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Abstract

We study the problem of designing non-interactive batch arguments for NP. Such an argument
system allows an e�cient prover to prove multiple NP statements, with size smaller than the combined
witness length.

We provide the �rst construction of such an argument system for NP in the common reference
string model based on standard cryptographic assumptions. Prior works either require non-standard
assumptions (or the random oracle model) or can only support private veri�cation.

At the heart of our result is a new dual mode interactive batch argument system for NP. We
show how to apply the correlation-intractability framework for Fiat-Shamir – that has primarily been
applied to proof systems – to such interactive arguments.
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1 Introduction

Consider the following scenario: Alice wants to convince Bob of the veracity of : statements (G1, . . . , G: ) in
an NP language. A naı̈ve solution is for Alice to send a witnessF8 for each of the : instances and for Bob to
verify each pair (G8 ,F8). �is proof is non-interactive (i.e., consists of a single message) as well as publicly
veri�able (i.e., anyone can verify its correctness). However, it is quite expensive, requiring communication
that grows linearly with the combined length of the witnesses.

Can we do be�er? �at is, can we non-interactively prove : NP statements with communication much
smaller than : ·<, where< =<( |G |) is the witness length? Addressing this question is the main focus of
this work.

Batch Arguments. We study the problem of designing batch arguments (BARG) for NP in the common
reference string (CRS) model. Such an argument system allows an e�cient prover to compute a non-
interactive and publicly veri�able “batch proof” of : NP instances, with size much smaller than : · <.
If any of the : instances is false, then no polynomial-time cheating prover must be able to produce an
accepting proof.

In the interactive se�ing, the problem of batch proofs was �rst studied by Reingold, Rothblum and
Rothblum [RRR16] and more recently in [RRR18, RR20]. �e focus of these works is on achieving statistical
soundness, and we refer the reader to Section 1.2 for a discussion. In this work, we focus on the (harder)
non-interactive se�ing but se�le for the weaker notion of computational soundness.

Since verifying the membership of: NP instances is itself anNP problem, BARGs with poly-logarithmic
communication can be obtained from succinct non-interactive arguments (SNARGs) for NP [Mic94, BCCT12,
DFH12, GLR11, BCCT13]. However, SNARGs for NP are presently only known to exist under strong, non-
falsi�able assumptions [Nao03, GW11] (or the random oracle model). In the designated-veri�er se�ing,
Brakerski, Holmgren and Kalai [BHK17] constructed two-message batch arguments for NP with commu-
nication proportional to the size of a single witness, assuming the existence of a computational private
information retrieval scheme [KO97, CGKS95]. �e main drawback of their solution is that it requires pri-
vate veri�cation. Recently, Kalai, Paneth and Yang [KPY19] constructed the �rst non-interactive publicly
veri�able batch arguments for NP, but rely on a new non-standard (but falsi�able) assumption on groups
with bilinear maps.

�is state of a�airs motivates the following basic question:

Do there exist BARGs for NP based on standard assumptions?

1.1 Our Results

We provide the �rst construction of a publicly veri�able non-interactive batch argument system for NP in
the CRS model from standard computational assumptions. Our scheme achieves non-adaptive computa-
tional soundness.

�eorem 1 (Informal). Let C-SAT be the circuit satis�ability language de�ned by a boolean circuit � :
{0, 1} |G | × {0, 1} |~ | ↦→ {0, 1}. Assuming standard computational assumptions, there exists a BARG for C-SAT
in the CRS model with non-adaptive soundness. �e proof size for : statements is $̃ (( |� | +

√
: |� |) · _), where

_ is the security parameter.

When the number of statements : is smaller than |� |, the size of the proof only grows with |� |; otherwise,
it essentially only grows with : .

On our assumptions. Our construction relies on two essential cryptographic components:
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– Somewhere-Extractable Linearly Homomorphic Commitment. �e �rst building block for
achieving our result is a new notion of somewhere-extractable linearly homomorphic commitment
(SE-LHC) schemes (Section 4). We show an instantiation of SE-LHC assuming the hardness of the
quadratic residuosity (QR) assumption.

– Correlation-Intractable Hash Functions for TC0. Our second cryptographic building block is
a correlation-intractable hash function (CIH) [CGH04] for TC0 circuits. CIH for bounded-depth
polynomial-size circuits are known from the learning with errors (LWE) assumption [PS19, CCH+19].
Very recently, CIH for TC0 circuits were constructed based on the sub-exponential hardness of the
Decisional Di�e-Hellman (DDH) assumption against polynomial-time adversaries [JJ21].

Pu�ing together the above, �eorem 1 can be instantiated based on QR and either LWE or sub-exponential
DDH.

We refer the reader to Section 2 for an overview of our construction.

On adaptive soundness. Our construction in �eorem 1 achieves non-adaptive (computational) sound-
ness. �is seems inherent, as there are known barriers to constructing BARGs with adaptive soundness
based on falsi�able assumptions. Speci�cally, Brakerski, Holmgren and Kalai [BHK17] showed a trans-
formation from adaptively-sound BARGs (with argument of knowledge property1) to adaptively-sound
SNARGs using RAM delegation schemes. �is in turn allows for using the Gentry-Wichs [GW11] black-
box lower bound for SNARGs. We refer the reader to Section 7.4 for more details.

1.2 Related Works

Batch veri�cation is an interesting question for various cryptographic primitives, and can lead to practical
bene�ts in some se�ings (see, e.g., [CHP12]).

In the se�ing of interactive proofs, the problem of batch veri�cation of NP has been recently studied in
a sequence of works [RRR16, RRR18, RR20]. �ese works consider the class UP, a subset of NP, where each
statement in the language has a unique witness of membership. To the best of our knowledge, no positive
results are known in this regime for NP. It should be noted that while there are lower bounds on the
communication complexity of interactive proofs for languages in NP [GVW02, GH98], the lower bounds
do not appear to directly extend to the NP batch language !⊗: due to the additional structure inherent to
!⊗: . We refer the reader to [RRR16] for a detailed discussion on this topic.

If we consider computational soundness, where security holds only for computationally bounded
cheating provers, Killian’s protocol [Kil92] gives us an interactive batch argument based on collision resis-
tance of hash functions. In the non-interactive se�ing, Brakerski, Holmgren and Kalai [BHK17] construct
privately-veri�able non-adaptive batch arguments (of knowledge) assuming computational private infor-
mation retrieval schemes. Kalai, Paneth and Yang [KPY19] construct a publicly-veri�able non-adaptive
batch argument, but rely on a new (falsi�able) decisional assumption on groups with bilinear pairings.
One can also generically use SNARGs to construct non-interactive batch arguments, but constructions of
SNARGs are only known based on strong non-falsi�able assumptions (or in the random oracle mode).

Very recently, there have been works that consider the problem of batch veri�cation for statistical
zero-knowledge (SZK) proofs [KRR+20, KRV21]. �e speci�c goals in these works are orthogonal to the
problem we consider: the prover in these works is no longer required to be e�cient, but it is imperative
that the resultant batch protocol is also an SZK proof system.

1Our construction in �eorem 1 achieves (non-adaptive) argument of knowledge property.
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2 Technical Overview

As established in the introduction, we want to design publicly veri�able non-interactive batch arguments
for NP. To this end, there exists a well-studied general paradigm one could follow: (i) First, construct an
interactive public-coin proof system (%,+ ) for NP; (ii) Next, apply the Fiat-Shamir (FS) round-collapsing
transform[FS87] on (%,+ ) with respect to some hash function familyH to obtain a non-interactive proof.

Originally, the soundness of the FS transformation was only established when modeling the hash fam-
ily as a random oracle. But the transformation has garnered a lot of recent a�ention with an exciting
line of work that demonstrate the soundness of the transformation when the hash function family is cor-
relation intractable [CGH04]. In particular, this idea has been used with much success in the context
of non-interactive zero-knowledge arguments [KRR17, CCRR18, HL18, CCH+19, PS19, BKM20, CPV20,
CKU20, JJ21], (publicly veri�able) succinct non-interactive arguments of knowledge for log-space uniform
computation [CCH+19, JK20, KZ20, JKKZ21] and establishing the hardness of the complexity class PPAD
[CHK+19, LV20, JK20, KZ20, JKKZ21].

Since this paradigm is central to our work as well, we start by describing the transformation, correlation
intractability (CI), and the role it plays in the soundness of the transformation.

2.1 Background

Fiat-Shamir Transformation and CI. �e Fiat-Shamir transform with respect to some hash family
H , utilizes a sampled hash function ℎ ← H as the common reference string (CRS) to convert a public-
coin interactive protocol into a non-interactive proof in the CRS model, where the ver�er’s messages are
derived (non-interactively) by the prover applying the hash function ℎ to the transcript. For instance,
consider the following �ow of messages between the prover and the veri�er, where the veri�er’s message
V is a uniformly random string:

P(G) V(G)

U

V

W

�e prover computes the veri�er’s message as V B ℎ(G, U), and the resultant non-interactive proof is the
tuple (U, V,W) - the veri�er can recompute V and check if the prover did indeed compute it correctly. Unlike
soundness in the interactive se�ing, where a cheating prover P∗ has no control over the veri�er’s message
V , in the transformed non-interactive protocol, P∗ has some control over V . Speci�cally, P∗ can try di�erent
values of U to input into the hash function until it gets a V that it considers favorable. Let’s formalize what
we mean. For a statement G ∉ !, when the prover evaluates the hash function ℎ on (G, U), it wants to �nd
an element from the following set of bad challenges,

BG,U B
{
V

�� ∃W s.t. V(G, U, V,W) = 1
}
. (1)

Can we hope to enforce some restrictions on the hash family H , such that it is intractable to �nd an U
such that ℎ(G, U) ∈ BG,U , i.e. the hash evaluation doesn’t result in a bad challenge? �is is exactly where
the correlation intractability of the hash family H helps. Intuitively, H is a correlation intractable hash
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family (CIH) for a function 5 , if the following holds for all probabilistic polynomial time adversary (PPT)
A,

Prℎ←H [ℎ(G) = 5 (G) | A(ℎ) = G ] ≤ negl(_) .
�is yields the following idea - de�ne a function BAD(·), that on input (G, U), outputs an element in BG,U .
Let us for the moment assume that BG,U for all U and G ∉ ! has at most a single element. If H is a CIH
for 5 (·) B BAD(·), then any cheating prover that outputs an accepting transcript (U, V,W) for G ∉ ! must
break the correlation intractability ofH since V ∈ BG,U by de�nition.

But what about when BG,U consists of multiple elements? We want to argue that the cheating prover
doesn’t output any element from BG,U . If |BG,U | is polynomially bounded, we can argue this via a simple
application of the union bound: modify BAD(·, ·) to additionally take in as input an index 8 , and output the
8-th element of BG,U (for some ordering of the elements). Let 58 (·) B BAD(·, 8), then by the union bound
we have for any PPT adversary A,

Prℎ←H
[
ℎ(G) ∈ {51(G), · · · , 5 |B | (G)} | A(ℎ) = G

]
≤ |B| · negl(_) .2

While our description above is for a protocol with a single veri�er message, this can be extended to
multi-round protocols by further constraining the interactive protocol to satisfy additional properties such
as round-by-round soundness [CCH+19]. We will elaborate on these properties soon, once we discuss our
speci�c approach.

Clearly, the BAD functions we can support using the above methodology are constrained by the func-
tions for which we can construct CIH. �e known CIH from standard assumptions are: bounded-depth
polynomial size circuits from LWE [CCH+19, PS19], linear approximable relations from trapdoor hash
functions [BKM20, DGI+19], and TC0 circuits from sub-exponential DDH [JJ21]. At the very least, we thus
require BAD to be e�ciently computable.

Pu�ing together the above, we obtain the following design principles for constructing an interactive
protocol which is “compatible” with the CIH framework for Fiat-Shamir (w.r.t. known constructions of
CIH):

1. �e BAD function is e�ciently computable.

2. For every G ∉ ! and every U , the size of B is polynomially bounded.

In this work, we follow the Fiat-Shamir paradigm as well to obtain our main result. In the following,
we start by discussing potential choices for an interactive protocol that meets our desired e�ciency goals
while still being compatible with the CIH framework.

Considerations for the interactive protocol. Since the Fiat-Shamir transformation does not reduce
the communication complexity of the interactive protocol, our starting point needs to be a protocol where
the total communication between the prover and veri�er is much smaller than $ (:<), where : denotes
the number of instances, and < the length of a single witness. A natural candidate that satis�es our
requirements is Killian’s protocol for languages in NP [Kil92]. Speci�cally, it is a public-coin interactive
protocol where the total communication between the prover and veri�er is signi�cantly smaller than the
length of the witness. �us by de�ning the following NP language, !⊗: = {(G1, . . . , G: ) : ∀8 ∈ [:], G8 ∈
!}, Killian’s protocol gives us a public coin interactive argument with total communication signi�cantly
smaller than $ (:<). Unfortunately, a recent work of [BBH+19] established non-trivial barriers towards
instantiating the hash function in the Fiat-Shamir transformation applied to Killian’s protocol.

�ere is in fact a broader point to consider: Kilian’s protocol is an argument, i.e. its soundness holds
only against computationally bounded cheating provers. In general, successful applications of the Fiat-
Shamir paradigm when used in conjunction with CIH, have been largely restricted to interactive proofs,

2For notation convenience, we drop the subscript for B.
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where the soundness holds against computationally unbounded cheating provers. Intuitively, this is be-
cause B, as de�ned in Equation 1, does not capture the computational resource bounds of a cheating
prover. Speci�cally, B may contain exponentially many elements but does not capture the fact that for a
computationally bounded cheating prover, �nding the W corresponding to V ∈ B is intractable. And as we
have already outlined above, we need B to be of polynomial size. In fact, there are examples of certain
interactive arguments that are not sound on the application of the Fiat-Shamir transformation (see e.g.
[Bar01, GK03]).

Given the above state of a�airs, the natural approach is to consider public coin interactive batch proofs
for NP that achieve the same succinctness properties as (non-interactive) BARGs. Presently, however,
interactive batch proofs are only known for the class UP, a subset of NP for which there is exactly one
witness of membership for each statement [RRR16, RRR18, RR20]. Indeed, constructing such proofs for
NP is an open problem.

2.2 Dual-mode interactive batch arguments

We therefore deviate from the above approach and instead de�ne and construct a primitive we call dual-
mode interactive batch arguments. Intuitively, these are interactive arguments in the common reference
string (CRS) model, where the CRS can be generated in two computationally indistinguishable modes - (1)
normal mode; and (2) trapdoor mode. We require that in the trapdoor mode, the protocol is sound against
all (possibly unbounded) cheating provers; however, in the normal mode, it only achieves computational
soundness.

�is gives us the best of both worlds – we bypass the problem of constructing interactive batch proofs,
but still retain the possibility of applying the Fiat-Shamir transform to the protocol when it is executed in
the trapdoor mode (without running into the issues that arise for arguments). In order to apply the Fiat-
Shamir transform, we require some additional properties from dual mode interactive batch arguments:
speci�cally, we require such protocols to be Fiat-Shamir friendly, a notion we will elaborate on shortly.

We present a dual-mode interactive batch argument system for proving multiple instances of the NP-
complete problem R1CS. An R1CS instance x is de�ned to be the tuple x B (�, �,�, io,<), where io
denotes the public input and output of the instance, and �, �,� ∈ {0, 1}<×< are matrices. We say that
a vector F ∈ {0, 1}<−|io |−1 is a witness for x if (� · I) ◦ (� · I) = (� · I), where I = (io, 1,F), · is the
matrix-vector product, and ◦ is the Hadamard (entry-wise) product.3

Background: Spartan Protocol. Our starting point is the Spartan protocol [Set20] which proves the
satis�ability of a single R1CS instance x with total communication sub-linear in the witness size |F |, i.e.
the protocol is succinct. �e Spartan protocol is de�ned over a �eld F, such that log |F| ≈ _, and follows
roughly the structure described below:

1. �e prover �rst computes a commitment 2 to the witness F , that it sends to the veri�er. In order
to achieve communication succinctness, |2 | must be sub-linear in <. (We shall see below that the
commitment scheme needs to satisfy some additional properties.)

2. �e veri�er then sends a random element element g ∈ FB , where B is such that< = 2B .

3. It was shown in [Set20] that with probability B/|F| over the choice of g , any R1CS instances can then
be reduced to the following check: ∑

G ∈{0,1}B
Gio,F,g (G) = 0, (2)

3R1CS instances are more generally de�ned over a �eld, but for this overview we will consider them over F2 (or {0, 1}). An
instance of Boolean circuit satis�ability (C-SAT), de�ned by a circuit � can be transformed to an R1CS instance where< ≈ |� |.
See Section A.2 for details on the transformation.

7



where Gio,F,g : FB ↦→ F is a polynomial with degree 3 in each variable, and is determined entirely by
x, the witness F and g . For the purpose of our discussion, the exact form of the polynomial is not
immediately relevant. Note that without the witness F , the veri�er does not have a representation
of Gio,F,g , but we shall see shortly that it doesn’t ma�er.

�e above check is precisely the scenario where the sumcheck protocol [LFKN92, Sha92], an inter-
active protocol between a prover and veri�er, is useful. In the sumcheck protocol, the prover is
a�empting to convince the veri�er of the claim

∑
11, · · · ,1ℓ ∈{0,1} 6(11, · · · , 1ℓ ) = E , where 6 : FB ↦→ F is

an B variate polynomial of degree at most 3 in each variable, and E ∈ F is a publicly known value.
�e resultant interactive protocol is an B round public coin proof where the prover sends $ (3 · B)
�eld elements. Importantly the veri�er is only required to evaluate 6 at a single point A ∗ ∈ FB at the
end of the protocol, where A ∗ determined solely by the veri�er’s randomness in sumcheck protocol.

4. �e prover and veri�er run the sumcheck protocol for Equation 2, at the end of which veri�er needs
to evaluate Gio,F,g (·) at the point A ∗ (and compare against some value determined by the sumcheck
protocol). But since the veri�er does not have access to Gio,F,g (·), it asks the prover to send relevant
information so that it can complete the check. Since the Spartan protocol requires this message from
the prover to be succinct, the prover cannot sendF in the clear.

Fortunately, it turns out that the value that the prover needs to send is simply a linear combination
of the bits ofF (see Section A.3 for details), where the linear coe�cients are determined entirely by
�, �,� , g and A ∗ i.e. let

∑
8∈[<] f8 ·F8 be the corresponding linear combination where the coe�cients

f8 are known to both the prover and veri�er, and are even independent of io.4

5. �e prover now opens the commitment 2 to
∑
8∈[<] f8 · F8 such that the opening is succinct. �is

allows the veri�er to complete its check.

Spartan provides various instantiations for the commitment scheme satisfying the above properties,
where the commitment opening is an interactive protocol. �e resulting protocol is computationally sound.

�e Spartan protocol does not satisfy our desired properties from a dual-mode interactive batch ar-
gument. However, it serves as a useful starting point for us. In Spartan, the goal was to have the total
communication be sub-linear in<, while in the batch se�ing, we are �ne with total communication pro-
portional to a single witness. �is in turn means that we can consider commitment schemes where the
commitment size is proportional to a single witness. Let us now see how we can use this insight to adapt
the Spartan protocol to both make it suitable for batch veri�cation, and achieve the notion of dual-mode
batch arguments.

Our Construction. We now discuss the main steps in our interactive protocol, while highlighting the
di�erences from the above discussion. We want to batch prove : instances {x( 9) } 9 ∈[: ] where the matrices
�, � and� are the same across all instances, and only the public input-output io varies across the instances.
�e reader may view this as multiple instances with the same relation circuit, but di�erent statements. �e
description of the protocol now follows.

1. To commit to a batch of witnesses {F ( 9) } 9 ∈[: ] , we follow the batch commitment strategy in [RRR16]:
arrange the witnesses as rows of a : × < matrix, and commit to the column of each matrix, i.e.
∀8 ∈ [<], 28 ← Com(F (1)

8
, . . . ,F

(:)
8
). If the :-tuple commitment has size $ (_), then the total

commitment is of size $̃ (<), ignoring polynomial factors in $ (_).
�is indicates that our commitment scheme must allow us to commit to the :-tuple succinctly.

4Strictly speaking, the prover needs to send 3 separate linear combinations of the witness, but we ignore this here for simplicity.
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2. Given that each instance has a di�erent statement io and witness F , each of the : instances de�ne
a di�erent polynomial, giving rise to the : polynomials {G ( 9)io,F,g } 9 ∈[: ] . �e prover and veri�er then
run : sumcheck protocols in parallel with the same veri�er randomness. As discussed earlier, at the
end of the sumcheck protocols, the veri�er needs to evaluate each of these polynomials at points
A ∗( 9) determined solely by the veri�er’s randomness in the sumcheck protocol.

Since the veri�er uses the same randomness across all instances of the sumcheck protocol execution,
the polynomials need to be evaluated at the same point A ∗. Additionally, since the linear coe�cients
depend only on �, �,� , g and A ∗, this in turn implies that the linear coe�cients for all the witnesses
F ( 9) are the same: (f1, · · · , f<).

3. As in Spartan, the prover now needs to send
∑
8∈[<] f8F

( 9)
8

to the veri�er. For convenience, this can
be be re-wri�en as sending the :-tuple,

∑
8∈[<] f8 · (F

(1)
8
, · · · ,F (:)

8
), where · indicates component-

wise multiplication.

If our commitment scheme satis�es linear homomorphism, i.e.

Com(
∑
8∈[<]

f8 · (F (1)8 , · · · ,F (:)
8
)) =

∑
8∈[<]

f8Com(F (1)8 , . . . ,F
(:)
8
),

then it su�ces for the prover to open to the commitment
∑
8∈[<] f828 .

�us our commitment scheme must satisfy linear homomorphism (as described above), with the size of
the opening proportional to the size of the underlying message.

Let us go back to our requirement from dual-mode interactive batch arguments. For the protocol
to achieve statistical soundness in the trapdoor mode, we need at the very least, the commitment to be
statistically binding. However, this seems at odds with our succinctness requirements since we want the
total number of bits sent to be signi�cantly smaller than the size of the message commi�ed.

Key Tool: Somewhere-Extractable Linearly Homomorphic Commitments. We resolve this issue
by utilizing a commitment scheme in the CRS model, where the CRS is generated in one of two computa-
tionally indistinguishable ways - (1) normal mode; or (2) extraction mode. In the extraction mode, the CRS
generation algorithm takes as input an index 8∗, and additionally outputs an extraction trapdoor td that is
not a part of the CRS. We require that the commitment of the :-tuple in the extraction mode for index 8∗, is
statistically binding at the 8∗-th index of the commitment. Further, there is an e�cient algorithm Ext such
that given the the trapdoor td, Ext extracts the underlying message at the 8∗-th index, and this holds even
if the commitment was “malformed”. Additionally, the extraction also satis�es linear homomorphism, i.e.
f1 · Ext(21, td) +f2 · Ext(22, td) = Ext(f1 · 21 +f2 · 22, td). �e linear homomorphism property of extraction
ensures that once we extract from the commitments, the opening of the linear homomorphic evaluation
can be computed solely from the linear coe�cients - ensuring that the commi�er is bound to opening of
the linear homomorphism.

If all< commitments are commi�ed via the extraction mode CRS for index 8∗, then the prover is statisti-
cally bound toF (8∗) . �en intuitively, in the extraction mode, the security can be reduced to the soundness
of the other components of the protocol for the 8∗-th instance. �e reduction to the check for polynomial
G (8

∗)
io,F,g (via [Set20]), and the sumcheck protocol are both statistically sound, thereby satisfying overall sta-

tistical soundness. �us, by se�ing the trapdoor mode (resp., normal model) CRS to be the extraction mode
(resp., normal mode) CRS of the commitment scheme, we obtain a dual-mode interactive batch argument.
Note the added syntax for the trapdoor mode of the dual-mode interactive batch argument - it takes in as
input an index 8∗, and generates a trapdoor td (not be included in the CRS).

We now summarize our requirements of the commitment scheme from the above discussion:
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1. Commitment scheme for :-tuples in the CRS model, with indistinguishable methods of generating
the CRS - normal mode or extraction mode such that the commitment is statistically binding at the
8∗-th index when the CRS is generated in the extraction mode on input 8∗.

2. E�cient extraction of the message at 8∗-th index in the extraction mode, given the trapdoor td.

3. �e commitment should allow for linear homomorphism (even over the extracted values).

4. �e commitment should be succinct, while the opening should depend only on the size of the com-
mi�ed message.

We refer to such commitments as somewhere-extractable linearly homomorphic commitments. Our notion
is similar to the notion of somewhere statistically-binding hash functions [HW15], but requires some
additional properties. Later, in Section 2.4, we describe our construction of such commitment schemes
based on the quadratic residuosity assumption. For now, we will simply assume that such commitment
schemes exist.

One point of note is that since the CRS of the commitment scheme requires the index of the statement
we want to prove soundness for, we can only achieve non-adaptive security. We will later show in the
technical sections that this is in some sense the best that one can hope for.

Costs. From the description of the protocol, the communication cost for the commitment (and its opening)
is $̃ (<), while the communication cost from : sumcheck protocols is $̃ (:B) = $̃ (: log<), giving us a total
communication cost of $̃ (< + : log<).

2.3 Fiat-Shamir compatibility

As we have alluded to before, constructing a dual-mode interactive batch argument is an important �rst
step towards a non-interactive protocol. But by itself, it is not enough. We need to show that our con-
structed protocol in Fiat-Shamir friendly. �is has been recently formalized by [JKKZ21] as the notion
of Fiat-Shamir (FS) compatibility, that extends our earlier discussion in Section 2.1 on the relationship
between CIH and the Fiat-Shamir transform.

Let the prover’s 8-th message in the protocol be denoted byU8 , while the corresponding veri�er message
by V8 . �e protocol transcript trans8 is de�ned to be trans8 B (U1, V1, · · · , U8 , V8), which collects all messages
up to (and including) the 8-th round messages. An interactive proof is said to be FS compatible if it follows
the following two properties:

Round-by-round soundness: �ere is a function State that takes as input the statement G , and a
transcript pre�x trans8 B (U1, V1, · · · , U8 , V8), and outputs Accept or Reject. We require some additional
properties from State: for every G ∉ !, State(G, ∅) = Reject, and for every full transcript trans the veri�er
rejects if State(G, trans) = Reject. Perhaps, most importantly, we require that if State(G, trans) = Reject,
then for any prover message U , State(G, trans|U |V) = Reject with overwhelming probability over the
choice of V .

E�cient BAD function: For every G ∉ !, when State(G, trans8) = Reject, we require an e�ciently
computable function BAD5 that outputs the “bad” veri�er challenges V that will result in State switching
output to Accept, i.e. if State(G, trans) = Reject, then BAD(G, trans|U) outputs a uniformly random
element from the set B de�ned as

B B
{
V

�� State(G, trans|U |V) = Accept
}
.

5Unlike the de�nition in [JKKZ21], we will require any non-uniform advice to the BAD function to also be e�ciently com-
putable.
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From our earlier design principles, we require the size of the set B to be polynomially bounded.
Before we proceed, let’s recall our discussion from Section 2.1 on Fiat-Shamir and CI-hash functions.

It is easy to see that the discussion there also applies here - as long as we can construct a CIHH that is CI
for the circuits computing BAD, then the Fiat-Shamir transformed protocol with respect toH is sound.

We know of the following CI-hash functions based on standard assumptions6:

– CI for all a priori polynomially bounded circuits assuming LWE [PS19]; and

– CI for all of TC0 assuming sub-exponential security of DDH [JJ21].

We want to be able to leverage both of these constructions for our �nal non-interactive batch argument.
Since the size (and depth) of the circuit computing BAD directly corresponds to the functions for which we
need CI, to achieve a result based on sub-exponential security of DDH, we need to show that the function
BAD can be computed in TC0. We call such protocols to be strongly FS compatible.

Let us now demonstrate that our dual-mode protocol in the trapdoor mode is FS-compatible. Recall
that in the trapdoor mode an index 8∗ is speci�ed, and we shall prove FS compatibility when x(8∗) ∉ !R1CS.
�is is su�cient, since for a batch instance to be false, there is at least one index 9 such that x( 9) ∉ !. In
particular, this allows us to ignore the other sumcheck executions while establishing FS compatibility. We
will further show that BAD can also be computed in TC0. Since we only focus on a single instance x(8∗) ,
in what follows, we skip the index 8∗ for the instance to simplify notation.

Round-by-Round soundness. �e veri�er messages can be split into two cases: (a) g ∈ FB ; (b) verifer
messages inside the sumcheck protocol. We only sketch here the main ideas and refer the reader to the
technical sections for more details as our primary focus will be on the construction of the BAD function.

For the sumcheck, we rely on [JKKZ21] that already establishes the sumcheck protocol to be round-
by-round sound. �e main di�erence is that [JKKZ21] requires full knowledge of the polynomial over
which the sumcheck is computed. In our se�ing, however, the polynomial Gio,F,g is (partially) determined
by the witness, which is sent within the commitment. We resolve this issue by using the trapdoor td to
extract the 8∗-th witness and compute the polynomial, since the CRS was generated in the trapdoor mode
for 8∗. For the veri�er message g , we can rely on the �eorem underlying Spartan [Set20] that shows that
any R1CS instance x can be reduced to the sum

∑
G ∈{0,1}B Gio,F,g (G) = 0 other than with probability B/|F|

over the choice of g . �e actual State computation for g will be elaborated upon in the BAD function
computation below.

E�cient BAD function. As described above, veri�er messages can be split into two cases. From the
de�nition of the BAD function, it su�ces to build two separate functions, one for each cases. Let’s start
with the simpler case of the sumcheck veri�er messages.
Sumcheck BAD function: In the sumcheck protocol, for each round 8 ∈ [B], the prover sends a univariate
polynomial 6∗8 : F ↦→ F of degree 3 to the veri�er. If computed correctly, it should correspond to the
polynomial 68 , de�ned as

68 (G) B
∑

G8+1, · · · ,GB ∈{0,1}
Gio,F,g (V1, · · · , V8−1, G, G8+1, · · · , GB) .

�e set of bad challenges in the 8-th round are the veri�er challenges V8 such that both polynomials 68
and 6∗8 evaluate to the same value on V8 , i.e. B B

{
V8 | 68 (V8) = 6∗8 (V8)

}
. Alternatively B consists of the

roots of the polynomial 68 − 6∗8 . Since Gio,F,g is a polynomial that is degree 3 in each variable, |B| ≤ 3.

6We note that the CI-hash function constructed in [BKM20] is also based on standard assumptions, but the class of functions
that it supports (i.e. class it is CI for) is very small, and therefore limits its applicability.
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Unlike [JKKZ21], which demonstrate BAD function for the general sumcheck, we focus on the se�ing
where the true polynomial 68 can be computed in polynomial time (e.g. B = $ (log _)). �us on input,
(x, trans8−1 |U8), BAD (i) parses U8 as the polynomial 6∗8 ; (ii) computes the true polynomial 68 , using the
trapdoor �rst to extract F and determine Gio,F,g ; and (iii) use a polynomial time algorithm like Cantor-
Zassenhaus to compute the (three) roots of 68 − 6∗8 , and output one at random.

g BAD function: To describe the BAD function corresponding to g , we need to look at the polynomial
Gio,F,g implied by [Set20] (�eorem 2). So far we have focused on Gio,F,g (G) as a polynomial over the
variables G , with g ∈ FB �xed. Let us now focus on the same polynomial over both G and g , i.e. for every
g , Gio,F,g (G) = G′io,F (G, g). In fact [Set20] showed that G′io,F (G, g) is a polynomial over G1, · · · , GB and
g1, · · · , gB that has degree 1 in each g8 (see Section A.3 for details). �us, we can rewrite

∑
G ∈{0,1}B Gio,F,g (G)

as a polynomial over g1, · · · , gB . Speci�cally, let

& (g) B
∑

G ∈{0,1}B
G′io,F (G, g),

where & is a polynomial over B variables g1, · · · , gB , with degree 1 in each g8 . Note that as in the case
of Gio,F,g , & is determined by the witness F that only the prover has access to. For x and F such that
RR1CS(x,F) = 1, the correctly computed polynomial &io,F is the zero polynomial, i.e. &io,F ≡ 0. �e
random g ∈ FB , sent by the veri�er is to test whether & (g) = 0. If & . 0, then by the Schwartz-Zippel
lemma,& (g) = 0 with probability at most B/|F| over the choice of g , which is negligible in _ for our choice
of F. �is suggests the following strategy for BAD, when & . 0, let B B {g ∈ FB | & (g) = 0}. BAD then
works as follows: (i) uses the trapdoor td to �rst extract F and determine & ; and (ii) solve for g from B
and output a random such g .

While this appears to work on the surface, on closer inspection it can be observed that while the
Schwartz-Zippel lemma guarantees the probability to be at most B/|F|, the size of the set B can be expo-
nential (|B| ≈ |FB−1 |). As indicated by our design goals at the start, this is undesirable and something we
do not know how to work around.

We take an alternate approach. Instead of using a single hash function that outputs the vector g ∈ FB ,
we consider a sequence of hash functions (ℎ1, · · · , ℎB) that each output a single g8 . Speci�cally, for every
8 , g8 B ℎ8 (x, g1, · · · , g8−1).

Let& |g∗1 ,··· ,g∗8−1
be the polynomial& with the �rst 8 − 1 variables �xed to be values g∗1 , · · · , g∗8−1. If& . 0,

then we want it to continue to be the case that for the pre�x g∗1 , · · · , g∗8−1, & |g∗1 ,··· ,g∗8−1
. 0. �is then lets us

de�ne the 8-th bad set B8 when & |g1,··· ,g8−1
. 0,

B8 B
{
g ∈ F | & |g1,··· ,g8−1,g

≡ 0
}
.

Before we describe theBAD function, let us take a moment to see how one determines whether& |g1,··· ,g8−1,g
≡

0. �is corresponds to all coe�cients of the said polynomial to be 0. At a high level, from the description
of& , the coe�cients are determined by the sum over< = 2B values, which in turn is computable in poly-
nomial time as < = poly(_). �en a bad g simply corresponds to those elements in F that result in the
coe�cients becoming 0. Since the polynomial is linear in each variable, solving for such a g corresponds
to solving a linear system in F. Correspondingly, for all 8 , the set B8 is of bounded polynomial size. We
refer the reader to Section 6 for more details on these steps.

We are �nally in a position to describe the BAD function, which on input (x, g1, · · · , g8−1) (note that
the prover message is empty) does the following: (i) use the trapdoor td to �rst extractF and determine
& , and then correspondingly & |g1,··· ,g8−1,g

; and (ii) solve the linear equation in g such that & |g1,··· ,g8−1,g
≡ 0,

and output such a g if it exists.
From our discussions above, BAD is in fact e�ciently computable, and thus satis�es our requirement.

12



BAD has low depth. To base our non-interactive protocol on CIH for TC0, we need to demonstrate that
the BAD function for both cases can be computed in TC0. In contrast to when we established that BAD
was e�cient, here, the simpler case is the BAD function for g . But before we proceed, we note that in both
cases, we require trapdoor extraction, and thus we additionally require low-depth extraction property from
our commitment scheme. We proceed with our discussion assuming this to be the case, and will provide
more details when discussing out construction of the commitment scheme in Section 2.4.

g BAD function: In the above description, we are only solving linear equations in F, which can be com-
puted in TC0, thus trivially giving us the required property.

Sumcheck BAD function: Unfortunately, things are not so simple for the BAD function in the sumcheck
case. �e BAD function as described, needs to compute a root of a degree 3 polynomial in F. While we
do know how to do this in polynomial time, for computing roots in low depth, we are only aware of root
�nding for degree 2 polynomials in F to be in TC0.

To circumvent this issue, we take a closer look at the polynomial Gio,F,g
7. As described in Section A.3,

it turns out that Gio,F,g is of a special form, where we compute a sumcheck protocol for,∑
G ∈{0,1}B

Gio,F,g (G) =
∑

G ∈{0,1}B
5io,F,g (G)

(
B∏
9=1

ℎ 9,g (G 9 )
)
= 0,

where 5 is a polynomial with individual degree 2, and each ℎ 9,g is a univariate polynomial in G 9 with
degree 1. Moreover, the coe�cients of ℎ8,g are determined only by g , and therefore known to the veri�er
once it samples g . �is suggests a slight modi�cation of the sumcheck polynomial, where the prover in
the 8-th round sends the degree 2 polynomial 6∗′ to the veri�er which it has purportedly computed as,

6′8 (G) =
∑

G8+1, · · · ,GB ∈{0,1}
5io,F,g (V1, · · · , V8−1, G, G8+1, · · · , GB)

(
8−1∏
9=1

ℎ 9,g (V 9 )
) (

B∏
9=8+1

ℎ 9,g (G 9 )
)
.

�e veri�er then locally computes ℎ8,g , and computes 68 , Clearly, the three roots of the polynomial 6∗8 −68
consist of the two roots of 6∗′8 − 6′8 and the root of ℎ8,g . �us, by modifying the sumcheck protocol as
suggested above, we can then reduce the root computation in BAD to computation of roots for a degree
2 polynomial, and a degree 1 polynomial, both of which we can compute in TC0.

�is establishes that our dual-mode protocol in the trapdoor mode is strongly FS-compatible. [JKKZ21]
demonstrate that the Fiat-Shamir transformation with respect to H for any FS-compatible protocol is
sound as long as H is CI for polynomial size functions (larger than BAD). We extend their proof to
demonstrate that if we strengthen FS compatibility to strong FS compatibility, it su�ces for H to be CI
for TC0.

Next, we show how to leverage our protocol to construct a non-interactive batch argument (BARG).

Going from FS-Compatibility to BARGs. In this �nal step, we �nally construct our non-interactive
arguments. We apply the Fiat-Shamir transform to the dual-mode interactive batch argument to achieve
a publicly veri�able non-adaptive BARG in the CRS model. For soundness of the transform we rely on
(i) mode indistinguishability property of the protocol to switch to the trapdoor mode; and (ii) then in the
trapdoor mode, we rely on the FS-compatibility that we have discussed above.

Communication sub-linear in : . �e above construction has an additive term that is linear in : (recall
that the communication cost is $̃ (<+: log<)). We describe how one can generically make this sub-linear
by using fairly standard techniques. �e idea is to simply batch :1 instances into a larger instance of the

7For simplicity, we focus on a single polynomial here as our explanation extends to the batch se�ing too.
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language !⊗:1 B {(G1, . . . , G:1) : ∀8 ∈ [:1], G8 ∈ !} that has a relation circuit of size :1 |� | + :1, where
|� | is the size of the underlying relation circuit. �en we apply our dual-mode batch argument for :/:1
instances of !⊗:1 . By se�ing :1 ≈ $ (

√
:), we get communication that is sub-linear in : . Note that from

our earlier discussion< ≈ :1 |� | + :1.

2.4 Somewhere-Extractable Linearly Homomorphic Commitment

We now �nally describe our construction of the somewhere-extractable linearly homomorphic commit-
ment scheme. Over the course of the above discussion, we have accumulated various requirements that
our commitment scheme must satisfy. We describe a construction that achieves these properties based on
the quadratic residuosity (QR) assumption.

We start by focusing on the simpler goal of constructing a somewhere statistically binding commitment
scheme building on ideas from the recent work on trapdoor hash functions [DGI+19].8 We will discuss how
to achieve the extraction and linear homomorphism properties later.

Recall that, for any Blum integer# = ? ·@, where ?, @ are primes such that ? (mod 4) = @ (mod 4) = 3,
we denote Z∗

#
as the multiplicative group modulo # , and J# as the subgroup of Z∗

#
with Jacobi symbol

+1, and QR# be the subgroup of quadratic residues. Let H = {−1, +1} also be a multiplicative group, then
J# = H × QR# . We now describe the commitment scheme:

– �e trapdoor mode commitment key for the coordinate 8∗ consists of two arrays of group elements.[
g
h

]
=

[
61 62 . . . 68∗ . . . 6:
6B1 6B2 . . . −6B

8∗ . . . 6B
:

]
,

where B ← b(# −1)/2e is sampled uniformly at random, and the elements of the second row are the
corresponding �rst row elements raised to the exponent B , except that we �ip the sign on the 8∗-th
coordinate.

In the normal mode, we do not �ip the sign, i.e. let h = (g)B . �e mode indistinguishability relies on
the quadratic residuosity assumption9.

– To commit to a vector x = (G1, G2, . . . , G: ) of length : , we compute (26 =
∏:
8=1 6

G8
8
, 2ℎ =

∏:
8=1 ℎ

G8
8
).

�en 2ℎ = 2B6 · (−1)G8∗ . Hence, G8∗ is statistical binding. Furthermore, the commitment size is compact,
since it only contains two group elements.

Linear Homomorphism and Extraction. We now discuss how to achieve the desired extraction and
the linear homomorphism properties. We observe that the commitment described above is essentially an
encryption of G8∗ . Hence, one can use the trapdoor td = (?, @, B) to extract G8∗ . �e linear homomorphism
works as follows: if we denote the commitment of x under the key (g, h) as (gx, hx), then for any two
commitments (gx, hx), (gy, hy), and any integers 0, 1 ∈ Z, we can compute(

(gx)0 · (gy)1 = g0 ·x+1 ·y, (hx)0 · (hy)1 = h0 ·x+1 ·y
)
,

which is exactly the commitment for 0 · x + 1 · y.
However, if we use the above commitment scheme for our application to batch arguments, we face the

following challenge: the �eld operation needs modulo 2 computation, but the honest prover can not hope
to perform such computation, since the homomorphic operation is over Z.

8Similar ideas have also been used in the constructions of somewhere statistically-binding hash functions [HW15, KLW15,
OPWW15] and hash encryption schemes [DG17, DGHM18, BLSV18, GH18].

9�e mode indistinguishability follows from the �eorem 4 from [BG10], which relies on the quadratic residuosity assumption.
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To overcome this issue, we have the honest prover do all the operations over the polynomial ring
Z[U], instead of the �eld F. Note that this modi�cation does not a�ect completeness since the honest
prover is essentially proving some polynomial identities (e.g. the R1CS instance (� · I) ◦ (� · I) = � · I
reduced from circuit satis�ability), and such identities hold regardless of whether the underlying variables
are taken from a �eld or a ring. For soundness, we make the following observation: if a proof is accepted
over the ring Z[U], then if we further perform modulo 2 operation, the proof must still be accepted. Hence
the soundness can be reduced to the case when operations are over F. See Section 5 for a more detailed
discussion.

(Linearly Homomorphic) Extraction from any Commitment. �e aforementioned extraction and
linear homomorphism only works for “well-formed” commitments. In order to prove round-by-round
soundness of our dual-mode interactive batch argument protocol, however, we need the extraction works
for any (possibly not well-formed) commitment. Moreover, the linear homomorphism property must also
hold over the extracted values.

To achieve such a property, we observe that for any (possibly not well-formed) commitments 2 =

(26, 2ℎ) ∈ J# ×J# , we can still compute 2ℎ/2B6, which is also a group element in J# . From the decomposition
J# = H × QR# , there exists a unique< ∈ Z2 and 6 ∈ QR# such that 2ℎ/2B6 = (−1)< · 6. Hence, we de�ne
the extracted message for 2 as<. Since # is a Blum integer, |QR# | = (?−1)/2 · (@−1)/2 is an odd number.
We let = denote |QR# |. �en, we extract< by computing

(2ℎ/2B6)= = (−1)< · 6= = (−1)< .

We show that this extraction can be decomposed to an o�-line pre-precompution phase and an on-
line extraction phase, where the online extraction can be computed in TC0. We allow the o�-line pre-
precomputation to be deeper than TC0 circuits, since in our protocol, the pre-computation is always per-
formed honestly by the prover and the veri�er.

We now show that the linear homomorphism property also holds for the above extraction algorithm.
For any two commitments 2 = (26, 2ℎ), 3 = (36, 3ℎ), the extraction is a “linear operation” over 26, 2ℎ , i.e.
if Ext(2, td) = <2 , then (−1)<2 = 2=

ℎ
2−B=6 . Similarly, if Ext(3, td) = <3 , then (−1)<3 = 3=

ℎ
3−B=6 . Now for

any linear combination 0, 1 ∈ Z, when we extract from 0 · 2 + 1 · 3 , we compute (20
ℎ
· 31
ℎ
)= · (206 · 316 )−B= =

(−1)0 ·<1+1 ·<2 . Hence, the extracted value for 0 · 2 + 1 · 3 is 0 ·<1 + 1 ·<2 (mod 2), which establishes the
linear homomorphism property.

For more details, see Section 4.3.

2.5 Roadmap to the Paper

We start by de�ning necessary preliminaries in Section 3 before de�ning, and constructing, somewhere-
extractable linearly homomorphic commitment in Section 4. Next in Section 5 we de�ne and construct
dual mode interactive batch arguments before demonstrating that our construction is Fiat-Shamir friendly
in Section 6. Finally in Section 7 we put it all together and provide a construction of non-interactive batch
arguments (BARGs).

3 Preliminaries

In this section we provide de�nitions and notations that will be used throughout the paper. Due to a lack
of space, additional preliminaries have been deferred to Section A.

We start with some basic notation: For any = length string 0, we denote by 08 the 8-th position of the
string. O�en we will see 8 represented in the binary form, i.e. 8 ∈ {0, 1} d |G | e , in such a scenario we simply
convert 8 to its integer representation to index into the string 0. To concatenate two strings 0 and 1, we
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denote it as (0, 1). Lastly, we will consider matrices of the form� ∈ F<×= , which we shall view as functions
� : {0, 1} dlog<e × {0, 1} dlog=e ↦→ F, where �(8, 9) corresponds to the element in � along the 8-th row, and
9-th column.

3.1 Complexity Problems

We de�ne below the two relevant complexity problems, Boolean circuit satis�ability (C-SAT) and satis�a-
bility of systems of rank-1 quadratic equations over a �nite �eld F (R1CS). Our starting point will be C-SAT
instances, but our protocol will be designed for R1CS instances.

De�nition 1 (Circuit-C-SAT). A circuit satis�ability instance C-SAT is a tuple (�, G), de�ned by a Boolean
circuit � : {0, 1} |G | × {0, 1} |~ | ↦→ {0, 1} and a string G ∈ {0, 1} |G | .

A C-SAT instance is said to be satis�able if there exists a string ~ ∈ {0, 1} |~ | such that � (G,~) = 1. We
denote this as RC-SAT((�, G), ~) = 1.

De�nition 2 (R1CS). An R1CS instance is a tuple x = (F, �, �,�, io,<, =) where (a) io denotes the public
input and output of the instance; (b) �, �,� ∈ F<×< with< ≥ |io| + 1; and (c) there are at most = non-zero
entries in each matrix.

An R1CS instance is said to be satis�able if there exists a witnessF ∈ F<−|io |−1 such that (� ·I) ◦ (� ·I) =
(� · I), where I = (io, 1,F), · is the matrix-vector product and ◦ is the Hadamard (entry-wise) product. We
denote this as RR1CS(x,F) = 1.

Circuit-SAT to R1CS. As discussed above, while our de�nition is for general R1CS instances, we shall
consider instances generated via a reduction from C-SAT. Given a C-SAT instance, one can convert it into
an R1CS instance over F where �, �,� ∈ F<×< for< = $ ( |� |) and = = $ ( |� |), i.e. the matrices �, � and�
are sparse. Furthermore, io ∈ {0, 1} |G | and the witnessF ∈ {0, 1} |� |− |G | . For completeness, we present the
transformation in Section A.2.

We will use the following theorem from [Set20] that shows that any R1CS instance can be represented
by sum over the Boolean hypercube (i.e. over {0, 1}ℓ for some ℓ) of a low degree polynomial.

�eorem 2 ([Set20]). For any R1CS instance x = (F, �, �,�, io,<, =) there exists a degree 3, log<-variate
polynomial G such that ∑

G ∈{0,1}log<

G(G) = 0

if and only if there exists a witnessF such that, except with soundness error negligible in _, RR1CS(x,F) = 1.
Here |F| is exponential in _ and< = $ (_).

�e construction of the above polynomialGwill be important to our work, and we present the overview
of the construction along with relevant notation in Section A.3.

3.2 Sumcheck

Fix any �nite �eld F, and consider the subset of F, {0, 1}. A (possibly ine�cient) prover PSC with input
6 : Fℓ ↦→ F, an ℓ variate polynomial of degree at most 3 in each variable, a�empts to convince the veri�er
VSC of the following claim ∑

11, · · · ,1ℓ ∈{0,1}
6(11, · · · , 1ℓ ) = E,

where E ∈ F is a common input to both PSC and VSC. �e veri�er is only given oracle access to 6, denoted
by V6SC, and is in fact allowed only a single query to 6. �e protocol to enable this is referred to as the
sumcheck protocol, and is described in Figure 1.
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Sumcheck Protocol: (PSC,V
6

SC) for
∑
11, · · · ,1ℓ ∈{0,1} 6(11, · · · , 1ℓ ) = E

Common input: E ∈ F.

P’s auxiliary input: polynomial 6

1. Set 8 B 1, E0 B E .

2. Prover PSC computes the univariate polynomial 68 : F ↦→ F of degree 3

68 (G) B
∑

18+1, · · · ,1ℓ ∈{0,1}
6(C1, · · · , C8−1, G, 18+1, · · · , 1ℓ )

send 68 to the veri�er V6SC.

3. Veri�er V6SC does the following:

(a) Check if68 is a univariate polynomial of degree at most3 , and that68 (0)+68 (1) = E8−1.
If not, V6SC rejects.

(b) Choose a random element C8←$F

(c) Set E8 B 68 (C8).
(d) if 8 < ℓ , set 8 B 8 + 1, send C8 to prover PSC and go back to Step 2.
(e) if 8 = ℓ , check if Eℓ = 6(C1, · · · , Cℓ ) by querying the oracle 6 at the point (C1, · · · , Cℓ ).

Figure 1: Sumcheck protocol (PSC(6),V
6

SC(E)) [LFKN92, Sha92]

For our applications, it will be convenient to think of the output of the sumcheck protocol to both
parties to be the vector (C1, · · · , Cℓ ) and Eℓ such that the �nal check of the veri�er can be performed using
the outputs of the sumcheck protocol by a single query to 6.

�eorem 3 ([LFKN92, Sha92]). Let 6 : Fℓ ↦→ F be an ℓ-variate polynomial of degree 3 in each variable. �e
sumcheck protocol (PSC,V

6

SC) described in Figure 1 satis�es the following properties.

Completeness If
∑
11, · · · ,1ℓ ∈{0,1} 6(11, · · · , 1ℓ ) = E , then

PrC1, · · · ,Cℓ
[
(PSC(6),V

6

SC(E)) = 1
]
= 1

Soundness If
∑
11, · · · ,1ℓ ∈{0,1} 6(11, · · · , 1ℓ ) ≠ E , then for every (possibly unbounded) prover P∗

PrC1, · · · ,Cℓ
[
(PSC(6),V

6

SC(E)) = 1
]
≤ 3 · ℓ|F|

E�ciciency �e prover runs in time ≤ poly
(
2ℓ ,)6

)
where )6 is the time taken to evaluate 6. �e veri�er

runs in time ≤ ℓ · poly(3, log |F|) and the total communication complexity is ≤ poly(3, ℓ, log |F|). �e
number of bits sent by the prover to veri�er is $ (3 · ℓ · log |F|).

�e sumcheck protocol is also public-coin.

Remark 1. We assume that all �eld operations in F take time polylog|F|.
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3.3 Cryptographic De�nitions

We start by de�ning the standard notion of computational indistinguishability.

De�nition 3 (Computational Indistinguishability). Two ensembles - = {-U }U ∈( and . = {.U }U ∈( are said
to be computationally indistinguishable, denoted by - ≈2 . , if for every non-uniform PPT distinguisher D,
every polynomial p, all su�ciently large _ and every U ∈ {0, 1}poly(_) ∩ (��� Pr

[
D(1_, -U ) = 1

]
− Pr

[
D(1_, .U ) = 1

] ��� < 1
p(_) ,

where the probability are taken over the samples of -U , .U and coin tosses of D.

3.3.1 Learning with Error Assumption
We state below the learning with errors (LWE) assumption.

De�nition 4 (Learning with Error Assumption). For any positive integers =, @, any s ∈ Z= , and any error
distribution j over Z, the LWE (Learning with Error) distribution �s,j is de�ned by uniformly sampling a
vector a, and outpu�ing (a, 〈a, s〉 + 4) ∈ Z=@ × Z@ , where 4 ← j .

�e LWE=,@,j assumption states that, any n.u. PPT adversary can not distinguish, with non-negligible
probability, between the distribution �s,j and the uniform distribution over Z=@ × Z@ .

3.3.2 Decisional Di�e-Hellman Assumption
In the following, we state the decisional Di�e-Hellman (DDH) assumption.

De�nition 5 (Decisional Di�e-Hellman). A prime-order group generator is an algorithm G that takes the
security parameter _ as input, and outputs a tuple (G, ?, 6), where G is a cyclic group of prime order ? (_),
and 6 is a generator of G.

Let G be a prime-order group generator. We say that G satis�es the DDH assumption if for any n.u. PPT
distinguisher D, there exists a negligible function a (_) such that���� Pr

[
(G, ?, 6) ← G(1_), 0, 1 ← Z? : D(1_,G, ?, 6, 60, 61, 601) = 1

]
−

Pr
[
(G, ?, 6) ← G(1_), 0, 1, 2 ← Z? : D(1_,G, ?, 6, 60, 61, 62) = 1

] ���� ≤ a (_)
Sub-exponential DDH. We say that G satis�es the sub-exponential DDH assumption, if there exists a
constant 0 < 2 < 1 such that for any n.u. PPT distinguisher, the advantage a (_) is bounded by 2−_2 for
any su�ciently large _.

3.3.3 �adratic Residuosity.
For any integer # , let Z∗

#
be the multiplication group of all elements that is co-prime with # . Let J# be the

subgroup of Z∗
#

that consists of all elements with Jacobi symbol 1. Given # , and any element G ∈ Z∗
#

, there
exists an e�cient algorithm to test whether G ∈ J# . LetQR# be the subgroup of Z∗

#
that consists of all the

quadratic residues. We say that # is a Blum integer, if # = ? · @, where ?, @ are distinct primes such that
? (mod 4) = @ (mod 4) = 3. Let H = {−1, +1} be a multiplicative group, then we have QR# = H × QR# .

In this work, we assume without loss of generality that the bit length of # is $ (_).
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De�nition 6 (�adratic Residuosity Assumption). Let # be an uniformly sampled Blum integer, then for
any non-uniform PPT adversary D, there exists a negligible function a (_) such that����Pr

#

[
G ← J# : D(1_, # , G) = 1

]
− Pr

#

[
G ← QR# : D(1_, # , G) = 1

] ���� < a (_) .
We will use the following theorem from [BG10].

�eorem 4 ([BG10]). Let # be a Blum integer, and QR# be the quadratic residuosity group with generator
6, and let : = : (_) be a polynomial, then for any non-uniform PPT adversary A, there exists a negligible
function a (_) such that

����Pr
#

[
a← A(1_, # , 6) : A((−1)a · (g)B) = 1

]
− Pr

#

[
a← A(1_, # , 6) : A((g)B) = 1

] ���� < a (_),
where B ← b(# − 1)/2e, and g← QR:# .

3.3.4 Correlation Intractable Hash
We start by describing a hash familyH = {H_}_∈N, which is de�ned by the two following algorithms

Gen: a PPT algorithm that on input the security parameter 1_ , outputs key : .

Hash: a deterministic polynomial algorithm than on input a key: ∈ Gen(1_), and an element G ∈ {0, 1}= (_)
outputs an element ~ ∈ {0, 1}_ .

Given a hash familyH , we are now ready to de�ne what it means forH to be correlation intractable.

De�nition 7 ([CGH04]). A hash familyH = (H .Gen,H .Hash) is said to be correlation intractable (CI) for
a function family F = {F_}_∈N if the following two properties hold:

– For every _ ∈ N, every 5 ∈ F_ , every : ∈ H .Gen(1_), the functions 5 andH .Hash(:, ·) have the same
domain and co-domain.

– For every PPT adversary A, there exists a negligible function negl(·) such that for every 5 ∈ F_ ,

Pr:←H.Gen(1_)
G←A(:)

[H .Hash(:, G) = 5 (G)] ≤ negl(_) .

For our work it will su�ce to consider constructions of CI hash families for (a) the class of all size
circuits of size d (_) for some polynomial function d assuming the Learning with Errors (LWE) assump-
tion; and (b) the class TC0 assuming sub-exponential hardness of the Decisional Di�e-Hellman (DDH)
assumption. We state the formal theorems below.

�eorem 5 (CIH from LWE [PS19]). Let ! = !(_), ( = ( (_) and 3 = 3 (_) be polynomials in _. Let the
function family F = {F_,!,(,3 }_ , where F_,!,(,3 contains all functions that can be computed by a circuit of
output length !(_), size ( (_), and depth 3 (_). Assuming the hardness of learning with error (De�nition 4),
there exists a construction of correlation intractable hash function for F .

�eorem 6 (CIH for TC0 from sub-exponential DDH [JJ21]). For any �xed depth !, let TC0
!
= {TC0

!,_
}_

be the circuit family consists of all threshold circuits of depth !, and output length Ω(_). Assuming the sub-
exponential security of DDH (De�nition 5), there exists a construction of correlation intractable hash function
for TC0

!
.
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4 Somewhere-Extractable Linearly Homomorphic Commitments

In this section, we introduce the notion of somewhere-extractable linearly homomorphic commitment.
In such a commitment scheme, one commits to a vector of values using a commitment key that can be
generated using one of two indistinguishable modes: normal mode or extraction mode. Before going into
the details, we give an overview of the desired properties from such a scheme:

Somewhere Extraction: When generating the commitment key  in the extraction mode, a coordinate
8∗ is chosen such that any commitment under the key  binds the least signi�cant bit of the 8∗-th
coordinate of the commi�ed message. Further, alongside the commitment key, the key generation
algorithm in the extraction mode also outputs a trapdoor td, which allows one to extract the least
signi�cant bit of the 8∗-th coordinate of the message (i.e. extraction (mod 2)). We denote this
extraction algorithm as Ext(·, td).

Linear Homomorphism: Consider two commitments 21 = Com( ,m1; A1) and 22 = Com( ,m2; A2)
under the same commitment key (in any mode) for messagesm1,m2 with corresponding randomness
A1, A2. For any integers 0 and 1, given 21 and 22, there is a way to homomorphically obtain the
commitment Com( , 0 ·m1 + 1 ·m2;0 · A1 + 1 · A2).

Linearly Homomorphic Extraction: �e aforementioned linear homomorphism only concerns well-
formed commitments. However, we also need the linear homomorphism properties to hold for com-
mitments that may not be well-formed. To this end, we introduce an extractable space E, such that
for any 2 ∈ E, as the name suggests, we can use the extraction algorithm Ext to extract a message.
Additionally, we require E to satisfy the following properties:

Public Veri�ability: Given any 2 , it can be publicly veri�ed if 2 ∈ E.
Close Under Linear Homomorphism: �e linear homomorphic operation is closed in E, i.e. for

any two elements in E, the linear homomorphic evaluated commitment is also in E.
Extraction is Linear Homomorphic: Most importantly, the extraction operation is linear homo-

morphic in E, i.e. for any two elements 21, 22 ∈ E, and any two integers 01, 02, we have

Ext(01 · 21 + 02 · 22, td) = 01 · Ext(21, td) + 02 · Ext(22, td) (mod 2)

Low-Depth Extraction: For our applications, we ideally want the extraction algorithm Ext be computed
in low depth, speci�cally TC0. However, this is hard to achieve. Hence, we decompose the extraction
algorithm to an o�ine pre-computation phase PreComp, where PreComp is not allowed to use td
but can be of polynomial depth, and a low-depth online-phase OnlineExt(·, td). We only require that
the online-phase of extraction OnlineExt(·, td) be computed in TC0.

In Section 4.1 we formally de�ne such a commitment scheme. In Section 4.2, we show an extension
of the de�nition to a more general se�ing, where the commitments are over polynomials. Lastly, in Sec-
tion 4.3, we construct such a commitment scheme from the quadratic residuosity assumption.

4.1 De�nition

A somewhere-extractable linearly homomorphic commitment scheme is a tuple of algorithms LHC =

(Gen, ExtGen,Com, Ext, Samp) described below, where Samp is a randomness sampling algorithm for the
commitment.10

10We use an explicit randomness sampling algorithm because in our construction from QR, the randomness is sampled from a
space that depends on the commitment key.
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– Gen(1_, 1: ): On input the security parameter _ and input length : , outputs a commitment key  .

– ExtGen(1_, 1: , 8∗): On input the security parameter _, input length : and an index 8∗ ∈ [:], outputs
an extractable commitment key  , and a trapdoor td.

– Com( , (G1, G2 . . . , G: ); A ): On input a commitment key  , : integers (G1, G2, . . . , G: ) ∈ Z: and ran-
domness A ← Samp( ) as input, outputs a commitment 2 .

– Ext(2, td): On input a commitment 2 and a trapdoor td, output a message <. Further, this can be
decomposed into two algorithms PreComp and OnlineExt described as follows:

– PreComp(1_, 2): On input the security parameter _ and a commitment 2 , output a pre-processed
value 2 ′ that is to be used for online extraction.

– OnlineExt(2 ′, td): On input the pre-processed commitment 2 ′ and a trapdoor td, output a mes-
sage< ∈ F2.

For correctness, we require that Ext(2, td) = OnlineExt(PreComp(1_, 2), td). We also emphasize that
PreComp does not take the trapdoor as input.

We require the algorithms to satisfy the following properties.

Compactness: �e size of the commitment is bounded by some �xed polynomial poly(_) in the security
parameter.

Key Indistinguishability: For any integer 8∗ ∈ [:], and any non-uniform PPT adversaryD, there exists
a negligible function a (_) such that

| Pr
[
 ← Gen(1_, 1: ) : D(1_,  ) = 1

]
− Pr

[
 ← ExtGen(1_, 1: , 8∗) : D(1_,  ) = 1

]
| < a (_) .

Linear Homomorphism: �ere exists a binary operation “+” over the commitments such that, for any
key  , 0, 1 ∈ Z, and any integers vectors x, y ∈ Z: , and randomness A,D ∈ Z, we have

0 · Com( , x; A ) + 1 · Com( , y;D) = Com( , 0 · x + 1 · y;0 · A + 1 · D).

Extraction: �e extraction algorithm Ext satis�es the following properties:

Somewhere F2-Extraction: For any x = (G1, G2, . . . , G: ) ∈ Z: , any 8∗ ∈ [:], and any randomness
A ∈ Z,

Pr[( , td) ← ExtGen(1_, 1: , 8∗), 2 = Com( , x; A ) :
Ext(2 ′, td) = G8∗ mod 2] = 1.

Linearly Homomorphic Extraction: �ere exists an extractable space E and a polynomial time
algorithm EVer such that, for any 2 ∈ {0, 1}∗,

Pr
[
2 ∈ E ⇐⇒ EVer(1_, 2) = 1

]
= 1.

Furthermore, E is closed under linear combination, i.e. for any 01, 02 ∈ Z, 21, 22 ∈ E, we have
01 · 21 + 02 · 22 ∈ E, and

Pr [Ext(01 · 21 + 02 · 22, td) = 01 · Ext(21, td) + 02 · Ext(22, td) (mod 2)] = 1.

In addition, every “well-formed” commitment is in E .i.e. for any key  , input x ∈ Z: , and
randomness A ∈ Z, we have Com( , x; A ) ∈ E.

Low-Depth Online Extraction: �e algorithm OnlineExt can be computed by TC0 circuits.
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4.2 Extension to Homomorphism w.r.t. to Polynomial.

In this section, we extend the commitment scheme in Section 4.1 to allow commitment for polynomials.
Speci�cally, we de�ne the commitment for a vector of polynomials f (U) = f0+ f1 ·U + . . .+ fC−1 ·UC−1 ∈ Z: [U]
as the commitments for each of its coe�cient vectors (Com( , f0),Com( , f1), . . . ,Com( , fC−1)) (for sim-
plicity, we omit the randomness). �e linear homomorphic property, somewhere extraction property and
linear homomorphic extraction can also be extended similarly to polynomials.

Let E (U) ∈ Z[U] be a monic polynomial over Z with degree C . Let ' = Z[U]/(E (U)) be the polynomial
ring over the integers modulo E (U). Let '/2' be the quotient ring of ' divided by the ideal 2'. We de�ne
the following operations.

– Commitment w.r.t. Polynomial: For any polynomials 5 (8) =
∑C−1
9=0 5

(8)
9
· U 9 where 8 ∈ [:], and

A =
∑C−1
9=0 A 9 · U 9 ∈ ', where 59 , A 9 ∈ Z, we de�ne the notation Com( , 5 (1) , 5 (2) , . . . , 5 (:) ; A ) as

Com( , 5 (1) , 5 (2) , . . . , 5 (:) ; A ) = (Com( , 5 (1)0 , . . . , 5
(:)

0 ; A0),Com( , 5 (1)1 , . . . , 5
(:)

1 ; A1),
. . . ,Com( , 5 (1)

C−1 , . . . , 5
(:)
C−1 ; AC−1)).

– Extraction w.r.t. Polynomial: For any 2 = (20, 21, . . . , 2C−1) ∈ EC , we de�ne Ext(2, td) as

Ext(2, td) = Ext(20, td) + Ext(21, td) · U + . . . + Ext(2C−1, td) · UC−1 ∈ '/2'.

– Somewhere F2-Extraction w.r.t. Polynomial: For any polynomial 5 (1) , 5 (2) , . . . , 5 (:) ∈ ', and
A ∈ ', we have

Pr[( , td) ← ExtGen(1_, 1: , 8∗) : Ext
(
Com( , 5 (1) , 5 (2) , . . . , 5 (:) ; A ), td

)
= 5 (8

∗)

(mod 2) ∈ '/2'] = 1

– Homomorphism w.r.t. to Polynomial: For any commitment 2 ∈ E, we de�ne 5 · 2 as

5 · 2 = (50 · 2, 51 · 2, . . . , 5C−1 · 2) .

Furthermore, for any two tuples of commitments c = (20, 21, . . . , 2C−1), c′ = (2 ′0, 2 ′1, . . . , 2 ′C−1) ∈ EC , we
de�ne the addition as

c + c′ = (20 + 2 ′0, 21 + 2 ′1, . . . , 2C−1 + 2 ′C−1) .

– Linear Homomorphic Extraction w.r.t. Polynomial: For any integer =, and = commitments
28 ∈ E, 8 = 1, 2, . . . , = in the extractable space E, and = polynomials 51, 52, . . . , 5= ∈ ', we have

Pr[Ext(51 · 21 + 52 · 22 + . . . + 5= · 2=, td) =
51 · Ext(21, td) + 52 · Ext(22, td) + . . . + 5= · Ext(2=, td) (mod 2)] = 1

It is easy to see, given the de�nitions above, that the above is a generic transformation from somewhere-
extractable linearly homomorphic commitment to support extension to homomorphism with respect to
polynomials.

Since the homomorphism, as described, results in the growth of the values inside the commitment, we
need to ensure that the openings do not become “too large”. �e following lemma bounds the size of the
opening.
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Lemma 1 (Bound on the size of the opening). For any integer = and �, let 51, 52, . . . , 5= be = polynomials in
the ring ' = Z[U]/(E (U)) with coe�cients in the range [−�, �], and let 28 = Com( , x8 ; A8), 8 = 1, 2, . . . , = be
= commitments, then the coe�cients of the openings (∑=

8=1 58x8 ,
∑=
8=1 58A8) is in [−�′, �′], where

�′ = =� · max
8∈[=]
{‖x8 ‖∞, |A8 |} .

Proof. For coe�cients of
∑=
8=1 58x8 , they can be bounded by

∑=
8=1 �‖x8 ‖∞ ≤ =�max8∈[=] ‖x8 ‖∞. �e term∑

8∈[=] 58A8 can be bounded similarly.

4.3 Construction

We present our construction of somewhere-extractable linearly homomorphic commitments in Figure 2.
�e reader may note that we have not split the extraction algorithm Ext in Figure 2 as necessitated

by the de�nition. Instead we defer the decomposition into PreComp and OnlineExt to Figure 3. We state
below the theorem, and then prove each of the properties subsequently.

�eorem 7. �e construction in Figure 2 is a somewhere-extractable linearly homomorphic commitment
based on the �adratic Residuosity assumption (De�nition 6), where the decomposed extraction algorithm is
described in Figure 3.

4.4 Proof of �eorem 7

We now prove each the required properties in a sequence of lemmas below.

Lemma 2 (Compactness). �e construction in Figure 2 satis�es compactness property.

�e compactness follows directly from the construction.

Lemma 3 (Key Indistinguishability). �e construction in Figure 2 satis�es key indistinguishability.

Proof. For any integer: = : (_), any index 8∗ ∈ [:], and any adversaryD, we build the following adversary
A for �eorem 4. Upon input of (#,6′), A output the vector a = 18∗ , where 18∗ ∈ {0, 1}: is the indicator
vector with 1 on the 8∗-th coordinate, and 0 elsewhere. Next, the challenger samples a random B and sends
to A the tuple (h, ℎ), which is either (−1)a · (g, 6)B or (g, 6)B . When A receives (h, ℎ), it invokes the
adversary D on the input  = (#,6, ℎ, g, h), and passes the output of D as its own. By �eorem 4, the
adversary A cannot distinguish whether (h, ℎ) = (−1)a · (g, 6)B or (h, ℎ) = (g, 6). However, the adversary
A simulates the correct input distribution for D. �is completes the proof.

Lemma 4 (Linear Homomorphism). �e construction in Figure 2 satis�es the linear homomorphism property.

Proof. We �rst de�ne the linear homomorphic operation over the commitment. For any integer 0, 1 ∈ Z,
and any commitment 2 = (26, 2ℎ), 3 = (36, 3ℎ) ∈ J2# , we de�ne the linear homomorphic operation as

0 · 2 + 1 · 3 = (206 · 316 mod #, 20
ℎ
· 31
ℎ

mod # ).

If 2 = Com( , x; A ) and 3 = Com( , y;D), where x = (G1, G2, . . . , G: ) and y = (~1, ~2, . . . , ~: ), then we
have

0 · 2 + 1 · 3 =

(
(6A

:∏
8=1

6
G8
8
)0 · (6D

:∏
8=1

6
~8
8
)1, (ℎA

:∏
8=1

ℎ
G8
8
)0 · (ℎD

:∏
8=1

ℎ
~8
8
)1

)
=

(
60A+1D

:∏
8=1

6
0G8+1~8
8

, ℎ0A+1D
:∏
8=1

ℎ
0G8+1~8
8

)
= Com( , 0x + 1y;0A + 1D).
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Somewhere-Extractable Linearly Homomorphic Commitment

– Key Generation Gen(1_, 1: ):
– Uniformly sample a Blum integer # .
– Uniformly sample 6← QR# , g← QR:# , and B ← b(# − 1)/2e.
– Let ℎ = 6B , h = (g)B

– Output  = (#,6, ℎ, g, h).
– Extractable Key Generation ExtGen(1_, 1: , 8∗):

– Uniformly sample a Blum integer # = ? · @.
– Uniformly sample 6← QR# , g← QR:# , and B ← b(# − 1)/2e.
– Let ℎ = 6B and h = (−1)18∗ · (g)B , where 18∗ ∈ {0, 1}: is the

indicator vector with 1 on the 8∗-th coordinate, and 0 elsewhere.
– Output  = (#,6, ℎ, g, h), and td = (?, @, B).

– Commit Com( = (#,6, ℎ, g, h), x ∈ Z: ; A ):
– Parse g = (61, 62, . . . , 6: ), h = (ℎ1, ℎ2, . . . , ℎ: ).
– Let 26 = 6A ·

∏:
8=1 6

G8
8
, 2ℎ = ℎA ·∏:

8=1 ℎ
G8
8

.
– Output 2 = (26, 2ℎ).

– Extraction Ext(2 = (26, 2ℎ), td = (?, @, B)):
– If (2ℎ/2B6) (?−1) (@−1)/4 = 1 (mod # ), then output 0, otherwise out-

put 1.

– Randomness Sampling Samp( ):
– Output an uniformly sampled A ← b(# − 1)/2e.

Figure 2: Construction of somewhere-extractable linearly homomorphic commitment.

Lemma 5 (Somewhere F2-Extraction). �e construction in Figure 2 satis�es the somewhere F2-extraction
property.

Proof. For any x = (G1, G2, . . . , G: ) ∈ Z: , and any 8∗ ∈ [:], and any randomness A ∈ Z, let ( , td) ←
ExtGen(1_, 1: , 8∗), and 2 = Com( , x; A ). �en 2 = (6A ∏:

8=1 6
G8
8
, ℎA

∏:
8=1 ℎ

G8
8
), where g = (61, 62, . . . , 6=) and

h = (ℎ1, ℎ2, . . . , ℎ=) are speci�ed by the commitment key  . Hence, h = (−1)18∗ (g)B , where 18∗ ∈ {0, 1}: is
the indicator vector with the 8∗-th position set to be 1, and ℎ = 6B . Now we have

2 =

(
6A ·

:∏
8=1

6
G8
8
, 6BA ·

(
:∏
8=1

6
BG8
8

)
· (−1)G8∗

)
If we denote 2 as (26, 2ℎ), then 2ℎ/2B6 = (−1)G8∗ . In the Ext algorithm, since # is a Blum integer, (? − 1) (@ −
1)/4 is an odd. Hence, we have (2ℎ/2B6) (?−1) (@−1)/4 = 1 if and only if G8∗ (mod 2) = 0.

Lemma 6 (Linear Homomorphic Extraction). �e construction in Figure 2 satis�es linear homomorphic
extraction property.

24



Proof. Let the extraction space E be J2
#

. Since Jacobi symbol can be computed e�ciently, there exists an
e�cient algorithm EVer such that Pr[2 ∈ E ⇐⇒ EVer(1_, 2) = 1] = 1.

To show that the linear homomorphic operation is closed over E = J2
#

, we consider any integers
0, 1 ∈ Z, and any commitments 2 = (26, 2ℎ), 3 = (36, 3ℎ) ∈ J2# . Since we de�ne 0 · 2 +1 ·3 = (206 ·316 , 20ℎ ·3

1
ℎ
),

and the multiplication is closed in the group J# , we have 0 · 2 + 1 · 3 ∈ J2
#

.
For linear homomorphic extraction property, we �rst claim a general property about the extraction

algorithm Ext.

Claim 1. For any 2 = (26, 2ℎ) ∈ J2# , and any td = (?, @, B), where # = ? · @ is a Blum integer, since
J# = H × QR# , there exists a unique< ∈ Z2 and 6 ∈ QR# such that 2ℎ/2B6 = (−1)< · 6, then Ext(2, td) =<
(mod 2).

We defer the proof of the claim to the end of the proof. Now for any 2 = (26, 2ℎ), 3 = (36, 3ℎ) ∈ E,
since J# = H × QR# , there exists a unique<2 ∈ Z2 and 62 ∈ QR# such that 2ℎ/2B6 = (−1)<262 , and also
an unique<3 ∈ Z2 and 63 ∈ QR# such that 3ℎ/3B6 = (−1)<363 . �en, for 0 · 2 + 1 · 3 = (206 · 316 , 20ℎ · 3

1
ℎ
), we

have

20
ℎ
· 31
ℎ
/(206 · 316 )B = (2ℎ/2B6)0 · (3ℎ/3B6)1 = (−1)0 ·<2+1 ·<3 · (602 · 613 ).

Since (−1)0 ·<2+1 ·<3 ∈ H and 602 · 613 ∈ QR# , by the Claim 1, we have

Ext(0 · 2 + 1 · 3, td) = 0 ·<2 + 1 ·<3 (mod 2) = 0 · Ext(2, td) + 1 · Ext(3, td) (mod 2) .

Proof of the Claim 1. Let = = (? − 1) (@ − 1)/4 be the order of the group QR# . Hence, if 2ℎ/2B6 = (−1)< · 6,
where 6 ∈ QR# , then 6= = 1, and thus (2ℎ/2B6)= = (−1)< ·=6= = (−1)< . �is completes the proof.

Lemma 7 (Low-Depth Online Extraction). �e construction in Figure 3 satis�es the low-depth online extrac-
tion property.

Proof. �e work [RT92, HAM02] proved that the iterative multiplication, and division operations are in
TC0. Hence, the computation of 46 and 4ℎ can be done in TC0. �e exponentiation 246,8

6,8
, 2 ′
ℎ,8
4ℎ,8 can also

be computed in TC0, since 46,8 , 4ℎ,8 ∈ {0, 1} are binary values. Finally, < is the iterative multiplication of
2
46,8

6,8
, 2 ′
ℎ,8
4ℎ,8 , and hence can also be computed in TC0.

Lemma 8. �e Ext algorithm in Figure 2 and the PreComp,OnlineExt algorithms in Figure 3 satisfy that for
any 2 ∈ E, any ( , td) ← ExtGen(1_, 1: , 8∗), we have Ext(2, td) = OnlineExt(PreComp(1_, 2), td)

Proof. Following the algorithm OnlineExt,< is computed as< =
∏_
8=0 2

′
6,8
46,8 ·∏_

8=0 2
′
ℎ,8
4ℎ,8 (mod # ) Since

46,8 and 4ℎ,8 are the binary representation of 46 and 4ℎ , the right hand side equals to 2466 · 24ℎℎ = 26
−B ·=2=

ℎ
=

(2ℎ/2B6)= . Hence, Ext(2, td) = OnlineExt(PreComp(1_, 2), td).

5 Dual Mode Interactive Batch Arguments for NP

In this section, we de�ne and construct dual mode interactive batch arguments for NP. At a high-level,
such an argument system allows for proving multiple instances of an NP language while incurring roughly
the communication (and veri�cation) cost of proving a single instance. We consider such protocols in the
CRS model that may be executed in one of two modes – normal mode or trapdoor mode. �e former
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Pre-Computation and Online Extraction

– Pre-Computation PreComp(1_, 2 = (26, 2ℎ)):

– Let c′6 = (220
6 , 2

21
6 , . . . , 2

2_
6 ), c′ℎ = (220

ℎ
, 221

ℎ
, . . . , 22_

ℎ
).

– Output 2 ′ = (c′6, c′ℎ).

– Online Extraction OnlineExt(2 ′ = (c′6, c′ℎ), td = (?, @, B)):

– Parse c′6 = (2 ′6,0, 2 ′6,1, . . . , 2 ′6,_) and c′
ℎ
= (2 ′

ℎ,0, 2
′
ℎ,1, . . . , 2

′
ℎ,_
).

– Let = = (? − 1) (@ − 1)/4 be the order of QR# .
– Let 46 = −B · = (mod 2=), and 4ℎ = =.
– Let the binary representation of 46 be (46,0, 46,1, . . . , 46,_) ∈
{0, 1}_+1, i.e. 46 = 46,0 ·20+46,1 ·21+46,2 ·22+ . . . 46,_ ·2_ . Similarly, let
the binary representation of 4ℎ be (4ℎ,0, 4ℎ,1, . . . , 4ℎ,_) ∈ {0, 1}_+1.

– Let< =
∏_
8=0 2

′
6,8
46,8

∏_
8=0 2

′
ℎ,8
4ℎ,8 (mod # )

– If< = 1, output 0, otherwise, output 1.

Figure 3: �e extraction of the somewhere-extractable linearly homomorphic commitment.

corresponds to normal protocol execution while the la�er mode is used in the security proof. Crucially, in
the trapdoor mode, we require the protocol to satisfy non-adaptive statistical soundness.

Dual Mode Interactive Batch Arguments. We start by providing a formal de�nition. We shall denote
by Out�〈�(0), �(1)〉 the random variable that corresponds to the output of party � on execution of the
protocol between � with input 0, and � with input 1. Here the probability is taken over the random coins
of both � and �.

De�nition 8 (Dual-Mode Interactive Batch Arguments). A dual-mode interactive batch argument,denoted
by a tuple of PPT algorithms (P,V,Gen, TGen), is an interactive protocol in the common reference string (CRS)
model for an NP language ! de�ned by relation R! if it satis�es the following properties:

Completeness. For all x = (G1, . . . , G: ) and w = (F1, . . . ,F: ) such that for each 8 ∈ [:], R! (G8 ,F8) = 1, it
holds that:

Pr
[
OutV〈P(crs, x,w),V(crs, x)〉 = 1

��� crs← Gen(1_, 1: )
]
= 1.

Dual Mode Indistinguishability. �e two setup modes are computationally indistinguishable, i.e. ∀: ∈
N,∀8∗ ∈ [:], {

crs : crs← Gen(1_, 1: )
}
_∈N
≈2

{
crs : crs← TGen(1_, 1: , 8∗)

}
_∈N

Non-Adaptive Statistical Soundness in Trapdoor Mode. For every (possible unbounded) cheating prover
P∗ and all x = (G1, . . . , G: ) where ∃8 s.t. G8 ∉ !, it holds that ∀8∗ ∈ [:] s.t. G8∗ ∉ !:

Pr
[
OutV〈P∗(crs, x,w),V(crs, x)〉 = 1

��� (crs, td) ← TGen(1_, 1: , 8∗)
]
≤ negl(_) .
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Remark 2. �e above de�nition implies (non-adaptive) soundness against PPT cheating provers in the normal
mode. �is is easily observed via a sequence of hybrids: (i) switch the crs being generated in the normal mode
to the trapdoor mode for a randomly chosen index 8∗ while relying on the computational indistinguishability.
With probability at least 1/: the chosen index 8∗ will be such that G8∗ ∉ !; (ii) rely on the non-adaptive
statistical soundness in the trapdoor mode.

Our Construction. We construct a dual mode interactive batch argument for R1CS, where the instances
are generated from instances of Boolean circuit satis�ability that all share the circuit � but have di�erent
statements G . (We refer the reader to Section A.2 for the corresponding reduction from Boolean satis�a-
bility to R1CS.) �is results in : instances of R1CS,

{x( 9) } 9 ∈[: ] = (F, �, �,�, {io( 9) } 9 ∈[: ],<, =),

where all the io9 are of the same length, and the instances share the same F,�, �,� ,< and =. Furthermore,
as a consequence of the reduction, the witnesses to these instances {F ( 9) } 9 ∈[: ] are all binary values, i.e.
∀9 ∈ [:], F ( 9) ∈ {0, 1}<−|io |−1. We work with the �eld F, which is an extension �eld of F2 of size 2_ .
Speci�cally, F B F2 [U]/(E (U)) for some irreducible polynomial E (U) in F2 of degree _.11

Our protocol relies on a single cryptographic component, namely, a somewhere-extractable linearly
homomorphic commitment scheme LHC = (Gen, ExtGen,Com, Ext, Samp) (Section 4.1) which can be built
(see Section 4.3) from the quadratic residuosity assumption (De�nition 6). �e dual mode property of our
protocol comes exclusively from the use of this commitment scheme.

�e formal description of the protocol is presented in Figure 4.

Below, we provide an overview of our protocol, focusing on how we implement batching.

1. Given : R1CS instances {x( 9) } 9 ∈[: ] , the prover needs to commit to : witnesses {F ( 9) } 9 ∈[: ] , where
the witnesses are all of the same size |F |. �is is done by �rst representing the : witnesses as a
matrix, , where each witness occupies a single row. �e prover uses LHC to commit to |F | :-tuples
corresponding to each column of the matrix, . From the compactness property of LHC, the total
size of the commitments sent by the prover is proportional to the size of a single witness |F |.
An observant reader may note that the message space for a :-tuple commitment in LHC is Z: , and
not F: as we would like. Here we utilize the fact that the prover is commi�ing to the witness whose
values are only binary (as consequence of the reduction from C-SAT to R1CS, see Section 3.1)13, and
therefore the message space for the commitment of a :-tuple is {0, 1}: ⊂ Z: . �is also explains why
we commit to the witness F rather than its multilinear extension, since they are equivalent when
the witness is a binary string.
Let

{
2~

}
~∈[ |F | ] denote the commitments.

2. �e prover and veri�er run sumcheck protocols for polynomials {G ( 9)
g,io} 9 ∈[: ] - there are : distinct

polynomials since the witness (which determines the polynomial) for eachR1CS instance is di�erent.
Speci�cally, the sumcheck protocol is to prove that the following sum∑

G ∈{0,1}log<

G ( 9)
g,io B

∑
G ∈{0,1}log<

�̃io(G) · ẽq(G, g)

is 0, where �̃io as de�ned in Section A.3 is a polynomial that depends on�, �,�, io andF . �e prover
and veri�er run all : sumchecks in parallel, where the veri�er uses the same randomness across all
the sumcheck protocols.

11One can think of the representation to be a _ length vector in F2 corresponding to the coe�cients of the polynomial 5 ∈
F2 [U]/(E (U)).

13Our protocol does not handle arbitrary R1CS instances where the witness may have values in F outside of {0, 1}.
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Protocol: Interactive Batch Argument (P,V,Gen, TGen)

Common Reference String:  ← LHC.Setup1 (1_, 1: )
Common input: input {x( 9) } 9 ∈[: ] B (F, �, �,�, {io( 9) } 9 ∈[: ],<, =), security parameter 1_

P’s auxiliary input: witnesses {F ( 9) } 9 ∈[: ] such that ∀9 ∈ [:], RR1CS (x( 9) ,F ( 9) ) = 1

1. Prover commits to the :-tuple of witnesses in a column-wise fashion. Speci�cally ∀~ ∈ {0, 1}B2 , 2~ B
LHC.Com( , (F (1)~ , · · · ,F (:)~ ); A~) where A~ ←$ LHC.Samp( ). Send {2~}~∈{0,1}B2 to the veri�er V.

2. Veri�er V samples a random vector g ←$FB and sends g to the prover P.

3. Prover P and veri�er V run : sumcheck protocols (PSC (Gio( 9 ) ,g ),VSC (0))12 in parallel where the veri�er uses
the same randomness in each sumcheck. �e output of the sumchecks are A ∗ ∈ FB and {a ( 9) } 9 ∈[: ] .

4. �e veri�er V asks P for values {a ( 9)
�,2, a

( 9)
�,2, a

( 9)
�,2} 9 ∈[: ] .

5. Prover P computes ∀9 ∈ [:], - ∈ {�, �,�},

– a
( 9)
-,2 B

∑
~∈{0,1}B2 -̃

′′(A ∗, ~) ·F ( 9)~ ,

– A- B
∑
~∈{0,1}B2 -̃

′′(A ∗, ~) · A~ ,

sends {a ( 9)
�,2, a

( 9)
�,2, a

( 9)
�,2} 9 ∈[: ] along with the commitment openings A�, A�, A� to the veri�er V.

6. �e veri�er V does the following

(a) computes ∀- ∈ {�, �,�}, 2- B
∑
~∈{0,1}B2 -̃

′′(A ∗, ~) · 2~

(b) checks commitment opening, ∀- ∈ {�, �,�}, 2-
?
= LHC.Com( , (a (1)

-,2, · · · , a
(:)
-,2); A- )

(c) computes ∀9 ∈ [:], - ∈ {�, �,�}, a ( 9)
-,1 B

∑
~∈{0,1}B1 -̃

′(A ∗, ~) · (io| |1) ( 9)~ , and a ( 9)
-

= a
( 9)
-,1 + a

( 9)
-,2.

(d) checks ∀9 ∈ [:], a ( 9) = (a ( 9)
�
· a ( 9)
�
− a ( 9)

�
) · ẽq(A ∗, g), and reject if any of the checks fail.

Accept if none of the checks have failed.

Figure 4: Interactive Batch Argument for R1CS.

3. At the end of the sumcheck protocol, the veri�er needs to evaluate each polynomial {G ( 9)
g,io} 9 ∈[: ] at

a point A ∗ ∈ Flog< determined by the sumcheck polynomial. Note that since the veri�er used the
same randomness across all the sumcheck protocols, it is the same value A ∗ for all the polynomials
{G ( 9) } 9 ∈[: ] . Since ẽq(A ∗, g) can be computed locally by the veri�er, from Section A.3, the check at
the end of the sumcheck reduces to computing, for each 9 ∈ [:],

�̃
( 9)
io (A

∗) B ©­«
∑

~∈{0,1}B1
�̃′(A∗, ~) · (io( 9) , 1)~ +

∑
~∈{0,1}B2

�̃′′(A∗, ~) ·F ( 9)~
ª®¬ ·©­«

∑
~∈{0,1}B1

�̃′(A∗, ~) · (io( 9) , 1)~ +
∑

~∈{0,1}B2
�̃′′(A∗, ~) ·F ( 9)~

ª®¬
− ©­«

∑
~∈{0,1}B1

�̃ ′(A∗, ~) · (io( 9) , 1)~ +
∑

~∈{0,1}B2
�̃ ′′(A∗, ~) ·F ( 9)~

ª®¬
�e terms that depend solely on the instance and common input can be computed by the veri�er
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locally. �e remaining terms that depend on the witness, highlighted in red above, are terms that
the prover needs to send to the veri�er. We denote these terms by {a ( 9)

�,2, a
( 9)
�,2, a

( 9)
�,2} 9 ∈[: ] , where for

each 9 ∈ [:],

a
( 9)
�,2 B

∑
~∈{0,1}B2

�̃′′(A ∗, ~) ·F ( 9)~ , a
( 9)
�,2 B

∑
~∈{0,1}B2

�̃′′(A ∗, ~) ·F ( 9)~

a
( 9)
�,2 B

∑
~∈{0,1}B2

�̃ ′′(A ∗, ~) ·F ( 9)~

�ere are two crucial observations to be made here: (i) for each �xed A ∗, the above values are
simply a linear combination of each individual witness F ( 9) (with appropriate coe�cients); and (ii)
the linear coe�cients are the same for each witness, and in fact the linear coe�cients depend only
on the index of the witness.

4. �e above observations allow the prover to open the commitments to {a ( 9)
�,2, a

( 9)
�,2, a

( 9)
�,2} 9 ∈[: ] by the

linear homomorphism property of LHC since the property allows for the same linear coe�cient to
be applied all values in the :-tuple within the commitment.
Speci�cally, the prover sends the values (and randomness) in the clear to the veri�er, who then
performs the same linear homomorphism over the commi�ed values

{
2~

}
~∈[ |F | ] to check if the

openings sent by the prover are correct before computing the checks necessitated by the sumcheck.
While we remarked that the values that are inside the commitment are binary, this is not true of the
linear coe�cients that are in F. But since F = F2 [U]/(E (U)), by the homomorphism with respect to
polynomial property of LHC and that F2 [U]/(E (U)) ⊂ Z[U]/(E (U)), it is �ne that coe�cents are in
F.
Lastly it should be noted that the homomorphism properties are de�ned over Z[U]/(E (U)) and not
F2 [U]/(E (U)), meaning there is no modular reduction in the coe�cients of the resultant polynomial
a�er the homomorphism operation, i.e. the _ length vector has elements inZ instead of F2. �erefore,
to verify correctness of the commitment, the prover computes the values {a ( 9)

�,2, a
( 9)
�,2, a

( 9)
�,2} 9 ∈[: ] over

Z[U]/(E (U)), i.e. no modular reduction. �e veri�er does the commitment check over Z[U]/(E (U)),
but once the check passes successfully reduces to F2 [U]/(E (U))14. While this increases the number
of bits sent by the prover, from Lemma 1, we see that the increase is quite small and is quanti�ed in
our main �eorem below.

�eorem 8. Assuming the existence of somewhere-extractable linearly homomorphic commitments, the pro-
tocol in Figure 4 is a dual-mode interactive batch argument for R1CS where

– Total communication cost is $ (<_ + (_ + :) log<)

– �e veri�er’s total run time is $ (: |io| + = +<) · poly(_)

where all instances have the same length |io|.

Proof. We prove the desired properties below.

Completeness �e completeness follows from (i) linear homomorphism property of the commitment
scheme LHC; (ii) correctness of the sumcheck protocol for the polynomial G from �eorem 2; and
(iii) polynomials in Section A.3.
�e completeness is discussed in detail when we discussed the construction in Section 5.

14�is is just reducing each element in the _ length vector to F2.
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Dual Mode Indistinguishability �is follows directly from the key indistinguishability of the somewhere-
extractable linearly homomorphic commitment scheme LHC.

Non-adaptive statistical soundness We prove stronger a soundness guarantee than necessitated by the
de�nition in Section 6, which will imply non-adaptive statistical soundness of the protocol. �e
stronger property will be crucial to the application of the Fiat-Shamir paradigm.

Costs. We denote below the costs for the batch veri�cation protocol:

V’s cost: �e veri�er’s cost includes the following, where - below indicates values �, � or �:
1. �e cost to run : sumcheck protocols over a degree 2 polynomial with log< variables,

which is $ (log<) operations over the ring Z[U]/(E (U)).
2. �e cost to compute 2- is the cost to compute a single instance of a-,2, which is$ (_(= +
< + |F |)) = $ (_(= +<)) group operations.

3. �e cost to check if the commitment is computed correctly corresponds to the cost of
commi�ing to a _ · : tuple, i.e. $ (_:) group operations.
�e additional _ comes from the fact that the veri�er has to commit to values in the ring
in order to perform the check.

4. Lastly, the cost of computing : values a ( 9)
-,1 is$ (: |io( 9) | +=+<) (see Section 5 for details).

communication cost �e commitment in the �rst message has a total cost of$ (2B)·|LHC.Com| =
$ (< · _). �e veri�er then sends $ (_ log<) bits. During the sumcheck, the total communi-
cation cost is $ (log<) �elds elements or (_ log<) bits. Finally when the commitments are
opened, the prover sends $ (: log<) bits (see Lemma 1). �is yields a total communication
cost of $ (<_ + (_ + :) log<).
Note that there is a slight increase in communication cost due to the fact the prover sends
the opening to the commitment without performing a modular reduction. But as observed
from Lemma 1, this does not a�ect the cost by more than a logarithmic factor in<.

Since we start with Boolean circuit satis�ability to generate R1CS instances, we get the following
corollary with costs corresponding to the size the Boolean circuit.

Corollary 1. If we start with C-SAT instances de�ned by a boolean circuit � : {0, 1} |G | × {0, 1} |~ | ↦→ {0, 1},
then the protocol in Figure 4 is a dual-mode interactive batch argument for C-SAT where

– Total communication cost is $ ( |� | + : log |� |)poly(_)

– �e veri�er’s total run time is $ (: |G | + |� |) · poly(_)

6 Strong Fiat-Shamir Compatibility

To make our (public-coin) protocol in Section 5, we want to apply the Fiat-Shamir transformation to the
protocol, relative to some hash family. We describe the transformation in Section 7.1. But before we can
get to the transformation, we need to show that our interactive protocol satis�es additional properties that
make it suitable to prove soundness when we do apply the transformation.

In this section, we shall we shall �nd it convenient to follow the methodology presented in [JKKZ21].
�e authors in [JKKZ21] de�ne the notion of a Fiat-Shamir(FS)-Compatible Interactive Proof, which are
public-coin interactive proof systems that satisfy some additional properties. In this work, we strengthen

30



the requirements from FS compatible protocols denoting such protocols Strongly FS-Compatible Interactive
Proof.

We start by de�ning the necessary properties for a protocol to be strongly FS-compatibility in Section
6.1. �en in Section 6.2 we show that our protocol in Section 5 in the trapdoor mode is strongly FS-
compatible, which also implies the non-adaptive statistical soundness, completing �eorem 4.

6.1 De�nition

In this section, we present the de�nition of Strongly FS-Compatible Interactive Proofs. As a starting step,
we �rst recall the de�nition of round-by-round soundness for interactive proofs from [CCH+19].

De�nition 9 (Round-by-Round Soundness [CCH+19]). Let Π = (P,V) be a public-coin interactive protocol
for a promise language ! = (!YES, !NO), and 3 (_) be a function of _. Let& be the space of randomness for the
veri�er’s message on each round.

We say Π satis�es 3 (_)-round-by-round soundness, if there exists a deterministic (possibly ine�cient)
function State that satis�es the following properties. State takes as input (G, trans) where G ∈ {0, 1}∗ is an
instance, and trans is a pre�x of the transcript of the protocol, and State outputs either Accept or Reject.

1. Let q be the empty transcript pre�x. For any instance G ∈ !YES, State(G, q) = Accept. For any G ∈ !NO,
State(G, q) = Reject.

2. For any instance G and transcript pre�x trans = (U1, V1, U2, V2, . . . , U8−1, V8−1), if State(G, trans) =

Reject, then for any (possibly unbounded) adversary A,

Pr
[
U ← A(1_, G, trans), V ← & : State(G, trans|U |V) = Accept

]
≤ 3 (_)/|& |.

3. For any complete protocol transcript trans, If State(G, trans) = Reject, then V(G, trans) = 0.

As observed in [CCH+19], an ℓ round protocol satisfying 3 round-by-round soundness, also satis�es
standard soundness with bound 3ℓ/|& |. �is follows from a simple application of the union bound over
each round.

We now present the de�nition of Strongly FS-Compatible Interactive Proofs.

De�nition 10 (Strong FS-Compatible Interactive Proofs). Let 3 (_),)PreComp and d (_) be functions of _.
We say an ℓ (_)-round interactive protocol Π = (P,V) for a promise language !̄ = (!YES, !NO) satis�es
(3 (_),)PreComp, d (_))-strong-FS-compatibility, if the following conditions hold.

Round-by-Round Soundness. Π satis�es 3 (_)-round-by-round soundness.

Bad Challenge Function. �ere exists an algorithm BAD such that, for any instance G ∈ !NO, any 8 ∈ [ℓ],
any transcript pre�x trans = (U1, V1, U2, V2, . . . , U8−1, V8−1) such that State(G, trans) = Reject, and any
prover’s 8-th round message U , BAD(G, trans|U ; A ) outputs an uniformly random element in B, where
B is de�ned as

B = {V ∈ & | State(G, trans|U |V) = Accept}.

If B is empty, BAD(G, trans|U ; A ) outputs ⊥. We require BAD to satisfy the following two properties:

E�cient: �e BAD function can be computed in polynomial time.
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Low Depth Computation: �e BAD algorithm can be decomposed to a (deterministic) polyno-
mial time algorithm PreComp and a family of TC0 circuits {OnlineBAD_}_ such that, for any
instance G , any 8 ∈ [ℓ], transcript pre�x and the prover’s 8-th round message U ,

BAD(G, trans|U ; A ) = OnlineBAD_, [A ] (PreComp(1_, G, trans|U)),

where the circuit OnlineBAD_ has the randomness A hardwired in it, and the size of the circuit
OnlineBAD_ is bounded by d (_), and the running time of PreComp(1_, G, trans|U) is bounded
by )PreComp(_).

6.2 Proof of Strong Fiat-Shamir Compatibility

In this section, we prove that our protocol in Section 5 in the trapdoor mode is (3,)PreComp, d)-strongly
FS-compatible, where 3 = $ (1),)PreComp = poly(_) · |� |, d = poly(_, :, |� |).

We start by proving the round-by-round soundness in Section 6.2.1, the existence of e�cient BAD
challenge functions in Section 6.2.2, and its low-depth computation property in Section 6.2.3. An immediate
consequence of proving the round-by-round soundness of our protocol in the trapdoor mode is that it
implies the

To prove the properties need for strong FS-compatibility, we de�ne the following promise language
!̄8∗ = (!YES, !NO) for : R1CS instances:

– Yes Instance: All R1CS instances {x(8) }8∈[: ] are satis�able.

– No Instance: �e 8∗-th R1CS instance x8∗ is unsatis�able.

6.2.1 Proof of Round-by-Round Soundness
We start by describing the function State. For any G ∈ !YES, we de�ne State(G, q) = Accept, and for any
G ∈ !NO, de�ne State(G, q) = Reject. Let : = poly(_) be a polynomial, and let 8∗ ∈ [:] be an index. Let
( , td) be an extraction mode key generated by ExtGen(1_, 1: , 8∗) during the the CRS generation in the
trapdoor mode of the protocol. We will start by extracting the witness from the commitments sent by the
prover, and then split the descrption of the State function depending on whether the input transcript to
State is in the “zero-testing” phase, or the sumcheck phase.

Witness Extraction. �e prover sends the commitments 2 = {2~}~∈{0,1}B2 .
We use the trapdoor td to extract the witness F~ ← Ext(2~, td), for all ~ ∈ {0, 1}B2 , where F~ ∈ F2.

�is corresponds to extracting the 8∗-th puported witness.
Next, let � ∗(G) be the following polynomial, de�ned with respect to the extracted witnesses

� ∗(G) = ©­«
∑

~∈{0,1}B1
�′(G,~) · (io, 1) (8

∗)
~ +

∑
~∈{0,1}B2

�′′(G,~) ·F~
ª®¬ ·©­«

∑
~∈{0,1}B1

�′(G,~) · (io, 1) (8
∗)

~ +
∑

~∈{0,1}B2
�′′(G,~) ·F~

ª®¬
− ©­«

∑
~∈{0,1}B1

� ′(G,~) · (io, 1) (8
∗)

~ +
∑

~∈{0,1}B2
� ′′(G,~) ·F~

ª®¬ . (3)
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Correspondingly, let &∗(C1, C2, . . . , CB) ∈ F2 [C1, C2, . . . , CB] be the multivariable polynomial

&∗(C) =
∑

G ∈{0,1}B
� ∗(G) · ẽq(G, C) (4)

where C = (C1, C2, . . . , CB).
Zero-Testing. In this stage, the veri�er sends an uniform random g ← FB . Let g = (g1, g2, . . . , gB), where
g8 ∈ F. We view this step as 2B-rounds, where the veri�er �rstly sends g1 in the �rst round, the sender
sends nothing in the second round, and the veri�er sends g2 in the third round etc. Now for each 8 ∈ [B],
we de�ne State(G, 2, g1, g2, . . . , g8) as

State(G, 2, g1, g2, . . . , g8) =
{
Accept, If &∗(C) |C1=g1,C2=g2,...,C8=g8 = 0 ∈ F[C8+1, C8+1, . . . , CB] .
Reject, Otherwise.

For the sake of simplicity, in subsequent proof, we denote prefix = (G, 2, g1, g2, . . . , gB) as the transcript
when the zero-testing stage completes.

:-Parallel Sumchecks. In this stage, the prover and the veri�er run the sumcheck protocol for : parallel
R1CS instances, with same veri�er’s messages (i.e. randomness).

Let multivariate polynomial 6∗(G1, G2, . . . , GB) ∈ F[G1, G2, . . . , GB] be the following polynomial:

6∗(G) = � ∗(G) · ẽq(G, g) . (5)

For any 8 ∈ [B], let U1 = {6 ( 9)1 (G)} 9 ∈[: ], U2 = {6 ( 9)2 (G)} 9 ∈[: ], . . . , U8 = {6
( 9)
8
(G)} 9 ∈[: ] be the univariate

polynomials the prover sent from the 1st round to the 8-th round, and let G ′1, G
′
2, . . . , G

′
8 ∈ F be the veri�er’s

messages. For 8 ∈ [B], let 6∗8 (G) ∈ F[G] be the following polynomial.

6∗8 (G) =
∑

G8+1,G8+2,...,GB ∈{0,1}
6∗(G ′1, G ′2, . . . , G ′8−1, G, G8+1, G8+2, . . . , GB) (6)

De�ne the State function for sumcheck as follows.

State(prefix, U1, G
′
1, U2, G

′
2, . . . , U8−1, G

′
8−1, U8 , G

′
8 ) =


Accept,

If 6 (8
∗)

8
(G′8 )=6∗8 (G′8 ), and

∀8′∈[8 ],6 (8
∗)

8′ (0)+6
(8∗)
8′ (1)=E

(8∗)
8′ .

Reject, Otherwise.

where E (8
∗)

0 = 0, and E (8
∗)

8′ = 6
(8∗)
8′−1(G8′−1), for any 8 ′ ≥ 1.

Property 1. �e �rst property of round-by-round soundness is satis�ed by the de�nition of State.

Property 2. We prove the second property by examining the State function for the zero-testing and the
:-parallel sumcheck.

– Zero-Testing: For any integer 8 ∈ [B], and any transcript pre�x (2, g1, g2, . . . , g8−1), if State(G, 2, g1, g2, . . . ,

g8−1) = Reject, then &∗(C1, C2, . . . , CB) |C1=g1,C2=g2,...,C8−1=g8−1 ≠ 0 ∈ F[C8 , C8+2, . . . , CB]. Since the polynomial
&∗ has individual degree 1, a�er some restrictions, &∗ still has individual degree 1. Hence, we can
represent &∗ |C1=g1,C2=g2,...,C8−1=g8−1 as

&∗(C1, C2, . . . , CB) |C1=g1,C2=g2,...,C8−1=g8−1 =
∑

48 ,48+1,...,4B ∈{0,1}
@∗48 ,48+1,...,4B C

48
8
C
48+1
8+1 . . . C

4B
B (7)

=
∑

48+1,48+2,...,4B ∈{0,1}
(@∗0,48+1,48+2,...,4B + @

∗
1,48+1,48+2,...,4B C8) · C

48+1
8+1 . . . C

4B
B , (8)
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where at least one of the coe�cient @∗48 ,48+1,4B is non-zero. Hence,

Pr [V8 ← F : State(G, V1, V2, . . . , V8∗) = Accept]
≤ Pr[V8 ← F : ∀48+1, 48+2, . . . , 4B ∈ {0, 1}, @∗0,48+1,48+2,...,4B + @

∗
1,48+1,48+2,...,4B V8 = 0 ∈ F] ≤ 1/|F|

– Sumcheck: For any 8 ∈ [B], let (prefix, U1, G
′
1, . . . , U8−1, G

′
8−1) be a transcript pre�x such that

State(prefix, U1, G
′
1, U2, G2, . . . , U8−1, G

′
8−1) = Reject.

We have two cases:

– For 8 = 1: In this case, State(prefix) = Reject. By the de�nition of State, we have&∗(g1, g2, . . . , gB) ≠
0. Since &∗(g1, g2, . . . , gB) = 6∗1 (0) + 6∗1 (1), we know that 6∗1 (0) + 6∗1 (1) ≠ 0. Hence, any polyno-
mial 6 (8

∗)
1 (G) sent by the prover with 6 (8

∗)
1 (0) + 6

(8∗)
1 (1) = E0 = 0 can not be 6∗1 (G). Hence,

Pr
U1←A(prefix)

[
G ′8 ← F : State(prefix, U1, G

′
1) = Accept

]
≤ Pr

[
G ′8 ← F : 6 (8

∗)
1 (G

′
8 ) = 6∗1 (G ′8 )

]
≤ $ (1)/|F|.

�e last inequality follows from the Schwartz-Zipple Lemma, and deg6 (8
∗)

1 = $ (1).
– For 8 ≥ 2: In this case, State(prefix, U1, G

′
1, . . . , U8−1, G

′
8−1) = Reject. We only need to prove the

case when ∀8 ′ ∈ [8 − 1], 6 (8
∗)

8′ (0) + 6
(8∗)
8′ (1) = E

(8∗)
8′ but 6 (8

∗)
8−1 (G ′8−1) ≠ 6∗8−1(G ′8−1). We have

Pr
U1←A(prefix,U1,G

′
1,...,08−1,G

′
8−1)

[
G ′8 ← F : State(prefix, U1, G

′
1, U2, G

′
2, . . . , U8 , G

′
8 ) = Accept

]
= Pr
U1←A(prefix,U1,G

′
1,...,08−1,G

′
8−1)
[G ′8 ← F : 6 (8

∗)
8
(G ′8 ) = 6∗8 (G ′8 ) ∧ 6

(8∗)
8
(0) + 6 (8

∗)
8
(1) = E (8

∗)
8
]

= Pr
U1←A(prefix,U1,G

′
1,...,08−1,G

′
8−1)
[G ′8 ← F : 6 (8

∗)
8
(G ′8 ) = 6∗8 (G ′8 ) ∧ 6

(8∗)
8

≠ 6∗8 ] ≤ $ (1)/|F|.

�e �rst equality follows from the de�nition of State. �e second equality follows from the
fact that E (8

∗)
8

= 6
(8∗)
8−1 (G8−1) ≠ 6∗8−1(G ′8−1), and 6∗8−1(G ′8−1) = 6∗8 (0) + 6∗8 (1). Hence, 6 (8

∗)
8
(0) +

6
(8∗)
8
(1) = E (8

∗)
8

implies 6 (8
∗)

8
≠ 6∗8 . �e last inequality follows from the Schwartz-Zippel lemma,

and deg6∗8 = $ (1).

Property 3. For any complete transcript trans = (2, g, U1, G
′
1, U2, G

′
2, . . . , UB , G

′
B), if State(G, trans) = Reject,

and there exists an 8 ∈ [B] such that the checking 6 (8
∗)

8
(0) + 6 (8

∗)
8
(1) = E8 (8∗) fails, then veri�cation done

by the sumcheck veri�er also fails. Hence, V(G, trans) = 0. Now, if the sumcheck veri�cation passes, and
6
(8∗)
B (G ′B) ≠ 6∗B (G ′B), then 6∗B (G ′B) ≠ a (8

∗) , i.e.

6∗(G ′1, G ′2, . . . , G ′B) = � ∗(G ′1, G ′2, . . . , G ′B) · ẽq((G ′1, G ′2, . . . , G ′B), g) ≠ a (8
∗) .

By the veri�cation process, for any- ∈ {�, �,�}, if the opening (a (8
∗)

-,0 , A- ) to 2- =
∑
~∈{0,1}B2 -̃ (g,~) ·2~

is correct, then by the somewhere F2-extraction property of the commitment, we have

a
(8∗)
-,0 (mod 2) = LHC.Ext ©­«

∑
~∈{0,1}B2

-̃ (g,~) · 2~, td
ª®¬ .
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By the linear homomorphic extraction with respect to polynomials property of the commitment, we have

LHC.Ext ©­«
∑

~∈{0,1}B2
-̃ (g,~) · 2~, td

ª®¬ =
∑

~∈{0,1}B2
-̃ (g,~) · LHC.Ext(2~, td) (mod 2)

=
∑

~∈{0,1}B2
-̃ (g,~) ·F~ ∈ F

Hence, in the veri�cation,

(a (8
∗)

�
· a (8

∗)
�
− a (8

∗)
�
) · ẽq((G ′1, G ′2, . . . , G ′B), g) (mod 2)

=� ∗(G ′1, G ′2, . . . , G ′B) · ẽq((G ′1, G ′2, . . . , G ′B), g) (mod 2) ≠ a (8∗) .

�en the checking for a (8∗) must fail, and thus V(G, trans) = 0.

6.2.2 Proof of E�cient BAD Challenge Function Property
Now, we proceed to de�ne the BAD functions for each round and prove the required properties.

For any instance G ∈ !NO, let trans be a transcript pre�x such that State(G, trans) = Reject. We
consider the zero-testing stage and sumcheck stage separately.

Zero-Testing. Let trans = (2, g1, g2, . . . , g8−1) be a transcript pre�x, where 8 ∈ [B]. Let

B = {g ∈ & | State(G, trans|g) = Accept}

From State(G, trans) = Reject, we know that &∗(C1, C2, . . . , CB) |C1=g1,C2=g2,...,C8−1=g8−1 ≠ 0 ∈ F.
In Equation 7, the coe�cients @∗0,48+1,48+2,...,4B and @∗1,48+1,48+2,...,4B can be computed fromF~ in TC0 circuit.
To satisfy State(G, trans|g) = Accept, g needs to satisfy the following equations.

@∗0,48+1,48+2,...,4B + g · @
∗
1,48+1,48+2,...,4B = 0,∀48+1, 48+2, . . . , 4B ∈ {0, 1} (9)

To solve this equation, it su�ces to �nd a non-zero @∗1,48+1,48+2,...,4B , and �nd a candidate solution G∗, then
check whether G∗ satis�es all the equations. Hence, we de�ne the BAD function in Figure 5.

Sumcheck. Let trans = (2, g, U1, V1, U2, V2, . . . , U8−1, V8−1) be a transcript pre�x, where 8 ∈ [B]. Similarly,
we �rstly extract the witness F~ , and then drive 6∗(G), 6∗8 (G) from the extracted witness. we de�ne the
bad challenge function for sumcheck as in Figure 6.

6.2.3 Proof of Low-Depth BAD Function Property
We need to show that the BAD challenge for both zero-testing and sumcheck can be computed in TC0. As
we will show below, this is already true for the BAD function in the zero-testing phase de�ned in Figure 5.
But unfortunately we do not know how to prove this property for the sumcheck protocol, as it is currently
de�ned. Instead, we show that due to the speci�c polynomial(s) that the sumcheck protocol is de�ned
over, one can modify slightly the sumcheck protocol to allow for the BAD function to be computed in TC0.
So the low depth property of the BAD function is proven for our Figure 4 protocol in the trapdoor mode
with a modi�ed sumcheck protocol.15

15We chose not to present our protocol with the modi�ed sumcheck since the low-depth property is not necessary to prove
soundness of the Fiat-Shamir transformation. Instead, the underlying assumptions for the soundness will di�er depending on
whether the low-depth property is achieved. See Section 7.1 for details.
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BAD(G, trans = (2, g1, g2, . . . , g8−1))

1. Parse 2 = {2~}~∈{0,1}B2 , and extract the witnessF~ ← LHC.Ext(2~, td), for any ~ ∈ {0, 1}B2 .

2. Computing @∗0,48+1,48+2,...,4B and @∗1,48+1,48+2,...,4B from {F~}~∈{0,1}B2 , for any 48+1, 48+2, . . . , 4B ∈ {0, 1},
as follows.

– Compute � ∗G = � ∗(G) from {F~}~∈{0,1}B2 for any G ∈ {0, 1}B using Equation 3.
– Using Equation 4, expand &∗(C1, C2, . . . , CB) to the linear combination of the monomials
{C41

1 C
41
2 . . . C

4B
B }41,42,...,4B ∈{0,1}, i.e. compute @41,...,4B s.t.

&∗(C1, . . . , CB) =
∑

41,...4B ∈{0,1}
@41,...,4B C

41
1 . . . C4BB .

– Compute @∗48 ,...,4B using Equation 7, i.e.

@∗48 ,...,4B =
∑

41,...,48−1∈{0,1}
@41,...,4Bg

41
1 g

42
2 . . . g

48−1
8−1 .

3. Find the smallest (4 ′8+1, 4 ′8+2, . . . , 4 ′B) ∈ {0, 1}B−8 such that @∗1,4′
8+1,...,4

′
B
≠ 0.

If such (4 ′8+1, 4 ′8+2, . . . , 4 ′B) does not exist, then output ⊥.

4. Let G∗ = −@∗0,4′
8+1,4

′
8+2,...,4

′
B
/@∗1,4′

8+1,4
′
8+2,...,4

′
B
∈ F.

5. If @∗0,48+1,48+2,...,4B + G∗ · @
∗
1,48+1,48+2,...,4B = 0, for any 48+1, 48+2, . . . , 4B ∈ {0, 1}, then output G∗.

Otherwise output ⊥.

Figure 5: BAD function for zero-testing stage.

BAD(G, trans = (2, g, U1, V1, U2, V2, . . . , U8−1, V8−1) |U)

1. Parse 2 = {2~}~∈{0,1}B2 , and extract the witnessF~ ← LHC.Ext(2~, td), for any ~ ∈ {0, 1}B2 .

2. Compute 6∗(G) from {F6}6∈{0,1}B2 , using Equation 3 and Equation 5.

3. Compute 6∗8 (G) from 6∗(G), using Equation 6.

4. Parse U = {6 ( 9) (G)} 9 ∈[: ] . Let Root be the roots of the cubic equation 6∗8 (G) − 6 (8
∗) (G) = 0.

5. Uniformly sample an element in Root, and output it.

Figure 6: BAD function for sumcheck stage.

Special sumcheck. Let 6 : F= ↦→ F be an ℓ-variate polynomial of degree 3 in each variable. In the
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sumcheck protocol (Figure 1), the prover PSC in each round sends a degree 3 univariate 68 to the veri�er
VSC. We show that if the polynomial has a speci�c structure, then it su�ces for PSC to send a degree 3 − 1
univariate 6′8 to the veri�er VSC in each round. Speci�cally, we will require the 6 to be such that ∀8 ∈ [ℓ]

∑
G1, · · · ,Gℓ ∈{0,1}

6(G1, · · · , Gℓ ) =
∑

G8 ∈{0,1}
58 (G8) ·

©­«
∑

G1, · · · ,G8−1,G8−1, · · ·Gℓ ∈{0,1}
ℎ8 (G1, · · · , Gℓ )

ª®¬
where 58 is a univariate polynomial of G8 with degree 1, meaning thatℎ8 has degree3−1 in G8 . Further, in the
context of sumcheck protocol, we will require that the (two) coe�cients of 58 are “e�ciently” computatble
by VSC. We have intentionally kept the e�ciency requirements vague as we shall demonstrate it for the
speci�c case of sumcheck protocol within our dual-mode interactive batch argument in Figure 4.

Note that we have focused on the sum over the Boolean hypercube since that is most relevant to our
work, but the properties can be further generalized to any � ⊂ F.

Although we want this property to hold in the batch se�ing, for simplicity we shall consider a single
instance, and the extension follows trivially. In Figure 4, the veri�er V samples a random string g ∈ FB ,
which de�nes the B variate polynomial Gio,g over which the sumcheck protocol is run. Let’s revisit how
Gio,g is de�ned,∑

G ∈{0,1}B
Gio,g (G) =

∑
G ∈{0,1}B

�̃io(G) · ẽq(g, G) =
∑

G ∈{0,1}B
�̃io(G) ·

B∏
9=1
(g 9 · G 9 + (1 − g 9 ) (1 − G 9 ))

where Gio,g (G) is a polynomial with individual degree 3 and �̃io is a polynomial with individual degree 2.
From the above description, it immediately follows that ∀8 ∈ [B],∑

G ∈{0,1}B
Gio,g (G) =

∑
G8 ∈{0,1}

(g8 · G8 + (1 − g8) (1 − G8))·

©­­­«
∑

G8 ∈{0,1}B−1

�̃io(G) ·
B∏
9=1
9≠8

(g 9 · G 9 + (1 − g 9 ) (1 − G 9 ))
ª®®®¬

=
∑

G8 ∈{0,1}
((2 · g8 − 1) · G8 + (1 − g8))

©­­­«
∑

G8 ∈{0,1}B−1

�̃io(G) ·
B∏
9=1
9≠8

(g 9 · G 9 + (1 − g 9 ) (1 − G 9 ))
ª®®®¬

where G8 indicate all variables in G except G8 . Once g is �xed, the coe�cients for 58 (G8) B 2·g8−1) ·G8+(1−g8)
are immediately determined, and computable in $ (1) operations in F. Let ℎ8 (G) B �̃io(G) ·

∏B
9=1
9≠8

(g 9 · G 9 +

(1 − g 9 ) (1 − G 9 )).
�en, the polynomial 68 sent in the 8-th round of the sumcheck protocol in Figure 1, with C1, · · · , C8−1

receiver messages in the 8 − 1 rounds, is

68 (G) = (2 · g8 − 1) · G + (1 − g8))
∑

18+1, · · · ,1B ∈{0,1}
ℎ8 (C1, · · · , C8−1, G, 18+1, · · · , 1ℓ )

�e correctness follows directly from the correctness of the original sumcheck protocol and our de�-
nition of ℎ8 .

16If the coe�cients of the degree 2 polynomial 6′
8
(G) are (6′

8,2, 6
′
8,1, 6

′
8,0), then the coe�cients of 68 are (6′

8,2 (2g8 −1), 6′
8,2 (1−g8 ) +

6′
8,1 (2g8 − 1), 6′

8,0 (2g8 − 1) + 6′
8,1 (1 − g8 ), 6

′
8,0 (1 − g8 )).
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Special Sumcheck Protocol: (P′SC,V
′G
SC) for

∑
G ∈{0,1}B Gio,g (G) = 0

Common input: g ∈ FB , E ∈ F.

P′’s auxiliary input: polynomial Gio,g of individual degree 3

1. Set 8 B 1, E0 B E = 0.

2. Prover P′SC computes the univariate polynomial 6′8 : F ↦→ F of degree 2

6′8 (G) B
∑

18+1, · · · ,1ℓ ∈{0,1}
ℎ8 (C1, · · · , C8−1, G, 18+1, · · · , 1ℓ )

send 6′8 to the veri�er V6SC.

3. Veri�er V′GSC does the following:

(a) Check if 6′8 is a univariate polynomial of degree at most 2.
(b) Computes 68 (G) B ((2 · g8 − 1) · G + (1 − g8)) · 6′8 (G).16

(c) Check that 68 (0) + 68 (1) = E8−1. If not, V′GSC rejects.
(d) Choose a random element C8←$F

(e) Set E8 B 68 (C8).
(f) if 8 < B , set 8 B 8 + 1, send C8 to prover PSC and go back to Step 2.
(g) if 8 = B , check if Eℓ = Gio,g (C1, · · · , Cℓ ) by querying the oracle G at the point
(C1, · · · , Cℓ ).

Figure 7: Special sumcheck protocol (P′SC(6),V
′G
SC (E))

�e soundness of the special sumcheck protocol in Figure 7 can be reduced to the soundness of sumcheck
protocol in Figure 1. If P′∗ is the cheating prover for the special sumcheck protocol, then it can be converted
to a cheating prover P∗ for the original sumcheck protocol - when P′∗ sends 6′8 in the 8-th round, P∗ simply
multiplies to it (2 · g8 − 1) · G + (1 − g8)) to get 68 which it then passes over to the veri�er.

We now prove that a�er the modi�cation, the BAD functions can be decomposed to PreComp and an
OnlineBAD , where OnlineBAD can be computed in TC0.

Lemma 9 (Low-Depth BAD Function). If we take E (U) = U2·3; + U3; + 1, where ; ≥ 1 is an integer, then the
BAD challenge function satis�es low-depth computation property.

Proof. We prove the lemma for the zero-testing stage and the sumcheck stage respectively.

Zero-Testing. �e BAD function is described in Figure 5. We exam each steps.

1. We decompose the witness extraction as LHC.PreComp and LHC.OnlineExt, and put LHC.PreComp
into PreComp, and LHC.OnlineExt into OnlineBAD. Since LHC.OnlineExt can be computed in TC0,
this step is in TC0.
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2. For {� ∗G }G ∈{0,1}B , we compute them in parallel. Since the Equation 3 can be computed in TC0, � ∗G for
all G can be computed in TC0.

For @∗48 ,48+1,...,4B , they can be computed by expanding &∗(C1, C2, . . . , CB). Since the coe�cient of the
monomials can be computed as follows

@41,...4B =
∑

G ∈{0,1}B
� ∗G ·

B∏
8=1
(G8 + 1) · (1 − 48) .

and the iterative multiplication in F2 [U]/(E (U)) can be computed by TC0 circuits [HV06], this step
can also be computed by TC0 circuits.

3. Finding the smallest index such that @∗1,48+1,...,4B ≠ 0 can also be done in TC0.

4. �e inversion G∗ = −@∗0,4′
8+1,...,4

′
B
/@∗1,4′

8+1,...,4
′
B

can be computed as G∗ = @∗0,4′
8+1,...,4

′
B
· (@∗1,4′

8+1,...,4
′
B
) |F |−2. Since

multiplication and exponentiation in F2 [U]/(E (U)) can be computed in TC0, this step is also in TC0.

5. Finally, the checking @∗0,48+1,48+2,...,4B + G∗ · @
∗
1,48+1,48+2,...,4B = 0 is a polynomial of G∗, @∗0,48+1,48+2,...,4B and

@∗1,48+1,48+2,...,4B , and thus can be computed in TC0.

Sumcheck. �e BAD function is described in Figure 6. We exam each steps.

1. �e extraction of F~ can be decomposed to LHC.PreComp and LHC.OnlineExt, similar to the ex-
traction in zero-testing stage. Hence, this step can be computed in TC0.

2. �e computation of 6∗8 (G) by Equation 6 is a constant layer of iterative addition and multiplication,
and hence can be computed in TC0.

3. For the root �nding of 6∗8 (G) − 6 (8
∗) (G) = 0, we modify this step as follows.

– Compute 6′∗8 (G) = 6∗8 (G)/((2g8 − 1) · G + (1 − g8)).
– Solving the quadratic equation 6′∗8 (G) − 6′8 (G) = 0. �en the roots of 6∗8 (G) − 6 (8

∗) (G) = 0 are
the roots of 6′∗8 (G) − 6′8 (G) = 0 and g8 + 1.

�e computation of the �rst step is in TC0. By Lemma 10, the second step can also be computed in
TC0. Hence, OnlineBAD_ is in TC0.

In the following lemma, we use the techniques in [BRS67] to solve the quadratic equations in F, and
use the result of [HV06] to prove that the root �nding algorithm can be computed in TC0.

Lemma 10 (�adratic Equation Solving in TC0). Let ; be an integer, and let _ = = = 2 · 3; . Let F =

F2 [U]/(U2·3; + U3; + 1) be an extension �eld of F2, and let

5 (G) = 0G2 + 1G + 2

be a non-zero polynomial in F[G]. �ere exists a TC0 circuit Solve of size poly(_) that takes as input 0, 1, 2 ,
and outputs a set Root, where

Root = {G ∈ F | 5 (G) = 0}.

Proof. �e circuit Solve is constructed in Figure 8. We consider several cases.
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Solve(0, 1, 2)

– If 0 = 1 = 0, but 2 ≠ 0, let Root = q .

– If 0 = 0, but 1 ≠ 0, let Root = {2/1}.

– If 0 ≠ 0, then the equation is a quadratic equation.

– If 1 = 0, let Root = {(2/0) |F |/2}.
– If 1 ≠ 0, we rewrite the equation as

(
0
1
G
)2 +

(
0
1
G
)
= 20
12 . Let ) : F→ F, ) (~) = ~ + ~2.

If we view F as a linear vector space over �eld F2, then ) is a linear transformation.
Let Root = {1

0
· ~ | ~ ∈ ) −1(20/12)}.

Output Root.

Figure 8: Equation solving algorithm Solve.

– Degree 5 = 0. Since 5 (G) ≠ 0, then Root is empty.

– Degree 5 = 1. �en the equation degenerates to a linear equation, and has unique root 2/1. By
[HV06], the exponention of in F can be computed in TC0, hence, 2/1 = 2 ·1 |F |−2 can also be computed
in TC0.

– Degree 5 = 2. �en we have two cases.

– If 1 = 0, then the unique root (2/0) |F |/2 can be computed in TC0.
– If 1 ≠ 0, then the equation can be wri�en as

(
0
1
G
)2 +

(
0
1
G
)
= 20
12 . Let ) : F→ F,) (~) = ~ + ~2,

then ) is F2-linear over F, and we only need to �nd a ~ such that ) (~) = 20/12. To �nd such
~, we �rstly compute ) (U8) = ∑=−1

9=0 )8, 9U
9 , where )8, 9 ∈ F2. Let T = ()8, 9 )8, 9 ∈[=] be the matrix of

)8, 9 . �en we only need to solve a linear equation about T. Let the rank of T be A .
By LU decomposition, we can �nd a permutation matrix P, a lower triangle non-singular matrix
L, and a upper triangle matrix [U1 |U2] such that

P · T = L ·
[
U1 U2
0 0

]
,

where U1 ∈ FA×A2 is a A × A non-singular matrix. Now, we can express 20/12 as a polynomial
in F2 [U], i.e. 20/12 =

∑=−1
8=0 I8U

8 . If we denote ~ =
∑=−1
8=0 ~8U

8 , and y = (~0, ~1, . . . , ~=−1)) ,
z = (I0, I1, . . . , I=−1)) , then

) (~) = I ⇐⇒ T · y = z ⇐⇒
[
U1 U2
0 0

]
y = L−1 · P · z

If the last = − A coordinates of L−1 · P · z is non-zero, then Root should be empty. Otherwise, let
z′ be the �rst A coordinates of L−1 · P · z, and let

) −1(20/12) =
{
z = (z1, z2) | z2 ∈ {0, 1}=−A , z1 = U−1

1 · (z2 − U2 · z′)
}
.
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Since T is a matrix determined only by the basis {U0, U1, . . . , U=−1} of the F2-linear space F, the
matrix P,T, L−1,U−1

1 ,U2 are �xed matrix, and thus can be hardwired in the OnlineBAD circuit.
Hence, the computation of ) −1 is in TC0. In fact, since the quadratic equation has at most 2
roots, we have A ≥ = − 1. Hence, the size of OnlineBAD is bounded by a polynomial of _.

7 Non-Interactive Batch Arguments for NP

We now construct a non-interactive batch argument system for NP. We start by formally de�ning this
notion below.

De�nition 11 (Non-Interactive Batch Arguments). A non-interactive batch argument for an NP language
! de�ned by relation R! is a tuple of algorithms (Gen, P,V) satisfying the following properties:

– Completeness: For all x = (G1, . . . , G: ) andw = (F1, . . . ,F: ) such that for each 8 ∈ [:], R! (G8 ,F8) =
1, it holds that:

Pr[V(crs, x, c) = 1 | crs← Gen(1_), c ← P(crs, x,w)] = 1.

– (Non-adaptive) Soundness: For every PPT adversary P∗ and all x = (G1, . . . , G: ) where ∃8 s.t. G8 ∉ !,
it holds that:

Pr[V(crs, x, c) = 1 | crs← Gen(1_), c ← P∗(crs)] ≤ negl(_) .

In Section 7.1 we show that the Fiat-Shamir transform w.r.t. H when applied to any strongly FS
compatible protocol is sound as long as H is correlation intractable for TC0. Next, in Section 7.2, we
construct a non-interactive batch argument system forNP by demonstrating that the above transformation
remains sound when applied to our dual-mode interactive batch argument (Section 5), even though the
aforementioned protocol does not satisfy strong FS compatibility. Finally, in Section 7.3, we show that we
show that although our described protocol has a linear dependence on : , this can be made sub-linear.

7.1 Fiat-Shamir Transformation

To obtain a non-interactive protocol in the common reference string (CRS) model, we want to start with
a public-coin interactive protocol and apply the Fiat-Shamir transformation to it. In the aforementioned
transformation, a hash function is picked to be a part of the CRS, and then the prover non-interactively
generates ver�er’s messages as the hash of the transcript so far. We make a couple of minor (largely
cosmetic) modi�cations to the transformation: (a) �rstly, we apply the transformation to interactive proofs
that are already in the CRS se�ing for a promise language !̄; and (b) prior to hashing, we require the
prover to pre-process the transcript using a public deterministic function PreComp that can be computed
in polynomial time. �e rest of the transformation remains unchanged and is described in Figure 9.

To show the soundness of the transformation in Figure 9 when instantiated with a concrete hash
function family H , we build on recent progress on constructing an appropriate correlation intractable
hash function family given a public coin interactive proof (see the related work in Section 1.2 for more
details). Speci�cally, we show that if we start with a public-coin interactive protocol for some promise
language !̄ that is strongly Fiat-Shamir compatible (De�nition 10), then it su�ces for H to be correlation
intractable against functions that can be computed in TC0 (a milder requirement). Intuitively it su�ces for
H to be CI for TC0 since strong FS-compatibility ensures that the function BAD can be computed in TC0

(with appropriate pre-processing of the inputs).
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Protocol: Non-interactive protocol (PFS,VFS) for !̄ in the CRS Model

Common Reference String: CRS B (crs, {:8 }8∈[ℓ ]) consisting of crs, the common reference string for the interac-
tive protocol, and ℓ keys

{
:8 ←H .Gen(1_)

}
8∈[ℓ ]

Common input: input G , security parameter 1_ where _ = _( |G |).

P’s auxiliary input: witnessF such that R!YES (G,F) = 1

1. Prover PFS on input (G,F,CRS) sets 8 B 1, trans B ∅ and does the following:
For 8 ∈ [ℓ]
(a) Compute

U8 ← P(crs, G,F, trans) and V8 B H .Hash(:8 , PreComp(1_, G, trans|U8 )) .

(b) Set trans B trans|U8 |V8 .
Output trans.

2. Veri�er VFS on input (G,CRS, trans) does the following
For 8 ∈ [ℓ]

(a) Check V8
?
= H .Hash(:8 , PreComp(1_, G, trans|U8 )) where trans8−1 B U1 |V1 | · · · |U8−1 |V8−1.

Accept if and only if V(crs, G, trans) accepts.

Figure 9: Fiat-Shamir Transformation

�eorem 9 (Soundness of FS Transform). Let Π = (P,V) be an ℓ (_) round (3,)PreComp, d)-strongly FS
compatible protocol for some promise language !̄ in the common reference string model. Denote the veri�er’s
messages V1, · · · , Vℓ ∈ {0, 1}_ , denote the overall prover and veri�er’s runtimes by )P(_) and )V(_) respec-
tively.

Let = be an upper bound on the output of PreComp. Suppose that there exists aH = {H_}_∈N correlation
intractable (CI) hash function family for TC0 (De�nition 7) where inputs of =(_) bits are mapped to _ bits.
�en the resulting non-interactive protocol by applying the Fiat-Shamir transform w.r.t. the hash family H
as described in Figure 9 has the following properties:

Completeness. If Π has completeness 1, then ΠFS also has completeness 1.
Computational Soundness. For any PPT cheating prover P∗, there exists a negligible function negl such

that for every G∗ ∈ !NO and _ = _( |G∗ |),

Pr[V(CRS, G∗, c) = 1 | CRS← Gen(1_), c ← P∗(CRS)] ≤ negl(_)

E�ciency. �ere exists a polynomial p that depends on the CI hash familyH such that the total veri�er
runtime is ℓ (_) · ()PreComp(_) +p(d (_))) +)V(_), and the total prover runtime is ℓ (_) · ()PreComp(_) +
p(d (_))) +)P(_).

Note that by the de�nition of (3,)PreComp, d)-strongly FS compatibility, d is a polynomial function.

Proof. Fix an interactive protocol Π = (P,V) for promise language !̄ in the common reference string
model and �x a CI hash function familyH for TC0. We then prove the desired properties below. �e proof
structure largely follows [JKKZ21] with several simpli�cations for our se�ing.
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Completeness. Completeness follows directly from the completeness of the underlying interactive pro-
tocol.

Computational Soundness. We prove soundness by the way of contradiction. Suppose soundness does
not hold, there exists a PPT prover P∗, a polynomial p(·) and an in�nite set of false statements - of
G∗ ∈ !NO such that for each G∗ ∈ - , and _ = _( |G |) ,

PrCRS←Gen(1_)
c∗←P∗ (CRS)

[V(CRS, G∗, c) = 1] ≥ 1
p(_)

By assuming without loss of generality that each distinct G∗ maps to a di�erent _, we get the above
to hold for an in�nite set Λ consisting of the corresponding _ for the statements G∗.
Now, since Π is (3, d)-strongly FS compatible (De�nition ), it is also round-by-round sound. �is
guarantees that there is a function State such that for every _ ∈ Λ,

PrCRS←Gen(1_)
c∗←P∗ (CRS)

[
(State(G∗

_
, ∅) = Reject) ∧ (State(G∗

_
, c∗) = Accept)

]
≥ 1

p(_) .

Since there are ℓ (_) rounds in the protocol, by a hybrid argument ∀_ ∈ Λ, ∃8 ∈ [ℓ (_)] such that,

PrCRS←Gen(1_)
c∗←P∗ (CRS)

[
(State(G∗

_
, trans∗8−1) = Reject) ∧ (State(G∗

_
, trans∗8−1) = Accept)

]
≥ 1
ℓ (_) · p(_) .

where c∗ is parsed as (U∗1, V∗1, · · · , U∗ℓ , V∗ℓ ) and ∀9 ∈ [ℓ (_)], trans∗
:
B (U∗1, V∗1, · · · , U∗9 , V∗9 ).

�e above only happens if V∗8 ∈ B, where

B = {V | State(G∗, trans∗8−1 |U∗8 |V) = Accept}.

We can now rewrite the same probability above in terms of whether the cheating prover outputs V∗8
from the bad set B de�ned above,

PrCRS←Gen(1_)
c∗←P∗ (CRS)

[
(State(G∗

_
, trans∗8−1) = Reject) ∧ (V∗8 ∈ B)

]
≥ 1
ℓ (_) · p(_) .

To break the correlation intractability ofH for TC0, we need to construct a PPT adversaryACI and
a function 5 = {5_} computable in TC0 such that for in�nitely many _,

Pr
[
H .Hash(:, G) = 5_ (G)

���: ←H .Gen(1_), G ← ACI(1_, :)
]
≥ 1

poly(_) .

Note that BAD is a function that takes in as input (G∗
_
, trans8−1 |U8) and randomness A ←$ {0, 1}∗, and

outputs an element V such that if State(G∗
_
, trans8−1) = Reject, then with probability 1 − negl(_), V

is uniformly random element in the set B{V | State(G∗, trans8−1 |U8 |V) = Accept}.
But since BAD is not guaranteed to be in TC0, so we cannot use it directly to de�ne a function 5 in
TC0. Instead, we leverage the fact that BAD can be decomposed into a deterministic polynomial time
function PreComp, and a family of TC0 circuits OnlineBAD_, [A ] with randomness A is hardwired (see
De�nition 10 for details) such thatBAD(G, trans|U8 ; A ) = OnlineBAD_, [A ] (PreComp(1_, G∗, trans|U8)).17

�is then allows us to de�ne the function 5 in TC0 to be the following
17�is is in fact the reason why in our Fiat-Shamir transformation, parties must pre-compute before applying the hash function.
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5_,A (·) B OnlineBAD_, [A ] (·),
where the randomness A corresponds to the hardwired randomness of OnlineBAD.
By de�nition of (3,)PreComp, d)-strong FS compatibility (De�nition 10), and from the fact thatPreComp
is a deterministic function, for every trans8−1, U8 and V ∈ B,

PrA ←$ {0,1}∗

[
5_,A (~) = V

���� State(G∗
_
, trans8−1 |U8 |V) = Accept

~ = PreComp(1_, G∗
_
, trans8−1 |U8)

]
=

1 − negl(_)
3 (_) .

Combining the equations above, we get the following,

PrCRS←Gen(1_)
c∗←P∗ (CRS)
A ←$ {0,1}∗

[
State(G∗

_
, trans∗8−1) = Reject

∧ V∗8 = 5_,A (PreComp(1_, G∗
_
, trans∗8−1 |U∗8 ))

]
≥ 1 − negl(_)

3 (_) · 1
ℓ (_) · p(_) .

For 3 (_) and ℓ (_) polynomial functions in _, the above equation implies that there exists an A , and
by extension 5 B

{
5_,A

}
∈ TC0, such that

PrCRS←Gen(1_)
c∗←P∗ (CRS)

[
State(G∗

_
, trans∗8−1) = Reject

∧ V∗8 = 5_,A (PreComp(1_, G∗
_
, trans∗8−1 |U∗8 ))

]
≥ 1

q(_) .

�is gives us an adversaryACI, using the cheating prover P∗, that breaks the correlation intractabil-
ity ofH for 5 ∈ TC0,

ACI(1_):

1. Receive : from the CI challenger.
2. Sample 8 ∈ [ℓ (_)], and set :8 B :

3. Sample ∀9 ∈ [ℓ (_)] \ {8}, : 9 ←H .Gen(1_).
4. Sample crs as speci�ed by Π.
5. Set CRS B (crs, {:8}8∈[ℓ ]).
6. Run the cheating prover P∗, trans∗ ← P∗(CRS).
7. Output PreComp(1_, G∗, trans∗8−1 |U∗8 ), where U∗8 is taken from trans∗.

By the above equations, with probability 1/poly(_),ACI outputs PreComp(1_, G∗
_
, trans∗8−1 |U∗8 ) such

that

V∗8 B H .Hash(:8 , PreComp(1_, G∗
_
, trans∗8−1 |U∗8 )) = 5_,A (PreComp(1_, G∗

_
, trans∗8−1 |U∗8 )) .

�us giving us the desired contradiction to prove soundness.

E�ciency. �is follows directly from [JKKZ21], where the extra overhead in the the prover and veri�er
running time if from evaluating the hash function ℓ times a�er performing the pre-computation
PreComp on the transcript, where the size of the hash function is polynomially related to d (_).

Remark 3. We note that if we relax the strong FS-compatible protocol requirements to not require the low-
depth property from BAD, and to simply require BAD to be computable in time d (_), then it su�ces for the CI
hash family to be correlation intractable against functions computable in time d (_). �is follows identically
as in the proof of �eorem 9
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7.2 Non-interactive batch arguments

Let us denote the interactive protocol from Section 5 by ΠR1CS,: . We apply the Fiat-Shamir transformation
with respect to an appropriate hash function familyH . �e transformation is essentially identical, and is
presented in Figure 10 for completeness. But there are a couple of important distinctions from Figure 9 that
prevent us from directly invoking �eorem 9. Firstly, note that �eorem 9 refers to a promise language,
while we want to apply it to the batching of : instances. Secondly, as the crs is generated by in the normal
mode by calling Gen - the corresponding interactive protocol no longer satis�es strong FS-compatibility
as proven in Section 6.

We now prove that the transformation in Figure 10 is sound, thereby giving us a non-interactive batch
argument.

�eorem10. Let aH = {H_}_∈N correlation intractable hash function family for TC0 (De�nition 7) where in-
puts of=(_) bits are mapped to _ bits, and LHC = (Gen, ExtGen,Com, Ext, Samp) be a somewhere-extractable
linearly homomorphic commitment scheme (Section 6). �en the protocol in Figure 10 is a non-interactive batch
argument.

Protocol: Non-interactive batch argument (P,V) for R1CS instances

Common Reference String: CRS B ( , {:8 }8∈[ℓ ]) consisting of crs ← ΠR1CS,: .Gen(1_, 1: ), and ℓ keys{
:8 ←H .Gen(1_)

}
8∈[ℓ ]

Common input: input
{
x
( 9)}

9 ∈[: ] B (F, �, �,�,
{
io( 9)

}
9 ∈[: ] ,<, =), security parameter 1_ .

P’s auxiliary input: witnesses
{
F ( 9)

}
9 ∈[: ] such that ∀9 ∈ [:], SatR1CS

(
x
( 9) ,F ( 9)

)
= 1

1. Prover PFS on input ({x( 9) ,F ( 9) } 9 ∈[: ],CRS) sets 8 B 1, trans B ∅ and does the following:
For 8 ∈ [ℓ]
(a) ComputeU8 ← P( , {x( 9) ,F ( 9) } 9 ∈[: ], trans) and V8 B H .Hash(:8 , PreComp(1_, {x( 9) } 9 ∈[: ], trans|U8 ))
(b) Set trans B trans|U8 |V8 .

Output trans.

2. Veri�er VFS on input (
{
x
( 9)}

9 ∈[: ] ,CRS, trans) does the following
For 8 ∈ [ℓ]

(a) Check V8
?
= H .Hash(:8 , PreComp(1_, {x( 9) } 9 ∈[: ], trans|U8 ) where trans8−1 B U1 |V1 | · · · |U8−1 |V8−1.

Accept if and only if V(crs, {x( 9) } 9 ∈[: ], trans) accepts.

Figure 10: Non-Interactive Batch Argument for : instances.

Proof. As noted in the introduction of Section 7.2, the di�erences in the interactive protocols in this section
and the interactive protocol of Section 7.1 for which we apply the Fiat-Shamir transform mean we cannot
directly invoke �eorem 9. Instead, we reduce the interactive protocol to one suitable to the application
of the aforementioned theorem.
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We prove soundness by the way of contradiction. Suppose soundness does not hold, there exists a PPT
prover P∗, a polynomial p(·) and an in�nite set of false statements

- B

{
®x∗ B

{
x
( 9)

}
9 ∈[: ]

��� ∃8 ∈ [:]B .C .x(8) ∉ !R1CS }
such that for each ®x∗ ∈ - , and _ = _( | ®x∗ |) ,

PrCRS←Gen(1_)
c∗←P∗ (CRS)

[V(CRS, ®x∗, c) = 1] ≥ 1
p(_) (10)

By assuming without loss of generality that each distinct ®x∗ maps to a di�erent _, we get the above to
hold for an in�nite set Λ consisting of the corresponding _ for the statements ®x∗.

Claim 2. For every 8∗ ∈ [:] and every large enough _ ∈ Λ,

PrCRS←Gen′ (1_,8∗)
c∗←P∗ (CRS)

[V(CRS, ®x∗, c) = 1] ≥ 1
2p(_) ,

Proof. Suppose for the sake of contradiction, that there ∃8∗ ∈ [:] and an in�nite set Λ0 ⊆ Λ such that for
all _ ∈ Λ0,

PrCRS←Gen′ (1_,8∗)
c∗←P∗ (CRS)

[V(CRS, ®x∗, c) = 1] < 1
2p(_) , (11)

�en we shall use P∗ to break the dual mode indistinguishability of ΠR1CS,: , by constructing an adver-
sary A that receives crs from the challenger that was either generated as crs ← Gen(1_, 1: ) or crs ←
TGen(1_, 1: , 8∗).
A(1_):

1. Receive crs from dual mode challenger.

2. Sample ∀8 ∈ [ℓ (_)], :8 ←H .Gen(1_).

3. Sample crs as speci�ed by Π.

4. Set CRS B (crs, {:8}8∈[ℓ ]).

5. Run the cheating prover P∗, c∗ ← P∗(CRS).

6. Output V(CRS, ®x∗, c).

From the description of A, when crs was generated as crs ← Gen(1_, 1: ) (resp. crs ← TGen(1_, 1: , 8∗)),
CRS has the distribution corresponding to the output of Gen (resp. Gen′). �erefore,

PrCRS←Gen(1_)
c∗←P∗ (CRS)

[A = 1]− PrCRS←Gen′ (1_,8∗)
c∗←P∗ (CRS)

[A = 1]

= PrCRS←Gen(1_)
c∗←P∗ (CRS)

[V(CRS, ®x∗, c) = 1] − PrCRS←Gen′ (1_,8∗)
c∗←P∗ (CRS)

[V(CRS, ®x∗, c) = 1]

≥ 1
2p(_) ,

where the last inequality follows from Equations (10) and (11). �is breaks the dual mode indistinguisha-
bility of ΠR1CS,: , thus arriving at our desired contradiction.
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Let ΠR1CS,:,8∗ to indicate the protocol in the trapdoor mode where the trapdoor is picked for the index
8∗ ∈ [:].

Claim 3. With probability ≥ 1/: over the random choice of 8∗←$ [:], ΠR1CS,:,8∗ is a strong FS-compatible
protocol for !̄ in the trapdoor mode for 8∗, where !̄ = (!YES, !NO) is de�ned as follows

– Yes Instance: ∀9 ∈ [:], x( 9) ∈ !R1CS.

– No Instance: x(8∗) ∉ !R1CS.

Proof. �ere is at least one statement x(8) ∉ !R1CS, therefore with probability ≥ 1/: the 8∗ is picked for
the trapdoor mode setup generation corresponds to an instance x(8∗) such that x(8∗) ∉ !R1CS. �e strong
FS-compatibility then follows directly from Section 6.

We can now �nally invoke �eorem 9. From the above two claims, P∗ with probability ≥ 1/(2 ·: ·p(_))
breaks the soundness of the Fiat-Shamir transform of ΠR1CS,:,8∗ for the promise language !̄ (de�ned above),
contradicting the aforementioned �eorem 9. �erefore no such P∗ can exist, completing the proof.

Finally, as in the interactive case, we get the following corollary with costs corresponding to the size
the Boolean circuit when we start with an instance of Boolean circuit satis�ability.

Corollary 2. If we start with C-SAT instances de�ned by a boolean circuit � : {0, 1} |G | × {0, 1} |~ | ↦→ {0, 1},
then the protocol in Figure 10 is a non-interactive batch argument for C-SAT where

– Total communication cost is $ ( |� | + : log |� |)poly(_).

– �e veri�er’s total run time is $ (: |G | + |� |) · poly(_) + p(d (_)) log |� | where p is a polynomial that
depends only on the CIH.

We note that d must be at least as large as BAD, which in turn has size at least |� |. Since the additive
term depends on the speci�c instantiation of the CIH, we choose to leave the veri�cation time in the form
above.

7.3 Communication with sub-linear dependence on :

We have so far constructed non-interactive batch arguments where the communication complexity grows
linearly with : (see �eorem 10 and Corollary 2). We now describe how to get this dependence in commu-
nication complexity to be sub-linear in : without any changes to our protocol. Note that this consideration
is meaningful only in the se�ing where : � |� |, as otherwise the additive term in : is dominated by the
|� |.

�e high level idea is simple: group instances into a single larger instance. Let us elaborate, we group
:1 (of the :) C-SAT instances to form a larger circuit � ′ : {0, 1}:1 |G | × {0, 1}:1 |~ | ↦→ {0, 1} such that

� ′((G1, · · · , G: ), (~1, · · · , ~: )) =
{

1 if � (G1,F1) = 1 ∧ · · · ∧� (G:1,F:1) = 1
0 o.w.

where � is the circuit for the underlying C-SAT instances. �e size of this circuit � ′ from the above
description is thus |� ′ | = :1 |� | +$ (:1).

Starting with : instances of C-SAT de�ned over the circuit � , we now have :/:1 instances of C-SAT
de�ned over the circuit� ′18. Importantly, note that the circuit across all of the :/:1 instances are the same,

18Assume for simplicity that :1 divides : exactly.
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allowing us to apply our non-interactive argument protocol giving us, by Corollary 2, total communication
cost of

$ ( |� ′ | + (:/:1) log |� ′ |) · poly(_) = $ (:1 |� | + (:/:1) log(:1 |� |)) · poly(_)

By se�ing :1 =

⌈√
: log(: |� |)
|� |

⌉
, we get total communication cost to be

$

(√
: |� | log(: |� |) +

√
: |� | log(: |� |)
|� | log(

√
: |� | log(: |� |))

)
· poly(_)

= $̃ (
√
: |� |)

which has only sub-linear dependence on both : and |� |, where $̃ hides terms that are polynomial in _
and poly-logarithmic in : and |� |. If we simply wanted sub-linear dependence on : , we get a simpler
formulation if we set :1 =

√
: where the resultant communication cost is $ (

√
: |� | +

√
: log(

√
: |� |)) ·

poly(_).

7.4 Barriers to Achieving Adaptive Soundness

In this section we describe the main ideas that demonstrate that achieving adaptive security in our set-
ting poses signi�cant challenges. �is was already established to be the case for privately veri�able non-
interactive batch arguments in [BHK17]. �ere are a couple of points of di�erences that prevent us directly
applying the barriers in their paper: (i) the BARG in their paper is also a batch argument of knowledge
(BARK); and (ii) the BARK in their work has communication that is independent of : , while the commu-
nication in our work depends sub-linearly on : .

We start by describing why our BARG is also an argument of knowledge, i.e. BARK. And then we
show that the sub-linear dependence on : is good enough to demonstrate a barrier. We have kept the
discussion in this section to be largely informal, and we refer the reader to [BHK17] for more details on
de�ning BARKs, and the adaptivity barrier.

Achieving (non-adaptive) proof of knowledge. Roughly, the proof of knowledge property states that
if a prover can convince the veri�er to accept, then it must be the case that the prover has knowledge of
the witness. �is is formalized by an extraction algorithm that extracts the witness from the prover given
only the statements and the prover’s code. Typically one requires that the running time of the extraction
algorithm is related to the probability with which the prover causes the veri�er to accept. In our proofs,
we’ve already seen how to extract a single witness from a batch of : witnesses - by specifying the index of
the witness we want to extract during the CRS generation. To extract all : witnesses, we follow the same
strategy by picking a di�erent index for the CRS each time. �e dual-mode indistinguishability ensures
that when the switch is made, the probability that the prover convinces the veri�er does not drop by much,
thus allowing for extraction of all : witnesses.

Adapting the [BHK17] barrier. At a high level, the authors in [BHK17] show that if one could con-
struct adaptively secure BARKs, then in combination with a RAM delegation scheme one could construct
SNARKs, thereby running into the lower bounds of Gentry-Wichs [GW11]. �is would imply that non-
adaptive BARKs are the best that one could hope for. As noted, unlike the [BHK17], whose communication
complexity is independent of : , our protocol has a sub-linear dependence on : .

�e transformation to SNARKs follows the strategy: (1) start with an NP language ! with statement
G , compute a Merkle digest of the witness F corresponding to G . Let |F | = =, given the digest 3 , for
each 8 ∈ [=], there is $ (log=) “proof” that F8 corresponds to the 8-th position that resulted in digested 3 .
�is can be viewed as = statements each with a witness of length $̃ (log=) and relation circuit � of size
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$̃ (log=). By Section 7.3, we have a batch proof of size $̃ (
√
= log=) to prove that the digest 3 was computed

honestly. By the above observation, this is also an argument of knowledge. We will refer to such a proof as
slightly succinct (In [BHK17] the batch proofs is of size $̃ (log=), and thus fully succinct). (2) Use the RAM
delegation protocol to prove that the NP relation for ! accepts (G,F) where 3 corresponds to the digest
ofF . �e adaptivity of the batch arguments of knowledge is crucial since the prover get to chooses 3 , the
statement for the batch argument. We refer the reader to their paper for the details. While their SNARK
achieves full succinctness, the SNARK achieved above is only slightly succinct. But even slightly succinct
is good enough to demonstrate a barrier as this contradicts the [GW11] lower bound for black-box security
reduction to falsi�able assumptions.
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A Additional Preliminaries

Let Z be the set of all integers. For any = ∈ Z, denote [=] = {1, 2, . . . , =}. For any positive integer ? , let
Z? = Z/?Z be the quotient ring of Z divided by the ideal ?Z.

�reshold Gate. Let G1, G2, . . . , G= be = binary variables. A threshold gate is de�ned as the following
function:

ThC (G1, G2, . . . , G=) =
{

1
∑
8∈[=] G8 ≥ C

0 Otherwise

�reshold Circuits and TC0. A threshold circuit is a directed acyclic graph, where each node either
computes a threshold gate of unbounded fan-in or a negation gate. We use TC0 to denote the class of
constant depth polynomial-size threshold circuits.

�eorem 11 (Schwartz-Zippel Lemma). Let F be a �eld, and let 5 ∈ F[G1, G2, . . . , G=] be a non-zero polyno-
mial of total degree 3 ≥ 0, let ( ⊆ F be a �nite subset of F, then Pr[G ← (= : 5 (G) = 0] ≤ 3/|( |.

A.1 Low-Degree Extension

�roughout this work, we �nd it convenient to work with polynomials rather than functions. Speci�cally,
given any function 6 : {0, 1}< ↦→ F, we consider a multivariate polynomial 6̃ : F< ↦→ F such that 6̃ is
an extension of 6, i.e. ∀G ∈ {0, 1}< , 6̃(G) = 6(G) (agree on the Boolean hybercube). We say that 6̃ is a
low-degree extension if the individual degree over each variable is exponentially smaller than |F|.

We shall consider the special case of a low-degree extension, the multlinear extension (MLE), where 6̃ is
multivariate polynomial with degree at most 1 in each variable. In fact, given any function/ : {0, 1}< ↦→ F,
its MLE is unique and is given by,

/̃ (G1, · · · , G<) =
∑

4∈{0,1}<
/ (4) ·

<∏
8=1
(G8 · 48 + (1 − G8) (1 − 48))

=
∑

4∈{0,1}<
/ (4) · ẽq(G, 4)

where ẽq is the MLE of the equality function eq(G,~) that returns 1 if and only if G = ~.

Representation for multilinear polynomials. Any multilinear polynomial 5 (·) : F< ↦→ F can be
uniquely represented by the list of evaluations of 5 over the Boolean hypercube {0, 1}< . �is is referred
to as the dense representation of the polynomial, and the size of this representation is $ (2<).

Given an input G ∈ F< , and a dense representation of the polynomial 5 , from our above discussion it
is easy to see that 5 (G) is a linear combination of the dense representation where the linear coe�cient for
the 4-th term for 4 ∈ {0, 1}< is computed as ẽq(G, 4).

For any A ∈ F< , the evaluation of the multilinear polynomial 5 can be computed in $ (2<) operations
in F [�a13, VSBW13].

A.2 C-SAT to R1CS

For completeness we describe the transformation from [BCG+13] below to be consistent with the notation
used in the paper.
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For the transformation we will �nd it convenient to view R1CS instances as a sequence of< constraints

{〈0, I〉 · 〈1, I〉 = 〈2, I〉}8∈[<]

where I is of the form (io, 1,F) for some witnessF , and 0, 1, 2 ∈ F< correspond to the rows of matrices
�, � and � respectively.

We de�ne a variable- ∈ {0, 1} |� | that will correspond to the value of each wire in the circuit, including
the |G |+ |~ | input wires corresponding to the statement and witness. Further, de�ne a variable/ B (1, - ) ∈
{0, 1} |� |+1.

Gates For each gate -: = NAND(-8 , - 9 ), we rewrite it as (1−-8) (1−- 9 ) = 1−-: and add the constraint

〈(1,−48), I〉 · 〈(1,−4 9 ), I〉 = 〈(1,−4: ), I〉

where 48 ∈ {0, 1} |� | is 1 in the 8-th position and 0 elsewhere.

It is easy to see that each row has only$ (1) non-zero elements, and there are$ ( |� | − |G | − |~ |) gate
constraints.

Boolean checks For each input wire -8 , we check if it is a boolean value - 2
8 = -8 , or alternatively -8 (1−

-8) = 0 and add constraint
〈(0, 48), I〉 · 〈(1,−48), I〉 = 〈0, I〉

Again, it is easy to see that each row has only $ (1) non-zero elements, and there are $ ( |G | + |~ |)
gate constraints.

To set the above to be a square matrix, we can pad an extra row of 0s, una�ecting the constraints.

A.3 R1CS Polynomials

We start by giving a sketch of the polynomials required for the construction of G in �eorem 2. We refer
the reader to [Set20] for a full proof and detailed discussion. Recall that an R1CS instance is speci�ed by
the tuple x = (F, �, �,�, io,<, =).

NewNotation. To start with, we consider a more �ne grained notation of R1CS instances than considered
in [Set20], where the matrices �, � and� are split into two depending on whether they correspond to the
coe�cients of the public component io or the private component F . Speci�cally, � = (�′, �′′) where
�′ ∈ F<×( |io |+1) and�′′ ∈ F<×(<−|io |−1) . Similarly for � and� . For simplicity assume that |io| + 1 = 2B1 and
|F | = 2B2 , i.e. < = 2B1 + 2B2 .

Remark 4. When we construct an R1CS instance from C-SAT we can further claim that �′ contains only
$ ( |io|) = $ ( |G |) non-zero entries. We can assume without loss of generality that each input wire in � goes
into a single gate. �erefore, the there are $ ( |G |) non-zero entries corresponding to Boolean constraints and
$ ( |G |) non-zero entries corresponding to gate constraints.

Given the notation discussed, one can rewrite the R1CS constraints as a sequence of 2B constraints,
where B = dlog<e. We implicitly assume that the matrix functions �′, �′′, �′, �′′,� ′,� ′′ return the value
0 when input string indexes to a position out of bounds (i.e. larger than <). It is easy to see that B =

max{B1, B2} + 1. For all G ∈ {0, 1}B ,
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�io(G) B
©­«

∑
~∈{0,1}B1

�′(G,~) · (io, 1)~ +
∑

~∈{0,1}B2
�′′(G,~) ·F~

ª®¬ ·©­«
∑

~∈{0,1}B1
�′(G,~) · (io, 1)~ +

∑
~∈{0,1}B2

�′′(G,~) ·F~
ª®¬

− ©­«
∑

~∈{0,1}B1
� ′(G,~) · (io, 1)~ +

∑
~∈{0,1}B2

� ′′(G,~) ·F~
ª®¬

Replacing each of the functions �′, �′′, �′, �′′,� ′,� ′′ by their multilinear extension, one arrives at the
polynomial �̃io : FB ↦→ F,

�̃io(G) B
©­«

∑
~∈{0,1}B1

�̃′(G,~) · (io, 1)~ +
∑

~∈{0,1}B2
�̃′′(G,~) ·F~

ª®¬ ·©­«
∑

~∈{0,1}B1
�̃′(G,~) · (io, 1)~ +

∑
~∈{0,1}B2

�̃′′(G,~) ·F~
ª®¬

− ©­«
∑

~∈{0,1}B1
�̃ ′(G,~) · (io, 1)~ +

∑
~∈{0,1}B2

�̃ ′′(G,~) ·F~
ª®¬

�e following lemma pertaining to �̃ is proved in [Set20].

Lemma 11 ([Set20]). ∀G ∈ {0, 1}B , �̃io(G) = 0 if and only if RR1CS(x,F) = 1.

�is lets us de�ne the zero-test polynomial &io(C) for C ∈ FB

&io(C) B
∑

G ∈{0,1}B
�̃io(G) · ẽq(C, G)

�e following lemma states that if �̃io is not 0 at all points on the Boolean hypercube, then&io evaluated
at random point g ∈ FB is 0 with negligible probability over the randomness in sampling g .

Lemma 12 ([Set20]).

Prg ←$FB
[
&io(g) = 0

���∃G ∈ {0, 1}B s.t. �̃io(G) ≠ 0
]
≤ B

|F|
By se�ing the parameters as described in the theorem, we derive that the above probability is negligible

in _. �en Gio,g B �̃io(G) · ẽq(g, G) satis�es �eorem 2.
We will also �nd it useful to compute the evaluation of �̃ at a point A ∗ ∈ FB ,

�̃io(A ∗) B
©­«

∑
~∈{0,1}B1

�̃′(A ∗, ~) · (io, 1)~ +
∑

~∈{0,1}B2
�̃′′(A ∗, ~) ·F~

ª®¬ ·©­«
∑

~∈{0,1}B1
�̃′(A ∗, ~) · (io, 1)~ +

∑
~∈{0,1}B2

�̃′′(A ∗, ~) ·F~
ª®¬

− ©­«
∑

~∈{0,1}B1
�̃ ′(A ∗, ~) · (io, 1)~ +

∑
~∈{0,1}B2

�̃ ′′(A ∗, ~) ·F~
ª®¬
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�is lets us de�ne values �(A ∗), �(A ∗),� (A ∗)

�(A ∗) =
∑

~∈{0,1}B1
�̃′(A ∗, ~) · (io, 1)~ +

∑
~∈{0,1}B2

�̃′′(A ∗, ~) ·F~

= a�,1 + a�,2

with the corresponding terms for �(A ∗) and� (A ∗). Lastly, we calculate the time taken to compute a�,1, a�,2
and their corresponding counterparts for � and � .

Time to Compute a�,1: To compute �̃′(A ∗, ~) for all ~ ∈ {0, 1}B1 the total time taken is $ (= +<). �is
follows from the de�nition of �̃′(A ∗, ~)

�̃′(A ∗, ~) =
∑

4∈{0,1}B
�′(4,~)ẽq(4, A ∗)

= 〈 (�′(0, ~), · · · , �′(<,~)) , (ẽq(0, A ∗), · · · , ẽq(<, A ∗))) 〉

From [�a13, VSBW13], a table containing the values (ẽq(0, A ∗), · · · , ẽq(<, A ∗)) can be computed
using$ (<) space and$ (<) time (ignoring polynomial factors in log |F|). With the table computed,
it takes only$ (<) time to compute �̃′(A ∗, ~). Since�′ has at most$ (=) non-zero values, the time to
compute �̃′(A ∗, ~) for all ~ ∈ {0, 1}B1 is$ (= +<). Finally, the time to compute a�,1 is$ ( |io| += +<).
For: computations with the same�′(A ∗, ·) the total time to compute thea�,1 values is$ (: ·|io|+=+<).

Time to Compute a�,2: Similar idea as above, with the total time$ ( |F | += +<) for a single instance and
$ (: |F | + = +<) for : instances with the same �′′(A ∗, ·).
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