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Abstract. Improved attacks on generic small-domain Feistel ciphers
with alternating round tweaks are obtained using linear cryptanalysis.
This results in practical distinguishing and message-recovery attacks on
the United States format-preserving encryption standard FF3-1 and the
South-Korean standards FEA-1 and FEA-2. The data complexity of the
proposed attacks on FF3-1 and FEA-1 is Õ(Nr/2−1.5), where N2 is the
domain size and r is the number of rounds. For example, FF3-1 with
N = 103 can be distinguished from an ideal tweakable block cipher with
advantage ≥ 1/10 using 223 encryption queries. Recovering the left half
of a message with similar advantage requires 224 data. The analysis of
FF3-1 serves as an interesting real-world application of (generalized) lin-
ear cryptanalysis over the group Z/NZ.

Keywords: Linear cryptanalysis · FF3-1 · FEA-1 · FEA-2 · Format-
preserving encryption

1 Introduction

Format-preserving encryption enables the encryption of plaintext with a specific
format, while ensuring that the ciphertext has the same format. For example, in
some applications it is convenient to be able to encrypt nine-digit integers (such
as social security numbers) to nine-digit integers.

Several generic techniques such as cycle walking [5, 7] can be used to trans-
form (tweakable) block ciphers into format-preserving ciphers. However, these
techniques are inefficient when there is a significant size difference between the
domain of the underlying block cipher and the target domain. Consequently,
a number of dedicated constructions based on small-domain tweakable Feistel
ciphers were introduced. The best known examples are the United States stan-
dards FF1 and FF3-1 [12] (NIST SP800-38G rev. 1). The South-Korean stan-
dards FEA-1 and FEA-2 [16] (TTAK.KO-12.0275) follow a similar design but
with lighter round functions.

Small-domain Feistel ciphers are known to be vulnerable to a number of
generic attacks. In a series of papers, Patarin [18–20] analyzed the security
of r-round Feistel ciphers with uniform random round functions. In particu-
lar, Patarin [20, §8] describes a distinguisher with data and time complexity
Õ(Nr−4) for Feistel ciphers with domain size N2. At CCS 2016, Bellare, Hoang
and Tessaro [4] presented a message-recovery attack with a data complexity of



Õ(Nr−2) or Õ(Nr−3) (to recover the left half of the message) queries. Subse-
quent improvements were obtained by Hoang, Tessaro and Trieu [15].

The applicability of these attacks to FF3 in part motivated the US National
Institute of Standards and Technology (NIST) to revise the FF3 standard [12].
In particular, the revised standard FF3-1 includes the requirement that the
domain size must be at least one million, i.e. N ≥ 103. Furthermore, the revision
decreased the size of the tweak from 64 to 56 bits. This change was introduced to
prevent a powerful slide-type attack presented by Durak and Vaudenay [11] at
CRYPTO 2017 that was subsequently improved by Hoang et al. [14] and Amon et
al. [1]. These attacks were the consequence of a weakness in the tweak-schedule
of FF3 that is resolved by the changes in FF3-1.

Recently, Dunkelman et al. [10] have proposed new distinguishers for FEA,
FF1 and FF3-1. The data complexity of these attacks is Õ(Nr−4), which is
comparable to the attack of Patarin [20]. The time complexity is Õ(Nr−3).

Contribution. This paper develops new distinguishing and message-recovery at-
tacks on small-domain Feistel ciphers with alternating round tweaks. The attacks
are based on linear cryptanalysis, but go beyond standard methods in several
ways. In particular, the role of the tweak input is analyzed, properties of small
uniform random functions are exploited, and for FF3-1 a generalization of linear
cryptanalysis to the group Z/NZ is used. Furthermore, the principle behind the
message-recovery attacks is novel.

If the round tweaks alternate between two values, as in FEA-1 and FF3-1,
the data and time complexity of these attacks is Õ(Nr/2−1.5). For FEA-2, which
has a different tweak schedule, distinguishing and message-recovery respectively
require Õ(Nr/3−1.5) and Õ(Nr/3−0.5) data and time. The new attacks are not
applicable to FF1. For many instances of FF3-1, FEA-1 and FEA-2, the data
and time complexity are well within the reach of real-world adversaries.

The proposed distinguishers only need weak access to the block cipher: it
is sufficient to have ciphertext-only access to encryptions of an arbitrary con-
stant message under many half-constant tweaks. In fact, access to the complete
ciphertext is not necessary. The message-recovery attacks follow the security
model introduced by Bellare et al. [4]. Specifically, given the encryption (with
FF3-1 or FEA-1) of a secret message and a known message with the same right-
hand side under Õ(Nr/2−1.5) tweaks, the attack recovers the left half of the
secret message. With Õ(Nr/2−0.5) queries, full messages can also be recovered.
For FEA-1, the message-recovery attack can be used to set up a key-recovery
attack. If q is the concrete data cost of the left-half message-recovery attack,
then the key-recovery attack requires less than 16d8/ log2Ne q + 8q data and
time equivalent to at most 269/N + 16d8/ log2Ne q + 8q evaluations of FEA-1.

Table 1 summarizes the cost of the main attacks from the literature and some
of the new attacks proposed in this paper. In addition, the bottom part of the
table reports concrete costs for the smallest instances of FEA-1, FEA-2 (N =
16) and FF3-1 (N = 103). Detailed cost-estimates for previous attacks on the
same instances are not always available, but the improvement is substantial. For
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example, the attacks on FF3-1 with N = 103 require data and time comparable
to previous attacks for N = 25 [4, 15] that led to the requirement N ≥ 103 .
The numbers in Table 1 have been experimentally verified by performing each
attack many times. Source code to reproduce this is provided as supplementary
material1. Further experiments and cost calculations are given in the indicated
sections.

As with previous attacks on tweakable small-domain Feistel ciphers, the max-
imum value of N for which the attacks are applicable is typically determined by
the tweak length rather than by the length of the key. For FEA-1 and FEA-2
the main interest of these attacks is for small N , so the tweak is long enough for
most practical purposes. For FF3-1, the upper bounds are similar to those for
previous attacks: naive estimates are N < 219 for distinguishing and right-half
message-recovery and N < 212 for left-half recovery. The latter bound is quite
close to the required N ≥ 103 for FF3-1, However, as discussed in Section 5, it
is not a hard limit.

Early notification. Prior to the submission of this paper, both NIST (for FF3-1)
and ETRI (for FEA-1 and FEA-2) were notified about these results. Both par-
ties have acknowledged the attacks and have indicated their intention to revise
their standards. Modifying the tweak schedule seems to be the most promising
approach to thwart the attacks.

Organization. After revisiting the overall structure of FEA-1, FEA-2 and FF3-1
in Section 2, the basic idea behind the attacks is introduced in Section 3. It is
shown that there exists a linear trail through FEA-1 (and similarly for FEA-
2) with high correlation. The novelty of this trail is the fact that it requires
considering the tweak as a proper part of the input of the cipher, and its reliance
on the properties of small random functions. An analogous Z/NZ-linear trail is
then obtained for FF3-1. This result is an application of a generalization of linear
cryptanalysis to other finite Abelian groups [3, 6].

Section 4 combines the linear approximations identified in Section 3 to obtain
multidimensional linear approximations. These approximations are subsequently
used to construct a χ2-distinguisher. The formalism of (generalized) multidimen-
sional linear cryptanalysis is applied to justify the attack and to obtain initial es-
timates of the data complexity. Finally, Section 5 shows how the χ2-distinguisher
can be turned into a message-recovery attack. Each attack comes with a detailed
analysis of the advantage and data complexity, and an experimental verification
of the theoretical analysis.

2 Preliminaries
The attacks in this paper are applicable to tweakable small-domain Feistel ci-
phers with alternating round tweaks. The South-Korean format-preserving en-
cryption standards FEA-1 and FEA-2 [16] and the NIST standard FF3-1 [12]
all follow such a design.
1 https://homes.esat.kuleuven.be/~tbeyne/fpe
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Table 1: Summary of attacks on FEA-1, FEA-2 and FF3-1. The costs in the top
half of the table are up to polylogarithmic factors in N (all of which are small
in practice). Time is expressed in encryption operations. Memory requirements
are small for all attacks. All of the message-recovery attacks listed in this table
recover the left half of a message.

Data Time Advantage Reference

Generic

Distinguisher

Nr−4 Nr−3 Constant [10]
Nr−4 Nr−4 Constant [20]

Nr/2−1 Nr/2−1 Constant Section 3†

Nr/2−1.5 Nr/2−1.5 Constant Section 4†

Nr/3−1 Nr/3−1 Constant Section 3‡

Nr/3−1.5 Nr/3−1.5 Constant Section 4‡

Message recovery
Nr−3 Nr−3 Constant [4,15]

Nr/2−1.5 Nr/2−1.5 Constant Section 5†

Nr/3−0.5 Nr/3−0.5 Constant Section 5‡

FEA-1
N = 16, r = 12

Distinguisher
222 222 0.1 Section 3
217 217 0.1 Section 4
222 222 0.6 Section 4

Message recovery 217 217 0.1 Section 5
224 224 0.6 Section 5

FEA-2
N = 16, r = 18

Distinguisher
220 220 0.1 Section 3
217 217 0.1 Section 4
221 221 0.6 Section 4

FF3-1
N = 103, r = 8

Distinguisher
229 229 0.1 Section 3
223 223 0.1 Section 4
226 226 0.6 Section 4

Message recovery 224 224 0.1 Section 5
227 227 0.6 Section 5

† Assuming the round tweaks alternate between two values, as in FEA-1 and FF3-1.
‡ Assuming the round tweaks alternate between three values, as in FEA-2.
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Figure 1 depicts two rounds of the overall structure of FEA-1 and FF3-1. For
simplicity, it will be assumed that both branches have the same size. In both
designs, the tweak is divided into two equal halves, which will be denoted by
TL and TR for convenience. A crucial property that will be exploited by the
new attacks is that the round tweak alternates between TL and TR. The round
functions F1, F2, . . . can nevertheless be arbitrary.

As shown in Figure 1a, FEA-1 is a regular Feistel cipher over Fm2 ⊕ Fm2 with
m = log2N , where ⊕ denotes the direct sum. For 128 bit keys, it has a total of 12
rounds. The tweaks TL and TR consist of 64−m bits. The round functions Fi are
truncations of a two-round SHARK-like construction [21], but can be considered
to be uniform random functions for all attacks discussed in this paper except for
the key-recovery attack in Section 6. The necessary details of the round function
will be reproduced in Section 6.

The design of FEA-2 is very similar to that of FEA-1. The main difference
is that it uses three distinct round tweaks (repeating with period three), one of
which is constant. In addition, for FEA-2, both tweaks have a length of 64 bits
and the number of rounds is 18 for 128 bit keys.

FF3-1 is an eight-round Feistel cipher over Z/NZ⊕ Z/NZ. The round func-
tions F1, F2, . . . are defined as truncations of the AES with the round tweak and
a unique round counter as the input; the details are not important for this work
as these functions will be modelled as uniform random. The tweaks TL and TR
are bitstrings of length 28.

F1

TL

F2

TR

(a) FEA-1.

F1

TL

F2

TR

(b) FF3-1.

Fig. 1: Two rounds of a tweakable Feistel cipher with alternating round tweaks.

Sections 3 and 4 introduce distinguishers for full-round FEA-1, FEA-2 and
FF3-1. The advantage of a distinguisher is equal to the difference between its
success-probability PS and false-positive rate PF and provides a convenient mea-
sure for its statistical quality. The distinguishers discussed in Sections 3 and 4
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allow for a trade-off between success-probability and false-positive rate. Since
they are ultimately simple hypothesis tests, the trade-off is determined by the
choice of some threshold parameter t. The advantage that will be considered in
this paper is thus the maximum achievable advantage for some value of t:

Adv = max
t

|PS(t)− PF(t)|.

For message-recovery attacks, it is also meaningful to define a similar measure
of quality. Given a list of possible messages, one is interested in narrowing it
down to some fraction PF with a given probability PS. Clearly, PF and PS are
dependent quantities. The advantage of a message-recovery attack will be defined
as the maximum achievable value of |PS − PF| for a given amount of data. This
corresponds to the notion of key-recovery advantage that is often used in linear
and differential cryptanalysis [22]. For the attacks in this paper, it also coincides
with the message-recovery advantage defined by Bellare et al. [4]

Concepts related to linear and multidimensional linear cryptanalysis will be
introduced in Sections 3 and 4 respectively.

3 Linear Distinguishers

In this section, linear distinguishers for FEA-1, FEA-2 and FF3-1 are introduced.
Section 3.1 summarizes the main concepts from linear cryptanalysis, but some
familiarity with these ideas is necessarily assumed.

Since the attacks on FEA-1 and FEA-2 are based on ordinary F2-linear crypt-
analysis, these are described first in Section 3.2. Section 3.3 then transfers these
results to Feistel ciphers defined over Z/NZ. Finally, the data complexity of the
attacks is analyzed in detail and verified experimentally in Section 3.4.

3.1 Linear Approximations

Linear cryptanalysis was introduced by Matsui [17] and is based on probabilistic
linear relations or linear approximations, a concept introduced by Tardy-Corfdir
and Gilbert [23]. Let F : Fn2 → Fm2 be a function, possibly depending on a key.
Linear distinguishers are based on linear approximations with large absolute
correlation. A linear approximation for F is defined by a pair of masks (u1, u2) ∈
Fm2 ⊕ Fn2 and its correlation is equal to

CFu1,u2
= 2Pr [u>1 F (x) = u>2 x]− 1 =

1

2n

∑
x∈Fn

2

(−1)u
>
1 F (x)+u>

2 x ,

where the probability is over a uniform random x on Fn2 . If u1 6= 0, then the
correlation for a uniform random function is concentrated around zero with a
standard deviation of 2−n/2. A more detailed result is given in Theorem 3.1 in
Section 3.2 below. Hence, if the correlation c is significantly larger than 2−n/2,
a distinguisher is obtained by estimating the correlation using q = Θ(1/c2)
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queries and comparing the result to some threshold t. As discussed in Section 3.2
below, this description is somewhat simplified since the correlation is usually
key-dependent.

For FF3-1, F2-linear approximations are inconvenient because the FF3-1 Feis-
tel structure operates on the ring Z/NZ⊕ Z/NZ. Instead, Section 3.3 will rely
on a generalization of linear cryptanalysis to arbitrary finite Abelian groups.
Such a generalization was first proposed by Baignères, Stern and Vaudenay [3].
A more general perspective that includes the multidimensional case (which will
be used in Section 4) was introduced in [6].

Let F : G → H be a function between finite Abelian groups G and H. A
linear approximation corresponds to a pair of group characters (ψ1, ψ2) of H and
G respectively. A group character ψ1 is a group homomorphism ψ1 : H → C×.
The characters of H themselves also form a group of order |H| under pointwise
multiplication. The correlation of the linear approximation (ψ1, ψ2) is equal to

CFψ1,ψ2
=

1

|G|
∑
x∈G

ψ1(F (x))ψ2(x) .

In the above, ψ1 denotes the complex-conjugate of ψ1. For H = Fm2 , every
character ψ1 corresponds to a vector u ∈ Fm2 such that ψ1(x) = (−1)u

>x. If
H = Z/NZ, then for each character ψ1, there exists a non-negative integer
k < N such that ψ1(x) = exp(2π

√
−1 kx/N). This essentially covers all cases,

since any finite Abelian group is a direct sum of cyclic groups. An important
property of group characters is that they are orthogonal functions. That is,

∑
x∈G

χ(x)ψ(x) =

{
|G| if χ = ψ,

0 otherwise.

for any two characters χ and ψ of G. Additional background on group characters
and Fourier analysis may be found in [24].

For a sequence of functions F1, . . . , Fl, the piling-up principle can be used
to estimate the correlation of linear approximations over the composition F =
Fl ◦ · · · ◦ F1. The idea is that, for an approximation with characters (ψ1, ψl+1),
there may exist a dominant sequence of approximations (ψ1, ψ2), . . . , (ψl, ψl+1)
such that

CFψ1,ψl+1
≈

l∏
i=1

CFi

ψi,ψi+1
.

The sequence of approximations (ψ1, ψ2), . . . , (ψl, ψl+1) is called a trail and the
right-hand side of the above equation is called the correlation of the trail. The
sum of the correlations of all trails over Fl ◦ · · · ◦F1 equals the correlation of the
approximation (ψ1, ψl+1) of F [8].

3.2 FEA-1 and FEA-2

At first sight, both FEA-1 and FEA-2 seem to be robust against linear cryptanal-
ysis, especially when their round functions F1, F2, . . . are replaced by uniform
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random functions. The key observation behind the attacks in this paper is that
this is not the case when (part of) the tweak is considered as a proper part of
the input.

Figure 2 shows linear trails over two rounds of FEA-1 and three rounds
of FEA-22. In these trails, the tweak TL is an arbitrary constant and TR is
considered to be a variable part of the input. Note that the tweak TR is not active,
so it need not be known to perform the attack. The idea behind these trails is that
the absolute correlation of a linear approximation over round function Fi (chosen
uniformly at random) exceeds 1/

√
N = 2−m/2 with fairly large probability. This

becomes meaningful when the tweak is included in the input, because the domain
of the function which maps the tweak and the plaintext to the ciphertext is large.
Indeed, the correlation of linear approximations over a random function with the
same input size (including TR of length 64−m) as FEA-1 is centered around zero
with a standard deviation of 2−32−m/2. More specifically, we have the following
result.

Theorem 3.1 (Daemen and Rijmen [9]). Let c denote the correlation of
a nontrivial linear approximation for a uniform random function Fn2 → Fm2 .
The random variable 2n−1(c+ 1) is binomially distributed with mean 2n−1 and
variance 2n−2. In particular3, as n→ ∞, the distribution of 2n/2c converges to
the standard normal distribution N (0, 1).

Let r ≥ 2 be an even integer. By the piling-up principle, the correlation of the
r-round trail from Figure 2a is equal to c =

∏r/2
i=1 ci, where ci ∼ N (0, 1/N) holds

asymptotically due to Theorem 3.1. The random variables ci will be assumed to
be independent, which follows for instance from the strong assumption that the
round functions F1, F3 . . . Fr−1 are independent. One can verify that the other
trails through FEA-1 and FF3-1 have negligible correlation.

As mentioned above, the data complexity of a constant-advantage linear dis-
tinguisher based on an approximation with correlation c is Θ(1/c2). In this case,
the correlation varies strongly with the key so this result can not be applied
directly to estimate the data complexity. A commonly used heuristic estimate
is given by 1/Ec2, where Ec2 is the average squared trail correlation for a uni-
form random key. For FEA-1, this yields 1/Ec2 = Nr/2. The data complexity is
analyzed in considerably more detail in Section 3.4.

For FEA-2 with r divisible by three, the expected squared correlation of each
trail is equal to N−2r/3. However, the number of trails for a given choice of input
and output masks is (N−1)r/3−1. Recall that the correlation of a linear approx-
imation is equal to the sum of the correlations over all possible trails. Hence,
since the trails in Figure 2b are indeed dominant, the sum c of the correlations
of these trails is a good estimate for the correlation of the corresponding approx-
imation. Since the covariance between the correlations of distinct trails is zero
for independent uniform random round functions, it follows that

1/Ec2 = N2r/3/(N − 1)r/3−1 ∼ Nr/3+1.

2 I thank Dongyoung Roh for bringing the trails with u 6= v to my attention.
3 This result is a useful approximation even when n is small (for example, when n ≥ 8).
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F1

TL
u 0

0u

0 u

F2
00

TR

u 0

(a) Two-round trail for FEA-1.

F1

0u 0

vu

v u

F2

TL

uv

0 v

F3

TR

00

v 0

(b) Three-round trail for FEA-2.

Fig. 2: Linear trails for FEA-1 and FEA-2. The tweak TR is considered part of
the input and the value of TL should be fixed.

The fact that the covariance terms are zero is somewhat nontrivial, but it can be
easily deduced from the definition of correlation for a uniform random function.
Neglecting the covariance between the correlation of different trails is, in general,
inaccurate. Finally, note that any other trail through FEA-2 necessarily has a
much smaller average squared correlation.

Before continuing with the analysis of FF3-1, a simple but significant im-
provement to the correlation of the aforementioned linear approximation should
be pointed out. If the right part of the plaintext is fixed to an arbitrary con-
stant, then after two rounds the left branch of the state is equal to the left part
of the plaintext up to addition by some constant. Consequently, the first two
rounds can be effectively skipped. This decreases the data complexity by a fac-
tor N to Nr/2−1 for FEA-1. By fixing both halves of the plaintext, the first three
rounds of FEA-2 can similarly be avoided. In addition, since the input mask is
then no longer fixed, the number of trails within one approximation increases to
(N − 1)r/3. Hence, the resulting data complexity estimate becomes Nr/3−1. A
more detailed estimate of the data complexity will be given in Section 3.4.

3.3 FF3-1

The analysis of FF3-1 proceeds analogously to that of FEA-1, but with linear
cryptanalysis over the additive group Z/NZ rather than Fm2 . An iterative two-
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round trail is shown in Figure 3. In the figure, ψ denotes an arbitrary nontrivial
character of Z/NZ and 1 is the trivial character, i.e. 1(x) = 1 for all x ∈ Z/NZ.

In order to characterize the correlation of this trail, an analog of Theorem 3.1
is required. This is provided by Theorem 3.2 below. Recall that a complex-
valued random variable z has a standard complex normal distribution CN (0, 1)
if its real part <{z} ∼ N (0, 1/2) and its imaginary part ={z} ∼ N (0, 1/2) are
independent random variables.

Theorem 3.2. Let G and H be finite Abelian groups and let c denote the correla-
tion of a nontrivial linear approximation for a uniform random function G→ H
corresponding to non-real characters. The correlation c has mean zero and vari-
ance 1/|G|. Furthermore, as |G| → ∞, the distribution of

√
|G| c converges to

the standard complex normal distribution CN (0, 1).

Proof. Recall that a linear approximation corresponds to a pair of group char-
acters (ψ1, ψ2). The random variable c can then be written as

c =
1

|G|

|G|∑
i=1

ψ1(yi)ψ2(xi),

where x1, . . . , x|G| are the elements of G and y1, . . . ,y|G| are independent uni-
form random variables on H. The mean of c is zero, since Eψ1(yi) = 0 by
the orthogonality relations for group characters. In addition, it follows from
E|ψ1(yi)|2 = 1 that E|c|2 = 1/|G|. Finally, the convergence to a normal dis-
tribution follows from the central limit theorem for the sum of independent
identically distributed random variables.

By Theorem 3.2, the average squared correlation of the r-round trail from
Figure 3 is equal to N−r/2. As in the case of FEA-1, the right part of the
plaintext can be fixed in order to obtain a trail with average squared correlation
N1−r/2. This gives a corresponding data complexity estimate of Nr/2−1.

3.4 Cost Analysis and Experimental Verification

As mentioned in Sections 3.2 and 3.3 above, the data complexity of a distin-
guisher based on a linear approximation with correlation c is roughly 1/|c|2.
By heuristically plugging in the average squared trail correlation, the approxi-
mation 1/E|c|2 was obtained. This resulted in an estimated data complexity of
Nr/2−1 for FEA-1 and FF3-1 and Nr/3−1 for FEA-2. This section analyzes the
data complexity in more detail, along with the advantage achieved by the distin-
guisher. Broadly speaking, the detailed analysis confirms the heuristic estimates
from Sections 3.2 and 3.3.

The distinguisher performs a hypothesis test, with null-hypothesis that the
data comes from an ideal tweakable block cipher and alternative hypothesis that
the data comes from the real cipher. If the absolute value of the estimated cor-
relation exceeds a predetermined threshold, then the null-hypothesis is rejected.
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F1

TL
ψ 1

1ψ

1 ψ

F2

TR

11

ψ 1

Fig. 3: Iterative two-round trail for FF3-1. The tweak TL is fixed.

Like any hypothesis test, linear distinguishers allow for a trade-off between suc-
cess probability PS and false-positive rate PF. Both probabilities are determined
by the threshold parameter t. The distinguisher is successful if the estimated cor-
relation exceeds t√q when interacting with the true block cipher after q queries.
If the estimated correlation exceeds this threshold for an ideal tweakable block
cipher, then a false-positive occurs. Note that PS(t) and PF(t) are key-averaged
quantities.

Figure 4 depicts the estimates of the maximum advantage maxt |PS(t)−PF(t)|
which are derived below. Importantly, for large N , the curve is essentially in-
dependent of N . This will be shown below. The red dots correspond to exper-
imental verifications of the estimates for full-round instances of FEA-1, FEA-2
and FF3-1. Each point corresponds to 1024 (FEA-1 and FF3-1) or 512 (FEA-2)
evaluations of the distinguisher. For FF3-1, the experiments were performed for
N = 100 < 1000 to limit the computational cost. The verification of the more
efficient χ2-distinguishers in Section 4 will be performed for N = 1000.

The false-positive rate is easily computed. Assume the correlation is esti-
mated using q independent queries. If the input space is sufficiently large4, then
by Theorems 3.1 and 3.2 the variance of the ideal correlation is negligible. Hence,
if the number of queries q is moderately large, then the estimated correlation ĉideal
is approximately distributed as N (0, 1/q) for FEA-1 and FEA-2 or CN (0, 1/q)
for FF3-1. The false-positive rate is then

PF(t) = Pr [|ĉideal| ≥ t/
√
q] ≈ 1− χν(

√
νt),

where χν is the cumulative distribution function of the χ-distribution with ν
degrees of freedom. For FEA-1 and FEA-2, ν = 1 since c is real. For FF3-1,
ν = 2.

4 Relative compared to the required number of queries q.
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Fig. 4: Theoretical and experimentally observed maximum advantage of the lin-
ear distinguishers for full-round FEA-1, FEA-2 and FF3-1. The error bars cor-
respond to 95% Clopper-Pearson confidence intervals.
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The calculation of the success rate PS is more complicated, because the ab-
solute correlation |creal| is not as strongly concentrated around its mean. Let
ĉreal denote the estimated correlation for a particular choice of the key. If the
underlying correlation for this key is equal to creal, then ĉreal is approximately dis-
tributed as N (creal, 1/q) for FEA-1 and FEA-2 or CN (creal, 1/q) for FF3-1 if q is
large enough and c2real � 1. The average success probability can be approximated
as

PS(t) ≈ E
creal

Pr [|zν − creal
√
q| ≥ t]

where creal is the trail correlation assuming uniform random round functions
and zν a standard (complex if ν = 2) normal random variable. To compute
the average with respect to creal, a Monte-Carlo approach was used. The im-
plementation is provided as supplementary material. Importantly, the success
probability curve (and consequently the maximum advantage) has essentially
the same shape for all sufficiently large values of N . Indeed, by Theorems 3.1
and 3.2, the distribution of the round correlations converges to a (complex)
normal distribution for large N . Hence, for q0 = 1/E|creal|2, the distribution of
creal

√
q0 will be approximately the same for all large values of N . Consequently,

the success probability curves tend to a constant function of q/q0.

4 χ2 Distinguishers

This section introduces additional distinguishers on FEA-1, FEA-2 and FF3-
1, based on Pearson’s χ2-test for goodness-of-fit between distributions. Vaude-
nay [25] proposed χ2-distinguishers as a method for distinguishing non-uniform
distributions in cryptanalysis when precise knowledge about these distributions
is lacking.

The distinguishers in Section 3 are based on individual linear approximations.
A natural improvement to these attacks is to exploit all approximations simulta-
neously. Multidimensional linear cryptanalysis provides a convenient framework
to describe such attacks.

As shown in Section 4.2 below, the existence of a multidimensional linear
approximation implies that a particular probability distribution related to the
ciphertext is highly non-uniform. Pearson’s χ2-test can then be used to verify
this property, resulting in a distinguisher.

Sections 4.1 and 4.2 explain the distinguisher in detail. The data complexity
is estimated and experimentally verified in Section 4.3.

4.1 Multidimensional Linear Approximations

A multidimensional F2-linear approximation can be defined as a collection of
linear approximations such that the set of pairs of input and output masks is a
vector space [13]. This generalizes to arbitrary groups, by requiring that the set
of pairs of input and output characters is a group under pointwise multiplication.
A general description of this approach can be found in [6].

13



To obtain a uniform description of the attacks on FEA-1, FEA-2 and FF3-1,
denote the half-domain by D and the space of tweaks TR by T . The ciphertext
space is then H = D⊕D. The input space G is either D⊕T or T , depending on
whether or not the left half of the plaintext is kept fixed (the right half always
is).

Any character ψ of H ⊕ G uniquely determines a linear approximation of
the cipher. Specifically, the restriction of ψ to H corresponds to the output
character of the approximation, and the restriction to G corresponds to the
complex conjugate of the input character. The need for complex conjugation is
due to technical reasons. Let Z0 be the set of all such characters ψ corresponding
to the linear approximations that were investigated in Section 3. The choice of
notation for Z0 will be motivated in Section 4.2. Concretely, with D̂ the group
of characters of the domain, let

Z0 =


{
ψ : (yL, yR, xL, TR) 7→ χ(xL)χ(yL) | χ ∈ D̂

}
for FEA-1 and FF3-1,{

ψ : (yL, yR, TR) 7→ χ(yL) | χ ∈ D̂
}

for FEA-2.

Note that for all three ciphers, Z0 is a group under pointwise multiplication of
functions. Hence, the collection of these approximations is a multidimensional
linear approximation. Finally, let c : Z0 → C be a function that assigns to a group
character ψ ∈ Z0 the correlation c(ψ) of the corresponding linear approximation.

The data complexity of an optimal distinguisher based on a multidimensional
linear approximation is inversely proportional to the capacity of the approxima-
tion [2], which is defined as the quantity∑

ψ 6=1

|c(ψ)|2,

where the sum is over all nontrivial characters in Z0. However, as pointed out
in Section 3, the correlations c(ψ) are heavily key-dependent and this will affect
the optimal data complexity. Nevertheless, by linearity of expectation, it is easy
to compute the key-averaged capacity:

E
∑
ψ 6=1

|c(ψ)|2 ≈

{
N2−r/2 for FEA-1 and FF3-1,
N2−r/3 for FEA-2.

The above calculation suggests a data complexity of Nr/2−2 for FEA-1 and FF3-
1 and Nr/3−2 for FEA-2. However, as will be shown below, this is somewhat
optimistic because the result that relates the capacity to the data complexity of
an optimal distinguisher assumes that the correlations c(ψ) are known exactly.

The multidimensional linear approximation can be turned into a distin-
guisher by directly estimating the capacity. It will be shown in Section 4.3
that the data complexity of this approach can be heuristically estimated as√
N/

∑
ψ 6=1 E|c(ψ)|2. However, there exists an equivalent but more direct dis-

tinguisher in terms of Pearson’s χ2-statistic.
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4.2 Distinguisher Based on Pearson’s χ2 Statistic

The relation between χ2-distinguishers and multidimensional linear approxima-
tions is due to the link between correlations and the Fourier transformation of
the probability distribution of the active parts of the input and output state. In
particular, the existence of a strong multidimensional approximation can be used
to show that a distribution related to the approximations is highly non-uniform.

Pearson’s χ2-statistic will be used as a measure of goodness-of-fit between
an estimated (empirical) probability distribution p̂ : S → [0, 1] and the uniform
distribution on S. For this particular case, the χ2-statistic with q samples satisfies

χ2/q =M ‖p̂− 1/M‖22,

where ‖ · ‖2 is the Euclidean norm, M = |S| and 1(x) = 1 for all x ∈ S. The
χ2-distinguisher succeeds in identifying the real cipher when the χ2-statistic
exceeds some threshold. Indeed, as q → ∞, the estimated distribution p̂ tends
to the true distribution p and χ2/q tends to M ‖p−1/M‖22. In particular, if the
tested distribution is uniform, then χ2/q tends to zero as q → ∞. Statistical
aspects will be discussed in Section 4.3.

The link between multidimensional linear approximations and probability
distributions is provided by the following result, which generalizes a classical
result for G and H vector spaces over F2 [3, 13]. Below, this result will be used
to show that the existence of large correlations leads to highly non-uniform
distributions.

Theorem 4.1. Let F : G → H be a function between finite Abelian groups G
and H. Let Z be a subgroup of the group H ⊕ G and let Z0 be the group of
characters of H ⊕ G with kernel Z. If x is a uniform random variable on G,
then

Pr [(F (x),x) ≡ z mod Z] =
1

|Z0|
∑
ψ∈Z0

CF
ψH ,ψG

ψ(z) ,

where ψH is the restriction of ψ to H and ψG similarly for G.

Proof. The result is a straightforward consequence of the coordinate-free char-
acterization of multidimensional linear approximations given in [6]. For the sake
of completeness, a self-contained proof is given here. Let S = {(F (x), x) | x ∈ G}
be the graph of F . By the definition of correlation given in Section 3.1,

CF
ψH ,ψG

=
1

|G|
∑
z′∈S

ψ(z′) .

It follows that for any z ∈ H ⊕G,∑
ψ∈Z0

CF
ψH ,ψG

ψ(z) =
1

|G|
∑
z′∈S

∑
ψ∈Z0

ψ(z′)ψ(z) =
1

|G|
∑
z′∈S

∑
ψ∈Z0

ψ(z − z′).
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If z − z′ ∈ Z, then ψ(z − z′) = 1 by the definition of Z0. If z − z′ 6∈ Z, then
there exists some character χ ∈ Z0 such that χ(z − z′) 6= 1. However, since Z0

is a group under pointwise multiplication, we have∑
ψ∈Z0

ψ(z − z′) = χ(z − z′)
∑
ψ∈Z0

ψ(z − z′) .

It follows that ∑
ψ∈Z0

ψ(z − z′) =

{
|Z0| if z − z′ ∈ Z

0 otherwise .

Since z − z′ ∈ Z is equivalent to z ≡ z′ mod Z, the above implies that∑
ψ∈Z0

CF
ψH ,ψG

ψ(z) = |Z0| Pr [(F (x),x) ≡ z mod Z] .

Dividing both sides by |Z0| gives the result.

Theorem 4.1 can be applied to the multidimensional linear approximations
that were discussed in Section 4.1. For FEA-1 and FEA-2, Z can be taken as
the orthogonal complement of the F2-vector space consisting of the masks in the
multidimensional linear approximation. For both FEA-1 and FF3-1, the right
half of the plaintext is fixed and reduction modulo Z corresponds to taking the
difference of the left half of the ciphertext and the plaintext. More explicitly,
if D is the half-domain of the cipher and T the space of half-tweaks TR, then
H = D ⊕D, G = D ⊕ T and

Z = {(yL, yR, xL, TR) ∈ D ⊕D ⊕D ⊕ T | yL − xL = 0}.

For FEA-2, the full plaintext will be fixed, so G = T . Consequently, reduction
modulo Z will amount to truncating the ciphertext to its left half.

As in Section 4.1, let c(ψ) denote the correlation of the approximation cor-
responding to ψ ∈ Z0. For all three ciphers, Theorem 4.1 then shows that

Pr [(F (x),x) ≡ z mod Z] =
1

|Z0|
∑
ψ∈Z0

c(ψ)ψ(z) ,

where x is uniform random on the input domain (which includes half of the
tweak) and F is the mapping to the ciphertext. In fact, the right hand side
above is the inverse Fourier transformation of the function ψ 7→ c(ψ) [24].

A χ2-distinguisher can now be set up based on the non-uniformity of (F (x),x)
modulo Z. Denote the probability mass functions of this random variable by p(z)
and denote the size of its domain by M = |G|/|Z| = |Z0|. As the number of
queries q increases, the empirical distribution approaches p and the χ2/q statistic
approaches the value

M ‖p− 1/M‖22 = ‖c− δ1‖22 =
∑
ψ 6=1

|c(ψ)|2 . (†)

16



The first equality above follows from the fact that characters are orthogonal
functions (as noted in Section 3.1) and is also known as Parseval’s theorem [24].
This shows that the χ2-statistic can be interpreted as an alternative method to
estimate the sum of the squared correlations |c(ψ)|2 for ψ ∈ Z0 with ψ 6= 1. As
discussed in the next section, this result suggests that the data complexity of
the χ2-distinguisher can be heuristically estimated as

√
M/

∑
ψ 6=1 E|c(ψ)|2 with

c(ψ) the correlation c(ψ) for a uniform random key and M = N for the choices
of Z discussed above.

Using the estimates of
∑
ψ 6=1 E|c(ψ)|2 from Section 4.1, the data complex-

ity of the χ2-distinguishers for r-round FEA-1 and FF3-1 can be estimated as
Nr/2−1.5. For FEA-2, the data complexity estimate becomes Nr/3−1.5. This is
a significant improvement over the linear attacks from Section 3. Furthermore,
by considering smaller choices of the group Z, it is still possible to set up χ2-
distinguishers even if only part of the ciphertext is available.

4.3 Cost Analysis and Experimental Verification

As in Section 4.2, consider the χ2-statistic for the empirical probability distri-
bution of (F (x),x) modulo Z, where x is a uniform random input (consisting
of the tweak TR and possibly the right half of the plaintext). Before going into
detailed calculations of the advantage of the distinguisher, the heuristic estimate
that was used in the previous section will be derived.

Let χ2
ideal be the χ2-statistic when the true distribution is uniform random.

This is a good model for the distribution that would be observed for an ideal
tweakable block cipher. Likewise, denote the χ2-statistic for the real cipher by
χ2

real. It is well known that χ2
ideal follows a χ2 distribution with N − 1 degrees of

freedom when the number of queries q is sufficiently large. Hence, Eχ2
ideal = N−1.

For χ2
real, taking the Fourier transformation (as in (†)) yields

Eχ2
real = q

∑
ψ 6=1

E |ĉ(ψ)|2

where the average is taken with respect to a uniform random key and the random
empirical correlations ĉ(ψ) based on q samples. The expected value of |ĉ(ψ)|2
for a fixed key is approximately equal to |c(ψ)|2 + 1/q when |c(ψ)|2 is negligible
compared to one. For a uniform random key, the true correlation c(ψ) is itself a
random variable and hence

Eχ2
real ≈ N − 1 + q

∑
ψ 6=1

E |c(ψ)|2 ≈ Eχ2
ideal + q

∑
ψ 6=1

E |c(ψ)|2 .

To obtain a low false-positive rate, the decision threshold t should be larger
than the standard deviation of χ2

ideal. That is, t ≥
√
2(N − 1). Hence, a constant

advantage can be expected when Eχ2
real − Eχ2

ideal �
√
N . That is,

q �
√
N
/∑

ψ 6=1 E|c(ψ)|2 .
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Since the main purpose of this section is to obtain accurate estimates of the
advantage for concrete values of N , the above heuristic reasoning will not be
formalized here.

It is relatively easy to estimate the average false-positive rate PF(t) of the
χ2-distinguisher. Indeed, as mentioned above, the statistic χ2

ideal follows a χ2

distribution with N − 1 degrees of freedom when the number of queries q is
sufficiently large. Consequently,

PF(t) = Pr [χ2
ideal ≥ t] ≈ 1− χ2

N−1(t).

The average success-probability PS(t) is significantly harder to compute. If
χ2

real denotes the χ2-statistic for a random sample and a random key, then

PS(t) = Pr [χ2
real ≥ t].

To accurately estimate this probability, a Monte-Carlo approach was used to
sample from χ2

real. Sampling from the correlation distribution can be done effi-
ciently, provided that the piling-up approximation is used. A detailed exposition
of the sampling strategy is beyond the goals of this paper, but an implementation
is provided as supplementary material.

Figure 5 shows the estimated maximum achievable advantage for the χ2-
distinguishers for full-round FEA-1 and FEA-2 with N = 16 and FF3-1 with
N = 1000. The red dots correspond to experimental verifications of the advan-
tage by performing each attack 512 times. These figures confirm the rough data
complexity estimate of Nr/2−1.5.

5 Message Recovery Attacks

In this section, it is shown how the χ2-distinguishers from Section 4 can be
turned into message-recovery attacks. These attacks should be situated in the
message-recovery security model of Bellare et al. [4]. Informally, this model as-
sumes that the adversary is allowed to (non-adaptively) query the encryption of
many distinct tweak-message pairs related to a secret message. The distinctness
requirement is sufficient to ensure that a trivial guessing attack cannot achieve
a nontrivial advantage.

Section 5.1 shows how the left-half of a message encrypted using FEA-1
or FF3-1 can be recovered. The assumptions of the attack are very similar to
previous work: the attacker is given the encryption of a target message and
a second message with the same right half under many tweaks. Contrary to
previous work [4,15], it is not necessary that both messages are encrypted under
exactly the same set of tweaks. Instead, part of each tweak (TL) must be constant.
The data complexity of the attack is computed and experimentally verified in
Section 5.2.

With more data, it is also possible to recover the right half of messages. This
is discussed in Section 5.3. When combined with the left-half recovery attack,
this results in recovery of entire messages. The same idea is used to extend the
attacks to FEA-2.

18



-6 -4 -2 0 2 4 6 8 10 12
0.00

0.20

0.40

0.60

0.80

1.00

Relative data [log2 q/N4.5]

A
dv

an
ta

ge

Maximum advantage of χ2 distinguisher
FEA-1 with N = 16 and r = 12

-6 -4 -2 0 2 4 6 8 10 12
0.00

0.20

0.40

0.60

0.80

1.00

Relative data [log2 q/N4.5]

A
dv

an
ta

ge

FEA-2 with N = 16 and r = 18

−6 −4 −2 0 2 4 6 8 10 12
0.00

0.20

0.40

0.60

0.80

1.00

Relative data [log2 q/N2.5]

A
dv

an
ta

ge

FF3-1 with N = 1000 and r = 8

Fig. 5: Theoretical and experimental maximum advantage of the χ2-
distinguishers for full-round FEA-1, FEA-2 and FF3-1. The error bars corre-
spond to 95% Clopper-Pearson confidence intervals.
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5.1 Left-Half Recovery for FEA-1 and FF3-1

Consider FEA-1 or FF3-1 with a fixed plaintext input. In this scenario, the χ2-
distinguisher from Section 4.2 is still applicable by using only the left part of the
output. That is, Z = {(yL, yR, TR) ∈ D ⊕D ⊕ T | yL = 0}. The capacity of this
multidimensional approximation is the same as before.

The idea behind the message-recovery attack is that a change in the plaintext
affects the distribution of the left half of the ciphertext (for uniform random
tweaks TR) in a predictable way. Let c1(ψ) denote the correlation of the linear
approximation corresponding to the character ψ when the plaintext is fixed to
(xL, xR). Similarly, denote the correlation for a second plaintext (x′L, xR) by
c2(ψ). Following the piling-up principle, c1(ψ) and c2(ψ) are well-approximated
by the correlations of the trails given in Section 3. The two considered functions
are the same up to the subtraction of a constant ∆ = xL− x′L in the first round
of the trail (the third round of the cipher). Hence,

c2(ψ) ≈ ψD(∆)c1(ψ)

with ψD the restriction of ψ to the half-domain D. This approximation is highly
accurate in practice, since the trails in Figures 2a and 3 are strongly dominant.
Denote the probability distribution of the left half of the ciphertext in the first
and second case by p1 and p2 respectively. Theorem 4.1 implies that

p2(yL) =
1

N

∑
ψ∈Z0

c2(ψ)ψ(yL) ≈
ψD(∆)

N

∑
ψ∈Z0

c1(ψ)ψ(yL) = p1(yL +∆) .

In other words, the distributions p1 and p2 are (nearly) shifted over a distance
∆. It should be emphasized that this is a property of the ciphertext distributions
and not of individual ciphertexts. As shown in Section 4.2, the distributions p1
and p2 are highly non-uniform. This is what makes it possible to recover ∆.

The message-recovery attack begins by estimating the probability distribu-
tion (for uniform random tweaks TR) of the left half of the ciphertext twice: once
for the secret plaintext (xL, xR) with fixed tweak TL, and once for an arbitrary
message (x′L, xR) with the same right half and for the same fixed tweak TL.
Next, for each candidate value ∆g for ∆, compute the statistic

r(∆g) = qN/4 ‖p̂1 − p̂g‖22,

where p̂g(yL) = p̂2(yL − ∆g) with p̂1 and p̂2 the empirical estimates of p1 and
p2 based on q/2 samples each. The statistics r(∆g) with ∆g ∈ D can then be
ranked in ascending order. If the number of samples used to obtain the empirical
distributions is large enough, the values of ∆g corresponding to the top of the
list are likely to be good candidates for ∆.

5.2 Cost Analysis and Experimental Verification

The data complexity of the message-recovery attack can be estimated using a
heuristic argument similar to the one that was used for the χ2-distinguisher in
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Section 4.2. For a random sample, the statistic r(∆g) satisfies

r(∆g) =
q

4

∑
ψ 6=1

|ĉ1(ψ)− ψD(∆g)ĉ2(ψ)|2,

where ĉ1(ψ) and ĉ2(ψ) are the empirical correlations and the sum is over all
nontrivial ψ ∈ Z0. When the fixed-key correlation |ci(ψ)|2 is small, averaging
over the sample gives E|ĉi(ψ)|2 ≈ |ci(ψ)|2 + 2/q. Hence, the average of r(∆g)
over the sample and over a uniform random key is equal to

E r(∆g) =
q

4

∑
ψ 6=1

E
(
|ĉ1(ψ)|2 + |ĉ2(ψ)|2 − 2<

{
ψD(∆g) ĉ1(ψ)ĉ2(ψ)

})

≈ q

4

∑
ψ 6=1

(
4

q
+ E|c1(ψ)|2 + E|c2(ψ)|2

)
− q

2
<
{ ∑
ψ 6=1

ψD(∆g)Ec1(ψ)c2(ψ)
}

≈ N − 1 +
q

2

∑
ψ 6=1

E|c1(ψ)|2 −
q

2

∑
ψ 6=1

<
{
ψD(∆−∆g)

}
E|c1(ψ)|2 .

where the third step follows from c2(ψ) ≈ ψD(∆)c1(ψ). In fact, E|c1(ψ)|2 is
nearly constant in ψ. If ∆g 6= ∆, then

∑
ψ 6=1 ψD(∆ −∆g) = −1 and it follows

that
E r(∆g)− E r(∆) ≈ q

∑
ψ 6=1

E|c1(ψ)|2 .

In particular, if q �
√
N/

∑
ψ 6=1 E|c1(ψ)|2, then E r(∆g)−E r(∆) �

√
N . This

is sufficient to obtain a constant advantage since the standard deviation of r(∆g)

is of the order
√
N . This can be motivated by noting that, for a uniform output

distribution, the distribution of r(∆g) would be asymptotically χ2 with N − 1

degrees of freedom. Hence, Õ(Nr/2−1.5) data should suffice to obtain a constant
message-recovery advantage.

No attempt will be made here to make the above argument rigorous. Instead,
accurate estimates of the message-recovery advantage for specific values of N can
be computed using a Monte-Carlo approach. The main ingredient is a method to
sample from the correlation distributions, which is identical to the one used for
the calculations in Section 4.3. Results for full-round FEA-1 with N = 16 and
FF3-1 with N = 1000 are shown in Figure 6, along with experimental estimates
of the advantage.

Observe that for FF3-1 with q = 4×b2N2.5e ≈ 228, the theoretical advantage
is an overestimate. This is due to the fact that only 228 data is available for a fixed
choice of the plaintext and tweak TL. Once the variations in the ideal distribution
(which was assumed to be uniform in the analysis) are of the same order as the
sampling error, the advantage begins to flatten off. However, this does not imply
that the advantage of the FF3-1 message-recovery attack cannot be made close
to one. Indeed, one can simply perform the attack for a different choice of TL. Of
course, for even larger N , the maximum advantage that can be achieved using
one choice of TL decreases and the attack eventually becomes infeasible. Based
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on the estimated data complexity of the attack and Figure 6, this is expected
to occur for N > 212. The right-half recovery attack from Section 5.3 avoids
this problem and can be used for all N < 219, but it has a higher overall data
complexity.

5.3 Right-Half Recovery and Application to FEA-2

The left-half recovery attack on FEA-1 and FF3-1 could also be applied for two
messages (xL, xR) and (x′L, x

′
R) with xR 6= x′R. However, the recovered difference

would then be ∆ = xL − x′L + F1(xR)− F1(x
′
R). If xL − x′L is known, then the

adversary can recover ∆ to obtain the difference F1(xR)−F1(x
′
R). This is useful

because it leads to a right-half recovery attack. In addition, the output differences
will be directly used in the key-recovery attack on FEA-1 that is described in
Section 6. It is also possible to apply the same attack with a different choice
of Z that includes the left half of the plaintext. In this case, the recovered
difference would simply be F1(xR) − F1(x

′
R) due to reduction modulo Z. The

main advantage of this approach is that it increases the amount of available data
per choice of the right half by a factor of N . This extends the reach of the attack
to N < 219, compared to N < 212 for left-half recovery.

The right-half can be recovered by guessing x′R until the recovered differ-
ence is zero. This does not violate the distinctness requirement of the message-
recovery framework, since the tweaks TR and the left halves of the guessed mes-
sages can be different from those of the secret message. The attack proceeds by
computing the statistics r(0) from Section 5.1 with p̂1 the empirical distribution
for the secret message and p̂2 the empirical distribution with right-half guess x′R.
If these statistics are ranked in ascending order, the values of x′R corresponding
to the top of the list are the most promising candidates for xR. By the analysis in
Section 5.2, this attack requires Õ(Nr/2−0.5) data. A simulation of the maximum
advantage is shown in the bottom of Figure 6, along with experimental results.
Note that the error bars are wider than for the left-half recovery experiments
because each data point was estimated using only 40 runs of the attack (to limit
the time complexity of the experiment).

The same idea as above can be used to extend the message-recovery attack
to FEA-2. For example, consider left-half recovery. In this case, the adversary
queries the encryption of the secret message (xL, xR) under many tweaks with
constant TL. In addition, for each guess of x′L, similar queries are made for
(x′L, xR). The same process as above can be used to identify the values of xL for
which

F2(xL + F1(xR)) + xR = F2(x
′
L + F1(xR)) + xR .

However, there is an additional issue that must be addressed: since the approx-
imation shown in Figure 2b does not have equal input and output masks, the
effect of changing the plaintext input on the correlations is more complicated.
Nevertheless, one can still use the same approach (with roughly the same data
complexity) to check for equality between the two output distributions.
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Fig. 6: Theoretical and experimental maximum advantage of the message-
recovery attacks for full-round FEA-1 and FF3-1. The error bars correspond to
95% Clopper-Pearson confidence intervals. The dashed vertical line corresponds
to a data complexity of 2× 228.
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6 Key-Recovery Attack on FEA-1

This section shows how the left-half message-recovery attack on FEA-1 from
Section 5.1 can be used for key-recovery. Naturally, the attack heavily depends
on the internal details of the round function F1. For FF3-1, key-recovery is not
feasible since the round functions are truncations of the AES.

The FEA-1 round function is illustrated in Figure 7. It consists of two it-
erations of a key-addition layer, an S-box layer and a linear layer with branch
number nine. Each of these layers acts on a state in a vector space F8

28 . The
round keys will be denoted by Ka and Kb. The round function F1 is defined as
the truncation of this structure to m bits.

The exact choice of the matrix representation M of the linear layer is not
important. The only property of M that will be used is the fact that it has
branch number nine (equivalently, is MDS). The S-box is based on inversion
in F28 , but the details are not important. However, it is important that for all
nonzero ∆1 and ∆2, the equation S(x + ∆1) = S(x) + ∆2 has either no, two
or four solutions in x. For each ∆1 6= 0, the case with four solutions occurs for
exactly one choice of ∆2.

Ka

M

Kb y

M

S S

S S

S S

S S

S S

S S

S S

S S
P

TL

F1(P )

Fig. 7: Round function of FEA-1 with round keys Ka and Kb.

Recall from Section 5.3 that it is possible to recover output differences F1(P )+
F1(P

′) for an arbitrary choice of P and P ′. The idea behind the key-recovery
attack is to guess parts of the internal state of the round function and to check
the validity of these guesses using such output differences. After recovering the
relevant parts of the internal state, the round keys can be recovered.

Let x denote the first byte of the round function input P‖TL. Observe that
byte i of the internal state y (indicated in Figure 7) can be written as

yi = S(γi +Mi,1 S(Ka,1 + x)) ,

where γ1, . . . , γ8 ∈ F28 are constants depending on the round keys Ka and Kb

(but not on the first byte Ka,1) and on the tweak TL. Importantly, γ1, . . . , γ8 do
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not depend on x. Specifically,

γi = Kb,i +

8∑
j=2

Mi,jS([P‖TL]j +Ka,j) .

In Section 6.1, it will be shown how Ka,1 and γi can be recovered using a limited
number of output differences. Section 6.2 then shows how the entire round keys
Ka and Kb can be extracted from these constants and a few additional output
differences.

6.1 Recovering Ka,1 and the Internal Constants γi

It is clear from Figure 7 that the output difference is a linear function of the
difference between the internal states y and y′ (corresponding to two inputs x
and x′). Furthermore, since M is an invertible matrix, this function is of rank
m. Hence, y + y′ can take 264−m = 264/N possible values. By computing an
echelon form for the linear function that maps y + y′ to the output difference,
these candidate solutions can easily be enumerated. For each guess of y+y′, one
obtains the values

yi + y′i = S(γi +Mi,1S(Ka,1 + x)) + S(γi +Mi,1S(Ka,1 + x′)) .

For each i = 1, . . . , 8, one can determine the set of possible input differences
S(Ka,1+x)+S(Ka,1+x

′) that can lead to the known difference yi+y′i 6= 0. Due
the properties of S, there are 127 possible input differences. Hence, each i reduces
the number of candidate differences by a factor 127/255 < 1/2. It follows that
the difference S(Ka,1 + x)+S(Ka,1 + x′) can be uniquely determined. However,
since the difference x + x′ is known, two candidates for Ka,1 can be computed
from the difference equation. The case with four solutions is unlikely to occur
and does not significantly affect the overall time and data complexity of the
attack.

Once Ka,1 has been determined (as one of two possible values), the constants
γi can also be obtained by solving a difference equation. In particular, since the
case with four solutions is rare, one usually ends up with two candidates for each
γi. To check the validity of these candidates, additional output differences will
be used. To save data, one of x or x′ can be reused. For each of the 29 candidate
values, the expected output difference should then be computed and compared
to the observed difference. This requires roughly 212 S-box evaluations. If the
candidate values are wrong, the output difference will match in roughly 1/N of
the cases. Hence, the computational cost is dominated by the calculation of the
expected output difference for the first pair.

The total number of candidates for the difference y+y′, the internal constants
and the first byte of Ka is 264+9/N = 273/N . Hence, d73/m − 1e pairs are
sufficient to obtain a unique solution. For m = 4, the number of available input
differences is too small to obtain a unique candidate. However, this is not a major
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issue since the time complexity of the round key recovery procedure described
in Section 6.2 is small enough that it can be repeated several times.

The data complexity of the above process is (d73/m − 1e + 1)q/2 queries,
where q is the data complexity of the left-half message-recovery attack. This
comes with an equal computational cost, measured in FEA-1 evaluations. The
remaining computational cost is dominated by 264+12/N S-box evaluations. Since
the cipher contains 12 × 16 S-boxes, one can conservatively estimate that this
takes less time than 268/N evaluations of full-round FEA-1.

6.2 Recovering the Round Keys
Once the constants γ1, . . . , γ8 have been recovered, obtaining the round keys Ka

and Kb is relatively easy. In particular, recall that

γi = Kb,i +

8∑
j=2

Mi,jS([P‖TL]j +Ka,j) .

Suppose P‖TL and P ′‖T ′
L differ only in byte j ∈ {2, . . . , 8} and let γ′i be the

new value of γi for input P ′‖T ′
L. It is easy to see that

γi + γ′i =Mi,jS([P‖TL]j +Ka,j) +Mi,jS([P
′‖T ′

L]j +Ka,j) .

Hence, after guessing Ka,j , one can compute the new constants γ′i and the ex-
pected output differences for pairs with tweak T ′

L. To obtain a unique (up to
a constant) candidate for Ka,j , a total of d8/me differences are sufficient. Re-
covering all of the bytes of Ka thus requires 7 × d8/me differences. Once Ka is
recovered, Kb can be computed directly.

To conclude, the data complexity of this step is 7q/2×(d8/me+1) with q the
data complexity of the left-half message-recovery attack. A few additional pairs
will be required to filter spurious candidates for Ka,j , or if no unique solution for
the constants γ1, . . . , γ8 was obtained in the first step of the attack (m = 4). The
time complexity, excluding the time required for message-recovery, is negligible
compared to that of the first step.

6.3 Recovering All Round Keys
By the results in Sections 6.1 and 6.2, the round keys Ka and Kb of the first
round function can be recovered using at most d73/m−1e+7d8/me ≤ 16d8/me
evaluations of the left-half message-recovery attack and additional time equiva-
lent to at most 268/N FEA-1 evaluations. If q is the amount of data required for
the left-half recovery attack, this amounts to a total of less than 8d8/meq + 4q
queries. However, the FEA-1 key-schedule is a Lai-Massey structure that gener-
ates two round keys per iteration. Hence, the remaining round keys can not be
obtained by iterating the key-schedule without knowing the round keys for the
second round. To obtain these keys, it suffices to perform the same key-recovery
attack on F2. Hence, the total cost is less than 16d8/ log2Neq + 8q data for
left-half recoveries and additional time equivalent to less than 269/N evaluations
of FEA-1.
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7 Conclusion

It was shown that the format-preserving encryption standards FF3-1, FEA-1 and
FEA-2 are all vulnerable to linear cryptanalysis. More generally, the analysis in
this paper is applicable to any small-domain Feistel cipher with alternating round
tweaks.

The attacks rely on the ability to vary the tweaks in even-numbered rounds
(FF3-1 and FEA-1) or rounds numbered by a multiple of three (FEA-2), while
keeping the tweaks in the other rounds fixed. Combined with the observation
that the variance of the correlation of a nontrivial linear approximation over a
small random function is quite large, this results in strong linear trails through
the cipher. The analysis of FF3-1 is also of theoretical interest as an application
of the theory of linear cryptanalysis over the group Z/NZ.

The data requirements of the basic linear distinguishers were reduced us-
ing multidimensional linear cryptanalysis. Based on the same principle, efficient
message-recovery attacks were obtained. For FEA-1, the message-recovery attack
was in turn extended to a key-recovery attack.

For many instances of FF3-1, FEA-1 and FEA-2, the data requirements of
the new attacks are small enough to be a practical concern for users of these
standards.
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