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Abstract
In this work, we study Certificate Transparency (CT), an

important standardized extension of classical Web-PKI, de-
ployed and integrated into major browsers. We evaluate the
properties of the published design of CT-v1 (RFC 6962), and
identify five major concerns, which persist in drafts for CT-v2.
Most significantly, CT-v1 fails to achieve the main goal of the
original CT publications, namely security with No Trusted
Third Party (NTTP) and it does not ensure transparency for
revocation status. Several recent works [1, 4, 6, 10, 19, 21, 25]
address some of these issues but at the cost of significant,
non-evolutionary deviation from the existing standards and
ecosystem.

In response, we present CTng, a redesign of CT. CTng
achieves security, including transparency of certificate and
of revocation status, with No Trusted Third Party, while pre-
serving client’s privacy, allowing offline client validation of
certificates, and facilitating resiliency to DoS. CTng is effi-
cient and practical, and provides a possible next step in the
evolution of PKI standards. We present a security analysis
and an evaluation of our experimental open source prototype
shows that CTng imposes acceptable communication and
storage overhead.

1 Introduction

Public Key Infrastructure (PKI) facilitates the secure use of
public keys, which is critical for the security of open dis-
tributed systems such as the Internet. Typically, a relying
party obtains a public key and validates it using a certificate
signed by a trusted Certificate Authority (CA). The PKI de-
fines how certificates are issued and revoked (by the CA), and
how they are validated (by relying parties). Deployed PKIs
mostly follow the X.509 standard [2, 9], and the X.509-based
PKI is critical to the TLS, SSH, S/MIME and IPsec standards,
to name a few. However, there have been numerous PKI fail-
ures over the years, causing relying parties to rely on public
keys violating their policies and needs, and, often, with the

corresponding private keys controlled and exploited by attack-
ers. These failures are mostly for Web-PKI, the most common
application of PKI. Web-PKI is especially vulnerable since
the relying parties (browsers) trust a set of root CAs, where
each CA is allowed to issue certificates for end-entities and
other CAs without any restriction, and in particular, without
any domain name restrictions. As a result, each of the root
CAs is effectively a Trusted Third Party, without any restric-
tions on its abilities to certify and without mechanisms to
detect failures, typically due to a rogue or negligent CA.

There have been multiple proposals and efforts to improve
the security of PKI schemes and prevent or reduce such fail-
ures, including [1, 4–7, 10–12, 16–21, 25, 28–33]. We discuss
the evolution of PKI schemes in §2 and Table 1.

In this work, we focus on Certificate Transparency
(CT) [16, 17, 28], which is the only ‘post-X.509’ PKI scheme
deployed and used in practice (Web-PKI). CT is an IETF ef-
fort spearheaded by Google, whose goal is to provide a public
log of issued certificates, maintained by entities called log-
gers. This log can allow early detection of rogue certificates,
e.g., by the legitimate owner of a certified domain name, and,
consequently, accountability of the CAs. CT brings greater
scrutiny and oversight to the certificate issuing process and
significantly reduces the risks from rogue certificates and
rogue or negligent CAs; without CT, detection and account-
ability have been a serious challenge. CT has been adopted by
the popular Google Chrome and Apple Safari browsers, which
require that all digital certificates are CT-compliant. There
are several deployed CT loggers, run by Google, Cloudflare,
Let’s Encrypt and others, and many CAs issue CT-compliant
certificates.

A major goal of CT, already highlighted in [14, 17], is to
avoid the assumption of a Trusted Third Party. Indeed, pre-
CT X.509, especially as deployed in Web-PKI, requires a
complete trust in the root CAs. Avoiding the assumption of a
trusted CA, or any trusted third party, was eloquently named
as the No Trusted Third Party (NTTP) goal in [14, 17].

CT is being standardized by the IETF, in CT-v1 [16] and CT-
v2 [28]. Both CT-v1 and CT-v2 ensure certificate transparency
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X.509 X.509 CONIKS CTv1 CTv2 ARPKI CIRT CTwP CT-PIR CTor CTng
w/CRL w/OCSP [21] [16] [28] [25] [1] [6] [10, 19] [4]

Accountability 3 3 3 3 3 3 3 3 3 3 3

Cert. Transparency 7 7 7 3 3 3 3 3 3 3 3

Revocation Trans. 7 7 N/A 7 7 7 3 7 7 7 3

Non-equivocation 7 7 3 7 7 3 7 7 7 7 7

Client privacy 3 7 7 7 7 7 7 3 3 3 3

NTTP 7 7 3 7 7 3 7 7 7 7 3

NTTP-revocation 7 7 7 7 7 7 7 7 7 7 3

Offline validation 3 7 7 7 7 3 7 7 7 7 3

DoS-Resiliency 3 7 7 7 7 7 7 7 7 7 3

Evolutionary 3 3 7 3 3 7 7 7 7 7 3

Other concerns Trusted CA No certs Trusted Logger Overhead, complex Tor

Table 1: Comparison of relevant PKI schemes; see text for other schemes and for details. Properties include: Certificate
Accountability (certificate can be traced back to the issuing CA), Certificate Transparency (all certificates publicly available),
Revocation-status Transparency (the revocation-status is publicly available), Non-equivocation (no conflicting certificates
for the same domain), Offline validation (certificate transparency and non-reocation are validated locally, using prefetched data,
without online communication), NTTP (No Trusted Third Party; separately for revocation), Client (relying party) privacy (no
exposure of the certificates checked by relying parties), DoS-Resiliency (entities can bound the rate of requests), Evolutionary
(same entities, interactions and ecosystem as of current standards), and other concerns.

but only if the logger is honest and for this reason fail to
achieve the NTTP goal. Currently, browsers that support CT,
rely on redundancy of loggers, i.e., require the logging of each
certificate with multiple loggers. However, since the loggers
are chosen by the (possibly corrupt) CAs, the security benefits
are limited. Furthermore, Google’s Chrome implementation
requires one of the two loggers to be the one operated by
Google itself, making the requirement amount to, basically,
requiring clients to trust Google. Many customers probably
trust Google, but this is a far cry from the NTTP goal.

CT-v1 and CT-v2 do not ensure revocation-status trans-
parency (RT), enabling the Zombie certificate attack which we
present in §2.4. Of course, there exist established mechanisms
to handle certificate revocation, including both ‘online’ mech-
anisms such as OCSP [23], and ‘offline’ (periodical) mech-
anisms such as CRLs [9], CRLite [15], Let’s Revoke [27],
CRLSets [13] and OneCRL [8]. However, none of them en-
sure transparency of revocation status; as a result, these re-
vocation mechanisms, and hence also CT-v1 and CT-v2, are
vulnerable to attacks by a rogue CA (§2.4). Extensions to CT
that handle revocation transparency were proposed [18, 25],
but not deployed.

We present the first systematic study of the security guaran-
tees of CT (both CT-v1 [16] and CT-v2 [28]). We find that CT
ensures many PKI security properties. However, two impor-
tant properties, certificate transparency and revocation status
transparency, hold only assuming a Trusted Third Party: the
logger for certificate transparency, and the CA for revocation
status transparency. Other drawbacks of CT-v1 [16] and CT-
v2 [28] include loss of relying party (client) privacy, requiring
clients to perform on-line validation checks, and vulnerability

to DoS attacks; see Table 1 and §2.
We also present CTng, a further evolution of CT. CTng

modifies the current CT design in limited ways, sufficient to
ensure the security properties, including certificate and revo-
cation status transparency, without requiring any trusted third
party, i.e., satisfying the NTTP goal. CTng also addresses
other drawbacks of current CT designs: it ensures relying
party privacy, allows clients to validate certificates locally
(offline), and facilitates robustness against DoS attacks. Fur-
thermore, CTng is practical; in particular, it requires only
limited, evolutionary changes in the CT and Web-PKI ecosys-
tem and interactions, allowing incremental adoption and it
imposes only modest overhead on relying parties (browsers).
The evolutionary nature of CTng facilitates reuse of existing
modules; in fact, our (open-source) implementation logger
reuses Google’s logger’s code as is, and the total implementa-
tion required only 4056 lines of code; see Table 6. To support
revocation, CTng uses the efficient Certificate Revocation
Vector (CRV) design of [27], inspired by CRLite [15]. CTng
extends the CRV design to further provide efficient revoca-
tion status transparency. The revocation status transparency
mechanisms are independent from the certificate transparency
mechanism, allowing for incremental adoption. Our experi-
ments confirm the efficiency of CTng, especially for relying
parties. For a realistic deployment of 200 CAs logging with 5
loggers each, and a total of 200 million certificates (Table 5),
the size of a daily certificate transparency update is 10-50 kB
and the required storage is 3.65-18.25MB, depending on the
number of logger updates; the size of the revocation trans-
parency update is 314 kB (1% revoked certificates) and 618
kB (10%, massive revocation event [34]) while the storage
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is 2.79 MB (1%) and 12.59 MB (10 %), when compressed.
See §6 for further details.

Contributions:
• We review the evolution of PKI schemes, focusing on

Certificate Transparency, and identify security goals and
drawbacks of different schemes (Table 1 and §2).

• We present CTng, an evolutionary extension of CT as
defined in [16, 28], with comparable efficiency and com-
plexity. CTng addresses the major issues with current
CT: it ensures revocation status transparency and NTTP,
preserves privacy, allows offline certificate validation,
and facilitates resilience against DoS.

• We present a (simple) Zombie certificate attack and ex-
plain why current CT is vulnerable to it, motivating the
need for revocation status transparency (and CTng).

• We present a performance evaluation of our open-source
implementation of CTng, showing its efficiency and scal-
ability.

2 The Evolution of PKI Schemes

This section reviews the evolution and properties of (applied)
PKI schemes, focusing on Certificate Transparency (CT) [16,
18], as summarized in Table 1.

2.1 Failures of Classical PKI

The basic construct of PKI is the public-key certificate which
follows the X.509 standard. A certificate is a statement, dig-
itally signed by a certificate authority (CA, aka the issuer),
which contains the public key pk, an identifier and/or proper-
ties of the subject. The subject is the owner of the correspond-
ing private (secret) key sk. The certificate is issued by the CA
at the request of the subject, for example, bank.com. Before
issuing, the CA should validate that the request is authentic,
i.e., was really sent by bank.com. The certificate subject can
request to have its certificate revoked (invalidated prior to its
expiration date), e.g., if its private key is compromised or if
the certificate was improperly or fraudulently issued.

X.509-based certificates rely on Trusted Third Parties
(TTP); a relying party should use a certificate only if the
certificate was issued and properly signed by a certificate
authority (CA) which the relying party trusts. Trust may be
direct (such as a root CA) or through a chain of trust (such
as using intermediate CAs). Unfortunately, in multiple cases,
CAs failed to protect their private keys, failed to validate that
the request for certificate was by the legitimate domain owner,
or failed in other ways. Prior to CT, there was no efficient
and deployed mechanism to detect such failures or the result-
ing fraudulent certificates. Fraudulent certificates could be
‘stealthily’ abused for a long time, and would only be discov-
ered, rarely, when the targeted relying party suspected the

certificates. This problem is aggravated by the fact that in
Web-PKI, any CA can issue a certificate for any domain.

2.2 CT: Vision, Entities and Processes
Certificate Transparency was proposed to ensure trans-
parency of certificates, i.e., provide public logs containing
all certificates, The logs are maintained as Merkle trees [22]
of certificates by entities called loggers. Loggers provide a
signed attestation for logging a certificate. Relying parties
only use certificates which include1 an attestation signed by a
trusted logger. In CT, this attestation is called an SCT (Signed
Certificate Timestamp) and it is simply a signature of the
logger on the certificate and current time, a promise to add
the certificate to the log. Only later, but at least once every
MMD (Maximal Merge Delay), the logger computes the head
(digest) of the log, and signs it and the current time producing
an ST H. In contrast, in CTng, the logger first adds certificates
to the tree and computes the ST H, and only then sends to
the CA the ST H, together with a Proof of Inclusion (PoI),
attesting that the certificate was included in the log.

CT introduces another type of entity, the monitors, whose
role is to monitor public logs and detect rogue certificates, and
the rogue or faulty CAs that issued them. Ideally, monitors
would allow to detect rogue certificates prior to their use in
an attack against some relying party, and to quickly address a
faulty or rogue CA - if necessary, by removing them from the
list of trusted CAs. Clearly, CT defends against rogue CAs,
assuming a benign logger. However, what about rogue loggers
(and monitors)? Does CT simply move the Trusted Third Party
(TTP) assumption from the CAs to loggers and/or monitors?
The early CT publications defined a more ambitious goal,
called No TTP (NTTP): ensuring security without assuming
any TTP [14].

To achieve NTTP, CT prescribes, in addition to logging and
monitoring, also auditing to validate attestations issued by
loggers and gossiping to detect inconsistent ST Hs. However,
as we explain next, this property is not achieved by the cur-
rently published variants of CT; in particular, none of them
include a well-defined gossip mechanism, or identify precise
assumptions which are required to achieve security. CTng,
on the other hand, clearly defines all CT processes, including
auditing and gossip, and our analysis ensures that security is
guaranteed under well-defined and reasonable assumptions,
finally satisfying the NTTP goal.

2.3 Existing CT Versions and their Limita-
tions

CT is widely adopted in practice, including by two popular
browsers (Chrome and Safari) and it is the subject of the IETF

1By sending the attestation included inside the certificate using the
X.509v3 extensions mechanism [9]. CT certificates are compatible with
‘legacy’ (pre-CT) subjects and relying parties.
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Public Notary Transparency (trans) working group, which
produced an experimental RFC6962 [16] and is working on
a revised version [28]; we refer to these two versions as CT-
v1 and CT-v2, respectively. The most significant difference
between CT-v1 and CT-v2 is that CT-v1 claims the goal of se-
curity against rogue logger (although it does not fully achieve
this goal), while CT-v2 explicitly assumes loggers are benign.
Neither version, however, achieves security allowing for rogue
loggers, i.e., they do not achieve the NTTP goal.

CT-v1 attempts to detect rogue loggers by combining three
mechanisms: monitoring, auditing and gossiping. In monitor-
ing, the monitors, periodically, request the ST Hs as well as
new certificates from the loggers. Auditing is performed by re-
lying parties, when validating a certificate and the associated
SCT To audit, the relying party should request the correspond-
ing ST H together with a proof of inclusion (PoI) from the
logger, and then use the PoI to validate that the certificate
appeared in the Merkle tree whose head was signed in the
ST H. Finally, relying parties and monitors should gossip the
ST Hs among them, detecting if the logger sends conflicting
ST Hs.

However, implementations of CT rarely implement these
mechanisms; and even when implemented, they do not suffice
to ensure NTTP - which are probably the reasons that CT-v2
simply assumes a trusted logger. We first explain why these
mechanisms would not suffice to ensure NTTP, then explain
why they are often not implemented, and then what is the
current approach to deal with the concern of rogue loggers.

Why CT-v1 is not fully implemented? Two important mecha-
nisms of CT-v1 are rarely implemented: gossip and audit. The
lack of gossip is due to the fact it was never fully specified,
possibly due to performance and implementation challenges2.
The lack of audit is due to serious concerns regarding privacy,
performance/usability and Denial-of-Service (DoS). Privacy
is exposed since, by sending the SCT during audit, the client
exposes which website it is visiting; the performance/usability
concern is due to the fact that the client is supposed to wait for
a response from the logger, which can cause significant delay;
and this design opens the logger to DoS and performance chal-
lenges, since it has to respond to requests from an unknown
number of (unknown) clients. Note also that audit requires
the client to be connected (online), which is not always true.

Why does CT-v1 fail to ensure NTTP? Even if CT-v1 was
fully implemented, there are three reasons that it would still
fail to ensure NTTP. First, CT-v1 does not ensure revocation-
status transparency; hence, a rogue CA may provide mislead-
ing certificate-status to allow attack on a relying party (§ 2.4).
Second, a rogue logger may provide an SCT to a certificate it
never sends to the monitors yet avoid detection: if a relying
party audits this SCT , the rogue logger sends a corresponding
ST H and PoI. Even if the relying party gossips this ST H with

2RFC6962, Section 5 states “All clients should gossip with each other,
exchanging ST Hs at least”; this seems to require client-to-client communica-
tion, which is hard to implement and may require high overhead.

the monitors, the attack will not be detected since the logger
uses a different timestamp on this ST H from the timestamps
of ST Hs it sends to the monitors. Finally, a logger can simply
fail to respond to auditing requests, and/or to requests for a
proof of consistency (PoC) between two ST Hs.

How does current CT defend against rogue loggers? The
Chrome browser provides a limited defense against rogue
loggers, using logger redundancy3. Namely, Chrome requires
certificates to come with at least two SCT s, one of them from
a Google log and one from a non-Google log. The support
for multiple SCT s is standardized in CT-v2 [28], although,
the standard does not require logger redundancy. Safari’s
implementation requires only log redundancy, i.e., multiple
SCT s from different logs - but possibly from the same logger.
It suffices for one of the logs (or loggers) to operate correctly,
for certificate transparency to hold.

However, log/logger redundancy provides limited security.
First, it does not provide revocation-status transparency, so
relying parties are still vulnerable to a rogue CA (see § 2.4).
Second, the logs or loggers are chosen by the CA; log redun-
dancy is even less meaningful, as the different logs may be
from the same log operator. This is not very secure against
collaborating rogue CA and rogue logger. Note also that some
of the loggers are also CAs, and monitors do not necessarily
monitor all loggers. Therefore, this assumption may not be
much better than the assumption of a trusted CA - except,
possibly, that the ‘loggers club’ may, at least in the present,
be more selective than the ‘CA club’.

CTng provides an alternative design, which achieves the
NTTP goal [14], under what we consider as reasonable as-
sumptions, and also avoids privacy exposure during audit-
ing. CTng is also practical: it does not introduce significant
overhead, complexity or compatibility issues and its design
was guided by these goals. It also addresses another major
shortcoming of current CT: its lack of revocation status trans-
parency. Let us now explain the potential risks due to using
CT without revocation status transparency.

2.4 Revocation is Broken: the Zombie Certifi-
cate Attack

Certificates should be sometimes revoked, i.e., invalidated
before their expiration date. Revocation can be for different
reasons: the secret key corresponding to the endorsed public
key is lost, stolen or otherwise compromised or, perhaps more
importantly, the certificate is found to be issued in error or
fraudulently. The latter is particularly important as Certificate
Transparency provides retroactive security only - CT does not
prevent fraudulent certificates from being issued, it only al-
lows them to be discovered and the only meaningful response
is to have the certificate revoked.

3Chrome policy is at https://github.com/chromium/ct-policy/
blob/master/ct_policy.md, and Safari’s policy is at https://support.
apple.com/en-us/HT205280.
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Revocation is supported already in early versions of X.509,
using CRLs and then also using OCSP. However, in spite
of some optimizations, the overhead of CRLs is excessive,
and most browsers stopped supporting them. Some browsers
support OCSP, but due to delay and availability concerns, of-
ten allow ‘soft-fail’, i.e., accepting certificates when OCSP
response is not received ‘in time’. An alternative is ‘Sta-
pled OCSP’ where the OCSP response is sent by the server,
with the Must-Staple extension to ensure ‘hard-fail’; however,
this has deployment challenges. As a result, major browsers
changed to prefetch revocation updates, typically directly
from the browser-vendors. See details in see [3, 15, 27]; note
that the current prefetch designs imply reliance on a Trusted-
Third-Party, i.e., are vulnerable to a rogue CA and/or rogue
vendor.

This problem is not addressed by the current design and
deployments of CT. Indeed, neither CT-v1 nor CT-v2 ensure
revocation status transparency. Hence, we must rely on certifi-
cate authorities to honestly attest to the certificates revocation
status. This is a problematic assumption as the motivation
behind CT is based on the fact that we cannot trust CAs to
honestly issue certificates. If that is the case, why would we
trust them to honestly revoke certificates, i.e., report correct
revocation status?

The lack of revocation status transparency enables a rogue
CA to launch the following simple yet quite powerful attack,
which we call the Zombie certificate attack, where the cer-
tificate’s revocation status might be inconsistently presented
to relaying parties in two ways. A rogue CA can mislead
some victim relying party into trusting and using a revoked
certificate, whose private key is known to the attacker, by pro-
viding a rogue attestation that the certificate is not revoked. In
a different attack, consider a certificate that was not revoked
A rogue CA can provide a misleading attestation to a partic-
ular client (e.g., browser), as if that certificate was revoked.
This may cause the browser to reject the (valid) certificate,
preventing the use of the corresponding website or service (a
form of censorship), or forcing the client to connect to another
service.

In [18], Laurie describes a high-level design for Revocation
transparency, however, it lacks details, and suffers from severe
performance concerns. These concerns, and a more complete
and efficient design, are presented in CIRT [25]. However,
CIRT does not provide security against rogue loggers, i.e.,
does not ensure NTTP, and does not address other concerns
such as client-privacy and resiliency to DoS. Both designs
also fail to address the efficiency and availability concerns
that motivate browsers to avoid relying on CRLs and online
OCSP queries.

CTng provides an efficient and practical solution to revo-
cation, ensuring transparency; the main innovation is that
relying parties (e.g., browsers) prefetch revocation status in-
formation from a monitor, using the efficient CRV encoding
of [27]. To ensure NTTP without requiring relying-parties to

fetch or verify multiple signatures, CTng relies of thereshold
signatures.

3 CTng: Goals and Model

This section describes our goals, system model and adversary
model.

3.1 CTng Goals
Evolutionary extension to Web-PKI and CT. A principle
we adopted is to augment, rather than to replace, the ex-
isting Certificate Transparency and Web-PKI, minimizing
changes and proceeding with those which appear unavoidable
to achieve our security goals. New or significantly revised
security mechanisms face unavoidable adoption challenges
and therefore, minimizing the potential disruption is critical.
Indeed, CT itself was carefully designed to limit changes to
the Web-PKI ecosystem, such as the introduction of loggers
and monitors. CTng does not introduce any additional entities,
and requires only modest changes to the roles and processes
of the existing CT entities.

In particular, CTng does allow the use of the existing CT
logger, as already deployed, and only requires to add a sepa-
rate revocation status logger module. Because the certification
log does not change, CTng is also compatible with existing
monitors.

Preserve Web-PKI and CT security properties. As a
part of the evolutionary approach, CTng should provide all
existing security properties of Web-PKI and CT, such as ac-
countability and transparency of certificates.

Ensure revocation status transparency. CTng should
provide revocation status transparency to ensure integrity of
the revocation mechanism, even if a rogue CA sends incorrect
revocation status information. In particular, CTng needs to
protect against the Zombie certificate attack.

Relying-party Privacy. CTng should not compromise the
privacy of the relying parties. In particular, CTng will not
expose which certificates are used and/or audited by relying
parties, even to an attacker who controls the corresponding
CA, logger and monitors.

No Trusted Third Party (NTTP). A major goal for CTng
is to achieve NTTP security, i.e., achieve its security proper-
ties, including certificate transparency and revocation status
transparency, with no trusted third parties. More precisely, we
only assume that there are at most f rogue entities, where
CTng should be efficient for significant values of f .

Offline client. CTng allows clients to validate certificates
offline, i.e., without any communication (except for receiv-
ing the certificate). This has few advantages, but let us focus
on one: avoiding a delay or failure due to waiting for re-
sponses; in reality, this issue can be crucial as delays can be
significant and failures may occur for different reasons. The
importance of supporting offline clients is amply illustrated
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by the adoption, and later abandonment, of the OCSP protocol
for checking certificate (revocation) status [13, 23].

DoS-resiliency. Most PKI designs require servers to pro-
vide online services to arbitrary, unknown clients. For exam-
ple, OCSP requires CAs to send (signed) responses to clients,
and both CT-v1 and CT-v2 require loggers to send audit re-
sponses, containing the ST H and PoI. Furthermore, to reduce
(not eliminate) the privacy exposure, these requests are sent
over a secure connection (TLS). All of these allow rogue
clients to perform DoS attacks by overloading the servers
with requests. This issues can also translate to DoS on the
website, if the client would ‘hard-fail’ upon not receiving
the response, which can also be due to a DoS on the client’s
communication. (If the client ‘soft-fails’, this issue allows
circumvention of security.)

Efficiency. CTng should be as efficient for subjects, relying
parties, CAs and loggers as CT-v1 and CT-v2. Monitors in
CTng will perform additional functions compared to monitors
in CT-v1 and CT-v2, however, these services involve mini-
mal overhead, typically negligible compared to the ‘classical’
monitoring service.

Efficiency, here, refers to the computational resources, com-
munication overhead, and to the total delay per operation. In
particular, CTng should ensure liveness, i.e., every service
should be completed within bounded (and minimal) time.

3.2 System Model and Assumptions
CTng considers five types of entities: CAs, loggers, monitors,
subjects and relying parties.

We assume the standard Web-PKI model, with a set of
root (anchor) CAs trusted by relying parties. We assume that
relying parties are initialized with the public keys a set of
loggers and monitors, and monitors are initialized with the
public keys and of other monitors. For convenience, we con-
sider only a single log for each logger, although CTng can be
trivially adjusted to allow multiple logs by the same logger.
As discussed earlier, we present CTng using and extending
the CRV revocation mechanism of [27]; for simplicity, we
also consider only a single CRV per CA.

Loggers periodically (at least every MMD) publish a times-
tamped digest of the certificate log (ST H) and (at least every
MRD) publish a timestamped digest of the revocation status
log (SRHL). We assume that monitors know the value of the
MMD and MRD of each logger.

A challenge for CTng- as for many distributed security
services, which require timely services and distribution of
information - is that such services require reliable, timely
communication and clock synchronization. CTng requires
only loosely-synchronized clocks and bounded-delay commu-
nication. Specifically, we assume that entities have loosely
synchronized clocks, i.e., the clock drift between any two
clocks is bounded by ∆clk at any time. Further, the commu-
nication delay between any pair of entities is bounded by

∆com. We assume that 2∆clk +∆com ≤MMD. For simplicity,
we adopt the standard simplifying assumption of ignoring
computation time and network bandwidth limitations.

We assume that all benign monitors form a connected
graph, whose diameter is at most a known bound denoted
by dM . We also assume that each logger is monitored by at
least f +1 honest monitors, where f is the known bound on
the number of malicious monitors. This requirement can be
easily ensured by having at least 2 f +1 monitors watching
over each logger. These assumptions are summarized by the
following definition.

Definition 1 (Monitors initialization and connectivity). Log-
ger L is (dM, f , tIM)−monitored in an execution, if:

1. L is monitored by f +1 or more benign monitors, since
time tIM or earlier.

2. Let VB be the set of benign monitors and EB be the set
of edges connecting gossiping pairs of benign monitors.
Then (V,E) is a connected graph whose diameter is at
most dM .

3.3 Adversary Model and Assumptions
In order to ensure NTTP-security, we allow the attacker to
completely control an arbitrary set of up to f monitors as
well as an arbitrary set of CAs and loggers, and, of course,
subjects and relying parties. Further, we assume that the at-
tacker cannot interfere with communication between honest
entities. This assumption is important since transparency re-
quires loggers to respond to requests and provide logs in a
timely fashion. If we allow the adversary to interfere with
communication, we cannot identify rogue loggers who fail to
keep up to their commitments (responding to requests).

We assume that the adversary is computationally bounded,
and the standard security assumption regarding cryptographic
mechanisms used by CTng. Specifically, we assume that we
use an existentially-unforgeable digital signature scheme,
Merkle trees with the standard collision-resistance and proof
of inclusion properties, and a collision-resistant hash function.

4 CTng: Design

CTng consists of four main interactions, each marked by a dif-
ferent color in Figure 1: issuing certificates (§4.2), revoking
certificates (§4.3), monitoring and gossip (§4.4), and, finally,
periodic updates (‘prefetch’), allowing relying parties to lo-
cally confirm that a received certificate is transparent and
non-revoked (§4.5). Before we present each of these interac-
tions, we begin with a high-level overview (§4.1). Table 2
presents notations used in figures and text.

Simplification: For clarity of exposition, in the figures and
discussion in this section, we simplify and assume perfectly
synchronized clocks (∆clk = 0). However, our analysis allows
bounded drift, i.e., ∆clk > 0; see §5. We also assume one CA
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Notation Meaning Usage
C

T

ST H Signed Tree Head Signature by logger over the ‘head’ (root/digest) of the certificate transparency log. See Equation 1.
PoI Proof of Inclusion Verifiable proof that a given certificate was included in a log.
MMD Maximum Merge Delay Maximum time interval between the issuing of consecutive ST Hs by the same logger.
SCT Signed Certificate Timestamp Logger’s signature on a certificate and current time. Serves as the logger’s commitment to add the certificate to

the log within MMD. Essential in CT-v1, optional in CTng.
ST HMi Partial signature on ST H by monitor i Endorsement of ST H by an individual monitor i.
ST HM Complete signature on ST H Endorsement of ST H by at least f +1 monitors.

R
T

CRV Certificate Revocation Vector Bit vector maintained by each CA, where each bit represents the revocation status of a certificate issued by that
CA. Each certificate has a unique identifier which maps it to a specific bit in a CRV .

∆CRV Difference from previous CRV Bit vector indicating certificates revoked since the last CRV .
MRD Maximum Revocation Delay Maximum time interval between the issuing of consecutive CRV s by the same CA; typically a day.
SRHCA Signed Revocation Hash (by CA) Signature of a CA over the revocation status of certificates issued by the CA. See Equation 3.
SRHL Signed Revocation Hash (by logger) Signature of logger L over revocation status of certificates issued by a specific CA. See Equation 4.
SRHMi Partial signature on SRHL by monitor i Endorsement of SRHL by an individual monitor i.
SRHM Complete signature on SRHL Endorsement of SRHL by of at least f +1 monitors.

Ti
m

e ∆clk Clock synchronization bound Maximum clock drift assumed between any two clocks at any time.
∆com Communication delay bound Maximum communication delay between any pair of entities.
tI
φ

Initialization time of entity φ Defines when entity φ was initialized. Times are given on the entity’s own clock.

Se
cu

ri
ty PoM Proof of Misbehavior Verifiable proof showing that an entity is corrupted, e.g., two conflicting ST Hs issued by the same logger.

NTTP, f No Trusted Third Party Security goal: security properties are achieved even if up to f entities are corrupt.
dM Diameter of benign monitors Maximal diameter of the graph of benign monitors, with edges for gossiping-pairs.

Table 2: A list of notations used throughout this work.

and one logger; the design trivially extends to many CAs and
loggers.

4.1 Overview of CTng

As can be seen in Table 1, CTng is the first PKI design to en-
sure security without assuming Trusted Third Parties (NTTP).
CTng is also the first to achieve many other combinations
of important features, e.g., certificate transparency with DoS-
resiliency and revocation status transparency with both client
privacy and offline validation.

Importantly, these significant security advantages of CTng
require only modest, evolutionary changes from the exist-
ing, deployed PKI designs. The most significant change, es-
pecially compared to the previous versions of CT, is that
CTng allows relying parties to validate both transparency and
non-revocation offline, i.e., without any PKI specific commu-
nication at the time the certificate is evaluated (e.g., when
establishing a TLS connection) and only requiring periodical,
offline updates from the monitors (steps P.1 and P.2). The
offline validation preserves client’s privacy, avoids the delay
and unavailability concerns due to online connectivity, and
has modest communication and storage requirements.

Specifically, CTng ensures transparency by having relying
parties accept certificates only with a PoI that can be validated
using a verified ST H. A verified ST H is one received in pe-
riodical updates from a monitor - in the past, or, optionally,
in the near future. Similarly, relying parties maintain fresh
Certificate Revocation Vectors (CRV s) for each CA, by pe-
riodically downloading from a monitor updated ∆CRV s and
SRHs allowing validation of the ∆CRV s. Proposed in [27], a
CRV is a vector containing one bit for each certificate issued

by the CA; the bits of revoked certificates are turned on. A
∆CRV is a compressed vector, with only bit for newly revoked
certificates turned on.

Both ST Hs and SRHs are signed by a set of f + 1 moni-
tors, using a threshold signature ( [26]); this suffices to ensure
NTTP for transparency of both certificate (ST Hs with PoIs)
and revocations (SRHs and ∆CRV s). Overhead is minimal:
communication and validation of only one signature per vali-
dation, received from any monitor (ensuring availability and
robustness to DoS).

Issuing and logging certificates. A subject (step I.1) re-
quests a CA to issue a new certificate. If the request is valid,
the CA generates a certificate and submits it to a logger (step
I.2). The logger, within MMD, responds (step I.3) with the pe-
riodical Signed Tree Head (ST H) and the PoIs for the certifi-
cates issued (since last ST H). The ST H is a signed digest of a
Merkle tree containing only certificates logged since previous
ST H; this suffices to ensure transparency, since monitors and
relying parties maintain ST Hs (until corresponding certifi-
cates expire), and ST Hs are numbered sequentially, ensuring
consistency. The use of these much-smaller trees improves
efficiency4 (esp. of PoIs and their validation), e.g., compared
to CT-v1.

The CA returns the complete certificate, with ST H and PoI,
to the subject (step I.4). The subject can optionally request a
monitor to monitor logs for its id, notifying the subject if any
relevant, suspicious certificates are found.

Revoking certificates and logging certificate status. If nec-
essary, the subject requests to have its certificate revoked (step
R.1). The CA locally marks the certificate as revoked. Once

4CTng supports use of legacy CT-v1 loggers, but then these savings are
lost.
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Figure 1: CTng: entities and interactions. See §4.1 for an overview and Table 2 for notation.

per MRD, each CA sends a revocation update to the logger
(step R.2); CTng uses the efficient Certificate Revocation Vec-
tor (CRV ) design from [27], and therefore sends the compact
(compressed) ∆CRV , and the SRHCA attesting for all revoca-
tions done so far. The logger may respond with SRHL, its
attestation of revocation transparency; and the CA may return
the SRHCA and/or SRHL to the subject (steps R.3, R.4).

Monitoring and gossip. Monitors, in CTng, may provide
oversight of certificates in logs, typically as requested by
clients; and also provide transparency and revocation updates
to relying parties, allowing them to validate certificates. To
ensure NTTP, each logger is monitored by at least f +1 be-
nign monitors (or, by 2 f + 1 monitors, out of whom f can
be faulty). Every MMD, each monitor requests certificate log
updates (ST Hs) from each logger it monitors (step M.1); of-
ten, but not always, monitors will also ask for the certificates
issued (from last update). The logger responds with all ST Hs
issued since the last update, and, if requested, also with the
logged certificates. Similarly, every MRD, each monitor re-
quests revocation status updates (∆CRV s and SRHs) from
each logger (step M.3). Each logger responds with the revo-
cation updates (SRHs and ∆CRV s) from all of its CAs (step
M.4).

Upon receiving an update, the monitor (step M.5) validates
it and gossips it with other monitors. If a logger equivocates
(by sending conflicting ST Hs or SRHs), the monitors quickly
detect it. If conflicts are found, the monitors gossip a Proof of
Misbehavior (PoM); otherwise, each monitor gossips its share
of an f + 1 threshold signature, ensuring NTTP, and upon
receiving the necessary shares, combines them to produce
the corresponding monitor threshold signatures: ST HM and
SRHM , used in periodic updates of relying parties.

We next discuss each of these processes in detail.

4.2 Issuing Certificates
We now discuss the process of issuing certificates, including
the logging of the issued certificates; this process is illustrated
in Figure 2.

The process of issuing a certificate in CTng starts just like
in CT. First, a subject sends a request to a CA for a new
certificate and the CA validates that the subject has the right
to receive the certificate5, e.g., for TLS certificates, the CA
verifies that the subject owns the corresponding domain name.

Let us first describe how the process continues in (current)
CT. The CA generates a pre-certificate6 with a non-critical
X.509v3 extension, which we refer to as the CT extension,
containing one or more SCT s, i.e., commitments made by
loggers to add the certificate to their logs. Logs are publicly
available to monitors and they can be audited using those
SCT s. When requested by relying parties or any other entity,
the loggers are supposed to provide the corresponding ST Hs
with PoIs, proving that the certificates were indeed (eventu-
ally) added to the logs. This design has drawbacks, however.
In particular, the above audit process requires that relying
parties send their SCT s to the logger, which exposes to the
logger the websites visited by the relying party (the browser),
and requires browsers to wait for a response. For this reason,
the implementations of CT, both in Chrome and Safari do not
perform the auditing process; see §2.3 for more details.

5As in CT-v1 and other PKI schemes, CTng does not specify the validation
process used by the CA.

6The CT-extension should contain input from the logger - SCT for CT-v1,
and ST H and PoI for CTng; the certificate, signed by the CA but with an
empty CT-extension, is called a pre-certificate.
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CTng also uses the CT extension, similarly kept empty
by the CA in the pre-certificate sent to the logger. However,
in CTng, the logger ‘fills’ the CT extension with an ST H
together with a PoI, rather than one or several SCT s. Namely,
in CTng, certificates include a proof that they were logged,
rather than just a promise that they would be.

We now describe the logging process for newly issued
certificates. Each logger maintains a log of certificates as
a Merkle tree, which is periodically updated by adding cer-
tificates submitted by the CAs and generating an ST H. To
ensure security, logger should always produce an ST H upon
completion of each MMD, even if no new certificates were
issued. If ST H are only issued at end of MMD, then issuing
may require up to an MMD. Waiting an MMD for a new cer-
tificate should usually be fine, especially that MMD may be
quite short (and logger specified). However, loggers may want
to issue ST Hs more frequently, e.g., to allow quick recovery
from key exposure or just urgently-issue a new domain. To do
so, loggers can issue ‘within-MMD-ST Hs’; these are treated
just like the ‘end-of-MMD’ ST Hs by relying parties (the dif-
ference is only that monitors may pick them only at the end of
the MMD period). To ensure that all ST Hs are accounted for,
each ST H includes a sequential serial number, so monitors
and relying parties can confirm they have all ST Hs issued
by a logger until the latest MMD; any other ST H from the
logger until this time, is a conflict and proves that the logger is
misbehaving. If a malicious logger produces an ST H, fails to
disclose it to the monitors but provides it to a subject (through
a malicious CA), the relying party will discover this misbehav-
ior, by comparing the ST H against the set of published ST Hs
of this logger, which the relying party receives in periodical
updates from monitors, as described in § 4.5. The discovery
will usually be immediate, before usage, or, optionally, occur
at the next update, and always result in a third-party verifiable
Proof of Misbehavior (PoM) of the logger.

To ensure efficient, bounded storage and communication
resources, CTng limits the maximal number of ST Hs a logger
may issue in a single MMD. This is consistent with CT-v2,
which defines a maximum number of ST Hs per MMD, as one
of the required log parameters.

An ST H computed by logger L is a tuple:

ST H iP, iS
L ≡ (tL, iP, iS, iC, h, σ) (1)

where:
1. tL is the timestamp, i.e., the time on logger L’s clock,

when the ST H was computed; L produces a periodic
ST H whenever its clock shows tL = tI

L + iP ·MMD, for
every integer iP, and ‘within-MMD-ST Hs’ as needed
(up to the maximal allowed number). Each ST H will
have a unique tL value.

2. iP ∈ N is the number of MMD periods (since logger L
started, at tI

L). For the ‘usual’ case of ST H issued at the
end of of the MMD period, we have tL = tI

L + iP ·MMD;
for ‘within- MMD-ST Hs’, iP is

⌈
(tL− tI

L)/MMD
⌉
.

3. iS is the sequence number of this ST H since the begin-
ning of this MMD period, i.e., since tI

L+(iP−1) ·MMD;
typically, iS = 1.

4. iC is the total number of entries (certificates) in the log
Log, i.e., iC = |Log|, when this ST H is issued.

5. h is the ‘head’ (digest) of the Merkle tree, whose leaves
are the pre-certificates in the log Log, issued since the
previous ST H. (In CT-v1, the tree is over all certificates.)

6. σ = SignL(tL || iP || iS || iC || h) is the logger’s signature
on the ST H using the logger’s secret signing key.

We assume that all parties are aware of loggers’ public
parameters (e.g., their urls, public keys, logging policies, etc.),
and specifically the time logger L was first initialized, denoted
as tI

L (on L’s clock). This value could also be included in the
ST Hs signed by this logger.

4.3 Revoking Certificates

We now discuss the CTng certificate revocation process, as
illustrated and summarized in Figure 3. This process involves
the subject (initiating the revocation), the CA (performing the
revocation) and the logger (logging the revocation).

As mentioned before, CTng uses the efficient Certificate
Revocation Vector (CRV ) structure of [27]. A CRV is a bit
vector which uses a single bit to represent the revocation status
of a certificate. Each certificate has a unique identifier which
maps it to a specific bit in a CRV .

Revoking a certificate. As shown in Figure 3, CTng revoca-
tion interaction between subject (the owner of a certificate)
and a CA is simple, mostly just as in X.509. Namely, the
subject requests to have their certificate revoked and the CA,
after authenticating the request using some CA-specific pro-
cess, marks the corresponding bit in the appropriate CRV it
maintains, and then acknowledges processing the revocation.

Let us describe the process as performed by CA i ∈ NCA,
referring to the MRD period as a ‘day’ (a typical value used by
browsers). During day d−1, the CA locally updates new revo-
cations into CRVi(d), i.e., the CRV that will be used by relying
parties on day d. A subject can confirm that its certificate was
indeed revoked by auditing the certificate’s revocation status
by contacting one of the monitors; the monitors should have
the updated value CRVi(d) ‘soon’ after the beginning of day
d.

Logging revocation status. Recall that we use tI
CA to denote

the time when CA i begins running. On tI
CA + d ·MRD, i.e.,

beginning of ‘day’ d of CA, the CA computes ∆CRV (d), the
set of the certificates that were revoked since ‘yesterday’, i.e.,
since CRV (d−1):

∆CRV (d) = CRV (d−1) ⊕ CRV (d) (2)

From this point, the CA ‘freezes’ CRV (d), i.e., new revoca-
tions received and processed will be reflected in CRV (d +1).
Then, the CA generates SRHCA(d), which is the CA’s sig-
nature over the revocation status information for day d, as:
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SRHCA(d) = SignCA(d || h(CRV (d)) || h(∆CRV (d))) (3)

The CA then sends ∆CRV (d) and SRHCA(d) to the logger.
The logger validates SRHCA(d) by using Equation 2 to com-
pute CRV (d); if valid, the logger generates SRHL(d), which
is the logger’s signature over the revocation status of certifi-
cates provided by the submitting CA for day d and the CA’s
signature. Namely:

SRHL(d) = SignL(d || h(CRV (d)) || h(∆CRV (d)) || h(SRHCA))(4)

The logger then sends SRHL(d) back to the CA and makes
the revocation information available to the monitors. If the
logger does not receive a (valid) periodic SRHCA from the
CA, it produces the following error message instead:

SRHL(d) = SignL(d || no SRHCA(d) received) (5)

4.4 Monitoring and Gossip
CTng significantly expands the role of monitors compare to
current CT, e.g., CT-v1. In both, monitors can provide ser-
vice of monitoring the certificates issued by specified loggers,
typically, to detect issuing of certificates of interest, typically,
illegitimate or suspect use of a domain name, often as re-
quested by a legitimate owner of a domain. To support this
functionality, loggers are expected to provide monitors with
the logged certificates and the information necessary to vali-
date the logs for consistency.

If loggers are benign, this suffices to ensure transparency,
assuming each logger is monitored by at least one honest
monitor; indeed, CT-v2 explicitly assumes benign loggers.
However, a rogue logger may misbehave in different ways: it
may not cooperate with the monitors, send inconsistent ST Hs
to different monitors, or send ST Hs with different timestamps
to prevent detection of inconsistency. CT-v1 and CT-v2 do not
address these issues, i.e., ensure transparency only assuming
benign loggers, although there is mention of (incomplete)
mechanisms to detect rogue loggers, such as gossip and audit.

In contrast, CTng ensures transparency without assuming
benign loggers or any other Trusted Third Party, i.e., achieves
the NTTP goal as in [14]. Basically, CTng monitors perform
the following tasks: (1) monitor logs for newly logged cer-
tificates and newly issued revocation status information and
monitor loggers to ensure that they behave honestly, (2) gos-
sip the information learned from loggers with other monitors,
and lastly (3) provide periodic transparency and revocation
updates to relying parties (§ 4.5).

These operations allow to hold loggers accountable. If a
rogue logger sends two conflicting ST Hs to different moni-
tors, monitors will quickly detect it through gossip. If a rogue
logger sends two conflicting ST Hs, one to all monitors and
one to some victim relying party, then this misbehavior will
be detected by the relying party, since relying parties also

receive the ST Hs in periodic updates from the monitors. Fur-
thermore, a pair of conflicting ST Hs provides a Proof of Mis-
behavior (PoM), which can be verified by any party, showing
that the logger is corrupted, which allows CTng to ensure
NTTP-security.

4.4.1 Monitoring
We now focus on the monitoring functionality (Figure 4),
which involves periodic communication between monitors
and loggers. Each monitor periodically contacts each logger it
watches, to request the certificate transparency (CT) updates
(ST Hs), at least every MMD, and the revocation transparency
(RT) updates (SRHs and CRV s), at least every MRD. In prac-
tice, MMD and MRD may coincide; monitors can also contact
loggers more frequently. Monitors may elect to request all
newly logged certificates, which is necessary to monitor cer-
tificates, e.g., to detect suspect certificates. While only f +1
benign monitors are required to monitor each logger (and as
such, directly contact the logger), all monitors receive each
logger’s periodic updates, not including certificates, through
gossip among the monitors. Each monitor validates the update
it receives from the logger.

Validating periodic certificate transparency (CT) updates.
Upon request from a monitor for a CT update for a specific
MMD period iP, the logger returns ST H iP,∗

L , the set of all
ST Hs issued during iP. Each ST H in ST H iP,∗

L should be as as
described in Eq. (1). The monitor stores the response locally,
checks that it is valid: ST Hs include valid signature (σ), all
contain the correct period (ip) and continuous, sequential
serial numbers (is), with the lowest is being exactly one more
than that of the last ST H from the previous period (ip− 1),
and the total number of ST Hs in the set not exceeding the
maximal allowed number.

If the monitor requested {Cert}iP , the certificates issued
during iP, then the monitor stores them locally and verifies
that |{Cert}iP |= iC and that h matches the head of the Merkle
tree, whose leaves are certificates included in {Cert}iP .

Validating periodic revocation (RT) updates. The periodic
RT update consists of ∆CRVCA(d), which specifies the newly
revoked certificates, SRHCA(d), which is the CA’s commit-
ment to the revocation information CRV (d) for day d, and
SRH(d), which is the logger’s endorsement of SRHCA(d). The
monitor stores the update locally and validates that the up-
dates are consistent with Eqs. 2-4. Specifically, the monitor
computes:

CRVCA(d) =CRVCA(d−1)+∆CRVCA(d) (6)

and validates that SRHCA(d) and SRH(d) are properly signed
by the CA and logger (Eqs. 3 and 4).

4.4.2 Gossip
Monitors gossip with other monitors, by forwarding all ST Hs,
∆CRV s and SRHs (from loggers or other monitors), as well
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as all PoMs from relying parties and other monitors, and
finally also accusations of misbehavior signed by monitors.
Gossiping is performed via interactions between monitors, as
illustrated in Figure 6.

At least f + 1 benign monitors, or 2 f + 1 arbitrary mon-
itors, should request the ‘daily’ revocation information
(∆CRV (d),SRHCA(d),SRHL(d)) directly from the logger.
The redundancy ensures that if a logger fails to send pe-
riodic updates, then a sufficient number ( f + 1) of benign
monitors can accuse the logger of misbehavior; the f +1 ac-
cusations, are considered a Proof of Misbehavior (PoM). The
redundancy also addresses possible communication problems
between few monitors and the logger.

Monitors verify that ST Hs and SRHs that they receive from
other monitors via gossip (and directly from relying parties)
are consistent with the ST Hs and SRHs which they received
from loggers. The receipt of two different ST Hs with the
same sequence numbers or timestamps, or an ST H whose
combination of period-number (iP) and timestamps conflict
(not as per item 2 below Eq. (1)), or of two different SRHs
for the same or overlapping periods, results in a Proof of
Misbehavior (PoM) against the issuing logger. Notice we
allow multiple different ST Hs for the same MMD period, but
they must have distinct and continuous sequence numbers (see
Equation 1). A monitor detecting such conflict also gossips
the PoM to all monitors, as well as shares it with relying
parties upon their periodic updates.

A monitor M that receives a transparency or revocation
update, gossips it immediately. However, then, it waits 2 ·
∆com · dM , where dM is the diameter of the graph of benign
monitors and connections among them, i.e., enough time for
the update to reach all monitors and for any response PoM, or
conflicting ST H or SRHL, to reach M. If no conflict or PoM is
received, the monitor endorses the update by signing it using
its share of a threshold signing key using a threshold signature
algorithm, e.g. [26]; we denote the resulting signature shares
by SRHMi and ST HMi . Once a monitor receives f +1 of these
shares, it can combine them to produce the corresponding
monitor threshold signatures: ST HM and SRHM . This can
be trusted by the relying parties, since they are confident
that benign monitors have been exposed to the same ST H or
SRHL.

Let us elaborate, focusing, for example, on the revocations
(SRHs and ∆CRV s); the CT updates (ST Hs) are handled sim-
ilarly. Let (s,v) denote a threshold signature (private, public)
key-pair, and let si denote the fragment/share of s which is
known to monitor Mi. Suppose monitor Mi receives the daily
revocation information of CA∈NCA which was logged by log-
ger L∈NL, i.e., Mi receives ∆CRVCA(d),SRHCA(d),SRHL(d).
After Mi waited 2 ·dM ·∆com and received no conflicting SRHL
or PoM, then it uses si to compute, and then gossip, its signa-

ture share SRHMi(d):

SRHMi(d) = Signsi(∆CRVCA(d) || SRHCA(d) || SRHL(d))
(7)

When a monitor receives f +1 different signature shares,
{SRHMi(d)}

f+1
i=1 , signed by different monitors, it uses the

threshold-signature combine() operation and receives the
joint threshold signature SRHCA

M (d), which could be viewed
as a ‘regular’ signature using the threshold monitor’s signing
key s:

SRHM(d) = Signs(∆CRVCA(d) || SRHCA(d) || SRHL(d))
(8)

PoM and alerts. When a PoM is detected (or received), the
monitor should gossip it with all of its peers. Misbehaving
loggers might not cooperate with monitors, and fail to respond
properly to all or some specific monitoring requests, hoping
to avoid detection. However, if a logger does not reply within
2∆com to a monitoring request, the monitor detects that the
logger is non-responsive. The monitor cannot send a PoM, but
it generates and gossips a signed accusation message stating
that the specific logger is non-responsive. The collection of
f +1 accusation messages, signed by different monitors, is
considered equivalent to a PoM. Since we assumed that each
logger is monitored by at least f +1 benign monitors, and the
graph of benign monitors is connected, it follows that a logger
that fails to cooperate with the monitors is quickly detected
and ignored.

4.5 Periodic Relying Party Update Process
In CTng monitors not only do they monitor certificates and
revocations, but also provide relying parties with information
necessary to validate certificates offline, i.e., without depend-
ing on any real-time communication. Specifically, every rely-
ing party, periodically, requests transparency updates from
one of the monitors. The updates include newly issued ST Hs,
by every logger, which ensures certificate transparency, and
∆CRV s and SRHs, which ensure revocation transparency. To
ensure resiliency to rogue monitors, i.e., NTTP, while allow-
ing the relying party to connect to request updates from only
one monitor (for efficiency), the updates are also signed by the
threshold monitors key, i.e., must include the corresponding
ST HM and SRHM . This process as well as how TLS connec-
tions are established are illustrated in Figure 5.

CTng design does not assume trusted monitors since re-
sponses are signed by a threshold of f + 1 monitors; we only
assume that there are no more than f rogue monitors, and that
every relying party can query (at least) one benign monitor to
ensure liveness. For efficiency, relying parties first query one
(‘favorite’) monitor; if it fails, they query f other monitors.

Transparency updates. In CTng, certificates always include,
in their CT-extension, an ST H and a PoI. The relying party
uses the PoI to validate that the certificate is included in the
ST H; this ensures transparency, as long as this ST H was

11



also reported to the monitors. To validate this, efficiently and
without requiring online communication, the relying party
retains all ST Hs, from all loggers, periodically updated from
the monitors. The total storage and communication require-
ments are modest, as each ST H is very compact (e.g., 666
bytes; see Table 4). In practice, relying parties would only
need to retain ST Hs for a period of time corresponding to the
maximum lifetime of certificates, which is now capped at 398
days by major browsers [24].

In rare cases, a relying party might need to verify a recently
issued certificate whose STH has not yet been included in the
last update from the monitors. This situation should be rare,
since benign websites, usually, request certificates in advance.
Therefore, relying parties can simply refuse such connections.
Alternatively, they may accept the certificate, or immediately
ask monitors for a ‘real-time’ update. Note that even such
‘real-time’ update’ may not yet include the period covered
by this very-new ST H, ‘forcing’ the relying party to decide
whether to ‘hard-fail’ (refuse the use of the certificate) or to
‘soft-fail’ (use the certificate anyway).

Whenever the relying party detects conflicting ST Hs- im-
mediately or in an update after receiving a ‘fresh’ certificate -
this ‘conflicting’ pair of ST Hs, with same sequence number
and/or timestamp, ‘prove’ that the logger has misbehaved, i.e.,
result in a PoM which the relying party forwards to f + 1
monitors. Since this misbehavior is guaranteed to be detected
in a relatively short amount of time, it seems unlikely that
rogue loggers would perform such attacks.

Revocation updates: ∆CRV s and SRHs. CTng relying par-
ties also receive all of the revocation data for all CAs. For
each CA, relying parties download, once per MRD, the ∆CRV ,
which is a (compressed) bitmap indicating certificates revoked
since last update, as well as the signatures authenticating the
∆CRV s, i.e., the corresponding SRHs. Specifically, this in-
cludes: ∆CRVCA(d), SRHCA(d), SRHL(d) and SRHM(d).

The relying party will validate and then update its copy
of the CRV (Equation 6), which provides most recent revo-
cation status information. The communication overhead of
this process is small, since the ∆CRV s are usually sparse (few
new revocations in a single MRD), and therefore compress
very well. The storage required for the CRV s is also mod-
est: at most, one bit per certificate, even under the unlikely
scenario of a very large number of revocations which makes
compression inefficient (see Table 5 for details).

Comparison to existing prefetch of revocation information.
Our periodic update approach is consistent with the (propri-
etary) prefetch mechanisms of major browsers [8,13]. Current
browsers download revocations from their vendors; this is also
possible in CTng, as each vendor could run its own monitor.
By using monitors for both auditing loggers (for transparency)
and for receiving revocation information (CRVs), the monitors
become service providers to relying parties such as browsers.

Furthermore, the periodic information is signed and there-
fore can be cached by untrusted parties such as ISPs or CDNs,

or even distributed by appropriate encoding in DNS records,
allowing easy deployment using the existing efficient DNS
caching infrastructure.

5 Security Analysis

The basic properties of CTng, such as accountability of a
CA for issued certificates, follow immediately from the basic
X.509 design, e.g., the fact that certificates are signed. In this
section, we focus on properties related to transparency, which
depend on mechanisms beyond the basic X.509 design.

The analysis includes some ‘hairy’ aspects related to delays
(bounded by ∆com) and to clock synchronization (where the
drift is bounded by ∆clk); some of these aspects were glossed
over in the design section, for simplicity. In particular, let us
introduce assumption and notation.

The MMD and MRD assumptions: the MMD and MRD
periods are much larger than then the maximal delay ∆com and
clock-drift ∆clk. Specifically, MMD > 2 ·∆clk +(5+ 4dM) ·
dM ·∆com and MRD > 2 ·∆clk +(5+4dM) ·dM ·∆com.

The logger initialization assumption: for simplicity, we
assume that loggers are always initialized before any monitor
begins monitoring them.

Local time (tφ) notation: when referring to times measured
on the local clock of an entity φ, we identify the entity by
superscript, e.g., tφ. We do not include superscript for real-
time values.

In CTng, once a monitor begins monitoring a logger, it
would send requests periodically, again and again: every
MMD a request for ST Hs (and optionally certificates), and
every MRD a request for SRHs and ∆CRV s. The following
Lemma bounds the maximal time until the next request (of
each type), from any given time t1; this mainly deals with
the impact of potentially drifting clocks, taking advantage
of ∆clk, the maximal clock bias. The lemma allows for the
initialization time of a logger to be specified by the logger
as a response to the first query from the monitor (rather than
just assuming it’s known - a simplification which may be
inconvenient in practice).

Lemma 1. Consider a run of CTng, with a benign monitor
M, who begins monitoring logger L (for some domain) at time
t0. Then, for every t1 ≥ t0:

1. During [t1, t1 +2 ·∆clk +MMD], either M sends to L at
least one requests for periodic ST H (and certificates, if
desired) update, or M detects that L is corrupt.

2. During [t1, t1 +2 ·∆clk +MRD], either M sends to L at
least one request for periodic CRV and SRHL update, or
M detects that L is corrupt.

Proof: The periodicity mechanism is identical for the ST H
requests (every MMD) and for the SRHL and ∆CRV requests
(every MRD), so it suffice to prove for ST H requests.

If t1 = t0, then M would immediately send a monitor request
to L. Assume, therefore, that t1 > t0. If M does not receive the
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CASubject Logger
(I.1) Request a new certificate

Authenticate the subject (out-of-band)

Generate a pre-certificate

Store ST H iP , iS
L and PoIs.

Transform relevant pre-certificates to CTng certificates

≈ ≈ ≈

≈ ≈ ≈

Request ST H iP , iS
L and PoIs

(I.3) ST H iP , iS
L + PoIs

Confirmation, [Optional: certificate + SCT ]

Request a CTng certificate

(I.4) Certificate + ST H iP , iS
L + PoI

(I.2) Submit the certificate for logging

Validate and store the certificate

Confirmation, [Optional: SCT ]

Add awaiting new certificates to the log.
Generate and store ST H iP , iS

L and PoIs.

Figure 2: Certificate issuing and logging. (I.1) The subject requests a certificate from a CA who verifies the request, generates
the certificate if warranted and (I.2) submits it for logging. Optionally, the logger can immediately issue an SCT , a promise to
log the certificate within a specific timeframe. Periodically, the logger adds newly submitted certificated to its log and generates a
new ST H. Upon request from a CA, (I.3) the logger provides PoIs and ST H for the recently submitted certificates. Lastly, (I.4)
the CA return certificates with the proof of logging to the subjects.

CASubject Logger L

(R.1) Request to revoke subject’s certificate

CRVCA(d)[sub ject]← 1

≈ ≈ ≈

(R.2) ∆CRVCA(d),SRHCA(d)

Verify SRHCA(d).
CRVCA(d)←CRVCA(d−1)+∆CRVCA(d).
Generate SRHL(d).

(R.3) SRHL(d)

d−1 ends
d starts

‘Freeze’ CRVCA(d), i.e., future
revocations will be part of CRV(d +1).
∆CRVCA(d)←CRVCA(d−1)⊕CRVCA(d)
Generate SRHCA(d).

Figure 3: Revoking certificates in CTng. (R.1) The subject requests to revoke its certificate from the CA that issued it, and the
CA updates the relevant CRV locally to reflect the revocation. Periodically, the logger generates the ∆CRV and SRHCA, and (R.2)
submits them to the logger, which verify them and then generates appropriate SRHL and (R.3) sends the ST H back to the CA.
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Logger LMonitor

(P.1) Request CT updates for iP, RT updates for d (Optional: request certificates issued during iP).

(P.2.CT) {ST H iP ,∗
L }

(P.2.RT) ∆CRVCA(d), SRHCA(d), SRHL(d)

(P.2.Certs) Optional: {Cert}iP (all certificates logged during iP)

Verify that {ST H iP ,∗
L } are valid.

Store {ST H iP ,∗
L } locally.

Verify that applying ∆CRVCA(d) to CRVCA(d−1) produces
a valid CRVCA(d) according to SRHCA(d), SRHL(d) and Eqs. 2-4.
Store ∆CRVCA(d), SRHCA(d), SRHL(d) locally.

Add {Cert}iP to the locally maintained copy of the log, and

verify that the resulted tree hash matches {ST H iP ,∗
L }.

Gossip ST Hs, SRHs and ∆CRV s (see Figure 6).
If logger did not respond (properly), gossip signed ‘accusation’;
if a conflict was detected, gossip PoM.

Figure 4: Periodic monitoring between monitors and loggers assuming MMD = MRD.

Subject Relying party Monitor 1 Monitor 2 Monitor f +1

TLS connection (Cert +ST H +PoI)

Verify that Cert is valid (signed correctly, trust anchored, not expired, issued to the right subject etc.).
Verify that PoI and ST H match and verify that Cert was not revoked, i.e.: CRVCert.CA(d)[Cert.number] = 0
Check that ST H matches stored ST Hs. (If ST H is newer than stored ST Hs: may proceed “at risk” and check later)
If/when detecting conflicting ST Hs, send them (as PoM).

Verify ST HM is a valid f +1 threshold signature over {ST H iP ,∗
L }.

Verify that {ST H iP ,∗
L } are valid and store them locally.

Verify that SRHM(d) is a valid f +1 threshold
signature over ∆CRVCA(d), SRHCA(d), SRH(d).
Store SRHM(d) locally.

(P.1) Request CT updates for iP and RT updates from time d

(P.2.CT) {ST H iP ,∗
L },ST HM

(P.2.RT) ∆CRVCA(d), SRHCA(d), SRH(d), SRHM(d)

(P.3) PoM (conflicting ST Hs)
(P.3) PoM (conflicting ST Hs)

(P.3) PoM (conflicting ST Hs)

≈≈ ≈

Figure 5: Periodic transparency update process between a relying party and a monitor as well as a TLS connection between a
relying party and a subject). (P.1) The subject requests certificate transparency (CT) and revocation transparency (RT) updates
from some monitor; in response, (P.2.CT) receives the newly issued ST Hs and (P.2.RT) updated revocation status information.
(P.3) If the relying party finds conflicting information (PoM), it submits it to f + 1 monitors.
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Monitor 2Monitor 1 Monitor f +1

{ST H iP ,∗
L }, ∆CRVCA(d), SRHCA(d),SRHL(d)

{ST H iP ,∗
L }, ∆CRVCA(d), SRHCA(d),SRHL(d)

PoM (only if occurred) PoM (only if occurred)

PoM (only if occurred)

If ST Hs, ∆CRV s, SRHs are invalid,
generate a PoM.

If ST Hs, ∆CRV s, SRHs are invalid,
generate a PoM.

If ST Hs, ∆CRV s, SRHs are invalid,
generate a PoM.

Wait 2 ·∆com ·dM for a
possible conflict/PoM

Wait 2 ·∆com ·dM for a
possible conflict/PoM

Wait 2 ·∆com ·dM for a
possible conflict/PoM

If no conflict/PoM:
compute ST HM1 ,SRHM1

If no conflict/PoM:
compute ST HM2 ,SRHM2

If no conflict/PoM:
compute ST HM f+1 ,SRHM f+1

ST HM1 ,SRHM1

ST HM1 ,SRHM1 ,ST HM2 ,SRHM2

ST HM f+1 ,SRHM f+1

ST HM2 ,SRHM2 ,ST HM f+1 ,SRHM f+1

Combine {ST HMi}
f+1
i=1 into ST HM

Combine {SRHMi}
f+1
i=1 into SRHM

Combine {ST HMi}
f+1
i=1 into ST HM

Combine {SRHMi}
f+1
i=1 into SRHM

Combine {ST HMi}
f+1
i=1 into ST HM

Combine {SRHMi}
f+1
i=1 into SRHM

≈ ≈ ≈

≈ ≈ ≈

Figure 6: Gossip between monitors, where f = 2.

monitoring response by t0 +2∆com, it detects that L is corrupt.
Hence, assume that M receives this response by time t̃0 ≤
t0 +2∆com. From the response, M learns tL

I , the initialization
time of L (on L’s clock).

Beginning at t̃0, the monitor M sends monitoring requests
periodically, once per MMD, whenever its clock shows time
tL
I +∆clk + i ·MMD for any integer i, unless it earlier detected
that L is corrupt. In particular, assuming that t1 ≥ t̃0, then
M sends a monitoring request when its clock shows time

t̃M
1 = tL

I +∆clk + i1 ·MMD, where i1 =
⌈

t1−tL
I

MMD

⌉
. By definition

of i1, we have: i1 +1 <
t1−tL

I
MMD ≤ i1, hence:

tL
I +∆clk+

t1− tL
I

MMD
·MMD≤ t̃M

1 ≤ tL
I +∆clk+

(
t1− tL

I
MMD

+1
)
·MMD

Namely:

∆clk + t1 ≤ t̃M
1 ≤ ∆clk + t1 +MMD

Since M’s clock is within ∆clk from real time, we have that M,
unless it earlier detected that L is corrupt, sends a monitoring
request at (real) time t̃1 such that:

t1 ≤ t̃1 ≤ t1 +2 ·∆clk +MMD

It remains to consider the special case where t1 > t̃0, i.e., t1
occurs after M sent the first monitoring request to L, at t0, but
before M received the response, at t̃0. Let t̃M

0 denote the value

of M’s clock at t̃0. Define again i1 =
⌈

t1−tL
I

MMD

⌉
as before; then,

M sends the next monitoring request when its clock shows
t̃M
1 = tL

I +∆clk + i1 ·MMD, just like before, unless t̃M
1 < t̃M

0 ,
i.e., M was ‘supposed’ to send a monitoring request exactly
while it was waiting for the response to the first monitoring
request it sent. In this case, M would immediately send a
monitoring request, i.e., at t̃0 ≤ t1 +2∆com. The claim follows
since 2∆com < MMD < 2 ·∆clk +MMD.

Certificate Transparency (CT) was developed as a response
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to several failures of Certificate Authorities, which resulted in
issuing of rogue certificates. The basic goal of CT is to detect
rogue certificates, in order to deal with them, and possibly
with the CA failure that allowed their issuing.

In the following Theorem, we consider the simpler case
where both monitor and logger are benign, and prove that
the (benign) monitor will detect issuing of certificates for
a monitored domain, if logged by the (benign) logger. We
state and prove the property for CTng, although it is really a
special case of the theorems we prove later, allowing rogue
loggers and monitors. We present this theorem both as a
‘warm up exercise’ and since the theorem and proof can be
easily adapted for CT-v1 and CT-v2, with only minor changes;
to our best knowledge, such analysis has not been presented.

Theorem 5.1. Consider a run of CTng with a benign logger
L and a benign monitor M. Assume that at time t0, monitor
M is asked to monitor certificates for domain D at logger L.
Let c be a certificate for domain D logged by L at time t1.
Then, monitor M outputs certificate c at or before max(t, t0)+
MMD+2 · (∆clk +∆com).

Proof: From Lemma 1, M requests L to send certificates
and ST H at least once during [t1, t1 +MMD+ 2 ·∆clk]; let
t2 ∈ [t1, t1+MMD+2 ·∆clk] be the first request in this interval.
Since L is benign and logged c at t1, it would immediately
respond to the request, and M would receive the response
within 2 ·∆com. Hence, M receives c before t2 +2∆com < t1 +
MMD+2 · (∆clk +∆com).

Theorem 5.1 focuses on the simple case, where the logger
and monitor are benign. However, the vision of CT is more
ambitious: No Trusted Third Party (NTTP), i.e., ensure secu-
rity without assuming that any specific entities are benign.
Namely, not only we should allow for a possibly corrupt CA,
we should allow for up to f loggers and monitors to be corrupt.
We proceed to show that CTng handles such corruptions, first
focusing on the certificate transparency property (and later
extending to revocations, too). The proof is built gradually
using few lemmas, hopefully making it easier to understand.

Simplification: For simplicity, let us assume, in the follow-
ing proofs, that MMD = MRD. This avoids some annoying
duplicity and few details.

Lemma 2. Let M be a benign monitor that monitors logger
L from time t0. At any time t1 > t0 +4∆com, monitor M either
has detected that L is faulty, or has a sent of valid ST H, SRHL
and ∆CRV , whose timestamp tL

1 satisfies: tL
1 ≥ t1−MMD and

tL
1 ≥ t1−MRD.

Proof: As shown in Lemma 1, from t0 +2∆com, monitor M
requests updates (of ST Hs, SRHs and ∆CRV ) from L when-
ever M’s clock shows tL

I + i ·MMD+∆clk, for some i > 0. The
last ST H request before t1− 2∆com is sent when M’s clock

shows tL
I + i1 ·MMD+ ∆clk, where i1 =

⌊
t1−tL

I
MMD

⌋
(unless a

fault was detected earlier). The response should arrive within

2 ·∆com, i.e., definitely before t1, and contain valid ST H, SRHL
and ∆CRV , whose timestamp is tL

I + i1 ·MMD; otherwise, a
fault is detected. Hence, by t1, either M detected L is faulty,
or M has valid ST H, SRHL and ∆CRV whose timestamp tL

1
satisfies:

tL
1 = tL

I + i1 ·MMD

= tL
I +

⌊
t1− tL

I
MMD

⌋
·MMD

≥ t1−MMD

Lemma 3. Let M be a benign monitor that receives at time
t1 an ST H and/or a (SRHL, ∆CRV ) pair from logger L with
timestamp tL

1 . Then by time t1 +3 ·dM ·∆com, all benign moni-
tors will receive the corresponding ST HM and/or SRHM , as
well as ∆CRV , and/or a PoM against L.

Proof: Benign monitors gossip ST Hs and (SRHL, ∆CRV )
pairs from logger L as soon as they receive them, unless they
have a PoM. Hence, by dM ·∆com, all benign monitors will re-
ceive the ST H and/or (SRHL, ∆CRV ) pair. Upon the first time
it receives a valid ST H and/or SRHL, a benign monitor waits
for 2 ·dM∆com, to see if a PoM (or a conflicting ST H/ SRHL)
is received; if not, when the monitor gossips its share of the
threshold signature, ST HMi (or SRHMi ). Within at most addi-
tional dM ·∆com, all benign monitors receive all these shares,
and combine them into the complete threshold signatures,
ST HM and/or SRHM .

Lemma 4. Let L be a logger that is monitored by f +1 benign
monitors {M1, . . . ,M f+1}, from time t0 (or earlier). At any
time t2 > t0 + 3 · dM ·∆com + 4 ·∆com, every monitor M has
either a PoM showing that L is faulty, or valid ST HM , ST H,
SRHM , SRHL and ∆CRV from L, whose timestamp tL

2 satisfies:
tL
2 ≥ t2−MMD−3 ·dM ·∆com.

Proof: Let t1 = t2 − 3 · dM · ∆com > t0 + 4 · ∆com. From
Lemma 2, at t1, each monitor Mi either has detected that L is
faulty, or has a valid ST H and pair of SRHL and ∆CRV , whose
timestamp tL

1 satisfies: tL
1 ≥ t1−MMD. If any of these f +1

monitors, say Mi, has such ST H and/or SRHL and ∆CRV at
t1, then from Lemma 3, by t1 + 3 · dM ·∆com, every benign
monitor receives the corresponding ST HM and/or SRHM , or a
PoM against L.

It remains to consider the case that none of the f +1 mon-
itors {M1, . . . ,M f+1} has a valid ST H, or pair of SRHL and
∆CRV , at t1; hence, all of them have detected that L is faulty.
In this case, before t1, each of them gossips a signed accusa-
tion message, stating that L is faulty. Before t1 + dM ·∆com,
all benign monitors receive these f +1 signed gossiped ac-
cusation, and therefore all benign monitors are aware that L
is indeed faulty. As a result, each of them uses the threshold
signature to sign a share of a PoM message against L, and they
gossip these shares of the signed PoM. Before t1+2 ·dM ·∆com,
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all benign monitors receive these shares and then use the
threshold signature ‘combine’ function, to produce a PoM
against L, signed by the threshold monitors’ key.

Theorem 5.2. Consider logger L which is monitored by f +1
benign monitors from time t0 (or earlier), including at least
one monitor, say M, that monitors certificates issued by L (not
just ST Hs). Let R be a benign relying party that receives,
at time tR, certificate c which has an ST H signed by L with
timestamp t̂L

c > t0+4∆com. Then (at least) one of the following
holds:

1. The relying party detects, immediately at tR, that c is
invalid.

2. Monitor M outputs c or detects that L is rogue, before
t̂L
c +MMD.

3. The relying party and all monitors have a PoM proving
that L is misbehaving, before tR +2MMD.

Proof: Since R is benign, it validates certificate c upon
receiving it (at tR). If c is found invalid, case 1 holds. There-
fore, assume c is found valid, and let ST Hc,PoIc denote the
(properly signed) ST H and corresponding PoI, included in the
CT-extension of c; in particular, since c is valid, it follows that
R used the PoC to successfully confirm that c was included in
the tree whose digest (hash) was signed in ST Hc.

Relying party R also confirms that the timestamp tL
c isn’t

too much into the future, namely, that tL
c ≤ tR +∆clk.

Let t2 = tR +MMD+ 3 · dM ·∆com. Before t2, the relying
party R makes the periodic request for transparency updates,
i.e., ST Hs, to a monitor. The response should be either a
PoM for L, or an ST HM for L, signed using the threshold
signature key requiring f +1 monitors, whose timestamp tL

R
satisfies: tL

R ≥ t2−MMD−3 ·dM ·∆com = tR (from Lemma 3
and Lemma 2).

However, it is possible that R attempts the update with a
rogue monitor, who does not respond, in time, with either the
PoM or the (valid) ST HM . In this case, after timeout (2 ·∆com),
R marks this monitor as corrupt and re-sends the request, this
time to at least f (other) monitors. At least one monitor is
benign, so a response (PoM or ST HM) is received before
t2 +4∆com.

From the response, R can confirm that ST Hc has been pre-
viously shared with the monitors; if this is not the case, the
pair of ST Hc and the conflicting ST HM from the monitors, are
a PoM against the logger. The relying party sends this PoM to
at least f +1 monitors, so it must be received by at least one
benign monitor (within additional ∆com). This monitor gos-
sips the PoM, so it reaches all monitors within an additional
dM ·∆com, namely, before t2 +(5+dM) ·∆com = tR +MMD+
3 ·dM ·∆com+(5+dM) ·∆com = tR+MMD+(5+4dM) ·∆com.

Using the MMD assumption (5 + 4dM) · ∆com ≤ MMD,
we have that all monitors, as well as R, has the PoM within
2MMD after R receives the rogue certificate.

Theorem 5.2 focuses on transparency. We now present a
similar theorem for revocation status transparency.

revocation transparency * Proof: Since R is benign, it vali-
dates certificate c upon receiving it (at tR). If c is found invalid,
case 1 holds. Therefore, assume c is found valid.

Let t2 = tR +MRD+ 3 · dM ·∆com. Before t2, the relying
party R makes the periodic request for revocation updates, i.e.,
SRHs and ∆CRV s, to a monitor. If the response is a PoM for L
or an indication that L has stopped logging revocations for this
CA, then case 4 holds. Hence, assume R receives an updated,
valid SRHM and ∆CRV for the CA (that issued c). If the entry
for c in the resulting CRV indicates that it was revoked, then
this must have been known to all benign monitors by tR, i.e.,
case 3 holds. Otherwise, i.e., if the entry indicates that c was
not revoked, then by tR−2MRD, there cannot have been any
benign monitor which received a SRHL and ∆CRV indicating
that c is revoked, or there would have been a detected conflict
(and PoM against L).

6 Implementation and Evaluation

We next present the performance evaluation of our CTng
prototype.

6.1 System Implementation and Experimen-
tal Setup

We implemented CTng in Go, building upon the existing
Google implementation of CT7. We ran our experiments on
Deterlab8 with machines equipped with Dual Xenon proces-
sors, 2 GB or 4 GB of RAM, and network bandwidth of 100
Mbps. Connections were configured with a randomized com-
munication latency of 40 ms (20 ms standard deviation). For
all experiments, we used 4 loggers and varied the number of
monitors from 4 to 32.

We relied on three settings. First, CTng without any revoca-
tion, referred to as CTng (0% revoked). Second, CTng with
revocation assuming an average rate of revocations (1% of cer-
tificates), referred to as CTng (1% revoked). Third, CTng
with revocation assuming a massive revocation event [34]
(10% of certificates), referred to as CTng (10% revoked).

6.2 Experimental Results

First, we measured the impact of adding new certificates to
logs. We started with a base tree of 1M certificates and pro-
gressively added a variable amount of new certificates, rang-
ing from 1K up to 256K with 16 monitors. As illustrated
in Figure 7a, we observed small, slowly-growing communica-
tion overhead. Without revocation, adding 256K certificates
rather than 1K certificates results in insignificant additional
overhead: ST Hs are not affected by the number of certificates

7https://github.com/google/certificate-transparency-go/
8https://www.deterlab.net
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certificates to a base tree of 1M certificates.

Figure 7: Communication overhead and convergence time for CTng considering different amount of monitors and certificates.

Average (s) Minimum (s) Maximum (s)
CTng (0% revoked) 1.59 1.38 1.72

CTng (1% revoked) 2.15 1.87 2.33

CTng (10% revoked) 3.27 3.03 3.47

Table 3: Convergence time for 16 mon-
itors after adding variable amount of
certificates to a base tree of 1M certifi-
cates.

Gossiped data Average size
ST H 666 B

SRHL 659 B

SRHL + ∆CRV + h(CRV )

(1% revoked cert.)
34 kB

SRHL + ∆CRV + h(CRV )

(10% revoked cert.)
128 kB

Table 4: Size of gossiped objects
in CTng

ST H SRHL + ∆CRV + h(CRV )

Overhead 1 update

per MMD

5 updates

per MMD

1% revoked

certificates

10% revoked

certificates

Communication (1 day) 10 kB 50 kB 314 kB 618 kB

Storage (1 year) 3.65 MB 18.25 MB 2.79 MB (25.19 MB) 12.59 MB (25.19 MB)

Table 5: Communication and storage overhead
for relying parties in CTng, for 200 CAs log-
ging with 5 loggers each, and a total of 200M
certificates. For revocation, we list compressed
and (uncompressed) storage.

in the log. CTng eliminates proofs of consistency, used in
CT-v1, which grow with the log.

When revocation are used, the ∆CRV and SRHs do not
introduce significant overhead. For example, revoking 10% of
certificates after adding 1K certificates and after adding 256K
certificates, incurs an overhead of ∼ 1.61MB and ∼ 2.03MB,
respectively. This is mainly due to the efficiency of ∆CRV s.

The time it takes for monitors to converge on the trans-
parency updates is also small, as shown in Table 3. Specif-
ically, it took 1.6 seconds on average when no revocations
were performed, and 2.2 seconds and 3.3 seconds on average
for 1% revocations and 10% revocations, respectively, for all
added certificate sizes.

We also evaluated the impact of scaling the number of
monitors from 4 up to 32. Figure 7b illustrates the average
convergence time it takes for transparency updates to reach
all monitors, and demonstrates a (relatively) steady linear
increase of a reasonable average convergence time. Specif-
ically, we observed that even for 32 monitors, the average
amount of time it took to converge after 10% percent revoca-
tion, was ∼ 7.35 seconds and only ∼ 3.36 seconds after 1%
revocation. Similarly, Figure 7c illustrates the communication
overhead, and demonstrates an acceptable growth rate, peak-
ing at ∼ 0.6MB for 1% revocation and ∼ 2.18MB for 10%
revocation, both for 32 monitors.

Relying parties‘ communication and storage requirements.

Perhaps most importantly, as we expect monitors to be well
provisioned servers, CTng has a reasonable communication
and storage overhead for relying parties (browsers) (Table 5).

Each relying party should periodically, typically daily, fetch
updates (ST Hs, SRHs and ∆CRV s) from a monitor. For a
realistic deployment of 200 CAs logging with 5 loggers each,
and a total of 200 million certificates, the size of the ST Hs
update is 10kB assuming that each logger produces a single
ST H per MMD, or 50kB for 5 updates a day, scaling linearly.
The storage overhead is 3.65 MB and 18.25 MB, respectively,
for one year, which is the lifetime of most certificates [24].
The revocation transparency update is needed to verify that
the certificate in question is non-revoked. The daily revocation
update is 314 kB (1% revoked certificates) and 618 kB (10%,
massive revocation event [34]) while the storage is 2.79 MB
(1%) and 12.59 MB (10 %), when compressed, and 25.19
MB for both if not compressed. This revocation information
would replace revocation data the browsers currently need to
store.

Given the high efficiency of CTng, designers may opt for
even shorter periods (MMD, MRD and/or periodic updates).

7 Conclusions

Security of systems is often based on Trusted Third Parties
(TTPs), with Certificate Authorities (CAs) being the classical
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Entity Number of files
Lines of Code

(Go)
Gossiper 4 446
Monitor 18 1882
Certificate Authority 9 1034
Logger 3 452
Relying Part 3 242
Total 37 4056

Table 6: Components and Lines of Code in CTng.

example. However, a series of failures of CAs motivated the
development of Certificate Transparency (CT) with the am-
bitious goal of a No Trusted Third Party (NTTP) design. The
concept of NTTP is exciting and important - but non-trivial to
achieve, esp. efficiently. Indeed, existing designs, implemen-
tation and even standards for CT, failed to achieve NTTP, and
they ensure security only for trusted loggers - although, this
was recognized only quite late [28], and have other drawbacks
(Table 1).

We present CTng, an evolutionary update to CT, which
implements the CT vision, and in particular, ensures NTTP.
CTng is a practical design, which is backward-compatible
with the current CT (and even pre-CT) PKI, reusing most of
the CT (and X.509) concepts, architecture, protocols and even
software. CTng also address an important privacy concern
present in the previous CT designs.

CTng also includes a critical missing component from the
current CT design, required to ensure NTTP for PKI schemes:
revocation status transparency. Without it, a rogue CA can
launch a simple yet effective attack which we call the Zombie
certificate attack.
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