
TransNet: Shift Invariant Transformer Network
for Power Attack

Suvadeep Hajra, Sayandeep Saha, Manaar Alam and Debdeep
Mukhopadhyay

Indian Institute of Technology Kharagpur, Kharagpur, India

Abstract. Masking and desynchronization of power traces are two widely used coun-
termeasures against power attacks. Higher-order power attacks are used to break
cryptographic implementations protected by masking countermeasures. However,
they require to capture long-distance dependency, the dependencies among distant
Points-of-Interest (PoIs) along the time axis, which together contribute to the infor-
mation leakage. Desynchronization of power traces provides resistance against power
attacks by randomly shifting the individual traces, thus, making the PoIs misaligned
for different traces. Consequently, a successful attack against desynchronized traces
requires to be invariant to the random shifts of the power traces. A successful attack
against cryptographic implementations protected by both masking and desynchro-
nization countermeasures requires to be both shift-invariant and capable of capturing
long-distance dependency. Recently, Transformer Network (TN) has been introduced
in natural language processing literature. TN is better than both Convolutional
Neural Network (CNN) and Recurrent Neural Network (RNN) at capturing long-
distance dependency, and thus, a natural choice against masking countermeasures.
Furthermore, a TN can be made shift-invariant making it robust to desynchronization
of traces as well. In this work, we introduce a TN-based model, namely TransNet, for
power attacks. Our experiments show that the proposed TransNet model successfully
attacks implementation protected by both masking and desynchronization even when
it is trained on only synchronized traces. Particularly, it can bring down the mean
key rank below 1 using only 400 power traces if evaluated on highly desynchronized
ASCAD_desync100 dataset even when it is trained on ASCAD dataset which has
no trace desynchronization. Moreover, if compared to other state-of-the-art deep
learning models, our proposed model performs significantly better when the attack
traces are highly desynchronized.

Keywords: side channel analysis, masking countermeasure, transformer network

1 Introduction
Ever since its introduction in [KJJ99], power analysis attacks pose a significant threat to
cryptographic implementations. To protect the cryptographic implementations from those
attacks, several countermeasures have been proposed. Masking countermeasures [CJRR99,
Mes00, CG00, AG01] and desynchronization of traces [CK09, CK10] are two commonly
used countermeasures against those attacks. Recently, several deep learning methods
[MZ13, MPP16] have been found to be very effective against both the countermeasures. In
literature, the attacks against the two countermeasures are related to two widely studied
problems in deep learning, namely the problem of capturing long-distance dependency
[Mag19, ZBHV20, PA20] and shift-invariant feature learning [CDP17, ZBHV20, CDP17,
BPS+20, ZS20, KPH+19, WHJ+20, ZBHV20, WAGP20].

In masking countermeasure, each intermediate sensitive variable of the cryptographic
implementation is divided into multiple shares so that any proper subset of the shares
remains independent of the sensitive variable. A successful attack against the masking
scheme combines the leakages of all the shares to infer information about the sensitive
variable. Such attacks are called higher-order power attacks. In many implementations,
the leakage points (also known as Points-of-Interest or PoIs) of different shares can be
spread across multiple sample points in the power traces. Moreover, the distances between
the PoIs can be large. Thus, a higher-order attack against such implementations requires
to combine the leakages of sample points which are long distance apart. In deep learning
literature, this problem is referred to as the problem of capturing long-distance dependency
[HBFS01, VSP+17].

On the other hand, misalignment or desynchronization of the power traces causes the
PoIs of the traces to be misaligned with each other, making the signal-to-noise ratio (SNR)
of the individual sample points to reduce. The reduced SNR causes an increase in the
number of required power traces for a successful attack. In deep learning, the problem of
misalignments in the inputs are addressed by making the deep neural models shift-invariant
[Zha19].

Recently, Convolutional Neural Networks (CNNs) have been widely adopted for per-
forming power attacks. Because of the shift-invariance property of CNNs, they can perform
very well on misaligned attack traces, and thus, can eliminate critical preprocessing step
like realignment of power traces in a standard power attack [CDP17]. Since the robustness
of CNN-based models to misaligned traces do not depend on any property of power traces,
the CNN-based models might succeed in a situation where the realignment techniques
might fail. Moreover, the CNN-based models have achieved the state-of-the-art results in
many publicly available datasets [ZBHV20, WAGP20].

Though the CNNs are good at shift-invariant feature extraction, they are not good at
capturing long-distance dependency [VSP+17]. In a power attack, the existing CNN-based
models achieve the ability to capture long-distance dependency either by interleaving
pooling layers with convolutional layers or by using several fully connected layers after the
convolutional layers or by a combination of both [BPS+20, KPH+19, ZBHV20]. Recently,
[PA20] have proposed to use dilated convolutional layers for capturing long-distance
dependency. However, it is known in the deep learning literature that interleaving some
sub-sampling layers like max-pooling or average-pooling with convolutional layers, or
the usage of dilated convolutional layers reduce the shift-invariance of CNN models
[Zha19, YK16]. On the other hand, fully connected layers are not shift-invariant at
all unless their input is already shift-invariant. As a result, the existing CNN-based
models are limited in several aspects. Firstly, to perform well on desynchronized attack
traces, they are required to be trained using profiling desynchronization almost same as
attack desynchronization [ZS20, WHJ+20]. Secondly, even when trained using profiling
desynchronization same as attack desynchronization, they fail to perform well for a very
large value of desynchronization. Finally, the CNN-based models are designed considering
either the amount of desynchronization in the attack traces or the input length or both.
Thus, if the target traces differ in any one of those parameters, it is required to develop an
entirely new model architecture.

Like CNNs, Recurrent Neural Networks (RNNs) are also not good at capturing long-
distance dependency [HBFS01, VSP+17]. Though Feed-Forward Networks (FFNs) are
good at that, they might introduce a very large number of parameters leading to overfitting
problems during training. Besides, FFNs are not shift-invariant. To alleviate this deficiency
of the existing deep learning models, Vaswani et al. [VSP+17] have introduced Transformer
Network (TN) which has defeated all of its CNN and RNN based counterparts by a wide
margin in almost every natural language processing task. TN can easily capture long-
distance dependency, and thus, is a natural choice against masking countermeasure.

2

Moreover, by introducing a weaker notion of shift-invariance, we have shown that TN
can be shift-invariant in the context of power attacks. Thus, TN can be effective against
misaligned traces as well. In this paper, we propose to use TN for power attacks.

Our Contributions
The contributions of the paper are as follows:

• Firstly, we propose to use TN for power attacks. TN can naturally capture long-
distance dependency ([VSP+17]), thus, is a better choice against masking counter-
measure. Additionally, we have defined a weaker notion of shift-invariance which is
well applicable to power attacks. Under the new notion, we have mathematically
shown that the TN can be made to be shift-invariant in the context of power attacks.
Thus, it can be effective against misaligned traces as well.

• We have proposed TransNet, a TN-based shift-invariant deep learning model, for
power attacks. The architecture of TransNet significantly differs from off-the-shelf
TN models in several design choices which are very crucial for its success in power
attacks. The existing state-of-the-art CNN-based models are designed depending on
the amount of desynchronization in the attack traces or the trace length or both.
Consequently, if the target device differs in one of those parameters, an entirely new
model is required to be designed. On the other hand, TransNet architecture does
not depend on such parameters, thus the same architecture can be used to attack
different target devices.

• Experimentally, we have shown that TransNet can perform very well on highly
desynchronized attack traces even when the model is trained on only synchronized
(aligned) traces. In our experiments, TransNet can reduce the mean key rank below
1 using only 400 traces on ASCAD_desync100 dataset [BPS+20] even when it is
trained on aligned traces (i.e. on ASCAD dataset). On the other hand, the CNN-
based state-of-the-art models struggle to reduce the mean key rank below 20 using
as much as 5000 traces in the same setting.

• We have also compared TransNet with the CNN-based state-of-the-art models when
the models are trained using profiling desynchronization same as attack desynchro-
nization. In this case, the performance of TransNet is comparable with that of the
CNN-based models when the amount of desynchronization is small or medium and
better by a wide margin when the amount of desynchronization exceeds a certain
threshold.

The organization of the paper is as follows. In Section 2, we introduce the notations
and briefly describe the power attack and how they are performed using deep learning.
Section 3 describes the architecture of TN. In Section 4, we compare different neural
network layers in terms of their ability to capture long-distance dependency. We also show
the shift-invariance property of TN. Section 5 introduces TransNet, a TN based model for
power attack. In Section 6, we experimentally evaluate the TransNet model and compare
its performance with other state-of-the-art models. Finally, Section 7 concludes the work.

2 Preliminaries
In this section, we first introduce the notations used in the paper. Then, we briefly describe
the steps of the power attack and profiling power attack. Finally, we briefly explain how
profiling power attack is performed using deep neural networks.

3

2.1 Notations

Throughout the paper, we have used the following convention for notations. A random
variable is represented by a letter in the capital (like X) whereas an instantiation of the
random variable is represented by the corresponding letter in small (like x) and the domain
of the random variable by the corresponding calligraphic letter (like X). Similarly, a
capital letter in bold (like X) is used to represent a random vector, and the corresponding
small letter in bold (like x) is used to represent an instantiation of the random vector. A
matrix is represented by a capital letter in roman type style (like M). The i-th elements of
a vector x is represented by x[i] and the element of i-th row and j-th column of a matrix
M is represented by M[i, j]. P[·] represents the probability distribution/density function
and E[·] represents expectation.

2.2 Power Attack

The power consumption of a semiconductor device depends on the values that are manipu-
lated by the device. A power attack exploits this behavior of semiconductor devices to gain
information about some intermediate sensitive variables of a cryptographic implementation,
and thus, the secret key of the device. More precisely, in a power attack, an adversary
takes control of the target device, also known as Device under Test or DUT, and collects
power measurements or traces by executing the encryption (or decryption) process multiple
times for different plaintexts (or ciphertexts). Then the adversary performs a statistical
test to infer the secret key of the device.

The power attack can be of two types: profiling power attack and non-profiling power
attack. In a profiling power attack, the adversary is assumed to possess a clone of the DUT
under his control. Using the clone device, he can build a profile of the power consumption
characteristic of the DUT and use that profile for performing the actual attack. On the
other hand, in a non-profiling attack, the adversary does not possess any clone device and
thus, cannot build any power profile of DUT. Instead, he tries to recover the secret key
from the traces of DUT only. Since the profiling power attack assumes a stronger adversary,
it often provides a worst case security analysis of a cryptographic implementation. In this
paper, we consider profiling power attack only.

2.3 Profiling Power Attack

A profiling power attack is performed in two phases. In the first phase, which is also called
the profiling phase, the adversary sets the plaintext and key of the clone device of his own
choice and collects a sufficient number of traces. For each trace, the adversary computes
the value of an intermediate secret variable Z = F (X,K), where X is the random plaintext,
K is the key, F (·, ·) is a cryptographic primitive and build a model for

P[L|Z] = P[L|F (X,K)] (1)

where L represents a random vector corresponding to the power traces. The conditional
probabilities P[L|Z] serves as the leakage templates in the second phase.

In the second phase, also known as attack phase, the adversary collects a number of
power traces {li, pi}Ta−1

i=0 , where li, pi are the i-th power trace and plaintext respectively
and Ta is the total number of attack traces, by executing the DUT for randomly chosen
plaintexts. For all the traces, the secrete key k∗ is unknown but fixed. Finally the adversary

4

computes the score for each possible key as

δ̂k =
Ta−1∏
i=0

P[Z = F (pi, k)|L = li]

∝
Ta−1∏
i=0

P[L = li|Z = F (pi, k)]× P[F (pi, k)] (2)

The key k̂ = argmaxk δ̂k is chosen as the predicted key. If k̂ = k∗ holds, the prediction
is said to be correct. This attack is also called Template attack as the estimated P[L|Z]
in Eq. 1 can be considered as the leakage template for different values of the sensitive
variable Z.

2.4 Profiling Power Attack using Deep Learning
When deep learning methods are used to perform profiling power attack, instead of building
a generative model, the adversary builds a discriminative model which maps the power
trace L to the intermediate sensitive variable Z. In the profiling phase, the adversary trains
a deep neural model f : Rn 7→ R|Z| using the power traces as input and the corresponding
intermediate sensitive variables as the label. Thus, the output of the deep neural model
for a power trace l can be written as

p = f(l; θ∗) (3)

where θ∗ is the parameter learned during training, and p ∈ R|Z| such that p[i], for
i = 0, · · · , |Z| − 1, represents the predicted probability for the intermediate variable Z = i.
During the attack phase, the score of each key k ∈ K is computed as

δ̂k =
Ta−1∏
i=0

pi[F (pi, k)] (4)

where {li, pi}Ta−1
i=0 is the set of attack trace, plaintext pairs, and pi = f(li; θ∗) is the

predicted probability vector for the i-th trace. Like template attack, k̂ = argmaxk δ̂k is
chosen as the guessed key.

Several deep neural network architectures including Feed Forward Network (FFN),
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN) have been
explored for profiling power attacks. In this work, we propose to use TN for the same. In
the next section, we describe the architecture of a TN.

3 Transformer Network
Transformer network is a deep learning model which was originally developed for a sequence
processing task. For a sequence of input tokens (x0, x1, · · · , xn−1) (in the context of power
attack, the sequence is a power trace), the TN generates a sequence of output vectors
(y0,y1, · · · ,yn−1). Each output vector yi, 0 ≤ i < n, captures any dependency of the
input token xi with other tokens of the input sequence. The sequence of the output vector
can then be passed to different modules depending on the target task. For example, for a
sequence classification task (as in the case of a power attack), one can take the mean of
the output vectors and use the mean vector to predict the class labels.

Structurally, TN is a stacked collection of transformer layers following an initial
embedding layer. Thus, in an L-layer TN, the output of the initial embedding layer is
used as the input of the first transformer layer, and the output of the i-th transformer

5

addition

Layer Norm

addition

Layer Norm

Multi−Head
Attention

PoswiseFF

xl

xl−1

(a) Post Layer Normal-
ization

addition

Multi−Head
Attention

Layer Norm

addition

Layer Norm

PoswiseFF

xl−1

xl

(b) Pre Layer Normal-
ization

Figure 1: A Single Transformer Layer [XYH+20].

layer is used as the input of (i+ 1)-th layer, 1 ≤ i < L. Finally, the output of the L-th
layer is taken as the network output.

A transformer layer consists of a multi-head self-attention layer followed by a position-
wise feed-forward layer. To facilitate better training of deeper networks, the input and
the output of both multi-head self-attention layer and position-wise feed-forward layer are
connected by shortcut connection [HZRS16] and a layer normalization operation [BKH16]
is applied at the output of the shortcut connection as can be seen in Figure 1a. The
forward pass of an L-layer TN is shown in Algorithm 1. Figure 1b shows a slightly different
version of the transformer layer which has been introduced later (please refer to Section 3.5
for details).

Given the above overall architecture, we now describe each building block of the
network.

3.1 Embedding Layer

In natural language processing tasks, sequences of discrete symbols act as the input to
the network. In the embedding layer, each symbol of the input sequence is replaced by a
corresponding vector representation. More precisely, let V be the vocabulary size or the
total number of distinct symbols. The embedding layer consists of an embedding matrix
E ∈ RV×d where d is the embedding dimension or model dimension. The i-th row of E is
considered as the vector representation or vector space embedding of the i-th symbol for
all i = 0, · · · , V − 1. The embedding layer takes the input sequence of discrete symbols
(x0, x1, · · · , xn−1) as input, performs a lookup operation into the embedding matrix E and
returns the sequence of vectors (x0,x1, · · · ,xn−1) where xi is the vector space embedding
of the token xi for 0 ≤ i < n. Thus, the operation in the embedding layer can be written

6

Algorithm 1: Forward pass of an L layer transformer network
1 At the beginning
2 begin
3 x0

0,x0
1 · · · ,x0

n−1 ← Embed(x0, x1, · · · , xn−1) // embed input sequence

4 for l← 1 to L do
// apply self-attention operation

5 s0, s1, · · · , sn−1 ← MultiHeadSelfAttnl (xl−1
0 ,xl−1

1 , · · · ,xl−1
n−1)

// add shortcut connection
6 s0, s1, · · · , sn−1 ← s0 + xl−1

0 , s1 + xl−1
1 , · · · , sn−1 + xl−1

n−1
// apply layer normalization operation

7 s0, s1, · · · , sn−1 ← LayerNormalization (s0, s1, · · · , sn−1)

// apply position-wise feed-forward operation
8 t0, t1, · · · , tn−1 ← PoswiseFFl (s0, s1, · · · , sn−1)

// add shortcut connection
9 t0, t1, · · · , tn−1 ← t0 + s0, t1 + s1, · · · , tn−1 + sn−1

// apply layer normalization operation
10 xl0,xl1, · · · ,xln−1 ← LayerNormalization (t0, t1, · · · , tn−1)
11 return (xL0 ,xL1 , · · · ,xLn−1)

as

x0,x1, · · · ,xn−1 ← Embed(x0, x1, · · · , xn−1) (5)

where xi be the xi-th row of the embedding matrix E for i = 0, · · · , n− 1. Typically, the
embedding matrix is learned along with other parameters during training.

3.2 Multi-Head Self-Attention Layer
The multi-head self-attention layer is the key layer for the ability to capture long-distance
dependency. Before describing multi-head self-attention, we describe the single head
self-attention first.

Self-Attention For each ordered pair (xi,xj) of input vectors, the self-attention operation
computes the attention probability pij from vector xi to vector xj based on their similarity
(sometimes also based on their positions). Finally, the output representation yi for the
i-th token is computed using the weighted sum of the input vectors where the weights
are given by the attention probabilities i.e. yi =

∑
j pijxj . The state yi is also called the

contextual representation of the input vector xi since yi does not only depend on xi but
also on the surrounding tokens or the context. In the context of power attack, if xi and xj
are two vectors corresponding to the leakages of two PoIs, the state yi gets dependent on
both the leakages in a single step even when the distance between i and j is large. Thus,
this step eliminates the problem of capturing long-distance dependency.

To describe the self-attention operation more precisely, let (x0,x1, · · · ,xn−1) and
(y0,y1, · · · ,yn−1) be the sequence of input and output vectors of a self-attention layer
where xi,yi ∈ Rd for all i. Then, for each i = 0, · · · , n− 1, the i-th output vector yi is
computed as follows:

1. first the attention scores aij from i-th token to j-th token, 0 ≤ j < n, is calculated

7

using a scaled dot product similarity measure, i.e.

aij = 〈WQxi,WKxj〉√
dk

= 〈qi,kj〉√
dk

(6)

where WQ,WK ∈ Rdk×d are trainable weight matrices and 〈·, ·〉 denotes dot product
of two vectors. qi,ki ∈ Rdk are respectively known as query and key representation
of the i-th token. Note that the term “key” used here has no relation with the term
“(secret) key” used in cryptography.

2. the attention probabilities pij are computed by taking softmax of the attention scores
aij over the j variable, i.e.,

pij = softmax(aij ; ai,0, · · · , ai,n−1) = eaij∑n−1
k=0 e

aik

(7)

3. the intermediate output ȳi is computed by taking the weighted sum of the input
vectors x0,x1, · · · ,xn−1 where the weight is given by the attention probabilities, i.e.

ȳi =
n−1∑
j=0

pijWV xj =
n−1∑
j=0

pijvj (8)

where WV ∈ Rdv×d is also a trainable weight matrix and vj = WV xj is called the
value representation of the j-th input vector xj .

4. the final output yi is computed by projecting the dv dimensional ȳi into Rd, i.e.

yi = WOȳi (9)

where WO ∈ Rd×dv be a trainable weight matrix.

Thus, the self-attention operation can be written as matrix multiplication in the
following way (please refer to Appendix A for detail):

Ȳ = Self-Attention(WQ,WK ,WV) = softmax (A) XWT
V = PXWT

V (10)
Y = ȲWT

O

where i-th row of matrices Ȳ, Y and X are ȳi, yi and xi respectively. WT
V represents the

transpose of the matrix WV . A and P are two n× n matrices such that A[i, j] and P[i, j]
equals to aij and pij respectively.

Multi-Head Self-Attention In self-attention, the matrix Ȳ created by a set of parameters
(WQ,WK ,WV) is called a single attention head. In a H-head self-attention operation, H
attention heads are used to produce the output. More precisely, the output of a multi-head
self attention is computed as

Ȳ(i) = Self-Attention(W(i)
Q ,W(i)

K ,W(i)
V), for i = 0, · · · , H − 1

Ȳ = [Ȳ(0), · · · , Ȳ(H−1)]
Y = ȲWT

O (11)

where the function Self-Attention(·, ·, ·) is defined in Eq. 10, [A1,A2, · · · ,An] denotes the
row-wise concatenation of the matrices Ais and the output projection matrix WO ∈ Rd×Hdv

projects the Hdv-dimensional vector into Rd. A single head self-attention layer is said to
captures the similarity between the input tokens in one way. An H-head self-attention
layer can capture the similarity between the tokens in H-different ways.

8

Table 1: Notations used to denote the hyperparameters of a transformer network

Notation Description
d model dimension
dk key dimension
dv value dimension
di inner dimension
n input or trace length
L number of transformer layers
H number of heads in self-attention layer

3.3 Position-wise Feed-Forward Layer
Position-wise feed-forward layer is a two layer feed-forward network applied to each element
of the input sequence separately and identically. Let FFN(x) be a two layer feed-forward
network with ReLU activation [GBB11]. Thus, FFN(x) can be given by

FFN(x; W1,W2,b1,b2) = W2max(W1x + b1, 0) + b2 (12)

where W1 ∈ Rdi×d, W2 ∈ Rd×di are two weight matrices, b1 ∈ Rdi , b2 ∈ Rd are two bias
vectors and the max(·) operation is applied element-wise. The integer di is commonly
referred to as inner dimension. If the sequence (x0,x1, · · · ,xn−1) is the input to the
position-wise feed-forward layer, then the output sequence (y0,y1, · · · ,yn−1) is computed
as

yi = FFN(xi), for i = 0, 1, · · · , n− 1 (13)

The position-wise feed-forward layer adds additional non-linearity to the network. In the
context of power attack, this layer helps to increase the non-linearity of the learned function
from the trace l to the sensitive variable Z. In Table 1, we summarize the notations used
to describe the transformer network. In Appendix C, we have described the conventions
which are used to set the value of the hyperparameters.

In the standard architecture, as described above, there are several design choices for TN
which are relevant in the context of power attack. We found that the positional encoding
and layer normalization need to be chosen properly to use TN for power attacks. Thus,
we describe those, one by one.

3.4 Positional Encoding
Both the self-attention layer and position-wise feed-forward layer are oblivious to the
ordering of input tokens. Thus, to capture the input order, positional encoding is used in
TN. Two kinds of positional encodings are commonly used in TN: 1) absolute positional
encoding and 2) relative positional encoding.

Absolute Positional Encoding In absolute positional encoding, a vector space encoding
pi ∈ Rd is used for each position i, i = 0, 1, · · · , n−1, of the input sequence. The positional
encodings are added with the token embeddings element-wise before passing to the TN.

y0, y1, · · · , yn−1 ← TransformerNetwork(x0 + p0, x1 + p1, · · · , xn−1 + pn−1) (14)

[VSP+17] have used two kinds of absolute positional encoding. In the first kind of absolute
positional encodings, the positional encodings have been derived based on some rule and
hard coded into the network. In the second kind of absolute positional encoding, the
encodings are learned during training along with other network parameters.

9

Relative Positional Encoding One of the drawbacks of absolute positional encoding is
that it makes the encoding of each token dependent on the position in which it appears.
However, in most of the sequence processing tasks, the relative distance between any
two tokens is more important than their absolute positions. In fact, making the token
representations dependent only on the relative distances from other tokens helps to make
the token representation shift-invariant (please refer to Section 4.2 for a detailed discussion).

The relative positional encoding is introduced in [SUV18]. To make the attention score
from i-th token to j-th token dependent only on their relative position instead of their
absolute position, they have modified the computation of the attention score of Eq. 6 as

aij = 〈WQxi,WKxj + ri−j〉√
dk

= 〈qi,kj〉+ 〈qi, ri−j〉√
dk

(15)

where qi,kj are as defined in Eq. 6 and the vectors (r−n+1, · · · , r0, · · · , rn−1) are the
relative positional encoding and are also learned during training. [DYY+19] have inter-
preted the two terms of the numerator of RHS of the above equation as “content based
addressing” and “content dependent (relative) positional bias” respectively. They have
further improved the computation of the above attention score as

aij = 〈WQxi,WKxj〉+ 〈WQxi, ri−j〉+ 〈WQxi, s〉+ 〈ri−j , t〉√
dk

(16)

= 〈qi,kj〉+ 〈qi, ri−j〉+ 〈qi, s〉+ 〈ri−j , t〉√
dk

(17)

where the last two terms of the numerator of the RHS of the above equation have been
included to capture “global content bias” and “global (relative) positional bias” respectively.
Finally, as before, the attention probabilities are computed as

pij = softmax(aij ; ai,0, · · · , ai,n−1) = eaij∑n−1
k=0 e

aik

(18)

In our TN model for power attacks, we have used the relative positional encoding given by
Eq. (17).

3.5 Layer Normalization
Initially, TN has been introduced with “post-layer normalization” in which multi-head self-
attention layers and position-wise feed-forward layers are followed by a layer normalization
operation (please refer to Figure 1a). Later, pre-layer normalization (Figure 1b) has been
introduced [BA19, CGRS19, WLX+19] in which the layer normalization is applied before
the multi-head self-attention or position-wise feed-forward layers. Later study [XYH+20]
found that pre-layer normalization stabilizes the training allowing the usage of a larger
learning rate and thus, achieving faster convergence. However, in our experiments, we have
found that the use of any kind of layer normalization in the network makes the network
difficult to train for power attacks. We speculate that the layer normalization operations
remove the informative data-dependent variations from traces, effectively making the input
independent of the target labels. Thus, in our TN model, we have not used any layer
normalization layer.

Proper training of TN is crucial for getting good performance. In the next section, we
briefly discuss the training and learning rate scheduling algorithms which are used to train
TN.

3.6 Training
Training a TN is a bit tricky in practice. An improper training might lead to divergence
of the training loss or converging to a sub-optimal value. The selection of a proper

10

optimization algorithm and learning rate schedule play important roles to properly train a
TN model.

3.6.1 Optimization Algorithm

Adam optimizer [KB15] is the most widely used optimization algorithm for training TN
[VSP+17, CGRS19, WLX+19, DYY+19]. Several works [DCLT19, TCLT19, JCL+20]
have used a slightly improved version of Adam optimizer call AdamW [LH19]. Recently,
[YLR+20] has proposed new layer-wise adaptive optimization technique called LAMB for
large batch optimization which has been used in several works [LCG+20].

3.6.2 Learning Rate Schedule

TNs are typically trained using a learning rate schedule which initially increases the learning
rate from a low value until it reaches a maximum value (called max_learning_rate, which
is a hyperparameter of the training algorithm). Once the maximum learning rate is reached,
it is gradually decayed till the end of the training. The initial period in which the learning
rate is increased is called warm-up period. The learning rate is typically increased linearly
from zero to the maximum value during the warm-up period. Several common algorithms
exist to decay the learning rate after the warm-up period. Linear decay, square-root decay,
and cosine decay are some examples of commonly used learning rate schedules. Some of
those learning rate scheduling algorithms have been discussed in Appendix B. To train our
TN, we used cosine decay with a linear warm-up as the learning rate scheduling algorithm
(please refer to Appendix B for a detailed description of the algorithm).

In Section 1, we argued that shift-invariance and the ability to capture long-distance
dependency are two important properties to make a deep learning model effective against
traces misalignments and masking countermeasures respectively. In the next section, we
compare the ability to capture long-distance dependency of the transformer layer with
other deep neural network layers. We also mathematically show that a TN with relative
positional encoding can be shift-invariance as well.

4 Ability to Capture Long Distance Dependency and Shift-
Invariance of Transformer Network

4.1 Comparison of the Ability of Learning Long Distance Dependency
The problem of learning long-distance dependency using a deep neural network has been
widely studied in the literature [HBFS01, VSP+17]. In [VSP+17], Vaswani et al. have
argued that the key factor which affects the learning of dependency between two tokens is
the length of the forward and backward propagation of signal between them. A shorter
path between the two tokens makes it easier to learn their dependency whereas a longer
path makes it difficult. They have further compared the ability to learn long-distance
dependency of the three layers - convolutional layer, recurrent layer, and self-attention
layer based on the path length between any two positions of the input sequence. When
the two tokens are n distance apart, the maximum path length through the three neural
network layers is shown in Table 2. As can be seen in the table, the self-attention layer can
attend to any token of the input sequence using a constant number of steps (please refer to
Figure 2b). A recurrent neural network requires O(n) steps. On the other hand, a stack of
O(n/k) convolutional layers, where k is the kernel width, are required to connect the two
tokens (please refer to Figure 2a). The maximum path length in a CNN can be reduced by
interleaving pooling layers with convolutional layers or by using dilated convolution [YK16].
However, those approaches make CNN less shift-invariant. Another alternative to reduce

11

x5x0 x1 x2 x3 x4

y0 y1 y2 y3

(a) A convolutional layer with kernel width 3. Each circle represents an element-wise weighted sum
operation where weights are given by the kernel. All the circles share the same parameters. In this case,
the i-th output token only depends on the i-th to i + 2-th input tokens. Thus, capturing dependency
between two tokens which are more than two distance apart requires more than one convolutional layers.

x5x0 x1 x2 x3 x4

y0 y1 y2 y3 y4 y5

(b) A self-attention layer. Each rounded corner square of the figure represents the weighted sum of the input
vectors where weights are set to be the attention probabilities. All of them share the same parameters. As
shown in the figure, each output state becomes dependant on all input vectors after a single self-attention
layer. Moreover, the number of parameters of a self-attention layer does not depend on the sequence
length.

Figure 2: Comparison of propagation of dependency through convolutional and self-
attention layers. An arrow from one state to another implies the second state is dependent
on the first state.

the path length using a convolutional layer is to increase the kernel width k. However, as
the number of parameters of a convolutional layer linearly depends on k, making k too large
might explode the number of parameters. Moreover, increasing k to make it very large
(i.e. making it comparable to the sequence length n) makes the convolutional layer less
shift-invariant. Note that both transformer layer and fully connected layer make each of
their output state dependant on all the input states, thus, both can capture long-distance
dependency. However, unlike in a transformer layer where the number of parameters is
independent of the input length, in a fully connected layer, the number of parameters
is proportional to the input length. Thus, the use of a fully connected layer to capture
long-distance dependency might make the number of parameters of the model very large
leading to an overfitting problem during training. Moreover, a fully connected layer is not
shift-invariant.

4.2 Shift-Invariance of Transformer Network
In computer vision, a function f is called invariant to a set of transformations T from X
to X if f(x) = f(T (x)) holds for all x ∈ X and T ∈ T . In a power attack, the inputs are
generally very noisy. In fact, in a power attack, one trace is often not sufficient to predict
the correct key, instead, information from multiple traces is required to extract for the

12

Table 2: The maximum path length between any two tokens which are n distance apart
through various types of neural network layers. Shorter the length, better the network
at learning long-distance dependency [HBFS01, VSP+17]. Note that the maximum path
length of a CNN can be reduced by interleaving convolutional layers with the pooling
layers or using dilated convolutional layers. However, those approaches make the network
less shift-invariant.

Layer Type Self-Attention Recurrent Convolutional
Maximum Path Length O(1) O(n) O(n/k)

same. Thus, in this context, we are interested in the information contained in f(X) about
the sensitive variable Z where X represents the random variable corresponding to the
power traces. In other words, we are interested in the conditional probability distribution
P[f(X)|Z]. Thus, for power attacks, the invariance property can be defined in terms of
P[f(X)|Z]. However, for the shake of simplicity, we define the shift-invariance property
only in terms of the conditional expectation E[f(X)|Z]. Thus, in the context of power
attack, we define the following weaker notion of invariance.

Definition 1. A function f is said to be invariant to a set of transformation T with
associated probability distribution function DT if

E[f(X)|Z] = E[f(T (X))|Z] (19)

holds where T ∼ DT and X, Z are random variables respectively representing the input
and intermediate sensitive variable. E[·|Z] represents the conditional expectation where
the expectation is taken over all relevant random variables other than Z.

To show the shift-invariance of TN, we consider the following transformer architecture,
leakage model, and the set of transformations.

The Transformer Model We consider a single layer TN followed by a global pooling
layer. The result can be approximately extended for multilayer TN as well. In the rest of
the section, we denote the single layer TN followed by global pooling layer as TN1L. The
output of TN1L can be given by the following operations:

Y0, · · · ,Yn−1 = SelfAttention(X0, · · · ,Xn−1)
U0, · · · ,Un−1 = Y0 + X0, · · · ,Yn−1 + Xn−1 (20)
U′0, · · · ,U′n−1 = FFN(U0), · · · ,FFN(Un−1)
U′′0 , · · · ,U′′n−1 = U′0 + U0, · · · ,U′n−1 + Un−1

TN1L(X0, · · · ,Xn−1) = 1
n

n−1∑
i=0

U′′i (21)

where (X0, · · · ,Xn−1) is the sequence of random vectors corresponding to the input of
the network, TN1L(X0, · · · ,Xn−1) is the random vector corresponding to the final output
(i.e. the output of global average pooling) of the network which is fed to a classification
layer for the classification task. SelfAttention(· · ·) and FFN(·) respectively represent the
self-attention and position-wise feed-forward operations. Please refer to Algorithm 1 or
Figure 1a for a description of a single layer TN. Additionally, we assume that the network
uses relative positional encoding, and thus the attention scores and attention probabilities
in the self-attention layer are computed by Eq. (16) and (18).

13

The Leakage Model To show the shift-invariance of TN, we consider the leakage model
of a software implementation of a first-order masking scheme. However, the results can be
easily extended for any higher-order masking scheme. More precisely, we take the following
assumptions:

Assumption 1. (Second Order Leakage Assumption) In the sequence of input vectors
(X−n+1+m2 , · · · ,X0, · · · ,Xn−1, · · · ,Xn−1+m1), the input vectors Xm1 and Xm2 (0 ≤
m1 < m2 < n, m2 − m1 = l > 0) are the leakages corresponding to the mask M and
masked sensitive variable ZM = Z ⊕M where Z is the sensitive variable. Thus, we can
write Xm1 = f1(M) + N1 and Xm1+l = f2(ZM) + N2 where f1, f2 : R 7→ Rd are two
deterministic functions of M , ZM respectively and N1,N2 ∈ Rd are the noise component
of Xm1 and Xm1+l respectively. Note that, N1 and N2 are independent of both M and
ZM . The objective of the network is to learn a mapping from {Xm1 ,Xm1+l} to Z.

Assumption 2. (IID Assumption) All the vectors {Xi}−n+m2<i<n+m1 are identically
distributed. Moreover, all the variables of the set {Xi}i 6=m1,m1+l are mutually independent.
Additionally, Xm1 and Xm1+l are independent to the rest of the random variables i.e
{Xi}i 6=m1,m1+l.

Note that the assumptions considered in the above leakage model are very well-known
assumptions for a first-order masking scheme. In fact, previous studies [Mag19, TAM20]
have taken such assumptions to generate synthetic power traces.

The Shift Transformations We define the set of shift transformations to be all shift
transformations for which the PoIs (i.e. the leakage points corresponding to the mask M
and the masked sensitive variable ZM = Z ⊕M) do not go out of the trace window. More
precisely, we define the set of transformations T shift as

T shift = {T s : s ∈ Z and −m1 ≤ s < n−m2}
where, T s(X−n+1+m2 , · · · ,X0, · · · ,Xn−1, · · · ,Xn−1+m1) = X0−s, · · · ,Xn−1−s (22)

In other words, the set of shift transformations T shift consists of transformations T s,
where −m1 ≤ s < n − m2, which shifts the input trace by s positions. The bound
−m1 ≤ s < n−m2 on the value of s ensures that the PoIs m1 and m2 do not go out of
the window because of the shift operations. Note that the input to the transformations is
a trace of size larger than n which is required as during the shift operations some sample
points go out of the window and some sample points enter into the window.

With the above definitions, we summarize the main results of this section using the
following proposition:

Proposition 1. There exists a set of parameters for which TN1L satisfies the following
equation:

E [TN1L(T (X−n+1+m2 , · · · , Xn−1+m1))|Z] = E [TN1L(X0, · · · , Xn−1)|Z] (23)

where T is a shift transformation drawn from any arbitrary distribution DT shift over the
set T shift and the conditional expectations are taken over all the relevant variables other
than Z.

Before going to prove the above proposition, we will state and prove another result.
The results are stated in the following lemma.

Lemma 1. For any 0 < ε < 1, the parameters WQ, WK , {r−n+1, · · · , r0, · · · , rn−1} and t
of the transformer layer of TN1L can be set such that pi,i+l > 1−ε for all i = 0, · · · , n−1−l,
and pij = 1/n for all i = n− l, · · · , n− 1 and j = 0, · · · , n− 1 hold where WQ,WK , pij,
{r−n+1, · · · , r0, · · · , rn−1} and t are as defined in Eq. (16) and (18).

14

Proof. Since TN1L uses relative positional encoding, the attention scores in the self-
attention layer is calculated following Eq. (16). Thus, from Eq. (16), we get the attention
scores aijs as

aij = 〈WQxi,WKxj〉+ 〈WQxi, ri−j〉+ 〈WQxi, s〉+ 〈ri−j , t〉√
dk

(24)

Setting WQ, WK , {ri}i 6=l all to zero of appropriate dimensions, rl = c
√
dk1 and t = 1

where 1 is a vector whose only first element is 1 and rest are zero, and c is a real constant,
we get

aij =
{
c if j = i+ l
0 otherwise (25)

for 0 ≤ i < n − l. Thus, using Eq. 18, we compute the attention probabilities for
0 ≤ i < n− l as

pij =
{

ec

ec+n−1 if j = i+ l
1

ec+n−1 otherwise (26)

Setting c > ln
(1−ε

ε

)
+ ln(n− 1), we get pi,i+l > 1− ε for all 0 ≤ i < n− l and 0 < ε < 1.

Similarly, it is straight forward to show that pij = 1/n for any n− l ≤ i < n and 0 ≤ j < n
for the same value of the parameters.

In other words, Lemma 1 states that the attention probabilities can be learned during
the model training such that the attention from the i-th sample point, for 0 ≤ i < n− l, can
be mostly concentrated to the (i+ l)-th sample point. Moreover, the attention probability
pi,i+l can be made arbitrarily close to 1. Thus, to keep the proof of Proposition 1 simple,
we take the following assumption on the trained TN1L model:

Assumption 3. Pi,i+l = 1 for 0 ≤ i < n− l where Pi,j is the random variable representing
the attention probability from i-th sample point to j-th sample point (and is defined by
Eq. (18)) in the transformer layer of TN1L. For n − l ≤ i < n, Pi,j = 1/n for all
j = 0, · · · , n− 1.

Note that Assumption 3 is not true in general. However, it can be approximately true
when we use a relative positional encoding. In Section 6.7, we have verified the correctness
of this assumption in a practical scenario. Now, with Assumption 1, 2 and 3, we provide
the proof of Proposition 1.

Proof of Proposition 1: Recall that the output of TN1L can be described by the following
steps:

Y0, · · · ,Yn−1 = SelfAttention(X0, · · · ,Xn−1)
U0, · · · ,Un−1 = Y0 + X0, · · · ,Yn−1 + Xn−1

U′0, · · · ,U′n−1 = FFN(U0), · · · ,FFN(Un−1)
U′′0 , · · · ,U′′n−1 = U′0 + U0, · · · ,U′n−1 + Un−1

TN1L(X0, · · · ,Xn−1) = 1
n

n−1∑
i=0

U′′i

From Eq. (8) and (9), we get

Yj = WO

(
n−1∑
k=0

PjkWV Xk

)
(27)

15

Thus, we can write Ym1 (where m1 is defined in Assumption 1) as

Ym1 = WO

(
n−1∑
k=0

Pm1kWV Xk

)
= WOWV Xm1+l, and thus (28)

Um1 = WOWV Xm1+l + Xm1 (29)

The last step of Eq. (28) follows since i = m1 satisfies Pi,i+l = 1 in Assumption 3. Similarly
we can write Yi for 0 ≤ i < n− l, i 6= m1 as

Yi = WO

(
n−1∑
k=0

PikWV Xk

)
= WOWV Xi+l, and thus (30)

Ui = WOWV Xi+l + Xi (31)

For n− l ≤ i < n, we can write

Yi = 1
n

WOWV

n−1∑
k=0

Xk

and, Ui = 1
n

WOWV

n−1∑
k=0

Xk + Xi

since, by Assumption 3, Pij = 1/n for j = 0, · · · , n−1 and n− l ≤ i < n. Now we compute
U′′i for i = 0, · · · , n− 1.

U′′i = FFN(Ui) + Ui (32)

Note that among all the {U′′i }0≤i<n, only U′′m1
and {U′′i }n−l≤i<n involve both the terms

Xm1 and Xm1+l, thus can be dependent on the sensitive variable Z (from Assumption 1).
Rest of the U′′i s are independent of Z (from Assumption 2). The output of TN1L can be
written as

TN1L(X0, · · · ,Xn−1) = 1
n

n∑
i=0

U′′i

= 1
n

U′′m1
+ 1
n

∑
0≤i<n−l,i6=m1

U′′i + 1
n

∑
n−l≤i<n

U′′i (33)

The expectation of the output conditioned on Z can be given by
E[TN1L(X0, · · · , Xn−1)|Z]

= E

[
1
n

U′′m1 + 1
n

∑
n−l≤i<n

U′′i + 1
n

∑
0≤i<n−l,i 6=m1

U′′i |Z
]

= 1
n

E[U′′m1 |Z] + 1
n

∑
n−l≤i<n

E[U′′i |Z] + 1
n

∑
0≤i<n−l,i 6=m1

E[U′′i] (34)

The second step follows because the random variables {Ui}0≤i<n−l,i6=m1 are independent
of Z. To complete the proof of Proposition 1, we compute

E [TN1L(T s(X−n+1+m2 , · · · ,Xn−1+m1))|Z]

= E [TN1L(X−s, · · · ,Xn−1−s)|Z]

= E

 1
n

U′′m1
+ 1
n

∑
n−l−s≤i<n−s

U′′i + 1
n

∑
−s≤i<n−l−s,i6=m1

U′′i |Z


= 1
n

E[U′′m1
|Z] + 1

n

∑
n−l−s≤i<n−s

E[U′′i |Z] + 1
n

∑
−s≤i<n−l−s,i6=m1

E [U′′i] (35)

16

From Assumption 2, we get

1
n

∑
n−l≤i<n

E [U′′i |Z] = 1
n

∑
n−l−s≤i<n−s

E [U′′i |Z] ,

and 1
n

∑
0≤i<n−l,i6=m1

E [U′′i] = 1
n

∑
−s≤i<n−l−s,i6=m1

E[U′′i]

Thus, comparing the right hand side of Eq. (34) and Eq. (35) we have

E[TN1L(X0, · · · ,Xn−1)|Z] = E [TN1L(T s(X−n+1+m2 , · · · ,Xn−1+m1))|Z]

which completes the proof.
�

4.3 Discussion
A CNN can also capture the long-distance dependency while maintaining shift invariance.
Stack of several convolutional layers (without any interleaved pooling layers) followed
by a global pooling layer (instead of flattening layer as in the existing neural network
architecture [BPS+20, ZBHV20]) is shift invariant. To adopt such a network for capturing
highly non-linear long-distance dependency, several fully connected layers can be added
after the global pooling layer. The resultant network is both shift-invariant and capable of
capturing long-distance dependency. However, the practical efficacy and advantages of such
architectures need to be evaluated. In this work, we explore an alternative architecture
based on TN.

In the previous section, we have seen that a TN is good at capturing long-distance
dependency and, at the same time, also shift-invariant. In the next section, we propose a
TN-based deep learning model, named TransNet, for power attack.

5 TransNet: A Transformer Network for Power Attack
For power attacks, we have developed a TN-based model called TransNet. TransNet is a
multi-layer TN followed by a global pooling layer. More precisely, TransNet is a stack of
an initial convolutional layer (which has been used as the embedding layer of the network),
an optional average pooling layer, followed by several transformer layers followed by a
global pooling layer which is finally followed by a classification layer and softmax layer.
The schematic diagram of TransNet is shown in Figure 3. Here we describe key differences
in TransNet architecture from off-the-shelf TN architectures.

Embedding Layer As discussed in Section 3.1, the input sequence (x0, · · · , xn−1) to a TN
is generally a sequence of discrete symbols {xi}n−1

i=0 . The embedding layer converts
the discrete tokens of the input sequence into their vector space representation. In
side channel analysis, the inputs (i.e. power traces) are a sequence of continuous
random variables. Thus, an embedding layer based on lookup table is not appropriate
to use. Instead we have used an one dimensional convolutional layer with number of
filters equals to d, where d is the model dimension, as the embedding layer. Thus,
we can replace Eq. 5 of Section 3.1 as

x0,x1, · · · ,xn−1 ← Conv1D(l0, l1, · · · , ln−1)

where (l0, l1, · · · , ln−1) is the sequence of real number representing a power trace.
Note that in signal processing applications, any signal processing tasks are generally
preceded by various preprocessing operations like smoothing by moving average

17

addition

PoswiseFF

addition

Multi−Head
Attention

Avg Pooling

input

FF Layer

Softmax

Global Avg Pooling

Conv Layer

Class Probabilities

L×

Figure 3: Architecture of TransNet.

operation. Such operation acts as a low pass filter and thus, reduce the noise in the
signal [WHJ+20, WAGP20]. We expect the convolutional layer to perform some of
those operations along with embedding the input signals. We have set the stride of the
convolutional layer to 1 whereas the kernel width is considered as a hyperparameter.

Pooling Layer Though TN is very effective at capturing long-distant dependency, it is
very costly when the input sequences are very long. In fact, the self-attention layer
has a quadratic time and memory cost in terms of the sequence length. Thus, we
have added an average pooling layer after the embedding layer. Setting a large value
of pool_size in the pooling layer, would reduce the length of the sequences, and thus,
providing efficient execution of the network at the cost of accuracy. In other words,
this layer provides an efficacy-efficiency trade-off.

Transformer Layers The pooling layer is followed by several transformer layers. The
architecture of the transformer layers is as described in Section 5 except layer
normalization and self-attention layer. We have not used any layer normalization.
And since we are using relative positional encoding, the attention probabilities in
the self attention layers are computed using Eq. (16) and Eq. (18). The number of
transformer layers to be used in the model is considered as a hyperparameter.

Layer Normalization The transformer layers are generally accompanied by layer normal-
ization. As discussed in Section 3.5, layer normalization can be used in two different
ways. However, for side-channel applications, we found it difficult to train our
network when we add any kind of layer normalization. We suspect that the layer
normalization operations remove the data-dependent variations from the input signals
making the data uninformative. Thus, we have not used any layer normalization

18

operation in the transformer layers.

Positional Encoding As discussed in Section 3.4, both absolute and relative positional
encodings are used in TN. For our network, we have used the relative positional
encoding as given by Eq. (16) and (18) (introduced in [DYY+19]). We have already
shown in Section 4.2 that the relative positional encoding scheme makes the TN
shift-invariant.

Global Pooling The TN generates a sequence of vector as output, i.e.

y0, · · · ,yn−1 ← TransformerNetwork(x0, · · · ,xn−1) (36)

where each yi is a vector of dimension d. In our network, we produce the final
d-dimensional output vector ȳ by using a global average pooling, i.e.

ȳ = 1
n

n−1∑
i=0

yi (37)

Class Probabilities The deep learning models for side-channel analysis are trained as
classification tasks. Thus, given the d-dimensional output ȳ, the class scores are
computed as

si = wT
i ȳ + bi, for i = 0, · · · , C − 1 (38)

where C is the total number of classes, wi and bi are trainable weight vector and
biases for class i. The class probabilities are computed using a softmax over the class
scores i.e.

pi = softmax(si; s0, · · · , sC−1) = esi∑C−1
j=0 esj

(39)

The full architecture of the TransNet model has been shown in Figure 3. We trained the
model using cross-entropy loss and Adam optimizer [KB15]. For the learning rate schedule,
we have used cosine decay with a linear warm-up (please refer to Appendix B for the
details of the learning rate scheduling algorithm).

In the next section, we provide the experimental results of TransNet.

6 Experimental Results
In this section, we experimentally evaluate the efficacy of TransNet for power attacks in
the presence of both first-order masking countermeasure and trace misalignments. First,
we evaluate the shift-invariance of TransNet on both synthetic and real datasets. Then,
we compare the efficacy of TransNet with one CNN-based baseline model and three other
state-of-the-art CNN-based methods. Next, we study the sensitivity of the performance
of TransNet on the hyperparameters. We also evaluate the efficacy-efficiency trade-off
provided by the pooling layer of TransNet. Finally, we investigate the outputs of the
attention layers to understand their influence on the shift-invariance of the TransNet
model.

6.1 Datasets
TransNet is particularly better than other alternatives in the presence of a combination of
masking countermeasure and trace misalignments. Thus, to evaluate TransNet, we select a
dataset with no first-order leakage. ASCAD database ([BPS+20]) is a collection of datasets

19

Table 3: Summary of the synthetic datasets.

desync0 desync50 desync100
Profiling Dataset size 30000 30000 30000
Attack Dataset size 1000 1000 1000
Trace Length 200 200 200
Mask Leakage Point 25 25 25
Sbox Leakage Point 75 75 75
Profiling Dataset Desync 0 0 0
Attack Dataset Desync 0 50 100

which are publicly available and they do not have any first-order leakage. Thus we choose
to evaluate TransNet on ASCAD datasets. Additionally, to verify the shift-invariance of
TransNet, we perform experiments on the synthetic dataset as well. Here we provide the
details of the datasets:

6.1.1 Synthetic Dataset

We use the following procedure for generating the synthetic traces

li[j] =

 Mi +N (0, 30) if j = 25 + si,
SBOX(Xi ⊕K)⊕Mi +N (0, 30) if j = 75 + si,
Rij +N (0, 30) otherwise,

(40)

where li[j] is the j-th sample point of the i-th trace, SBOX(·) represents the AES sbox and
N (0, 30) is a real number generated from Gaussian distribution of 0 mean and 30 standard
deviation. Mi, Xi are the mask and plaintext of the i-th trace and K is the secrete key
that is held constant for all traces. Each of Mi, Xi and Rij are uniformly random integer
from the range [0, 255]. si is the random displacement of the i-th trace. Each of sis is
uniformly random integer from the range [0,desync) where desync indicates the maximum
length of displacement in the dataset. Note that the above model for creating a synthetic
dataset is common and previously used in the literature [Mag19, TAM20]. We generated
30000 traces for profiling and 1000 traces for evaluation. Each trace contains 200 sample
points. For generating the profiling dataset, we set desync to 0. Thus, the profiling traces
are perfectly aligned. For evaluation we generated three attack sets with desync value set
to 0, 50 and 100. We provide the summary for our synthetic datasets in Table 3.

6.1.2 ASCAD Datasets

ASCAD datasets have been introduced by [BPS+20]. The original dataset is a collection
of 60, 000 traces collected from the ATMega8515 device which runs a Software implemen-
tation of AES protected by a first-order masking scheme. Each trace contains 100, 000
sample points. From the original dataset, they have further created three datasets named
ASCAD_desync0, ASCAD_desync50, and ASCAD_desync100. Each of the three derived
datasets contains 50, 000 traces for profiling and 10, 000 traces for the attack. Further,
for computational efficiency, the length of each trace of the derived datasets is reduced
by keeping only 700 sample points that correspond to the interval [45400, 46100) of the
original traces. The window corresponds to the leakages of the third sbox of the first round
of AES execution. The ASCAD_desync0 has been created without any desynchronization
of the traces. However, ASCAD_desync50 and ASCAD_desync100 have been created
by randomly shifting the traces where the length of random displacements have been
generated from a uniform distribution in the range [0, 50) in case of ASCAD_desync50

20

Table 4: Summary of the ASCAD datasets.

desync0 desync50 desync100 desync200 desync400
Profiling 50000 50000 50000 50000 50000
Dataset Size
Attack 10000 10000 10000 10000 10000
Dataset Size
Indices of [0, 50000) [0, 50000) [0, 50000) [0, 50000) [0, 50000)
Profiling Traces
Indices of [50000, 60000) [50000, 60000) [50000, 60000) [50000, 60000) [50000, 60000)
Attack Traces
Trace Length 700 700 700 1500 1500
Target Points [45400, 46100) [45400, 46100) [45400, 46100) [45000, 46500) [45000, 46500)
Profiling 0 50 100 200 400
Dataset Desync
Attack 0 50 100 200 400
Dataset Desync

and [0, 100) in case of ASCAD_desync100. Note that the random displacements have
been added to both the profiling traces and attack traces.

Apart from the above three derived datasets, we created two more datasets namely
ASCAD_desync200 and ASCAD_desync400 using the API provided by [BPS+20]. As
the name suggests, we have misaligned the traces by a random displacement in the range
[0, 200) for ASCAD_desync200 dataset and [0, 400) for ASCAD_desync400 dataset. Each
trace of the two derived datasets is 1500 sample point long and corresponds to the interval
[45000, 46500) of the original traces. We provide a summary of the derived datasets in
Table 4.

6.2 Hyper-parameter Setting of TransNet
Unless stated otherwise, we have set the number of transformer layers to 2, pool size of the
pooling layer to 1. We have set the model dimension d to 128, the dimension of the key
vectors and value vectors (i.e. dk and dv) to 64 and the number of head H to 2. We set
the kernel width of the convolutional layer to 11 for the experiments on ASCAD datasets
and 1 for the experiments on synthetic datasets. The complete list of the hyperparameter
setting of our implemented TransNet is given in Appendix C.

In the next section, we verify the shift-invariance property of TransNet.

6.3 Shift-Invariance of TransNet
The goal of this section is to evaluate the achieved shift-invariance of TransNet. Earlier,
we have formally shown that TransNet can be shift-invariant. In this section, we experi-
mentally investigate the achieved shift-invariance of our trained TransNet model. Towards
that goal, we train TransNet using aligned traces and evaluate the trained model using
misaligned traces. Note that the profiling traces of the derived ASCAD datasets other
than ASCAD_desync0 are misaligned. But, for the experiments of this section, we trained
all the models on only aligned traces.

6.3.1 Results

The results of TransNet on the synthetic datasets are shown in Figure 4a. Note that the
profiling traces of the synthetic datasets do not have any misalignments. Thus, we train a
single model and use it to evaluate all three synthetic datasets. The plots of Figure 4a
suggest that the performance of TransNet is similar on all the three datasets though they
are desynchronized by different amounts. Moreover, the TransNet performs very well on
the highly desynchronized ‘desync100’ dataset even though the model is trained using

21

traces without any desynchronization. This provides strong evidence of the shift-invariance
property of the TransNet model as claimed in the theoretical analysis

0 25 50 75 100 125 150 175 200
Number of traces

0

20

40

60

80

100

M
ea

n
ke

y
ra

nk
s

Noise std 30
desync0
desync50
desync100

(a) Results of TransNet on synthetic dataset.

0 200 400 600 800 1000
Number of traces

0

20

40

60

80

100

120

M
ea

n
ke

y
ra

nk
s

desync0
desync50
desync100
desync200
desync400

(b) Results of TransNet on ASCAD dataset.

Figure 4: Evaluation of the shift-invariance of TransNet model. Figure (a) plots the results
for synthetic datasets and Figure (b) plots the same for ASCAD datasets. All the models
used for the evaluations are trained using only aligned traces, the misalignments have been
introduced only in the attack traces. desyncX implies that the attack traces are randomly
shifted by an amount in the range [0, X). Results on both synthetic and real datasets
suggest the model’s robustness to trace misalignments justifying the theoretical claim.

To examine whether the shift-invariance property of the TransNet model persists
for the real dataset, we performed experiments on the derived ASCAD datasets. Note
that the length of traces of the first three derived datasets namely ASCAD_desync0,
ASCAD_desync50 and ASCAD_desync100 is 700 and the last two derived datasets
namely ASCAD_desync200 and ASCAD_desync400 is 1500. Thus, we trained two
TransNet models. The first one was trained for trace length 700 and we evaluated it on
ASCAD_desync0, ASCAD_desync50 and ASCAD_desync100 datasets. The second model
was trained for trace length 1500 and we evaluated that model on the ASCAD_desync200
and ASCAD_desync400 datasets. Both the models were trained using only aligned traces.
The results are plotted in Figure 4b. The figure shows that the results get only slightly
worse as the amount of trace desynchronization gets larger. Thus, it can be considered as
strong evidence for achieving almost shift-invariance by the TransNet models.

Next, we compare the efficacy of TransNet with other state-of-the-art methods.

6.4 Comparison with Other Methods
The goal of this section is to compare the results of TransNet model with that of other
state-of-the-art models on various ASCAD datasets (please refer to Section 6.1 for the
details of the datasets). We compare TransNet with the following CNN-based approaches:

CNNBest The CNNBest model has been introduced in [BPS+20]. It has five convolu-
tional layers followed by one flattening layer and three fully connected layers. The authors
have shown that CNNBest performs similar to other profiling power attacks when the
amount of trace misalignments is low and better by a large margin when the amount of
trace misalignments is high. Thus, we choose CNNBest as a baseline method to compare
with TransNet. To evaluate CNNBest model on ASCAD_desync0, ASCAD_desync50 and
ASCAD_desync100 datasets, we have used the trained model provided by them online.
For the evaluation on ASCAD_desync200 and ASCAD_desync400 datasets, we have
trained the model on the two datasets using their code.

22

EffCNN In [ZBHV20], Zaid et al. have proposed a methodology for constructing CNN-
based models that are robust to trace misalignments. By doing experiments across various
datasets, they have shown that their method can indeed be used to construct CNN models
which performs much better than other alternatives while having very small model sizes at
the same time. Thus, we used models constructed from their approach to compare with
TransNet. Following the recommendation of [WAGP20], for performing experiments using
EffCNN models, we have vertically standardized the traces of ASCAD_desync0 dataset
and horizontally standardized the traces for the rest of the datasets.

SimplifiedEffCNN In [WAGP20], the authors have suggested removing the first convo-
lutional and batch normalization layer of the EffCNN models. They have shown that
these simplified EffCNN models are easier to train and provides an improvement in attack
efficiency. Thus, we also compare SimplifiedEffCNN models with TransNet. Like EffCNN,
we have used vertical standardization for ASCAD_desync0 and horizontal standardization
of for the rest of the datasets as a preprocessing.

DilatedCNN In [PA20], Paguada et al. suggested to use dilated convolutional layer
to capture long distance dependency. Thus, we compare TransNet with their approach.
For the comparison, we created two models - one for the datasets ASCAD_desync0 and
ASCAD_desync100 (for which the trace length is 700), and the other for the datasets
ASCAD_desync200 and ASCAD_desync400 (for which the trace length is 1500). Following
their approach, we replaced the first convolutional layer of the two models with dilated
convolution. We tuned the models for additional four sets of hyper-parameters: [lk = 16,
dr = 4], [lk = 16, dr = 6], [lk = 32, dr = 3] and [lk = 64, dr = 2] where lk and dr are
respectively the kernel width and dilation rate of the dilated convolutional layer. Please refer
to Appendix D for the details of the models used. As for EffCNN and SimplifiedEffCNN,
we have used vertical standardization of ASCAD_desync0 and horizontal standardization
for the rest of the datasets as a preprocessing.

6.4.1 Results

For the experiments of this section, all the CNN-based models have been trained using
profiling desync same as attack desync. On the other hand, for each of the experiments,
we trained two TransNet models: one using no profiling desync and other using profiling
desync same as the attack desync. We refer the model which is trained using profiling
desync as ‘TransNet’ and the model which is trained using no profiling desync as ‘TransNet-
prof-desync0’. The results are shown in Figure 5. From Figure 5a, we observe that on
ASCAD_desync0 dataset i.e. when there is no trace misalignment, all the methods perform
well. However, as the amount of trace desynchronization gets larger, the performance of
CNNBest and EffCNN becomes inferior by a large margin compared to the other four
methods (Figure 5c). The performance of the rest of the four methods are similar up to
desync 200. However, for desync 400, all the CNN-based alternatives struggle to bring
down the mean key rank below 20 using as much as 5000 traces whereas TransNet requires
about 800 traces to bring it down to 0 (Figure 5d). Moreover, the TransNet-prof-desync0
model which has been trained on only synchronized traces, also bring down the mean key
rank below 1 using only 1000 traces suggesting the robustness of TransNet training to the
amount of desync in the profiling traces.

To compare the robustness of TransNet with the CNN-based methods to the amount
of desynchronization in the profiling traces, we trained two models for all the methods -
one with profiling desync 0 and other with desync 200 and tested the models with attack
desync 0 and 400. The results can be seen in Figure 6. In Figure 6a, we plot results of the
models which have been trained using profiling desync 0. In this case, all the methods
perform equally well for attack desync 0. However, for attack desync 400, TransNet reduces

23

0 200 400 600 800 1000
Number of Traces

0

20

40

60

80

100

M
ea

n
Ke

y
Ra

nk
s

ASCAD_desync0
CNNBest
EffCNN
SimplifiedEffCNN
DilatedCNN
TransNet

(a) Results on ASCAD_desync0.

0 200 400 600 800 1000
Number of Traces

0

20

40

60

80

100

120

M
ea

n
Ke

y
Ra

nk
s

ASCAD_desync100
CNNBest
EffCNN
SimplifiedEffCNN
DilatedCNN
TransNet
TransNet-prof-desync0

(b) Results on ASCAD_desync100.

0 200 400 600 800 1000
Number of Traces

0

20

40

60

80

100

120

M
ea

n
Ke

y
Ra

nk
s

ASCAD_desync200
CNNBest
EffCNN
SimplifiedEffCNN
DilatedCNN
TransNet
TransNet-prof-desync0

(c) Results on ASCAD_desync200.

0 1000 2000 3000 4000 5000
Number of Traces

0

20

40

60

80

100

120

140

M
ea

n
Ke

y
Ra

nk
s

ASCAD_desync400
CNNBest
EffCNN
SimplifiedEffCNN
DilatedCNN
TransNet
TransNet-prof-desync0

(d) Results on ASCAD_desync400.

Figure 5: Comparison of TransNet with CNNBest, EffCNN, SimplifiedEffCNN and
DilatedCNN models on the ASCAD datasets. Figure (a), (b), (c) and (d) respectively
plots the results for dataset ASCAD_desync0, ASCAD_desync100, ASCAD_desync200
and ASCAD_desync400. TransNet-prof-desync0 denotes the TransNet model which is
trained using no profiling desynchronization. For rest of the models, the distribution of
desynchronization in profiling and attack traces are the same.

the average key rank below 1 using 1000 traces whereas the CNN-based methods fails to
bring down the average key rank significantly below 100 using 2000 traces. The results
for profiling desync 200 are shown in Figure 6b. In this case, though the CNN-based
methods still perform considerably good for attack desync 0, their performances for attack
desync 400 still widely lagging the performance of TransNet. Overall, the Figure 6 shows
that the performance of TransNet is almost invariant to the profiling desync whereas the
CNN-based methods are required to be trained using profiling desync whose value is close
to the value of attack desync.

In summary, we can say that TransNet performs far better than CNNBest on desynchro-
nized attack traces. Though other CNN-based models perform similar or slightly better
than TransNet when the amount of desynchronization in the attack traces is comparatively
small, their performances get poor as the amount of desynchronization crosses a threshold.
Moreover, TransNet can perform very well on highly desynchronized attack traces even
when the model is trained on only aligned profiling traces. In this aspect, our work is in

24

0 250 500 750 1000 1250 1500 1750 2000
Number of Traces

0

20

40

60

80

100

120

M
ea

n
Ke

y
Ra

nk

Profiling desync 0

EffCNN-0-0
EffCNN-0-400
DilatedCNN-0-0
DilatedCNN-0-400
TransNet-0-0
TransNet-0-400

(a) Profiling desync 0.

0 250 500 750 1000 1250 1500 1750 2000
Number of Traces

0

20

40

60

80

100

M
ea

n
Ke

y
Ra

nk

Profiling desync 200
EffCNN-200-0
EffCNN-200-400
DilatedCNN-200-0
DilatedCNN-200-400
TransNet-200-0
TransNet-200-400

(b) Profiling desync 200.

Figure 6: Comparison of the robustness of TransNet and CNN-based models to profiling
desync. Figure (a) plots results for models which are trained using no profiling desync. On
the other hand, Figure (b) plots results for models which are trained using profiling desync
200. The label of the form 〈model_name〉-X-Y denotes model 〈model_name〉 trained
with profiling desync X and evaluated with attack desync Y .

line with the work of [CDP17] in which Cagli et al. have argued for an end-to-end model
replacing the critical preprocessing steps like the realignments of traces. However, their
model was still required to be trained on misaligned profiling traces to perform well on
misaligned attack traces. Our approach can be considered as going a step forward in that
direction where the model can be trained on aligned profiling traces as well to make it
perform well on misaligned attack traces.

Finally, constructing deep learning models using the strategy of [ZBHV20] requires
to design separate model architectures for different target devices and different amount
of target trace desynchronization. Later in [PA20], Paguada et al. have relaxed this
requirement. However, they still require to create different model architecture for different
trace lengths. On the other hand, TransNet provides a single monolithic architecture
which is rich enough to capture the complexity of the broader problems. Thus, the same
architecture can be tuned using a different set of profiling traces to make it work for
different target devices and thus, it reduces the necessity of human intervention further.

Next, we study the sensitivity of TransNet to different hyperparameters.

6.5 Sensitivity of TransNet to Different Hyperparameters and Hyper-
parameter Tuning

The number of hyperparameters introduced by TransNet is considerably large (please refer
to Appendix C for a full list of TransNet hyperparameters). However, we set most of the
hyperparameters following the standard convention used in transformer literature (please
refer to Appendix C) leaving only the following hyperparameters to be tuned:

d_model The hyperparameter, also has been denoted by d, represents the model dimension
or the output dimension of the transformer layers.

n_head The hyperparameter, also has been denoted by H, represents the number of heads
used in the multi-head self-attention layers.

25

0 200 400 600 800 1000
Number of traces

0

20

40

60

80

100

120

M
ea

n
ke

y
ra

nk kernel width = 5
kernel width = 11
kernel width = 21
kernel width = 31

(a) Results with varying kernel width of first convo-
lutional layer.

0 200 400 600 800 1000
Number of traces

0

20

40

60

80

100

120

140

M
ea

n
ke

y
ra

nk layers = 1
layers = 2
layers = 4
layers = 6

(b) Results with varying number of transformer
layers.

Figure 7: Sensitivity of TransNet to kernel width and number of transformer layers.
Figure (a) shows the results with varying kernel widths and Figure (b) shows with varying
numbers of layers. The models have been both trained and evaluated with desync 100.

conv_kernel_size The hyperparameter represents the kernel width of the first convolu-
tional layer of TransNet.

pool_size The hyperparameter represents the pool size (the stride is also set to be equal
to pool size) of the average pooling layer after the convolutional layer of TransNet.

n_layer The hyperparameter, also has been denoted by L, represents the number of
transformer layers in TransNet.

Among the above five hyperparameters, pool_size provides an efficacy-efficiency trade-
off (please refer to Section 6.6 for a detailed discussion) and can be set to 1 for obtaining
best results. We found that a default value of 128 for d_model and 2 for n_head works
very well across the experiments. In this section, we study the sensitivity of TransNet to
the remaining two hyperparameters namely conv_kernel_width and n_layer. We have
shown the results in Figure 7. In Figure 7a, we plot the results of TransNet by varying the
kernel width. From the figure, we can observe that, though the network fails to converge
for kernel width 5, it performs almost similarly for kernel width 11, 21, and 31. This
implies that kernel width can be chosen to be any value from a wide range like [11, 31].
Next, we study the sensitivity of TransNet to the number of transformer layers. The results
are plotted in Figure 7b. As it can be seen in the figure, though the network has failed to
converge for n_layer equal to 1, it has performed almost equally well for n_layer equal to
2, 4 and 6. Consequently, it can be said that any value for n_layer in the range [2, 6] is
good enough for TransNet. Thus, we can conclude that most of the hyperparameters of
TransNet can be set to the default value. It also performs well for a wide range of values
for the rest of the hyperparameters which reduces the overhead of hyperparameter tuning
further.

6.6 Efficiency-Efficacy Trade-off by Varying Pool Size
In this section, we investigate the effect of different pool sizes on the TransNet results.
Note that we expect the results of TransNet to be worse while gaining some computational
efficiency for a larger value of pool size. Moreover, a study like [Zha19] demonstrated the

26

0 250 500 750 1000 1250 1500 1750 2000
Number of Traces

0

20

40

60

80

100

120

M
ea

n
Ke

y
Ra

nk
s

Profiling Desync 0
pool-size = 1 att-desync = 0
pool-size = 3 att-desync = 0
pool-size = 1 att-desync = 100
pool-size = 3 att-desync = 100

(a) Results for profiling desync 0.

0 250 500 750 1000 1250 1500 1750 2000
Number of Traces

0

20

40

60

80

100

120

M
ea

n
Ke

y
Ra

nk
s

Profiling Desync 100
pool-size = 1 att-desync = 0
pool-size = 3 att-desync = 0
pool-size = 1 att-desync = 100
pool-size = 3 att-desync = 100

(b) Results for profiling desync 100.

Figure 8: Effect of pool size on TransNet results. Figure (a) plots the results for models
which are trained using profiling desync 0 and Figure (b) plots for models which are trained
using profiling desync 100.

Table 5: Training time for different pool sizes.

Pool Size 1 Pool Size 3
Training Time (sec/1000 traces) 0.41 0.06

loss of shift-invariance of deep neural networks by the usage of the pooling layer. Thus, we
also expect the loss of shift-invariance of TransNet with the increase of the pool size. Thus,
we performed experiments with pool size 1 and 3 on ASCAD datasets. Figure 8a plots
the results for profiling desync 0. In this case, both pool sizes perform similarly on attack
desync 0. However, when evaluated on attack traces with desync 100, the model with a
pool size of 3 performs substantially worse than that with pool size 1. We suspect the
loss of shift-invariance of the TransNet model with increased pool size as the cause for its
worse performance for attack desync 100. Next, we performed the same experiments with
profiling desync 100. The results are shown in Figure 8b. In this case, the results of the
model with pool size 3 for attack desync 100 has improved over the results obtained from
the same model with profiling desync 0 though the other results remain almost the same.
Thus, we conclude that introducing misalignments in the profiling traces can significantly
improve the performance of TransNet when the pool size is greater than 1. To observe the
gain of using a larger pool size on the training time of TransNet, we measured the training
time of TransNet with the two pool sizes. The training times are shown in Table 5. As
can be seen from the table, a TransNet model with a pool size of 3 is almost 6.8 times
faster than the one with pool size 1. Thus, using a larger value of pool size provides
computational efficiency in the exchange of a slight deterioration in its effectiveness.

6.7 Attention Probabilities and Shift Invariance of TransNet
For showing the shift invariance of transformer network in Section 4.2, we assumed that
pi,i+l = 1 for all i = 0, · · · , n− l (Assumption A3 of Section 4.2) where pi,j is the attention
probability from i-th sample point to j-th sample point and l is the distance between the
mask leakage point and sbox leakage point. In this section, we show that the assumption
approximately holds for TransNet. We show that, in TransNet, pi,j is on an average
significantly large for |i − j| = l and close to zero otherwise. To determine the range
of values for l on ASCAD dataset, we computed the SNR (Signal-to-Noise Ratio) and

27

0 100 200 300 400 500 600 700
Time samples

0

1

2

3

4

5

6

Si
gn

al
-to

-N
oi

se
 R

at
io

Sbox(p[3] ^ k[3]) ^ m[3]
m[3]

(a) Signal-to-Noise Ratio.

0 100 200 300 400 500 600 700
Time samples

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Pe
ar

so
n

co
rre

la
tio

n

Sbox(p[3] ^ k[3]) ^ m[3]
m[3]

(b) Pearson correlation.

Figure 9: Signal-to-Noise Ratio and Pearson correlation on ASCAD dataset.

Pearson correlation for m[3] and Sbox(p[3]⊕ k[3])⊕m[3] where m[3], p[3], and k[3] are the
mask, plaintext, and key byte of the third sbox of the first round. The SNR and Pearson
correlation are plotted in Figure 9. The plot of SNR reveals that the leakages due to
the manipulation of the mask byte are spread over approximately 100 to 200-th sample
points. On the other hand, the leakages due to the manipulation of the output of the sbox
are spread over approximately 500 to 600-th sample points. Thus the value of l ranges
between [300, 500]. Consequently, we expect high attention probabilities between sample
points when their relative distances are about 300 to 500 or −500 to −300. To verify this
fact, we plotted average attention probabilities between sample points according to their
relative distances. More precisely, we have computed the average attention probabilities for
relative distance r where r vary from −(n− 1) to n− 1 (n is the trace length) as follows:

Rr = {(i, j)|0 ≤ i, j < n and i− j = r}

pavg(r) = 1
Ta|Rr|

∑
0≤k<Ta

∑
i,j∈Rr

pkij

where Ta is the total number of attack traces, pkij denotes the attention probability from
i-th token to j-th token of k-th trace and |X | denotes the cardinality of set X . The plots
are shown in figure 10.

The gray regions in the plots correspond to the region in which we expect the attention
probabilities to be significantly higher than those in other regions. The peaks in or near
the gray regions of Figure 10a and 10b indicate that both the attention heads of 0-th layer
are putting significantly higher attention weight to sample points which are approximately
300 to 500 distance apart. Additionally, the 0-th attention head also shows some peaks
for relative distances close to 600. This may be due to the sbox leakages near the 600 to
700-th sample points which are not properly visible in the SNR plot (Figure 9a) but are
more prominent in the correlation plot (Figure 9b).

In the previous paragraph, we have observed that the self-attention layers put signif-
icantly higher attention probabilities to sample points which are approximately 300 to
500 distance apart from the target sample points. Since the attention probabilities do
not depend on any positional information of the sample points apart from the relative
positional encoding, we hypothesize that the higher attention probabilities depending
on the relative distances of the sample points are contributed by the relative positional
encoding. To verify the hypothesis, we investigate the contribution of relative positional
encoding in the attention probabilities and its dependency on the relative distance of the
sample points. Towards that goal, we plot the average differences in the probability scores

28

600 400 200 0 200 400 600
Relative Distance

0.00

0.01

0.02

0.03

0.04

0.05
Layer 0, Head 0

(a) Layer 0, Head 0.

600 400 200 0 200 400 600
Relative Distance

0.00

0.01

0.02

0.03

0.04

0.05
Layer 0, Head 1

(b) Layer 0, Head 1.

Figure 10: Plots of average attention probabilities against relative distances between two
sample points. The gray area corresponds to the distances between leakages of the mask
and masked sbox on the ASCAD dataset. Figure (a) and (b) respectively plots the results
for the first and second head of the self-attention of the first transformer layer.

from a sample point to another while using and not using the relative positional encoding.
More precisely, for each relative distance r, −(n − 1) ≤ r < n, we compute the average
difference score as

Rr = {(i, j)|0 ≤ i, j < n and i− j = r}

pdiff(r) = 1
Ta|Rr|

∑
0≤k<Ta

∑
i,j∈Rr

(
pkij − p̃kij

)
, (41)

where p̃kij is defined (ignoring the super script k) as

ãij = 〈qi,kj〉+ 〈qi,u〉√
dk

p̃ij = softmax (ãij ; ãi,0, · · · , ãi,n−1)

Note that p̃ij has been defined by excluding the terms related to the relative positional
encoding from the definition of pij (Eq. 17). The plots are shown in Figure 11. By
comparing Figure 11 with Figure 10, we can observe that the peaks of the two figures
coincide with each other. Thus, we can conclude that the high peaks in the attention
probabilities are caused by the relative positional encoding.

7 Conclusion
In this work, we have proposed to use TN for power attacks. A TN is better than other
networks such as RNN or CNN in capturing long-distance dependency. Thus, it is a
natural choice for a higher-order power attack. Using relative positional encoding, TN
can be made shift-invariant as well. Thus, it is also highly effective against misaligned
traces. We have proposed TransNet, a TN-based deep learning model, for power attacks.
We have also experimentally evaluated the proposed TransNet model on synthetic datasets
as well as ASCAD datasets. The results show that TransNet performs very well on
highly misaligned attack traces even when it is trained on only aligned profiling traces.
In comparison with other state-of-the-art deep learning models, it performs better by a
wide margin on ASCAD datasets when the attack traces are highly misaligned. It also

29

600 400 200 0 200 400 600
Relative Distance

0.00

0.01

0.02

0.03

0.04

0.05
Layer 0, Head 0

(a) Layer 0, Head 0.

600 400 200 0 200 400 600
Relative Distance

0.00

0.01

0.02

0.03

0.04

0.05
Layer 0, Head 1

(b) Layer 0, Head 1.

Figure 11: Plots of pdiff(r) against relative distance r between two sample points. The
gray area corresponds to the distances between leakages of the mask and masked sbox on
the ASCAD dataset.

performs considerably better than other models when the amount of desynchronization in
the profiling traces is significantly less than that in the attack traces.

Recently, CNN-based deep learning models have gained popularity for performing
power attacks. In this work, we present the TN-based deep learning model as a feasible
alternative to the CNN-based models. The training of our proposed model, TransNet, is
almost invariant to the amount of desynchronization in the profiling traces, and thus a
better choice than CNN-based models when the attack traces are highly desynchronized
or the amount of desynchronization in the profiling traces is significantly less than that in
the attack traces. Moreover, the existing state-of-the-art CNN-based models are designed
based on the input length or the amount of desynchronization in the attack traces or
both. If the target device differs in any of the above parameters, entirely new models are
required to be designed. Our proposed TransNet provides a single architecture that can
be tuned for different target devices reducing the requirement of human intervention in
power attacks further. We believe, starting from this work, the transformer network can
be further improved for performing power attacks.

References
[AG01] Mehdi-Laurent Akkar and Christophe Giraud. An implementation of DES

and AES, secure against some attacks. In Çetin Kaya Koç, David Naccache,
and Christof Paar, editors, CHES 2001, Third International Workshop, Paris,
France, May 14-16, 2001, Proceedings, volume 2162 of Lecture Notes in Com-
puter Science, pages 309–318. Springer, 2001.

[BA19] Alexei Baevski and Michael Auli. Adaptive input representations for neural
language modeling. In ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[BKH16] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization.
CoRR, abs/1607.06450, 2016.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptogr. Eng., 10(2):163–188, 2020.

30

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures - profil-
ing attacks without pre-processing. In Wieland Fischer and Naofumi Homma,
editors, CHES 2017 - 19th International Conference, Taipei, Taiwan, Septem-
ber 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science, pages 45–68. Springer, 2017.

[CG00] Jean-Sébastien Coron and Louis Goubin. On boolean and arithmetic masking
against differential power analysis. In Çetin Kaya Koç and Christof Paar,
editors, CHES 2000, Second International Workshop, Worcester, MA, USA,
August 17-18, 2000, volume 1965 of Lecture Notes in Computer Science, pages
231–237. Springer, 2000.

[CGRS19] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long
sequences with sparse transformers. CoRR, abs/1904.10509, 2019.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In Michael J. Wiener,
editor, CRYPTO ’99, Santa Barbara, California, USA, August 15-19, 1999,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer,
1999.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random
delay generation in embedded software. In Christophe Clavier and Kris Gaj,
editors, CHES 2009, 11th International Workshop, Lausanne, Switzerland,
September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes in Computer
Science, pages 156–170. Springer, 2009.

[CK10] Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and improvement of the
random delay countermeasure of CHES 2009. In Stefan Mangard and François-
Xavier Standaert, editors, CHES 2010, 12th International Workshop, Santa
Barbara, CA, USA, August 17-20, 2010. Proceedings, volume 6225 of Lecture
Notes in Computer Science, pages 95–109. Springer, 2010.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding. In
Jill Burstein, Christy Doran, and Thamar Solorio, editors, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational Linguistics, 2019.

[DYY+19] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and
Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a
fixed-length context. In Anna Korhonen, David R. Traum, and Lluís Màrquez,
editors, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 2978–2988. Association for Computational Linguistics, 2019.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In Geoffrey J. Gordon, David B. Dunson, and Miroslav
Dudík, editors, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011,
volume 15 of JMLR Proceedings, pages 315–323. JMLR.org, 2011.

[HBFS01] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber.
Gradient flow in recurrent nets: The difficulty of learning long-term dependen-
cies. 2001.

31

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 770–778. IEEE Computer Society, 2016.

[JCL+20] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and
Omer Levy. Spanbert: Improving pre-training by representing and predicting
spans. Trans. Assoc. Comput. Linguistics, 8:64–77, 2020.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In Yoshua Bengio and Yann LeCun, editors, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Michael J. Wiener, editor, CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, volume 1666
of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(3):148–179, 2019.

[LCG+20] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. ALBERT: A lite BERT for self-supervised learning
of language representations. In ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

[LH19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[Mag19] Houssem Maghrebi. Deep learning based side channel attacks in practice.
IACR Cryptol. ePrint Arch., 2019:578, 2019.

[Mes00] Thomas S. Messerges. Securing the AES finalists against power analysis attacks.
In Bruce Schneier, editor, FSE 2000, New York, NY, USA, April 10-12, 2000,
Proceedings, volume 1978 of Lecture Notes in Computer Science, pages 150–164.
Springer, 2000.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Claude Car-
let, M. Anwar Hasan, and Vishal Saraswat, editors, SPACE 2016, Hyderabad,
India, December 14-18, 2016, Proceedings, volume 10076 of Lecture Notes in
Computer Science, pages 3–26. Springer, 2016.

[MZ13] Zdenek Martinasek and Vaclav Zeman. Innovative method of the power analysis.
Radioengineering, 22(2):586–594, 2013.

[PA20] Servio Paguada and Igor Armendariz. The forgotten hyperparameter: - in-
troducing dilated convolution for boosting cnn-based side-channel attacks. In
Jianying Zhou, Mauro Conti, Chuadhry Mujeeb Ahmed, Man Ho Au, Lejla
Batina, Zhou Li, Jingqiang Lin, Eleonora Losiouk, Bo Luo, Suryadipta Majum-
dar, Weizhi Meng, Martín Ochoa, Stjepan Picek, Georgios Portokalidis, Cong
Wang, and Kehuan Zhang, editors, ACNS 2020 Satellite Workshops, AIBlock,
AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA, Rome, Italy, October
19-22, 2020, Proceedings, volume 12418 of Lecture Notes in Computer Science,
pages 217–236. Springer, 2020.

32

[SUV18] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative
position representations. In Marilyn A. Walker, Heng Ji, and Amanda Stent,
editors, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume
2 (Short Papers), pages 464–468. Association for Computational Linguistics,
2018.

[TAM20] Dhruv Thapar, Manaar Alam, and Debdeep Mukhopadhyay. Transca: Cross-
family profiled side-channel attacks using transfer learning on deep neural
networks. IACR Cryptol. ePrint Arch., 2020:1258, 2020.

[TCLT19] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-
read students learn better: The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962, 2019.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, NIPS, Long
Beach, CA, USA, December 4-9, 2017, pages 5998–6008, 2017.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revis-
iting a methodology for efficient CNN architectures in profiling attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):147–168, 2020.

[WHJ+20] Yoo-Seung Won, Xiaolu Hou, Dirmanto Jap, Jakub Breier, and Shivam Bhasin.
Back to the basics: Seamless integration of side-channel pre-processing in deep
neural networks. IACR Cryptol. ePrint Arch., 2020:1134, 2020.

[WLX+19] Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F. Wong,
and Lidia S. Chao. Learning deep transformer models for machine translation.
In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages
1810–1822. Association for Computational Linguistics, 2019.

[XYH+20] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer nor-
malization in the transformer architecture. In ICML 2020, 13-18 July 2020,
Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
10524–10533. PMLR, 2020.

[YK16] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated
convolutions. In Yoshua Bengio and Yann LeCun, editors, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[YLR+20] Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh
Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
Large batch optimization for deep learning: Training BERT in 76 minutes. In
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Method-
ology for efficient CNN architectures in profiling attacks. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2020(1):1–36, 2020.

[Zha19] Richard Zhang. Making convolutional networks shift-invariant again. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, ICML 2019, 9-15
June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine
Learning Research, pages 7324–7334. PMLR, 2019.

33

Projection by
weight matrix

Transpose
Matrix
multiplication

Rowwise
Softmax

X

V

K

Q

A P

Ȳ Y

n× d n× d

n× dk

n× dk

n× dv

n× nn× n

n× dv

Figure 12: Single Head Self-Attention.

[ZLLS20] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive into
Deep Learning. 2020. https://d2l.ai.

[ZS20] Yuanyuan Zhou and François-Xavier Standaert. Deep learning mitigates but
does not annihilate the need of aligned traces and a generalized resnet model
for side-channel attacks. J. Cryptogr. Eng., 10(1):85–95, 2020.

A Self-Attention Operation
The output of a single head self-attention operation can be written using the following
equations:

Ȳ = Self-Attention(WQ,WK ,WV)

= softmax
(

QKT

√
dk

)
V

= softmax
(

XWT
QWKXT

√
dk

)
XWT

V

= softmax (A) XWT
V

= PXWT
V

Y = ȲWT
O

where X,Q,K,V,Y and Ȳ are the matrices whose i-th row are xi, qi, ki, vi, yi and
ȳi respectively. MT and softmax(M) respectively represent the transpose and row-wise
softmax operations applied to the matrix M. As stated before, the entry of i row and
j-th column of the matrices A and P are aij and pij respectively where aij and pijs are
respectively defined in Eq. 6 and 7. The schematic diagram of self-attention layer is shown
in Figure 12.

B Learning Rate Scheduling
Learning rate schedule plays an important role in any stochastic gradient descent based
optimizations. Setting proper learning rate scheduling requires several considerations
[ZLLS20].

34

https://d2l.ai

0 20 40 60 80
Training steps

0.000

0.002

0.004

0.006

0.008

0.010

Lea
rnin

g r
ate

rmax = 0.01, rmin = 0.0005, tmax = 100
linear
square root
cosine

(a) Without any warm-up steps

0 20 40 60 80
Training steps

0.000

0.002

0.004

0.006

0.008

0.010

Lea
rnin

g ra
te

rmax = 0.01, rmin = 0.0005, tmax = 100, twarmup = 10
linear
square root
cosine

(b) With linear warm-up for 10 steps

Figure 13: Plots of learning rates against training steps using various learning rate
scheduling algorithms. Each step corresponds to the processing of one batch of training
examples.

• First of all, the absolute value of learning rate is important as setting a large value
for learning rate might make the optimization algorithm to diverge where as setting
a small value might make the algorithm to take too long to reach the optimal value.

• Secondly, the learning rate should be decreased with training steps properly as
decreasing the learning rate too slowly might make the optimization algorithm to
oscillate around the optimal value instead of reaching the value whereas decreasing
the learning rate too fast might results in a failure to reach the optimal value.

• Thirdly, for the optimization of a large deep neural network, setting a large value of
learning rate during the initial period of the training might result in sub-optimal
optimization. Since the initial set of parameters are random, the initial gradient
direction might not be too informative. Thus, setting a large gradient update during
the initial period of the optimization might lead to converging to a sub-optimal
minima. One common approach to optimize a large neural network is to use several
warm-up steps, during which the learning rate is gradually increased to a large value
starting from a small value. After the warm-up steps, some standard learning rate
scheduling is followed.

Here, we describe several commonly used learning rate schedule.

35

Linear Decay In linear decay scheduling, the learning rate is decreased linearly with the
training steps. More precisely, at t-th step, the learning rate rt is computed as

rt = rmax + rmin − rmax

tmax
× t (42)

where rmax, rmin are the maximum and minimum learning rate and tmax is the max-
imum training step. All of rmax, rmin and tmax are considered as hyper-parameters.

Square Root Decay In square root decay scheduling, the learning rate is decreased as the
square root of the training steps. More precisely, at t-th step, the learning rate rt is
computed as

rt = rmax ×
1√

1 + t
(43)

where rmax is the maximum/initial learning rate. rmax is generally considered as a
hyper-parameter.

Cosine Decay In cosine decay scheduling, the learning rate is decreased following a cosine
curve. Thus, at t-th step, the learning rate rt is computed as

rt = rmax + rmax − rmin

2 × (1 + cos(πt/tmax)) (44)

where rmax, rmin and tmax are as defined before and are hyper-parameters of the
scheduling algorithm.

The evolution of learning rate with the increase in training steps in various learning
rate scheduling algorithms are shown in Figure 13a.

As stated earlier, for the training of large neural network models, several steps are kept
as warm-up steps during which the learning rate is warmed up to a desired value starting
from a small value. For training TN, it is common to use a linear warm-up schedule. In a
linear warm-up schedule, the learning rate is linearly increased to rmax starting from a low
value (most often zero) over a duration of twarmup steps where twarmup, known as warmup
steps, is a hyper-parameter. Figure 13b plots the evolution of learning rate with training
step in the above three learning scheduling algorithm with a linear warm-up.

C Hyper-parameter Setting
We set several hyperparameters of TransNet using the standard conventions which are
followed in natural language processing (NLP). We set dk = dv = d/H which is commonly
followed in NLP. In NLP, di is set to 4d. However, we found di = 2d also provide good
results, thus we set di = 2d. In NLP, the number of heads H is set to 16. Considering the
simplicity of the problem in power attack, we set this hyperparameter to 2. The input
length n is set to be equal to the trace length. The relative positional encoding takes one
hyperparameter named clamp_len. It is enough to set this hyperparameter to be equal to
n. Our implemented TransNet model takes two hyperparameters for dropout: dropout
and dropatt. In NLP, these two hyperparameters are set to 0.1. We found a value of 0.05
or 0.1 works equally well.

Complete list of hyperparameters used for training TransNet is given below.

36

hyper-parameters ASCAD_desync
0 100 200 400

n_layer (L) 2 2 2 2
d_model (d) 128 128 128 128
n_head (H) 2 2 2 2
d_head (dv) 64 64 64 64
d_inner (di) 256 256 256 256
dropout 0.05 0.05 0.05 0.05
dropatt 0.05 0.05 0.05 0.05
conv_kernel_size 11 11 11 11
pool_size 1 1 1 1
clamp_len 690 690 1500 1500
untie_r True True True True
smooth_pos_emb False False False False
untie_pos_emb True True True True
init normal normal normal normal
init_std 0.02 0.02 0.02 0.02
max_learning_rate 0.00025 0.00025 0.00025 0.00025
(gradient) clip 0.25 0.25 0.25 0.25
min_lr_ratio 0.004 0.004 0.004 0.004
warmup_steps 0 0 0 0
batch_size 256 256 256 256
train_steps 30000 50000 80000 100000

For the experiments on the synthetic datasets, we used the same hyper-parameter
setting except conv_kernel_size, clamp_len and train_step. We set the conv_kernel_size
to one, clamp_len to 200 and train_step to 1000.

Note that we set some hyperparameters like init, init_std, max_learning_rate, clip,
min_lr_ratio and warmup_step to the default value used in the implementation of
[DYY+19].

D Details of Architectures of DilatedCNN Models
In [PA20], Paguada et al. have used two CNN models one for ASCAD fixed key dataset
and the other for ASCAD random key dataset. For ASCAD fixed key dataset, they
have used the EffCNN model [ZBHV20] as the base model for their experiments. Since
we have also performed experiments on ASCAD fixed key dataset, we build two models
using the approach proposed in [ZBHV20]. Since in the approach of [ZBHV20], the model
architectures depend on the trace length and the amount of desynchronization, we build
two models - one for datasets ASCAD_desync0 and ASCAD_desync100 in which the
trace length is 700, and the other for datasets ASCAD_desync200 and ASCAD_desync400
in which the trace length is 1500. Further, for building the model for the datasets
ASCAD_desync0 and ASCAD_desync100, we have used the approach of [ZBHV20] et al.
and assumed the maximum trace desynchronization to be 100. Similarly, for building the
model for the datasets ASCAD_desync200 and ASCAD_desync400, we have used the
same approach of [ZBHV20] et al. and assumed the maximum trace desynchronization to
be 400. Finally, the first convolutional layer of both models has been replaced by dilated
convolutional layer. Following [PA20], we have tuned the models for an additional set of
hyperparameters: [lk = 16, dr = 4], [lk = 16, dr = 6], [lk = 32, dr = 3] and [lk = 64, dr = 2]
where lk and dr are the kernel width and dilation rate of the dilated convolutional layer
respectively.

37

	Introduction
	Preliminaries
	Notations
	Power Attack
	Profiling Power Attack
	Profiling Power Attack using Deep Learning

	Transformer Network
	Embedding Layer
	Multi-Head Self-Attention Layer
	Position-wise Feed-Forward Layer
	Positional Encoding
	Layer Normalization
	Training

	Ability to Capture Long Distance Dependency and Shift-Invariance of Transformer Network
	Comparison of the Ability of Learning Long Distance Dependency
	Shift-Invariance of Transformer Network
	Discussion

	TransNet: A Transformer Network for Power Attack
	Experimental Results
	Datasets
	Hyper-parameter Setting of TransNet
	Shift-Invariance of TransNet
	Comparison with Other Methods
	Sensitivity of TransNet to Different Hyperparameters and Hyperparameter Tuning
	Efficiency-Efficacy Trade-off by Varying Pool Size
	Attention Probabilities and Shift Invariance of TransNet

	Conclusion
	Self-Attention Operation
	Learning Rate Scheduling
	Hyper-parameter Setting
	Details of Architectures of DilatedCNN Models

