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Abstract. Though recent breakthroughs have greatly improved the efficiency of asynchronous
Byzantine agreement protocols, they mainly focused on the setting with private setups, e.g., as-
suming a trusted dealer to establish non-interactive threshold cryptosystems. Challenges remain
to reduce the large communication complexities in the absence of private setups, for example:
(i) for asynchronous binary agreement (ABA) with optimal resilience, prior private-setup free
protocols (Cachin et al., CCS’ 2002; Kokoris-Kogias et al., CCS’ 2020) have to incur O(λn4) bits
and O(n3) messages; (ii) for asynchronous multi-valued agreement with external validity (VBA),
Abraham et al. [2] very recently gave the first elegant construction with O(n3) messages, relying
on only public key infrastructure (PKI), but the design still costs O(λn3 logn) bits. Here n is
the number of participating parties and λ is the cryptographic security parameter.
We for the first time close the remaining efficiency gap between the communication complexity
and the message complexity of private-setup free asynchronous Byzantine agreements, i.e., re-
ducing their communication cost to only O(λn3) bits on average. At the core of our design, we
give a systematic treatment of reasonably fair common randomness, and proceed as follows:
– We construct a reasonably fair common coin (Canetti and Rabin, STOC’ 1993) in the asyn-

chronous setting with PKI instead of private setup, using only O(λn3) bit and constant
asynchronous rounds. The common coin protocol ensures that with at least 1/3 probabil-
ity, all honest parties can output a common bit that is as if uniformly sampled, rendering a
more efficient private-setup free ABA with expected O(λn3) bit communication and constant
running time.

– More interestingly, we lift our reasonably fair common coin protocol to attain perfect agree-
ment without incurring any extra factor in the asymptotic complexities, resulting in an
efficient reasonably fair leader election primitive pluggable in all existing VBA protocols (in-
cluding Cachin et al., CRYPTO’ 2001; Abraham et al., PODC’ 2019; Lu et al., PODC’ 2020),
thus reducing the communication of private-setup free VBA to expected O(λn3) bits while
preserving expected constant running time. This leader election primitive and its construc-
tion might be of independent interest.

– Along the way, we also improve an important building block, asynchronous verifiable secret
sharing (Canetti and Rabin, STOC’ 1993) by presenting a private-setup free implementa-
tion costing only O(λn2) bits in the PKI setting. By contrast, prior art having the same
communication complexity (Backes et al., CT-RSA’ 2013) has to rely on a private setup.

Keywords: asynchronous byzantine agreement · asynchronous verifiable secret sharing · com-
mon coin · leader election

1 Introduction

Recently, following the unprecedented demand of deploying BFT protocols on the Internet for ro-
bust and highly available decentralized applications, renewed attentions are gathered to implement
more efficient asynchronous Byzantine agreements [3,24,29,21,28]. Nevertheless, asynchronous proto-
cols have to rely on randomized executions to circumvent the seminal FLP “impossibility” result [20].
In particular, to quickly decide the output in expected constant time, many asynchronous protocols
[15,30,29,13,12,3,28,21,24,17,9] essentially need common randomness, given which for free, one can



construct optimally resilient asynchronous Byzantine agreements that are at least as efficient as using
expected O(n2) messages and constant running time [3,28,30,13].

However, efficient ways to implement asynchronous common randomness in practice mostly rely
on different varieties of private setups. For example, initialed by M. Rabin [32], it can directly assume
that a trusted dealer uses a secret sharing scheme to distribute a large number of secrets among the
participating parties before the protocol execution, which later can be collectively reconstructed by the
parties to generate a sequence of random bits. Later, Cachin et al. [13] presented how to construct a
non-interactive threshold pseudorandom function (tPRF) assuming that a trusted dealer can faithfully
share a short tPRF key, which now is widely used by most practical asynchronous BFT protocols
including [3,24,29,28].

These private setups might cause unpleasant deployment hurdles, preventing asynchronous BFT
from being widely used in a broader array of applications. Hence, it becomes critical to reduce the
setup assumptions for easier real-world deployment.

Existing efforts on reducing setups. There are a few known approaches to construct private-setup
free asynchronous Byzantine agreements, but most are costly or even prohibitively expensive.

Back to 1993, Canetti and Rabin [15] gave a beautiful common coin construction (CR93) center-
ing around asynchronous verifiable secret sharing (AVSS), from which a fast and optimally resilient
asynchronous binary agreement (ABA) can be realized. Here, AVSS is a two-phase protocol that allows
a dealer to confidentially “commit” a secret across n participating parties during a sharing phase,
after which a reconstructing phase can be successively executed to make all honest parties recover the
committed secret. The resulting common coin is reasonably fair, as it ensures all honest parties to
output either 0 or 1 with some constant probability. Though this reasonably fair common coin attains
constant asynchronous rounds and can be directly plugged into many binary agreement constructions
[30,15], it incurs tremendous O(n6) messages and O(λn8 log n) bits (where λ is the security parameter).
The huge complexities are dominated by its expensive AVSS, and many more efficient private-setup
free AVSS protocols [11,7,4,8] can improve it. For example, Cachin et al. [11] gave an AVSS to share n
secrets with only O(n2) messages and O(λn3) bits, but the resulting common coin and ABA protocols
(CKLS02) would still incur O(n3) messages and O(λn4) bits, which remains expensive and exists a
O(n) gap between the message and the communication complexities.

Recently, Kokoris-Kogias et al. [25] presented a new path to reducing common coin to AVSS, which
can save the amortized communications but slightly trade off the running time. To generate a single
random coin, Kokoris-Kogias et al.’s protocol (KMS20) incurs O(λn4) bits and O(n) asynchronous
rounds, which is seemingly worse than CKLS02; but, it has better amortized complexities, because it
can generate perfect fair random coins at a cost of constant rounds and O(λn2) bits per each, after
executing at most O(n) rounds, so it can be cheaper in an amortized way. Noticeably, the design
requires a strengthened AVSS notion with high-threshold secrecy, which specifies that the adversary
shall not learn the secret “committed” during the sharing phase, unless n− 2f honest parties tried to
reconstruct the secret (where f is the number of probably corrupted parties).1

In a very recent breakthrough, Abraham et al. [2] presented an elegant (validated) agreement
protocol that avoids private setups to tolerate asynchronous network and maximal n/3 Byzantine
corruptions in the presence of a bulletin PKI that only aids in the registration and broadcast of public
keys. For λn-bit input, it spends O(λn3 log n) bits, O(n3) messages, and expected constant running
time. It also defines and constructs a novel proposal election primitive, which attains a reasonably
constant probability that the honest parties can elect a common value proposed by some honest party,
such that a certain protocol called No-Waitin’ HotStuff can be accordingly tailored in the asynchronous
network to realize the validated Byzantine agreement (VBA). Nevertheless, this private-setup free
VBA (AJM+21) has an O(log n) gap between the message and communication complexities, leaving a
room to further improve the asymptotic communication complexity. In addition, the proposal election
primitive cannot be directly plugged in most recent efficient VBA constructions [3,28,12].

1 Different from high-threshold AVSS, classic AVSS in CR93 [15] only preserves secrecy before the first honest
party activates reconstruction. Moreover, classic AVSS is even weaker in another aspect, as it might only
ensure f +1 honest parties to receive their corresponding shares. Instead, many advanced notions [25,11,4,7]
require strong commitment property that implies all honest parties to receive the corresponding shares.
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Bearing the start-of-the-art of private-setup free asynchronous Byzantine agreements, it calls for
more general approaches to systematically treat asynchronous protocols with relying on fewer setup
assumptions, e.g., more general (reasonably fair) common randomness notions that are pluggable
in most existing Byzantine agreement protocols as well as efficiently implementable without private
setups, and thus the following question remains open:

Can we give a systematic treatment of private-setup free asynchronous Byzantine agreements (e.g.,
ABA and VBA) to further improve their efficiency, e.g., attain expected O(λn3)-bit communication,

thus closing the existing efficiency gaps between their message and communication complexities?

1.1 Our contribution

We give an affirmative answer to the above question. At the core of our solution, we present a new
efficient private-setup free construction for reasonably fair common coin that are pluggable in many ex-
isting ABA protocols [15,30,18]; more interestingly, we formalize and construct an efficient (reasonably
fair) leader election with perfect agreement such that it can be directly plugged in all existing VBA
protocols [12,3,28] to remove private setup. In greater detail, our technical contribution is three-fold:

– We give an AVSS construction satisfying the classic CR93 notion [15] with only bulletin PKI
(and discrete logarithm assumption), and it costs only O(n2) messages and O(λn2) bits when
sharing λ-bit secret. To our knowledge, this is the first private-setup free AVSS that attains O(λn2)
communication complexity, and prior art either relies on private setup [6,23] or incurs at least
O(λn3) bits [11,7] (except a very recent work [4], yet it still has an extra log n factor than ours).

– We implement private-setup free ABAs with expected O(n3) message complexity and O(λn3)
communication complexity with only bulletin PKI. As illustrated in Table 1, it closes the O(n) gap
between the message and the communication complexities in the earlier private-setup free ABA
protocols such as CKLS02 [11], while preserving other benefits such as the maximal n/3 resilience
and the optimal expected constant running time. Even comparing with a very recent work due
to Abraham et al. [2] that presents a more efficient VBA construction and improves ABA as a
by-product,2 our approach still realizes a log n factor improvement.

The crux of our design is a novel efficient construction for the reasonably fair common coin in the
bulletin PKI setting (conditioned on the random oracle model), with using the more efficient AVSS
protocol and verifiable random function. This private-setup free common coin costs only O(λn3)
bits and constant asynchronous rounds.

– We further present how to efficiently instantiate private-setup free VBAs (i.e., multi-valued Byzan-
tine agreement with external validity) in the asynchronous setting. For λn-bit input, the resulting
VBA realizes the maximal n/3 resilience and optimal expected constant running time, with cost-
ing expected O(n3) messages and O(λn3) bits. As shown in Table 1, this construction closes the
O(log n) gap between the message and the communication complexities of VBA protocols. In addi-
tion, as a by-product, our VBA construction can be directly plugged in the asynchronous distributed
key generation protocol in AJM+21 and reduces its communication cost by an O(log n) order to
realize O(λn3) communication complexity.

To implement more efficient VBA without private setup, we construct a leader election primitive
with reasonable fairness and perfect agreement without private setups, assuming the random oracle
model. The design costs only O(λn3) bits and expected constant asynchronous rounds, and can
directly be plugged in all existing VBA protocols [12,3,28] to replace its counterpart relying on
private setups, which can be of independent interests.

2 Remark that there might exist complexity-preserving reduction from ABA to VBA, which was discussed in
[12]. The idea is simple: every party signs and multicasts its input bit, then each one solicits a vector of n−f
input-signature pairs from distinct parties, and feeds the vector into VBA, such that VBA would return to
everyone the common vector of n−f signed bits, the majority of which becomes the ABA output. Therefore,
the very recent VBA protocol in [2] also improves ABA in the setting with only public key infrastructure.
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Table 1. Complexities of private-setup free asynchronous protocols with optimal resilience. Message complexity
is omitted, as all one-shot protocols in the Table costsO(n3) messages, except that n ABAs costO(n4) messages.

Protocols w/o private setup
Earlier Results Our Result

Results
Communication

Complexity
Running

Time
Communication

Complexity
Running

Time

(Reasonably fair) common coin
CKLS02 [11] O(λn4) O(1)

O(λn3) O(1)KMS20 [25] O(λn4) O(n)

AJM+21 [2]† O(λn3 logn) O(1)

(Reasonably fair) leader election
with perfect agreement

AJM+21 [2]† O(λn3 logn) O(1) O(λn3) O(1)

Binary agreement (ABA)
CKLS02 [11] O(λn4) O(1) O(λn3) O(1)
AJM+21 [2]‡ O(λn3 logn) O(1)

n ABAs instances in parallel
CKLS02 [11] O(λn5) O(logn)

O(λn4) O(logn)KMS20 [25] O(λn4) O(n)

AJM+21 [2]‡ O(λn4 logn) O(logn)

Validated agreement (VBA) AJM+21 [2] O(λn3 logn) O(1) O(λn3) O(1)

Asynchronous DKG
KMS20 [25] O(λn4) O(n) O(λn3) O(1)
AJM+21 [2] O(λn3 logn) O(1)

† Note that AJM+21 [2] did not present any explicit constructions for the reasonably fair common coin and
leader election. Nevertheless, this very recent work gave an asynchronous distributed key generation protocol

with O(λn3 logn) bits and expected constant running time, which can potentially bootstrap threshold
verifiable random function and can faithfully set up common coin and leader election schemes. However, this
unnecessarily long path to constructing common randomness protocols is essentially improvable to our results.

‡ Note that AJM+21 [2] did not explicitly give any constructions for asynchronous binary agreement (ABA).
Nonetheless, there is a simple complexity-preserving reduction from ABA to VBA in the PKI setting [12].

1.2 Technical overview

Either CR93 or AJM+21 has to require every party to verifiably share or reliably broadcast O(λn) bits
in the asynchronous network. In CR93, this is because every party needs to play a role of “delegate”
for each party to share a secret through AVSS, so everyone can fix n − f secrets shared by distinct
“delegates” before learning all these secrets, such that the aggregation of the n − f secrets cannot
be biased. In AJM+21, each party also play a role of “delegate” for everyone to generate a secret
confidentially committed to an aggregatable public verifiable secret sharing (PVSS) script, so everyone
can combine n − f secrets hidden behind n − f PVSS scripts from distinct “delegates” to obtain an
aggregated PVSS script, which has λn bits and hides a secret. The aggregated PVSS script then needs
to be sent to all parties via reliable broadcast (analog to the sharing phase of AVSS, though there is
no explicit AVSS invocation), thus bootstrapping the setup for threshold verifiable random function
(tVRF) and enabling a proposal election primitive. As such, further reducing the communication of
the CR93 and AJM+21 frameworks seems challenging because every party has to reliably broadcast
(or share) O(λn) bits. On the other side, KMS20 lifts AVSS to high-threshold AVSS and reduces the
number of secrets to share by an O(n) order, but still needs O(λn4) bits in the worst case, and even
incurs a running time of O(n) rounds.

We pave a novel path to closing the gap between the message and communication complexities of
asynchronous Byzantine agreement protocols without private setups in the bulletin PKI setting. As
shown in Fig. 1, our new method can be described as follows:

Reducing the number of bits to share in Common Coin. We firstly realize that if one would use
aggregatable PVSS to generate an unpredictable nonce instead of establishing tVRF, it is no longer
necessary to broadcast the PVSS script aggregating n− f parties’ contributions to the whole network.
For the purpose, we set forth a notion called led reliable seeding (Seeding) and construct it, in which a
leader can follow the pattern of Reiter’s consistent broadcast [34] to send the same PVSS script to at
least n − f parties; in addition, a party receives the PVSS script can immediately decrypt the script
to get its share and return it to the leader, such that the leader can recover the actual secret hidden

4



Aggregatable PVSS [GJM+21]
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Proposal Election
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Leader Election

w/ agreement

Verifiable Gather

High-threshold AVSS Eventually Perfect
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Nonce generation

This paper

[KMS20]
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Threshold VRF [GJM+21]

VRF

Fig. 1. Our technique in comparison with some recent related results (e.g., KMS20 [25] and AJM+21 [2]). The
arrows roughly depict the path of constructions instead of the precise relationship of reducing.

behind PVSS, and follows the pattern of Bracha’s reliable broadcast [10] to broadcast the recovered
secret (also called seed or nonce by us); moreover, at least n − 2f honest parties can verify whether
the recovered seed is the one committed to PVSS or not, and then decide whether to participate into
the broadcast, so if any honest party outputs the seed, then all honest parties must receive the same
seed committed to the same PVSS script.

Then, we observe that one can augment its verifiable random function (VRF) by using the Seeding
output as VRF seed, because the seed is always unpredictable until it is fixed by committing to the
PVSS script signed by n − f parties. Now, no party can bias its own VRF evaluation result, because
such VRF seed can remain unpredictable (thus cannot be used to query VRF) until committed. This
actually hints to us that a single VRF evaluation already can replace the functionality of n secrets
in the CR93 framework, as CR93 uses O(n) secrets shared by distinct parties towards combining a
single random value on behalf of each probably malicious party. So our new Coin construction starts
by letting each party use AVSS to share its own VRF evaluation-proof pair; then, until at least n− f
parties receive the outputs from a set of AVSS instances covering the same n−f AVSSes, i.e., a core set
called by literature [15,2], but our core set is slightly weaker, because probably only f+1 honest parties
(instead of all honest parties) share the same core. This weaker core set can be easily obtained in the
PKI setting without traditional three-phase reliable broadcasts [1,5], and its existence can be verified
by a quorum certificate proof (because we are in the PKI setting). After fixing a quorum proof for any
core set, the parties then start reconstruct all AVSS instances to reveal all hidden VRF evaluations,
and use the most significant bits of the VRF evaluations to pick the largest VRF, the lowest bit of
which naturally becomes the final output bit.

As such, we only need each party to share O(λ)-bit secret in our new common coin framework, and
more importantly, with at least 1/3 probability, our seemingly weaker core set can solicit the largest
VRF evaluated by an honest party, such that at least f + 1 honest parties can obtain this common
largest VRF evaluation, and then they can multicast the largest VRF to guarantee all honest parties to
see it. So with probability 1/3, a good event happens that all honest parties have the common largest
VRF in their views, which is also evaluated by some honest party. In addition, an honest party’s VRF
evaluation is unpredictable by the adversary before the core set is fixed and the AVSS reconstructions
start, such that it ensures all parties to obtain a common unpredictable bit with at least 1/3 chance.

Minimizing the communication of Classic AVSS. Meanwhile, in order to reduce the number of bits
costed by the n AVSS instances in our Coin construction, we for the first time design an AVSS protocol
attaining O(λn2) communication complexity with only the bulletin PKI assumption. Noticing that the
classic AVSS notion in CR93 (e.g., without the fancy high-threshold secrecy) is already enough in our
new Coin framework, we lift Pedersen’s verifiable secret sharing [31] in the asynchronous network, with
exploiting the wisdom of hybrid secret sharing [26] to split the AVSS construction into two stages: the
first stage follows Reiter’s consistent broadcast [34] to make at least f + 1 parties agree on the same
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polynomial commitment to bind a unique encryption key, and the second stage roughly follows Bracha’s
reliable broadcast [10] to send a ciphertext encrypting the actual secret to all parties, which minimizes
the communication by avoid broadcasting the large polynomial commitment to the whole network. An
extra challenge might happen in the reconstruction phase as probably only f +1 honest parties receive
the polynomial commitment and can recover the encryption key during the sharing phase; nevertheless,
we let these parties to broadcast the recovered key such that all parties can eventually receive the same
key to decrypt their ciphertext.

Realizing perfect agreement for reasonable Leader Election. Although the common coin prim-
itive can be a powerful tool to enable Binary agreement in the asynchronous network, it is facing a
few barriers for implementing the interesting class of validated Byzantine agreements (VBA), because
most existing VBA constructions [12,3,28] require the underlying leader election primitive to have at
least two strengthenings relative to common coin: first, there shall be a reasonable constant probability
that all parties’ outputs are as if being uniformly chosen from the indices of all parties instead of from
only 0 and 1; second, all parties’ outputs need to be consistent, otherwise, the agreement property in
[12,3,28] can be directly broken.

Fortunately, the first strengthening can be straightly obtained by our Coin construction. To further
lift the Coin protocol for perfect agreement, we design a set of specific voting rules: if everyone reliably
broadcasts the speculative largest VRF heard at the end of Coin execution and then waits for n − f
such broadcasted VRF, they can vote 1 or 0 into a ABA protocol, according to whether there exists a
majority VRF that is also the largest one among the n − f received VRF evaluations. These voting
rules can ensure that when ABA returns 1, at least one honest party can announce its n− f received
VRF evaluations to convince all honest parties to choose the same VRF as output, and no malicious
party can make any two honest parties to accept two distinct VRF evaluations (because the VRF
evaluation satisfying the voting rules must be unique), thus fixing the lack of agreement in common
coin without incurring extra factors in complexities.

1.3 Other related work

Kokoris-Kogias et al. [25] and Abraham et al. [2] also lifted their private-setup free Byzantine agreement
protocols to realize asynchronous distributed key generation (ADKG), thus emulating the trusted
dealer of threshold cryptosystems. The rationale behind ADKG is that it might amortize the cost of
asynchronous protocols, if the threshold cryptosystem can be used for many times. Notwithstanding,
the idea would not save, if running one-shot agreement or having dynamic participants. In addition,
more efficient ADKG also relies on more efficient private-setup free asynchronous Byzantine agreement,
for example, our new path to constructing more efficient VBA naturally reduces the communication cost
of AJM+21 ADKG by an log n order, thus realizing the fist ADKG protocol with expected constant
running time and O(λn3) communication.

Recently, [17] gave a new asynchronous common coin protocol with sub-optimal resilience using
VRFs, but the design uses pre-determined nonce for verifiable random functions (VRFs), so it actually
takes an implicit assumption that a trusted third-party performs honest VRF key generations on behalf
of all parties, otherwise, malicious parties can easily run a polynomial times of VRF key generations
to choose the most preferable VRF keys and break their design.

There are many AVSS protocols [6,23] that can realize optimal communication with relying on
private setups. Without private setup, the best known result is a very recent study [4] that incurs
O(n2) messages and O(λn2 log n) bits for λ-bit input secret. Some AVSS protocols [23,4] also focus
on linear amortized communication for sufficiently large input secret, but they still have to exchange
quadratic messages and bits while sharing a short secret. Our AVSS can easily combine the information
dispersal technique [14] to realize the same linear amortized communication.

2 Models

Fully asynchronous system without private setup. There are n designated parties, each of which
has a unique identity (i.e., P1 through Pn) known by everyone. Moreover, we consider the asynchronous
message-passing model with static corruptions and bulletin public key infrastructure (PKI) assumption
in the absence of any private setup. In particular, our system and threat models can be detailed as:
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– Bulletin PKI. There exists a PKI functionality that can be viewed as a bulletin board, such
that each party Pi ∈ {Pj}j∈[n] can register some public keys (e.g., the verification key of digital
signature) bounded to its identity via the PKI before the start of protocol.

– Computing model. We let the n parties and the adversary A be probabilistic polynomial-time inter-
active Turing machines (ITMs). A party Pi is an ITM defined by the given protocol: it is activated
upon receiving an incoming message to carry out some polynomial steps of computations, update
its states, possibly generate some outgoing messages, and wait for the next activation. Moreover, we
explicitly require the bits of the messages generated by honest parties to be probabilistic uniformly
bounded by a polynomial in the security parameter λ, which naturally rules out infinite protocol
executions and thus restrict the running time of the adversary through the entire protocol.

– Up to n/3 static Byzantine corruptions. The adversary can choose up to f out of n parties to corrupt
and fully control, before the course of a protocol execution. No asynchronous BFT can tolerate
more than f = b(n− 1)/3c such static corruptions. Through the paper, we stick with this optimal
resilience. We also consider that the adversary can control the corrupted parties to generate their
key materials maliciously, which captures that the compromised parties might exploit advantages
whiling registering public keys at the PKI.

– Fully asynchronous network. We assume that there exists an established p2p channel between any
two parties. The channels are considered as secure, which means the adversary cannot modify or
drop the messages sent between honest parties and cannot learn any information of the messages
except their lengths. Moreover, the adversary must be consulted to approve the delivery of mes-
sages, namely, it can arbitrarily delay and reorder messages. Remark that we assume asynchronous
secure channels (instead of merely asynchronous reliable channels) for presentation simplicity, and
they are not extra assumptions as can be obtained from the PKI assumption.

– Miscellany. All system parameters, such as n, are (probably unfixed) polynomials in the security
parameter λ [12,3,28].

Quantitative performance metrics. Since we are particularly interested in constructing efficient
asynchronous protocols, e.g., for generating common randomness or reaching consensus, without private
setup, it becomes needed to introduce quantitative metrics to define the term “efficiency” in the context.
To this end, we consider the following widely adopted notions to quantify the performance of protocols
in the asynchronous network:

– Communication complexity is defined as the bits of all messages exchanged among honest parties
during a protocol execution. Sometimes, an asynchronous protocol might have randomized exe-
cutions, so we might consider the upper bound of expected communication complexity (averaged
over all possible executions) in the presence of any adversary that fully controls the network and
corrupts up to n/3 parties.

– Message complexity captures the number of messages exchanged among honest parties in a protocol
execution. Similar to communication’s, we sometimes might consider the upper bound of expected
message complexity.

– Asynchronous rounds (or running time). The eventual delivery of the asynchronous network notion
might cause that the protocol execution is somehow independent to “real time”. Nevertheless, it is
needed to characterize the running time of asynchronous protocols. A standard way to do so is: for
each message the adversary assigns a virtual round number r, subject to the condition that any
(r− 1)-th round messages between any two correct parties must be delivered before any (r+ 1)-th
round message is sent [15]. So it becomes straightforward to measure the running time by counting
such asynchronous “rounds”.

Other notations. The cryptographic security parameter is denoted by λ through the paper, which
captures the bit-length of signatures and hash digests. We let 〈x, y〉 denote a string concatenat-
ing two strings x and y. Any protocol message sent between two parties would be in the form of
MsgType(ID, ·, ·, · · · ), where MsgType specifies the message type and the ID field represents the
protocol instance that the message belongs to. Our protocol description follows the conventional pseu-
docode notations to describe asynchronous protocols [12,3,28]: we let “wait for X do · · · ” to represent
that the protocol is blocking until a certain event X happens to proceed; sometimes, we omit an im-
plicit “wait for” handler for the incoming messages and use “upon receiving message Y do · · · ” to
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describe how to process an applicable incoming message Y. Moreover, we let Π[ID] refer to an instance
of some protocol Π with an explicit identifier ID, and y ← Π[ID](x) means to invoke Π[ID] on input
x and then block to wait for the output y before proceeding.

3 Preliminaries

Cryptographic hash function. A hash functionH : {0, 1}∗ → {0, 1}λ is said to be collision-resistant,
if no probabilistic polynomial-time A can generate two distinct values x1 and x2 s.t. H(x1) = H(x2)
except with negligible probability.

Reliable broadcast (RBC) is a protocol running among a set of n parties in which there is a party
called sender whose aim is to broadcast a value to all the other parties. Formally, an RBC protocol
satisfies the following properties:

– Agreement. If any two honest parties output v and v′ respectively, then v = v′.
– Totality. If an honest party outputs v, then all honest parties output v.
– Validity. If the sender is honest and inputs v, then all honest parties output v.

Digital signature. A digital signature scheme consists of a tuple of algorithms (KenGen,Sign,SigVerify):

– KenGen(1λ)→ (sk, pk) is a probabilistic algorithm generating the signing and verification keys.
– Sign(sk,m)→ σ takes a signing key sk and a message m as input to compute a signature σ.
– SigVerify(pk,m, σ)→ 0/1 verifies whether σ is a valid signature produced by a certain party with

verification key pk for the message m or not.

The signature scheme shall satisfy correctness and security: the correctness requirement is trivial,
i.e., for any signing-verification key pair, the honestly generated signature for any message shall pass
the verification; for security, we require the digital signature scheme to be existentially unforgeable
under an adaptive chosen-message attack (i.e., EUF-CMA secure).

In the bulletin PKI setting, every party is bounded to a unique verification key for digital signature
scheme. For presentation brevity, in a protocol instance with an explicit identifier ID, we might let
SignIDi (m) to denote Sign(ski, 〈ID,m〉), which means a specific party Pi signs a message m with using
its private key in the protocol instance, and also let SigVerifyIDi (m,σ) to denote SigVerify(pki, 〈ID,m〉, σ),
where pki is the public key of a specific party Pi.

Verifiable random function. A verifiable random function is a pseudorandom function returning
proofs for its correct computation. It consists of three algorithms (VRF.Gen,VRF.Eval,VRF.Verify):

– VRF.Gen(1λ)→ (sk, pk) is a probabilistic algorithm that generates a pair of private key and public
verification key for verifiable random function.

– VRF.Eval(sk, x)→ (r, π) takes a secret key sk and a value x as input and outputs a pseudorandom
value r with a proof π.

– VRF.Verify(pk, x, r, π) → 0/1 verifies whether r is correctly computed from x and sk using π and
the corresponding pk.

The verifiable random function shall satisfy unpredictability, verifiability and uniqueness. The ver-
ifiability property means Pr[ VRF.Verify(pk, x,VRF.Eval(sk, x)) = 1 | (sk, pk) ← VRF.Gen(1λ) ] = 1.
Unpredictability requires that for any input x, it is infeasible to distinguish the value r = VRF.Eval(sk, x)
from another uniformly sampled value r′ without access to sk. Uniqueness requires that it is infeasible
to find x, r1, r2, π1, π2 such that r1 6= r2 but VRF.Verify(pk, x, r1, π1) = VRF.Verify(pk, x, r2, π2) = 1.
Due to our bulletin PKI assumption, everyone is associated to a unique VRF public key: an honest
party Pi runs the VRF.Gen algorithm correctly to generate a unique pair of private key ski and public
key pki, while a corrupt might exploit malicious key generate in order to bias its VRF distribution.
To capture the threat of malicious key generations of VRF in the bulletin PKI model, we actually
require a stronger unpredictability property called unpredictability under malicious key generation due
to David et al. [19] through the paper, which means that even if the adversary is allowed to corrupt
some parties to conduct malicious key generation, VRF remains to perform like a random oracle. Such
VRF ideal functionality is implementable in the random oracle model under the CDH assumption [19].
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Notation-wise, we let VRF.EvalIDi (x) be short for VRF.Eval(ski, 〈ID, x〉), where ski represents the
private key of a party Pi, and ID in our context is an explicit session identifier of a protocol instance,
and also let VRF.VerifyIDi (x, r, π) to denote VRF.Verify(pki, 〈ID, x〉, r, π).

4 Warm-up: Efficient Private-Setup Free AVSS

As briefly mentioned, asynchronous verifiable secret sharing (AVSS) is an important building block used
by us for more efficient common coin and leader election. This section presents the first AVSS protocol
that attains only O(λn2) communicated bits without relying on private setup. Somewhat surprisingly,
the design is extremely simple, and it can be readily instantiated in the asynchronous message-passing
model with the bulletin PKI assumption. More formally, it guarantees all the properties of the classic
AVSS notion defined by Canetti and Rabin in 1993 [15] as follows:

Definition 1 (Asynchronous Verifiable Secret Sharing). We say (AVSS-Sh,AVSS-Rec) realize
AVSS, if the tuple of algorithms satisfy the following syntax and properties.

Syntax. For each AVSS-Sh instance with a session identifier ID, every party takes as input the
system’s public knowledge (i.e., λ and all public keys) and its own private keys (and there is also a
designated party called dealer PD that takes an additional input m called secret), and outputs a string
(i.e., a secret share of PD’s input) at the end of the execution. For each AVSS-Rec instance with a
session identifier ID, each party would input the output from the corresponding AVSS-Sh instance, and
would collectively reconstruct the shared secret.

Properties. (AVSS-Sh,AVSS-Rec) shall satisfy the next properties except with negligible probability:

– Totality. If some honest party output in the AVSS-Sh instance associated to ID, then every honest
party activated to execute the AVSS-Sh instance would complete the execution and output.

– Commitment. For any AVSS-Sh instance that might have any dealer, there exists a value m∗

that can be fixed when some honest party output in the AVSS-Sh instance for ID. As such, when
all honest parties activate AVSS-Rec on ID (with taking their corresponding AVSS-Sh outputs as
inputs), each of them can reconstruct the same value m∗.

– Correctness. If the dealer is honest and inputs secret m in AVSS-Sh, then:

• If all honest parties are activated to run AVSS-Sh on ID, all honest parties would output in the
AVSS-Sh instance;
• The value m∗ reconstructed by any honest party in the corresponding AVSS-Rec instance must

be equal to m, for all ID.

– Secrecy. In any AVSS-Sh instance, if the dealer is honest, the adversary shall not learn any
information about the input secret from its view (which includes all internal states of corrupted
parties and all messages sent to the corrupted parties). This can be formalized as that the adversary
has negligible advantage in the Secrecy game (deferred to Appendix A).

Remarks. It is worth noticing that although the above AVSS definition is quite classic in contrast
to some advanced variants of AVSS (e.g., high-threshold secrecy and strong commitment), it is still
powerful in the sense of empowering more efficient (reasonably fair) common randomness and consen-
suses in the asynchronous network environments. In particular, later Sections would demonstrate how
useful this seemingly primitive AVSS definition actually can be, by showing more efficient common coin
and leader election that are constructed with using this simple AVSS notion.

An efficient AVSS without private setup. The rationale behind our AVSS construction is simple.
The sharing phase splits the hybrid approach of secret sharing [26] into two steps: (i) it first takes the
advantage of signatures and uses linear messages to make at least f + 1 honest parties to agree on a
polynomial commitment to an encryption key, and (ii) then the dealer multicasts a quorum proof for
the completeness of the first step to convince the whole network to participate into a reliable broadcast
for the ciphertext of the actual secret. While in the reconstruction phase, probably only f + 1 honest
parties might output the polynomial commitment to the encryption key, and we cannot make them to
multicast the commitment because this incurs cubic communication; nevertheless, these f + 1 honest
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Algorithm 1 AVSS-Sh protocol with identifier ID and dealer PD
/* Protocol for the dealer PD */

1: upon receiving input secret m ∈ Zq do
2: choose two random polynomials A(x) and B(x) from Zq[x] of degree at most f
3: let aj to be the jth coefficient of A(x) and bj to be that of B(x) for j ∈ [n],
4: let key ← a0 = A(0), i.e., A(0) is also called key

5: compute cj ← g
aj

1 g
bj
2 for each j ∈ [0, f ], and let C ← {cj}j∈[0,f ]

6: send KeyShare(ID,C , A(j), B(j)) to Pj for each j ∈ [n]

7: upon receiving Stored(ID, σj) from Pj s.t. SigVerifyIDj (H(C ), σj) = 1 do
8: Π ← Π ∪ {(j, σj)}
9: if |Π | = n− f then

10: c← key ⊕m and send Cipher(ID,Π ,H(C ), c)

/* Protocol for each party Pi */

11: shA ← ⊥, shB ← ⊥, cmt← ⊥, flag ← 0

12: upon receiving KeyShare(ID,C ′, A′(i), B′(i)) from PD for the first time do
13: parse C ′ as {c′0, c′1, . . . , c′f}
14: if g

A′(i)
1 g

B′(i)
2 =

∏f
k=0 c

′
k
ik

then
15: record A′(i), B′(i) and C ′, flag ← 1, σ ← SignIDi (H(C ′)), send Stored(ID, σ) to PD

16: upon receiving Cipher(ID,Π , h, c) from PD for the first time do
17: wait for flag = 1

18: if H(C′) = h and Π has n− f valid signatures for h from distinct parties then
19: shA ← A′(i), shB ← B′(i) and cmt← C′

20: send Echo(ID, h, c) to all parties

21: upon receiving 2f + 1 Echo(ID, h, c) from distinct parties do
22: send Ready(ID, h, c) to all parties if Ready not sent yet

23: upon receiving f + 1 Ready(ID, h, c) from distinct parties do
24: send Ready(ID, h, c) to all parties if Ready not sent yet

25: upon receiving 2f + 1 Ready(ID, h, c) from distinct parties do
26: output (h, c, shA, shB , cmt)

parties can recover the encryption key, so we let them multicast the key to ensure all honest parties
to finally obtain the same key and successfully decrypt the secret to output.

Here we elaborate our new AVSS protocol in details. Let us begin with the sharing protocol AVSS-Sh
(cf. formal description in Alg. 1) that proceeds in the following two main logic phases:

1. Key sharing (Line 1-6, 11-15). In this phase, the dealer distributes the key shares to all parties using
Pedersen’s VSS scheme [31]. The dealer begins by randomly constructing two polynomial A(x) and
B(x) of degree at most f . Let A(0) = key. Then, the dealer computes a commitment C = {cj} to

A(x), where each element cj = g
aj
1 g

bj
2 , and aj and bj represent the jth coefficients of A(x) and B(x)

respectively. The dealer sends a KeyShare message to each party Pj containing the commitment
C as well as A(j) and B(j). After receiving KeyShare message from the dealer, Pi checks the
commitment C with A(i) and B(i), and records them with sending a Stored message containing
a signature for H(C ) to the dealer.

2. Cipher broadcast (Line 7-10, 16-26). In this phase, the dealer broadcasts its actual input encrypted
by the key shared in the earlier phase, i.e., A(0). After receiving n − f valid Stored messages
from different parties, the dealer sends Cipher to all parties containing a ciphertext c encrypting
its input m, the hash digest h of the polynomial commitment C , and a quorum proof Π containing
n− f valid signatures for h from distinct parties. The remaining process of the phase is similar to
a Bracha’s reliable broadcast for h and c [10], except that each party has to “validate” h due to Π
carried by the Cipher message to further proceed. At the end of the phase, each party can output
(h, c, A(i), B(i),C ), where A(i), B(i) and C can be ⊥.
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Algorithm 2 AVSS-Rec protocol with identifier ID, for each party Pi
Initialization: Φ← ∅

1: upon being activated with input (h, c, shA, shB , cmt) do
2: if cmt 6= ⊥, shA 6= ⊥ and shB 6= ⊥ then
3: send KeyRec(shA, shB , h) to all parties

4: upon receiving KeyRec(shA,j , shB,j , hj) from Pj for the first time do
5: if cmt 6= ⊥ and H(cmt) = hj then
6: parse cmt as {c0, c1, . . . , cf}
7: if g

shA,j

1 g
shB,j

2 =
∏f

k=0 ck
jk then

8: Φ← Φ ∪ (j, shA,j)
9: if |Φ| = f + 1 then

10: interpolate polynomial A(x) from Φ and compute key ← A(0)
11: send Key(ID, key) to all parties

12: upon receiving f + 1 Key messages containing the same key do
13: m← key ⊕ c
14: output m

Now we introduce AVSS-Rec (cf. formal description in Alg. 2) that proceeds in two logic phases:

1. Key recovery (Line 1-11). For each party Pi that activates AVSS-Rec with taking the output of
AVSS-Sh as input, it sends KeyRec message containing A(i), B(i), and the hash h of commitment
C , in case these variables are not ⊥. Then, at least f + 1 honest parties, which already received
the commitment C consistent to h, can solicit enough shares of the polynomial A(x) committed
to C through the KeyRec messages, and then interpolate the shares to obtain A(x) and compute
the encryption key A(0).

2. Key amplification (Line 12-14). Upon obtaining the encryption key, each party multicast it, thus
all honest parties can receives f + 1 Key messages containing the same key, so they can compute
m = key ⊕ c and output m.

Note that the AVSS-Sh and AVSS-Rec protocols are parameterized by two generators g1 and g2 of
a cyclic group Gq s.t. the underlying discrete logarithm problem is intractable.

Theorem 1. The algorithms shown in Alg. 1 and Alg. 2 realize AVSS as defined in Definition 1,
in the asynchronous message-passing model with n/3 static Byzantine corruption and bulletin PKI
assumption without private setups, conditioned on the hardness of DLog problem and the collision-
resistance of cryptographic hash function.

We deferred the (quite standard) proof of this theorem to Appendix B, while the intuition of proving
the above simple AVSS protocol is clear: the totality is mainly because our construction employs
Bracha broadcast’s message pattern for distributing the ciphertext encrypting the input secret and
the hash of polynomial commitment; the secrecy follows the information theoretic argument due to
Pedersen [31] about his verifiable secret sharing; the commitment is ensured by Pedersen commitment,
collision-resistant hash, and the unforgeability of signatures.

Complexities of AVSS. The complexities of the AVSS shown in Alg. 1 and Alg. 2 can be easily seen:

– Message. The message complexity is O(n2) in both AVSS-Sh and AVSS-Rec protocols, since each
party sends n Echo and Ready messages in AVSS-Sh and at least f + 1 parties send n KeyRec
and Key messages in AVSS-Rec.

– Communication. Assuming that the input secret is of O(λ) bits. There are O(n) messages with
O(λn) bits and O(n2) messages with O(λ) bits, thus the communication complexity of the protocol
is of overall O(λn2) bits.

– Running-time. The running time of AVSS is constant. Specifically, there are 5 rounds in AVSS-Sh
and 2 rounds in AVSS-Rec.

11



Further efficiency improvement. Remark that assuming the random oracle model, one can further
reduce the number of needed public key operations in Algorithm 1 and 2. The key idea is to replace
“c← key⊕m” (the line 10 of Alg. 1) and “m← key⊕ c” (the line 13 of Alg. 2) by “c← H(key)⊕m”
and “m← H(key)⊕c”, respectively, whereH is a random oracle. After the replacement, the polynomial
B(x) is no longer needed to hide key behind the polynomial commitment C, and thus all operations
related to B(x) can be removed. The proof for AVSS secrecy can be similarly argued, because gaining
non-negligible advantage in the AVSS’s secrecy-game indicates that the adversary can break Dlog
assumption to query RO with the right key in a polynomial number of queries.

Moreover, our simple AVSS protocol and the technique to construct it could be of practical merits
besides its theoretic improvements. In particular, we remark that the seemingly dominating computa-
tional cost incurred by line 7 in Algorithm 2 (the reconstruction phase) actually can be pre-computed
upon receiving the polynomial commitment C in Algorithm 1 (the sharing phase), indicating that
each party’s actual on-line computational cost could be restricted to a linear number of cheap group
operations at best. This hints its real-world applications, e.g., construct concretely more efficient asyn-
chronous casual broadcast [12,29,21] (which is a stronger variant of asynchronous atomic broadcast
ensuring that the output transactions remains confidential, before they are surely finalized to output).

5 Efficient ABA without Private Setup

This section presents a novel way to private-setup free ABA. At the core of the design, it is a new
reasonably fair common coin protocol that can be instantiated by AVSS along with using VRFs in
the bulletin PKI setting. The Coin scheme attains constant running time, O(n3) messages and O(λn3)
bits. Thus, many existing ABAs [18,30] can adopt it for reducing private setup, and preserve constant
running time and optimal resilience, while attaining at most cubic communications.

5.1 Efficient common coin without private setup

One of our aims is to design a private-setup free common coin (Coin) protocol that costs only O(n3)
messages and O(λn3) communicated bits. Formally, we would design such an efficient protocol among
n parties that can tolerate up to f static corruptions, thus realizing the properties of common coin
defined as follows, in the asynchronous message-passing model with the PKI assumption:

Definition 2 ((n, f, f+k, α)-Common Coin). A protocol realizes (n, f, f+k, α)-Coin, if it is executed
among n parties with up to f static byzantine corruptions and has syntax and properties as follows.

Syntax. For each protocol instance with session identifier ID, every party takes the system’s public
knowledge (i.e., λ and all public keys) and its own private keys as input, and outputs a single bit.

Properties. It satisfies the next properties except with negligible probability:

– Termination. If all honest parties are activated on ID, every honest party will output a bit for ID.
– Unpredictability. Prior to that k honest parties (1 ≤ k ≤ f + 1) are activated to execute the

protocol on ID, the adversary A cannot fully predicate the output. More precisely, consider the
following predication game: A guesses a bit b∗ before k honest parties activated on ID, if b∗ equals
to some honest party’s output for ID, we require that Pr[A predicts b∗] ≤ 1− α/2.

Remarks. With at least α probability taken over all possible Coin executions, the adversary cannot
predict the output coin better than guessing. A Coin protocol is said to be perfect, if α = 1. Nevertheless,
many (binary) Byzantine agreements (ABA) do not necessarily need perfect Coin to be efficient as well
as optimal resilient. Many classic ABA constructions [15,30] actually can remain expected constant
running time as long as using a (n, f, f + 1, α)-Coin scheme, where α is a certain constant smaller than
1. Also, sometimes it can be important to realize larger k (e.g., n−2f) to clip the power of asynchronous
adversary in binary agreement, for example, Cachin et al. in [13] pointed out this as desiderata to save a
round of communication in their ABA construction. Remark that the common coin protocol presented
in this Section is (n, f, 2f + 1, 1/3)-Coin, which is strictly stronger than (n, f, f + 1, 1/3)-Coin.
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Tackling the seed of VRF. Our Coin construction might rely on VRF to reduce the number of needed
AVSS. Before elaborating our Coin construction, it is worth mentioning an issue of this cryptographic
primitive in the PKI setting. Different from many studies that implicitly assume the private key of
VRF is generated by a trusted third-party [17], we opt out of any private setup including such trusted
key generation for VRFs. That means, a compromised party can execute a corrupted key generation
procedure and register maliciously chosen VRF keys, and probably can bias the distribution of its
VRF evaluations during the Coin protocol. Imagine that: if the VRF input (a.k.a. seed) used in the
Coin protocol are predictable by the adversary, it becomes feasible for a corrupted party to repeat its
VRF’s key generation for several times to choose a private-public key pair that is more favorable (e.g.,
to bias the most significant bits of its VRF evaluation).

Trusted nonce from “genesis”. In many settings, this might not be an issue, since there could be a
trusted nonce string generated after all parties have registered their VRF keys (e.g., the same rationale
behind the “genesis block” in some Proof-of-Stake blockchains [19]), which can be naturally used as
the VRF seed. Such a functionality was earlier formalized by David, Gazi, Kiayias and Russell in [19]
as a trusted initialization functionality to output a fully unpredictable VRF seed.

Generating nonce on the fly. Nevertheless, in some other cases, we do not have such a trusted VRF
seed from “genesis”, and therefore have to handle the issue by generating unpredictable VRF seeds on
the fly during the course of the coin protocol. To this end, we put forth a new notion called led reliable
seeding (Seeding) as amendment to bootstrap VRF with unpredictable nonce. Intuitively, the notion
can be understood as a “broadcast” version of perfect common coin without termination in case of
malicious leader. Formally, the Seeding protocol can be defined as follows.

Definition 3 (Led Reliable Seeding). Seeding has syntax and properties defined as follows.

Syntax. Seeding is a two-stage protocol consisting of a committing phase and a revealing phase.
For each protocol instance with an identifier ID, it is with a designated party called leader PL and
is executed among n parties with up to f static byzantine corruptions. Each party takes as input the
system’s public knowledge and its private keys, and then sequentially executes the committing phase
and the revealing phase, at the end of which it outputs a λ-bit string seed.

Properties. It satisfies the next properties with all but negligible probability:

– Totality. If some honest party output in the Seeding instance associated to ID, then every honest
party activated to execute the Seeding instance would complete the execution and output.

– Correctness. For all ID, if the leader PL is honest and all honest parties are activated on ID, all
honest parties would output for ID.

– Commitment. Upon any honest party completes the protocol’s committing phase and starts to
run the protocol’s revealing phase on session ID, there exists a fixed value seed, such that if any
honest party outputs for ID, then it outputs value seed .

– Unpredictability. Prior to that k honest parties (1 ≤ k ≤ f+1) are activated to run the protocol’s
revealing phase on session ID, the adversary A cannot predicate the output seed. Namely, A guesses
a value seed∗ before the honest party is activated on ID, then the probability that seed∗ = seed shall
be negligible, where seed is the output of some honest party for ID.

Remarks. Combining the commitment and unpredictability properties would ensure that no one
can predicate the output, before the value to output has already been fixed, which is critical to
guarantee that the evaluations of VRFs cannot be biased by exploiting the seed generation. Intuitively,
if the adversary still can bias its own VRF’s output on evaluating the output seed, it must can query
the VRF oracle (which performs as random oracle [19]) with the right seed in a number of polynomial
queries (before seed is committed), which would raise contradiction to break the unpredictability.

Lemma 1. In the asynchronous message-passing model with bulletin PKI assumption, there exists a
Seeding protocol among n parties that can tolerate up to f = n/3 static byzantine corruptions, terminate
in constant asynchronous rounds, and cost only O(n2) messages and O(λn2) bits, under the SXDH
assumption and the collision-resistance of cryptographic hash function.

Given the recent elegant result of aggregatable public verifiable secret sharing (PVSS) due to Gurkan et
al. [22], constructing an exemplary Seeding protocol and proving its security are rather tedious, and thus
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we defer the proof for Lemma 1 along with the exemplary construction to Appendix C. Intuitively, it is
simple to let each party send an aggregatable PVSS script carrying a random secret to the leader, so the
leading party can aggregate them to produce an aggregated PVSS script committing an unpredictable
nonce contributed by enough parties (e.g., 2f + 1). Then, before recovering the unpredictable secret
hidden behind the aggregated PVSS script, the leader must send it to at least 2f + 1 parties to collect
enough digital signatures to form a “certificate” to prove that the nonce is fixed and committed to the
PVSS script. Only after seeing such the proof, each party would decrypt its corresponding share from
the committed PVSS script, thus ensuring the unpredictability and commitment properties.

Algorithm 3 Coin protocol with identifier ID, for each party Pi
1: S ← ∅, Σ ← ∅,R ← ∅, C ← ∅, X ← 0
2: S̃ ← ⊥, Ŝ ← ⊥, seedj ← ⊥ for each j in [n]
3: activate Seeding[〈ID, j〉] for each j ∈ [n] with being the leader in Seeding[〈ID, i〉]

B If a trusted nonce η is provided by “genesis” (generated by an initialization functionality after all
parties have registered at PKI, cf. [19]), this line can be replaced by “seedj ← η, for each j ∈ [n]”

4: upon seedj ← Seeding[〈ID, j〉] do
5: if j = i then
6: (r, π)← VRF.EvalIDi (seedj), and activate AVSS-Sh[〈ID, j〉] as dealer with taking (r, π) as input
7: else
8: activate AVSS-Sh[〈ID, j〉] as a non-dealer participant

9: upon receiving output from AVSS-Sh[〈ID, j〉] do
10: S ← S ∪ {j}
11: if |S | = n− f then

12: S̃ ← S and send Lock(ID, S̃) to all parties

13: upon receiving Lock(ID, S̃j) from Pj for the first time do

14: upon S̃j ⊆ S do
15: σj ← SignIDi (H(S̃j)) and send Confirm(ID, σj) to Pj

16: upon receiving Confirm(ID, σi
j) from Pj s.t. SigVerifyIDj (H(S̃), σi

j) = 1 do

17: Σ ← Σ ∪ {j, σi
j}

18: upon |Σ| = n− f do
19: send Commit(ID, Σ,H(S)) to all parties

20: upon receiving Commit(ID, Σj , hj) message from Pj for the first time do
21: if |{k | (k, σj

k) ∈ Σj}| = n− f ∧ ∀(k, σj
k) ∈ Σj , SigVerify

ID
k (hj , σ

j
k) = 1 then

22: Ŝ ← S and send RecRequest(ID, k) to all parties for every k ∈ Ŝ

23: wait for that for every k ∈ Ŝ , AVSS-Rec[〈ID, k〉] outputs (rk, πk) do

24: for each k ∈ Ŝ do
25: if VRF.VerifyIDk (seedk, rk, πk) = 1 then
26: R← R ∪ (k, rk, πk)

27: if R 6= ∅ then `← argmaxk{rk | (k, rk, πk) ∈ R} B Index of the largest VRF in R
28: else `← ⊥, r` ← ⊥, π` ← ⊥
29: send Candidate(ID, `, r`, π`) to all parties

30: upon receiving RecRequest(ID, k) from any party for the first time do

31: wait for Ŝ 6= ⊥ and that AVSS-Sh[〈ID, k〉] outputs ssk do B If Ŝ becomes ∅, it is no longer ⊥.
32: activate AVSS-Rec[〈ID, k〉] with taking ssk as input

33: upon receiving Candidate(ID, `′, r`′ , π`′) from Pj for the first time do
34: if `′ = ⊥ then X ← X + 1
35: else if VRF.VerifyID`′ (seed`′ , r`′ , π`′) = 1 then B Verifying VRF implicitly waits for seed`′ 6= ⊥
36: C ← C ∪ (j, `′, r`′ , π`′)

37: if |C|+X = n− f then
38: ˆ̀← argmaxˆ̀{rˆ̀|(j, ˆ̀, rˆ̀, πˆ̀) ∈ C} B Index of the largest VRF in C
39: output the lowest bit of rˆ̀
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Constructing Coin without private setup. Having Seeding at hand, we are ready to present our
new Coin construction (formally shown in Alg. 3), which has four main logic phases:

1. VRFs sharing (Line 1-8). Each party activates a Seeding process as leader and participants in all
other Seeding processes to get the seeds. A party Pi activates its own AVSS-Sh instance as dealer
to share its VRF evaluation-proof after obtaining its own VRF seed seedi; once obtaining seedj
besides seedi, Pi also activates the corresponding AVSS-Sh instance as a participant.

2. VRFs commitment (Line 9-19). Each party Pi records a local set S of indices representing the
completed AVSS-Sh instances. Once the local S of Pi contains n− f indices, it takes a “snapshot”
S̃ of its local S and multicasts S̃ to all parties via Lock messages. Upon receiving a Lock message
from some party Pj containing S̃j , Pi waits for its local S eventually becomes a superset of S̃j ,

and returns a signature for S̃j to Pj . Thus, each party Pi can collect a proof Σ containing n − f
signatures for its “snapshot” S̃ and then multicast Σ to all parties via Commit messages.

3. VRFs revealing (Line 20-32). After receiving the first Commit message with a valid Σ, a party
Pi can immediately start to reconstruct AVSS associated to the indices in its current local S .
After reconstructions, it might get some valid VRF evaluation-proof, and then selects the one with
maximum evaluation out of the VRF evaluation-proof pairs, and multicasts this to all parties via
Candidate messages.

4. Output amplification (Line 33-39). After receiving n− f Candidate messages encapsulating valid
VRF evaluation-proof pairs, Pi selects the largest evaluation and outputs the lowest bit.

Theorem 2. In the the bulletin PKI setting, the algorithm shown in Alg. 3 realizes (n, f, 2f + 1, 1/3)-
Coin against n/3 static Byzantine corruptions in the asynchronous message-passing model, conditioned
on that the underlying primitives are all secure.

The proofs of this Theorem are somewhat straightforward. We defer the details to Appendix D. The
security intuition is essentially straightforward: the Seeding protocols provide unpredictable nonce for
VRFs, so each party computes its VRF unbiasedly. Moreover, using AVSSes to share VRF evaluations
would not leak the honest parties’ VRF evaluations to the adversary, so the adversary cannot prevent
f + 1 honest parties from reaching a common joint set of n − f AVSSes, which has at least α = 1/3
probability to commit the largest VRF evaluation that is also computed by some honest party. With
the same probability α, all honest parties would output the lowest bit of this largest VRF, which also
cannot be predicated by the adversary because all honest parties’ VRF evaluations are confidential
before reconstructing AVSSes.

Complexities of Coin. The complexities of the Coin protocol can be easily seen as follows:

– Message. The Coin protocol activates n AVSS and n Seeding instances, each of which incurs O(n2)
messages. In addition, each party sends n Lock, Confirm, and Candidate messages. So the
overall message complexity of Coin is O(n3).

– Communication. Each AVSS and Seeding instance in the Coin protocol exchanges O(λn2) bits, since
the input secret remains O(λ) bits. The message size of Lock and Candidate is O(λn) and the
message size of Confirm is O(λ). Thus, the overall communication of Coin is O(λn3).

– Running time. The running time of Coin is constant, which is trivial to see as the underlying
AVSS-Sh and AVSS-Rec instances can terminated in constant time deterministically.

5.2 Resulting ABA without private setup

Given the new private-setup free Coin protocol, one can construct more efficient asynchronous binary
agreement (ABA) with expected constant running time and cubic communications with PKI only. In
particular, we primarily focus on ABA with the following standard definition [13,30].

Definition 4 (Asynchronous Binary Agreement). A protocol realizes ABA, if it has syntax and
properties defined as follows.

Syntax. For each protocol instance with an identifier ID, each party input a single bit besides some
implicit input including all parties public keys and its private key, and outputs a bit b.

Properties. It satisfies the next properties with all but negligible probability:
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– Termination. If all honest parties activate on ID, then every honest party outputs for ID.
– Agreement. Any two honest parties that output associated to ID would output the same bit.
– Validity. If any honest party outputs b for ID, then at least an honest party inputs b to ABA[ID].

Constructing ABA without private setup. We refrain from reintroducing the ABA protocols pre-
sented in [30] and [18], as we only need to plug in our Coin primitive to instantiate their reasonably
fair common coin abstraction. More formally,

Theorem 3. Given our (n, f, 2f + 1, 1/3)-Coin protocol, [30] and [18] implement ABA in the asyn-
chronous message-passing model with n/3 static Byzantine corruption and bulletin PKI assumption,
and they cost expected constant running-time, expected O(n3) messages and expected O(λn3) bits.

The proofs for termination, agreement and validity can be found in [30] and [18], respectively. The
complexities of resulting ABA implementations would be dominated by our (n, f, 2f + 1, 1/3)-Coin
protocol, because given costless Coin, both [30] and [18] would attain expected constant running-time,
expected O(n2) messages and expected O(λn2) bits.

6 Efficient VBA without Private Setup

This Section presents our efficient asynchronous leader election (Election) protocol without relying on
private setup, which is the key step to realize fast, efficient and private-setup free multi-valued validated
byzantine agreement (VBA) in the asynchronous network environment. Considering that VBA is the
quintessential core building block for implementing efficient asynchronous atomic broadcast [21], our
technique might initial a novel path to easy-to-deploy replicated services in the asynchronous network.
In addition, the result in this section can be plugged in the AJM+21 ADKG protocol to reduce its
communication complexity from O(λn3 log n) to O(λn3).

6.1 Efficient leader election without private setup

The aim of the Election primitive is to randomly elect an index out of the indices of all participating
parties [3]; more importantly, the adversary shall not be able to fully predicate which party would be
elected before some honest parties start to run the protocol. Formally, we would design an Election
protocol attaining the following properties in the asynchronous network:

Definition 5 ((n, f, f +k, β)-Leader Election). A protocol is said to be (n, f, f +k, β)-Election, if it
is among n parties with up to f static byzantine corruptions, and has syntax and properties as follows.

Syntax. For each protocol instance with session identifier ID, every party takes the system’s public
knowledge (i.e., λ and all public keys) and its own private keys as input, and outputs a value ` ∈ [n].

Properties. It satisfies the following properties except with negligible probability:

– Termination. Conditioned on that all honest parties are activated on ID, every honest party would
output a value ` ∈ [n].

– Agreement. For any two honest parties Pi and Pj that output `i and `j for ID, respectively, there
is `i = `j.

– Unpredictability. Before k honest parties (1 ≤ k ≤ f + 1) are activated on ID, the adversary
A cannot fully predicate the output `. More precisely, consider the following predication game: the
adversary A guesses a value `∗ before k honest parties activated on ID, if `∗ equals to some honest
party’s output for ID, we say that A wins; we let the adversary’s advantage in the predication game
to be |Pr[A wins]− β/n | and require it at most 1− β.

Remarks. With at least β probability taken over all possible Election executions, the adversary
cannot predict the output index better than guessing over [1, n]. Different from Coin that does not have
perfect agreement, Election requires any two honest parties to output the same index. This is important
in many validated Byzantine agreement (VBA) constructions, because the Election’s output is usually
used to directly decide that the final output is from which party’s proposal, so lacking agreement in
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Election might immediately break the agreement in VBA. When plugging in a (n, f, f + k, β)-Election
implementation with agreement, most VBA constructions [12,3,28] can preserve their securities, as long
as β is a certain constant between (0, 1]. Also, sometimes it can be important to realize larger k (e.g.,
f + 1) to clip the attacking power of asynchronous adversary as if in the VBA construction of [28].
The leader election protocol presented in this Section is a (n, f, 2f + 1, 1/3)-Election protocol, which is
strictly stronger than (n, f, f + 1, 1/3)-Election.

Constructing Election without private setup. Our Election protocol is formally shown in Alg. 4,
and it has three main logic phases that can be explained as follows:

1. Committing largest VRF (Line 1-4). In this phase, each party firstly executes the code of Coin
protocol, and obtains the speculative largest VRF evaluation seen in its view, i.e., get rndmax =
(`∗, r∗, π∗) where `∗ represents that this largest VRF is computed by which party, and r∗ and π∗

are the VRF evaluation and proof, respectively. After that, the party broadcasts rndmax to commit
the largest VRF evaluation in its view. Here Bracha’s reliable broadcasts (RBC) [10] are used to
prevent from committing different speculative largest VRF to distinct parties.

2. Voting on how to output (Line 5-13). After a party receives n− f RBC outputs that include a valid
VRF evaluation-proof, it checks if there exists a RBC output that: (i) it carries a VRF evaluation
same to the majority of n − f RBC outputs’, and (ii) it also carries the largest VRF evaluation
among all n − f VRF evaluations received from RBCs. If such an element exists, the party takes
a “snapshot” of these n − f RBCs outputs to form G∗, then it sends Vote(ID, G∗) to all parties
and activates ABA with input 1, otherwise, it activates ABA with input 0.

3. Output decision (Line 14-17). If ABA outputs 1, each party waits for any Vote(ID, G∗) message3

that carries a G∗ such that (i) G∗ is a subset of its received RBC outputs and (ii) there exists
r∗ that is the largest and majority VRF evaluation among all elements in G∗, then it outputs
(r∗ mod n) + 1. If ABA outputs 0, all parties would output a default index, e.g., 1.

Algorithm 4 Election protocol with identifier ID, for each party Pi
1: G ← ∅, G∗ ← ∅, ballot← 0, activate RBC[〈ID, j〉] for each j ∈ [n]
2: run the code of Coin in Alg. 3 with replacing Line 39 by “rndmax ← (ˆ̀, rˆ̀, πˆ̀)”
3: wait for rndmax assigned by (`∗, r∗, π∗) // i.e., Line 39 of modified Alg. 3 is executed
4: input (`∗, r∗, π∗) to RBC[〈ID, i〉]

5: upon RBC[〈ID, j〉] outputs (`∗, r∗, π∗) do
6: if VRF.VerifyID`∗(seed`∗ , r

∗, π∗) = 1 then B Verifying VRF implicitly waits for seed`∗ 6= ⊥
7: G← G ∪ (j, `∗, r∗, π∗)
8: if |G| = n− f then
9: if exist (·, `∗, r∗, ·) matching the majority elements in G then

10: if r∗ is the largest VRF evaluation among all elements in G then
B Namely, there exists r∗ that is the largest and majority VRF among G

11: G∗ ← G, ballot← 1, and send Vote(ID, G∗) to all parties

12: activate ABA[ID] with ballot as input
13: wait for that ABA[ID] outputs b
14: if b = 1 then
15: wait for any Vote(ID, G∗) message where G∗ ⊂ G and there exists the largest and

majority VRF evaluation r∗ among the n− f elements in G∗ B Verifying VRF implicitly waits for seed
16: output (r∗ mod n) + 1, where r∗ is the largest and majority VRF among G∗

17: else output the default index, i.e., 1

3 Remark that we use the Vote(ID, G∗) message for presentation brevity. Actually, a party does not have to
send and wait Vote message, because we can specify some quite involved “rules” used by the honest parties
to check their local set G to decide output upon ABA returns 1.
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Theorem 4. In the bulletin PKI setting, Alg. 4 realizes (n, f, 2f+1, 1/3)-Election in the asynchronous
message-passing model against n/3 static Byzantine corruptions, conditioned on that the underlying
primitives are all secure.

We defer the tedious details of proving this Theorem to Appendix E. Given our Coin construction, the
main barrier of lifting it to Election is to ensure perfect agreement while preserving the other benefits of
our Coin protocol. Intuitively, we go through the challenge by combining ABA and our specific voting
rules: everyone broadcasts the speculative largest VRF evaluation obtained from Coin and waits for
receiving n − f such broadcasted VRFs to check (i) if there exists a majority one in them and (ii) if
the majority one is also the largest one. Noticing that ABA would output 1, only if an honest party
realizes the above voting rules are satisfied, and there must be a unique VRF evaluation satisfying the
voting rules. In addition, with at least 1/3 probability, the Coin execution would be lucky to make all
honest parties realize a common largest VRF evaluated by an honest party; in such case, ABA always
returns 1 as no honest party inputs 0 to ABA, and then the low bits of the VRF evaluation becomes
the elected leader.

Complexities of Election. The complexities of the Election protocol can be easily seen as follows:

– Message. The execution of Coin part spends O(n3) messages, n RBC incurs O(n3) messages, the
ABA instance costs expected O(n3) messages, and there are O(n2) Vote messages in total. Thus,
the overall message complexity is expected O(n3).

– Communication. The Coin part costs O(λn3) bits as argued earlier, each RBC instance inputs O(λ)
bits and thus costs O(λn2) bits, the ABA instance incurs expected O(λn3) bits, and the size of
each Vote message is O(λn) bits. So Election exchanges O(λn3) bits on average.

– Running-time. The Election protocol can terminate in expected O(1) asynchronous rounds.

6.2 Resulting VBA without private setup

Given our Election protocol, we are ready to construct the private-setup free validated Byzantine agree-
ment (VBA), which is an important building block for implementing asynchronous atomic broadcast
[21,12,27,33] and is essentially a special Byzantine agreement with external validity that can be defined
as follows.

Definition 6 (Asynchronous Validated Byzantine Agreement). A protocol realizes VBA, if it
has syntax and properties defined as follows.

Syntax. For each protocol instance with an identifier ID and a global polynomial-time computable
predicate QID, each party input a value besides some implicit input including all parties public keys and
its private key, and outputs one value.

Properties. It satisfies the next properties with all but negligible probability:

– Termination. If all honest parties activate on ID with an input satisfying QID, then every honest
party outputs for ID.

– Agreement. Any two honest parties that output associated to ID would output the same value.
– External-Validity. If any honest party outputs v for ID, then QID(v) = 1.

Constructing VBA without private setup. Most existing VBA constructions [12,3,28] rely on
a trusted dealer to faithfully distribute the private key shares of a non-interactive threshold PRF
(tPRF) [13] to implement a Leader Election primitive that can uniformly elect a common index out of
all parties. Fortunately, our reasonably fair Election protocol is pluggable in all VBA implementations
[12,3,28] to replace such tPRFs, thus removing the unpleasant private setup. More formally,

Theorem 5. In the bulletin PKI setting, given our (n, f, 2f+1, 1/3)-Election protocol, [12,3,28] would
implement VBA in the asynchronous message-passing model with n/3 static Byzantine corruption, and
they would cost expected constant running-time, expected O(n3) messages and expected O(λn3) bits for
λn-bit input.
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Proofs for VBA properties can be found in [12,3,28] with some trivial adaptions. Here we briefly dis-
cuss the intuition behind the securities and the resulting asymptotic complexities with using Abraham
et al.’s VBA construction [3] as an example.

Recall that each iteration of Abraham et al.’s VBA [3] proceeds as follows: every party begins as
a leader to perform a 4-stage provable-broadcast (PB) protocol to broadcast a key proof (carrying a
value as well), a lock proof, and a commit proof, where each proof is essentially a quorum certificate;
following key-lock-commit proofs, each party can further generate and multicast a completeness
proof, attesting that it delivers these proofs to at least f + 1 honest parties, which is called leader
nomination; then, after at least n − f 4-staged PBs are proven to complete leader nominations, a
Election primitive is needed to sample a party called leader in a perfect fair (or reasonably fair) way; so
with some constant probability, i.e., 2/9 in case of plugging our (n, f, 2f+1, 1/3)-Election protocol, the
elected leader already finished its nomination and delivered a commit proof to at least f + 1 honest
parties, and these parties can output the value received from the leader’s 4-stage PB; and after one
more round to multicast and amplify the proofs, all parties also output the same value; otherwise, it
is a worse case with 7/9 probability, in which no enough honest parties commit regarding the elected
leader, and the protocol enters the next iteration; nonetheless, the nice properties of the key and lock
proofs would ensure that the parties can luckily output in the next iteration with the same 2/9 chance.

Thus, plugging our Election primitive into Abraham et al.’s VBA would preserve its constant running
time. For message complexity, no extra cost is placed except our Election primitive, so it becomes
dominated by the O(n3) messages of Election. For communication complexity, it is worth noticing
that non-interactive threshold signature scheme is used to form short quorum certificates in the 4-
staged provable-broadcast (PB) protocols; nevertheless, such instantiation of quorum certificate can
be replaced by trivially concatenating digital signatures from n − f distinct parties in the bulletin
PKI setting, which only adds an O(n) factor to the size of quorum certificates, thus causing O(λn3)
communication complexity to this private-setup free VBA instantiation (for λn-bit input).

Application to asynchronous distributed key generation. Given our new path to constructing
efficient VBA protocols with O(λn3) communication complexity and constant running time, one can
simply use it to replace the VBA instantiation in AJM+21 [2] to improve the same authors’ asyn-
chronous distributed key generation, which would reduce the communication cost from O(λn3 log n)
to O(λn3) with preserving all other benefits such as constant running time and optimal resilience.
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Appendix A Secrecy Game for AVSS

Secrecy Game. The Secrecy game between an adversary A and a challenger C is defined as follows
to capture the secrecy threat in the AVSS protocol among n parties with up to f static corruptions in
the bulletin PKI setting:
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1. A chooses a set Q̄ of up to f parties to corrupt, a dealer PD (PD /∈ Q̄) and a session identifier ID,
and also generates the secret-public key pairs for each corrupted party in Q̄, and sends Q̄, PD, ID
and all relevant public keys to C.

2. The challenger C generates the secret-public key pair for every honest party in [n] \ Q̄, and sends
these public keys to the adversary A.

3. A chooses two secrets s0 and s1 with same length and send them to C.
4. The challenger C decides a hidden bit b ∈ {0, 1} randomly, executes the AVSS-Sh protocol on ID (for

all honest parties) to share sb via interacting with A (that are on behalf of the corrupted parties).
During the execution, A is consulted to schedule all message deliveries and would learn: (i) the
protocol scripts sent to the “corrupted parties”, and (ii) the length of all messages sent among the
honest parties.

5. The adversary A guesses a bit b′.

The advantage of A in the above Secrecy game Advsec is |Pr[b = b′]− 1/2|.

Recall that the secrecy requirement of AVSS requires that the adversary’s advantage in the above game
shall be negligible.

Appendix B Deferred Proof for AVSS Construction

Lemma 2. If any two honest parties Pi and Pj output (h, c, ·, ·, ·) and (h′, c′, ·, ·, ·) in AVSS-Sh[ID],
respectively, then h = h′ and c = c′ except with negligible probability.

Proof. Suppose that h 6= h′ (resp. c 6= c′), Pi receives 2f + 1 Ready message containing h (resp. c),
the senders of which include at least f + 1 honest parties; in the same way, Pj must have received at
least f + 1 Ready messages containing h′(resp. c′) from honest parties; so it induces that at least one
honest party sent two different messages, which is impossible. So there is a contradiction if h 6= h′ or
c 6= c′, implying h = h′ and c = c′.

Deferred proof for Theorem 1. Here down below we prove Theorem 1, namely, to analyze the
AVSS protocol presented by Alg. 1 and Alg. 2 in details to argue how it securely realizes Def. 1.

Proof. Here prove that Alg. 1 and Alg. 2 satisfy AVSS’s properties one by one:

– Totality. Assume that an honest party outputs in the AVSS-Sh, it must have received 2f+1 Ready
messages. At least f + 1 of the messages are sent from honest parties. Therefore, all parties will
eventually receive f + 1 Ready messages from these f + 1 honest parties and send a Ready
message as well. Then, all honest parties will eventually receive 2f + 1 valid Ready messages and
output. So the totality property always holds.

– Commitment. From Lemma 2, all honest parties that complete AVSS-Sh would agree on the same
h and c. According to the collision-resistance of hash function, the adversary cannot find a C ′ 6= C
such that h = H(C ′) = H(C ) with all but negligible probability, so there is a fixed C except with
negligible probability. Moreover, C is computationally binding conditioned on DLog assumption,
so all honest parties agree on the same polynomial A∗(x) committed to C , which fixes a unique
key∗, and they also receive the same cipher c. So there exists a unique m∗ = c⊕ key∗, which can
be fixed once some honest party outputs in AVSS-Sh.
Now we prove that m∗ can be reconstructed when all honest parties activate AVSS-Rec. Any
honest party outputs in the AVSS-Sh subprotocol must receive 2f + 1 Ready messages from
distinct parties, at least f +1 of which are from honest parties. Thus, at least one honest party has
received 2f+1 Echo messages from distinct parties. This ensures that at least f+1 honest parties
get the same commitment C and a valid quorum proof Π. Due the unforgeability of signatures in
Π, that means at least f+1 honest parties did store valid shares of A∗(x) and B∗(x) along with the
corresponding commitment C except with negligible probability. So after all honest parties start
AVSS-Rec, there are at least f + 1 honest parties would broadcast KeyRec messages with valid
shares of A∗(x) and B∗(x). These messages can be received by all parties and can be verified by at
least f + 1 honest parties who record C . With overwhelming probability, at least f + 1 parties can
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interpolate A∗(x) to compute A∗(0) as key and broadcast it, and all parties can receive at least
f + 1 same key∗ and then output the same m∗ = c ⊕ key∗ as they obtain the same ciphertext c
from AVSS-Sh.

– Correctness. For proving the first part, it is clear that (i) the honest dealer must collect at least
n− f valid digital signature for H(C ) from distinct parties to form valid Π and (ii) every honest
party can eventually wait the shares of A(x) and B(x) as well as the same C . This implies that
all honest parties can eventually broadcast the same Cipher messages, so they would broadcast
the same Echo messages and the same Ready messages, thus finally outputting in the AVSS-Sh
instance.
For proving the second party, it is easy to see that (i) any honest party must output a ciphertext
c same to the ciphertext computed by the honest sender and (ii) all honest parties must receive
the same hash h of the commitment C to A(x), where A(x) is a polynomial chosen by the honest
deader. Recall that we have proven that all honest parties can reconstruct a message c ⊕ A(0),
which exactly is m because c computed by the honest sender is m⊕A(0).

– Secrecy. The adversary’s view in an AVSS-Sh execution with an honest dealer would include the
commitment C (and its hash h), the ciphertext c, some signatures for h, the secret shares received
by up to f corrupted parties as well as all public keys and corrupted parties secret keys. The
signatures leak nothing related to the input secret (even if the adversary can fully break digital
signature to learn the private signing keys). Thus, following the information-theoretic argument in
[31], the adversary’s advantage in the Secrecy game Advsec = |Pr[b = b′ | view]−1/2 | = |Pr[b′ =
0] Pr[b = 0] + Pr[b′ = 1] Pr[b = 1]− 1/2 | = 1/2− 1/2 = 0 because the commitment C is perfectly
hiding and f shares of Shamir’s secret sharing scheme also leaks nothing about the input secret.

Appendix C An Implementation of Seed Generation

Here we give an exemplary construction for reliable leaded seeding (Seeding) through the elegant idea
of aggregatable public verifiable secret sharing (PVSS) in [22]. The general idea of [22] is to lift the
beautiful Scrape PVSS scheme [16] to enable the aggregation of PVSS scripts from distinct participating
parties, and along the way, it presents a way of using knowledge-of-signatures to allow each party to
attach an aggregatable “tag” attesting its contribution in the aggregated PVSS script, thus ensuring
that anyone can check the finally aggregated PVSS script pvss (and tag) to verify whether pvss indeed
commits a polynomial collectively “generated” by more than f parties while preserving the size of
communicated scripts minimal.

It thus becomes immediate to follow the nice idea to construct an efficient Seeding protocol as shown
in Alg. 5 in the PKI setting, in which: (i) each party firstly generates a Scrape PVSS script along with a
knowledge-of-signature, such that the leader can collect and aggregate 2f + 1 Scrape PVSS scripts and
multicast the aggregated PVSS script along with a vector of knowledge-of-signatures and some other
metadata (called tag by us) to the whole network, later (ii) each party returns to the leader a signature
for the aggregated PVSS script, so the leader can collect and multicast a quorum certificate containing
at least 2f + 1 signatures to attest that it has “committed” a consistent PVSS script collectively
contributed by at least 2f +1 parties across the whole network, finally (iii) it becomes simple for every
party to multicast its own secret share regarding to the final PVSS script, thus reconstructing the
secret collectively generated by at least 2f + 1 parties, which is naturally the random seed to output.

For sake of completeness, we briefly review the cryptographic abstraction of the aggregatable PVSS
scheme (with unforgeable tags attesting contributions) among n parties with a secrecy threshold t due
to Gurkan et al. [22]. Note that we mainly focus on abstracting the needed properties to construct and
prove our Seeding protocol.

C.1 PVSS

Let us begin with introducing the syntax and properties PVSS scheme without aggregability. Remark
that the scheme might need some public parameter param (which is simply the description for some
cyclic groups and would be explained later). Under the PKI setting, each party Pi is bounded to an
encryption-decryption key pair (eki, dki). The decryption key dki is only known by the party Pi, while
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the encryption key eki is known by all parties. Let ek denote the encryption keys {ek1, . . . , ekn} of all
parties.

Syntax. The (n, t)-PVSS scheme can be described as a tuple of non-interactive algorithms as
follows (with taking param as an implicit input):

– Deal(ek, s) → pvss. This (probably probabilistic) algorithm takes a secret s as input and outputs
the PVSS script pvss.

– VrfyScript(ek, pvss) → 0/1. This deterministic algorithm takes all encryption keys as input, thus
that it can verify whether a PVSS script pvss is valid in the sense that pvss commits a fixed
polynomial that can be reconstructed collectively by n parties (i.e., output 1) or not (i.e., 0).

– GetShare(dki, pvss) → shi. When executed by Pi, this algorithm takes a valid pvss script and the
party’s decryption key dki as input and outputs the secret share shi regarding the secret committed
to pvss.

– VrfyShare(j, shj , pvss) → 0/1. It takes a PVSS script pvss and a secret share shj from Pj , and it
verifies whether shj is the correct jth share of the polynomial committed to pvss (i.e., output 1) or
not (i.e., output 0).

– AggShares({(j, shj)}t)→ a. It takes t valid secret shares from distinct parties regarding an implicit
PVSS script pvss and computes the secret a committed to the implicit pvss.

– VrfySecret(s, pvss)→ 0/1. It verifies whether a secret s is indeed committed to pvss (i.e., output 1)
or not (i.e., output 0).

Properties. It satisfies correctness, public verifiability and secrecy:

– Correctness is as straightforward as follows:
• ∀ s ∈ Zq, the script verification passes for an honest dealer, namely,

Pr
[
VrfyScript(ek, pvss) = 1 | pvss← Deal(ek, s)

]
= 1

• Any honestly decrypted share of any valid PVSS script can be validated,

Pr

[
VrfyShare(j, shj , pvss) = 1

∣∣∣∣ VrfyScript(ek, pvss) = 1
shj ← GetShare(dkj , pvss)

]
= 1

• If an honest dealer shares a secret s with a PVSS script pvss, then any t honest parties (e.g.,
denoted by a set Q) can collectively reconstruct the original secret s, namely,

Pr

[
AggShares(S) = s

∣∣∣∣∣ S ← {(j, shj ← GetShare(dkj , pvss))}j∈Q
Q ∈ {P | P ∈ [n] ∧ |P | = t}
pvss← Deal(ek, s)

]
= 1

• The secret obtained through aggregating t valid secret shares for a valid pvss script can also
be validated with using the same pvss, namely,

Pr

[
VrfySecret(s, pvss) = 1

∣∣∣∣∣ Q ∈ {P | P ∈ [n] ∧ |P | = t}
VrfyShare(j, shj , pvss) = 1,∀j ∈ Q
AggShares(S) = s ∧ S ← {(j, shj)}j∈Q

]
= 1

– Publicly verifiable commitment indicates that any sharing script pvss can be verified by the
public to tell whether it is valid to commit a fixed secret F ∗(0) or not. Namely, if pvss is valid due
to VrfyScript(ek, pvss) = 1, it is guaranteed that:
• There exists a fixed secret F ∗(0), such that VrfySecret(F ∗(0), pvss) = 1.
• Any t decryption shares validated by VrfyShare with regard to the pvss script from distinct

parties (including up to f malicious ones) can be combined to yield a secret F (0) same to
F ∗(0).

– Weak secrecy means that in our setting, the probability that the adversary wins the Weak Secrecy
game down below is negligible. Note that the weak secrecy well captures the scenario that: the
honest dealer uniformly chooses a secret over Zq to share, and it is computationally infeasible for
the adversary to compute the dealer’s input secret on receiving the PVSS script carrying the secret,
unless t− f honest parties send their decrypted secret shares the adversary.
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Weak-Secrecy game. The Weak-Secrecy game between an adversary A and a challenger C is defined
as follows to capture the secrecy threat in (n, t)-PVSS scheme with up to f static corruptions (f+1 ≤ t):

1. The adversary A generates the decryption-encryption key pairs for all up to f corrupted parties,
and sends these public keys to the challenger C.

2. The challenger C generates the decryption-encryption key pairs for all honest parties, and sends
these public keys to the adversary A.

3. The challenger C chooses a secret s randomly from the space of secret Zq. C executes Deal(ek, s)
(where ek are partially generated by C and partially chosen by A in the first two steps) to get the
sharing script pvss, and sends A the script pvss.

4. The adversary A queries C to get t− f − 1 decrypted shares of pvss, and computes s′.

The adversary A wins the above Weak-Secrecy game if s = s′.

C.2 Aggregatable PVSS with weight tags

To lift PVSS scheme to enjoy aggregability, an aggregating algorithm can be added to the scheme [22],
which naturally combines any two valid sharing scripts to form another one:

– AggScripts(pvss1, pvss2) → pvss. This algorithm takes two valid PVSS scripts pvss1 and pvss2 as
input and outputs a valid PVSS script pvss. We might let AggScripts({pvssi, . . . , pvssj}) to be short
for iteratively aggregating the pvss scripts in the set.

Now we expect the commitment property can be extended accordingly to capture the aggregation
of PVSS scripts, that is:

– Suppose that two valid PVSS scripts pvss1 and pvss2 commit two secrets F ∗1 (0) and F ∗2 (0), re-
spectively; then AggScripts(pvss1, pvss2) always outputs a valid pvss committing a secret F ∗(0) =
F ∗1 (0) + F ∗2 (0).

The aggregatable PVSS scheme can be further lifted with weight tags (for the original purpose
of gossip-based distributed key generation) in [22], which means each aggregated PVSS script pvss
is attached with some implicit tags, so they can be checked by the public to verify the script pvss
indeed aggregates which parties’ PVSS scripts. Those lifted algorithms were termed as aggregatable
distributed key generation in [22]; nevertheless, we remain to view it as PVSS with advanced properties
for presentation simplicity (which is also pointed out in [22]), since we do not use it as DKG for any
threshold public-key cryptosystem and just use the scheme for sharing some secret confidentially in
a publicly verifiable manner. For the purpose, one can add another algorithm Weights to the PVSS
scheme and also slightly lift the syntax of PVSS scheme as follows:

– Deal(ek, ski, s)→ pvss. Now the algorithm takes an extra secret key ski as input when it is executed
by the party Pi, which is needed to make pvss carry an unforgeable weight tag bounded to the
identity Pi. Remark that sometimes, we might let Deal to share a randomly chosen element in Zq
and thus omit the input field of s to rewrite it as Deal(ek, ski)→ pvss for short.

– VrfyScript(ek, vk, pvss)→ 0/1. It takes some verification keys vk besides ek and pvss as input. The
output still represents whether pvss is valid or not.

– Weights(pvss) → ~w. It takes a valid pvss script as input and outputs an n-sized vector ~w, every
jth element in which belongs to N0 and represents that the pvss script indeed aggregates a certain
pvss script from the party Pj .

The further augmented aggregatable PVSS scheme with weight tags ~w shall satisfy extra properties
to make ~w reflect the indices of the parties actually contributing in pvss. The additional correctness
property related to weights are:

– If Deal(ek, ski, s) → pvss and Weights(pvss) → ~w, then the ith element at ~w is 1, and all else
positions at ~w are 0, which means the script pvss is contributed by Pi.

– If pvss1 and pvss2 are two valid PVSS scripts and AggScripts(pvss1, pvss2) outputs pvss, then ~w =
~w1 + ~w2, where ~w ←Weights(pvss), ~w1 ←Weights(pvss1), and ~w2 ←Weights(pvss2).
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Unpredictability. Finally, the weights carried by each pvss script shall also be unforgeable, in the
sense of attesting that the Weights algorithm can extract from the script to tell that the script indeed
aggregates which parties’ pvss scripts. More formally, we can think of the property by requiring the
adversary to have negligible probably to win the following Unpredictability game, which intuitively
lifts the aforementioned weak-secrecy to take the weight tags into consideration and states that if each
honest party Pi randomly chooses the input secret sj committed to its PVSS script pvssj , then the
adversary cannot compute the aggregated secret s committed to a valid pvss, as long as the script pvss
has a non-zero weight to reflect some honest party’s contribution in it.

Unpredictability game. The Unpredictability game between an adversary A and a challenger C is
defined as follows for a (n, t) aggregatable PVSS scheme with weight tags in the presence of up to f
static corruptions (f + 1 ≤ t):

1. The adversary chooses a set Q̄ of f corrupted parties, generates the public-private key pairs for
each corrupted party in Q̄, and sends all the public keys to the challenger C.

2. The challenger C generates all public-private key pairs for all honest parties, and sends these public
keys to the adversary A.

3. The adversary A queries C for each party Pi in [n] \ Q̄, such that C randomly chooses si ∈ Zq,
computes pvssi ← Deal(ek, ski, si) and sends pvssi to A. The adversary now produces a valid pvss
script such that Weights(pvss) outputs ~w containing more than f+k positions (where 1 ≤ k ≤ n−f),
and then sends pvss to C.

4. The adversary asks the challenger to compute at most t− f − 1 decryption shares on the received
pvss and then send these shares back, and then the adversary guesses a value s∗ ∈ Zq.

The adversary wins if s∗ = s, where s is the actual secret committed to pvss (which is unique due to
the commitment property).

Remarkably, Gurkan et al. [22] give a beautiful construction of aggregatable PVSS scheme in the
random oracle model with unforgeable tags to attest the contributing parties, which satisfy all afore-
mentioned properties needed by us for constructing a Seeding protocol.4 The scheme assumes some
public parameter param consisting of: (i) two cyclic groups G1 and G2 where SXDH assumption holds;
(ii) a random generator g ∈ G1 and two random elements h ∈ G2 and u ∈ G2. Besides those, their
scheme can be established in the PKI setting, as it just requires each party to register two public keys.
Moreover, each PVSS script or tag includes at most O(λn) bits. We refer the interested reader to [22]
and [16] for the detailed construction.

C.3 Constructing Seeding

Here down below we describe an exemplary Seeding construction from the (n, 2f + 1) aggregatable
PVSS scheme (as detailed by Alg. 5). Recall that the protocol is a two-phase protocol (including a
committing phase and a revealing phase), and its execution can be briefly described as follows:

– Committing phase-Seed aggregation (Line 1-4, 20-24).In this phase, each party invokes Deal to
create a pvss script and send this script to the leader PL. When the leader receives pvssj from

Pj , it verifies the pvss using ek and checks if the weights of pvssj are all zeros but one at the jth

position. Once collecting 2f + 1 valid pvss scripts, the leader aggregates them and send it using a
LockAggPvss message.

– Committing phase-Seed commitment (Line 5-10, 25-29). After receiving a LockAggPvss message
with a valid pvss. Each party sign for it and send the signature σi to the leader to commit the same
pvss. Upon receiving 2f+1 valid signature for the pvss, the leader send a CommitAggPvss message

4 Remark that Gurkan et al. did not formalize their aggregatable PVSS scheme in our way as an aggregatable
PVSS with unforgeable weight tags, since their final goal is to realize a gossip-based distributed key generation
protocol, so they focus on key properties to emulate a “trusted” key generation functionality. Nevertheless,
their construction can be easily argued to satisfy the properties abstracted by us for constructing Seeding,
because failing to satisfy our requirements such as Unpredictability would directly break their DKG (since
the adversary might directly tell the final secret key).
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containing H(pvss) and a signature set Σ. After receiving a valid CommitAggPvss messages from
the leader, each party confirms that the output is actually fixed, and it takes the pvss as a input
in GetShare to output a share shi regarding the secret committed to pvss.

– Revealing phase-Seed recovery (Line 11-19, 30-35). The leader collects 2f + 1 valid shares which
are committed to pvss and aggregates them to a seed. Then the seed is sent to all parties with
H(pvss) and Σ. Once honest parties receiving a valid seed with a hash value of pvss and 2f + 1
valid signatures for pvss, the execution is just like a reliable broadcast. Specifically, each party
sends SeedEcho to all parties. After receiving 2f + 1 SeedEcho messages, honest parties send
SeedReady to all parties. If an honest party receives f + 1 SeedReady messages of same value
and SeedReady has not been sent, it sends SeedReady. When receiving 2f + 1 SeedReady
messages of same value, honest parties output the seed.

Algorithm 5 Seeding protocol with identifier ID and leader PL
/* Protocol for each party Pi */

1: upon being activated do
2: randomly sample a secret s
3: pvssi ← Deal(ek, ski, s)
4: send PvssScript(ID, pvssi) to PL

5: upon receiving LockAggPvss(ID, pvss) message from PL for the first time do
6: if VrfyScript(ek, vk, pvss) = 1 ∧ (Weights(pvss) has 2f + 1 non-zero elements) then
7: σi ← SignIDi (H(pvss)) and send ConfirmAggPvss(ID, σi) to PL

8: upon receiving CommitAggPvss(ID, h,Σ) from PL for the first time do
9: if H(pvss) = h ∧ (Σ contains valid signatures for h from 2f + 1 distinct parties) then

10: shi ← GetShare(pvss) and send SeedShare(ID, shi) to PL

11: upon receiving Seed(ID, h,Σ, seed) from PL for the first time do
12: if H(pvss) = h ∧ VrfySecret(seed, pvss) = 1 ∧ (Σ contains valid signatures for h from 2f + 1 distinct

parties) then
13: send SeedEcho(ID, seed) to all parties

14: upon receiving 2f + 1 SeedEcho(ID, seed) with same seed from distinct parties do
15: send SeedReady(ID, seed) to all parties if SeedReady not sent yet

16: upon receiving f + 1 SeedReady(ID, seed) with same seed from distinct parties do
17: send SeedReady(ID, seed) to all parties if SeedReady not sent yet

18: upon receiving 2f + 1 SeedReady(ID, seed) with same seed from distinct parties do
19: output seed

/* Protocol for the leader PL */

20: upon receiving PvssScript(ID, pvssj) from Pj for the first time do

21: if VrfyScript(ek, pvssj) = 1 ∧ (the weights of pvssj are all zeros but one at the jth position) then
22: K ← K ∪ {pvssj}
23: if |K| = 2f + 1 then
24: pvss← AggScripts(K ) and send LockAggPvss(ID, pvss) to all parties

25: upon receiving ConfirmAggPvss(ID, σj) message from Pj for the first time do
26: if SigVerifyIDj (H(pvss), σj) = 1 then
27: Σ ← Σ ∪ {(j, σj)}
28: if |Σ| = 2f + 1 then
29: send CommitAggPvss(ID,H(pvss), Σ) to all parties

30: upon receiving SeedShare(ID, shj) message from Pj for the first time do
31: if VrfyShare(shj , pvss) = 1 then
32: S ← S ∪ {(j, shj)}
33: if |S| = 2f + 1 then
34: seed← AggShares(S)
35: send Seed(ID,H(pvss), Σ, seed) to all parties
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Deferred proofs for Lemma 1. Here we prove that the protocol in Alg. 5 satisfies all properties of
Reliable Leaded Seeding given in Definition 3 and analyze how does it incur only quadratic messages
and communications.

Proof. Here prove that Alg. 5 satisfy the Seeding properties one by one:

– Totality. Assume that an honest party outputs in the Seeding, it must have received 2f + 1
SeedReady messages. At least f + 1 of the messages are sent from honest parties. Therefore,
all parties will eventually receive f + 1 SeedReady messages from these honest parties and then
send a SeedReady messages as well (if a SeedReady message has not been sent yet). So the
totality property always holds.

– Correctness. In the seed aggregation phase, the leader will collect 2f + 1 valid pvssi scripts and
aggregate them into a pvss whose weight has 2f + 1 positions to be 1. In the seed commitment
phase, all honest parties sign for this pvss so that the leader can collect at least n−f valid signatures
for H(pvss) to form valid Σ. In the seed recovery phase, the leader can collect at least n− f valid
shares which are committed to the pvss they have signed for. All honest parties can receive the
same H(pvss), Σ and seed that pass verifications. So they would broadcast the same SeedEcho
message and the same SeedReady messages, thus finally outputting in the Seeding instance.

– Commitment. Assume that Pi is the first party who starts to run the protocol’s revealing phase,
it implies that Pi received a valid CommitAggPvss(ID, h,Σ) message from leader PL. If another
honest Pj received a valid CommitAggPvss(ID, h′, Σ′) message from leader PL, where h′ 6= h,
since a valid Σ contains 2f + 1 valid signatures for a same hash value from distinct parties, it
induces that at least one honest party signed for both h and h′, which is impossible. Hence,
when some honest party Pi starts to run the protocol’s revealing phase, the h from any valid
CommitAggPvss(ID, h,Σ) message is unique. Following the commitment of the PVSS scheme,
there exists a fixed value seed corresponding to the pvss, where h = H(pvss).
Suppose that some honest party outputs seed′ from the Seeding. By the code, it receives 2f + 1
SeedReady messages containing seed′. Then at least one honest party received 2f + 1 valid
SeedEcho messages with the same seed′ from distinct parties, which means that at least f + 1
honest parties received valid Seed(ID, h,Σ, seed′) message from the leader. From the previous
analysis, no honest party will accept a seed′ 6= seed from PL or multicast it. Thus, seed′ = seed.

– Unpredictability. Prior to f+1 honest parties are activated to run the revealing phase of the Seeding
protocol, the adversary can only collect at most 2f decryption shares for the committed pvss script.
Trivially according to the Unpredictability of PVSS with weight tags, since the aggregated pvss has
a weight with 2f+1 non-zero positions, it is infeasible for the adversary to compute a seed∗ = seed
at the moment, where seed is the actual secret committed to the aggregated pvss script.

The complexities can be easily seen as follows: The message complexity of Seeding is O(n2), which
is due to each party sends n SeedEcho and SeedReady messages; considering that the input secret
s and pvss both are O(λ) bits, and there are O(n) messages with O(λn) bits and O(n2) messages with
O(λ) bits, thus the communication complexity of the protocol is of overall O(λn2) bits.

Appendix D Deferred Proofs for Common Coin

Lemma 3. With overwhelming probability, once the first honest party receives a valid Σj for an S∗,
at least f + 1 honest parties have already recorded local S including S∗. We call such S∗ the core set.

Proof. If an honest party receives a valid Σj with n− f signatures for H(Sj), at least f + 1 signatures
are signed by honest parties. Note that an honest party Pi will sign for some Sj only if Sj ⊆ Si. Thus,
trivially from the unforgeability of digital signatures, with all but negligible probability, if an honest
parties receives a valid Σj for Sj , there exists a core set S∗ = Sj which is subset of at least f+1 honest
parties’ local S .

Lemma 4. Let Eventgood to denote a case in which a core set S∗ solicits an honest party’s VRF
evaluation that is also largest among all parties’ VRF, and the remaining case denoted by Eventbad to
cover all other possible executions, then the probability of the Eventgood occurs is α ≥ 1/3, under the
ideal functionality of VRF [19] (which is realizable in the random oracle model with CDH assumption).
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Proof. From Lemma 3, at the moment when the first honest party invokes any AVSS-Rec instance, it
already receives a Σj , and there exists a core set S∗ including 2n/3 indices, each of which represents a
shared VRF’s evaluation and at least n/3 indices out of which are shared by honest parties. Recall that
the honest dealers’ AVSS-Rec leaks nothing about their VRF’s evaluations, so at the moment when
S∗ is fixed, the adversary learns nothing about honest parties’ VRF evaluations. Thus, the probability
that the Eventgood occurs is α ≥ 1/3. Otherwise, the adversary directly breaks the unpredictability
of VRF by either biasing the distribution of corrupted parties’ VRF evaluations (which is infeasible
because according to the commitment and unpredictability of Seeding, VRF seeds generated by Seeding
protocols are unpredictable before it is committed, and once the Seeding completing the committing
phase, the VRF seeds are fixed) or can predicate the high bits of honest parties VRF’s evaluations
without accessing their secret keys.

Deferred proofs for Theorem 2.

Proof. We prove that Alg. 3 realizes the properties of Coin in Def. 2 one by one:

– Termination. According to the correctness and commitment of Seeding, if all honest parties par-
ticipate in Seeding[〈ID, j〉], every party will get the same seedj regarding an honest Pj . Due to the
totality and commitment of Seeding, if any honest party gets seedj from Seeding[〈ID, j〉], all honest
parties would obtain the same seedj , despite malicious Pj .
Then, every honest party will eventually complete at least n − f AVSS-Sh instances in which it
participates and get a (n − f)-sized set S , because there are at least n − f honest parties would
complete their Seeding, compute their VRFs, and activate their AVSS-Sh instances that would
finally joined by all honest parties.
Moreover, an honest Pi can collect a set Σi containing at least n− f signatures for its Si to form
Σ, every honest party will have local S covering Si from the totality of AVSS.
If an honest party Pi receives a valid Σj for the first time, it will fix a Ŝ and send RecRequest

messages, and all honest parties would complete all AVSS-Sh instances corresponds to its Ŝ ac-
cording to the totality of AVSS and then start AVSS-Rec, so all secrets corresponds to its Ŝ can
be reconstructed. For any index in Ŝ , there is at least one honest party indeed activates the corre-
sponding AVSS-Sh instance, indicating this honest party must output in the corresponding Seeding.
This means that for each k ∈ Ŝ , Pi can output in Seeding[〈ID, k〉] to get a common seedk. So for

each k ∈ Ŝ , it can check whether (k, rk, πk) is validated VRF result, and picks up the maximum
rl among all valid rk. Finally, every honest party sends the picked (l, rl, πl) using a Candidate
message to all parties. All honest parties can eventually receive at least n − f valid Candidate
from different parties, because all honest parties get common VRF seeds and mutually consider
each others’ Candidate messages valid, and then output the lowest bit of the maximum of all rl
among valid Candidate messages.

– Unpredictability. From Lemma 4, the Eventgood occurs with a probability of 1/3. Before f + 1
honest parties are activated to run the protocol, the adversary cannot predicate the protocol
execution will fall into which case, because no one can predicate the VRF seeds and thus even the
corrupted parties cannot compute their VRF evaluations. Following the same argument, from the
view of any adversary before f + 1 honest parties run the protocol, and when Eventgood occurs, the
adversary cannot predicate the output better than guessing (i.e., succeed in predicating with 1/2
probability). Note that when Eventgood occurs, the lowest bit b of the largest VRF evaluation would
be output of all honest parties. Therefore, the adversary’s advantage in the predication game is
|Pr[A wins]− α/2 | ≤ 1− α, where α = 1/3.

Appendix E Deferred Proofs for Leader Election

Lemma 5. If two parties Pi and Pj sends valid Vote(ID, G) and valid Vote(ID, G′) to all parties,
respectively, i.e., there exists (·, `, r, ·) matching the majority elements in G and r is the largest VRF
evaluation among all elements in G, and there exists (·, `′, r′, ·) matching the majority elements in G′

and r′ is the largest VRF evaluation among all elements in G′, then the (`, r) = (`′, r′).
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Proof. We prove this by contradiction. Suppose r 6= r′. By the code, (·, `, r, ·) and (·, `′, r′, ·) match the
majority of G and G′, respectively, which means that the number of their appearance in G and G′ are
at least f +1, respectively. Without loss of generality, we assume that r > r′. Note that there are n−f
elements in G′, so at least one valid (·, `, r, ·) must be included in G′, because all elements in G and
G′ are obtained via reliable broadcast that ensures agreement. Since r′ is the largest VRF evaluation
among all elements in G′, which also means r′ > r, which is a contradiction to the assumption. Hence
(`, r) = (`′, r′).

Deferred proof for Theorem 4.

Proof. Here we prove that Alg. 4 satisfies the properties of Election in Def. 5 one by one:

– Termination. From the termination of Coin, each party will output a rndmax = (`∗, r∗, π∗), then
each party will broadcast its (`∗, r∗, π∗) using RBC. According to the validity of RBC, each honest
party can eventually collect a set G containing at least n− f RBC outputs. For an honest party, if
there exists (·, `∗, r∗, ·) matching the majority elements in G and r∗ is the largest VRF evaluation
among all elements in G, activates the ABA[ID] with 1 as input, otherwise, inputs 0 into ABA[ID].
According to the termination and agreement of ABA, if all honest parties participate in the ABA,
then all of them will output the same bit b. If b = 0, all honest parties output the default index,
i.e., 1. If b = 1, from the validity of ABA, at least one honest party inputs with 1, by the code,
it also implies this honest party sends a valid Vote message carrying a G∗ to all. Due to that
each element of G∗ is the output of RBC, following the totality of RBC, each party can receive all
elements in G∗. Hence, all honest parties can eventually wait for a valid Vote message containing
a G∗ which G∗ ⊂ G and then output.

– Agreement. According to the termination and agreement of ABA, if all honest parties participate
in the ABA, all of them would output from ABA with the same bit b. We analyze it in two cases:
(i), If b = 0, it is obvious that all honest parties will output the default index, i.e., 1. (ii), If b = 1,
from the validity of ABA, there is at least one honest party activates ABA with input 1, which
implies that at least one valid Vote message containing a G∗ has been sent and all honest parties
will receive it. According to the Lemma 5, any valid G∗ sent by a Vote message have the same
(·, `, r, ·) which matches the majority elements in G∗ and r is the largest VRF evaluation. Hence,
all honest parties output the same value.

– Unpredictability. We use the Eventgood and Eventbad defined in the Coin to discuss this property
by two cases. Case (i): With probability β, the Eventgood occurs, all honest parties will output the
same rndmax = (`∗, r∗, π∗). In this case, all honest parties have the same (`∗, r∗, π∗) and send it by
RBC. Following the validity of RBC, each honest party can receive at least n − f messages from
distinct RBC instances, n− 2f ≥ f + 1 of which are sent by distinct honest parties and contain the
same (`∗, r∗, π∗). So all honest parties can collect a G, in which (·, `∗, r∗, ·) matches the majority
elements and r∗ is the largest VRF. Then all honest parties send a Vote message and activate
ABA with 1 as input. From the validity of ABA, all honest parties will output 1 from ABA. By
the code, all honest parties can wait for a valid Vote message and output (r∗ mod n) + 1 from
Election. Since the β = Pr[Eventgood] = 1/3 and the VRF evaluation is uniformly sampled and does
not leak the adversary, until a proof can be produced to attest that a core set is fixed (which needs
at least f + 1 honest parties to participate), so each ` ∈ [n] has the same opportunity to be some
honest party’s output from Election. The probability that the adversary A succeeds in predicting
the output ` which coincides with some honest party’s output is no more than β

n . Case (ii): if
the Eventbad occurs, the adversary A might lead up to different honest parties to obtain different
rndmax, so that some honest parties would not be able to find the majority elements (·, `∗, r∗, ·),
where r∗ is the largest VRF evaluation in G. Nevertheless, it cannot be worse than that ABA
always outputs 0, so the adversary always predicate the output in the case. In sum, the advantage
of adversary in the predication game is |Pr[A wins]− β/n | ≤ 1− β, where β = 1/3.
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