
OpenSSLNTRU: Faster post-quantum TLS key exchange

Daniel J. Bernstein1,2, Billy Bob Brumley3, Ming-Shing Chen2, and Nicola Tuveri3

authorcontact-opensslntru@box.cr.yp.to
1Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7045, USA

2Ruhr University Bochum, Bochum, Germany
3Tampere University, Tampere, Finland

2021.06.15

Abstract
Google’s CECPQ1 experiment in 2016 integrated a
post-quantum key-exchange algorithm, newhope1024, into
TLS 1.2. The Google-Cloudflare CECPQ2 experiment in
2019 integrated a more efficient key-exchange algorithm,
ntruhrss701, into TLS 1.3.

This paper revisits the choices made in CECPQ2, and
shows how to achieve higher performance for post-quantum
key exchange in TLS 1.3 using a higher-security algorithm,
sntrup761. Previous work had indicated that ntruhrss701
key generation was much faster than sntrup761 key genera-
tion, but this paper makes sntrup761 key generation much
faster by generating a batch of keys at once.

Batch key generation is invisible at the TLS protocol layer,
but raises software-engineering questions regarding the diffi-
culty of integrating batch key exchange into existing TLS li-
braries and applications. This paper shows that careful choices
of software layers make it easy to integrate fast post-quantum
software, including batch key exchange, into TLS with minor
changes to TLS libraries and no changes to applications.

As a demonstration of feasibility, this paper reports suc-
cessful integration of its fast sntrup761 library, via a lightly
patched OpenSSL, into an unmodified web browser and an
unmodified TLS terminator. This paper also reports TLS 1.3
handshake benchmarks, achieving more TLS 1.3 handshakes
per second than any software included in OpenSSL.

1 Introduction

The urgency of upgrading TLS to post-quantum encryption—
see Appendix A—has prompted a tremendous amount of
work. There were already 69 proposals for post-quantum cryp-
tography (PQC) submitted to NIST’s Post-Quantum Cryptog-
raphy Standardization Project in 2017, including 49 proposals
for post-quantum encryption. Each proposal included com-
plete software implementations of the algorithms for key gen-
eration, encryption, and decryption. Given the cryptographic
agility of TLS, one might imagine that TLS software can sim-
ply pick a post-quantum algorithm and use it. However, there

are many constraints making this more difficult than it sounds,
including the following:

• Performance: Post-quantum algorithms can send much
more data than elliptic-curve cryptography (ECC), and
can take many more CPU cycles. Performance plays a
“large role” [44] in the NIST standardization project.

• Integration: Many assumptions about how cryptogra-
phy works are built into the TLS protocol and existing
TLS software. These range from superficial assumptions
about the sizes of objects to more fundamental structural
assumptions such as the reliance of TLS 1.3 upon “Diffie–
Hellman”—a key-exchange data flow not provided by
any of the proposals for NIST standardization.

• Security: 30 of the 69 proposals were broken by the end
of 2019 [10]. New attacks continue to appear: e.g., [6]
uses under a single second of CPU time to break any
ciphertext sent by the “Round2” lattice-based proposal.

“Hybrid” approaches that encrypt with ECC and with a post-
quantum system are recommended (see, e.g., [15, 43]) be-
cause they retain the security of ECC even if the post-quantum
system is broken—but, for an attacker with a future quantum
computer, a ciphertext encrypted with ECC and with a bro-
ken post-quantum system is a ciphertext encrypted with two
broken systems.

In July 2020, the NIST project began its third round [1],
selecting 4 “finalist” encryption proposals for consideration
for standardization at the end of the round, and 5 “alternate”
encryption proposals for consideration for standardization
after a subsequent round. Meanwhile, there have been various
experiments successfully integrating post-quantum encryp-
tion systems into TLS. The proposals that have attracted the
most attention, and that are also the focus of this paper, are
“small” lattice proposals. These include

• three of the finalist proposals (Kyber [4], NTRU [19],
and SABER [5]), although NIST says it will standardize
at most one of these three;

• one of the alternate proposals (NTRU Prime);

1

• the newhope1024 algorithm [2] used inside Google’s
CECPQ1 experiment in 2016; and

• the ntruhrss701 algorithm (a variant of one of the al-
gorithms in the NTRU proposal) used inside the Google-
Cloudflare CECPQ2 experiment in 2019.

These are called “small” because they use just a few kilobytes
for each key exchange—much more traffic than ECC, but
much less than many other post-quantum proposals.

CECPQ2 actually included two experiments: CECPQ2a
used ntruhrss701, while CECPQ2b used an isogeny-based
proposal. Compared to ntruhrss701, the isogeny-based pro-
posal had smaller keys and smaller ciphertexts, but used much
more CPU time, so it outperformed CECPQ2a only on the
slowest network connections.

In general, the importance of a few kilobytes depends on
the network speed and on how often the application creates
new TLS sessions. A typical multi-megabyte web page is un-
likely to notice a few kilobytes, even if it retrieves resources
from several TLS servers. A session that encrypts a single
DNS query is handling far less data, making the performance
of session establishment much more important. Similar com-
ments apply to CPU time.

1.1 Contributions of this paper

This paper introduces OpenSSLNTRU, an improved in-
tegration of post-quantum key exchange into TLS 1.3.
OpenSSLNTRU improves upon the post-quantum portion
of CECPQ2 in two ways: key-exchange performance and
TLS software engineering. These are linked, as explained
below. OpenSSLNTRU offers multiple choices of key sizes;
for concreteness we emphasize one option, sntrup761 [13],
to compare to CECPQ2’s ntruhrss701.

Each of ntruhrss701 and sntrup761 is a “key-
encapsulation mechanism” (KEM) consisting of three algo-
rithms: a key-generation algorithm generates a public key
and a corresponding secret key; an “encapsulation” algorithm,
given a public key, generates a ciphertext and a correspond-
ing session key; a “decapsulation” algorithm, given a secret
key and a ciphertext, generates the corresponding session key.
The key exchange at the beginning of a TLS session involves
one keygen, one enc, and one dec. Before our work, both
KEMs already had software optimized for Intel Haswell us-
ing AVX2 vector instructions (see Appendix B); keygen was
3.03× slower for sntrup761 than for ntruhrss701, making
total keygen+enc+dec 2.57× slower.

One can remove keygen cost by reusing a key for many TLS
sessions, but it is commonly recommended to use each key
for just one session. There are several reasons for this recom-
mendation: for example, in TLS 1.3 key exchange (followed
by both CECPQ2 and OpenSSLNTRU), the client performs
key generation, and reusing keys would open up yet another
mechanism for client tracking.

Table 1: Cryptographic features of the post-quantum com-
ponents of CECPQ2 (previous work) and OpenSSLNTRU
(this paper). See Appendix B regarding Core-SVP and
cyclotomic concerns. Core-SVP in the table is pre-
quantum Core-SVP; post-quantum Core-SVP has 10%
smaller exponents. The ntruhrss701 cycle counts are from
supercop-20210423 [11] on hiphop (Intel Xeon E3-1220
V3). The sntrup761 cycle counts are old→new, where “old”
shows the best sntrup761 results before our work and “new”
shows results from this paper’s freely available software; Ap-
pendix C presents the slight enc and dec speedups, and Sec-
tion 3 presents the large keygen speedup.

CECPQ2 OpenSSLNTRU
cryptosystem ntruhrss701 sntrup761
key+ciphertext bytes 2276 2197
keygen cycles 269191 814608→156317
enc cycles 26510 48892→46914
dec cycles 63375 59404→56241
Core-SVP security 2136 2153

cyclotomic concerns yes no

This paper instead directly addresses the speed problem
with sntrup761 key generation, by making sntrup761 key
generation much faster. Our sntrup761 software outper-
forms the latest ntruhrss701 software, and at the same time
sntrup761 has a higher security level than ntruhrss701.
See Table 1 and Appendix B.

The main bottleneck in sntrup761 key generation is com-
putation of certain types of inverses. This paper speeds up
those inversions using “Montgomery’s trick”, the simple idea
of computing two independent inverses 1/a and 1/b as br and
ar respectively, where r = 1/ab. Repeating this trick converts,
e.g., 32 inversions into 1 inversion plus 93 multiplications.

This paper generates a batch of 32 independent keys, com-
bining independent reciprocals across the batch. This batch
size is large enough for inversion time to mostly disappear,
and yet small enough to avoid creating problems with latency,
cache misses, etc. We designed new algorithms and software
to optimize sntrup761 multiplications, since the multipli-
cations used previously were “big×small” multiplications
while Montgomery’s trick needs “big×big” multiplications;
see Section 3.

A new key sent through TLS could have been generated
a millisecond earlier, a second earlier, or a minute earlier;
this does not matter for the TLS protocol. However, for TLS
software, batching keys is a more interesting challenge, for
two reasons. First, key generation is no longer a pure stateless
subroutine inside one TLS session, but rather a mechanism
sharing state across TLS sessions. Second, the TLS software
ecosystem is complicated (and somewhat ossified), with many
different applications using many different libraries, so the
same state change needs to be repeated in many different

2

pieces of TLS software.
To address the underlying problem, this paper introduces

a new choice of software layers designed to decouple the
fast-moving post-quantum software ecosystem from the TLS
software ecosystem. The point of these layers is that optimiza-
tion of post-quantum software does not have to worry about
any of the complications of TLS software, and vice versa. As a
case study demonstrating the applicability of these layers, this
paper describes successful integration of its new sntrup761
library, including batch key generation, into an existing web
browser communicating with an existing TLS terminator, us-
ing OpenSSL on both ends. This demo involves no changes
to the web browser, no changes to the TLS terminator, and
very few changes to OpenSSL.

The integration of OpenSSLNTRU into TLS means that,
beyond microbenchmarks, we can and do measure full
TLS handshake performance. The bottom line is that, in
a controlled and reproducible end-to-end lab experiment,
sntrup761 completes more sessions per second than com-
monly deployed pre-quantum NIST P-256, and even com-
pletes more sessions per second than commonly deployed
pre-quantum X25519. This remains true even when we re-
place sntrup761 with higher-security sntrup857.

One should not conclude that sntrup761 and sntrup857
cost less than ECC overall. This experiment used an unloaded
high-bandwidth local network, making communication essen-
tially invisible, whereas reasonable estimates of communi-
cation costs (see generally Appendix D) say that every lat-
tice system costs more than ECC. Nevertheless, eliminating
70% of the sntrup761 CPU time significantly reduces total
sntrup761 costs, in effect assigning higher decision-making
weight to size and, most importantly, security.

2 Background

2.1 Polynomial rings in NTRU Prime

Streamlined NTRU Prime [13], abbreviated sntrup, uses
arithmetic in finite rings R /3 = (Z/3)[x]/(xp− x− 1) and
R /q = (Z/q)[x]/(xp− x−1), where R = Z[x]/(xp− x−1).
The parameters p,q are chosen so that R /q is a field.

Short means the set of polynomials in R that are small,
meaning all coefficients in {−1,0,1}, and weight w, meaning
that exactly w coefficients are nonzero, where w is another
parameter. The parameters (p,q,w) are (653,4621,288),
(761,4591,286), (857,5167,322) for the KEMs sntrup653,
sntrup761, sntrup857 respectively.

2.2 Montgomery’s trick for batch inversion

In this section, we review Montgomery’s trick for batch inver-
sion [32] as applied to many inputs. The algorithm batchInv
takes n elements (a1,a2, . . . ,an) in a ring, and outputs their

multiplicative inverses (a−1
1 ,a−1

2 , . . . ,a−1
n). Montgomery’s

trick for batch inversion proceeds as follows:

1. Let b1 = a1 and compute bi = ai ·bi−1 for i in (2, . . . ,n).
After n−1 multiplications, we obtain

(b1,b2, . . . ,bn) = (a1,a1 ·a2,a1 ·a2 ·a3, . . . ,Π
n
i=1ai) .

2. Compute the single multiplicative inverse

tn = b−1
n = (Πn

i=1ai)
−1 .

3. Compute ci = ti ·bi−1 and ti−1 = ti ·ai for i in (n, . . . ,2).
After 2n−2 multiplications, we have two lists

(cn, . . . ,c2) = (a−1
n , . . . ,a−1

2) and

(tn−1, . . . , t2, t1) = ((Πn−1
i=1 ai)

−1, . . . ,(a1 ·a2)
−1,a−1

1) .

4. Output (a−1
1 ,a−1

2 , . . . ,a−1
n).

In summary, the algorithm uses 3n− 3 multiplications and
one inversion to compute n inverses.

2.3 NTT-based multiplication
This section reviews techniques for polynomial multiplica-
tion commonly used in lattice-based cryptography. We adopt
terminology from [7].

The number theoretic transform (NTT) algorithm maps an
element in a polynomial ring into values by lifting the ring
element to a polynomial and evaluating the polynomial on a
particular set. An NTT-based multiplication algorithm applies
NTTs to two input elements in the polynomial ring, performs
component-wise multiplication for the transformed values,
and applies an inverse NTT, converting the multiplied values
back to the product in the same form of inputs.

Computing a size-n NTT, where n is a power of 2, com-
prises log2 n stages of the radix-2 FFT trick. Given a poly-
nomial ring (Z/q)[x]/(xn−b2) where b ∈ Z/q, the FFT trick
maps elements in (Z/q)[x]/(xn− b2) to ((Z/q)[x]/(xn/2−
b))× ((Z/q)[x]/(xn/2 + b)). Due to the Chinese remainder
theorem (CRT), the mapping is invertible when 2b is in-
vertible. Specifically, let f = f0 + f1x + · · ·+ fn−1xn−1 ∈
(Z/q)[x]/(xn−b2). The trick maps f to

(f mod (xn/2 +b) , f mod (xn/2−b))

=((f0−b fn/2)+ · · ·+(fn/2−1−b fn−1)xn/2−1,

(f0 +b fn/2)+ · · ·+(fn/2−1 +b fn−1)xn/2−1)

with n multiplications by b, n/2 additions, and n/2 subtrac-
tions. Setting b = 1, by recursively applying the FFT trick,
an NTT transforms f into a list f̂ = (f̂0, . . . , f̂ j, . . . , f̂n−1) ∈
(Z/q)n where f̂ j = f mod (x−ψ j) = ∑

n−1
i=0 fiψ

i j, and ψ ∈
Z/q is a primitive n-th root of unity, i.e., ψn/2 =−1.

3

When Z/q lacks appropriate roots of unity, Schönhage’s
trick [39] manufactures them by introducing an interme-
diate polynomial ring. Given f ∈ (Z/q)[x]/(x2mn− 1), the
trick first introduces a new variable y = xm and maps f
from (Z/q)[x]/(x2mn− 1) to ((Z/q)[x][y]/(y2n− 1))/(xm−
y). Then, it lifts f to (Z/q)[x][y]/(y2n−1), which is a poly-
nomial in variable y with coefficients in (Z/q)[x]. Since the
coefficients of f are polynomials with degree less than m,
it is safe to map them to (Z/q)[x]/(x2m + 1) such that co-
efficient multiplication needs no reduction by x2m +1. Now
x∈ (Z/q)[x]/(x2m+1) is a primitive 4m-th root of unity, since
x2m =−1.

Nussbaumer’s trick [35] is another method to manu-
facture roots of unity. Given f ∈ (Z/q)[x]/(x2mn − 1),
the trick maps f to ((Z/q)[y]/(y2n + 1))[x]/(xm − y), lifts
to ((Z/q)[y]/(y2n + 1))[x], and maps to ((Z/q)[y]/(y2n +
1))[x]/(x2n− 1) for n ≥ m. As noted in [7], Nussbaumer’s
trick sometimes uses slightly smaller ring extensions than
Schönhage’s trick, but Schönhage’s trick is more cache-
friendly, since it uses contiguous data in x.

2.4 The AVX2 instruction set
Since NIST specified Intel Haswell CPU as its highest pri-
ority platform for performance evaluation [34], we optimize
sntrup for the Haswell architecture in this work.

Specifically, we target the Advanced Vector Extensions 2
(AVX2) instruction set. AVX is a single-instruction-multiple-
data (SIMD) instruction set in modern (decade or less) x86
CPUs. It provides sixteen 256-bit ymm registers; each ymm

register splits into two 128-bit xmm lanes. The instruction set
treats data in ymm registers as lanes (independent partitions)
of 32×8-bit, 16×16-bit, 8×32-bit, etc.; every instruction op-
erates simultaneously on the partitioned data in the ymm reg-
isters. In 2013, the Haswell architecture extended AVX to
AVX2 for enhanced integer operations.

2.5 Integrating cryptographic primitives
Related to OpenSSLNTRU, several previous works studied
integrations between post-quantum implementation and real
world applications.

The Open Quantum Safe (OQS) project [42] includes a
library of quantum-resistant cryptographic algorithms, and
prototype integrations into protocols and applications. It also
includes (and requires) a fork of the OpenSSL project. Con-
versely, in our contribution we apply a minimal patchset, striv-
ing to maintain API and ABI compatibility with the OpenSSL
version available to the end-users. This avoids the need of
recompiling existing applications to benefit from the new li-
brary capabilities. We also note that the experiment we present
in this manuscript is limited to one candidate and two sets
of parameters (sntrup761 and sntrup857), while the OQS
project provides implementations for all finalists.

Similarly, the PQClean project [28] collects a number of
implementations for the candidates. However, it does not
aim to include integration into higher-level applications or
protocols.

Schwabe, Stebila, and Wiggers [40] present an alternative
to the TLS 1.3 handshake to solve both key exchange and
authentication using post-quantum KEM. In contrast, for our
experiment we aimed at full compatibility with the TLS 1.3
ecosystem, focusing exclusively on the key exchange. This
ensures post-quantum confidentiality, but does not address
the post-quantum authentication concerns.

Our approach to OpenSSL integration via an ENGINE mod-
ule is based on the methodology suggested in [45], where
the authors instantiated libsuola. In this context, an ENGINE
module is a a dynamically loadable module. Using a dedicated
API, such a module is capable of injecting new algorithms or
overriding existing ones. The implementations it provides can
be backed by a hardware device, or be entirely software based.
Our new ENGINE, engNTRU, builds upon libbecc [16], which
is itself derived from libsuola. Both previous works applied
the ENGINE framework to integrate alternative ECC imple-
mentations. The latter is particularly close to engNTRU, as it
also featured a transparent mechanism to handle batch key
generation. Section 4.2 details how engNTRU evolved from
these works and the unique features it introduces.

Shacham and Boneh [41] integrated RSA batching to im-
prove SSL handshake performance already in 2001. However,
their methodology required integrating changes directly in
the server application. In contrast, OpenSSLNTRU acts on
the middleware level, transparent to client and server applica-
tions.

3 Batch key generation for sntrup

This section presents batch key generation for sntrup and
its optimization. Section 3.1 shows the batch key generation
algorithm with Montgomery’s inversion-batching trick. Sec-
tion 3.2 and Section 3.3 present our polynomial multiplication
and its optimization in (Z/3)[x] and (Z/q)[x], respectively.
Section 3.4 shows the benchmark results.

3.1 Batch key generation

The sntrup key generation algorithm KeyGen outputs an
sntrup key pair. It proceeds as follows:

1. Generate a uniform random small element g∈R . Repeat
this step until g is invertible in R /3.

2. Compute 1/g in R /3.
3. Generate a uniform random f ∈ Short.
4. Compute h = g/(3 f) in R /q.
5. Output (h,(f ,1/g)) where h is the public key and

(f ,1/g) ∈ Short×R /3 is the secret key.

4

Algorithm 1 (BatchKeyGen) batches sntrup key gener-
ation. We use two lists for storing n batches of g ∈ R and
f ∈ Short, then process the n batches of computation in one
subroutine. The key idea is to replace the 2n inversions by
two batchInv for R /3 and R /q, respectively. As seen in
Section 2.2, batchInv turns n inversions into 3n− 3 multi-
plications and one inversion. Considering performance, ring
multiplication then becomes the critical part. Hence, Sec-
tion 3.2 and Section 3.3 present optimized ring multiplication
implementations, used in batchInv.

Another difference is the invertibility check in R /3 for
the element g. Previous NTRU Prime software checks invert-
ibility as a side effect of computing 1/g with a constant-time
algorithm [12] for extended GCD. Calling batchInv removes
this side effect and requires a preliminary check for invertibil-
ity of each g. In Section 3.1.1 we optimize an isInvertible
subroutine for this test.

Algorithm 1 BatchKeyGen

Input : an integer n
Output: n key pairs of sntrup

1: G← [·] ▷ an empty list
2: F ← [·]
3: while len(G)< n do
4: g $←− R /3 ▷ $: uniform random
5: if not isInvertible(g) : continue
6: f $←− Short
7: G.append(g)
8: F.append(f)
9: end while

10: Ḡ← batchInv(G)
11: F̄ ← batchInv([3 · f for f ∈ F])
12: H←

[
g · f̄ ∈ R /q for g ∈ G, f̄ ∈ F̄

]
13: return

[
(h,(f , ḡ)) for h ∈ H, f ∈ F, ḡ ∈ Ḡ

]

3.1.1 Invertibility check for elements in R /3

At a high level, we check the invertibility of an element g ∈
R /3 by computing its remainder of division by the irreducible
factors of xp−x−1 modulo 3, as suggested in [13, p. 8]. This
section optimizes this computation.

For convenience, we always lift the ring element g to its
polynomial form g ∈ (Z/3)[x] in this section. In a nutshell,
if g mod fi = 0 for any factor fi of xp− x− 1, then g is not
invertible in R /3.

We calculate the remainder of g mod fi with Barrett reduc-
tion [31]. Suppose the polynomial xp− x−1 ∈ (Z/3)[x] has
m irreducible factors (f1, . . . , fm), i.e., xp− x− 1 = Πm

i=1 fi.
Given a polynomial g ∈ (Z/3)[x] and p > deg(g)> deg(fi),
we calculate the reminder r = g mod fi as follows. In the
pre-computation step, choose Dg > deg(g) and D fi > deg(fi),
and calculate qx as the quotient of the division xDg/ fi, i.e.,

qx =
⌊
xDg/ fi

⌋
, where the floor function ⌊·⌋ removes the

negative-degree terms from a series. In the online step, com-
pute h =

⌊
g ·qx/xDg

⌋
= ⌊g/ fi⌋, i.e., the quotient of the divi-

sion g ·qx/xDg . Finally, return the remainder r = g−h · fi. We
show this gives the correct r in Appendix E.

Some observations about the degree of polynomials
help to accelerate the computation. While computing h =⌊
g ·qx/xDg

⌋
, we compute only terms with degree in the inter-

val [0,D f), since r = g− h · fi uses terms exclusively from
this interval for deg(r)< deg(fi).

In the case of sntrup761, the polynomial f = x761 −
x− 1 ∈ (Z/3)[x] has three factors, with degrees deg(f1) =
19, deg(f2) = 60, and deg(f3) = 682, respectively. We
choose D f1 = 32, D f2 = 64, and Dg = 768 for computing
g mod f0 and g mod f1. For computing g mod f3, we note
the pre-computed quotient qx =

⌊
x768/(x682 + · · ·)

⌋
satisfies

deg(qx) = 88. Hence, the multiplication h =
⌊
g ·qx/x768

⌋
in-

volves deg(g) = 768 and deg(qx) = 88 polynomials. By par-
titioning the longer polynomial into several shorter segments,
we perform the multiplication by several polynomial multi-
plications of length equal to the shorter polynomial (less than
128). Therefore, to check invertibility, we use polynomial
multiplications in (Z/3)[x] with lengths in {32,64,128}.

3.2 Polynomial multiplication in (Z/3)[x]

In this section, we describe our multiplication in (Z/3)[x] for
sntrup, and its optimization in the AVX2 instruction set.

Based on the polynomial lengths, we implement polyno-
mial multiplication with different algorithms. We build a
16×16 polynomial multiplier as a building block for school-
book multiplication. We then use Karatsuba to build longer
multipliers, such as 32×32, 64×64, and further 2i×2i. For
3 ·256×3 ·256 multiplications, we start from Bernstein’s 5-
way recursive algorithm [8] for (Z/2)[x] and optimize the
same idea for (Z/3)[x].

3.2.1 Base polynomial multiplier

For representing (Z/3)[x] polynomials, we adjust the values
of coefficients to unsigned form and store polynomials as byte
arrays, with one coefficient per byte. For example, we store
the polynomial a0 + · · ·+ a15x15 ∈ (Z/3)[x] as a byte array
(a0,a1, . . . ,a15) in a 16-byte xmm register.

Besides a byte array, we can view a polynomial as an in-
teger by translating the monomial x = 256. For example, a
degree-3 polynomial a0 +a1x+a2x2 +a3x3 maps to the 32-
bit integer a0 +a1 ·28 +a2 ·216 +a3 ·224.

In this 32-bit format, we can perform a 4× 4→ 8 poly-
nomial multiplication using a 32×32→ 64 integer multipli-
cation, taking care to control the coefficient values. While
calculating the polynomial product (a0 +a1x+a2x2 +a3x3) ·
(b0+b1x+b2x2+b3x3) with a 32×32→ 64 integer multipli-
cation, if all coefficients ai,bi ∈ {0,1,2}, a term’s maximum

5

possible value is ∑i+ j=3 aib jx3 ≤ 16, fitting in a byte. Hence,
we use 4× 4 polynomial multiplication (i.e., 32× 32→ 64
integer multiplication), as our building block to implement
16×16 polynomial multiplication with the schoolbook algo-
rithm.

3.2.2 Multiplying polynomials of length 3n

This section reduces a multiplication of 3n-coefficient poly-
nomials in (Z/3)[x] to 5 multiplications of ≈n-coefficient
polynomials, while optimizing the number of additions us-
ing techniques analogous to Bernstein’s optimizations [8] for
(Z/2)[x]. This section also streamlines the computation for
≤(3n−1)-coefficient polynomials, as in sntrup.

Take two polynomials F0+F1t+F2t2 and G0+G1t+G2t2

in (Z/3)[x], where deg(Fi)< n, deg(Gi)< n, and t = xn. Their
product H = H0 +H1t +H2t2 +H3t3 +H4t4 can be recon-
structed by the projective Lagrange interpolation formula

H =H(0)
(t−1)(t +1)(t− x)

x
+H(1)

t(t +1)(t− x)
x−1

+H(−1)
t(t−1)(t− x)

x+1
+H(x)

t(t−1)(t +1)
x(x−1)(x+1)

+H(∞)t(t−1)(t +1)(t− x) .

Here

H(0) = F0 ·G0,

H(1) = (F0 +F1 +F2) · (G0 +G1 +G2),

H(−1) = (F0−F1 +F2) · (G0−G1 +G2),

H(x) = (F0 +F1x+F2x2) · (G0 +G1x+G2x2), and
H(∞) = F2 ·G2

are the only five polynomial multiplications in the algorithm.
These polynomials expand from n to 2n terms, except H(x).

H simplifies to

H = H(0)− [U +(H(1)−H(−1))] · t
− [H(0)+(H(1)+H(−1))+H(∞)] · t2

+U · t3 +H(∞) · t4 ,

(1)

where

U =V +
H(0)

x
−H(∞) · x

and

V =
((H(1)+H(−1)) · x+(H(1)−H(−1))+H(x)/x

x2−1
.

There are two tricky issues while computing V . First,
deg(H(x)) ≤ 2n+2, introducing extra complexity since all
other polynomials have degree less than 2n. By requiring
deg(F2)≤ n−2 and deg(G2)≤ n−2, we force deg(H(x))≤
2n. Since H(x) is only used as H(x)/x in V , we can always
process polynomials with degree less than 2n.

The other issue concerns computing divisions by x2− 1
in (Z/3)[x]. Since long division is a sequential process and
not efficient in SIMD settings, we now present a divide-and-
conquer method for it.

3.2.3 Division by x2−1 on (Z/3)[x]

Dividing a polynomial f by x2−1 means producing a repre-
sentation of f = q · (x2−1)+ r, where q and r = r1x+ r0 are
the quotient and remainder, respectively. Assume that we have
recursively divided two 2m-coefficient polynomials f and g
by x2−1, obtaining f = q ·(x2−1)+r and g = s ·(x2−1)+t.
Then

r · x2m = (rx2m−2 + rx2m−4 + rx2m−6 + · · ·+ r)(x2−1)+ r ,

so the result of dividing f · x2m +g by (x2−1) is

f · x2m +g =
[
q · x2m + r · x2m−2](x2−1)

+(s+ rx2m−4 + · · ·+ r)(x2−1)+(t + r) .
(2)

We carry out these divisions in place as follows: recursively
overwrite the array of f coefficients with q and r, recursively
overwrite the array of g coefficients with s and t, and then
simply add the lowest two coefficients from the f array into
every coefficient pair in the g array.

Because the recursive computations for f and g are inde-
pendent, this computation parallelizes. The overall parallel
computation for dividing a length-n polynomial by x2− 1,
assuming n = 2l , proceeds as follows. The computation com-
prises l−1 steps. The first step splits the polynomial into n/4
separate sub-polynomials; each sub-polynomial has degree
less than four. We divide a length-four sub-polynomial by
x2− 1 by adding two coefficients of higher degrees to the
lower two coefficients. We perform these divisions in parallel.
In each subsequent step, we double the sub-polynomial sizes,
and divide sub-polynomials by x2− 1 by adding two coef-
ficients of lower degree from the higher degree parts to the
lower parts of the polynomials as in Equation 2. Since each
step performs n/2 additions, the whole computation costs
n(log2(n)−1)/2 additions.

3.2.4 AVX2 optimization for the R /3 multiplier

Since we use integer arithmetic for Z/3 and integers grow, we
must control the values to prevent overflow. From the AVX2
instruction set, we use the vpshufb instruction to reduce the
values. The instruction reads the lower nibbles as indexes
from single-byte lanes of a register, then replaces the lane
values with those from a 16-entry table, using the four-bit
indexes. Thus, we use vpshufb to reduce integers in [0,16) to
integers in [0,3). We also reduce adjacent nibbles by moving
them to lower positions using bit-shift instructions.

Our software for 16×16 polynomial multiplication actu-
ally performs two independent 16×16 multiplications in the

6

two xmm lanes of ymm registers, respectively. The approach
avoids the high latency for moving data between different xmm
lanes in Haswell CPUs (see [23, p. 237] for the vperm2i128,
vextracti128, and vinserti128 instructions). Specifically,
our AVX2 multiplier takes two ymm registers as input and out-
puts products in two ymm registers. A ymm register comprises
two polynomials (a,c) where a,c ∈ (Z/3)[x] are stored in
different xmm lanes. Given two ymm inputs (a,c) and (b,d),
the multiplier outputs (abl ,cdl) and (abh,cdh) in two ymm reg-
isters, where a ·b = abl +abh · x16 and c ·d = cdl + cdh · x16.
Thus, we avoid the data exchange between xmm lanes.

3.3 Polynomial multiplication in (Z/q)[x]

3.3.1 Problem description and related multiplication

While applying NTT-based multiplication, NTRU Prime faces
two issues. First, recalling Section 2.1, NTRU Prime works
on the polynomial ring R /q = (Z/q)[x]/(xp− x−1) where
xp− x−1 is irreducible in (Z/q)[x]; hence, there is no way
to apply FFT tricks on the ring. The standard workaround
is to lift ring elements in R /q to (Z/q)[x], and multiply
the lifted polynomials with an NTT-based multiplication in
(Z/q)[x]/(xN−1) where N ≥ 2p. Since two input polynomi-
als have degree less than p, their product will not overflow the
degree N. After the polynomial multiplication, the product is
reduced with a division by xp− x−1 for the result in R /q.

Secondly, q from the NTRU Prime parameter set is not
a radix-2 NTT friendly prime. For example, q = 4591 in
sntrup761, and since 4591−1 = 2 ·33 ·5 ·17, no simple root
of unity is available for recursive radix-2 FFT tricks. Alkim,
Cheng, Chung, Evkan, Huang, Hwang, Li, Niederhagen, Shih,
Wälde, and Yang [3] presented a non-radix-2 NTT imple-
mentation on (Z/4591)[x]/(x1530−1) for embedded systems.
They performed radix-3, radix-5, and radix-17 NTT stages in
their NTT. We instead use a radix-2 algorithm that efficiently
utilizes the full ymm registers in the Haswell architecture.

The fastest Haswell sntrup software before our work dealt
with the radix-2-NTT-unfriendly q by lifting the coefficients
to Z and then multiplying in (Z/7681)[x] and (Z/10753)[x].
Both 7681 and 10753 are NTT-friendly. This suffices for
“big×small” multiplications for all specified NTRU Prime
parameters: one input is a small element of R /q, with co-
efficients in {−1,0,1}, and the maximum coefficient of a
“big×small” product is below 7681 · 10753/2 in absolute
value.

However, Montgomery’s trick involves general “big×big”
multiplications in R /q. Even if each coefficient for, e.g., q =
4591 is fully reduced to the range [−2295,2295], the prod-
uct here can have coefficients as large as 2295 ·2295 ·761 >
7681 ·10753. One way to handle these multiplications would
be to use more NTT-based multiplications over small moduli,
for example multiplying in (Z/7681)[x] and (Z/10753)[x]
and (Z/12289)[x], but this means 50% more NTTs, plus ex-

tra reductions since 12289 is larger than 10753. We take a
different approach described below.

3.3.2 Our polynomial multiplication

In this section, we present a multiplication for polynomials
in (Z/q)[x] with degree less than 1024. We first map poly-
nomials to (Z/q)[x]/(x2048−1). Rather than switching from
q to an NTT-friendly prime, we use Schönhage’s trick (Sec-
tion 2.3) to manufacture roots of unity for radix-2 NTTs.

Specifically, define K as the ring (Z/q)[x]/(x64 + 1). We
map (Z/q)[x]/(x2048− 1) to ((Z/q)[y]/(y64− 1))[x]/(x32−
y), lift to (Z/q)[x][y]/(y64−1), and then map to K[y]/(y64−
1). Each 32 consecutive terms of a polynomial in (Z/q)[x]
are thus viewed as an element of K. We segment the original
polynomial of 1024 terms in x into 32 elements in K, associat-
ing each element in K to a new indeterminate y with different
degrees. The remaining problem is to multiply elements of
the ring K[y]/(y64−1).

We use NTTs to multiply in K[y]/(y64− 1), using x as a
primitive 128-th root of unity in K. NTT-based multiplica-
tion applies two NTTs for the input polynomials, performs
component-wise multiplication for the transformed values,
and applies one inverse NTT for the final product. Each NTT
converts one input element in K[y]/(y64−1) into 64 elements
in K, using additions, subtractions, and multiplications by
powers of x. Multiplication by a power of x simply raises the
degree of the polynomial in (Z/q)[x], and then replaces x64+i

by −xi, using negations without any multiplications in Z/q.

After transforming the input polynomials into a list of ele-
ments in K, we perform the component-wise multiplication
for the transformed vectors. The problem now is to multiply
two elements of K = (Z/q)[x]/(x64 +1).

We use Nussbaumer’s trick (Section 2.3) to manufacture
further roots of unity: map K to ((Z/q)[y]/(y8 +1))[x]/(x8−
y), lift to ((Z/q)[y]/(y8 +1))[x], and map to ((Z/q)[y]/(y8 +
1))[x]/(x16−1). The polynomial ring (Z/q)[y]/(y8 +1) sup-
ports a radix-2 NTT of size 16 with a primitive root of unity y.
Since the polynomials are short, we choose Karatsuba’s algo-
rithm for component-wise multiplication in (Z/q)[y]/(y8+1).
We use Montgomery multiplication [33] to calculate modular
products in Z/q.

For sntrup761 and sntrup653, the input polynomials
have degree less than 768, so we truncate some computations
in the NTT algorithm: we apply NTT on the ring K[y]/((y32+
1)(y16−1)) instead of the original K[y]/(y64−1). We map
the input polynomials to degree-24 polynomials in K[y], and
calculate the product with a truncated inverse NTT of 48 val-
ues. Our NTT sizes are within 18%, 1%, and 20% of optimal
for 653, 761, and 857 respectively; further truncation is pos-
sible at the expense of some complication in the calculations.

7

3.3.3 AVX2 optimization for the R /q multiplier

Since the component-wise multiplication step comprises 48
or 64 multiplications on K, we perform the multiplications
simultaneously in different 16-bit lanes of ymm registers. Our
software stores the first Z/q coefficient of 16 elements in K
in a ymm register, stores their second coefficients in a second
register, and so on. In this way, we avoid data movement
between the 16-bit lanes inside a ymm register.

To apply this optimization, we first rearrange the coef-
ficients of a polynomial to different registers with a 16×
16 matrix transposes. Given sixteen degree-15 polynomi-
als (a(0)0 + a(0)1 x+ · · ·+ a(0)15 x15), · · · ,(a(15)

0 + · · ·+ a(15)
15 x15),

data in (. . .) represents one ymm register, and we treat a
polynomial in one ymm register as a row of a 16 × 16
matrix. Transposing this matrix rearranges the data to
(a(0)0 , · · · ,a(15)

0), · · · ,(a(15)
15 , · · · ,a(15)

15). Thus, we can fetch a
specific coefficient by accessing its corresponding ymm regis-
ter, while parallelizing 16 polynomial multiplications for the
transposed data.

We use the method in [46] for matrix transposition. The
technique transposes a 2×2 matrix by swapping its two off-
diagonal components. For transposing matrices with larger
dimensions, e.g. 4×4, it first swaps data between two 2×2
off-diagonal sub-matrices, and then performs matrix transpose
for all its four sub-matrices.

3.4 Microbenchmarks: arithmetic

We benchmark our implementation on an Intel Xeon E3-1275
v3 (Haswell), running at 3.5 GHz, with Turbo Boost disabled.
The numbers reported in this section are medians of 3 to
63 measurements, depending on the latency of the operation
under measurement. We omit the numbers of multiplication
for sntrup653 because it actually uses the same multiplier
as sntrup761.

3.4.1 Benchmarks for R /3

We compare the cycle counts for R /3 multiplication between
our implementation and the best previous sntrup implemen-
tation, round2 in [11], in the following table.

Parameter Implementation Cycles

sntrup761
this work (Section 3.2) 8183

this work (NTT, Appendix C) 8827
NTRUP round2 (NTT, [11]) 9290

sntrup857
this work (Section 3.2) 12840

this work (NTT, Appendix C) 12533
NTRUP round2 (NTT, [11]) 12887

The best results are from our our Karatsuba-based polyno-
mial multiplication for smaller parameters, and from our NTT
improvements for larger parameters.

Another question is the efficiency of Montgomery’s trick
for inversion in R /3. Recall that, roughly, the trick replaces
one multiplicative inversion by three ring multiplications, one
amortized ring inversion, and one check for zero divisors. We
show the benchmarks of these operations in the following
table.

Parameter Operation Cycles

sntrup653
Ring inversion 95025

Invertibility check 22553
Ring multiplication 8063

sntrup761
Ring inversion 114011

Invertibility check 9668
Ring multiplication 8183

sntrup857
Ring inversion 160071

Invertibility check 12496
Ring multiplication 12533

We can see the cost of three multiplications and one invertibil-
ity check is less than half of a single inversion in R /3. It is
clear that batch inversion costs less than pure ring inversion,
even for the smallest possible batch size of two.

3.4.2 Benchmarks for R /q

The following table shows the cycle counts of big×big mul-
tiplication and big×small multiplication in R /q, comparing
with the previous best software [11].

Parameter Implementation Cycles

sntrup761
this work (Section 3.3), big×big 25113

this work (Appendix C), big×small 16992
NTRUP round2 [11], big×small 18080

sntrup857
this work (Section 3.3), big×big 32265

this work (Appendix C), big×small 24667
NTRUP round2 [11], big×small 25846

The results show the absolute cycle count of big×big is larger
than big×small multiplication. To evaluate the efficiency of
big×big multiplication, consider if we extend the big×small
multiplication to big×big multiplication, by applying more
internal NTT multiplications. It will result in multiplications
of roughly 3/2 times the current cycle counts, i.e., slower than
big×big multiplication presented in this work.

Since big×small multiplication is faster than big×big, we
use the former as much as possible in batchInv for R /q. Re-
call that Montgomery’s trick for batch inversion replaces one
inversion in R /q by roughly three ring multiplications and
one amortized ring inversion. From the batchInv algorithm
in Section 2.2, we can see the three ring multiplications are
ai · bi−1, ai · ti, and ti · bi−1. Since the input ai is a small ele-
ment, it turns out that only the last is big×big multiplication.
Since the costs for inverting one element in R /q are 576989,
785909, and 973318 cycles for sntrup653, sntrup761, and
sntrup857, respectively, the cost of two big×small and one
big×big multiplication is clearly much less than one inversion
operation.

8

 0

 5000

 10000

 15000

 20000

 25000

C
P

U
 c

y
cl

es
 (

th
o

u
sa

n
d

s)

SNTRUP857
SNTRUP761
SNTRUP653

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120

A
m

o
rt

iz
ed

 C
P

U
 c

y
cl

es
 (

th
o
u
sa

n
d
s)

Batch size

Figure 1: BatchKeyGen performance regarding various batch
sizes (n). Top: full batch cost. Bottom: amortized cost, divid-
ing by n.

3.4.3 Benchmarks for batch key generation

We show the benchmark results for batch key generation
(BatchKeyGen) in Figure 1. See also Table 2.

The figure shows how increasing n, the key generation
batch size, amortizes the ring inversion cost. Generating a few
dozen keys at once already produces most of the throughput
benefit: for example, generating n = 32 keys takes a total
of 1.4 milliseconds for sntrup761 at 3.5GHz. Generating
n = 128 keys takes a total of 5.2 milliseconds for sntrup761
at 3.5GHz, about 10% better throughput than n = 32.

We adopt BatchKeyGen with batch size n = 32 in our li-
brary, resulting in 156317 Haswell cycles per key.

4 New TLS software layering

At the application level, the goals of our end-to-end experi-
ment are to demonstrate how the new results can be deployed
in real-world conditions, transparently for the end users, and
meet the performance constraints of ubiquitous systems. For
this reason, we developed patches for OpenSSL 1.1.1 to
support post-quantum key exchange for TLS 1.3 connections.
We designed our patches so that any existing application built
on top of OpenSSL 1.1.1 can transparently benefit from the
PQC enhancements with no changes, as the patched version
of OpenSSL retains API/ABI compatibility with the origi-
nal version and acts as a drop-in replacement. This works
for any application dynamically linking against libssl as

stunnel
TLS terminator

Back-end web server

OpenSSL
Cryptography and SSL/TLS Toolkit

patched for PQ KEM
in TLS 1.3

engntru
New ENGINE

libsntrup761
libsntrup857

New KEM libraries

OpenSSL
Cryptography and SSL/TLS Toolkit

patched for PQ KEM
in TLS 1.3

epiphany
Web browser

engntru
New ENGINE

libsntrup761
libsntrup857

New KEM libraries

TLS 1.3 key agreement using fast PQ KEM

unmodified software ecosystem
our patches and new software

Patched to support
- private TLS codepoints for sntrup761 and
sntrup857 KEM;
- KEM key agreements alongside DH NIKE;
- KEM mapped on available PKE+NIKE
primitives;
(required patches are mostly contained in
libssl)

- provides EVP methods for sntrup761 and
sntrup857 as a combination of PKE+NIKE
primitives;
- supports keygen batching (thread-local);
- maps PKE+NIKE operations to libsntrup761
or libsntrup857 KEM backends;
- dynamically loadable in libcrypto.

- provide new optimized implementations of
sntrup761 and sntrup857 operations;
- contain the actual cryptographic
functionality.

rapidly evolving software ecosystem

Figure 2: Overview of our end-to-end experiment.

the backend to establish TLS 1.3 connections. Among them,
for our demonstration, we picked a web browser1, a custom
application (tls_timer, described later), and a TLS proxy.2

After installing our patched version of OpenSSL, users can
establish secure and fast post-quantum TLS connections.

Appendix G provides relevant technical background re-
garding the OpenSSL software architecture. The rest of this
section describes, with more detail, our work to achieve the
goals of our experiment, and provides rationale for the most
relevant design decisions.

Figure 2 depicts a high-level overview of our end-to-end
experiment, highlighting the boundary between the unmod-
ified software ecosystem and our novel contributions. This
section details, in particular, our OpenSSL patches and our
new ENGINE component. libsntrup761 and libsntrup857
provide the new optimized implementations of sntrup761
and sntrup857 operations (Section 3), through a simple stan-
dardized API that is independent from OpenSSL, and reusable
by other cryptographic software components.

1GNOME Web (a.k.a. epiphany) — https://wiki.gnome.org/Apps/
Web

2stunnel — https://www.stunnel.org/

9

https://wiki.gnome.org/Apps/Web
https://wiki.gnome.org/Apps/Web
https://www.stunnel.org/

4.1 OpenSSL patches
Figure 4 depicts an architecture diagram of our end-to-end
experiment, highlighting with red boxes inside the libcrypto
and libssl modules, the patched OpenSSL components.

libssl changes. Within libssl, conceptually three ele-
ments need to be changed:

• Modify the server-side handling of the Key Share ex-
tension in an outgoing ServerHello to optionally use a
KEM Encapsulate() operation for KEM groups;

• Modify the client-side handling of the Key Share ex-
tension in an incoming ServerHello to optionally use
a KEM Decapsulate() operation for KEM groups;

• Hardcode private NamedGroup TLS 1.3 codepoints to
negotiate sntrup761 or sntrup857 groups for key ex-
change.

As OpenSSL 1.1.1 does not provide an abstrac-
tion for KEM primitives, we implemented the first
two changes as a workaround, to which we refer
as PKE+NIKE. It maps the KEM operations as a
combination of public-key encryption (PKE) and non-
interactive key exchange (NIKE).3 We combine the use
of EVP_PKEY_encrypt() with NULL input, followed by
EVP_PKEY_derive() to mimic Encapsulate(), and
EVP_PKEY_decrypt() with NULL output, followed by
EVP_PKEY_derive() for Decapsulate(). Due to the
structure of the PKE+NIKE workaround, on both sides of
the handshake, handling the Key Share extension for KEM
groups finishes with the call for EVP_PKEY_derive(), before
updating the protocol key schedule. This is also the case in
the original code that supports traditional NIKE. Therefore,
the new code only affects the handling of the opaque Key
Share content transmitted over the wire.

On the server side, traditional NIKE groups generate an
ephemeral keypair, sending the encoded public key as the
payload of the extension. With our patch, if the group is
flagged as a KEM group, instead of key generation we ex-
ecute EVP_PKEY_encrypt() under the client’s public key
with NULL input. We then send the resulting ciphertext as
the payload of the Key Share extension. As a side effect,
per our PKE+NIKE workaround, EVP_PKEY_encrypt() also
stores the shared secret plaintext within the internal state of
the server-side object representing the client’s public key.
This plaintext is what is ultimately retrieved upon calling
EVP_PKEY_derive().

On the client side, for traditional NIKE groups, the pay-
load of the Key Share extensions is parsed as the encod-
ing of the peer’s public key, to be used in the subsequent
EVP_PKEY_derive(). With our patch, if the group is flagged

3Generally speaking, the EVP API supports any NIKE algorithm. But
historically, DH and ECDH have been the only implementations included in
OpenSSL for this API. Hence, code and documentation tend to refer to such
primitives as DH key exchange or just key exchange rather than NIKE.

as a KEM group, instead we treat the Key Share payload
as the ciphertext to be used in EVP_PKEY_decrypt() under
the client’s secret key, and with NULL output. The resulting
plaintext is stored in the internal state of the client-side object
representing the client’s key pair. The plaintext shared secret
is ultimately retrieved via EVP_PKEY_derive().

The last patch alters the libssl static table of supported
TLS 1.3 groups. It assigns private NamedGroup codepoints to
negotiate sntrup761 or sntrup857 key exchanges, flagged
as KEM groups, and links it to static numeric identifiers (NIDs)
defined within libcrypto headers. These identify implemen-
tations of sntrup761 and sntrup857, as described in the
next paragraph.
libcrypto changes. libcrypto 1.1.1 has the ability to
generate NIDs dynamically for custom algorithms unknown
at OpenSSL build time. In contrast, libssl 1.1.1 defines
supported groups in a static table generated during compi-
lation. It is technically possible to inject KEM functionality
(using the PKE+NIKE workaround described above) via a
custom ENGINE without any change to libcrypto. Yet, the
limited support for dynamic customization in libssl adds
the requirement for a libcrypto patch to issue static NIDs
for sntrup761 and sntrup857. This is so they can be in-
cluded in the libssl static table at compile time. For each
parameter set, this patch uses the internal OpenSSL tooling to
issue a novel static NID and associate it with the correspond-
ing sntrup* algorithm and a custom object identifier (OID),4

required for serializing and deserializing key objects. With
this data, the tooling updates the public libcrypto headers,
adding the relevant sntrup* definitions.

Additionally, we include an optional patch for libcrypto
that adds a reference implementation of sntrup761 as a new
libcrypto submodule. Including this patch allows us to test
the implementation provided by engNTRU against the refer-
ence implementation, and also to test the software stack on
the server and the client in absence of the ENGINE. This eases
the debug process during the development of engNTRU. For
the final users of our end-to-end scenario, this patch is en-
tirely optional, as the dynamic ENGINE injects the optimized
implementation for the cryptographic primitive if it is absent.
Otherwise, it overrides the default reference implementation
if it is already included in libcrypto.

4.2 The engNTRU ENGINE
As mentioned in Section 2.5 and depicted in Figure 2 and
Figure 4, as part of our end-to-end experiment, we introduce
a new ENGINE, dubbed engNTRU.

We followed the methodology suggested in [45], and we
defer to it for a detailed description of the ENGINE frame-
work, how it integrates with the OpenSSL architecture (par-
tially illustrated in Figure 4) and general motivations to use

4https://www.itu.int/en/ITU-T/asn1/Pages/OID-project.
aspx

10

https://www.itu.int/en/ITU-T/asn1/Pages/OID-project.aspx
https://www.itu.int/en/ITU-T/asn1/Pages/OID-project.aspx

the ENGINE framework for applied research. In this section,
we highlight how this choice has two main benefits. First,
it decouples OpenSSL from fast-paced development in the
ecosystem of optimized implementations for post-quantum
primitives. Finally, at the same time it decouples external li-
braries implementing novel primitives from the data types
and patterns required to provide OpenSSL compatibility.
engNTRU builds upon libbecc [16], which is itself de-

rived from libsuola [45]. Similar to both previous works,
engNTRU is also a shallow ENGINE, i.e., it does not con-
tain actual cryptographic implementations for the supported
primitives. Instead, it delegates actual computations to
libsntrup761 and libsntrup857. The functionality pro-
vided by engNTRU includes:

• building as a dynamically loadable module, injecting
support for novel cryptographic primitives transparently
for existing applications;

• supporting generic KEM primitives under the
PKE+NIKE workaround;

• dynamically injecting/replacing support for sntrup761
at run-time, delegating to libsntrup761 for optimized
computation;

• dynamically injecting support for sntrup857 at run-
time, delegating to libsntrup857 for optimized com-
putation;

• mapping the PKE+NIKE workaround back to the stan-
dard KEM API adopted by the implementations of NIST
PQC KEM candidates, including libsntrup*.

Furthermore, similar to libbecc and libsuola, and using
the same terminology, engNTRU supports the notion of multi-
ple providers to interface with the OpenSSL API. Under the
serial_lib provider, each Keygen() operation is mapped
to crypto_kem_keypair(), generating a new keypair on de-
mand as defined by the NIST PQC KEM API. Alternatively,
under the batch_lib provider (which is the default in our ex-
periment), engNTRU supports batch key generation, similar to
libbecc. In the case of libsntrup761 and libsntrup857,
this allows OpenSSL and applications to transparently take
advantage of the performance gains described in Section 3.

Under the batch_lib model, while a process is run-
ning, each sntrup* parameter set is associated with a
thread-safe heap-allocated pool of keypairs. Every time
an application thread requests a new sntrup* keypair,
engNTRU attempts to retrieve a fresh keypair from the
corresponding pool. For each supported parameter set,
it dynamically allocates a pool, initialized the first time
a keypair is requested. This includes filling the pool, by
calling crypto_kem_sntrup761_keypair_batch() or
crypto_kem_sntrup857_keypair_batch(). Otherwise,
after the first request, engNTRU normally serves each request
by copying (and then securely erasing from the pool buffer)
the next fresh entry in the pool. After this, if the consumed
keypair was the last in the pool, engNTRU fills it again, by

calling the corresponding libsntrup* batch generation
function. This happens synchronously, before returning
control to the application.

It is easy to see the advantage of batch_lib over
serial_lib from our microbenchmarks in Section 3. With
serial_lib, each sntrup761 key costs 0.4ms on a 2GHz
Haswell core. With batch_lib, within each batch of 32
sntrup761 keys, the first key costs 2.5ms, and the remaining
31 keys each cost 0ms. Note that, according to video-game de-
signers [17], latencies below 20ms are imperceptible. A series
of K sntrup761 keys costs 0.4Kms from serial_lib and
just (0.08K + 2.5)ms from batch_lib. Similar comments
apply to the separate sntrup857 pool.

As long as API/ABI compatibility is maintained in the
engNTRU/libsntrup* interfaces, further refinements in the
libsntrup* implementations do not require recompiling
and reinstalling engNTRU, nor OpenSSL, nor other com-
ponents of the software ecosystem above. At the same
time, libsntrup761 and libsntrup857 are isolated from
OpenSSL-specific APIs, so they can easily be reused by alter-
native stacks supporting the NIST PQC KEM API. Morover,
they can retain a lean and portable API, while details like the
handling of pools of batch results, or the sharing model to
adopt, are delegated to the middleware layer.

4.3 Reaching applications transparently

Consulting Figure 4, the purpose of this section is to describe
the extent of the application layer we explored in our study.
In these experiments, we investigated two paths to reach
libssl and libcrypto (and subsequently engNTRU then
libsntrup*). Namely, a networking application dynamically
linking directly, and a separate shared library against which
even higher level applications dynamically link against. More
generally, this approach works for any application which sup-
ports TLS 1.3 by dynamically linking against libssl 1.1.1,
but not for statically linked applications.5

stunnel. For networking applications that do not natively
support TLS, stunnel is an application that provides TLS
tunneling. The two most common deployment scenarios for
stunnel are client mode and server mode.

In client mode, stunnel listens for cleartext TCP connec-
tions, then initiates a TLS session to a fixed server address.
A common use case for client mode would be connecting to
a fixed TLS service from a client application that does not
support TLS. For example, a user could execute the telnet
application (with no TLS support) to connect to a client mode
instance of stunnel, which would then TLS-wrap the con-
nection to a static SMTPS server to securely transfer email.

5Although not part of our end-to-end demo described here, we further
validated this by successfully enabling sntrup connections in popular web
servers, such as nginx and Apache httpd, and other applications, without
changes to their sources or their binary distributions.

11

In server mode, stunnel listens for TLS connections, then
initiates cleartext TCP connections to a fixed server address.
A common use case for server mode would be providing a
TLS service from a server application that does not support
TLS. For example, a user could serve a single static webpage
over HTTP with the netcat utility, which stunnel would
then TLS-wrap to serve the content via HTTPS to incoming
connections from e.g. browsers. In this light, stunnel server
mode is one form of TLS termination.
stunnel links directly to OpenSSL for TLS function-

ality, hence the intersection with engNTRU and underlying
libsntrup* is immediate. For example, in stunnel server
mode, this requires no changes to the server application, which
in fact is oblivious to the TLS tunneling altogether.

glib-networking. Similar to how the Standard Template Li-
brary (STL) and Boost provide expanded functionality for
C++ (e.g. data structures, multithreading), Glib is a core C
library for GNOME and GTK applications. Bundled as part
of Glib, one feature of the Gnome Input/Output (GIO) C
library provides an API for networking functionality, includ-
ing low-level BSD-style sockets. For TLS connections, GIO
loads the glib-networking C library, which abstracts away
the backend TLS provider, and presents a unified interface
to callers. Currently, glib-networking supports two such
backends: GnuTLS and OpenSSL. The latter is newer, main-
lined in v2.59.90 (Feb 2019) while the current version as
of this writing is v2.68.1. This is precisely the place where
glib-networking intersects OpenSSL. To summarize, the
modularity of glib-networking regarding TLS backends,
coupled with the layered approach of GIO, allows any ap-
plication utilizing glib-networking for TLS functional-
ity to transparently benefit from ENGINE features, including
engNTRU.

One such application, and one highlight of our experiments,
is GNOME Web. Neither Google Chrome nor Mozilla Fire-
fox are capable of this level of modularity. Both browsers
link directly to TLS backends at build time (BoringSSL,
NSS). These do not support dynamically injecting this level
of cryptosystem functionality, necessarily extending to the
TLS layer as well. In general, all other popular browser im-
plementations (we are aware of) require source-code changes
to add any new TLS cipher suite. In our experiments, we
are able to make GNOME Web sntrup761- and sntrup857-
aware with absolutely no changes to its source code, nor
that of glib-networking. Performance-wise, GNOME Web
then transparently benefits from the batch key generation in
libsntrup* through engNTRU, loaded dynamically by the
OpenSSL TLS backend of glib-networking.

4.4 Macrobenchmarks: TLS handshakes
To conclude our end-to-end experiment, we investigated the
impact of enabling post-quantum key exchanges for TLS 1.3
handshakes, as perceived by end users. We considered an

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 440 460 480 500 520 540 560 580 600 620

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n
:

P
(X

 ≤
 x

)

#connections / second

P-256
X25519

SNTRUP857
SNTRUP761

Figure 3: Cumulative distributions of handshake performance
under different cryptosystems in a local network. Each curve
represents a key-exchange group, for which we collected 100
samples, in terms of average number of connections per sec-
ond. This metric is extrapolated from measuring the elapsed
wall-clock time over 8192 sequentially established connec-
tions per sample.

experiment on large-scale deployments like CECPQ1 or
CECPQ2 out of scope for this work, as it would be better
served by a dedicated study. As an alternative, we decided to
evaluate the performance on a smaller and more controlled
environment: namely, a client and a server connected over a
low-traffic Gigabit Ethernet network. We chose to focus on
number of connections per second as the more relevant metric
from the point of view of end users, and used easily accessible
consumer hardware as the platform, to simulate a small office
setup.6

To exercise full control over the sampling process, we de-
veloped a small (about 300 LOC) TLS client built directly
on top of libssl (see Appendix F for a discussion about
in-browser benchmarks). Referring to the diagram in Fig-
ure 2, the end-to-end benchmark replaces epiphany with
this new program, that we dubbed tls_timer. In its main
loop, tls_timer records a timestamp, sequentially performs
a predetermined number of TLS connections, then records a
second timestamp, returning the elapsed wall-clock time. In
the above loop, for each connection, it performs a full TLS 1.3
handshake. Then, the client properly shuts down the connec-
tion, without sending any application data. Hence, the total
elapsed time measured by the client covers the computation
time required by client and server to generate and parse the

6The client side is hosted on an Intel Core i7-6700 workstation, running
Ubuntu 20.04.2 with Linux 5.4.0, while the server side is hosted on an AMD
Ryzen 7 2700X workstation, running Ubuntu 18.04.5 with Linux 5.4.0. Both
peers directly connect to the same Gigabit Ethernet L2 switch via their
embedded Gigabit Ethernet NICs.

12

content of the exchanged messages. It also includes the time
spent due to transit of packets over the network, and through
userland/kernelspace transitions. In particular, with respect to
cryptographic computations, during the benchmark the client
repeatedly performs Keygen() and Decapsulate() for
the ephemeral key exchange, and RSA-2048 signature ver-
ifications to validate the identity of the server against its
certificate. During the client-measured interval, the server
respectively performs Encapsulate() for the ephemeral
key exchange, and RSA-2048 signature generation for authen-
tication.

As a baseline for comparisons, we used tls_timer to anal-
ogously measure the performance of TLS handshakes using
the most popular TLS 1.3 groups for key exchange: namely,
X25519 and P-256, in their respective ASM-optimized imple-
mentations. These are the fastest software implementations of
TLS 1.3 key-exchange groups shipped in OpenSSL 1.1.1k,
and are widely deployed in production. For these groups,
computation on the client and server differs from the descrip-
tion above exclusively on the ephemeral key exchange, as
both sides perform their respective NIKE Keygen() and
Derive() operations instead of the listed post-quantum
KEM operations.

On the server side tls_timer connects to an instance
of stunnel, configured as described above. Technically
stunnel is itself connected to an apache2 HTTP daemon
serving static content on the same host, but as tls_server
does not send any application data, the connection between
stunnel and apache2 is short-lived and does not carry data.
Finally, to minimize noise in the measurements, we disabled
frequency scaling and Turbo Boost on both platforms, termi-
nated most concurrent services and processes on the client and
the server, and isolated one physical core exclusively to each
benchmark process (i.e., tls_timer, stunnel and apache2)
to avoid biases due to CPU contention.

Figure 3 visualizes our experimental results as cumulative
distributions for each tested group. The results show that, in
our implementation, both the recommended sntrup761 pa-
rameter set and the higher security sntrup857 consistently
achieve more connections per second than the optimized im-
plementations of pre-quantum alternatives currently deployed
at large. The unloaded high-bandwidth network of our experi-
mental environment masks the higher communication costs
of the lattice cryptosystems, hence these results do not im-
ply that sntrup* cost less than ECC algorithms overall, as
further discussed in Appendix D. However, our results show
that, in terms of computational costs, we achieve new records
when compared with the most performant implementations of
TLS 1.3 key-exchange groups included in OpenSSL 1.1.1k,
while providing higher pre-quantum security levels and much
higher post-quantum security levels against all known attacks.

5 Conclusion

NIST’s ongoing Post-Quantum Cryptography Standardiza-
tion Project poses significant challenges to the cryptology,
applied cryptography, and system security research commu-
nities, to name a few. These challenges span both the aca-
demic and industry arenas. Our work contributes to solving
these challenges in two main directions. (1) In Section 3, we
propose software optimizations for sntrup, from fast SIMD
arithmetic at the lowest level to efficient amortized batch
key generation at the highest level. These are an essential
part of our new libsntrup761 and libsntrup857 libraries.
(2) In Section 4, we demonstrate how to realize these gains
from libsntrup* by developing engNTRU, a dynamically-
loadable OpenSSL ENGINE. We transparently expose it to
the application layer through a light fork of OpenSSL, aug-
mented with sntrup support in TLS 1.3 cipher suites. Our
experiments reach the Gnome Web (Epiphany) browser on
the client side and stunnel as a TLS terminator on the server
side—both with no source-code changes. Finally, our end-to-
end macrobenchmarks combine (1) and (2) to achieve more
TLS 1.3 handshakes per second than any software included
in OpenSSL.

CECPQ1 and CECPQ2 were important proof-of-concept
experiments regarding the integration of post-quantum algo-
rithms into selected browser and TLS implementations, but
those experiments suffered from poor reproducibility: the
capabilities and telemetry are only available to major indus-
try players like Google and Cloudflare, so the cryptographic
primitive choice and optimization techniques were dictated
by them as well. Our work demonstrates that establishing a re-
search environment to provide reproducible results is not only
feasible, but achievable with a reasonable workload distribu-
tion, using new TLS software-layering techniques to minimize
complexity at the architecture and system levels.

Availability. In support of Open Science, we provide
several free and open-source software (FOSS) contribu-
tions and research artifacts.7 We released libsntrup761,
libsntrup857, engNTRU, and tls_timer as FOSS. We also
contributed our FOSS implementations of enc and dec to SU-
PERCOP; its API does not support batch keygen at this time.
Lastly, we published our OpenSSL patches and a detailed,
step-by-step tutorial to reproduce our full experiment stack.

Acknowledgments. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under Germany’s Excellence Strategy—EXC 2092
CASA—390781972 “Cyber Security in the Age of Large-
Scale Adversaries”, by the U.S. National Science Foundation
under grant 1913167, by the Cisco University Research Pro-
gram, and by the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 804476). “Any opinions,

7https://opensslntru.cr.yp.to

13

https://opensslntru.cr.yp.to

findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessar-
ily reflect the views of the National Science Foundation” (or
other funding agencies).

The tls_timer icon used in Figure 4 is licensed under
CC-BY and created by Tomas Knopp for thenounproject.com.
All product names, logos, brands and trademarks are property
of their respective owners.

The scientific colour map batlow [21] is used in this study
to prevent visual distortion of the data and exclusion of readers
with colour-vision deficiencies [22].

Metadata. Permanent ID of this document:
a8f6fc35a5dc11da1f125b9f5225d2a9c4c5b08b.

References

[1] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon,
David Cooper, Quynh Dang, Yi-Kai Liu, Carl Miller,
Dustin Moody, Rene Peralta, Ray Perlner, Angela
Robinson, and Daniel Smith-Tone. Status report
on the second round of the NIST Post-Quantum
Cryptography Standardization Process, 2020. NIS-
TIR 8309, https://csrc.nist.gov/publications/
detail/nistir/8309/final.

[2] Erdem Alkim, Léo Ducas, Thomas Pöppelmann,
and Peter Schwabe. Post-quantum key exchange -
A new hope. In Thorsten Holz and Stefan Savage,
editors, 25th USENIX Security Symposium, USENIX
Security 16, Austin, TX, USA, August 10-12, 2016, pages
327–343. USENIX Association, 2016. URL https://
www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim.
https://eprint.iacr.org/2015/1092.

[3] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Mar-
vin Chung, Hülya Evkan, Leo Wei-Lun Huang, Vin-
cent Hwang, Ching-Lin Trista Li, Ruben Nieder-
hagen, Cheng-Jhih Shih, Julian Wälde, and Bo-Yin
Yang. Polynomial multiplication in NTRU Prime:
Comparison of optimization strategies on Cortex-M4.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021
(1):217–238, 2021. doi: 10.46586/tches.v2021.i1.
217-238. URL https://doi.org/10.46586/tches.
v2021.i1.217-238. https://eprint.iacr.org/
2020/1216.

[4] Roberto Avanzi, Joppe Bos, Leo Ducas, Eike Kiltz, Tan-
crede Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehlé.
CRYSTALS-Kyber: algorithm specifications and sup-
porting documentation, 2020. https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[5] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter
D’Anvers, Angshuman Karmakar, Sujoy Sinha
Roy, Michiel Van Beirendonck, and Frederik
Vercauteren. SABER: Mod-LWR based KEM
(round 3 submission), 2020. https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[6] Mihir Bellare, Hannah Davis, and Felix Günther. Sep-
arate your domains: NIST PQC KEMs, oracle cloning
and read-only indifferentiability. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Con-
ference on the Theory and Applications of Cryp-
tographic Techniques, Zagreb, Croatia, May 10-14,
2020, Proceedings, Part II, volume 12106 of Lecture
Notes in Computer Science, pages 3–32. Springer,
2020. ISBN 978-3-030-45723-5. doi: 10.1007/
978-3-030-45724-2_1. URL https://doi.org/
10.1007/978-3-030-45724-2_1. https://eprint.
iacr.org/2020/241.

[7] Daniel J. Bernstein. Multidigit multiplication for math-
ematicians, 2001. http://cr.yp.to/papers.html#
m3.

[8] Daniel J. Bernstein. Batch binary Edwards. In
Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 16-20, 2009.
Proceedings, volume 5677 of Lecture Notes in Com-
puter Science, pages 317–336. Springer, 2009. doi:
10.1007/978-3-642-03356-8_19. URL https://doi.
org/10.1007/978-3-642-03356-8_19.

[9] Daniel J. Bernstein. Patent-buyout updates, 2021.
https://groups.google.com/a/list.nist.gov/
g/pqc-forum/c/nbIZhtICKWU/m/ML7aYY71AgAJ.

[10] Daniel J. Bernstein and Tanja Lange. Crypto horror
stories, 2020. https://hyperelliptic.org/tanja/
vortraege/20200206-horror.pdf.

[11] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT
benchmarking of cryptographic systems, 2021. https:
//bench.cr.yp.to (accessed 28 May 2021).

[12] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time
gcd computation and modular inversion. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2019(3):340–398, 2019.
doi: 10.13154/tches.v2019.i3.340-398. URL https:
//doi.org/10.13154/tches.v2019.i3.340-398.

[13] Daniel J. Bernstein, Billy Bob Brumley, Ming-
Shing Chen, Chitchanok Chuengsatiansup, Tanja
Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola
Tuveri, Christine van Vredendaal, and Bo-Yin Yang.

14

https://thenounproject.com
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://eprint.iacr.org/2015/1092
https://doi.org/10.46586/tches.v2021.i1.217-238
https://doi.org/10.46586/tches.v2021.i1.217-238
https://eprint.iacr.org/2020/1216
https://eprint.iacr.org/2020/1216
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/978-3-030-45724-2_1
https://doi.org/10.1007/978-3-030-45724-2_1
https://eprint.iacr.org/2020/241
https://eprint.iacr.org/2020/241
http://cr.yp.to/papers.html#m3
http://cr.yp.to/papers.html#m3
https://doi.org/10.1007/978-3-642-03356-8_19
https://doi.org/10.1007/978-3-642-03356-8_19
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/nbIZhtICKWU/m/ML7aYY71AgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/nbIZhtICKWU/m/ML7aYY71AgAJ
https://hyperelliptic.org/tanja/vortraege/20200206-horror.pdf
https://hyperelliptic.org/tanja/vortraege/20200206-horror.pdf
https://bench.cr.yp.to
https://bench.cr.yp.to
https://doi.org/10.13154/tches.v2019.i3.340-398
https://doi.org/10.13154/tches.v2019.i3.340-398

NTRU Prime: round 3, 2020. https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[14] Jean-François Biasse and Fang Song. Efficient quan-
tum algorithms for computing class groups and solving
the principal ideal problem in arbitrary degree num-
ber fields. In Robert Krauthgamer, editor, Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arling-
ton, VA, USA, January 10-12, 2016, pages 893–902.
SIAM, 2016. ISBN 978-1-61197-433-1. doi: 10.1137/1.
9781611974331.ch64. URL http://dx.doi.org/10.
1137/1.9781611974331.ch64. https://fangsong.
info/files/pubs/BS_SODA16.pdf.

[15] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian
Goncalves, and Douglas Stebila. Hybrid key encap-
sulation mechanisms and authenticated key exchange.
In Jintai Ding and Rainer Steinwandt, editors, Post-
Quantum Cryptography - 10th International Conference,
PQCrypto 2019, Chongqing, China, May 8-10, 2019 Re-
vised Selected Papers, volume 11505 of Lecture Notes
in Computer Science, pages 206–226. Springer, 2019.
doi: 10.1007/978-3-030-25510-7_12. URL https:
//doi.org/10.1007/978-3-030-25510-7_12.

[16] Billy Bob Brumley, Sohaib ul Hassan, Alex Shaindlin,
Nicola Tuveri, and Kide Vuojärvi. Batch binary
Weierstrass. In Peter Schwabe and Nicolas Théri-
ault, editors, Progress in Cryptology - LATINCRYPT
2019 - 6th International Conference on Cryptology
and Information Security in Latin America, Santi-
ago de Chile, Chile, October 2-4, 2019, Proceedings,
volume 11774 of Lecture Notes in Computer Sci-
ence, pages 364–384. Springer, 2019. doi: 10.1007/
978-3-030-30530-7_18. URL https://doi.org/10.
1007/978-3-030-30530-7_18.

[17] John Carmack. Latency mitigation strate-
gies, 2013. https://web.archive.org/web/
20130225013015/www.altdevblogaday.com/2013/
02/22/latency-mitigation-strategies/.

[18] Stephen Checkoway, Ruben Niederhagen, Adam Ev-
erspaugh, Matthew Green, Tanja Lange, Thomas Ris-
tenpart, Daniel J. Bernstein, Jake Maskiewicz, Ho-
vav Shacham, and Matthew Fredrikson. On the
practical exploitability of Dual EC in TLS imple-
mentations. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 319–335. USENIX Associ-
ation, August 2014. https://projectbullrun.org/
dual-ec/documents/dualectls-20140606.pdf.

[19] Cong Chen, Oussama Danba, Jeffrey Hoffstein,
Andreas Hulsing, Joost Rijneveld, John M. Schanck,

Tsunekazu Saito, Peter Schwabe, William Whyte,
Takashi Yamakawa, Keita Xagawa, and Zhenfei
Zhang. NTRU: algorithm specifications and sup-
porting documentation, 2020. https://csrc.nist.
gov/projects/post-quantum-cryptography/
round-3-submissions.

[20] Lucian Constantin. NSA can retain encrypted communi-
cations of Americans possibly indefinitely, 2013. https:
//www.pcworld.idg.com.au/article/465599/
nsa_can_retain_encrypted_communications_
americans_possibly_indefinitely/.

[21] Fabio Crameri. Scientific colour maps, February 2021.
URL https://doi.org/10.5281/zenodo.4491293.

[22] Fabio Crameri, Grace E. Shephard, and Philip J. Heron.
The misuse of colour in science communication. Nature
Communications, 11(1):5444, Oct 2020. ISSN 2041-
1723. doi: 10.1038/s41467-020-19160-7. URL https:
//doi.org/10.1038/s41467-020-19160-7.

[23] Agner Fog. Instruction tables: Lists of instruction laten-
cies, throughputs and micro-operation breakdowns for
Intel, AMD and VIA CPUs. Technical University of Den-
mark, March 2021. URL https://www.agner.org/
optimize/instruction_tables.pdf. Accessed:
2021-03-22.

[24] Craig Gidney and Martin Ekerå. How to factor 2048 bit
RSA integers in 8 hours using 20 million noisy qubits,
2019. https://arxiv.org/abs/1905.09749.

[25] Glenn Greenwald. XKeyscore: NSA tool collects
‘nearly everything a user does on the internet’, 2013.
https://www.theguardian.com/world/2013/jul/
31/nsa-top-secret-program-online-data.

[26] Robert Hackett. IBM plans a huge leap
in superfast quantum computing by 2023,
2020. https://fortune.com/2020/09/15/
ibm-quantum-computer-1-million-qubits-by-2030/.

[27] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin
Roetteler, and Mathias Soeken. Improved quantum cir-
cuits for elliptic curve discrete logarithms. In Jintai Ding
and Jean-Pierre Tillich, editors, Post-Quantum Cryp-
tography - 11th International Conference, PQCrypto
2020, Paris, France, April 15-17, 2020, Proceedings,
volume 12100 of Lecture Notes in Computer Science,
pages 425–444. Springer, 2020. ISBN 978-3-030-44222-
4. doi: 10.1007/978-3-030-44223-1_23. URL https:
//doi.org/10.1007/978-3-030-44223-1_23.

[28] Matthias Kannwischer, Joost Rijneveld, Peter Schwabe,
Douglas Stebila, and Thom Wiggers. PQClean: clean,

15

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://dx.doi.org/10.1137/1.9781611974331.ch64
http://dx.doi.org/10.1137/1.9781611974331.ch64
https://fangsong.info/files/pubs/BS_SODA16.pdf
https://fangsong.info/files/pubs/BS_SODA16.pdf
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-030-25510-7_12
https://doi.org/10.1007/978-3-030-30530-7_18
https://doi.org/10.1007/978-3-030-30530-7_18
https://web.archive.org/web/20130225013015/www.altdevblogaday.com/2013/02/22/latency-mitigation-strategies/
https://web.archive.org/web/20130225013015/www.altdevblogaday.com/2013/02/22/latency-mitigation-strategies/
https://web.archive.org/web/20130225013015/www.altdevblogaday.com/2013/02/22/latency-mitigation-strategies/
https://projectbullrun.org/dual-ec/documents/dualectls-20140606.pdf
https://projectbullrun.org/dual-ec/documents/dualectls-20140606.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.pcworld.idg.com.au/article/465599/nsa_can_retain_encrypted_communications_americans_possibly_indefinitely/
https://www.pcworld.idg.com.au/article/465599/nsa_can_retain_encrypted_communications_americans_possibly_indefinitely/
https://www.pcworld.idg.com.au/article/465599/nsa_can_retain_encrypted_communications_americans_possibly_indefinitely/
https://www.pcworld.idg.com.au/article/465599/nsa_can_retain_encrypted_communications_americans_possibly_indefinitely/
https://doi.org/10.5281/zenodo.4491293
https://doi.org/10.1038/s41467-020-19160-7
https://doi.org/10.1038/s41467-020-19160-7
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://arxiv.org/abs/1905.09749
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://www.theguardian.com/world/2013/jul/31/nsa-top-secret-program-online-data
https://fortune.com/2020/09/15/ibm-quantum-computer-1-million-qubits-by-2030/
https://fortune.com/2020/09/15/ibm-quantum-computer-1-million-qubits-by-2030/
https://doi.org/10.1007/978-3-030-44223-1_23
https://doi.org/10.1007/978-3-030-44223-1_23

portable, tested implementations of postquantum cryp-
tography, 2021. https://github.com/pqclean/
pqclean.

[29] Matthias J. Kannwischer, Joost Rijneveld, Peter
Schwabe, and Ko Stoffelen. pqm4: Testing and bench-
marking NIST PQC on ARM Cortex-M4, 2019. https:
//eprint.iacr.org/2019/844.

[30] Adam Langley. CECPQ2, 2018. https://www.
imperialviolet.org/2018/12/12/cecpq2.html.

[31] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van
Oorschot. Handbook of Applied Cryptography. CRC
Press, Inc., USA, 1st edition, 1996. ISBN 0849385237.
https://cacr.uwaterloo.ca/hac/.

[32] Peter Montgomery. Speeding the Pollard
and elliptic curve methods of factorization.
Mathematics of Computation, 48:243–264,
1987. https://www.ams.org/journals/mcom/
1987-48-177/S0025-5718-1987-0866113-7/.

[33] Peter L. Montgomery. Modular multiplication with-
out trial division. Mathematics of Computation, 44:
519–521, 1985. URL https://doi.org/10.1090/
S0025-5718-1985-0777282-X.

[34] NIST. Guidelines for submitting tweaks
for third round finalists and candidates,
2020. https://csrc.nist.gov/CSRC/media/
Projects/post-quantum-cryptography/
documents/round-3/
guidelines-for-sumbitting-tweaks-third-round.
pdf.

[35] Henri Nussbaumer. Fast polynomial transform algo-
rithms for digital convolution. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 28:205–
215, 1980. URL https://doi.org/10.1109/TASSP.
1980.1163372.

[36] European Patent Office. Decision rejecting the
opposition, 2019. https://register.epo.org/
application?number=EP11712927&lng=en&tab=
doclist.

[37] Markus Püschel, José M. F. Moura, Jeremy R. John-
son, David A. Padua, Manuela M. Veloso, Bryan
Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic,
Yevgen Voronenko, Kang Chen, Robert W. Johnson,
and Nicholas Rizzolo. SPIRAL: code generation for
DSP transforms. Proc. IEEE, 93(2):232–275, 2005.
doi: 10.1109/JPROC.2004.840306. URL https://doi.
org/10.1109/JPROC.2004.840306.

[38] Steven Rich and Barton Gellman. NSA seeks to build
quantum computer that could crack most types of en-
cryption, 2014. https://tinyurl.com/3msrpzhh.

[39] Arnold Schönhage. Schnelle multiplikation von poly-
nomen über körpern der charakteristik 2. Acta Inf., 7
(4):395–398, December 1977. ISSN 0001-5903. doi:
10.1007/BF00289470. URL https://doi.org/10.
1007/BF00289470.

[40] Peter Schwabe, Douglas Stebila, and Thom Wiggers.
Post-quantum TLS without handshake signatures. In
Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, CCS ’20: 2020 ACM SIGSAC Conference
on Computer and Communications Security, Virtual
Event, USA, November 9-13, 2020, pages 1461–1480.
ACM, 2020. doi: 10.1145/3372297.3423350. URL
https://doi.org/10.1145/3372297.3423350.

[41] Hovav Shacham and Dan Boneh. Improving SSL hand-
shake performance via batching. In Proceedings of
the 2001 Conference on Topics in Cryptology: The
Cryptographer’s Track at RSA, CT-RSA 2001, page
28–43, Berlin, Heidelberg, 2001. Springer-Verlag. ISBN
3540418989. https://hovav.net/ucsd/papers/
sb01.html.

[42] Douglas Stebila and Michele Mosca. Post-quantum key
exchange for the Internet and the Open Quantum Safe
project. In Roberto Avanzi and Howard M. Heys, editors,
Selected Areas in Cryptography - SAC 2016 - 23rd Inter-
national Conference, St. John’s, NL, Canada, August 10-
12, 2016, Revised Selected Papers, volume 10532 of Lec-
ture Notes in Computer Science, pages 14–37. Springer,
2016. doi: 10.1007/978-3-319-69453-5_2. URL https:
//doi.org/10.1007/978-3-319-69453-5_2.

[43] Douglas Stebila, Scott Fluhrer, and Shay Gueron. Hy-
brid key exchange in TLS 1.3. Internet-Draft draft-ietf-
tls-hybrid-design-02, Internet Engineering Task Force,
April 2021. URL https://datatracker.ietf.org/
doc/html/draft-ietf-tls-hybrid-design-02.
Work in Progress.

[44] NIST PQC team. Guidelines for submitting tweaks
for Third Round Finalists and Candidates, 2020.
https://groups.google.com/a/list.nist.gov/
g/pqc-forum/c/LPuZKGNyQJ0/m/O6UBanYbDAAJ.

[45] Nicola Tuveri and Billy Bob Brumley. Start your EN-
GINEs: Dynamically loadable contemporary crypto.
In 2019 IEEE Cybersecurity Development, SecDev
2019, Tysons Corner, VA, USA, September 23-25, 2019,
pages 4–19. IEEE, 2019. doi: 10.1109/SecDev.2019.
00014. URL https://doi.org/10.1109/SecDev.
2019.00014.

[46] Henry S. Warren. Hacker’s Delight. Addison-Wesley
Professional, 2nd edition, 2012. ISBN 0321842685.

16

https://github.com/pqclean/pqclean
https://github.com/pqclean/pqclean
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://cacr.uwaterloo.ca/hac/
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866113-7/
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/guidelines-for-sumbitting-tweaks-third-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/guidelines-for-sumbitting-tweaks-third-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/guidelines-for-sumbitting-tweaks-third-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/guidelines-for-sumbitting-tweaks-third-round.pdf
https://csrc.nist.gov/CSRC/media/Projects/post-quantum-cryptography/documents/round-3/guidelines-for-sumbitting-tweaks-third-round.pdf
https://doi.org/10.1109/TASSP.1980.1163372
https://doi.org/10.1109/TASSP.1980.1163372
https://register.epo.org/application?number=EP11712927&lng=en&tab=doclist
https://register.epo.org/application?number=EP11712927&lng=en&tab=doclist
https://register.epo.org/application?number=EP11712927&lng=en&tab=doclist
https://doi.org/10.1109/JPROC.2004.840306
https://doi.org/10.1109/JPROC.2004.840306
https://tinyurl.com/3msrpzhh
https://doi.org/10.1007/BF00289470
https://doi.org/10.1007/BF00289470
https://doi.org/10.1145/3372297.3423350
https://hovav.net/ucsd/papers/sb01.html
https://hovav.net/ucsd/papers/sb01.html
https://doi.org/10.1007/978-3-319-69453-5_2
https://doi.org/10.1007/978-3-319-69453-5_2
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-02
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-02
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LPuZKGNyQJ0/m/O6UBanYbDAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LPuZKGNyQJ0/m/O6UBanYbDAAJ
https://doi.org/10.1109/SecDev.2019.00014
https://doi.org/10.1109/SecDev.2019.00014

A Post-quantum timelines

Given a large enough quantum computer, Shor’s algorithm
will rapidly break 2048-bit RSA and 256-bit ECC, the primary
algorithms used today for TLS key exchange. This appendix
reviews current predictions regarding the timeframe for this
event, and the consequences for TLS.

The thousands of logical qubits used in Shor’s algorithm are
expected to need millions of physical qubits [24]. This might
sound like science fiction, compared to the 53 physical qubits
underlying Google’s announcement of “quantum supremacy”
in late 2019. However, IBM released a quantum-computing
roadmap in September 2020 more than doubling the number
of physical qubits per year, and “says it is confident it will
make its 2030 deadline for a 1 million-qubit machine” [26].
Google makes similar projections regarding its own progress,
according to [26]. Meanwhile, quantum algorithms are con-
tinuing to improve: for example, [24] reduced the number
of quantum operations by two orders of magnitude in Shor’s
algorithm for breaking RSA-2048, and [27] did the same for
256-bit ECC.

Several years ago, leaks showed that NSA was already in-
tercepting “nearly everything a user does on the internet” [25],
that the data-minimization procedures imposed on NSA by
a secret court had an exception allowing ciphertexts to be
stored indefinitely [20], and that NSA already had an $80
million/year internal budget for its “Penetrating Hard Targets”
program, with a goal of building a “cryptologically useful
quantum computer” [38]. Large-scale adversaries in various
countries will be able to use future quantum computers to
retroactively break the confidentiality of today’s recorded ci-
phertexts, and could be years ahead of IBM and Google in
building those quantum computers.

If some messages encrypted by TLS need X years of con-
fidentiality, then it is important for TLS to have completed
its upgrade to post-quantum encryption X years before any
attackers have quantum computers. TLS software encrypting
a user’s message does not know how many years of confiden-
tiality are required for that message, so it is important for the
switch to be something that the software can afford for all
messages.

It is also important for TLS to upgrade to post-quantum
signatures before attackers have quantum computers, but this
does not raise the same X-year issue. This paper focuses on
encryption.

B Algorithm-selection issues

B.1 Speed
NIST says that performance plays a “large role” in its PQC
standardization project, as noted in Section 1. Submitters
have already put intensive efforts into optimizing every level
of their algorithms; see, e.g., the submission documents for

ntruhrss701 [19] and sntrup761 [13], and the software
in benchmarking frameworks such as SUPERCOP [11] and
pqm4 [29]. This existing work already includes CPU-specific
optimizations, notably vectorization, which is essential for
performance on modern Intel CPUs. NIST specified the
Intel Haswell CPU microarchitecture as its first platform
for comparisons, and this has been the most common op-
timization target in the literature, including extensive use of
Haswell’s AVX2 vector instructions in software releases for
ntruhrss701 and sntrup761. For comparability, this paper
also focuses on Haswell.

There are strong arguments that CPU cycles are more im-
portant on smaller CPUs, such as the Cortex-A7 CPUs com-
monly used in low-end smartphones, or the Cortex-M4 mi-
crocontrollers commonly used in embedded devices. It is
reasonable to extrapolate from this paper’s large sntrup761
speedups on Haswell to large sntrup761 speedups on other
CPUs. However, the exact comparison between sntrup761
and ntruhrss701 will depend on the CPU: the cryptosys-
tems use different polynomial rings, allowing different spaces
of multiplication algorithms, which in turn interact with dif-
ferences in instruction sets and in instruction speeds. For
example, the sntrup761 speed records in pqm4 are from [3];
the multiplier in [3] uses non-power-of-2 NTTs, so it would
be challenging to adapt to a vectorized CPU, and it relies on
the prime modulus used in sntrup761, so it would not work
for the power-of-2 modulus in ntruhrss701.

B.2 Beyond speed

Security levels. Each post-quantum proposal offers a se-
lection of different key sizes, such as sntrup761 and
sntrup857, where larger key sizes are less efficient but (hope-
fully) more secure. An easy way to reach the goal of “faster
post-quantum TLS key exchange” is to take smaller keys—but
this reduces the security level, perhaps to something unac-
ceptable.

Sometimes the selection of key sizes is limited. For exam-
ple, New Hope was structurally incapable of offering options
between newhope512, which is at a questionable security
level, and newhope1024, which used 1824 bytes for a pub-
lic key plus 2048 bytes for a ciphertext. Part of the perfor-
mance improvement from CECPQ1 to CECPQ2 came from
the switch from New Hope to NTRU, which offers intermedi-
ate key sizes, such as ntruhrss701.

The performance improvements from CECPQ2’s
ntruhrss701 to OpenSSLNTRU’s sntrup761 do not
reduce security level; sntrup761 has higher security level
than ntruhrss701. NIST uses a mechanism called “Core-
SVP” to compare the security levels of lattice proposals; the
algorithm sntrup761 selected here has Core-SVP 2153, while
ntruhrss701 has Core-SVP just 2136. (For comparison,
newhope1024 has Core-SVP 2257, and newhope512 has
Core-SVP just 2112.) These are pre-quantum Core-SVP

17

levels; post-quantum Core-SVP has an exponent 10%
smaller.

Avoiding cyclotomic concerns. NTRU Prime, the proposal
that includes sntrup761, also avoids security concerns trig-
gered by (1) the “cyclotomic” structure used in Kyber, NTRU,
and SABER and (2) the quantum attack in [14] breaking
the cyclotomic case of Gentry’s original lattice-based fully-
homomorphic-encryption scheme. NIST has expressed “con-
fidence in cyclotomic structures” [1], which is a controversial
position: according to [13], 41% of the lattice submissions
to the NIST project provided non-cyclotomic options, most
of these 41% provided no cyclotomic options, and most of
these 41% expressed security concerns regarding cyclotomic
options.

CCA security. Part of the traffic in lattice-based encryption,
and a larger part of the CPU time, comes from mechanisms
designed to protect against “chosen-ciphertext attacks”. Some
proposals save time by eliminating these mechanisms; this
is safe if each new key is used for just one session, which,
as noted above, is commonly recommended for TLS. How-
ever, TLS and other protocols have a long history of keys
being deliberately or accidentally reused; for example, [18]
reports that the Microsoft Windows TLS library, SChan-
nel, “caches ephemeral keys for two hours”. CECPQ1 used
newhope1024 without protection against chosen-ciphertext
attacks, but CECPQ2 used ntrurhrss701 with protection
against chosen-ciphertext attacks. The rationale for this up-
grade stated in [30] concluded that “CPA vs CCA security
is a subtle and dangerous distinction, and if we’re going to
invest in a post-quantum primitive, better it not be fragile.”

Avoiding patents. Another advantage of CECPQ2 over
CECPQ1, an advantage shared by OpenSSLNTRU, is that
there are no known patent threats against NTRU and sntrup,
while there are two lines of patents threatening New Hope, Ky-
ber, and SABER. The first line, with US patent 9094189 (ex-
piring 2032) and corresponding international patents, covers
the central idea of encryption by “noisy DH + reconciliation”.
The second line, with US patent 9246675 (expiring 2033)
and corresponding international patents, covers 2× cipher-
text compression. Commentators sometimes claim that these
patents are invalid and/or inapplicable, but the first patent
was declared valid [36] by a European tribunal in response to
litigation, and FOIA results [9] show that NIST has been at-
tempting, so far unsuccessfully, to buy out that patent. Perhaps
the patent threats will be resolved through buyouts or further
litigation, but one cannot simply ignore the potential impact
of patents on the deployment of post-quantum cryptography.

C Further improvements in NTRU Prime soft-
ware

This paper emphasizes a big speedup in sntrup key gen-
eration, and new software layers integrating this speedup

into TLS software. The speedup relies on changing the key-
generation API to generate many keys at once, and providing
one key at a time on top of this requires maintaining state,
which is enabled by the new software layers.

This appendix describes other ways that we have improved
the NTRU Prime software without changing the API. The soft-
ware was already heavily tuned before our work, but some
further streamlining turned out to be possible, for example
reducing sntrup761 enc from 48892 cycles to 46914 cycles
and reducing dec from 59404 cycles to 56241 cycles. More
important than these quantitative speedups is the software
engineering: we considerably simplified the preexisting op-
timized code base for NTRU Prime, especially with the new
NTT compiler described below.

C.1 Review of NTRU Prime options

The NTRU Prime proposal specifies various lattice dimen-
sions. Round-1 NTRU Prime specified only dimension 761.
Round-2 NTRU Prime specified dimensions 653, 761, and
857. Round-3 NTRU Prime—which appeared after our first
announcement of the OpenSSLNTRU results—specified di-
mensions 653, 761, 857, 953, 1013, and 1277.

The round-3 NTRU Prime proposal expresses concern that
dimension 512 in Kyber and SABER, with pre-quantum Core-
SVP level (see Appendix B) below 2120, “will turn out to
be inadequate against generic lattice attacks”. The proposal
recommends 761 “for an extra security margin”. The proposal
says that the objective of dimensions 953, 1013, and 1277
is “bulletproofing” to “prevent NIST from issuing security
complaints”.

Users concerned about the risk of lattice attacks continuing
to improve enough to break dimensions 653, 761, and 857
(also breaking kyber512 etc.) might be safe with dimension
1277. On the other hand, considering larger dimensions raises
the question of whether the user can afford something other
than a “small” lattice system. There are other post-quantum
proposals that emphasize stability of security analysis as re-
ducing risks.

NTRU Prime specifies two cryptosystems: Streamlined
NTRU Prime (sntrup), an example of Quotient NTRU,
and NTRU LPRime (ntrulpr), an example of Product
NTRU. For example, dimension 761 has both sntrup761
and ntrulpr761. The two cryptosystems are almost iden-
tical in key sizes, ciphertext sizes, and Core-SVP security.
The ntrulpr cryptosystems avoid the Quotient NTRU in-
versions and have much faster keygen than sntrup, but they
have slower enc and slower dec than sntrup. They are also
threatened by the same patents as Kyber and SABER; see Ap-
pendix B.

18

C.2 Review of the preexisting NTRU Prime
software ecosystem

The official NTRU Prime software includes three software
packages that run on Intel CPUs:

• A “reference implementation in Sage”. Sage is Python
plus many math libraries. This implementation has
the conciseness—and slowness—that one would expect
from Python; it also has a warning that it leaks “secret
information through timing”. This software supports di-
mensions 653, 761, 857, 953, 1013, and 1277.

• “Reference C software”. This software is in portable C
and is designed to avoid timing attacks. Within these con-
straints, this software is written to maximize readability
without regard to performance. The latest version of this
software (see the [13] tarball) supports dimensions 653,
761, 857, 953, 1013, and 1277.

• “Optimized C software”. This software is not portable:
it uses AVX2 instructions via immintrin.h intrinsics.
This software is designed to avoid timing attacks and to
be as fast as possible. The latest version of this software
supports only dimensions 653, 761, 857.

There have also been papers optimizing NTRU Prime for
small devices, such as an ARM Cortex-M4 or a Xilinx Artix-
7 FPGA.

The reference Sage implementation is a single file. It
is mostly self-contained, but it relies on Sage for poly-
nomial arithmetic, and it calls a few subroutines such as
hashlib.sha512. The choice of parameter set—sntrup761,
for example, or ntrulpr857—is made at run time. Most of
the code is shared between sntrup and ntrulpr, but there
are some differences: for example, sntrup key generation
uses divisions, and ntrulpr uses AES.

The reference C implementation is mostly in a single
file kem.c but includes a few general-purpose subroutines
(Decode, Encode, and constant-time integer divisions) in sep-
arate files. The implementation also calls separate subroutines:
SHA-512, for example. This implementation is conceptually
more self-contained than the Sage implementation—for ex-
ample, this implementation includes its own polynomial arith-
metic (without timing leaks)—but is also less concise. The
choice of parameter set is made by compile-time macros, such
as SIZE761 and SNTRUP.

The optimized C implementation is structured differ-
ently. There are 18 subroutines factored out of the top-level
crypto_kem_sntrup761 and crypto_kem_ntrulpr761:
for example, crypto_core_multsntrup761 multiplies in
the ring R /q, and crypto_encode_761x4591 encodes an
element of R /q as a string. The SUPERCOP benchmarking
framework automatically tries various compiler options for
each subroutine and selects the fastest option, and automati-
cally runs many test vectors for each subroutine.

Similar comments apply to dimensions 653 and 857, for 54

subroutines overall in the optimized C implementation. Some
of the C code is shared across sizes except for compile-time
selection of q etc. Some of the C code is generated by Python
scripts: for example, there is a Python script generating the
crypto_core_inv3sntrup*/avx software for inversion in
R /3. (Beyond NTRU Prime, a variant of the same script is
used in, e.g., ntruhrss701.) There is, however, less sharing
of the multiplier code across sizes:

• Dimensions 653 and 761 use mult768.c, which uses
size-512 NTTs to multiply 768-coefficient polynomials.

• Dimension 857 uses mult1024.c, which uses size-512
NTTs to multiply 1024-coefficient polynomials.

An underlying ntt.c is shared for computing size-512
NTTs, and the same NTT code is used for each of the NTT-
friendly primes r ∈ {7681,10753}, but multiplication algo-
rithms vary between mult768.c and mult1024.c: for exam-
ple, mult768.c uses “Good’s trick” to reduce a size-1536
NTT to 3 size-512 NTTs, taking advantage of 3 being odd,
while mult1024.c uses a more complicated method to reduce
a size-2048 NTT to 4 size-512 NTTs. The NTT API allows
these 3 or 4 independent size-512 NTTs to be computed with
one function call, reducing per-call overheads and also reduc-
ing the store-to-load-forwarding overheads in crossing NTT
layers.

C.3 Improvements
We first built a tool to regenerate 653, 761, and 857 in the
optimized C implementation from a merged code base. We
then added support for 953, 1013, and 1277, which in previous
work had only reference code. This meant, among other things,
building a new mult1280.c to reduce a size-2560 NTT to 5
size-512 NTTs. Good’s trick is applicable here since 5 is odd,
but we were faced with a new mini-optimization problem
regarding the number of AVX2 instructions needed for 5-
coefficient polynomial multiplications modulo r. The best
solution we found uses 15 modular multiplications, 2 extra
reductions, and 34 additions/subtractions.

We then built a new tool to compile concise descriptions of
NTT strategies into optimized NTT software. This tool is anal-
ogous to SPIRAL [37], but handles the extra complications of
NTTs compared to floating-point FFTs, notably the require-
ment of tracking ranges of intermediate quantities so as to
avoid overflows. Note that one should not confuse automated
generation of NTTs with automated generation of multipliers;
it remains challenging to automate code generation for the
type of multipliers that we consider in Section 3.

Armed with this tool, we searched for efficient size-512
NTT strategies to replace the previous ntt.c. We found a
fully vectorizable strategy that

• avoids all overflows for both r = 7681 and r = 10753,
• uses just 6656 16-bit multiplications,

19

• uses just 6976 16-bit additions (counting subtractions as
additions),

• stores data only every 3 NTT layers, and
• has only 4 layers of permutation instructions.

To put this in perspective, if each of the 9 NTT layers had
256 modular multiplications, 512 additions, and zero extra
modular reductions, then in total there would be 6912 16-bit
multiplications and 6912 16-bit additions, since each modu-
lar multiplication costs 3 16-bit multiplications and 1 16-bit
addition.

At a higher level, we tweaked the order of operations in
mult*.c as follows. As noted above, an NTT of size 2N
in multN.c was already decomposed into 2N/512 size-512
FFTs, which were all handled with one call to the NTT API.
At a higher level, mult*.c used the conventional approach to
multiply two polynomials f ,g modulo r: apply an NTT to f ,
apply an NTT to g, multiply pointwise, and apply an inverse
NTT—so there was one call to the NTT API for f and one
call to the NTT API for g. The tweak is that we merged these
into a single call, reducing overhead.

Finally, we checked that all of the software follows the
standard rules for constant-time cryptographic software. As a
double-check, we used crypto_declassify to mark the safe
rejection-sampling loop in sntrup key generation (generating
an invertible g in R /3), and then checked that the software
passes the TIMECOP tool inside SUPERCOP; TIMECOP is
a wrapper around the standard idea of running valgrind to
check for secret-dependent branches and array indices.

D Is there any hope for ntruhrss701?

CECPQ2’s ntruhrss701 keygen, like OpenSSLNTRU’s
sntrup761 keygen, is bottlenecked by inversion. Concep-
tually, everything this paper does for sntrup761 can also be
done for ntruhrss701, starting with converting a batch of
32 ntruhrss701 inversions into 1 inversion plus 93 multipli-
cations. This appendix explains how difficult it would be for
this to make ntruhrss701 an attractive option compared to
sntrup761.

As a starting point, sntrup761 has a considerably higher
security level: Core-SVP 2153 vs. 2136. Let’s reuse an existing
model of lattice performance as being linear in the security
level. This says that ntruhrss701 wins if it costs below 88%
of sntrup761. In fact, ntruhrss701 was chosen at a “cliff”
in the NTRU-HRSS design space and is not so easy to scale
up to higher security levels, so this model is biased towards
ntruhrss701, but let’s disregard this bias.

Costs include not just the costs of CPU time but also
the costs of transmitting data. Notice that ntruhrss701
sends 3.6% more traffic than sntrup761 (see Table 1), mean-
ing that ntruhrss701 is 17% worse per security level in
data-communication costs. (In applications where keys are
broadcast or pre-communicated through a lower-cost chan-

nel, ntruhrss701 transmits only an 1138-byte ciphertext,
but sntrup761 transmits only an 1039-byte ciphertext, so
ntruhrss701 is 23% worse per security level.) The question
is whether ntruhrss701 can save enough CPU time to make
up for this.

To put CPU time and communication costs on the same
scale, let’s scale costs so that a CPU cycle costs 1, and let’s
write C for the cost of communicating a byte of data. Specifi-
cally, let’s use the existing estimate C = 1000. This estimate
says, for example, that a quad-core 3GHz server has the same
cost as a 100Mbps Internet connection.

Transmitting the sntrup761 key and ciphertext now
costs 2.197 million. Our results reduce sntrup761 key-
gen+enc+dec to 259472 cycles, for total cost 2.456 million.
(Before our work, the total cost was 3.120 million.)

For comparison, transmitting the ntruhrss701 key and ci-
phertext costs 2.276 million. The current ntruhrss701 key-
gen+enc+dec is 359076 cycles, for total cost 2.635 million.
This is 7% higher cost than sntrup, meaning 21% higher cost
per security level than sntrup.

Now imagine ntruhrss701 consuming no CPU time at all.
Notice that 2.276 million, the cost of just communication for
ntruhrss701, is 93% of 2.456 million, our cost for communi-
cation and computation for sntrup761—in other words, 4%
worse per security level. All possible room for ntruhrss701
to compete is thus eliminated by

• our keygen speedups,
• the slightly reduced traffic for sntrup761 compared to
ntruhrss701, and

• the higher security level of sntrup761 compared to
ntruhrss701,

under the reasonable assumption C = 1000 regarding the
relative costs of communication and computation.

One could still try to argue that (1) ntruhrss701 is compet-
itive in applications that reuse keys, and (2) sharing software
will then justify also using ntruhrss701 in applications that
don’t reuse keys, so (3) it is interesting to study the savings
from batch keygen in ntruhrss701. But looking at the per-
formance numbers shows that this argument fails at the first
step. Compared to total keygen+enc+dec CPU time plus com-
municating keys+ciphertexts, if one switches to total enc+dec
time plus communicating ciphertexts (or, even more extreme,
total enc+dec time plus communicating keys+ciphertexts),
then communication costs become a larger fraction of total
costs. In all of these scenarios, sntrup761 wins because of
its higher security level, its lower bandwidth, and our keygen
speedups, independently of the ntruhrss701 CPU time.

What if we focus specifically on environments with much
smaller values of C, say C = 100 or even smaller? The
Haswell performance numbers before our work (titan0, Intel
Xeon E3-1275 V3, supercop-20200906) showed

• ntruhrss701 taking 270548 cycles for keygen, 26936
cycles for enc, and 63900 cycles for dec; and

20

• sntrup761 taking 814608 cycles for keygen, 48892 cy-
cles for enc, and 59404 cycles for dec.

Evidently ntruhrss701’s extra network traffic was buying
some wins in CPU time: there was a slight loss of dec speed,
but a larger win in enc speed, and a much larger win in key-
gen speed. If the extra network traffic is cheap, could these
wins reduce the total ntruhrss701 cost below 88% of the
sntrup761 cost?

Saying that this paper improves sntrup761 keygen from
814608 cycles to 156317 cycles, so sntrup761 now uses
less CPU time than ntruhrss701, does not directly an-
swer this question. If batching makes sntrup761 keygen
5× faster, shouldn’t it produce a similarly huge speedup in
ntruhrss701 keygen?

A closer look at the underlying algorithms shows that it is
an error to use the performance of unbatched keygen as a pre-
dictor of the performance of batched keygen. Unbatched key-
gen is bottlenecked by inversion, and ntruhrss701 exploits
one of its design decisions—a power-of-2 modulus, which
sntrup761 avoids because of security concerns—for a spe-
cialized type of inversion algorithm, a “Hensel lift”. Batched
keygen is instead bottlenecked by multiplication, and benefits
much less from a power-of-2 modulus. The Hensel speedup
would still be measurable inside the occasional inversion, but
batch size 32 compresses this speedup by a factor 32.

There is still some speedup from sntrup761 to
ntruhrss701 in multiplications; this is not surprising, given
that sntrup761 uses larger polynomials for its higher se-
curity level, and avoids composite moduli because of secu-
rity concerns. Existing microbenchmarks suggest that one
could reasonably hope for a 2× speedup from ntruhrss701
keygen to batched ntruhrss701 keygen. This would make
ntruhrss701 cost 87% as many CPU cycles as sntrup761.
However, this still would not outweigh the difference in se-
curity levels for C = 100. Even in an extreme C = 0 model,
this hypothetical improvement would be only a 3% win for
ntruhrss701, taking security levels into account. Mean-
while, for a reasonable C = 1000, the same hypothetical 2×
improvement would still be a 15% loss for ntruhrss701,
again taking security levels into account. For larger C, the
loss would approach the 17% mentioned above.

E Barrett reduction correctness

Recalling Section 3.1.1, Barrett reduction estimates the divi-
sion g

fi
as its quotient h =

⌊
g
fi

⌋
. Then it calculates the remain-

der as r = g−g ·
⌊

g
fi

⌋
· fi. We compare the difference between

g
fi
· fi and

⌊
g
fi

⌋
· fi. It is the remainder r if the difference is a

polynomial of degree less than deg(fi).

1. With an equivalence equation xDg = qx · fi + rx from the

pre-computation, we have the exact form

g
fi
= g · (xDg

fi
) · 1

xDg
= g · (qx−

rx

fi
) · 1

xDg
.

2. Then we compute the difference

g
fi
· fi−

⌊
g
fi

⌋
· fi =(

g ·qx

xDg
−
⌊g ·qx

xDg

⌋
) · fi

−g · rx

fi
· fi

xDg
.

(3)

3. Let g·qx
xDg = h+ l where h =

⌊
g·qx
xDg

⌋
=

⌊
g
fi

⌋
contains the

non-negative degree terms and l is the polynomial with
negative degree terms. The term (g·qx

xDg −
⌊

g·qx
xDg

⌋
)· fi = l · fi

in Equation 3 is a polynomial of degree less than deg(fi).
4. The last term of Equation 3 g · rx

fi
· fi

xDg is also a polyno-
mial of degree less than deg(fi), since deg(g)< Dg and
deg(rx)< deg(fi). Hence, we conclude the difference is
a polynomial of degree less than deg(fi).

F More on benchmarks

F.1 Batch key-generation microbenchmarks
Table 2 shows the performance and key pair storage of
BatchKeyGen regarding various batch sizes n.

F.2 In-browser handshake macrobenchmarks
Section 4.4 described how we developed tls_timer, a ded-
icated handshake benchmarking client, to measure the end-
to-end performance of OpenSSLNTRU. The need to fully
control the sampling process with tls_timer, arose after an
initial attempt to measure the end-to-end performance from
within the GNOME Web browser. Specifically, we originally
designed the experiment to let the browser first connect to a
web server via stunnel to retrieve a static HTML page. This
in turn embedded JavaScript code to open and time a number
of connections in parallel to further retrieve other resources
from a web server. We designed these resources to:

• have short URI to minimize application data in the client
request, which length-wise is dominated by HTTP head-
ers outside of our control;

• have randomized URI matching a “rewrite rule” on the
web server, mapping to the same file on disk. This al-
lows the server to cache the resource and skip repeated
file system accesses, while preventing browser optimiza-
tions to avoid downloading the same URI repeatedly or
concurrently;

• be short, comment-only, JavaScript files, to minimize
transferred application data from the server, and, on the
browser side, the potential costs associated with parsing
and rendering pipelines.

21

Table 2: Performance of BatchKeyGen regarding various batch sizes n.
n 1 2 4 8 16 32 64 128

sntrup653

amortized cost 778218 438714 295150 229429 180863 164260 152737 147821
latency 778218 877428 1180600 1835432 2893808 5256300 9775160 18921036

pk storage 994 1988 3976 7952 15904 31808 63616 127232
sk storage 1518 3036 6072 12144 24288 48576 97152 194304

sntrup761

amortized cost 819332 567996 351329 242043 181274 156317 147809 141411
latency 819332 1135992 1405316 1936340 2900380 5002124 9459748 18100592

pk storage 1158 2316 4632 9264 18528 37056 74112 148224
sk storage 1763 3526 7052 14104 28208 56416 112832 225664

sntrup857

amortized cost 1265056 708104 458562 322352 255815 216618 201173 193203
latency 1265056 1416208 1834248 2578812 4093040 6931748 12875024 24729872

pk storage 1322 2644 5288 10576 21152 42304 84608 169216
sk storage 1999 3998 7996 15992 31984 63968 127936 255872

Unfortunately, this approach proved to be unfruitful, as the
recorded measures were too coarse and noisy. This is mostly
due to the impossibility of completely disabling caching on
the browser through the JavaScript API and developer options,
delayed multiplexing of several HTTP requests over a single
TLS connection, ignored session keep-alive settings, and, pos-
sibly, the effect of intentionally degraded clock measurements
when running JavaScript code fetched from a remote origin.

G OpenSSL: software architecture

Section 4.1 details the part of our contributions consist-
ing in a set of patches that applies to the source code
of OpenSSL 1.1.1. We designed our patches to provide
full API and ABI compatibility with binary distributions of
OpenSSL 1.1.1, while transparently enabling linking appli-
cations to perform post-quantum key exchanges in TLS 1.3
handshakes. The description of details of our contribution
relies on various technical concepts regarding OpenSSL; this
appendix reviews this background.

Illustrated in Figure 4, as a library to build external applica-
tions, OpenSSL is divided into two software libraries, namely
libcrypto and libssl. The former provides cryptographic
primitives and a set of utilities to handle cryptographic objects.
The latter implements support for TLS 1.3 and other proto-
cols, deferring all cryptographic operations and manipulation
of cryptographic objects to libcrypto.

Due to its legacy, libcrypto exposes a wide programming
interface to users of the library, offering different levels of
abstraction. Currently, the recommended API for external
applications and libraries (including libssl) to perform most
cryptographic operations is the EVP API.8

The EVP API, especially for public key cryptography,
offers a high degree of crypto agility. It defines ab-
stract cryptographic key objects, and functions that op-
erates on them, in terms of generic operations primi-

8https://www.openssl.org/docs/man1.1.1/man7/evp.html

tives (e.g., EVP_PKEY_encrypt()/EVP_PKEY_decrypt(), or
EVP_DigestSign()/EVP_DigestVerify(), etc.). This lets
the libcrypto framework pick the algorithm matching the
key type and the best implementation for the application plat-
form. Using the API appropriately, a developer can write code
that is oblivious to algorithm selection. That is, leaving al-
gorithm adoption choices to system policies in configuration
files, or in the creation of the serialized key objects fed to
libcrypto.

In this work, we patch libssl to support the negotiation
of KEM groups over TLS 1.3, mapping KEM operations over
the existing EVP API. The API itself does not include ab-
stractions for the Encapsulate() and Decapsulate()
KEM primitives.

22

https://www.openssl.org/docs/man1.1.1/man7/evp.html

HW

OS / System libraries

OpenSSL libsslOpenSSL libcrypto

RAND
(random

number gen.)

low-level generic modules

BN
(arbitrary
prec. int)

CRYPTO
(memory,

threads, ...)

BUFFER
(in-mem byte

buffers)

ASYNC
(async. jobs)

COMP
(zlib,

compression)

RSA DH DSA EC ECX ...

low-level crypto ASN1 BIO
(I/O abstraction:
network sockets,
memory buffers,
files, filters, etc.)

ERR

CONF

UI

STORE

X509CTTS OCSP

PKCS#7 CMSPKCS#12 PEM

containers,
encodings

OBJECTS table

ENGINE API
& built-in ENGINEs

EVP
CIPHER

EVP
MD

EVP
PKEY

EVP

KDF

OpenSSL
toolkit binaries

sntrup761
ref

sntrup761 & 857
NamedGroup codepoint

client extensions
KEM workaround

server extensions
KEM workaround

sntrup761 & 857 OID/NID

en
gn

tr
u

en
gn

tr
u

(EN
GI

NE
 —

 pr
ov

ide
s E

VP
 m

eth
od

s f
or

sn
tru

p7
61

an
d s

ntr
up

85
7 s

up
po

rtin
g k

ey
ge

n b
atc

hin
g)

lib
sn

tr
up

76
1

/ l
ib

sn
tr

up
85

7
(dy

na
mi

c li
bra

rie
s —

 im
ple

me
nt

the
 ac

tua
l

cry
pto

gra
ph

ic o
pe

rat
ion

s f
or

sn
tru

p7
61

 &
85

7)

glib-networking
(Network abstraction layer - middleware)

epiphany (a.k.a. GNOME Web)
(client, via glib-networking)

tls_timer
(TLS handshake benchmark client)

stunnel
(TLS-terminating server proxy)

Figure 4: Architecture diagram of the end-to-end experiment, derived from [45, Figure 2]. The red boxes within libssl and
libcrypto represent patches applied to OpenSSL 1.1.1 to enable our post-quantum KEM experiment over TLS 1.3.

23

	Introduction
	Contributions of this paper

	Background
	Polynomial rings in NTRU Prime
	Montgomery's trick for batch inversion
	NTT-based multiplication
	The AVX2 instruction set
	Integrating cryptographic primitives

	Batch key generation for sntrup
	Batch key generation
	Invertibility check for elements in R/3

	Polynomial multiplication in (Z/3)[x]
	Base polynomial multiplier
	Multiplying polynomials of length 3n
	Division by x2-1 on (Z/3)[x]
	AVX2 optimization for the R/3 multiplier

	Polynomial multiplication in (Z/q)[x]
	Problem description and related multiplication
	Our polynomial multiplication
	AVX2 optimization for the R/q multiplier

	Microbenchmarks: arithmetic
	Benchmarks for R/3
	Benchmarks for R/q
	Benchmarks for batch key generation

	New TLS software layering
	OpenSSL patches
	The engNTRU ENGINE
	Reaching applications transparently
	Macrobenchmarks: TLS handshakes

	Conclusion
	Post-quantum timelines
	Algorithm-selection issues
	Speed
	Beyond speed

	Further improvements in NTRU Prime software
	Review of NTRU Prime options
	Review of the preexisting NTRU Prime software ecosystem
	Improvements

	Is there any hope for ntruhrss701?
	Barrett reduction correctness
	More on benchmarks
	Batch key-generation microbenchmarks
	In-browser handshake macrobenchmarks

	OpenSSL: software architecture

