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1. Introduction

Since its invention in 1982, the LLL lattice reduction algorithm [LLL82] has
found countless applications. In cryptanalysis, the two most prominent applica-
tions of LLL and its generalisations, e.g. Slide [GN08a], BKZ [Sch87, SE94] and
SD-BKZ [MW16], are factoring RSA keys with extra information on the secret key
via Coppersmith’s method [Cop96, NSS+17],and the cryptanalysis of lattice-based
schemes.

After almost 40 years of cryptanalytic applications, predicting and optimising
lattice reduction algorithms remains an active area of research. While we do have
theorems bounding the worst-case performance of these algorithms, those bounds
are asymptotic and not necessarily tight when applied to practical or even cryp-
tographic instances. Reasoning about the behaviour of those algorithms relies on
heuristics and approximations, some of which are known to fail for relevant corner
cases.

Decades after Lenstra, Lenstra, and Lovász gave birth to this fascinating and
lively research area, this state of affairs became a more pressing issue recently.
Motivated by post-quantum security, standardisation bodies, governments and in-
dustry started to move towards deploying lattice-based cryptographic algorithms.
This spurred the refinement of those heuristics and approximations, leading to a
better understanding of the behaviour of these algorithms over the last few years.

Lattice reduction algorithms, such as LLL and BKZ, proceed with repeated local
improvements to the lattice basis, and each such local improvement means solving
the short(est) vector problem in a lattice of a smaller dimension. Therefore, two
questions arise: how costly is it to find those local improvements and what is the
global behaviour as those improvements are applied.

While those two questions may not be perfectly independent, we will, in this
survey, focus on the second one, namely, the global behaviour of such algorithms,
given oracle access for finding local improvements. Our focus on the global be-
haviour is motivated by our intent to draw more of the community’s attention to
this aspect. We will take a particular interest in the behaviour of such algorithms
on a specific class of lattices, underlying the most popular lattice problems to build
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cryptographic primitives, namely the LWE problem and the NTRU problem. We
will emphasise on the approximations that have been made, their progressive re-
finements and highlight open problems to be addressed.

1.1. LWE and NTRU. The Learning with Errors (LWE) problem and the NTRU
problem have proven to be versatile building blocks for cryptographic applica-
tions [HPS96, Reg05, GPV08, BV11]. For both of these problems, there exist ring
and matrix variants. More precisely, the original definition of NTRU is the ring
variant [HPS96] and the matrix variant is rarely considered whereas for LWE the
original definition is the matrix variant [Reg09] with a ring variant being defined
later [SSTX09, LPR10]. In this survey, we generally treat the matrix variants since
our focus is on lattice reduction for general lattices.

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probability dis-
tribution on Z and s be a uniformly random vector in Zn

q. We denote by Ls,χ the
probability distribution on Zn

q × Zq obtained by choosing a ∈ Zn
q uniformly at

random, choosing e ∈ Z according to χ and considering it in Zq, and returning
(a, c) = (a, 〈a, s〉 + e) ∈ Zn

q × Zq.
Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Zn

q × Zq are sam-
pled according to Ls,χ or the uniform distribution on Zn

q × Zq.
Search-LWE is the problem of recovering s from pairs (a, c) = (a, 〈a, s〉 + e) ∈
Zn

q × Zq sampled according to Ls,χ.

We note that the above definition puts no restriction on the number of samples,
i.e. LWE is assumed to be secure for any polynomial number of samples. Further,
since for many choices of n, q, χ solving Decision-LWE allows solving Search-
LWE [Reg09, BLP+13] and vice versa, it is meaningful to just speak of the LWE
problem (for those choices of parameters). By rewriting the system in systematic
form [ACPS09], it can be shown that the LWE problem where each component of
the secret s is sampled from the error distribution χ is as secure as the problem for
uniformly random secrets. LWE with such a secret, following the error distribu-
tion, is known as normal form LWE. We will consider normal form LWE in this
survey. Furthermore, in this note, the exact specification of the distribution χ will
not matter, and we may simply specify an LWE instance by giving the standard
deviation σ of χ. We will, furthermore, implicitly assume that χ is centred, i.e. has
expectation 0. We may also write LWE in matrix form as A · s + e ≡ c mod q. The
NTRU problem [HPS96] is defined as follows:

Definition 2 (NTRU [HPS96]). Let n, q be positive integers, let f , g ∈ Zq[x] be
polynomials of degree n sampled from some distribution χ, subject to f being
invertible modulo a polynomial φ of degree n, and let h = g/ f mod (φ, q). The
NTRU problem is the problem of finding f , g given h (or any equivalent solution
(xi · f , xi · g) for some i ∈ Z).

Concretely, the reader may think of φ = xn + 1 when n is a power of two and χ
to be some distribution producing polynomials with small coefficients. The matrix
variant considers F,G ∈ Zn×n

q such that H = G · F−1 mod q.
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2. Notation & Preliminaries

All vectors are denoted by bold lower case letters and are to be read as column-
vectors. Matrices are denoted by bold capital letters. We write a matrix B as
B = (b0, . . . ,bd−1) where bi is the i-th column vector of B. If B ∈ Rm×d has
full-column rank d, the lattice Λ generated by the basis B is denoted by Λ(B) =

{B · x | x ∈ Zd}. A lattice is q-ary if it contains qZd as a sublattice, e.g. {x ∈ Zd
q |

x · A ≡ 0} for some A ∈ Zd×d′ . We denote by (b?0 , . . . ,b
?
d−1) the Gram-Schmidt

orthogonalisation (GS) of the matrix (b0, . . . ,bd−1). For i ∈ {0, . . . , d − 1}, we
denote the orthogonal projection to the span of (b0, . . . ,bi−1) by πi; π0 denotes “no
projection”, i.e. the identity. We write πv for the projection orthogonal to the space
spanned by vecv. For 0 ≤ i < j ≤ d, we denote by B[i: j] the local projected block
(πi(bi), . . . , πi(b j−1)), and when the basis is clear from context, by Λ[i: j] the lattice
generated by B[i: j]. We write log(·) for the logarithm to base two.

The Euclidean norm of a vector v is denoted by ‖v‖. The volume (or determi-
nant) of a lattice Λ(B) is vol(Λ(B)) =

∏
i ‖b?i ‖. It is an invariant of the lattice. The

first minimum of a lattice Λ is the norm of a shortest non-zero vector, denoted by
λ1(Λ). We use the abbreviations vol(B) = vol(Λ(B)) and λ1(B) = λ1(Λ(B)).

The Hermite constant γβ is the square of the maximum norm of any shortest
vector in all lattices of unit volume in dimension β:

γβ = sup
{
λ2

1 (Λ) | Λ ∈ Rβ, vol(Λ) = 1
}
.

Minkowski’s theorem allows to derive an upper bound γβ = O(β), and this bound
is reached up to a constant factor: γβ = Θ(β).

3. Lattice Reduction: Theory

All lattices of dimension d ≥ 2 admit infinitely many bases and two bases B,B′
generate (or represent) the same lattice if and only if B = B′ ·U for some unimodu-
lar matrix U ∈ GLd(Z). In other words, the set of (full-rank) lattices can be viewed
as the quotient GLd(R)/GLd(Z). Lattice reduction is the task of finding a good rep-
resentative of a lattice, i.e. a basis B ∈ GLd(R) representing Λ ∈ GLd(R)/GLd(Z).

While there exists a variety of formal definitions for what is a good representa-
tive, the general goal is to make the Gram-Schmidt basis B? as small as possible.
Using the simple size-reduction algorithm (see [Ngu10, Alg. 3]), it is possible to
also enforce the shortness of the basis B itself.

It should be noted that since we have an invariant
∏

i ‖b?i ‖ = vol(Λ), we cannot
make all GS vectors small at the same time, but the goal becomes to balance their
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lengths. More pictorially, we consider the log-profile of a basis as the graph of
(`i = log ‖b?i ‖)i=0...d−1 as a function of i. By the volume invariant, the area under
this graph is fixed, and the goal of reduction is to make this graph flatter.

A very strong1 notion of reduction is the Hermite-Korkine-Zolotarev reduction,
which requires each basis vector bi to be a shortest non-zero vector of the remaining
projected lattice Λ[i:d]. The Block-Korkine-Zolotarev reduction relaxes HKZ, only
requiring bi to be close-to-shortest in a local “block”. More formally:

Definition 3 (Hermite-Korkine-Zolotarev and Block-Korkine-Zolotarev [Ngu10]).
The basis B = (b0, . . . ,bd−1) of a lattice Λ is said to be HKZ reduced if ‖b?i ‖ =

λ1(Λ(B[i:d])) for all i < d. It is said BKZ reduced with block-size β and ε ≥ 0 if
‖b?i ‖ ≤ (1 + ε) · λ1(Λ(B[i:min(i+β,d)])) for all i < d.

In practice, the BKZ algorithm [Sch87, SE94] and its terminated variant [HPS11a]
are commonly employed to perform lattice reduction. BKZ is also the algorithm
we will focus on in this survey.

The BKZ algorithm will proceed by enforcing the condition ‖b?i ‖ ≤ (1 + ε) ·
λ1(Λ(B[i:min(i+β,d)])) cyclically for i = 0, . . . , d − 2, 0, . . . , d − 2, 0 . . . , see Algo-
rithm 1. However, each modification of b?i may invalidate the same condition for
j , i. The value of ε, which allows to account for numerical instability, is typically
chosen very close to 0 (say 0.01); we may sometimes omit it and just speak of a
BKZ-β reduced basis. Overall, we obtain the following guarantees for the BKZ
algorithm.

Theorem 4 (BKZ). If a basis B is BKZ-β reduced with parameter ε > 0 it satisfies

• ‖b0‖ ≤
√

(1 + ε) · γβ
d−1
β−1 +1

· vol(Λ(B))1/d (Hermite factor), and

• ‖b0‖ ≤
(
(1 + ε) · γβ

) d−1
β−1
· λ1(Λ(B)) (approximation factor).

Remark. The approximation factor is established in [Sch94], the Hermite factor
bound is claimed in [GN08b]. In [HPS11a] a bound of 2 · √γβ

d−1
β−1 +3 is established

for the terminating variant. In [HPS11b] this bound is improved to K ·
√
β

d−1
β−1 +0.307

for some universal constant K.

Asymptotically, the lattice reduction algorithm with best, known worst-case
guarantees is Slide reduction [GN08a]. We refer to [GN08a] for its formal defi-
nition which requires the notion of duality and only state some of its guarantees
concerning Gram–Schmidt length.

Theorem 5 (Slide reduction [GN08a]). If a basis B is Slide reduced for parameters
β | d and ε > 0 it satisfies

• ‖b0‖ ≤
√

(1 + ε) · γβ
d−1
β−1 · vol(Λ(B))1/d (Hermite factor), and

• ‖b0‖ ≤
(
(1 + ε) · γβ

) d−β
β−1
· λ1(Λ(B)) (approximation factor).

1HKZ should nevertheless not be considered to be the strongest notion of reduction. Indeed HKZ
is a greedy definition, speaking of the shortness of each vector individually. One could go further
and require, for example, Λ[0:d/2] to be a densest sublattice of Λ [Ran53].
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Data: LLL-reduced lattice basis B
Data: block size β
repeat until no more change

for i← 0 to d − 2 do
LLL on B[i:min(i+β,d)];
v← find a short vector in Λ

(
B[i:min(i+β,d)]

)
;

insert v into B at index i and handle linear dependencies with LLL;
end

Algorithm 1: High-level description of the BKZ Algorithm.

In practice, BKZ is not implemented as in Algorithm 1. Most notably, stronger
preprocessing than LLL is applied. A collection of improvements to the algorithm
(when enumeration is used to instantiate the SVP oracle) are collectively known as
BKZ 2.0 [CN11] and implemented e.g. in FPLLL [The19a] and thus Sage [S+19].
Slide reduction is also implemented in FPLLL.

4. Practical Behaviour on Random Lattices

4.1. Shape Approximation. The Gaussian Heuristic predicts that the number |Λ∩
B| of lattice points inside a measurable body B ⊂ Rn is approximately equal to
vol(B)/ vol(Λ). Applied to Euclidean d-balls, it leads to the following prediction
of the length of a shortest non-zero vector in a lattice.

Definition 6 (Gaussian Heuristic). We denote by gh(Λ) the expected first minimum
of a lattice Λ according to the Gaussian Heuristic. For a full rank lattice Λ ⊂ Rd, it
is given by:

gh(Λ) =

(
vol(Λ)
vol(B)

)1/d

=
Γ
(
1 + d

2

)1/d

√
π

· vol(Λ)1/d ≈

√
d

2πe
· vol(Λ)1/d.

where B denotes the d-dimensional Euclidean ball. We also denote by gh(d) the
quantity gh(Λ) of any d-dimensional lattice Λ of volume 1: gh(d) ≈

√
d/2πe. For

convenience we also denote lgh(x) for log(gh(x)).

Combining the Gaussian Heuristic with the definition of a BKZ reduced basis,
after BKZ-β reduction we expect

`i = log
(
λ1(Λ(B[i:min(i+β,d)]))

)
≈ lgh(min(β, d − i)) +

log
(
vol(Λ(B[i:min(i+β,d)]))

)
min(β, d − i)

= lgh(min(β, d − i)) +

∑min(i+β,d)−1
j=i ` j

min(β, d − i)
.

If d � β this linear recurrence implies a geometric series for the ‖b?i ‖. Considering
one block of dimension β and unit volume, we expect `i = (β − i − 1) · log(αβ) for



6 MARTIN ALBRECHT AND LÉO DUCAS

i = 0, . . . , β − 1 and some αβ. We obtain

`0 = (β − 1) · log(αβ) ≈ lgh(β) +
1
β

β−1∑
i=0

i · log(αβ)

= lgh(β) + (β − 1)/2 · log(αβ).

Solving for αβ assuming equality we obtain αβ = gh(β)2/(β−1).
Applying the same argument to a basis in dimension d � β with `i = (d − i −

1) · log(αβ) for i = 0, . . . , d − 1 we get ‖b0‖/vol(Λ)1/d = αd−1
β /α(d−1)/2

β = α(d−1)/2
β =

gh(β)(d−1)/(β−1). This known as Geometric Series Assumption:

Definition 7 (Geometric Series Assumption (GSA) [Sch03]). Let B be a BKZ-β
reduced basis of a lattice of volume V . The Geometric Series Assumption states
that:

log ‖b?i ‖ = `i =
d − 1 − 2i

2
· log(αβ) +

1
d

log V

where αβ = gh(β)2/(β−1).

The above assumption is reasonably accurate in the case β � d (and β � 50),
but it ignores what happens in the last d − β coordinates. Indeed, the last block is
HKZ-reduced, and should therefore follow the typical profile of an HKZ reduced
basis.

Under the Gaussian Heuristic, we can predict the shape `0 . . . `d−1 of an HKZ
reduced basis, i.e. the sequence of expected norms for the vectors b?i . This, as
before, implicitly assumes that all the projected lattices Λi also behave as random
lattices. The sequence is inductively defined as follows:

Definition 8. The (unscaled) HKZ-shape of dimension d is defined by the follow-
ing sequence for i = 0, . . . , d − 1:

hi = lgh(d − i) −
1

d − i

∑
j<i

h j .

This leads to the following refinement of the GSA:

Definition 9 (Tail-adapted Geometric Series Assumption (TGSA)). Let B be a
BKZ-β reduced basis of a lattice of volume V . The Tail-adapted Geometric Series
Assumption states that:

`i =
d − 1 − 2i

2
· logαβ + s if 0 ≤ i ≤ d − β,

`i = hi−(d−β) + `d−β − h0 if d − β ≤ i < d.

where s ∈ R is the scaling term such that
∑
`i = log V .

We plot an example for a basis after BKZ reduction under the GSA and the
TGSA in Figure 1 to illustrate their respective shapes. In Figure 1 we chose d = 2 β
to highlight the difference between the two models. As can be seen from that figure,
the first few indices of the HKZ shape drop slower than predicted by the GSA and
the last indices drop faster.
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Figure 1. GSA and TGSA for d = 1, 000 and β = 500.
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Appealing to the Gaussian Heuristic, we may also replace √γβ, i.e. worst-case
bounds, with gh(β), i.e. average-case expectations, in Theorems 4 and 5. This
suggests the following heuristics.

Definition 10 (Estimates for block reductions). If a basis B is BKZ-β reduced for
50 � β � d we expect

‖b0‖ /min
{ √

αβ
d−1 · vol(Λ(B))1/d (Hermite factor)
αd−1
β · λ1(Λ(B)) (approximation factor)

If a basis B is Slide reduced with parameter β we expect

‖b0‖ /min


√
αβ

d−1 · vol(Λ(B))1/d (Hermite factor)
α

d−β
β · λ1(Λ(B)) (approximation factor)

The cases over which the minimum is taken define two regimes: the “Hermite
regime” and the “approximation regime”.

If the lattice is random, then λ1 ≈ gh(Λ) and we expect to be in the Hermite
regime; the approximation regime is only triggered by the presence of an unusually
short vector. In the Hermite regime we can replace / by ≈ and we will discuss what
happens in the approximation regime further in Section 5.4.

We note that the literature usually writes the above approximate equations in
terms of the so-called root-Hermite factor δβ := (‖b0‖/vol(Λ)1/d)

1/d
. We can there-

fore establish that δβ =
√
αβ

1−1/d ≈
√
αβ. We note that making this approxi-

mation or not leads to the “−1 discrepancy” blamed on [ADPS16] in a footnote
of [AGVW17]: the analysis of [ADPS16] simply did not apply this approximation
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Figure 2. log(αβ).
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2 log(δβ) with δβ as in (1)
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Experimentally observed slopes of sixteen lattices compared with δβ as predicted
in (1). The input lattices are q-ary lattices in dimension d = 170 with q = 220 − 3;

the experimental log(αβ) are established using a least-square fit of the log
Gram–Schmidt vectors.

step. In [Che13] an expression for δβ is given as

(1) lim
β→∞

δβ =

(
β

2πe
· (π β)

1
β

) 1
2(β−1)

assuming d � β. Experimentally, (1) also holds with good accuracy for β > 50
and typical d used in cryptography (say, d ≥ c · β for some c > 1). We compare
experimentally observed log(αβ) with the right hand side of (1) in Figure 2.

4.2. Simulators. While the (T)GSA provides a first rough approximation of the
shape of a basis, it is known to be violated in small dimensions [CN11]. Indeed,
it also does not hold exactly for larger block sizes when d is a small multiple of
β, the case most relevant to cryptography. Furthermore, it only models the shape
after the algorithm has terminated, leaving open the question of how the quality
of the basis improves throughout the algorithm. To address these points [CN11]
introduced a simulator for the BKZ algorithm which is often referred to as the
“CN11 simulator”. It takes as input a list of `i representing the shape of the input
basis and a block size β. It then considers blocks `i, . . . , `i+β−1 of dimension β,
establishes the expected norm of the shortest vector in this block using the Gaussian
Heuristic and updates `i. To address that the Gaussian Heuristic does not hold for
β < 50, the simulator makes use of a precomputed list of the average norms of
a shortest vector of random lattices in small dimensions. The simulator keeps
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Figure 3. CN11 simulator output for β = 500 on random q-ary
lattice in dimension d = 1, 500.

` i

0 200 400 600 800 1,000 1,200 1,400
i

` i
−
` i
−

1

`i − `i−1

on going until no more changes are made or a provided limit on the number of
iterations or “tours” is reached.

The simulator is implemented e.g. in FPyLLL [The19b] and thus in Sage. In
Figure 3 we plot the output of the simulator for a basis in dimension 1,500 with
block size 500 (solid line). We also plot the derivative (dotted line) to illustrate that
the GSA also does not hold for i < d − β. In fact, we observe a ripple effect, with
the tail-shape exhibiting a damped echo toward the left of the basis. The TGSA is
in some sense only a first-order approximation, only predicting the first ripple.

A further simulation refinement was proposed in [BSW18]. Building upon [YD17],
the authors confirmed that the CN11 simulator can be pessimistic about the norm
of the first vector output by BKZ. This is because it assumes the shortest vector
in a lattice always has the norm that is predicted by the Gaussian Heuristic. By,
instead, modelling the norm of the shortest vector as a random variable, the au-
thors were able to model the “head concavity” behaviour of BKZ after many tours
and in small block sizes as illustrated in Figure 4. They also proposed a variant of
the BKZ algorithm (pressed-BKZ) that is tailored to exploit this phenomenon. For
example, they manage to reach a basis reduction equivalent to BKZ-90 while only
using block size 60. The authors note, though, that the head concavity phenome-
non does not significantly affect cryptographic block sizes. Indeed, exploiting luck
on this random variable seems to only be interesting for small block sizes.

4.3. q-ary Lattices and the Z-shape. Recall that both NTRU and LWE give rise
to q-ary lattices. These lattices always contain the vector (q, 0, . . . , 0) and all its
permutations. These so-called “q-vectors” can be considered short, depending on
the parameters of the instance being considered, and might be shorter than what we
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Figure 4. Head concavity.
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i
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Experiment
CN11 simulator [CN11]
BSW18 simulator [BSW18]

Dimension d = 2, 000 and block size β = 45 after 2,000 tours, reproduced
from [BSW18].

would expect to obtain following predictions such as the GSA or the TGSA. Fur-
thermore, some of those q-vectors naturally appear in the typical basis construction
of q-ary lattices. Even when this is not the case, they can be made explicit by com-
puting the Hermite Normal Form.

To predict lattice reduction on such bases, we may observe that one of the guar-
antees of the LLL algorithm is that the first vector b0 never gets longer. For certain
parameters this can contradict the GSA. In fact, if b∗i does not change for all i < j,
then b∗j cannot become longer either, which means that after the reduction algo-
rithm has completed we may still have many such q-vectors at the beginning of our
basis, unaffected by the reduction. It is therefore tempting to predict a piecewise
linear profile, with two pieces. It should start with a flat line at log q, followed by
a sloped portion following the predicted GSA slope.

In fact, the shape has three pieces, and this is easy to argue for LLL, since LLL is
a self-dual algorithm.2 This means in particular that the last Gram-Schmidt vector
cannot get shorter, and following the same argument, we can conclude that the
basis must end with a flat piece of 1-vectors. All in all, the basis should follow a
Z-shape, and this is indeed experimentally the case [How07, Wun19], as depicted
in Figure 5, where we picked a small q to highlight the effect. We shall call such a
prediction [DKL+18, Wun19] the ZGSA.

It is tempting to extend such a ZGSA model to other algorithms beyond LLL and
this has been used for example in [DKL+18]. We might also attempt to refine it to

2This is not entirely true, as the size-reduction condition is not self-dual, but the constraints on
the Gram-Schmidt vectors themselves are, which is enough for our purpose.
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Figure 5. GSA and q-ary lattice contradiction.
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Norms of Gram-Schmidt vectors of 180 dimensional random q-ary lattices with
q = 17 and volume q80. The grey, blurry lines plot `i for LLL reduced bases of 16

independent lattices.

a ZTGSA model, where we put an HKZ tail just before the flat section of Gram–
Schmidt vectors of norm 1. However this is a questionable way of reasoning,
because BKZ, unlike LLL, is not self-dual. However, it is worth noting that it
seems possible to force BKZ to behave in such a way, simply by restricting BKZ
to work on the indices up i < j, where j is carefully calibrated so that ‖b?j ‖ ≈ 1.
This is not self-dual, but up to the tail of BKZ, it would produce a Z-shape as well.

Yet, we could also let BKZ work freely on the whole basis, and wonder what
would happen. In other words, we may ask whether it is preferable to apply such
a restriction to BKZ or not. A natural approach to answering this question would
be to simply use the CN11 simulator, however, it appears that the Z-shape is very
poorly simulated. Indeed, while the simulator can easily maintain q-vectors when
they are shorter than the one locally predicted by the Gaussian Heuristic, the phe-
nomenon on the right end of the Z seems more complicated: some 1-vectors are
replaced by Gram-Schmidt vectors of norm strictly less than 1, but not all, see Fig-
ure 6. Thus, we see the “z-shape” known from the literature but with the addition
of a kink in the tail block.

Simulating or predicting the behaviour of BKZ on q-ary lattices is still open,
but it would allow addressing the question if it can be exploited. A partial answer
seems obtainable by defining a specialised variant of the Gaussian heuristic that
takes orthogonal sublattices into account. While we are not certain that a deeper
study of this phenomenon would lead to cryptanalytic advances, it is nevertheless
quite frustrating to have to resort to Z(T)GSA without a perfect understanding of
the behaviour of lattice reduction on this class of lattices.
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Figure 6. BKZ behaviour on q-ary lattice bases with small q.
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Norms of Gram-Schmidt vectors (grey, blurry lines) after BKZ-65 reduction of
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4.4. Random Blocks? The heuristic analysis of BKZ is based on the assumption
that each sublattice considered by the algorithm “behaves like a random lattice”
(strong version), or at least that the expectation or distribution of its shortest vector
is the same as for a random lattice (weak version).

More formally, we would have to define the notion of a random lattice, invoking
the Haar measure. However, we can nevertheless interrogate this heuristic without
going into those details here. Indeed, as we can see in Figure 2, the predicted slopes
below dimension 30 are far from the actual behaviour. In fact, the predictions for
small block sizes are nonsensical as they predict a flatter slope as β decreases below
30 and even an inversion of the slope below block size ≈ 10.

While we can observe the prediction and the observation converging for block
sizes above 50 what level of precision do we attribute to those predictions? Given
the phenomena perturbing the GSA surveyed in this article (heads, tails, ripples),
how pertinent is the data from Figure 2? Pushing experimental evidence a bit
further would be reassuring here: while we do not expect surprises, it would be
good to replace this expectation with experimental evidence.

But more conceptually, we note that making the strong version of the heuristic
assumption (each block behaves like a random lattice) is self contradictory. Indeed,
the model leads to conclude that the shape is essentially a line, at least when β � d
and the considered block B[κ:κ+β] is far from the head and the tail, i.e. κ � β,
d − κ � β. But this block, like all other blocks, is fully HKZ-reduced: since b?κ+i is
a shortest vector of Λ(B[κ+i:κ+i+β]), it is also a shortest vector of Λ(B[κ+i:κ+β]). Yet,
HKZ-reduced bases of random lattices have a concave shape not a straight slope.
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We do not mean to discredit the current methodology to predict attacks on
lattice-based schemes; current evidence does suggest predictions such as (5) are
reasonably precise. In particular, the above argument does not rule out the weak
version of the hypothesis: the shortest vector of those non-random blocks may still
have an expected length following the Gaussian Heuristic. In fact, for random lat-
tices, it is known that the length of the shortest vector is increasingly concentrated
around the Gaussian Heuristic; there may be increasingly fewer lattices that fall far
from it, which may explain why bias in the distribution of the lattices themselves
does not translate to a bias on the length of its shortest vector.

However, we wish to emphasise that the question of the distribution of those
local blocks is at the centre of our understanding of lattice reduction algorithms
but remains open. While even formulating specific yet relevant questions seems
hard, this phenomenon suggests itself as a challenging but pressing area to study.

5. Behaviour on LWE Instances

We can reformulate the matrix form of the LWE equation c−A · s ≡ e mod q as
a linear system over the Integers as:(

qI −A
0 I

)
·

(
∗

s

)
+

(
c
0

)
=

(
e
s

)
or homogeneously as

(2) B =

qI −A c
0 I 0
0 0 t

 , B ·

∗s
1

 =

es
t


where t is some chosen constant and ∗ stands in for an arbitrary vector. In other
words, there exists an element in the lattice spanned by B with expected norm√

(n + m) · σ2 + t2. Let d = n + m + 1. If we have
√

(n + m) · σ2 + t2 < gh(Λ(B)) ≈√
d

2π·e · q
n/d then B admits an unusually short vector.

Remark. We note that when t - q then Λ (B) is not a q-ary lattice as in this case
(0, . . . , 0, q)T < Λ. The reader may think t = 1 which is commonly used in practice
albeit being slightly worse compared to t = σ which maximises λ2(Λ)/λ1(Λ) and
which makes the problem easier (see below).

5.1. Kannan Embedding. More generally, we can consider this approach to solv-
ing LWE as solving an instance of the bounded distance decoding problem (BDD)
using a solver for the unique shortest vector problem.

Definition 11 (α-Bounded Distance Decoding (BDDα)). Given a lattice basis B, a
vector t, and a parameter 0 < α < 1/2 such that the Euclidean distance dist(t,B) <
α · λ1(B), find the lattice vector v ∈ Λ(B) which is closest to t.

Remark. In our definition above we picked α < 1/2 which guarantees a unique
solution. The problem can be generalised to 1/2 < α ≤ 1 where we expect a
unique solution with high probability.
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LWE with a fixed number of samples can be viewed as an instance of BDD
(with overwhelming probability over the choice of the samples). Asymptotically,
for any polynomially-bounded γ ≥ 1 there is a reduction from BDD1/(

√
2 γ) to

uSVPγ [BSW16]. The unique shortest vector problem (uSVP) is defined as fol-
lows:

Definition 12 (γ-unique Shortest Vector Problem (uSVPγ)). Given a lattice Λ such
that λ2(Λ) > γ · λ1(Λ) find a nonzero vector v ∈ Λ of length λ1(Λ).

This reduction is essentially the embedding technique, due to Kannan [Kan87],
presented at the beginning of this section, combined with some tricks to improve
the parameters of the reduction. For the remaining of this section, we will discuss
how strong we require lattice reduction to be to find a unique shortest vector which
can then be used to recover the secret values of an LWE instance.

5.2. Asymptotic Handwaving. Recall that in Definition 10 two regimes are de-
fined, the Hermite regime and the approximation regime. Now, consider decision
LWE. On the one hand, when c is just a random vector then the lattice spanned
by B is a random q-ary lattice and we are in the Hermite regime, i.e. λ1(Λ(B)) ≈
gh(Λ(B)). On the other hand, when c is formed as in LWE then Λ(B) contains
(e, s, t) and we expect λ1(Λ(B)) = ‖(e, s, t)‖. Now, if this is sufficiently smaller than
gh(Λ(B)) then we are in the approximation regime. Thus, one way to distinguish
LWE from uniform is to detect the “phase transition” between the two regimes, the
point when the approximation regime “kicks in”, i.e. when

√
αβ

2d−2 · λ1(Λ(B)) <
√
αβ

d−1 · vol(Λ(B))1/d for BKZ and
√
αβ

2d−2β · λ1(Λ(B)) <
√
αβ

d−1 · vol(Λ(B))1/d for Slide reduction.

Rearranging we obtain the following success conditions

λ1(Λ(B)) <
√
αβ

1−d · vol(Λ(B))1/d with BKZ and(3)

λ1(Λ(B)) <
√
αβ

2β−d−1 · vol(Λ(B))1/d with Slide reduction(4)

for solving decision LWE in block size β.

5.3. The 2008 Estimates. In [GN08b] the authors performed experiments in small
block sizes to establish when lattice reduction finds a unique shortest vector. The
authors considered two classes of semi-orthogonal lattices and Lagarias-Odlyzko
lattices [LO83] which permit to estimate the gap λ2(Λ)/λ1(Λ) between the first and
second minimum of the lattice. For all three families, [GN08b] observed that LLL
and BKZ seem to recover a unique shortest vector with high probability whenever
λ2(Λ)/λ1(Λ) ≥ τβ · δ

d
β, where τβ < 1 is an empirically determined constant that

depends on the lattice family, algorithm and block size used.
In [AFG14] an experimental analysis of solving LWE based on the same esti-

mate was carried out for lattices of the form (2). As mentioned above, this lat-
tice contains an unusually short vector v = (eT , sT , t)T of squared norm ‖v‖2 =

‖s‖2 +‖e‖2 + t2 and we expect λ1(Λ)2 = ‖v‖2 Thus, when t2 ≈ ‖e‖2 +‖s‖2 resp. t = 1
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this implies λ1(Λ) ≈
√

2 (n + m) · σ resp. λ1(Λ) ≈
√

n + m · σ. The second min-
imum λ2(Λ) is assumed to correspond to the Gaussian Heuristic for the lattice (a
more refined argument would consider the Gaussian Heuristic of Λ′ = πv(Λ), but
these quantity are very close for relevant parameters). Experiments in [AFG14]
using LLL and BKZ with small block sizes (5 and 10) were interpreted to matched
the 2008 estimate, providing constant values for τβ for lattices of the form (2), de-
pending on the chosen algorithm, for a 10% success rate. Overall, τβ was found to
lie between 0.3 and 0.4 when using BKZ.

We note that we may interpret this observation as being consistent with Inequal-
ity (3).

5.4. The 2016 Estimate. The 2008 estimates offer no insight into why the algo-
rithm behaves the way it does but only provide numerically established constants
that seems to somewhat vary with the algorithm or the blocksize. In [ADPS16] an
alternative estimate was outlined. The estimate predicts that (e, s, t) can be found if

(5)
√
β/d · ‖(e, s, t)‖ ≈

√
β · σ2 < δ

2β−d−1
β · vol(Λ(B))1/d,

under the Geometric Series Assumption (until a projection of the unusually short
vector is found). The right hand side of the inequality is the expected norm of the
Gram–Schmidt vector at index d − β (see Definition 7). The left-hand side is an
estimate for ‖πd−β ((e, s, t)) ‖. If the inequality holds then πd−β ((e, s, t)) is a shortest
vector in B[d−β:d] and will thus be found by BKZ and inserted at index d − β. This
is visualised in the top figure of Figure 7. Subsequent calls to an SVP oracle on
B[d−2β+1:d−β+1] would insert πd−2β+1 ((e, s, t)) at index d − 2β + 1 etc.

The 2016 estimate was empirically investigated and confirmed in [AGVW17].
The authors ran experiments in block sizes up to 78 and observed that a BKZ man-
aged to recover the target vector with good probability as predicted in [ADPS16].
An example is given in the bottom figure of Figure 7. Furthermore, they showed
(under the assumption that vectors are randomly distributed in space) that once
BKZ has set b?i = πd−β ((e, s, t)), calls to LLL are expected to suffice to recover
(e, s, t) itself.

Comparing Inequality (5) with Inequalities (3) and (4) we note that it more
closely resembles the prediction for Slide reduction rather than for BKZ, despite
the rationale and experimental evidence being obtained for BKZ. This suggests
that the average behaviour of BKZ and Slide reductions in the approximation fac-
tor regime is roughly the same, despite different worst-case bounds being proven.
Furthermore, we note that Inequality (5) gains an additional factor of

√
β/d com-

pared with Inequality (4).

5.5. Further Refinements. On the other hand, the authors of [AGVW17] also
observed that the algorithm behaves somewhat better than predicted. That is, they
managed to solve the underlying instances using block sizes somewhat smaller
than required to make Inequality (5) hold.

This is attributed to a “double intersection” in [AGVW17]. As illustrated in
Figure 7, the projection of the target vector and the norms of the Gram-Schmidt
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Figure 7. 2016 Estimate
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Gram-Schmidt lengths is taken over 16 BKZ-β reduced bases of random q-ary
lattices, i.e. without an unusually short vector. Reproduced from [AGVW17].

vectors may intersect twice: once at index d − β and once close to index d, say at
index d − o for some small o. Applying the same reasoning as above, we expect
πd−o ((e, s, t)) to be inserted as b?d−o. Thus, we expect a subsequent SVP call at
index d − β − o to recover and insert πd−β−o ((e, s, t)). Alternatively, an SVP call in
dimension β − o at index d − β could now recover πd−β ((e, s, t)) since this vector
is ∈ Λ[d−β:d−o]. However, it is noted in [AGVW17] that this “double intersection”
phenomenon does not occur for typical cryptographic parameters.
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Figure 8. uSVP Prediction v Observation
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Reproduced from [DSDGR20].

Another source of imprecision when applying Inequality (5) is that it assumes
the GSA (before an unusually short vector is found), replacing this assumption
with a BKZ simulator produces refined estimates.

But there seems to be another subtle phenomenon at play. In [DSDGR20] it
is noted that, for very small blocksizes β, the prediction of [AGVW17] is on the
contrary too optimistic. The reason is that, while the projected vector πd−β ((e, s, t))
may be detected with good probability at position d− β, we require a bit more luck
to lift correctly, i.e. to recover the full vectors (e, s, t) from its projection. Instead,
a probabilistic model is proposed, to account for both initial detection and lifting,
and this prediction seems to fit very well with experiments, see Figure 8.
Balancing costs. It should be mentioned that just running BKZ is not the optimal
strategy to solve uSVP instances. Indeed, having spent O(d) many SVP-β calls
pre-processing the whole basis, this strategy hopes for the last such SVP call to
essentially produce the solution. An improved strategy instead balances the cost of
the pre-processing step and the final search step. Therefore, it could, for example,
be natural to do a last call to SVP-β′ for β′ slightly larger than β; this has for
example been implemented with sieving in [ADH+19] to break Darmstadt LWE
challenges [FY15] and was already standard in the enumeration literature [LN13].

The optimal strategy is, therefore, more difficult to predict and hardness esti-
mates often rely on scripts that numerically optimise the various parameters of
the algorithm based on assumptions such as the relative costs of running SVP in
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slightly larger or smaller dimension, the number of calls to an SVP oracle required
to achieve a given root-Hermite factor, etc. To avoid this complication, some de-
signers instead opt for accounting only for the cost of a single call to SVP-β when
even considering several tours of BKZ-β (a simplification introduced as the ‘core
SVP hardness’ in [ADPS16]). In this model, the issue of balancing costs between
β′ and β does not arise, i.e. β′ = β is optimal and the attack cost is bounded from
below by the cost of one call to SVP-β on a BKZ-β reduced basis.

6. Behaviour on NTRU Instances

To solve NTRU we may consider the lattice

Λ
q
H =

{
(xT , yT )

T
∈ Z2n s.t. H · x − y = 0 mod q

}
.(6)

where H is the matrix associated with multiplication by h modulo φ, i.e. the columns
of H are spanned by the coefficients of xi · h mod φ for i = 0, . . . , n− 1. The lattice
Λ

q
H is spanned by

B =

(
qI H
0 I

)
and contains a short vector (f, g). This can be observed by multiplying the basis by
(f, ∗) from the right, where ∗ represents the vector performing modular reduction
modulo q and where f resp. g is the coefficient vector of f resp. g. If ‖(f, g)‖ is
much smaller than gh(Λq

H) ≈
√

n/(π e) ·
√

q then this lattice contains an unusually
short vector. Indeed, it also contains all vectors corresponding to “rotations” of
( f , g), i.e. (xi · f mod φ, xi · g mod φ) for i = 0, . . . , n − 1 and their integral linear
combinations. In other words, the NTRU lattice contains a dense sublattice.

6.1. NTRU as uSVP. Considering NTRU as the problem of recovering an unusu-
ally short vector in the NTRU lattice was already done in the initial NTRU pa-
per [HPS98]. Also, the original NTRU paper [HPS98] also discussed an observa-
tion from [CS97] (analysing [HPS96]) that an attacker does not need to recover f , g
exactly but that any sufficiently small multiple of f suffices to break the scheme.
For the uSVP case the hardness of the problem was related to gh(Λ)/λ1(Λ) where
λ1(Λ) = ‖(f, g)‖. When considering message recovery instead of key recovery a re-
lated quantity is considered. We may a posteriori reinterpret this as framing attacks
on NTRU in the framework of the “2008 estimate” (see Section 5.3) but replacing
λ2(Λ) by gh(Λ). This approach became a common way of reasoning about NTRU
lattices, see e.g. [DDLL13]. Yet, the validity of this approach is doubtful as in
NTRU lattices we have λ2(Λ) = λ1(Λ) in contrast to the lattices arising for LWE.
In this context, we note that the early study of May and Silverman [MS01] mas-
saged the lattice to decrease the NTRU lattice dimension while also eliminating all
but one of the NTRU short vectors.

The 2016 estimate (see Section 5.4) sidesteps this discussion on whether λ2(Λ)
matters, as the heuristic reasoning here does not involve this quantity. This estimate
also ended up being used for estimating the hardness of breaking NTRU [NTR,
Section 6.4.2]. More recently the framework proposed in [DSDGR20] allowed to
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revisit the tricks of May and Silverman [MS01], and it was concluded that this trick
was slightly counterproductive. Indeed, the probabilistic model permits to account
for the cumulated probabilities of detecting any of those short vectors in the full
lattice, and this is slightly easier than finding the (up to signs) unique short vector
of the massaged lattice.

Indeed, another line of works showed that the presence of many short vectors can
make the problem exponentially easier, at least in some “overstretched” regimes.
These works [GS02, ABD16, CJL16, KF17] seem to suggest that simple encryp-
tion schemes should not be affected at all but we will argue that the exact crossover
point remains to be determined.

6.2. Attacks on Overstretched NTRU. In this last section, we cover an attack
that exploits the fact that NTRU lattices hide not one but many unexpectedly short
vectors, yielding an unexpectedly dense sublattice. If the right conditions are met
then it turns out that this dense sublattice is easier to uncover than the individual
vectors spanning it.

This, however, is a fairly a-posteriori view of this discovery. At first, this weak-
ness was associated not primarily with a density property, but more with an alge-
braic structure property: namely, the presence of subfields in NTRU. The idea of
exploiting this structure had been considered as soon as 2002, by Gentry, Szydly,
Jonsson, Nguyen and Stern [GS02, Sec. 6]; but it was quickly abandoned: yes,
NTRU keys can be normed-down to a subfield and still yield valid NTRU keys, but
this trade-off of dimension versus approximation factor did not seem advantageous
for the actual NTRUEncrypt parameters.

When Bai and ourselves explored this idea again [ABD16] (independently [CJL16]
also explored a closely related idea), the situation was rather different: NTRU was
not just a single scheme with a few parameter sets, it was a parameterised assump-
tion with increasing popularity for building homomorphic encryption schemes. In
these newly considered regimes the trade-off mentioned above seemed on the con-
trary quite advantageous. We, therefore, claimed asymptotic improvements over
the natural lattice reduction attack, which – depending on the parameters – could
decrease the costs of the attacks from exponential to sub-exponential or even poly-
nomial.

This claimed improvement was soon challenged by Kirchner and Fouque [KF17].
Our mistake was not the complexity of our new algorithm but rather the fact that
the complexity of straight-up lattice reduction attacks was much better than ex-
pected on such overstretched NTRU instances. They claimed that the old attack
should behave as well as the new one, and – with minor performance-enhancing
tricks – were able to demonstrate this in practice. In conclusion, the new algorithm
we invented was completely useless, and old algorithms performed just as well,
if not better, and were more generally applicable. We found solace in the belief
that the results of Kirchner and Fouque may not have been discovered without our
algebraic detour.

6.2.1. The Subfield Attack. The key idea of this attack is as follows: the relation
h = f /g mod q between the public key h and the private key ( f , g) can be normed
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down to a smaller field; furthermore, if f and g are short enough, their norms in
a smaller field will also be somewhat short. Therefore, one may hope to attack
the problem in a subfield and lift back the solution. We note that in the case of
cyclotomic number fields, there is always at least one non-trivial sub-field, namely
the maximal totally real subfield K+, of relative rank r = [K : K+] = 2. In the case
of power of two cyclotomic number fields (n = 2k), one chooses the subfield to
tune r to any power of 2 less than n. On the contrary, this approach is not directly
applicable to fields as chosen in [BCLv19].

In more detail, let K be a number field (K = Q(x)/(φ(x)) where φ comes from
Definition 2), and for simplicity let us assume that K is a cyclotomic number field.
Let L be a subfield with relative rank r = [K : L], and let N denote the relative norm
N : K→ L, defined by N(x) =

∏
a a(x) where a ranges over all the automorphisms

of K that are identity over L. Defining f ′ = N( f ), g′ = N(g) and h′ = N(h), we
note that h′ = f ′/g′ mod q still holds over L. Furthermore, if f , g have lengths
roughly

√
n · σ, we expect f ′, g′ to have lengths roughly (

√
n · σ)r.

On the other hand, the dimension of the normed-down NTRU lattice is 2n/r
and its volume qn/r. The original article [ABD16] reasons more formally using
the approximate factor bound of lattice reduction, however here we will give a
simplified and more heuristic exposition. Roughly, using either the 2008 or the
2016 estimate, we expect to solve this instance using a block size β such that:

(
√

n · σ)r
· δ2n/r

β ≤
√

q.

For σ = poly(n), the subfield attack [ABD16] obtains the asymptotic success con-
dition

β

log β
= Θ

(
n

r log q − r2 log n

)
assuming r log q − r2 log n > 0.

Parameterising the attack to not use a subfield (r = 1) should therefore re-
quire β = Θ̃(n/ log q) while choosing a relative rank r = Θ(log q/ log n) leads
to β = Θ̃(n/ log2 q). For schemes that use large moduli such as fully homomorphic
schemes [LTV12, BLLN13] or candidate cryptographic multi-linear maps [GGH13],
this therefore makes a significant difference; both in practice and in theory.
Full secret reconstruction. It should be noted that finding f ′, g′ does not lead to a
full recovery of the original secret. However, we can still reconstruct a small mul-
tiple α( f , g) of the original secret key ( f , g), by constructing ( f ′, g′ · h/h′). This is
typically enough to break encryption schemes. If we insist on recovering the origi-
nal key ( f , g), this intermediate information is still helpful. For example, repeating
the attack with a rerandomized initial basis, we may recover the exact lattice gen-
erated by the secret key ( f , g)T · OK. Recovering ( f , g) is now much easier; it can
be done with an algorithm for the Principal Ideal Problem, and this is classically
sub-exponential time [BEF+17], and quantumly polynomial time [BS16].

6.2.2. The Dense Sublattice Attack. We will now explain why the above subfield
attack was a detour to the discovery of a much more general result by Kirchner and
Fouque [KF17]. In a sense, LLL and BKZ are rather clever algorithms and what
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we can try to make more visible to them via algebraic massaging of the lattice
at hand was already geometrically obvious to them: there is a particularly dense
sublattice to be found inside NTRU instances. This version of the attack is therefore
not prevented by choosing a number field as in [BCLv19], or even by going for a
matrix version of NTRU without any underlying number field.

To prove that LLL can indeed uncover this hidden dense sublattice, let us first
go back to the (worst-case) argument to prove that LLL can solve a unique-SVP
instance when λ2(Λ)/λ1(Λ) > (4/3 + ε)d/2.

It follows from the inequality λ1(Λ) ≥ mini ‖b?i ‖, which is obtained by writing
a shortest vector v as v =

∑
vib?i and noting that v must be longer than b?j where j

is the largest index such that v j , 0. From there, we argue that

‖b1‖ ≤ (4/3 + ε)d/2 min
i
‖b?i ‖ ≤ (4/3 + ε)d/2λ1(Λ) < λ2(Λ).

Recall that we can make an even simpler case that LLL or BKZ must distinguish
this lattice from random without having to go through the full argument. Indeed, let
us simply note that for a random lattice we expect a particular shape for the basis,
say following ZGSA or ZTGSA. But for a large enough β, the prediction for the
shape becomes incompatible with the constraint that λ1(Λ) ≥ mini ‖b?i ‖. In such
cases, LLL and BKZ must, therefore, behave differently, and this is easily seen by
just looking at the shape: the NTRU lattice has been distinguished from random.

The analysis of Kirchner and Fouque follows essentially from the same kind of
argument, generalising the invariant λ1(Λ) ≥ mini ‖b?i ‖. Here, we can read “λ1(Λ)”
as the determinant of the densest 1-dimensional sublattice; a k-dimensional variant
of the inequality was given by Pataki and Tural.

Lemma 13 (Lemma 1 from [PT08]). Let Λ be a d-dimensional lattice, and b0, . . .bd−1
be any basis of Λ, and let k ≤ d be a positive integer. Then, for any k-dimensional
sublattice Λ′ ⊂ Λ, it holds that:

vol
(
Λ′

)
≥ min

J

∏
j∈J

‖b?j ‖

where J ranges over all subsets of {0, . . . , d − 1} of size k.

We will now apply this to the dense sublattice Λ′ generated by the n short vectors
out of the d = 2n dimensions of the NTRU lattice. This gives a (log) left-hand-side
of log vol (Λ′) ≤ n log R where R = ‖(f, g)‖ ≈

√
dσ (and in fact we can argue that

log vol (Λ′) ≈ n log R). For the right-hand side, the minimum is reached by the n
last indices J = {n, n + 1, . . . 2n − 1}.

Pictorially, the usual 1-dimensional argument forbids the last Gram-Schmidt
vector to go above R; if the heuristically predicted shape contradicts this rule, then
the shortest vector must have been detected somehow. The multi-dimensional ver-
sion of Pataki and Tural instead forbids the black-hashed region to have a surface
larger than the grey-filled region in Figure 9.

We make our prediction under the Z-shape model, denoting s = logαβ the
slope of the middle section, between indices n − z and n + z. The inaccura-
cies of this model discussed in Section 4.3 should be asymptotically negligible,
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Figure 9. The Pataki-Tural constraint on reduced NTRU bases

as we will be interested in regimes for which β = o(z). The picture makes it
also easy to compute the right-hand side of the inequality. It is given by the
surface of a right-angled triangle of height h = 1

2 log q. Its surface is given by
S = 1

2 hz = 1
2 h2/s = (log q)2/(8 logαβ). We therefore predict that the Pataki-Tural

inequality would be violated when nR = S , that is: logαβ = log2 q/(8nR). Noting
that logαβ = Θ( log β

β ), we conclude that the lattice reduction is going to detect the
dense sublattice when

β

log β
= Θ

(
nR

log2 q

)
.

The required blocksize is therefore β = Θ̃(n/ log2 q) as it was for the subfield
attack, however a more careful analysis of the hidden constants [KF17] reveals that
going to the subfield is slightly unfavorable.

6.2.3. Concrete Behaviour. While we kept the above development asymptotic for
simplicity, it is not hard to keep track of the hidden constants – or even to run
simulations – and to predict precisely when the Pataki-Tural lemma would be vi-
olated. However, even such a methodology would only lead to an upper bound
on the cost of this attack and not an estimate. Indeed, this methodology would
essentially correspond to the one of Section 5.2 for LWE-uSVP; it is based on an
impossibility argument, but it does not explain or predict the phenomenon, unlike
the 2016 estimate.

We, therefore, emphasise this gap as our last and foremost open problem: give
a more detailed explanation of how BKZ detects the hidden sub-lattice, leading
to a heuristic estimate on when the phenomenon happens, confirmed by exten-
sive experiments. A possible answer may be found by extending the probabilistic
analysis of [DSDGR20], this time accounting for more than the n shortest vectors
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(xi · f , xi · g) for 0 ≤ i < n. Indeed, one could instead consider all the vectors
(p · f , p · g) for elements p up to a certain length. These vectors are longer and
therefore the probability of finding a given one of them is smaller. Yet, it might
be that, in some regimes of parameters, their number outgrows this decrease in
probability. When considering multiple vectors from the same dense sublattice the
events of finding each of them may not be independent which might require some
care when modelling.
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