2209

Proof. Let fl be a schedule, Since A Æten B it exists a schedule flÕ AB-environment-2210

corresponding with fl s. t. for every E ÕÕ environment of both A and B, for every ¸ = (2k, q),2211

¸Õ = (2kÕ, qÕ) œ ind(fl, p) fl ind(flÕ, pÕ), (¸|fl|¸Õ)Ss
(A,B,EÕÕ)(¸|flÕ|¸Õ).2212

Because of previous lemma 159 for every environment E of both XA and XB, for every2213

¸ = (2k, q), ¸Õ = (2kÕ, qÕ) œ ind(fl, p) fl ind(flÕ, pÕ), (*) (¸|fl|¸Õ)Ss
(XA,XB,E)(¸|flÕ|¸Õ), where p is2214

the A-partitition of fl and pÕ is the B-partitition of flÕ2215

Moreover fl and flÕ are also XAXB-environment-corresponding because of lemma 158.2216

Since the relation (*) is true for for every ¸ = (2k, q), ¸Õ = (2kÕ, qÕ) œ ind(fl, p) fl ind(flÕ, pÕ),2217

it is a fortiori true for every ¸ = (2k, q), ¸Õ = (2kÕ, qÕ) œ ind(fl, p̃) fl ind(flÕ, p̃Õ) where p̃ is the2218

XA-partitition of fl and pÕ is the XB-partitition of flÕ.2219

Hence for every schedule fl it exists a schedule flÕ XAXB-environment-corresponding with2220

fl s. t. for every E environment of both XA and XB, for every ¸ = (2k, q), ¸Õ = (2kÕ, qÕ) œ2221

ind(fl, p̃) fl ind(flÕ, p̃Õ), (¸|fl|¸Õ)Ss
(XA,XB,E)(¸|flÕ|¸Õ) where p̃ is the XA-partitition of fl and pÕ is2222

the XB-partitition of flÕ.2223

This ends the proof.2224

J2225

9 Conclusion2226

We formalised dynamic probabilistic setting. We exhibited the necessary and su�cient2227

conditions to obtain implementation monotonicity w. r. t. Automata creation/destruction.2228

References2229

1 Paul C. Attie and Nancy A. Lynch. Dynamic input/output automata: A formal and2230

compositional model for dynamic systems. 249:28–75.2231

2 Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch, Olivier Pereira,2232

and Roberto Segala. Task-Structured Probabilistic {I/O} Automata. Journal of Computer2233

and System Sciences, 94:63—-97, 2018.2234

3 Ran Canetti, Ling Cheung, Dilsun Kaynar, Nancy Lynch, and Olivier Pereira. Composi-2235

tional security for task-PIOAs. Proceedings - IEEE Computer Security Foundations Sym-2236

posium, pages 125–139, 2007.2237

4 Jing Chen and Silvio Micali. Algorand: A secure and e�cient distributed ledger. Theor.2238

Comput. Sci., 777:155–183, 2019.2239

5 Maurice Herlihy. Blockchains and the future of distributed computing. In Elad Michael2240

Schiller and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on2241

Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017,2242

page 155. ACM, 2017.2243

6 Nancy Lynch, Michael Merritt, William Weihl, and Alan Fekete. A theory of atomic2244

transactions. Lecture Notes in Computer Science (including subseries Lecture Notes in2245

Artificial Intelligence and Lecture Notes in Bioinformatics), 326 LNCS:41–71, 1988.2246

7 Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming.2247

Wiley series in probability and mathematical statistics. John Wiley & Sons, 1 edition, 1994.2248

P. Civit and M. Potop-Butucaru XX:63

8 Alejandro Ranchal-Pedrosa and Vincent Gramoli. Platypus: O�chain protocol without2249

synchrony. In Aris Gkoulalas-Divanis, Mirco Marchetti, and Dimiter R. Avresky, editors,2250

18th IEEE International Symposium on Network Computing and Applications, NCA 2019,2251

Cambridge, MA, USA, September 26-28, 2019, pages 1–8. IEEE, 2019.2252

9 Roberto Segala. Modeling and Verification of Randomized Distributed Real-Time Systems.2253

PhD thesis, Massachusettes Institute of technology, 1995.2254

XX:64 Probabilistic Dynamic Input Output Automata

Figure 13 Projection on PCA

P. Civit and M. Potop-Butucaru XX:65

Figure 14 Simpleton wrapper

XX:66 Probabilistic Dynamic Input Output Automata

Figure 15 Reconstruction of a PCA

Figure 16 CAB corresponding-configuration

P. Civit and M. Potop-Butucaru XX:67

Figure 17 creation substitutivity for PCA. each blue or red box represents a set of actions. The

one blue band ones are output actions for A or B, the one red band ones are input actions for A or

B. The two blue bands ones are input actions for E Õ
that do not come from A or B, the two red

bands ones are ouput actions for E Õ
that do go into A or B. The other squares represents internal

states.

