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Abstract
We study the problem of privacy-preserving approximate kNN search in an outsourced en-

vironment — the client sends the encrypted data to an untrusted server and later can perform
secure approximate kNN search and updates. We design a security model and propose a generic
construction based on locality-sensitive hashing, symmetric encryption, and an oblivious map.
The construction provides very strong security guarantees, not only hiding the information about
the data, but also the access, query, and volume patterns. We implement, evaluate efficiency,
and compare the performance of two concrete schemes based on an oblivious AVL tree and an
oblivious BSkiplist.

1 Introduction

Background and Motivation. The k-nearest-neighbor (kNN) search problem is defined as
follows: given a dataset D of points in a metric space S and a query point q ∈ S, find the top k
nearest neighbors to q. kNN is used in computer vision and serves as a basic yet very effective
machine learning classification technique, where it is commonly used to classify a point based on
the consensus of its neighbors. The numerous applications include content-based image search,
automated face recognition in video surveillance, stock market predictions, medical diagnoses,
risk assessment, and credit card fraud detection.

While the existing kNN algorithms are not efficient for dense high-dimensional data used by
many applications, one approach to deal with kNN’s inefficiency is to use a different problem,
known as the approximate kNN. It asks to return points whose distance from the query is no
more than (1 + ε) times the distance of the true k-th nearest-neighbor, and this can be done only
with high probability. Approximate kNN (AkNN) is appropriate for many applications that can
sacrifice some precision for efficiency.

Nowadays, it is extremely common to outsource data storage, management, and search func-
tionality to a cloud. For the kNN or AkNN search this means that the client’s dataset D is
outsourced to a cloud server that answers the client’s kNN (AkNN) queries. If the data is sen-
sitive and the server is untrusted or subject to compromise, it is desirable for the server to be
able to perform the search on encrypted data without knowing the secret key of the client and
learning anything about the client’s data and queries.

Our Goal. We (quite ambitiously) aim to build a practical searchable encryption scheme for
approximate kNN queries that provides very strong security: in addition to provably hiding
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information about the data and the queries, we also aim to hide the access, query equality and
volume patterns, as such information, if leaked, can give rise to attacks. We want our protocol to
yield working solutions for privacy-preserving data classification and search by classifiers (labels).
We want to avoid relying on multiple non-colluding servers or secure hardware, as these are hard
to ensure in practice.

Prior Work and its Limitations. Searchable encryption (SE) is a hot topic in cryptography
that seeks protocols permitting efficient search on outsourced encrypted data. While most solu-
tions focus on the basic query types such as exact match and range queries, in recent years, there
is a rise of interest in SE schemes for kNN queries, e.g., [ESJ14, CSTX15, PLC+18, WCKM09,
YLX13]. However, there are still no solutions for kNN or AkNN search providing strong security
guarantees. Even when papers provide formal security notions and proofs of security for their
schemes, still the problem is that any practical SE incurs security/efficiency/functionality trade-
offs, and there is no acceptable balance reached for SE for kNN. The ciphertexts of proposed
efficient solutions leak distance and/or closeness pattern between data points for functionality
and efficiency.

Recent works by Kornaropoulos et al. [KPTa, KPTb] presented efficient attacks on SE for kNN
queries with such seemingly minimal leakage. More precisely, they show how to attack SE schemes
only leaking which k encrypted records are retrieved for a kNN query. While their attacks are for
one-dimensional data, the authors argued how the attack also applies to high-dimensional data.
The problem with SE that permits such attacks is the access pattern leakage (revealing which
encrypted points are queried). An even more recent work by Grubbs et al. [GLMPb] observes
the relationship between the problem of reconstructing encrypted databases from access pattern
leakage and statistical learning theory. This observation allowed the authors to mount effective
nearly-optimal approximate database reconstruction attacks for richer queries such as range, prefix
and suffix type queries, and could apply to kNN queries. These attack results make a very strong
case for targeting SE schemes that hide the access pattern. There are works [ESJ14, SEJ15] that
target public-key SE for kNN that hides the access pattern, but they require the dataset to be
split among two non-colluding cloud servers.

We note that practical SE that hides the access pattern is still a big open problem even for
basic query types such as exact-match. A known theoretical approach to ensure access pattern
security for SE schemes is to utilize the Oblivious RAM (ORAM) tool. However, this approach is
not very efficient since ORAM incurs heavy computational and communication costs. Moreover,
as was shown by Naveed in [Nav15], using ORAM to hide the access pattern in SE schemes
for exact match is more expensive (bandwidth-wise) than the straightforward solution where the
server sends the whole encrypted database to the client as a query response.

Kamara et al. [KMO] show how to compile an SE (or encrypted search index) for document
identifiers, such as the classical symmetric SE scheme by Curtmola et al. [CGKO], in order to
suppress leakage of the query equality pattern, namely, of which queries are equal. Their solution
could be combined with the ORAM-based stage for retrieving the documents for given identifiers,
so that no access pattern is leaked. The main problem with this approach is efficiency: there
are no implementations of the compiler and efficient ones seem currently out of reach, plus the
aforementioned negative result of Naveed [Nav15] implies that the solution cannot be reasonable
communication-wise. Moreover, the solution only provides a static scheme without the possibility
of updates.

The Oblix system by Mishra et al. [MPC+18] presents a dynamic encrypted search index that
hides the access pattern, but it relies on secure hardware such as Intel’s SGX.

To make the situation more challenging, Grubbs et al. [GLMPa] present attacks that apply
even to schemes hiding the access pattern and use only the volume of responses to reconstruct
databases. Their attacks are for the case of range queries, but there is no good reason to assume
they cannot be extended to the case of other queries.

Our Approach. Our first observation is that the negative results of [Nav15] consider the worst
case when a keyword in an exact-match query matches almost all documents in the database.
However, for the case of AkNN queries, we can stop after k matches are found. This fact makes
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the use of ORAM-like solutions promising for our application.
To construct a secure AkNN protocol, we first study the existing approaches to solve AkNN

for non-sensitive unencrypted data. Since the naive approach of comparing the pairwise distances
between the query and data points is not feasible for large databases, it is common to use locality-
sensitive hashes (LSH). LSH encode partial information of locality: the closer the data, the more
likely that their hashes collide. Usually, an extended LSH (eLSH) is used. Each eLSH application
yields multiple outputs (tags). If at least one tag overlaps between the hashes of the query and
the data, the points are close with high probability.

It is known how to use eLSH to solve a decisional approximate near neighbor problem [HPIM12],
and how a solution to this problem can be used to solve AkNN [GIM99]. We can build on these
works, but we design our own eLSH parameter selection since prior works suggest setting up the
eLSH parameters empirically, but this approach does not guarantee either the correctness or the
upper-bound on the size of returned results. We, on the other hand, aim at having a protocol for
which we can assess concrete correctness. Moreover, not having a bound on the returned results
prevents us from efficiently using oblivious data structures.

Now, to add security, we employ oblivious data structures (ODS) [Mic, WNL+]. ODS is an
abstraction of data structures that support oblivious access: one can retrieve and update the
data, while the data, physical addresses of the components of the data structure, and the type
of operation stay hidden. (One can view ORAM as ODS of an encrypted array.) We will utilize
oblivious maps to enable secure search on eLSH tags.

Wang et al.’s ODS framework [WNL+] was inspired by Gentry et al.’s approach in optimizing
the tree-based ORAMs for binary search [GGH+]. Their ODS framework utilizes tree-based
ORAM (e.g., Path ORAM [SvDS+]) as a building block and supports any tree structure with
bounded degrees. Using trees with bounded degrees is important for efficiency and this is a good
match for us since we select parameters so that the number of returned results for each query is
bounded. One could not use the same approach for regular keyword search.

We note that instead of ODS one could use searchable encryption for disjunctive exact-match
keyword search, where eLSH tags would serve as keywords. However, there is no immediate
choice of SE for disjunctive keyword search because there are no efficient solutions that hide the
access (or query or volume) pattern. Encrypted multi-maps [KM] can also be used to implement
response-hiding secure keyword search, hiding the volume pattern while revealing the query-
equality pattern. As we mentioned, the approach to suppress the query-equality pattern using
structured encryption with leakage suppression [KMO] is neither efficient nor dynamic.

Our contributions. We first define the syntax for a privacy-preserving AkNN (PP-AkNN)
protocol, its correctness and security. Both definitions are inspired by the general definitions for
structured encryption with leakage suppression by Kamara et al. [KMO], but we simplify and
customize them for our specific AkNN query type. The security definition is simulation-based.
It asks that the protocol could be simulated without the data or secret key and just from the
outputs of the leakage function, if any. This captures the intuition that no information other than
some possible leakage is revealed by the protocol. As common for the ODS protocols including
ORAM, we only treat honest-but-curious adversaries and leave treatments of active adversaries
for future work.

Next, we present our generic construction that combines the aforementioned eLSH-based al-
gorithm to solve AkNN, an oblivious map with encryption (OMapE) and the parameters selection
that enables concrete correctness assessment. (Unlike most cryptographic schemes, assessing the
correctness of our protocol is not straightforward.)

We define a new adaptive security definition for OMapE, addressing the previously omitted
data privacy in oblivious map definition. We prove that our generic protocol meets our security
definition assuming the building block OMapE is adaptively secure. The only leakage our generic
protocol incurs in addition to the leakage of the specific OMapE instantiation (specified below)
is the (constant) numbers of data accesses for search and update queries. Despite this minimal
leakage, which is independent of the data, our PP-AkNN scheme hides the query-equality pattern
for both search and update queries, the volume pattern (since each query yields a constant number
of data accesses), and the access pattern. It also hides the operation type of the update query —
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whether it is an add or a remove operation.
It remains to specify particular OMapE constructions one can rely on. We combine a standard

IND-CPA symmetric encryption scheme and an oblivious map candidate, either an AVL tree
[WNL+] or a BSkiplist [RAC16]. AVL tree is a self-balancing tree that directly yields an efficient
map structure; BSkiplist is a B-tree variant of standard skiplist; both can be used to construct
an efficient map.

Both candidates we use are built using a non-recursive position-based ORAM, such as PathO-
RAM. Assuming “adaptive obliviousness” and data privacy held by the underlying ORAM with
encrypted blocks, the total leakage of the OMapE comprises the number of nodes (blocks) in the
tree, the node (block) size, the bucket size, the tree height, and the branching factor — for AVL
tree-based instantiation, the branching factor is 2.

With respect to PP-AkNN, these translate to very small leakage independent of the data
content: the number of items stored in the database and public parameters used to initialize the
structure.

We are interested in comparing the performance of the two to see whether they are feasible for
practice. The authors of [WNL+] initially provided no implementations, but recently they made
the oblivious AVL tree implementation available. For BSkiplist, [RAC16] provided implementa-
tion results in the paper, but their implementation was not public. Hence, we implemented both
schemes, incorporated the eLSH part to complete the implementation of our PP-AkNN protocol,
and evaluated the two’s performance in searching and updating on multiple benchmark data sets
to test their efficiency and scalability. We found that BSkiplist-based implementation performs
better in terms of the number of roundtrips incurred compared with the oblivious AVL tree-based
construction. Also, compared with the baseline — downloading the whole encrypted database, the
BSkiplist-based scheme supports a much more efficient secure AkNN search solution, especially
for a small client storage. More details are provided in Section 7.

Applications. Our privacy-preserving protocol PP-AkNN can be adopted in all AkNN applicable
settings where k is small and the database is sufficiently large. For instance, consider performing
AkNN-based classification on images. Given a ground-truth set — images and associated feature
vectors classified into different classes (e.g., by scenes) and attached with the class labels, encrypt
and store feature vectors and labels on an untrusted server. On each query image and its feature
vector(s), we can first retrieve through PP-AkNN the AkNN of the query feature vector and
associated class labels. Then perform AkNN-based classification — assigning the query image to
the majority class voted by the returned AkNN.

2 Preliminaries

Notation and Conventions. For some n ∈ N, we let [n] denote the discrete range [1, n], and
let x[i] denote the i-th element for some vector, or ordered set, i.e. list x. We use (x1, x2, . . . , xn)
to denote a vector of elements xi for all i ∈ [n]. For a set T we write |T | for the size of T .
The algorithms are randomized and polynomial-time (in the security parameter) unless otherwise
specified. Given any security parameter λ ∈ N, any x ∈ R, we let 〈x 〉 denote x in the format
of a binary string of length polynomial in the security parameter λ. For the syntax of any
interactive protocol (algorithm) I executed between party A and party B, we use the convention:
(outputA, outputB)← [IA(inputA), IB(inputB)].

Metric Spaces. We adopt the definition from [BC]. (D, d) is a metric space if D is a set and d
(the metric) is a real-valued function on D ×D such that for all x, y, z ∈ D the distance function
d satisfies the conditions as follows,

d(x, y) ≥ 0 d(x, y) = 0 iff x = y

d(x, y) = d(y, x) d(x, z) ≤ d(x, y) + d(y, z).

Ball. Over some metric space (D, d), we define the ball B by, for any message Q ∈ D, any radius
(distance threshold) r ∈ R, B(Q, r) = {M : M ∈ D, d(M,Q) ≤ r}.
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approximate k-NN. We use the following definition for AkNN throughout the work.
Definition 2.1 ((ε, δ)-AkNN). For metric space (D, d), database DB ⊆ D, integer k ≥ 1, failure
probability δ > 0, construct a data structure so that on every query Q ∈ D, with at least 1 −
δ probability, it efficiently returns k points {Pi}i∈[k] in the database such that for all i ∈ [k],
d(Q,Pi) ≤ (1 + ε) · d(Q,DB)i, where d(Q,DB)i is the distance from Q to its ith-nearest neighbor
in DB and ε > 0 is the error factor.

Locality-sensitive Hashing. Our constructions utilize locality-sensitive hashing (LSH), espe-
cially its extension form eLSH, so we start with recalling the LSH primitive introduced in [IM].
Below, we give definitions for an arbitrary metric space (D, d).
Definition 2.2 (Locality-sensitive Hashing). A family H is called (r, cr, p1, p2)-sensitive if for
any two points x, y ∈ D [SDI06]:

- If d(x, y) ≤ r then PrH[h(x) = h(y)] ≥ p1;
- If d(x, y) ≥ cr then PrH[h(x) = h(y)] ≤ p2.
We now recall the definition of extended LSH. Given (r, cr, p1, p2)-sensitive H, one can think

of (l, s)-eLSH extension of H as a locality sensitive hashing function with improved sensitivity
(r, cr, p′1, p′2), where p′1 ≥ p1 and p′2 ≤ p2, formally defined as follows.
Definition 2.3 (eLSH). Let H be a (r, cr, p1, p2)-sensitive hash family. For positive integers s, l,
choose random hi,j ∈ H for all i ∈ [l], all j ∈ [s] and define the hash functions gi(·) by

gi(x) = (hi,1(x), hi,2(x), . . . , hi,s(x)) for all i ∈ [l].

We refer to the set of functions {gi}i∈[l] as the (l, s)-eLSH extension of H:
- If d(x, y) ≤ r then Pr{ there exists i ∈ [l] such that gi(x) = gi(y)} ≥ p′1, where p′1 ≥ p1;
- If d(x, y) ≥ cr then Pr{ there exists i ∈ [l] such that gi(x) = gi(y)} ≤ p′2, where p′2 ≤ p2.

3 Secure AkNN Search Protocol
We start with defining syntax and correctness for a privacy-preserving approximate kNN (PP-AkNN)
protocol primitive.

Over metric space (D, d), associated domain DA, let message space MS be D × DA. A
PP-AkNN protocol between two parties: client C and server S, is defined by two algorithms
Setup, Dec and two two-party protocols Search, Update as follows:

The client C first runs the following algorithm:

- (kmax,K,EDS) $← Setup(1λ, ε, δ, Z,M): is a (possibly) randomized algorithm. It takes as
input security parameter 1λ, error factor ε > 0, probability of failure δ ∈ [0, 1], auxiliary
information Z ∈ {0, 1}∗, a set of messages M ⊆ MS, and outputs a public parameter
kmax ∈ N, a secret key K, and an encrypted data structure EDS.

The following interactive algorithms are between parties C and S:
- (M′,EDS′) ← [SearchC(K,QD, k), SearchS(EDS)]: C inputs secret key K, a query message
QD ∈ D, parameter k ∈ [kmax], and server S inputs EDS. At the end, C gets a set M′ ⊆MS;
S updates the encrypted data structure to EDS′.

- (⊥,EDS′) ← [UpdateC(K,U,M∗),UpdateS(EDS)]: C inputs secret key K, an update oper-
ation type U ∈ {add, remove}, message M∗ ∈ MS, and server inputs EDS; S updates the
encrypted data structure to EDS′.

The client C can also run the following decryption algorithm:
- M← Dec(K,EDS): is a deterministic algorithm. It takes as input secret key K, encrypted

data structure EDS, and outputs a set of messages M.
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Correctness. For all security parameter λ ∈ N, all Z ∈ {0, 1}∗, all ε > 0, all δ ∈ [0, 1], all
(kmax,K) generated by KeyGen(1λ, ε, δ, Z), all M ⊆MS, all EDS generated by Setup (1λ, ε, δ, Z,M),
Dec(K,EDS) = M:

- Search is (ε, δ)-correct if for all query message QD ∈ D, all k ∈ [kmax], all set M′ client C
receives from running [SearchC(K,QD, k),SearchS(EDS)], size of set M′ equals to k, and it
holds with at least (1 − δ) probability that set M′ contains QD’s approximate i-th nearest
neighbor in M with error factor ε (Definition 2.1), for all i ∈ [k]; Dec(K,EDS′) = M with
no error.

- Update is correct if for all update operation type U ∈ {add, remove}, all message M∗ ∈MS,
all EDS′ updated by the server S from running [UpdateC(K,U,M∗),UpdateS(EDS)], the
following conditions hold:

- If U is add, Dec(K,EDS′) = M ∪ {M∗};
- If U is remove, Dec(K,EDS′) = M \ {M∗} .

Efficiency. We require that the communication bandwidth induced in both Search and Update
protocol is O(polylog(N)), where N is number of items in the database, and the computational
complexity for Search and Update is O(polylog(N)).
Remark 1. Note that in typical AkNN applications, k is a variable, and can be set by the client
in each search query, and hence our scheme also supports different k ∈ [kmax]. We allow the
message space to contain the auxiliary data to accommodate common applications. For exam-
ple, for an image classification application, D will contain vector(s) extracted from images (e.g,
a deep-neural-network feature), d will be the Euclidean distance, and DA will contain class la-
bels. For each image, client first extracts a feature vector (e.g, using a deep neural network),
retrieves approximate k nearest neighbors for the feature, and performs kNN-based classification
— assigning the image to the labeled class voted by majority of the k returned labels. In some
applications, update operations are not important, but we consider dynamic datasets for com-
pleteness. Similarly, it may not be necessary to demand decryptability of the encrypted data
structure. We consider decryptability because clients may need to extract the data stored on the
cloud. Moreover, having decryptability simplifies defining correctness.
Remark 2. Our syntax above is inspired by that for structured encryption with leakage suppression
defined by Kamara et al. [KMO]. Their definition is very general and captures structured and
searchable encryption, ORAM and oblivious data structure. We do not need such generality as
we target specific AkNN queries only and hence prefer a simpler syntax. In particular, we do
not need the Rebuild protocol they have in order to capture suppressing the leakage of existing
structured encryption schemes (STE).

4 Security Definition
We present the security definition for PP-AkNN protocols. It is simulation-based and asks that
for an adversary who knows the dataset and the encrypted database and can adaptively make
queries, the transcript of the protocol can be simulated by a simulator who only has access to
some leakage information, which the security statement for each construction has to specify.
The definition captures the intuition that the protocol hides all information about the data and
queries besides the specified leakage. For some protocols, leakage may include access, query
and/or volume patterns, but for our construction we show that such leakage is absent.

Our definition is similar to that by Kamara et al. [KM], though, as typical for ODS and ORAM-
like primitives, we only consider passive (honest-but-curious) attackers and leave treatment of
active attackers to future works. In applications where tampering with the software is not likely,
considering passive attackers may be sufficient.

We provide the formal definition and follow with more discussion.
Definition 4.1 (Adaptive Security for PP-AkNN).
Let Π be a PP-AkNN protocol. Let LPP-AkNN = {LSetup,LSearch,LUpdate} be the leakage profile
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describing leakages of Π’s algorithms. Consider the probabilistic experiments RealΠ,A(1λ) and
IdealΠ,A,S(1λ) defined in Figure 1 with helper functions defined in Figure 2, associated with a
stateful adversary A and simulator S.

RealΠ,A(1λ) :
Given 1λ, ε, δ, Z, adversary A outputs a
message set M1 ⊆MS.
(kmax,K,EDS1) $← Setup(1λ, ε, δ, Z,M1).
A is given kmax and EDS1.
A adaptively makes q queries in any order,
for all t ∈ [q]:

Search(Qt, kt), where Qt ∈ D, kt ∈ [kmax]
returns to A the transcript of honest
execution (M′

t,EDSt+1)←
[SearchC(K,Qt, kt),SearchB(EDSt)],
C’s output M′

t and B’s output EDSt+1.
Update(Ut,M∗t ), where Ut ∈ {add, remove},
M∗t ∈MS, returns to A the transcript of
honest execution (⊥,EDSt+1)←
[UpdateC(K,Ut,M∗t ), UpdateB(EDSt)]
and B’s output EDSt+1.

Finally, A outputs bit b.
The experiment returns the same bit b.

IdealΠ,A,S(1λ) :
Given 1λ, ε, δ, Z, adversary A outputs a
message set M1 ⊆MS.
(kmax,K,EDS1) $← SetupH(1λ, ε, δ, Z,M1).
A is given kmax.
Given 1λ, kmax,LSetup(M1), simulator S
outputs encrypted structure EDS1
and sends it to A.
Let B be an honest server and given EDS1.
A adaptively makes q queries in any order,
for all t ∈ [q]:

Search(Qt, kt), where Qt ∈ D, kt ∈ [kmax] :
(M′

t,EDSt+1)← SearchH(Qt, kt,K,EDSt).
Return to A the transcript of
[S(LSearch(Mt, Qt, kt)),SearchB(EDSt)],
SearchH’s output M′

t,
and B’s output EDSt+1.
Mt+1 ←Mt.

Update(Ut,M∗t ), where Ut ∈ {add, remove},
M∗t ∈MS :

(M′
t,EDSt+1)← UpdateH(Ut,M∗t ,K,EDSt).

Return to A the transcript of
[S(LUpdate(Mt, Ut,M

∗
t )),UpdateB(EDSt)]

and B’s output EDSt+1.
If Ut = add then

Mt+1 ←Mt ∪ {M∗t };
Else if Ut = remove then

Mt+1 ←Mt \ {M∗t }.
Finally, A outputs bit b.
The experiment returns the same bit b.

Figure 1: Experiments for Defining PP-AkNN Security.
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SetupHΠ(1λ, ε, δ, Z,M) :
(kmax,K,EDS) $← Setup(1λ, ε, δ, Z,M).
Return (kmax,K,EDS).

SearchHΠ(Qt, kt,K,EDSt) :
Run honest execution (M′

t,EDSt+1)←
[SearchC(K,Qt, kt),SearchB(EDSt)].
Return (M′

t,EDSt+1).

UpdateHΠ(Ut,M∗t ,K,EDSt) :
Run honest execution (⊥,EDSt+1)←
[UpdateC(K,Ut,M∗t ), UpdateB(EDSt)]
Return EDSt+1.

Figure 2: Helper Functions for Defining PP-AkNN Security.

We say that Π is adaptively LPP-AkNN secure if there exists a PPT simulator S such that for
all (non-uniform) PPT adversaries A, all Z ∈ {0, 1}∗, all ε > 0, all δ ∈ [0, 1], the following is
negligible (in λ): ∣∣∣Pr

[
RealΠ,A(1λ) = 1

]
− Pr

[
IdealΠ,A,S(1λ) = 1

]∣∣∣.
Remark 3. Our security definition follows the common approach: whatever the attacker can learn
from the real protocol’s transcript should be simulatable in the ideal world without the secrets,
data and the queries. However, there is one important issue we had to take care of. In the
searchable/structured encryption literature, the distinguisher between real and ideal worlds is
not given the output of the client. This is because the works usually deal with deterministic
functionalities where the client’s output is determined be the inputs and the transcript. But
we deal with the randomized functionality of approximate search. It is known from the MPC
literature, that it is necessary to give the distinguisher access to the client’s output in this case.
And in the ideal world this output is computed using the ideal functionality.

However, we are facing a problem the MPC literature does not address. Namely, our ideal
functionality, which is not explicitly defined, but follows from the protocol’s correctness require-
ment, does not specify the exact probabilities of the data appearing or not appearing in the
client’s output. Instead, it only specifies bounds for such probabilities. Hence, in the ideal world
we cannot easily compute the client’s output without it being trivially distinguished from that
in the real world. We resolve this issue by computing the output by running the protocol. To
the best of our knowledge, this problem has not been treated before in the searchable-encryption
literature. Note that even though we run the protocol in the ideal world, this is just to ensure
correctness, and does not affect security or cause a tautology, as the simulator is not involved.
Remark 4. In our security definition, the leakage profile is abstract. Depending on the protocol,
leakage may include identity and/or equality patterns for responses and queries. We refer to
[KMO] for the formal definitions of such patterns. Access/query patterns usually mean the union
of the corresponding equality and identity patterns. In ORAM-related community, access pattern
is defined differently as the sequence of physical memory addresses accessed. Volume pattern
is information about the relation between the queries and the amount of communication and
rounds of interactions. We do not provide formal definitions since for our construction it will be
immediate that such patterns are not leaked.
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5 Solving Approximate k-Nearest Neighbors Problem
Before we present our protocol we need to study known approaches to solving the (un-secured)
Approximate k-Nearest Neighbors Problem (AkNN) problem (Definition 2.1).

A straightforward approach is storing the data in an array, then searching the approximate
k-NN by comparing the pairwise distances of data points, clearly not feasible for large databases.
It is possible to improve efficiency and construct a data structure by partitioning the whole metric
space, such as k-d tree, but this approach has severe scalability issues when dealing with high-
dimensional data as the size of space grows exponentially in the number of dimensions.

Therefore, a randomized approach is used, usually equipped with an approximation algo-
rithm that allows some error in correctness, but greatly improves the efficiency. First, one uses
extended LSH (eLSH Definition 2.3) [DIIM04] to solve a decisional approximate near neighbor
problem [HPIM12]. Next, a solution to this problem is used to solve AkNN, possibly by solving
the approximate nearest neighbor 1-NN first.

We note that practitioners sometimes prefer using an eLSH look-up map directly to tackle the
AkNN problem. They examine all the points that share overlapped eLSH tags with the query
point, specifically, by selecting eLSH parameters by training a subset of the data and choose
parameters with reasonable accuracy and a smaller cost (size of matched points divided by the
size of data set).

This approach, though, does not provide a guarantee on either the correctness or the upper-
bound on the size of returned results. We are interested in solving the AkNN problem without
relying heavily on the training procedure — estimating intrinsic parameters of the data distri-
bution. In particular, we focus on providing a theoretical guarantee on setting the parameters
to achieve concrete correctness of AkNN with an upper-bound on the returned results. More-
over, not having a bound on the returned results prevents us from efficiently using oblivious data
structures.

So we turn back to discuss the aforementioned steps in solving AkNN problem in more detail.
But first we recall some related definitions. Given any query point Q ∈ D, for any data point
P ∈ D, we say P is a “r-near neighbor” of Q if and only if P ∈ B(Q, r)1. We now formally define
the 1-NN problem.
Definition 5.1 ((c, r)-NN). Fix a set M ⊆ D, and closeness thresholds r > 0, failure probability
δ > 0, construct a data structure such that, given any query point Q ∈ D, with probability at least
1− δ: if M ∩ B(Q, r) is not empty, it reports some cr-near neighbor of Q and outputs “YES” in
M where c is the approximation factor and if M ∩ B(Q, r) is empty, it outputs “NO”.

To solve this problem, one uses an LSH-based algorithm introduced in [DIIM04], which we will
refer to as eLSH-cRNN. It works as follows. Given a set of locality-sensitive hash families, set eLSH
parameters s, ` based on approximation factor c, closeness threshold r, and probability of failure
δ (E.1, E.2). To ensure the cr-near neighbors of the query point share at least one overlapped
eLSH tag. Construct (l, s)-eLSH instances I times, each with fresh independent randomness,
which yields (l, s)-eLSHi. Then initialize an empty look-up map; for each (li, si)-eLSH instance,
where i ∈ [I]; for each point P in the data set, compute its eLSH tags; for each eLSH tag T , add
(T, P ) pair to the map. We may only use a single map by pre-appending 〈 i 〉 to each eLSH tag
to indicate that the (li, si)-eLSH instance is used.

During the search stage, given query point Q, for all i ∈ [I], if any point share with at least
one eLSH tag with the query point, then add the point to a set S. At the end, if S is not empty,
report a point in S that is a cR-NN of Q, and output “YES”; otherwise output “NO”. It is proved
that such an algorithm indeed solves the (c, r)-NN problem in [DIIM04]. For simplicity, we may
refer “eLSH look-up map” to the map used in eLSH-cRNN in later discussion.

Now, as the next step, the approximate 1-NN problem can be reduced to a sequence of (c, r)-NN
problems by utilizing eLSH maps with varying closeness thresholds and approximation factors.
Usually, theoreticians focus on using as few (c, r)-NN problems as possible [HPIM12, DIIM04],

1Cf. the ball definition in Section 2.
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even at the cost of increasing the complexity of the data structure — more complicated than a
look-up map. And then it is not hard to solve AkNN, though one would need to prove correctness.

Looking ahead, dealing with encrypted data excludes such an option, mainly due to practical
issues or security concerns. Also, we focus on finding approximate k nearest neighbors instead of
a single approximate nearest neighbor discussed in the prior works. This rules out the possibility
of reusing their correctness results.

Therefore, we turn to a simpler but less optimized reduction idea of solving AkNN using
(c, r)-NN, proposed without a proof of correctness in [GIM99]. The reduction works as follows:
Suppose there are multiple eLSH maps solving a sequence of (ci, ri)-NN problems, i ∈ [sizer] for
some parameter sizer, with (ci, ri) crafted carefully, ri in increasing order. Start searching from
the smallest closeness threshold rmin by returning all the data points (with some upper-bound)
sharing at least one eLSH tag overlaps with the query point. If not enough points are found, then
next eLSH map of a larger ri+1 will be examined in the (i+ 1)-th iteration.

6 Our PP-AkNN Construction
6.1 Overview
We build a generic PP-AkNN protocol Π using the following key ingredients: eLSH-based algorithm
(eLSH-cRNN), utilized to solve the approximate near-neighbor problem, solving AkNN using the
approximate near-neighbor problem, and securing AkNN using an oblivious map with encryption
(OMapE). We described the first two steps in Section 5 (however, we will still need to provide
extra work to enable proofs of correctness).

To add security to the AkNN solution we need a secure data structure with efficient search
functionality to store eLSH tags. Because standard SSE schemes leak access and query pattern
(aka response equality pattern and query equality pattern, defined in [KMO]), and also the
volume pattern, this potentially may incur substantial security damage, as discussed in Section 1.
Therefore we turn to an oblivious map [WNL+] to prevent such leakage.

An oblivious map protocol allows the client to perform a sequence of operations on the oblivious
map located on the server, so that the server will know neither the operation types nor the
underlying node ids (logical addresses) the operations access. Privacy of data can be achieved by
using encryption.

In our construction we use an oblivious map instantiated with an oblivious tree structure of
bounded degree. The bounded degree requirement is to ensure O(logN) communicational blow-
up for efficiency (overall bandwidth is O(log2 N)). A tree structure of bounded degree can be
interpreted as a sequence of nodes, where each node contains a node id (logical address) and node
data. The oblivious map can be represented as a sequence of encrypted nodes. For the feasibility
of such approach, it is crucial to observe that while solving approximate k-NN search using a
sequence of eLSH-cRNN algorithms with eLSH look-up maps, we can bound the number of items
associated with each eLSH tag in k instead of the size of the database, and store them in a single
node of the oblivious tree implementing the map. This allows us to avoid potential blowup in
storage and bandwidth, and thus have a practical solution.

6.2 Building block: OMapE

Oblivious map with Encryption. We adopt the standard map definition: Let L be a label
(keyword) space V be a value space. A map is a set of label (keyword) and value pairs, denoted
by map = {(`i, vi)}i∈N, where `i ∈ L, vi ∈ V. Both maps and oblivious maps support standard
operations including Find, Insert, and Delete, specified in the following definition F̃OMap (Defini-
tion 6.1). Let map[`i] = vi denote the map look-up on label `i, where vi is `i’s associated value.
We use the latest definition of oblivious simulation of reactive functionality as in [AKL+]. The
reactive functionality is a functionality that keeps an internal state between the executions, de-
fined similarly to FORAM provided in [AKL+] except that we make the state explicit and output
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by F̃OMap. A similar obliviousness definition is used in [WNL+, RAC16] for their oblivious map
constructions. However, both works used a non-reactive definition of the functionality, fall short
of capturing the adaptiveness in their obliviousness definition — adversary chooses the input to
f adaptively, based on previous returned function output.
Definition 6.1 (F̃OMap). The functionality is reactive, and holds a state — N memory blocks,
each of (expected) size w denoted by X[1, . . . N ] storing map ⊆ L× V.

• Access(map, op, `, v): where op ∈ {Find, Insert,Delete}, ` ∈ L, and v ∈ V.
1. If op = Find, if ` is in map then v∗ ← map[`]; otherwise v∗ ← ⊥.
2. If op = Insert, map[`]← v and v∗ ← v.
3. If op = Delete, map[`]← ⊥ and v∗ ← ⊥.
4. Output (v∗,map).

Remark 5. For Find,Delete operation, input v is set by ⊥. We use F̃OMap(map, op, `, v) as a
shorthand notation for Access(map, op, `, v) defined in F̃OMap.

Moreover, [AKL+] and ODS framework [WNL+] suggest providing data privacy using sym-
metric encryption (e.g., blockcipher-based mode of operation), while omitting the discussion.
Similarly, [RAC16] mentions using AES-based encryption scheme encrypting the blocks stored
in the underlying ORAM. We elaborate on the data privacy aspect, providing a unified syn-
tax OMapE combining the oblivious map with standard symmetric encryption, and a security
definition in the style of structured encryption capturing adaptive obliviousness and data privacy.

For security parameter λ ∈ N, any map DS ⊆ L × V implemented using a tree structure of
bounded degree, an OMapE protocol between client C and server S, is defined by three algorithms
and one two-party protocol as follows:

- K $← OMapE.KeyGen(1λ): is a randomized algorithm run by C that takes as input a security
parameter λ, and outputs a secret key K.

- EDS $← OMapE.Setup(1λ, Z,K,DS): is a randomized algorithm run by C that takes as input
a security parameter λ, auxiliary information Z ∈ {0, 1}∗ (e.g., upper-bound N on the
number of labels in the map), secret key K, map DS and outputs an encrypted data structure
EDS.

- (v∗,EDS∗) ← [OMapE.AccessC(K, op, `, v), OMapE.AccessS(EDS)]: is a two-party protocol
executed between client C and server S, where C inputs a secret key K, an operation
op ∈ {Find, Insert,Delete}, ` ∈ L, v ∈ V and server inputs EDS; at the end, C receives
v∗ ∈ V; S updates the encrypted data structure to EDS∗.

- DS ← OMapE.Dec(K,EDS): is a deterministic algorithm that takes as input secret key K,
encrypted data structure EDS and outputs DS.

The security experiment in Figure 3 with ideal functionality F̃OMap (Definition 6.1) also captures
the correctness requirement of OMapE. We define the adaptive security for OMapE with leakage
profiles in the STE style, except we specify the correctness and security in a single definition for
compactness. Note that we cannot have a compact definition similarly for PP-AkNN since the
protocol does not have perfect correctness. Also, we consider transcripts can be simulated in our
definition instead of the sequence of physical addresses Addrs [AKL+]. Our security definition is
stronger than ODS’s, as it addresses both the adaptive obliviousness and data privacy. Moreover,
it is stronger than STE’s if all leakage profiles are empty since the map operation type is hidden
by our definition. In contrast, STE divides the access protocol into query and update algorithms
and thus leaks the operation type by syntax.
Definition 6.2 (Adaptive Security for OMapE). Let Φ be an OMapE protocol. Let LOMapE =
(LOMapE.Setup,LOMapE.Access) be the leakage profile describing leakages of Φ’s algorithms. Let λ ∈ N
be the security parameter. Consider the probabilistic experiments defined in Figure 3.
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RealΦ,A(1λ) :
Given 1λ, Z, adversary A outputs a
map DS1 over L× V.
K

$← KeyGen(1λ).
EDS1

$← Setup(1λ, Z,K,DS1).
A is given EDS1.
A adaptively makes q queries in any order,
for all t ∈ [q]:

Access(opt, `t, vt):
where opt ∈ {Find, Insert,Delete},
`t ∈ L, vt ∈ V,
returns to A the transcript of honest
execution (v∗t ,EDSt+1)←
[OMapE.AccessC(K, optt, `t, vt),
OMapE.AccessB(EDSt)],
B’s output EDSt+1,
and C’s output v∗t .

Finally, A outputs bit b.
The experiment returns the same bit b.

IdealΦ,A,S(1λ) :
Given 1λ, Z, adversary A outputs a
map DS1 over L× V.
Given 1λ,LSetup(DS1), simulator S
outputs encrypted structure EDS1
and sends it to A.
Let B be an honest server and given EDS1.
A adaptively makes q queries in any order,
for all t ∈ [q]:

Access(opt, `t, vt):
where opt ∈ {Find, Insert,Delete},
`t ∈ L, vt ∈ V,
returns to A the transcript of
[S(LOMapE.Access(DSt, opt, `t, vt)),
OMapE.AccessB(EDSt)],
B’s output EDSt+1,
and v∗t output by
(v∗t ,DSt+1)← F̃OMap(DSt, opt, `t, vt).

Finally, A outputs bit b.
The experiment returns the same bit b.

Figure 3: Experiments for Defining OMapE Adaptive Security.

We say that Φ is adaptively LOMapE-secure if there exists a PPT simulator S such that for all
PPT adversaries A, all Z ∈ {0, 1}∗, the following is negligible (in λ):∣∣∣Pr

[
RealΦ,A(1λ) = 1

]
− Pr

[
IdealΦ,A,S(1λ) = 1

]∣∣∣.
6.3 Generic PP-AkNN Construction
We now describe our protocol, providing an outline of each algorithm, and clarify certain parts
via bullet points.

Over some metric space (D, d), associated domain DA, let the message space beMS = D×DA.
Let M ⊆ MS and QD ⊆ D, where M = {(MD[i],MDA [i])}i∈[n] and |QD| = t. Fix a security
parameter λ ∈ N, an error parameter ε > 0, and a parameter for probability of failure δ ∈ [0, 1].
Let Φ = (KeyGen, Setup,Access,Dec) be an OMapE protocol. Given MD,QD ⊆ D, |MD| = n,
|QD| = t, α ∈ [0, 1], kmax � n, run Z

$← genAuxInfo(α,MD,QD, kmax), where genAuxInfo is the
algorithm outputting the protocol parameters Z = kmax‖n‖t‖α‖rmin‖rmax. In practice, such
parameters can be selected empirically, and we refer to Section 7 for more details. But for our
formal protocol specification we need to choose the parameters that enable us to formally evaluate
correctness. We specify such algorithm genAuxInfo in Section 6.4.
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Algorithm Setup(1λ, ε, δ, Z,M) (part 1)
1: K[1] $← Φ.KeyGen(1λ)
2: map← empty map {}
3: Parse Z as kmax‖n‖t‖α‖rmax‖rmin
4: I ← dlog1/e+1/3

ξ
nte,

5: with 0 < ξ ≤ δ
2·kmax·dlog1+ε

rmax
rmin

e

6: c← 1 + ε, γ ←
√
c

7: sizer ← dlogγ rmax
rmin
e

8: K[2]← n‖t‖rmin‖rmax‖sizer‖I
9: numAccess← 0

The Setup algorithm is divided into two parts for ease of presentation. The first nine lines
in part 1 involve running the key generation algorithm of OMapE, initializing an empty map,
computing the number of eLSH instances needed based on the input. In the loop from Line 10 to
Line 29 in part 2, we prepare the eLSH instances by randomly sampling the hash functions and
store the eLSH instances as part of the secret key. Line 31 to Line 37 deal with computing the
eLSH tags from eLSH instances and messages, then adding them to the map. Finally, Setup ends
with running the setup algorithm of OMapE on the map.

We now discuss the details related to parameter selection. Given ε, δ correctness bounds,
upper bound n on the number of messages stored in the database, and upper bound t on the
number of query messages supported by the system, we set the parameters theoretically in the
Setup algorithm for provable correctness as follows:

- Line 3 to Line 7: We choose I with ξ to guarantee (ε, δ)-Search correctness following the
results of Lemma D.6 and Lemma D.5. For each (γi, ri)-NN problem, I number of eLSH
instances are used to amplify the probability of capturing the approximate near neighbors.

- Line 11 to Line 13 compute the parameters so that the union of (γi, ri)-NN for all i ∈ [sizer]
output by an algorithm called eLSH-cRNN in Search — finding (γi, ri)-NN by checking the
data points sharing overlapped eLSH tags with the query point, contains the approximate
k-NN with high probability.

- Line 28: The numAccess is used to enforce each search query to yield a fixed number of
Φ.Access and is stored as part of the secret key.

- Line 36, 37: We compute and initialize OMapE with the upper bound on the number of
items stored in the map based on the maximal number of data points associated with each
eLSH tag.

As we mentioned, in practice, the parameters for eLSH instances including sizer, si, li, and I
can be set empirically to improve efficiency. Also, locality-sensitive hashing family Hi with sen-
sitivity (ri, γri, pi,1, pi,2) are replaced by specific LSH construction instantiated with appropriate
parameters in the implementation (e.g., LSH construction based on stable distribution [DIIM04]),
and we refer to more details in Section 7.2. Our experiments and prior work [GIM99] show that
selecting one single threshold sizer is usually sufficient. Parameters si, li are part of the eLSH
instances. In our experiments, both si, li are small constants, less or equal to 10.
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Algorithm Setup(1λ, ε, δ, Z,M) (part 2)
10: for i = 1, . . . , sizer do
11: ri ← γi · rmin
12: Hi ← (ri, γri, pi,1, pi,2)-sensitive hash family
13: ρi ← ln 1/pi,1

ln 1/pi,2 ; si ← dlog1/pi,2 ne; li ← dn
ρi/pi,1e

14: K[2i+ 1]← li
15: numAccess← numAccess + li · I
16: for j = 1, . . . , I do
17: for k = 1, . . . , li do
18: for u = 1, . . . , si do
19: hi,j,k,u(·) $←Hi
20: end for
21: ĝi,j,k(·)← (hi,j,k,1(·), . . . , hi,j,k,si(·))
22: end for
23: gi,j ← (ĝi,j,1(·), ĝi,j,2(·), . . . , ĝi,j,li(·))
24: end for
25: Gi ← (gi,1,gi,2, . . . ,gi,I)
26: K[2i+ 2]← Gi

27: end for
28: K[2 · sizer + 3]← numAccess
29: for each M in M do
30: Parse M as (MD,MDA)
31: Tags← T (K,MD)
32: for each T in Tags do
33: map← map ∪ {(T,M)}
34: end for
35: end for
36: m← n · I ·

∑
i∈[sizer] li

37: EDS $← Φ.Setup(1λ,m,K[1],map)
38: return (kmax,K,EDS)

Algorithm T (K,MD)
1: Parse K[2] as n‖t‖rmin‖rmax‖sizer‖I
2: for i = 1, . . . , sizer do do
3: li ← K[2i+ 1]; Gi ← K[2i+ 2]
4: for j = 1, . . . , I do do
5: gi,j ← Gi[j]; Si,j ← ∅
6: for k = 1, . . . , li do do
7: ĝi,j,k(·)← gi,j [k]
8: T ← 〈 i 〉‖〈 j 〉‖〈 k 〉‖ĝi,j,k(MD)
9: Si,j ← Si,j ∪ {T}

10: end for
11: end for
12: Ti ← (Si,1,Si,2, . . . ,Si,I)
13: end for
14: Tags← (T1,T2, . . . ,Tsizer )
15: return Tags
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Algorithm [SearchC(K,QD, k),SearchS(EDS)]
1: Server S:
2: EDS1 ← EDS
3: Client C:
4: u← 1
5: Parse K[2] as n‖t‖rmin‖rmax‖sizer‖I
6: numAccess← K[2 · sizer + 3]
7: Y← ∅; ctrI← 0; Tags∗ ← T (K,QD)
8: for i = 1, . . . , sizer and ctrI < I do
9: li ← K[2i+ 1]; ctrI← 0

10: T∗i ← Tags∗[i]
11: for j = 1, . . . , I do
12: tempi,j ← ∅
13: loop For each T in T∗i [j]
14: Run (data∗,EDSu+1)←
15: [Φ.AccessC(K[1],Find, T,⊥),
16: Φ.AccessS(EDSu)]
17: interactively with server S;
18: Parse data∗ string into a set S
19: u← u+ 1
20: if S 6= ∅ then
21: tempi,j ← tempi,j ∪ S
22: end if
23: if

∣∣tempi,j
∣∣ = 3li + k − 1 then

24: ctrI← ctrI + 1
25: exit loop
26: end if
27: end loop
28: Y← Y ∪ tempi,j
29: end for
30: for u < numAccess + 1 do
31: Run (data∗,EDSu+1)←
32: [Φ.AccessC(K[1],Find,⊥,⊥),
33: Φ.AccessS(EDSu)]
34: interactively with server S
35: u← u+ 1
36: end for
37: end for
38: Client C:
39: if |Y| ≥ k then
40: return QD’s k nearest neighbors in Y
41: else
42: for i = 1, . . . , k − |Y| do
43: Mi

$←MS; Y← Y ∪ {Mi}
44: end for
45: end if
46: return Y

The tagging algorithm T is used as a subroutine in Setup, Search, and Update. It takes as input
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a message in the metric space, a secret key encapsulating the eLSH instances, then computes and
outputs the eLSH tags of the message. Note that at Line 7, gi,j is a vector, where the k-th position
denoted by gi,j [k] is a placeholder for ĝi,j,k(·); ĝi,j,k(·) is an eLSH instance (Definition 2.3) where
(hi,j,k,1(·), hi,j,k,2(·), . . . , hi,j,k,si(·)) denotes a concatenation of hash functions.

In interactive algorithm Search, from Line 8 to Line 37, we find the AkNN of the query message
by retrieving the messages associated with the query message’s eLSH tags from the oblivious
map. More specifically, from Line 8 to Line 29, we solve a sequence of (γi, ri)-NN problems using
eLSH-cRNN algorithm with an eLSH map. In each iteration, we perform oblivious look-ups on
the corresponding eLSH map (cf. the correctness summary in Section 6.4 for more discussion).
Note that at Line 25, the loop stops early when enough messages with matched eLSH tags are
found. Lemma D.3 shows that the search algorithm with the early exist satisfies the correctness
requirement. If enough messages are found, the algorithm stops the loop early. Line 30 to Line
36 enforce a constant number of accesses across the query messages. In particular, at Line 32
and 33, we use [Φ.AccessC(K[1],Find,⊥,⊥), Φ.AccessS(EDSu)] to denote the dummy accesses
for padding needed for security, so that each search query will yield a fixed number of Φ.Access
requests. Finally, Line 39 to Line 46 deal with post-processing and finding the AkNN. If not
enough messages are found, random messages are selected to ensure the output set size is fixed
at k.

Algorithm Dec(K,EDS)
1: DS← Φ.Dec(K[1],EDS)
2: M← ∅
3: for each (T,M) in DS do
4: M←M ∪ {M}
5: end for
6: return M

The decryption algorithm Dec of PP-AkNN follows from the decryption algorithm of the un-
derlying OMapE.

Algorithm [UpdateC(K,U,M∗),UpdateS(EDS)]
1: Server S:
2: EDS1 ← EDS
3: Client C:
4: Parse M∗ as (M∗D,M∗DA

); u← 1
5: Tags← T (K,M∗D)
6: if U = add then op← Insert
7: else if U = remove then op← Delete
8: end if
9: for each T in Tags do

10: Run (⊥,EDSu+1)← [Φ.AccessC(K[1],
11: op, T,M∗),Φ.AccessS(EDSu)]
12: interactively with server S
13: u← u+ 1
14: end for
15: return ⊥

The Update algorithm utilizes the update algorithm of the underlying OMapE straightfor-
wardly.
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6.4 Correctness & Efficiency

Parameter generation. To be able to evaluate correctness of our PP-AkNN protocol, we
capture the approaches adopted by theoreticians by defining genAuxInfo algorithm that outputs
parameters on a given distribution.

Over some metric space (D, d), we define a randomized algorithm Z
$← genAuxInfo(α,M,Q, kmax)

that takes as input some failure probability α ∈ [0, 1], (sufficiently large) M and Q ⊆ D, n = |M|,
t = |Q|, kmax � n, and outputs auxiliary information Z in the form of kmax‖n‖t‖α‖rmin‖rmax,
where rmin, rmax ∈ R+ are distance thresholds such that, for each Q ∈ Q, with at least 1 − α
probability, there exists a subset S ⊂M of size kmax such that Q ∈

⋂
M∈S B(M, rmax), and Q does

not fall into the ball of radius rmin centered on any message of M, namely, Q 6∈
⋃
M∈M B(M, rmin).

Parameters n, t are set as the upper-bound on the size of the message set, the query set
respectively supported by the system.

The proof of the following correctness theorem is in Appendix D.
Theorem 6.3 (Main Correctness Theorem). For data distribution where genAuxInfo exists, PP-AkNN
constructions instantiated with OMapE (OAvlTreeE or OBSkiplistE) satisfies (ε, δ)-Search correct-
ness.
Remark 6. Note that the above correctness theorem stands for distributions where genAuxInfo
exists, and we illustrate its existence by construction in Proposition D.7. It is common for AkNN
related works in the theory community to assume that parameters output by genAuxInfo such as
closeness thresholds rmin, rmax are given. In practice, we do not need to construct genAuxInfo in
order to compute the eLSH parameters, instead we rely on empirically selecting eLSH parameters
on data samples. We discuss this aspect in Sections 6.3 and 7.
Remark 7. Since Update straightforwardly calls Φ.Access on the update operation and every eLSH
tag of the update messages, its correctness directly follows from that of the underlying OMapE
scheme Φ.

Efficiency. The bandwidth cost of the AkNN protocol relies on the underlying oblivious map.
If built on an oblivious map that costs O(log2 N) bandwith (oblivious AVL tree and Bskiplist),
assuming the underlying non-recursive ORAM operation incurs bandwidth cost O(logN) (e.g.,
PathORAM), the overall bandwith cost for Search or Update in PP-AkNN is O(kmax · log2 N),
kmax � N . The computational complexity on the server side is small since each search or update
operation only incurs O(log2 N) number of accesses on the memory blocks. The client requires
a small temporary storage (O(log2 N)), and small computational capacity since the client only
needs to perform basic AES-based encryption, decryption and linear scan with size bounded in
logN as part of ORAM operations; also for each Search query, filtering out the top AkNN requires
one linear scan in kmax (O(kmax)) is very efficient since kmax � N .

Although the above analysis is sufficient from the asymptotic complexity perspective, the
constants hidden may heavily influence the efficiency in terms of communicational overheads, and
thus we implemented the protocol using two instantiations of OMapE and provided performance
evaluation on multiple benchmark data sets in Section 7.

6.5 Security Analysis
We state security of our generic PP-AkNN Π.
Theorem 6.4 (Main Theorem). The PP-AkNN protocol Π with building block OMapE Φ is adap-
tively LΠ-secure (cf. Definition 4.1), if Φ is adaptively LΦ-secure (cf. Definition 6.2), where
LΠ = (LSetup,LSearch,LUpdate) with

LSetup = LΦ.Setup,LSearch = (LΦ.Access, numAccesss),
LUpdate = (LΦ.Access, numAccessu),

where numAccesss, numAccessu denote the total number of executions of Φ.Access on single opera-
tion within each search query, each update operation respectively.
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Remark 8. We provide the security proof of Theorem 6.4 in Appendix A. We discuss the impli-
cations of the leakage profile when we present the protocol instantiations.

6.6 Instantiations and their Security

Oblivious Maps Instantiations and their Security. We refer to the same adaptive obliv-
iousness notion as defined in [AKL+] (also provided in Appendix Definition B.1). It is known
and can be proved that the two candidates OAvlTree [WNL+] and OBSkiplist [RAC16] built on
non-recursive position-based ORAM satisfies the adaptive obliviousness. However, the above two
oblivious map candidates do not address the privacy aspect, captured by our OMapE adaptive
security (Definition 6.2). Therefore, we will discuss two OMapE instantiations built on these two
oblivious map candidates. Let OAvlTreeE denote the OMapE built on OAvlTree with standard
symmetric encryption scheme SE (e.g., AES-based mode of operation). Let OBSkiplistE denote
OMapE built on OBSkiplist with SE . We provide their constructions in detail in Appendix B.3.
The efficiency statements in Section 6.4 also apply to these two instantiations.

We state the security of the two OMapE candidates — OAvlTreeE and OBSkiplistE. A proof
sketch on their adaptive security is provided in Appendix B.4.
Theorem 6.5. The OMapE protocol instantiated with OAvlTreeE is adaptively L̃OAvlTreeE-secure if
OAvlTree is adaptively oblivious and SE is IND-CPA, where L̃OAvlTreeE = (L̃Setup, L̃Access), L̃Setup =
(N, nodeSize, bucketSize, height), and L̃Access = ⊥; N is total number of nodes or the upper-
bound on the number of items can be stored in the OAvlTreeE; nodeSize is the size of every node
of the tree in bits; bucketSize is the size of every bucket in bits, used by its underlying ORAM.
Theorem 6.6. The OMapE protocol instantiated with OBSkiplistE is adaptively L̃OBSkiplistE-secure
if OBSkiplist is adaptively oblivious and SE is IND-CPA, where L̃OBSkiplistE = (L̃Setup, L̃Access),
L̃Setup = (N, nodeSize, bucketSize, β, height) and L̃Access = ⊥, defined the same in Theorem 6.5,
with extra branching factor β.

Protocol Security Analysis. We now combine the above results and the generic PP-AkNN se-
curity result (Theorem 6.4) to get the following two security statements for PP-AkNN instantiated
with OAvlTreeE and OBSkiplistE, respectively.
Theorem 6.7. The PP-AkNN protocol Π instantiated with OAvlTreeE is adaptively-LOAvlTreeE se-
cure, if OAvlTree is adaptively oblivious and SE is IND-CPA, where LOAvlTreeE = (LSetup,LSearch,LUpdate),

LSetup = (N, nodeSize, bucketSize, height),
LSearch = numAccesss, LUpdate = numAccessu,

defined the same as in Theorem 6.4 and Theorem 6.5.
Theorem 6.8. The PP-AkNN protocol Π instantiated with OBSkiplistE is adaptively-LOBSkiplistE se-
cure, if OBSkiplist is adaptively oblivious and SE is IND-CPA, where LOBSkiplistE = (LSetup,LSearch,LUpdate),

LSetup = (N, nodeSize, bucketSize, β, height),
LSearch = numAccesss, LUpdate = numAccessu,

defined the same as in Theorem 6.4 and Theorem 6.6.

Security Implications. As the above security statements show, the leakage profile of our
construction only comprises public parameters from Setup and the number of OMapE accesses
incurred from Search and Update, respectively. Since the above public parameters from Setup
apply to all messages stored in the system and the queries, and because the number of OMapE
accesses is fixed for every search query and update query respectively, we conclude that our
construction hides the query pattern (query-identity and query-equality pattern defined in [KMO])
and the access pattern (response identity and response-equality). Moreover, our construction hides
the volume pattern since the transcript size and the number of interactions are fixed for every
query request.
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7 Implementations
7.1 Overview
We completed our PP-AkNN protocol incorporating the existing eLSH library LSH-kit [Don]
together with two OMapE implementations — OAvlTreeE and OBSkiplistE. We evaluated the
performance of the two on standard AkNN benchmark data sets provided in [Ber] on a commercial
laptop with 16 GB RAM running Ubuntu 20.04. Through our experiments, we found the efficiency
bottleneck of our protocol is at the stage of transferring data between the client and the server.
This is a direct product following from the communicational overhead of the underlying OMapE
protocol. In comparison, extracting eLSH tags and post-processing in Search are both significantly
efficient. In this section, we first provide a guideline on selecting parameters for our PP-AkNN
constructions built on OAvlTreeE and OBSkiplistE, then evaluate the two on benchmark data
sets and compare their performance. Furthermore, we provide two optimization methods — one
involves batched search queries which reduces the bandwidth cost by a multiplicative factor (up
to
∑sizer

i=1 I · li), and the other incorporates parallel accesses that reduces the total number of
roundtrips incurred in each Search query by a multiplicative factor in the number of OMapE
instances available on the server.

7.2 Parameter Selection
We used the following benchmark data sets in our experiments: MNIST, F-MNIST (i.e., Fashion-MNIST),
SIFT, and GIST [Ber]. They are all high-dimensional data points in the Euclidean space. In both
F-MNIST and MNIST, each data point is a 28× 28 grayscale image that we treat as a single feature
vector and is associated with one label from 10 classes. SIFT and GIST are data sets containing
feature vectors only with no labels attached. To select eLSH parameters, we run the parameter
selection algorithm provided by LSH-kit for 1000 number of queries on the training set of size
60, 000, finding approximate 10-nearest neighbors (i.e., kmax = 10). Looping a range of possible
values for l, ε, the algorithm will output different s, width w (projection width), cost, and recall
respectively. We selected eLSH parameters with low cost (the fraction of data points shared the
same eLSH tags as the query and the lower the better) and high recall — the fraction that the
correct AkNN captured in the response set. We found that setting I = 1 and sizer = 1 are
sufficient to reach 95% recall for approximate k-nearest neighbors for every query point across
the benchmark data sets with ε ≥ 0.1. We present the parameters for our constructions in the
following Table 1 after fixing l = 10, kmax = 10, and ε = 0.1:
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Dataset MNIST F-MNIST SIFT GIST

Dimension 784 784 128 960
Train size 60 K 60 K 1 M 1 M
Test size 10 K 10 K 10 K 1 K
Total storage 217 MB 217 MB 501 MB 3.6 GB
Feature size 3140 B 3140 B 516 B 3844 B

eLSH s 7 9 8 8
w 4275 4563 888 4.65

A Node size 120 KB 120 KB 20 KB 147 KB
Bucket size 480 KB 480 KB 80 KB 588 KB

B BNode size 120 KB 120 KB 20 KB 147 KB
Bucket size 720 KB 720 KB 120 KB 882 KB

Table 1: Parameters for PP-AkNN scheme A and B instantiated with OAvlTreeE and OBSkiplistE
respectively

As shown in the above table, eLSH parameter s does not vary much. In contrast, projection
width parameter w used as part of the eLSH construction in the Euclidean space is significantly
smaller in GIST than the rest since the values’ magnitude is small. Nevertheless, each eLSH tag of
all the data points with the above parameters can fit in 8 bytes (stored as uint64_t). After fixing
l and kmax, the feature size (i.e., dimensions) plays a critical role determining the node size. We
can bound the total number of data points associated with each eLSH tag using 3 · l + kmax − 1.
Namely, we only need to store and check at most 39 points to capture approximate 10-nearest
neighbors with high probability. Therefore, we have greatly improved the performance compared
with retrieving all the responses — even suitable eLSH parameters with a low cost of 0.006 still
imply the response set for every query containing 0.006× 60, 000 = 360 points in expectation.

To clarify how to initialize the parameters for the PP-AkNN protocol, we guide through the
procedure using OAvlTreeE on SIFT benchmark as an example. Given l = 10, kmax = 10, the
number of data points stored in every node with one associated eLSH tag is at most 39. Hence,
for SIFT features, each node occupies at least 39 × 516 = 19.5 KB. As other attributes in the
node barely occupy the storage and standard blockcipher based IND-CPA encryption scheme
incurs almost-negligible storage blow-up, it suffices to set the node size to 20 KB. Also, we set the
bucket size 4 times of the block size for OAvlTreeE as suggested in [WNL+]. For OBSkiplistE-based
construction, we set bucket size Z, 6 times the expected block size B (20 KB), i.e., 120 KB, and
branching factor β = 12 as in [RAC16].

7.3 Efficiency Comparison
We evaluated the two instantiations on all benchmark data sets listed in Table 1, fixing the query
size to 1, 000 and initialize the PP-AkNN protocol with parameters presented in Table 1.

Time Costs. We identified the efficiency bottleneck for our constructions is at the transmission
stage due to the large bandwidth costs incurred from OMapE.Access. (1) Setup: Extracting the
eLSH tags for every data point across the data sets takes less than 0.2 ms on average. The total
setup time on the largest database (GIST) took around 2 hours for OBSkiplistE-based construction
and 3 hours for OAvlTreeE-based one. Note that the setup algorithm only needs to be run once. (2)
Search: The processing time for data retrieving and post-processing are both efficient, incurring
negligible time costs — a sharp contrast to the time costs incurred in data transmission based
on our simulation results. We simulated the transmission time under the network conditions:
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roundtrip latency = 30 ms and bandwidth capacity = 150 mbps. (3) We found that the time costs
for Update and Search are similar for the setting where I = 1, sizer = 1, and l = 10, as both
protocols run an equal number of OMapE.Access. In the following table, we present the average
statistics for running OMapE.Access on single eLSH tag — the most time-consuming procedure
of the whole protocol and discuss its implications.

Dataset MNIST F-MNIST SIFT GIST

A # roundtrips 84 84 102 102
Bandwidth (MB) 826.88 826.88 199.22 1464.26
Time (s) 45.16 45.16 10.88 79.97

B # roundtrips 13 13 15 15
Bandwidth (MB) 191.95 191.95 43.95 323.00
Time (s) 10.48 10.48 2.4 17.64

Table 2: Efficiency evaluation for PP-AkNN scheme A and B instantiated with OAvlTreeE and
OBSkiplistE respectively

The path length for each node access is dlog2(N)e+1 = 25. The number of roundtrips incurred
is d2 · (1 + logβ N)e ≈ 15. The overall (downloading) bandwidth cost for each eLSH tag search is
15 × 120 × 25 = 43.95 MB. We provide an example using OBSkiplistE-based PP-AkNN on SIFT
to interpret the results in Table 2. Given l = 10, the encrypted data set with eLSH tags occupy
approximately 595 MB in storage, this implementation can facilitate at least 1 AkNN query satis-
fying the strong security guarantee. The temporary requirement on the client storage is around 3
MB. The baseline approach yields more than 198 roundtrips, compared with 150 roundtrips with
OBSkiplistE in the same setting. Note that such a comparison is not fair concerning downloading
the whole database involves linear scan, which may not be feasible for a large database. Instead,
if compared with the same structured data — a search tree based on eLSH tags with duplicated
data points, the encrypted storage is at least 5187.9 MB, then our construction can facilitate at
least 11 AkNN queries reaching the bandwidth cost of downloading an encrypted database. Note
that for a much larger database, or a smaller kmax, such an offset compared with the baseline
increases since the overall bandwidth overhead is O(kmax · log2(N)), where N the is number of
items stored in OMapE.

7.4 Optimizations

Batched queries. We can further optimize the efficiency of the search by batching the queries,
specified in Appendix C. The idea is comparing the distances between the returned points and
the queries points, if enough points for AkNN are found, abort the search early and continue
the next query. To hide the volume leakage, we only need to ensure that the number of OMapE
accesses is a multiple of that incurred from one AkNN search. This method will result in efficiency
enhancement

∑sizer
i=1 li · I times of the non-optimized scheme in terms of bandwidth cost.

Parallel Access. We can also optimize the protocol using parallel access, reducing the number
of roundtrips incurred in each Search query. Similar approaches also mentioned in multi-user
ORAM literature — creating multiple OMapE instances, so that eLSH tag look-ups can be run
in parallel. The number of roundtrips for one AkNN search will equal the number of one single
eLSH tag look-up, while the overall bandwidth cost does not change.
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A Proof for Security of Generic PP-AkNN Construction
Proof. Let S1 be the simulator for OMapE scheme Φ operating the same as in Appendix B.4, and
recall the leakage profile for generic PP-AkNN Π,

LSetup = LΦ.Setup,LSearch = (LΦ.Access, numAccesss),
LUpdate = (LΦ.Access, numAccessu).

We construct simulator S2 for PP-AkNN scheme Π with S1 as a subroutine. We prove the security
of the main theorem by defining a sequence of games as follows:

Game-0: This is the RealΠ,A(1λ) as defined in Definition 4.1.
Game-1: This is the same as Game-0, but during the setup, replace kmax with kmax output by the

helper function Π.SetupH. Game-1 and Game-0 are computationally indistinguishable since
kmax and kmax are both produced by the real setup protocol of Π.

Game-2: This is the same as Game-1, but during the setup, replace the encrypted data structure EDS1
with encrypted data structure EDS1 output by simulator S2: S2 first runs simulator S1 on
(1λ,LΦ.Setup(DS1)); S1 outputs EDS1, and S2 outputs the same. Game-2 is computationally
indistinguishable from Game-1 due to the adaptive security of the underlying OMapE (Cf.
Definition 6.2).

Game-3: This is the same as Game-2, but on each search query Qt, replace the output M′
t with

M′
t produced by the helper function Π.SearchH. Game-3 and Game-2 are computationally

indistinguishable due to both outputs are produced from the real search protocol of Π.
Game-4: This is the same as Game-3, but on each search query Qt, replace the transcript and the

updated encrypted data structure EDSt+1 with those produced by S2: S2 runs S1 numAccesss
times to simulate Φ.Access with LΦ.Access as input, and S2 outputs the same as S1. Game-
4 and Game-3 are computationally indistinguishable due to the IND-CPA property of the
transcripts ensured by the adaptive security of the underlying OMapE scheme Φ.

Game-5: This is the same as Game-4, but on each update query Qt, replace the output M′
t with

M′
t produced by the helper function Π.UpdateH. Game-5 and Game-4 are computationally

indistinguishable due to both outputs are produced from the real update protocol of Π.
Game-6: This is the same as Game-5, but on each update query Qt, replace the transcript and the

updated encrypted data structure EDSt+1 with those produced by S2: S2 runs S1 numAccessu
times to simulate Φ.Access with LΦ.Access as input, and S2 outputs the same as S1. Game-
6 and Game-5 are computationally indistinguishable due to the IND-CPA property of the
transcripts ensured by the adaptive security of the underlying OMapE scheme Φ. By a
standard hybrid argument, the joint distribution of the outputs, the transcripts, and the
encrypted data structures from Game-6 is computationally indistinguishable from the ones
in Game-0, and thus completes the proof.

B Oblivious Map with Encryption
B.1 Overview
At a high level, OAvlTree and OBSkiplist both are trees of bounded degree, stored in a non-recursive
position-based ORAM. Running Access protocol on each map operation will incur multiple Access
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executions on Read or Write operations to the underlying ORAM. “Position-based” ORAMs are
a class of ORAMs relying on that the client stores a (secret) position map — mapping between
logical addresses (block ids) and sets of random physical addresses; for each Read or Write op-
eration on some logical address addr, the client first conducts a position map look-up for addr’s
associated physical addresses, and then requests the server to access those memory blocks. After
each access, the client will write back the accessed blocks to new random positions and updates
its local position map. Therefore the overall access protocol hides the logical address from ob-
serving the access pattern in a computational setting. The “non-recursive” property guarantees
that a single ORAM access only incurs one roundtrip communication. In practice, if the position
map is large and cannot fit the client’s local storage, it is then stored recursively in a recursive
ORAM on the server, yielding multiple roundtrips for a single ORAM block access. To solve this
issue, achieving a more efficient look-up in the map structure stored in the ORAM, both OAvlTree
and oblivious OBSkiplist exploit their underlying tree structures and smartly store the position
maps. More specifically, other than regular data, each tree node also contains its children nodes’
position maps, and is then stored as an ORAM block in a non-recursive position-based ORAM
(e.g., PathORAM). For the search look-up, starting from the root node, accessing each tree node
through ORAM will automatically retrieve the position maps of its children nodes. Hence, it saves
the communication costs for position-map look-up — a logN multiplicative factor improvement
in bandwidth compared with performing a naive search on a recursive position-based ORAM.

B.2 Adaptive Obliviousness

RealMA (1λ) :
(commandi, inpi)← A(1λ),
where commandi ∈ {Access,⊥}
Loop while commandi 6= ⊥:

(outi,Addrsi)←M(1λ, commandi, inpi)
(commandi, inpi)← A(1λ, outi,Addrsi)

IdealFA,S(1λ) :
(commandi, inpi)← A(1λ),
where commandi ∈ {Access,⊥}
Loop while commandi 6= ⊥:

outi ← F(commandi, inpi)
Addrsi ← S(1λ, commandi)
(commandi, inpi)← A(1λ, outi,Addrsi)

Figure 4: Experiments for Defining Adaptive Obliviousness.

In the following definitions, the functionality F implicitly specifies the command space and input
space, and are omitted. For ORAM and OMap, it is sufficient to let the command space be
{Access,⊥} as both use Access protocol but with different input space specified in the functionality.
Definition B.1 (Adaptive Obliviousness). Let M be a reactive machine that implements func-
tionality F . Let probabilistic experiments be defined in Figure 4 (Appendix). We say that reactive
machine M is an oblivious implementation of F if there exists a PPT simulator S such that
for all non-uniform stateful PPT adversaries A, the views of A in the real experiment and ideal
experiment are computationally indistinguishable (negligible in λ) [AKL+].
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Algorithm OMapE.KeyGen(1λ):
K

$←K(1λ)
return K

Algorithm OMapE.Setup(1λ, Z,K,DS):
(nodei)i∈N ′ ← Helper.Init(Z,DS)
EDS← ()
for all i ∈ [N ′] do

EDS[i] $←E(K, nodei)
return EDS

Algorithm [OMapE.AccessC(K, op, `, v),
OMapE.AccessS(EDSu)]:

Client C:
v′ ← E(K, `‖v)
OMap.AccessC(op, `, v′)
Run (v∗,EDSu+1)←
[OMap.AccessC(op, `, v′),
OMap.AccessS(EDSu)]
interactively with server S
v̂ ← D(K, v∗)
return v̂

Algorithm OMapE.Dec(K,EDS):
DS← {}
for each i ∈ [|EDS|] do

nodei ← D(K,EDS[i])
Parse nodei’s data field as (`i, vi)
if `i 6= ⊥ then

DS← DS ∪ {(`i, vi)}
return DS

Figure 5: OMapE Constructions.

B.3 Constructions
We show how we build OMapE schemes with LOMapE.Access = ⊥, and LOMapE.Setup comprising public
parameters. The two instantiations are OAvlTreeE and OBSkiplistE. The type of the atomic data
object node in ODS framework for trees of bounded degree by a tuple of three attributes:

node = (nid, ndata, nchildren),

where the value of nid attribute is in [N ], and N is the number of nodes of the data structure; the
value of ndata attribute is in {0, 1}w by some fixed parameter w, nchildren are pointers to every
its child node, which we can parse as a list (nchildren1, . . . , nchildrent), where each nchildreni ∈
{0, 1}∗, for all i ∈ [t]. Each element of the map is stored in the ndata field. To connect the
logical addresses and physical addresses. The ODS framework stores each node as a block in the
underlying ORAM. Note in Figure 5, we provide a helper function Helper.Init(Z,DS), which can be
instantiated differently based on the underlying oblivious map. In the context of [WNL+, RAC16],
Helper.Init(Z,DS) can be interpreted as running Access(Insert, `, v) locally on the client side for
all (`, v) pairs in the map, then output the plain array storing all the node data. This procedure
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involves random shuffling, and thus the output (nodei), for each nodei, its physical address does
not reveal its logical address.
Remark 9. In the constructions of non-recursive position-based ORAMs, bucketization is a com-
mon technique used (e.g. PathORAM) — each bucket contains multiple blocks and has a fixed size
in bits. Bucket-wise accessing operation is used when accessing the blocks in the access protocol.
OBSkiplist [RAC16] utilizes this fact — fixed bucket size, relaxes the block size from a constant
w to w in expectation, while still achieves the oblivious simulation of the map functionality.
Remark 10. In the construction, Z is typically set by N , the upper-bound on the number of labels
stored in the map. λ is the security parameter used to ensure the obliviousness. More discussion
on λ and N can be refereed in [AKL+].

B.4 Adaptive Security of OMapE Schemes
Referring to the security theorems Theorem 6.6 and Theorem 6.5. We first build F̃OMap using
FORAM, then provide a proof sketch on their adaptive security. First let us recall FORAM.
Definition B.2 (FORAM [AKL+]). The functionality is reactive, and holds an internal state —
N memory blocks, each of size w (Block size). Denote the internal state an array X[1, . . . , N ].
Initially, X[addr] = 0 for every addr ∈ [N ].

• Access(op, addr, data): where op ∈ {Read,Write}, addr ∈ [N ], and data ∈ {0, 1}w.
1. If op = Read, data∗ ← X[addr].
2. If op = Write, X[addr]← data and data∗ ← data.
3. Output data∗.

Remark 11. For Read operation, input data is set by ⊥.
We first show that OAvlTree and OBSkiplist using FORAM to implement F̃OMap. For tree nodes

defined the same as in [WNL+, RAC16]. Let nid ∈ [N ] be the logical address of the block in ORAM.
Let node = (nid, ndata, nchildren). Consider the reactive map functionality in Definition 6.1. The
functionality is reactive, and holds an internal state — N memory blocks, each of (expected) size
w denoted by X[1, . . . N ] storing map ⊆ L × V. Let (node)i ← Helper.Init(map). For each node,
store X[i] ← ndata‖nchildren. Load root node in the local stash, parse root node as (`1, v1), and
access using the algorithms specified in [WNL+, RAC16] implementing F̃OMap with FORAM. For
oblivious AVL tree it also needs to make dummy access to hide the operation type, and thus
each tree operation (rotation, insert, delete) will result in a constant number of ORAM accesses.
Similarly, each operation on BSkiplist also incurs a fixed number of ORAM accesses. Since each
ORAM access incurs constant bandwidth cost for PathORAM instantiation (fixed bucket size in
bits). Both OAvlTree and OBSkiplist hide the volume pattern.

Proof Sketch. We have showed that we can implement the F̃OMap using FORAM, and thus it fol-
lows that it satisfies adaptive obliviousness definition. Moreover, OAvlTree and OBSkiplist both
implement a map construction with perfect correctness. Although the latter uses random coins
for underlying data structure, it does not sacrifice the exact correctness of the map functionality.
Thus it is left to argue that we can simulate the encrypted data structure and the transcripts.
We construct a simulator S that generates a fake encrypted data structure and argue that no
efficient adversary A can distinguish a real encrypted data structure from the fake one. Also,
the simulator generates transcripts with an honest party indistinguishable from real executions
of OMapE.Access between two honest parties. It suffices to show that the distribution of the en-
crypted data structure; the transcripts for OMapE.Access in the real world and simulated one are
computationally indistinguishable. Our main technique is that, given the setup leakage includ-
ing total N number of nodes in the tree, node size nodeSize, the simulator S first encrypts N ′
(computed based on N) 〈 0 〉’s of bit length nodeSize. For simplicity, assume underlying ORAM
is PathORAM built on a complete binary tree containing 2N − 1 buckets to store up to N blocks
(nodes); let N ′ = (2N − 1)× bucketSize. Then for i = 1 to N ′, EDS1[i]← EKS (〈 0 〉), where 〈 0 〉
is of bit-length nodeSize. At the end, S outputs the encrypted structure EDS1 and sends it to A.
Adversary A adaptively makes q queries, simulator S simulates the transcript of the interactions
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with honest party B. For each OMapE.Access: The simulator S sends B a transcript which is a
fixed-size list of physical addresses. Honest party B will then send all encrypted nodes associated
with those physical addresses to S. Simulator S then writes back a list of updated encrypted nodes
and associated addresses to B. Finally, honest B will update and output EDSt+1. The “adaptive
obliviousness” of oblivious map implemented using ORAM ensures the physical addresses are
computationally indistinguishable in both worlds, and together with IND-CPA property of each
encrypted block (node), ensure computational indistinguishability in transcripts in OMapE.Access
and OMapE.Access between the real world and the ones in ideal world.

C Batch Queries
We outline how we optimize the PP-AkNN protocol to support multiple secure AkNN search
queries more efficiently.

Correctness. We can directly reuse the arguments as in the correctness analysis for single query,
since we only abort the search early if enough data points are found by examining the distances
between the query point and the returned points.

Efficiency. It is straightforward that the optimization yields a multiplicative factor improvement
in both the number of roundtrips and the bandwidth cost. The multiplicative factor in these two
aspects will be up to

∑sizer
i=1 I · li, and the exact number depends on the data distribution.

Security. In the optimization, with batched queries, we may abort the search query early and
continue the eLSH tag look-up for next query. The total number of incurred OMapE accesses is
padded with dummy accesses, ensuring it is a multiple of numAccess — fixed number of OMapE
accesses for single AkNN search query. Together with other public parameters, using similar
arguments as before, there exists a PPT simulator that can output transcripts computationally-
indistinguishable from that yielded by the real executions of the protocol as long as the underlying
map holds the “obliviousness” property, and the symmetric encryption used to encrypt all data
is IND-CPA.

D Proof of Correctness
In the following discussion, for all M,Q ⊆ D, |M| = n and |Q| = t, where genAuxInfo ex-
ists. For kmax ∈ N, Z $← genAuxInfo(α,M,Q, kmax), parse Z as n‖t‖kmax‖α‖rmin‖rmax. We refer
(ε, δ, β)-Search to a shorthand notation of (ε, δ)-Search correctness with a size restriction parame-
ter β on the total number of messages needed to be examined to determine the AkNN. We also
discuss how the failure probability δ (depends on α in genAuxInfo) affects parameter selection and
compute the size restriction parameter β.

Over arbitrary metric space (D, d), given α ∈ [0, 1], all M,Q,⊆ D, |M| = n, |Q| = t where
genAuxInfo exists, all kmax � |M| (e.g., kmax =

√
|M|), all Q ∈ Q, all k ∈ [kmax], we parse Z

as n‖t‖kmax‖α‖rmin‖rmax. Let sizer = dlogγ rmax
rmin
e, where γ =

√
1 + ε. We first set parameter

I by Lemma D.6 with ξ chosen by Lemma D.5, and select parameter si, li for all i ∈ [sizer] by
Proposition E.2. We may use “α-query-valid” source to denote for M,Q ⊆ D, where genAuxInfo
exits, and Z is output by genAuxInfo(α,M,Q, kmax). We introduce the following main theorem
for our eLSH-based construction.

Proof of Main Correctness Theorem 6.3.
It suffices to show that the eLSH-based construction satisfies (ε, δ, β)-Search correctness on plain
LSH tags. For all M,Q ⊆ D, |M| = n and |Q| = t, where genAuxInfo exists. For α ∈ [0, 1], kmax ∈
N, Z $← genAuxInfo(α,M,Q, kmax), parse Z as n‖t‖kmax‖α‖rmin‖rmax, i.e., For every Q ∈ Q, with
at least 1− α probability, both the following events hold,
A1: Q 6∈

⋃
M∈M B(M, rmin).

A2: There exists a subset S ⊂M of size kmax such that Q ∈
⋂
M∈S B(M, rmax).
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Algorithm Helper.Query(K,u,QD, k)
1: Parse K[2] as n‖t‖rmin‖rmax‖sizer‖I
2: numAccess← K[2 · sizer + 3]
3: Y← ∅; Tags∗ ← T (K,QD)
4: abortFlag← false
5: for i = 1, . . . , sizeR and abortFlag = false do
6: Li ← K[2i+ 1];
7: T∗i ← Tags∗[i]
8: for j = 1, . . . , I and abortFlag = false do
9: loop each T in T∗i [j]

10: Run (data∗,EDSu+1)←
11: [OMapE.AccessC(K[1],Find, T,⊥),
12: OMapE.AccessS(EDSu)]
13: interactively with server S;
14: Parse data∗ string into a set S
15: u← u+ 1
16: if S 6= ∅ then
17: for each P in S and |Y| < k do
18: Parse P as (PD, PDA)
19: if d(PD, QD) ≤ γi · rmin then
20: Y← Y ∪ {P}
21: end if
22: end for
23: end if
24: if |Y| = k then
25: abortFlag← true
26: exit loop
27: end if
28: end loop
29: end for
30: end for
31: if |Y| < k then
32: for i = 1, . . . , k − |Y| do
33: Mi

$←MS; Y← Y ∪ {Mi}
34: end for
35: end if
36: return (u,Y)
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Algorithm [SearchC(K,QD,k),SearchS(EDS)]
1: Server S:
2: EDS1 ← EDS
3: Client C:
4: Parse K[2] as n‖t‖rmin‖rmax‖sizer‖I
5: numQuery← |QD|
6: numAccess← K[2 · sizer + 3]
7: u← 1
8: for i = 1, . . . , numQuery do
9: (u,Yi)← Helper.Query(K,u,QD[i],k[i])

10: end for
11: for ((u− 1) mod numAccess) 6= 0 do
12: Run (data∗,EDSu+1)←
13: [OMap.AccessC(K[1],Find,⊥,⊥)
14: OMap.AccessS(EDSu)]
15: interactively with server S
16: end for
17: Y′ ← (Y1,Y2, . . . ,YnumQuery)
18: return Y′
19: Server S:
20: return EDSu

We will show setting I based on Lemma D.6 with ξ set by Lemma D.5 guarantees that the
eLSH-based scheme satisfies (ε, δ, β)-Search correctness.

Since each genAuxInfo is a randomized algorithm, we need to establish a relation between
failure probability α and δ. First consider a simpler case when α = 0, which we prove separately
as Lemma D.1.

Now consider the general case with α ∈ [0, 1]. By definition, Pr(A1 ∩A2) ≥ 1−α. To connect
α and δ, we first define event A3. Given any eLSH-based construction Π with some source, let A3
denote the event that Π satisfies the exact correctness, i.e., (ε, 0, β̂)-Search correctness for some
constant β̂. Then suppose there is an eLSH-based construction Π′ with “0-query-valid” source
satisfying (ε, δ′, β′)-Search correctness, where 0 ≤ δ′ ≤ δ − α and β′ is some constant, in other
words, Pr(A3) ≥ 1 − δ′. We show that the scheme Π′ with arbitrary α-query-valid source M
satisfies (ε, δ, β)-Search correctness by bounding the probability that all events A1, A2, A3 hold
from below.

Pr(A1 ∩A2 ∩A3) = 1− Pr(A1 ∩A2 ∪A3)
≥ 1− Pr(A1 ∩A2)− Pr(A3)
≥ 1− α− δ′

≥ 1− δ,

where the last inequality is due to 0 ≤ δ′ ≤ δ − α. To complete the proof, we show that scheme
Π′ does exist with Lemma D.1, and the new size restriction β can be computed according to
Lemma D.1.

Lemma D.1. Setting I (Lemma D.6) with ξ (Lemma D.5) guarantees with genAuxInfo, by setting
α = 0, the construction satisfies (ε, δ, β)-Search correctness with β =

∑sizer
i=1 I · (3li + kmax − 1).

Proof. Since we are interested in the setting where kmax � n with n denoting the size of M, it
suffices to focus on the loop in the (ε, δ, β)-Search algorithm for correctness analysis. In particular,

30



we break it down into Lemma D.2 and Lemma D.3 targeting at the termination of the loop. It is
easy to see that the size restriction parameter β can be computed as follows,

β ≤ max
k∈[kmax ]

sizer∑
i=1

I · (3li + k − 1)

≤
sizer∑
i=1

I · (3li + kmax − 1).

Lemma D.2. If the loop stops after the Xth iteration where X = sizer, the output Y will include
Q’s k approximate nearest neighbors in M with at least 1− δ probability.
Proof. Given approximation factor c = 1 + ε, γ =

√
c and sizer = dlogγ rmax

rmin
e.

Proof by introduction on 1 ≤ k ≤ kmax:
Base case: k = 1. Suppose M1 is Q′s nearest neighbor in M and d(Q,M1) = r1, then by

definition of rmin and rmax, r1 ∈ [γi · rmin, γ
i+1 · rmin] for some integer 1 ≤ i ≤ sizer, and eLSH

instances will output a message M ′1 ∈M with

d(Q,M ′1) ≤ γi+2 · rmin = c · γi · rmin ≤ c · r1,

which satisfies the correctness requirement of Q’s approximate nearest neighbor in M.
Inductive step: assume k ≤ kmax−1 and the algorithm has already output Q’s k approximate

nearest neighbors in M, then consider k = k + 1 case.
Suppose Mk is Q’s kth nearest neighbor in M and d(Q,Mk) = rk.

• Case rk = rk−1: the eLSH instances for (γ, rk)-NN have already output kth approximate
nearest neighbor, referring to Lemma D.4.

• Case rk > rk−1: we use the similar argument as in the base case, rk ∈ [γi · rmin, γ
i+1 · rmin]

for some integer 1 ≤ i ≤ dlogγ rmax
rmin
e, and the eLSH instances will output a message M ′k ∈M

with

d(Q,M ′k) ≤ γi+2 · rmin = c · γi · rmin < c · rk.

Thus, we have found Q’s k approximate nearest neighbors in M.
Since the algorithm involves multiple randomized procedures, it is left to compute the accumulated
error. There are sizer number of iterations in total, and we ensure that the properties in induction
hold for all iterations.

For each iteration i with i ∈ [sizer], we define events A1 and A2 as follows,
A1: rk = rk−1 with the above property holds.
A2: rk > rk−1 and base case with the above property holds.

Note that event A1 and A2 are mutually exclusive. Pr(A1) ≥ 1− τ1 (τ1 = kmax · ξ in Lemma D.4)
and Pr(A2) ≥ 1 − ξ (same as in Lemma D.6). Let τ = max{τ1, ξ}. We bound the accumulated
error for X iterations. Let Ai1, Ai2 denote event A1, A2 in the ith iteration respectively.

Pr(
X⋂
i=1

(Ai1 ∩Ai2)) = 1− Pr(
X⋃
i=1

Ai1 ∩Ai2)

(Union bound) ≥ 1−
X∑
i=1

[Pr(Ai1) + Pr(Ai1)]

(A1, A2 mutually exclusive) ≥ 1−X ·max{τ1, ξ}

= 1− dlogγ
rmax

rmin
e · τ.

τ = max{τ1, ξ}, X = sizer = dlogγ
rmax

rmin
e.
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We set parameters satisfying the following inequality in Lemma D.5,

dlogγ
rmax

rmin
e · τ ≤ δ, (1)

and thus completes the proof.

Lemma D.3. If the loop stops after the Xth iteration where 1 ≤ X < sizer, and the counter
ctrI = I, the output Y will include Q’s k approximate nearest neighbors in M with at least 1− δ
probability.

Proof. We analyze the case when ctrI = I, which occurs if and only if every i-th eLSH instance,
i ∈ [I] for (γ, rX)-NN problem (Definition 5.1) outputs 3li + k − 1 different messages in some
X-th iteration, where 1 ≤ X ≤ sizer. Due to Lemma D.2, we only need to focus on the situation
where 1 ≤ X < sizer.

We prove the lemma using the property of the eLSH instances. Lemma D.6 guarantees
that in at least one of I eLSH instances both events E1 and E2 (Definition E.1) hold with at
least 1 − ξ probability for ξ set by Lemma D.5. Moreover, condition ctrI = I implies that
|M ∩ B(Q, γ · rX)| ≥ k, and those k points are included in the results with high probability.

We prove the lemma in a similar way as in Lemma D.2 with some variation due to condition
ctrI = I.

Proof by introduction on 1 ≤ k ≤ kmax:
Base case: k = 1. Suppose M1 is Q′s nearest neighbor in M and d(Q,M1) = r1, then by

definition of rmin and rmax, r1 ∈ [γi · rmin, γ
i+1 · rmin] for some integer 1 ≤ i ≤ sizer,

• Case 1 ≤ i ≤ X: refer to Lemma D.2.
• Case X < i ≤ sizer: implies Mk 6∈M ∩ B(Q, γX · rmin), which contradicts ctrI = I.
Inductive step: assume k ≤ kmax−1 and the algorithm has already output Q’s k approximate

nearest neighbors in M, then consider k = k + 1 case.
Suppose Mk is Q’s kth nearest neighbor in M and d(Q,Mk) = rk.

• Case rk = rk−1: refer to Lemma D.2.
• Case rk > rk−1: suppose rk ∈ [γi · rmin, γ

i+1 · rmin] for some integer 1 ≤ i ≤ sizer,
– Case 1 ≤ i ≤ X: refer to Lemma D.2.
– Case X < i ≤ sizer: implies Mk 6∈M ∩ B(Q, γX · rmin), which contradicts ctrI = I.

Now we compute the accumulated error. Since we set parameters to ensure events A1 and A2
defined in Lemma D.2 hold for all iterations, which cover the case 1 ≤ X < sizer, it is only left
to bound the probability on the extra property we require in the induction holds when ctrI = I.
Let set {M1, . . . ,Mk} ⊂M denote the Q’s k messages that are within M∩B(Q, γ · rX). We need
to ensure that they all have hash overlaps with Q with high probability in at least one of I eLSH
instances, so they are included in the results.

Pr(
k⋂
i=1

E1(Q,Mi)) = 1− Pr(
k⋃
i=1

E1(Q,Mi))

(Union bound) ≥ 1−
k∑
i=1

Pr(E1(Q,Mi))

(Lemma D.6) ≥ 1− k · ξ
≥ 1− kmax · ξ

(Lemma D.5) ≥ 1− δ.

Hence completes the proof.

Lemma D.4. After the Xth iteration for 1 ≤ X ≤ sizer, if there are vX ≥ 1 data points in
M∩B(Q, rX) with rX = γX ·rmin, the set Y includes at least min{vX , k} points in M∩B(Q, γrX)
with constant probability.
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Proof. For all i ∈ [sizer], we choose si, li parameters to ensure the same probability bound for
solving (γ, ri)-NN problem in all eLSH instances (Proposition E.2). In addition, we set parameter
I to guarantee that, for each (γ, ri)-NN problem, i ∈ [sizer], in at least one of its I eLSH instances,
event E1 and event E2 (Definition E.1) both hold with high probability (Lemma D.6). Without
loss of generality, we assume at the Xth iteration, the jth instance satisfies this property where
j ∈ [I]. Now consider the following discussion.

Let event B1 denote
∑LX

u=1

∣∣g−1
X,j,u(gX,j,u(Q)) ∩M

∣∣ ≥ 3LX +k−1; otherwise denoted by event
B2. Event B1 and B2 are mutually exclusive.

If vX ≥ k, then
• B1: event E2 guarantees that there are fewer than 3LX eLSH hash overlaps with Q from

the set M \ B(Q, γrX), and event E1 guarantees that those points in M ∩ B(Q, rX) have
high probability of hash collisions with Q, thus at least k messages in M ∩ B(Q, γrX) are
included in Y with high probability for selected parameters.

• B2: Y includes all data points which have eLSH hash collisions with Q.
If vX < k, then

• B1: with high probability this event will not occur, as it contradicts the assumption that
both E1 and E2 hold.

• B2: Y includes all vX data points with high probability.
It is left to compute the error. Let w = min{vX , k}. We need to ensure that all w points are
included. We require that k ≤ kmax � n, and vX ≤ n, where n = |M|. We write M∩B(Q, rX) as
{Mi}i∈[w], then we obtain,

Pr(
w⋂
i=1

E1(Q,Mi)) = 1− Pr(
w⋃
i=1

E1(Q,Mi))

(Union bound) ≥ 1−
w∑
i=1

Pr(E1(Q,Mi))

(since w ≤ kmax) ≥ 1− kmax · ξ
= 1− o(1).

The last equality is due to kmax = o(n), ξ = o(n−1) and Lemma D.5. Thus completes the proof.

Lemma D.5. For fixed kmax, setting I in Lemma D.6 with ξ satisfying the following inequality
ensures the (ε, δ, β)-Search correctness for some β,

0 < ξ ≤ δ

2 · kmax · dlog1+ε
rmax
rmin
e .

Proof. In Lemma D.4, for all X ∈ [sizer] iteration, we let w = min{vX , k}. Since we can only
upperbound vX by n, we instead limit kmax to ensure w = min{vX , k} ≤ kmax. Recall that
τ = max{τ1, ξ}, and we have τ1 = kmax · ξ (Lemma D.4), which implies τ = kmax · ξ. Consider
Inequality 1 in Lemma D.2,

δ/dlogγ
rmax

rmin
e ≥ τ

= kmax · ξ

ξ ≤ δ

kmax · dlogγ rmax
rmin
e = δ

2 · kmax · dlog1+ε
rmax
rmin
e .
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Lemma D.6. Given set M,Q, ξ ∈ (0, 1), let n = |M|, t = |Q|, if there are I = dlog1/e+1/3
ξ
nt
e

eLSH instances with same parameters (fixed by (c,R)-NN problem), then for all M ∈ M, all
Q ∈ Q, there exists j ∈ [I] such that

Pr[Both Ej1(Q,M) and Ej2(Q) hold ] ≥ 1− ξ.

Proof. For eLSH construction solving (c,R)-NN problem (Definition E.1), we choose parameter
s, L to ensure both event E1 and E2 hold with probability at least 2

3−
1
e
≥ 0.299 (Proposition E.2).

We amplify the probability by having I copies of eLSH instances constructed with independent
random coins.

We bound the error from above using union bound,

nt(1/e+ 1/3)I ≤ ξ.

For construction, we can simply choose I = dlog1/e+1/3
ξ
nt
e.

To illustrate the existence of genAuxInfo, we provide a proposition setting distance threshold
rmin and rmax based on uniform distribution for some constant α ∈ (0, 1).
Proposition D.7. In Hamming metric space where D = {0, 1}d, if all the messages output by the
source are sampled independently and uniformly at random from {0, 1}d, then for all (sufficiently
large) M,Q output by M(1λ) with size restriction t ·2−n < 1 and t ·n ·d ·2−d < 1, where n = |M|
and t = |Q|, all positive integer kmax � |M|, setting rmin = 1, rmax = d/2 guarantees that there
exists some constant α ∈ (0, 1) such that for each Q ∈ Q, with at least 1− α probability (1) there
exists a set S ⊂M with |S| = kmax such that Q ∈

⋂
M∈S B(M, rmax); (2) Q 6∈

⋃
M∈M B(M, rmin).

Proof. In Hamming metric space where D = {0, 1}d, without loss of generality, we assume d is
even, and suppose Q = {Q1, . . . , Qt} and M = {M1, . . . ,Mn}, where each element of both sets is
sampled independently and uniformly from {0, 1}d.

Assume 1 ≤ rmin < rmax ≤ d/2. For any i ∈ [t], any j ∈ [n], let event Ai,j,rmin denote
d(Qi,Mj) > rmin, we obtain

Pr(Ai,j,rmin ) =
∑

1≤j≤rmin

(
d
j

)
2d .

Substitute rmin with 1, we obtain

Pr(Ai,j,rmin ) = d · 2−d.

Let random variable X :=
∑t

i=1

∑n

j=1 1{Ai,j,rmin}
, then

EX =
t∑
i=1

n∑
j=1

E1{Ai,j,rmin}
=

t∑
i=1

n∑
j=1

Pr(Ai,j,rmin )

≤ t · n · d · 2−d.

Let α ∈ (0, 1), we bound the expectation from above,

EX ≤ α

t · n · d · 2−d ≤ α.

Then by Markov inequality, Pr(X ≥ 1) ≤ E(X) ≤ α. For any i ∈ [t], any j ∈ [n], let event
Ai,j,rmax denote that d(Qi,Mj) ≤ rmax. Let event Bi,rmax denote that there exists a subset
S ⊂M, |S| = kmax s.t. Qi ∈

⋂
M∈S B(M, rmax).

Pr(Ai,j,rmax ) =
∑

1≤j≤rmax

(
d
j

)
2d

= 1/2.
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Substitute Pr(Ai,j,rmax ) with 1/2 in the following equation,

Pr(Bi,rmax ) = Pr(Ai,j,rmax )kmax−1 Pr(Ai,j,rmax )n−kmax+1

= 2−n.

Similarly, let random variable Y :=
∑t

i=1 1{Bi,rmax}
, we have

EY ≤ α

t · 2−n ≤ α.

By Markov inequality, Pr(Y ≥ 1) ≤ E(Y ) ≤ α.

E Extra Definitions & Propositions
Definition E.1. Given parameter c,R, we choose s, l to ensure that with constant probability the
following two events hold. We define the two events for any q, p∗ ∈ D,

• E1(q, p∗) occurs iff either p∗ 6∈ B(q,R) or p∗ ∈ B(q,R) and gj(p∗) = gj(q) for some j =
1, . . . , l.

• E2(q) occurs iff the total number of collisions of q with points from P \ B(q, cR) is less than
3l, i.e.,

l∑
j=1

∣∣(P \ B(q, cR)) ∩ g−1
j (gj(q))

∣∣ < 3l.

Proposition E.2. Setting s = dlog1/p2 ne and l = dnρ/p1e guarantees E1 and E2 both hold with
probability at least 2

3 −
1
e
≥ 0.299.

Proof. Let P ∗1 , P ∗2 denote the probability that the event E1, E2 defined above holds respectively.
We define ρ = ln 1/p1

ln 1/p2
, s = dlog1/p2 ne, l = nρ/p1, then it is easy to see that P ∗1 ≥ ps1.

We have
ps1 ≥ p

log1/p2 n+1
1 = p1 · nlogn p

log1/p2
n

1 .

Together with

logn p
log1/p2 n
1 = log1/p2 n · logn p1 = −

ln 1
p1

ln 1
p2

= −ρ.

Therefore,
P ∗1 ≥ ps1 = p1 · n−ρ.

Also, let q be some query point from the domain D, p′ be a point in P \ B(q, cR), and p∗ be
a point in B(q, cR).

Then the probability for gj(p′) = gj(q) for any j ∈ [l] is at most ps2,

P2 = Pr[gj(p′) = gj(q)] ≤ ps2 = p
log1/p2 n
2 = 1

n
.

For all j ∈ [l], let random variable Xj denote the total number of hash overlaps of all points
that are in P \ B(q, cR) with query point q under gj , i.e.,

Xj :=
∣∣(P \ B(q, cR)) ∩ g−1

j (gj(q))
∣∣.

Then we have,
E(Xj) =

∑
v∈P\B(q,cR)

P ′2 ≤ n ·
1
n

= 1.
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Let random variable Y denote the sum of all hash overlaps for points that are in P \B(q, cR),
i.e.,

Y :=
l∑

j=1

∣∣(P \ B(q, cR)) ∩ g−1
j (gj(q))

∣∣.
By linearity of expectation,

E(Y ) = E
l∑
1

Xi = l.

By Markov inequality,

Pr [Y ≥ 3l ] ≤ E(Y )
3l = l

3l ≤
1
3 .

P ∗2 = Pr [Y < 3l ] ≥ 1− 1
3 = 2

3 .

Then setting l = dnρ/p1e, we bound P ∗1 from below,

P ∗1 = 1− (1− n−ρ · p1)l ≥ 1− e−n
−ρ·p1·nρ/p1 = 1− e−1.

The lower-bound on the probability that both properties hold is, by union bound 1 − [(1 −
P ∗1 ) + (1− P ∗2 )] = P ∗1 + P ∗2 − 1 ≥ 2

3 −
1
e
.
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