
To Shift or Not to Shift: Understanding GEA-1
Christof Beierle1, Patrick Felke2 and Gregor Leander1

1 Ruhr University Bochum, Bochum, Germany firstname.lastname@rub.de
2 University of Applied Sciences, Emden/Leer, Germany patrick.felke@hs-emden-leer.de

Abstract. In their Eurocrypt 2021 paper, Beierle et al. showed that the proprietary
stream ciphers GEA-1 and GEA-2, widely used for GPRS encryption in the late 1990s
and during the 2000s, are cryptographically weak and presented attacks on both
algorithms with practical time complexity. Although GEA-1 and GEA-2 are classical
stream ciphers, the attack on GEA-1 is interesting from a cryptanalytic point of view.
As outlined in the aforementioned paper, there is a strong indication that the security
of GEA-1 was deliberately weakened to 40 bits in order to fulfill European export
restrictions. In this paper we analyze the design further and answer the open question
on how to construct a GEA-1-like cipher with such a reduced security. Indeed, the
actual GEA-1 instance could be obtained from this construction. Our observations
and analysis yields new theoretical insights in designing secure stream ciphers.

Keywords: cryptanalysis · GPRS · GEA-1 · stream cipher · LFSR · 40-bit security

1 Introduction
General Packet Radio Service (GPRS) is a mobile data standard based on the GSM
(2G) technology, widely deployed during the late 1990s and the early 2000s. At the
cryptographic level, the data processed by the GPRS protocol is protected by a stream
cipher and, initially, the proprietary encryption algorithm GEA-1 was designed by ETSI
Security Algorithms Group of Experts (SAGE) in 1998 (and the successor algorithm GEA-2
one year later) for this purpose. To generate the keystream, GEA-1 gets as input a 64-bit
key, a 32-bit IV, and a 1-bit flag to indicate the direction of communication. A technical
report on the design process can be found at [ETS98].

GEA-1 was designed at a time in which export restrictions were still in place. While
the key length was 64 bit, in [BDL+21] it was shown that the effective key length is below,
i.e., there exists a practical attack of a complexity of 240 GEA-1 evaluations. There is no
definite answer whether or not this weakness is a result of the Wassenaar arrangement.
Although some of our analysis is in this direction, we will never be able to give a proof.

The full specification of the stream ciphers GEA-1 and GEA-2 can be found in [BDL+21].
More precisely, GEA-1 consists of linear feedback shift registers (LFSRs) that are regularly
clocked. It is worth mentioning that those LFSRs are actually implemented in Galois
mode, i.e., instead of summing the bits at several tap positions to compute the new state,
a single bit is added to several bit positions. It is well-known that LFSRs in Galois mode
are equally good as LFSRs in Fibbonacci mode from a cryptoanalytic point of view. They
are the preferred choice when a fast implementation in software is required (see [Sch96]).
Therefore it is worth mentioning that GEA-1 and GEA-2 are both implemented in hardware.
A non-linear and cryptographically strong Boolean function is used on each register by
extracting a few bits at fixed position and producing one bit per register and clock cycle.
The output keystream bit of GEA-1 is then simply the sum, i.e., the XOR, of those three
bits. In other words, GEA-1 can be seen as the sum of three filtered LFSRs. GEA-2 is very

mailto:firstname.lastname@rub.de
mailto:patrick.felke@hs-emden-leer.de

2 To Shift or Not to Shift: Understanding GEA-1

similar in design and (besides small and seemingly minor changes in the initialization)
uses a fourth LFSR in order to cope with the larger key and thus larger state.

In [BDL+21] the authors showed that the two algorithms do not achieve an adequate
security level. Indeed, they presented attacks on GEA-1 and GEA-2 with complexities
corresponding to a security of 40 bits and approximately 45 bits respectively. While
the attack on GEA-2 is a combination of several techniques, most of which have been
developed within the last two decades, the attack on GEA-1 is based on a simple but very
remarkable observation. Indeed, after the linear initialization procedure the joint state
of two of the involved LFSRs have a joint entropy of only 40 bits, while their size adds
up to 64 bits. That is, the initialization is far from being optimal and indeed 24 bits
of information are disregarded in this process. This loss of entropy directly leads to a
classical meet-in-the-middle attack: guess the joint state of the two LFSRs and compare
the keystream with the help of a table for the third LFSR.

The authors of [BDL+21] further analyze how frequently this surprising observation
occurs for randomly chosen LFSRs. For this, they replaced the (two) LFSRs used in
GEA-1 by randomly chosen primitive LFSRs in Galois mode of the corresponding size and
computed the loss of entropy. After roughly one million tries, the maximal loss that was
observed was at most 9 bits,1 demonstrating that this behavior is (i) very rare and thus
(ii) most likely built in to keep the ciphers effective strength at 40 bits.

One important question was not answered in [BDL+21], namely: How was this config-
uration constructed? By extrapolating the experimental observations given in [BDL+21,
Table 2], we estimate the cost of constructing this simply by randomly picking primitive
LFSRs to be in the range of roughly 247 tries, summing up to around 265 binary operations
in total.2 Taking into account that the design is already more than 20 years old, the cost
of this would have been enormous. This strongly indicated that there must be a more
elaborated and efficient way of achieving the desired setting.

1.1 Our Contribution
In this paper, we give a very efficient way how to construct LFSRs such that the number
of possible joint states is much less than expected, thus explaining how the weakness could
have been, and assumingly has been, constructed. The main objective of interest here is
the intersection of the kernels of the linear initialization process.

For this we describe the states, the initialization and the intersection of states by
polynomials over F2. In a nutshell a key t is in the kernel of the first LFSR, if its
polynomial representation is a multiple of the characteristic polynomial of the LFSR. For
the second LFSR, things are slightly different due what to the fact that the key is shifted
before the initialization. This leads to the fact the same key t is in the kernel of the
second LFSR if its rotated version is a multiple of the characteristic polynomial of the
second LFSR. This immediately implies that not using a shift would make such a weakness
impossible, as the polynomial corresponding to the key simply cannot be a multiple of two
different primitive polynomials due to its natural degree restriction. Thus, this a priori
small effect of shifting the key before initialization turns out to be the key-enabler to
control the actual security in the first place. This is astonishing as one would have expected
otherwise at the first glance, i.e. one would have expected that shifting increases the
security. While this explains that the shift is needed to get a high dimensional intersection
of kernels, it still does not give rise to a construction of the LFSRs themselves. This
requires two more ingredients. First, as we will detail in Section 2, considering keys with

1When considering all possible combinations of two of the three registers in GEA-1, the maximal observed
loss was 11 bits.

2We estimate the number of expected solutions to be s · 2−2d+1, where s denotes the sample space and
d the desired entropy loss. For each sample, we need to solve a linear system of dimension 64 to compute
the entropy loss.

Christof Beierle, Patrick Felke and Gregor Leander 3

a number of zero bits at well-chosen positions lead to multiple, linear independent, keys
in the intersection automatically, as long as at least one key in the intersection exists.
Second, we show that reversing the design process allows to get the needed boost in success
probability. Instead of picking LFSRs, we start by picking an element in the kernel by
factorizing the corresponding polynomial description. If the polynomial by chance has a
primitive divisor of the required degree, we can simply choose this divisor as the primitive
polynomial defining the LFSR. In other words we pre-describe the sought for kernel to
some extend and build the LFSRs around it.

We show by decomposing the kernel of GEA-1 that it can be easily constructed by our
approach. As GEA-1 is then only one example of the (re?)-discovered design strategy, we
elaborate in Section 4.2 about other possible parameter choices and also about limits for
this approach.

As a side remark, the above mentioned use of LFSRs in Galois mode can now also
be justified: An Fibonacci LFSR that is based on a random characteristic polynomial,
and thus very likely with many taps, is very unfavorable to implement in software and
thus very unusual. For a LFSR in Galois mode, the choice of a random characteristic
polynomial with many taps is desirable.

2 Preliminaries
We briefly introduce the mathematics behind GEA-like stream ciphers. As usual a matrix
A ∈ Fm×n2 is considered as linear mapping from Fn2 to Fm2 via matrix-vector multiplication
from the right. Thus the i-th column of A is the image of ei := (0, 0, . . . , 1, 0 . . . , 0)>︸ ︷︷ ︸

i−th position

∈ Fn2 ,

the i-th canonical unit vector and A is the representation matrix with respect to this
canonical basis.

2.1 The Galois Mode
First we recall some basic facts about linear feedback shift registers (LFSRs) in Galois
mode, as depicted in Figure 1. For further reading we refer to ([Sch96, p. 378 ff.],[HK04,
p. 227]).

. . .

∧ ∧ ∧ ∧ ∧

. . .

l0 l1 ln−2 ln−1

a0 a1 an−3 an−2 an−1

Figure 1: An LFSR in Galois mode.

Given an LFSR L in Galois mode of degree n with entries in F2, clocking the inner
state l = l0, . . . , ln−1 is equivalent to the matrix-vector multiplication

GL · l :=


a0 1 0 . . . 0
a1 0 1 . . . 0
...

...
...

. . .
...

an−2 0 0 . . . 1
an−1 0 0 . . . 0

 ·


l0
l1
...
ln−2
ln−1

 =


a0l0 + l1
a1l0 + l2
...
an−2l0 + ln−1
an−1l0

 .

The characteristic polynomial of GL is

g(X) := Xn + a0X
n−1 + · · ·+ an−2X + an−1 .

4 To Shift or Not to Shift: Understanding GEA-1

Although LFSR’s in Galois mode can be defined more general we only consider the cases
where g(X) is primitive as only those are of cryptographic interest. Thus the characteristic
polynomial g(X) is equal to the minimal polynomial of GL and an−1 6= 0. The latter
condition is equivalent to the fact that GL is invertible. Vice versa, given a primitive
polynomial g(X) := Xn + a0X

n−1 + · · ·+ an−2X + an−1 then

GL :=


a0 1 0 . . . 0
a1 0 1 . . . 0
...

...
...

. . .
...

an−2 0 0 . . . 1
an−1 0 0 . . . 0


is the (invertible) companion matrix of an LFSR in Galois mode with minimal polynomial
g. This can be seen as follows. Let

S :=


0 0 0 . . . 1
...

...
... . .

. ...
0 0 1 . . . 0
0 1 0 . . . 0
1 0 0 . . . 0

 .

Then S2 = In, where In denotes the n× n identity matrix and

S−1GLS = SGLS =



0 0 . . . 0 an−1
1 0 . . . 0 an−2
0 1 . . . 0 an−3
...

...
. . .

...
...

0 0
... 1 a0

 , (1)

which is the well-known Frobenius companion matrix with characteristic polynomial (and
minimal polynomial) g(X) (see [LN96], chapter 2.5). We call such a matrix the Galois
matrix of degree n and the corresponding minimal polynomial the Galois polynomial in the
sequel. If the degree n is obvious we will omit it. Moreover, given an LFSR L in Galois
mode with minimal polynomial g, we also denote the Galois matrix with Gg if appropriate.
As usual G0

g := In. The reason why these kind of registers are called LFRS in Galois Mode
will become obvious in Section 4. Moreover usually the matrix given in equation (1) is
the preferred choice when working with LFSRs in Galois mode. Our representation is a
direct consequence of the actual implementation of GEA-1,GEA-2 (see [BDL+21]) and thus
better suited for our paper.

3 GEA-1 and its Cryptoanalytic Properties
In this section we recall the description of the stream cipher GEA-1 as well as its weakness,
both as presented in [BDL+21].

3.1 Description of GEA-1

Keystream generation. The keystream is generated from three LFSRs over F2, called
A,B and C, together with a 7-bit non-linear filter function f . The registers A,B,C have
lengths 31, 32 and 33, respectively and the LFSRs work in Galois mode. In particular, the

Christof Beierle, Patrick Felke and Gregor Leander 5

Galois polynomials corresponding to LFSRs A,B,C are

gA(X) = X31 +X30 +X28 +X27 +X23 +X22 +X21 +X19 +X18 +X15

+X11 +X10 +X8 +X7 +X6 +X4 +X3 +X2 + 1 ,
gB(X) = X32 +X31 +X29 +X25 +X19 +X18 +X17 +X16 +X9 +X8

+X7 +X3 +X2 +X + 1 ,
gC(X) = X33 +X30 +X27 +X23 +X21 +X20 +X19 +X18 +X17 +X15

+X14 +X11 +X10 +X9 +X4 +X2 + 1 ,

respectively. The specification of f = f(x0, x1, . . . , x6) is given in algebraic normal form as

x0x2x5x6 + x0x3x5x6 + x0x1x5x6 + x1x2x5x6 + x0x2x3x6 + x1x3x4x6

+x1x3x5x6 + x0x2x4 + x0x2x3 + x0x1x3 + x0x2x6 + x0x1x4 + x0x1x6

+x1x2x6 + x2x5x6 + x0x3x5 + x1x4x6 + x1x2x5 + x0x3 + x0x5 + x1x3

+x1x5 + x1x6 + x0x2 + x1 + x2x3 + x2x5 + x2x6 + x4x5 + x5x6 + x2 + x3 + x5 ,

and belongs to a class of cryptographically strong Boolean functions that can be decomposed
into two bent functions on 6 bits. For the considerations below, the choice of f is irrelevant,
the constructions focuses on the choice of the LFSRs only.

When all registers have been initialized (see below), the actual keystream generation
starts. This is done by taking the bits in seven specified positions in each register to be
the input to f . The outputs from the three f -functions are XORed together to produce
one bit of the keystream. Figure 2 shows the particular feedback positions of each register,
as well as showing which positions form which input to f . In Figure 2, the topmost arrow
in the input to f represents x0, and the input at the bottom is x6. After calculating the
keystream bit, all registers are clocked once each before the process repeats.

f

f

f

ai

bi

ci

zi

A

B

C

Figure 2: Overview of the keystream generation of GEA-1 [BDL+21].

Initialization. The cipher is initialized via a non-linear feedback shift register S of
length 64. This register is filled with zeros at the start of the initialization process.
The input for initializing GEA-1 consists of a public 32-bit initialization vector IV , one
public bit dir (indicating direction of communication/uplink or downlink in a cellular
network), and a 64-bit secret key K. The initialization starts by clocking S for 97 times,
feeding in one input bit with every clock. The input bits are introduced in the sequence

6 To Shift or Not to Shift: Understanding GEA-1

IV0, IV1, . . . , IV31, dir,K0,K1, . . . ,K63. When all input bits have been loaded, the register
is clocked another 128 times with zeros as input. The feedback function consists of f ,
XORed with the bit that is shifted out and XORed with the next bit from the input
sequence. Figure 3 depicts the particular tap positions.

.

0, . . . , 0, 0,K63, . . . , ,K0, dir, IV31, . . . , IV0

f

3 12 22 38 42 55 63

Figure 3: Initialization of register S [BDL+21].

After S has been clocked 225 times, the content of the register is taken as a 64-bit
string s = s0, . . . , s63. This string is taken as a seed for initializing A,B and C as
follows. First, all three registers are initialized with zeros. Then each register is clocked
64 times, with an si-bit XORed onto the bit that is shifted out before feedback. Register
A inserts the bits from s in the natural order s0, s1, ..., s63. The sequence s is cyclically
shifted by 16 positions before being inserted to register B, so the bits are entered in the
order s16, s17, . . . , s63, s0, . . . , s15. For register C the sequence s is cyclically shifted by 32
positions before insertion starts. Figure 4 depicts the process for register B. Note that
if any of the registers A,B or C end up in the all-zero state, the bit in position 0 of the
register is forcibly set to 1 before keystream generation starts.

s16, s17, . . . , s63, s0, s1, . . . , s15

Figure 4: Initialization of register B [BDL+21].

As already observed in [BDL+21], if we exclude the unlikely case that any of the
three registers A,B or C is still in the all-zero state after the shifted insertion of s,
the initialization process of the three registers with the string s is obviously linear and
therefore there exist three matrices MA ∈ F31×64

2 , MB ∈ F32×64
2 and MC ∈ F33×64

2 such
that α = MAs, β = MBs, and γ = MCs, where α, β and γ denote the states of the three
LFSRs after the initialization phase.

3.2 The Attack on GEA-1

Let us consider the initialization matrices MA ∈ F31×64
2 , MB ∈ F32×64

2 and MC ∈ F33×64
2

such that

α = MAs ,

β = MBs ,

γ = MCs .

We exclude here the unlikely case that α, β or γ is still in the all-zero state after the
shifted insertion of s. Theses three matrices have full rank. This implies that the number
of possible starting states after initialization is maximal when each LFSR is considered
independently, i.e. there are 231 possible states for register A, 232 possible states for
register B, and 233 possible states for register C, as should be expected. This corresponds

Christof Beierle, Patrick Felke and Gregor Leander 7

to the linear mappings represented by MA, MB and MC having kernels of dimension of at
least 33, 32 and 31, respectively. However, when considering pairs of registers, one gets a
decomposition of F64

2 as a direct sum of the kernels of the linear mappings. In [BDL+21]
it was observed that if one denotes TA,C := ker(MA) ∩ ker(MC) and UB := ker(MB), one
gets

1. dim(TA,C) = 24 ,

2. dim(UB) = 32 ,

3. UB ∩ TA,C = {0} .

From this it directly follows that F64
2 can be decomposed into the direct sum UB⊕TA,C⊕V ,

where V is of dimension 8. Thus, for the key-dependent and secret string s, there exists a
unique representation s = u+ t+ v with u ∈ UB , t ∈ TA,C , v ∈ V and

β = MB(u+ t+ v) = MB(t+ v)
α = MA(u+ t+ v) = MA(u+ v)
γ = MC(u+ t+ v) = MC(u+ v) .

Indeed, from this decomposition, s can be computed with a meet-in-the-middle attack
with a complexity3 of 237 GEA-1 evaluations to build (and sort) a table with 232 entries
of size 97 bit (65 bit of keystream to reconstruct the key uniquely with high probability
and 32 bit for v,t leading to this keystream) and a brute-force step of complexity 240

GEA-1 evaluations for each new session key K0, . . . ,K63. For more details of the attack
see [BDL+21]. Note that once s is recovered it is easy to recover K0, . . . ,K63 by clocking
the S-register backwards. Hence, the attack has to be conducted only once per GPRS
session and is done in 240 operations once the table has been established. In other words,
the joint state of A and C can be described with only 40 bits and thus can take only 240

possible values. This is the key observation of the attack and in [BDL+21] it is claimed
that such a decomposition of the key space is highly unlikely to occur accidentally, as it
is argued by computer simulations. The main question arising in this context is how to
design such a system. As demonstrated by the experiments conducted in [BDL+21] a trial
and error approach is elusive. This question will be answered in the next section.

4 Shifting Matters
In this section we will give a method to build ciphers of GEA-1 type which are vulnerable to
the attack described above and thereby answering the corresponding question in [BDL+21].

It will become apparent without giving a rigorous proof that systems of GEA-1 type
having a keyspace that can be decomposed into a direct sum similar as above only appear
for very special choices of the shift constants together with very special choices for the
Galois polynomials. This is astonishing because one could intuitively expect that shifting
following valid well-known principles, as done in GEA-1, only strengthens the system.

In general, this demonstrates that it is not recommended to modify the canonical way
of feeding the key into the LFSRs. Indeed, only by modifying this initialization and by
using the shifted key for the individual LFSRs, the attack becomes possible.

To describe our construction, we need the following properties of Galois matrices. These
are well-known facts from classical ring or field theory respectively (e.g., see [LN96, War94]).
To keep the paper self-contained and enhance readability we added a proof.

3The complexity will be measured by the amount of operations that are roughly as complex as GEA-1
evaluations (for generating a keystream of size ≤ 128 bit).

8 To Shift or Not to Shift: Understanding GEA-1

Theorem 1. Given a Galois matrix Gg of degree n with primitive Galois polynomial g.
Let F2[Gg] := {

∑m
i=0 tiG

i
g | m ∈ N, ti ∈ F2, i = 0, . . . ,m} be the subring generated by all

linear combinations of powers of Gg in Fn×n2 and (g(X)) denote the ideal generated by
g(X) in F2[X]. Then the following statements are true.

1. The mapping
ψ : F2[X]/(g(X)) −→ F2[Gg]∑m

i=0 tiX
i 7→

∑m
i=0 tiG

i
g

is a ring isomorphism. Thereby
∑m
i=0 tiX

i denotes a representative of an element of
the quotient ring.

2. Every element v ∈ Fn2 , v 6= 0 is Gg-cyclic, i.e. the set {Gigv : i = 0, . . . , n− 1} forms
a basis of Fn2 .

Proof. It is a well-known fact from algebra that for an irreducible polynomial q(X) the
set of all polynomials with p(M) = 0 for a matrix M with minimal polynomial q(X) is
equal to the ideal (q(X)) and F2[X]/(q(X)) is a finite field of degree n. By our general
agreement g(X) is primitive, therefore irreducible and the minimal polynomial of Gg.
Thus the canonical mapping φ : F2[X] −→ F2[Gg], p(X) 7→ p(Gg) has kernel (g(X)) and is
therefore an isomorphism by the well-known isomorphism theorem for quotient rings. For a
fixed v ∈ Fn2 , v 6= 0, consider

∑n−1
i=0 tiG

i
gv =

(∑n−1
i=0 tiG

i
g

)
v = 0, where not all ti are equal

to zero. By applying the isomorphism ψ−1 we get that
∑n−1
i=0 tiX

i 6= 0 ∈ F2[X]/(g(X)) as
the degree of the polynomial

∑n−1
i=0 tiX

i is at most n− 1 and not all ti are equal to zero.
As F2[X]/(g(X)) is a finite field, the element

∑n−1
i=0 tiX

i ∈ F2[X]/(g(X)) is invertible. Let∑n−1
i=0 t

′
iX

i denote its inverse. Then by applying ψ it follows that
∑n−1
i=0 tiG

i
g is invertible

with inverse
∑n−1
i=0 t

′
iG

i
g. Hence

(∑n−1
i=0 tiG

i
g

)
· v 6= 0 as v 6= 0. This is a contradiction and

therefore, v is Gg-cyclic.

Remark 1. Note that F2[X]/(g(X)) is a field. The matrix G′g := S−1GgS (see Section
2.1, equation (1)) is the representation matrix of the linear mapping P (X) 7→ XP (X)
over the finite field F2[X]/(g(X)) with respect to the basis 1, . . . , Xn−1, i.e. the i-th
column yields XXi =

∑n
j=1 G

′
gj,i

Xj−1 ∈ F2[X]/(g(X)). This connection to a central
mapping, the so-called left multiplication, in the theory of finite fields, which form an
important class of Galois fields, lead to the name for these kind of LFSR. Note that Gg
is the representation matrix of the left multiplication with respect to the above basis in
reverse order, i.e. Xn−1, . . . , 1.

The following corollary is extensively used in the remainder of this paper. The proof is
a straightforward application of Theorem 1 and therefore omitted.

Corollary 1. Let e0 denote the vector e0 := (1, 0, . . . , 0)> ∈ Fn2 and Gg a Galois matrix
of degree n for a primitive polynomial g. Then, for m ≥ 0, ti ∈ F2, i = 0, . . . ,m, we have∑m

i=0 tiG
i
ge0 = 0 if and only if g(X) divides

∑m
i=0 tiX

i in F2[X].

4.1 The Impact of Shifting
At first we will settle the question how to find two primitive Galois polynomials g1 and g2
of degree d1 and d2, respectively, such that for the corresponding Galois matrices Gg1 , Gg2 ,
the dimension dim

(
TGg1 ,Gg2,cs

)
is at least ξ. Thereby 0 ≤ cs ≤ κ − 1 denotes a cyclic

shift employed during the initialization and κ the size of the session key (64 in case of
GEA-1). Without loss of generality we focus on this case. It is a routine matter to extend
the approach presented in the sequel to the case where in both initialization phases a shift
is applied. First of all, note that the columns of MGg1

(the initialization matrix without

Christof Beierle, Patrick Felke and Gregor Leander 9

a shift) consist of Gκ−ig1
e0, where e0 := (1, 0, . . . , 0)> ∈ Fd1

2 and i = 0, . . . , κ − 1 as the
columns of MGg1

consist of the images of si := (0, 0, . . . , 1, 0 . . . , 0)>︸ ︷︷ ︸
i−th position

∈ Fκ2 . Note that we

have to clock the register i times before the first bit of si not equal to zero is plugged into
the register and thus the state becomes non-zero. This explains the shape of MGg1

. By
Corollary 1 we have that

κ−1∑
i=0

tiG
κ−i
g1

e0 = 0

if and only if g1(X) divides
κ−1∑
i=0

tiX
κ−i .

In the case of g2, we get by similar reasoning and taking into account the effect of cs that
the columns of MGg2 ,cs

(the initialization matrix with a shift) consist of

Gcs−ig2
e0 if i < cs

Gκ−i+csg2
e0 otherwise ,

where e0 := (1, 0, . . . , 0)> ∈ Fd2
2 . Note that now we have to clock the register j = κ+ i− cs

times before the first bit of si not equal to zero is plugged into the register and thus the
state is non-zero. This gives the first case. The second follows in the same way. In the
same vein as above we get that

cs−1∑
i=0

tiG
cs−i
g2

e0 +
κ−1∑
i=cs

tiG
κ−i+cs
g2

e0 = 0

if and only if g2(X) divides

cs−1∑
i=0

tiX
cs−i +

κ−1∑
i=cs

tiX
κ−i+cs .

Hence, a vector (t0, . . . , tκ−1)> ∈ Fκ2 lies in TGg1 ,Gg2,cs
if and only if g1(X) divides∑κ−1

i=0 tiX
κ−i and g2(X) divides

∑cs−1
i=0 tiX

cs−i +
∑κ−1
i=cs tiX

κ−i+cs. From this we get the
following theorem which shows how to control the dimension of TGg1 ,Gg2,cs

.

Theorem 2. Let g1, g2 be two primitive Galois polynomials and 0 ≤ cs ≤ κ − 1 be an
integer. For t = (t0, . . . , tκ−1)> ∈ TGg1 ,Gg2,cs

we define the associated polynomials

p1(X) :=
κ−1∑
i=0

tiX
κ−i

and

p2(X) :=
cs−1∑
i=0

tiX
cs−i +

κ−1∑
i=cs

tiX
κ−i+cs .

Let

r1 = min{k : Xk is a monomial with non-zero coefficient in p1},
r2 = min{k : Xk is a monomial with non-zero coefficient in p2},
r3 = min{r1, r2}

Then

10 To Shift or Not to Shift: Understanding GEA-1

1. for 0 ≤ s ≤ r3 − 1, the shifts ts := (0, . . . , 0︸ ︷︷ ︸
×s

, t0, t1, . . . , tκ−1−s)> are elements of

TGg1 ,Gg2,cs
.

2. the elements ts are linearly independent and thus span a subspace of dimension r3.

Proof. By definition, it is tκ−1−(r1−1) = 1, as it is the coefficient of Xr1 in p1. We further
have tκ−1−(r1−1)+1 = 0, tκ−1−(r1−1)+2 = 0, . . . , tκ−1 = 0 from the definition of r1. Hence
the elements ts are linearly independent.

As t = (t0, . . . , tκ−1) ∈ TGg1 ,Gg2,cs
we have that g1(X) divides p1(X) and g2(X)

divides p2(X). By definition of r3, the associated polynomials of ts are of the form
X−sp1(X), X−sp2(X) and still contained in F2[X]. Therefore they are divided by g1(X)
and g2(X). Thus the elements ts form a subspace of dimension r3 of TGg1 ,Gg2,cs

.

4.2 Constructing The Galois Polynomials
The principle to construct systems vulnerable to the attack described in Section 3.2 is
now fairly simple: We start with an element in the (potential) kernel, that would imply
the desired dimension by the above theorem. We than construct the two polynomials p1
and p2 and check if they are divisible by primitive polynomials of the desired degree. We
explain this in more detail below, first for the parameters used in GEA-1 and second for
the general case.

The Case of GEA-1. We give an example for the case of κ = 64, cs = 32, ξ = 24, and
primitive polynomials g1, g2 of degree d1 = 31, d2 = 33. Those parameters correspond
exactly to the case of GEA-1. Other parameter choices are discussed below.

First of all we will construct an element t = (t0, . . . , t63)> of the form such that applying
Theorem 2 yields (t0, . . . , t63)> ∈ TGg1 ,Gg2,cs

, where TGg1 ,Gg2,cs
is of dimension 24. For

this, let us fix t such that ti = 0 for i ∈ {9, 10, . . . , 31} ∪ {41, . . . , 63} and t0 = t40 = 1. We
consider the polynomials

p1 := X64 +
8∑
i=1

tiX
64−i +

39∑
i=32

tiX
64−i +X24 ∈ F2[X]

p2 := X32 +
8∑
i=1

tiX
32−i +

39∑
i=32

tiX
64−i+32 +X56 ∈ F2[X]

to guarantee a kernel of dimension at least 24 if there exist proper g1, g2 of degree 31,33
such that t ∈ TGg1 ,Gg2,cs

. In the positive case the lower bound for the dimension (here 24)
is a direct consequence of Theorem 2. We have 216 possibilities to fix such an element t,
i.e., to choose the above pair of polynomials p1, p2. We choose such an element t uniformly
at random and check if p1 is divided by a primitive polynomial g1 of degree 31 and if p2 is
divided by a primitive polynomial g2 of degree 33.

It is well known that the number of primitive elements of a finite field of qn elements,
where q is a prime number, is φ(qn − 1) (see e.g., [Kob98, p. 56]). Here, φ denotes Euler’s
totient function. Hence the number of primitive polynomials in our case is φ(231−1)

31 and
φ(233−1)

33 , because the 31 (resp., 33) roots of a primitive polynomial of degree 31 (resp., 33)
are all primitive. By construction p1 = X24 ·h1(X), where deg(h1(X)) = 40, independently
of the choice of the ti. Analogously p2 = X24 · h2(X), where deg(h2(X)) ≤ 40. The
overall number of polynomials of degree 40 having a primitive divisor of degree 31 is
φ(231−1)

31 ·29 and φ(233−1)
33 ·28 for polynomials of degree less or equal to 40. Therefore, under

an independence assumption, we expect the probability that both h1 has a primitive divisor
of degree 31 and h2 has a primitive divisor of degree 33 to be

(
φ(231−1)

31·231

)(
φ(233−1)

33·233

)
≈ 1

1250 .

Christof Beierle, Patrick Felke and Gregor Leander 11

As we have 216 possibilities to vary p1 and p2, we expect to be successful to find the sought
for polynomials g1, g2 with t ∈ TGg1 ,Gg2,cs

.
Indeed, the primitive polynomials gA and gC used in GEA-1 are exactly of this form.

More precisely, the element t = (t0, . . . , t63)> with (t0, . . . , t8) = (1, 0, 1, 1, 0, 0, 1, 1, 1),
(t32, . . . , t40) = (0, 0, 1, 1, 1, 1, 0, 0, 1), ti = 0 for i ∈ {9, 10, . . . , 31}∪{41, . . . , 63} is contained
in TA,C . The corresponding polynomial p1 is divided by

gA(X) = X31 +X30 +X28 +X27 +X23 +X22 +X21 +X19 +X18 +X15

+X11 +X10 +X8 +X7 +X6 +X4 +X3 +X2 + 1

and the corresponding polynomial p2 is divided by

gC(X) = X33 +X30 +X27 +X23 +X21 +X20 +X19 +X18 +X17 +X15

+X14 +X11 +X10 +X9 +X4 +X2 + 1 .

As expected by Theorem 2, the 24-dimensional linear space TA,C is spanned by the shifted
elements ts = (0, . . . , 0︸ ︷︷ ︸

×s

, t0, t1, . . . , t63−s)>, 0 ≤ s ≤ 23.

From the 216 possibilities to choose t, except from the example given above, also 47
other choices yield primitive divisors of p1 and p2 with degree 31 and 33, respectively. Note
that once we have have been successful in finding the primitive polynomials g1 and g2, we
could choose a primitive polynomial g3 of degree 32 and check if UGg3

∩ TGg1 ,Gg2,cs
= {0}

in order to construct a stream cipher similar to GEA-1. In Appendix A, we provide a
sage [Sag21] code that allows to construct such weak instances of GEA-1 based on this
construction.

We have seen by the algorithm above that it is possible to find a shift cs and cor-
responding polynomials such that the resulting system can be broken with the attack
described in Section 2.1.

The General Case. We now focus on the case of an arbitrary (even) key length κ and are
aiming at constructing two LFSRs of size `1 and `2 such that the kernel has a dimension
of (at least) ξ. In order to simplify the discussion and the notation, we focus on the case of
cs = κ/2. The case of other shift values can be handled in a similar way as long as cs ≥ ξ.

In order to construct the two LFSRs, i.e., the corresponding primitive polynomials
of degree `1 and `2, we start again by an element in the kernel that, due to Theorem 2,
guarantees a kernel intersection of dimension at least ξ. That is, we consider a vector

t = (t0, . . . , tκ−1)>

such that

ti = 0 for i ∈
{κ

2 − ξ + 1, . . . , κ2 − 1
}
∪ {κ− ξ + 1, . . . , κ− 1}

and t0 = tκ−ξ = 1. To this choice of t, we get the corresponding polynomials

p1 := Xκ +
κ
2−ξ∑
i=1

tiX
κ−i +

κ−ξ−1∑
i=κ

2

tiX
κ−i +Xξ ∈ F2[X] (2)

p2 := X
κ
2 +

κ
2−ξ∑
i=1

tiX
κ
2−i +

κ−ξ−1∑
i=κ

2

tiX
κ−i+κ

2 +Xξ+κ
2 ∈ F2[X] . (3)

The number of vectors t and thus the number of pairs of polynomials (p1, p2) we can
construct this way is

N = 2κ−2ξ .

12 To Shift or Not to Shift: Understanding GEA-1

To successfully construct the LFSRs of dimension at least ξ, we require that p1 is divisible
by a primitive polynomial of degree `1 and p2 is divisible by a primitive polynomial of
degree `2. To analyze the successes probability, we use as before a heuristic approach.
More precisely, we assume that (p1, p2) behaves as a uniformly and independently chosen
pair of polynomials (of degree κ and less or equal to κ respectively) with respect to their
probability of being divisible by primitive polynomials of the desired degree.

The number of polynomials of degree n with a primitive divisor of degree ` is, analogously
as above, given by

Pn,` := 2(n−`)φ(2` − 1)
`

.

In turn, the probability of a polynomial of degree n to be divisible by a primitive divisor
of degree ` is

Ψ` := Pn,`
2n = φ(2` − 1)

`2` .

Note that Ψ` is also the probability of a polynomial of degree less or equal to n to be
divisible by a primitive divisor of degree `, as both nominator and denominator are
multiplied by a factor of two in this case.

While computing lower bounds on Euler’s totient function is non trivial, for our purpose
it is sufficient, easier, and more precise to compute φ(2` − 1) for practical relevant values
of `. For ` ≤ 512 we computed explicitly that

2`

φ(2` − 1) ≤ 3.4 , (4)

using a computer program.
Following the above heuristic on the random behavior of p1 and p2 we get that the

probability for a successful construction for one fixed t is given by

Ψ`1Ψ`2 =
(
φ(2`1 − 1)
`1 · 2`1

)(
φ(2`2 − 1)
`2 · 2`2

)
.

From Equation (4), the expected number of tries until suitable polynomials are found can
be bounded by

(Ψ`1Ψ`2)−1 ≤ 12`1`2

for `i ≤ 512, i ∈ {1, 2}. This shows that the approach is easily feasible for all practical
relevant choices of `1 and `2 and can be expected to find valid solutions as long as the
number of candidates N is larger than the expected number of tries. Note that for concrete
parameters with a large ξ, `1, `2 it is better to check if (Ψ`1Ψ`2)−1 ≤ N as N becomes
relatively small and 12`1`2 significantly larger than (Ψ`1Ψ`2)−1

.

The Reciprocal Solution. Note that slightly more can be said about the structure of
good choices for gq and g2 and the corresponding space TGg1 ,Gg2,cs

. For example looking
at the reciprocal polynomials of g1 and g2 results in the same dimension for the kernel.

For this let κ be even and cs = κ
2 . If t = (t0, t1, . . . , tκ−1)> ∈ TGg1 ,Gg2,cs

for two
primitive polynomials g1, g2, we have t∗ = (tκ−1, . . . , t1, t0) ∈ TGg∗

1
,Gg∗

2 ,cs
, where g∗i (X) :=

Xdeg gigi(X−1) denotes the reciprocal polynomial of gi. This can be seen as follows.
For the two polynomials pi, i ∈ {1, 2} as given in Theorem 2, we define p̃i(X) :=

Xκpi(X−1). Then,

Xp̃1(X) =
κ−1∑
i=0

t∗iX
κ−i

Xp̃2(X) =
cs−1∑
i=0

t∗iX
cs−i +

κ−1∑
i=cs

t∗iX
κ−i+cs

Christof Beierle, Patrick Felke and Gregor Leander 13

and t∗ ∈ TGg∗
1
,Gg∗

2 ,cs
if g∗i (X) divides Xp̃i(X) for i ∈ {1, 2}. Since p̃i(X) = Xκ−deg pip∗i (X),

this happens if g∗i (X) divides p∗i (X) for i ∈ {1, 2}. By assumption, t ∈ TGg1 ,Gg2,cs
, so

gi(X) divides pi(X) for i ∈ {1, 2}, and therefore g∗i (X) also divides p∗i (X) for i ∈ {1, 2}.
Moreover gi(X) is primitive if and only if gi(X)∗ is primitive.

Applicability to longer Keys. We recall that in the attack on GEA-1, the keyspace F64
2

was decomposed into the direct sum UB ⊕ TA,C ⊕ V such that

β = MB(u+ t+ v) = MB(t+ v)
α = MA(u+ t+ v) = MA(u+ v)
γ = MC(u+ t+ v) = MC(u+ v)

where dim(UB ⊕ V) = 40 and dim(TA,C ⊕ V) = 32. In general, if the key size is κ, a
straightforward divide-and-conquer attack could be applied by either building a table
of size at least 2dim(TA,C⊕V) bitstrings and conducting exhaustive search of complexity
2dim(UB⊕V) cipher evaluations or vice versa.

Let us now discuss whether it is possible to build weak GEA-1-like instances operating
on a larger keyspace. For κ = 96, it is possible to choose primitive polynomials gA and
gC of degree 47 and 49, respectively, such that for the corresponding LFSRs A and C
we have dimTA,C = 44 (where the shift for initializing LFSR C is cs = 48). Those
parameters directly correspond to the maximal dimension that can be expected by the
formulas above and are also verified experimentally (see below in Table 2). To find this
specific polynomials we have checked if it is possible to have dimTA,C ≥ 42 i.e. ξ = 42
and `1 = 47, `2 = 49. As (Ψ`1Ψ`2)−1 ≈ 2500 and N = 212 = 4096 our approach should
be successful with high probability. Indeed our algorithm computed the above solution
with the even larger TA,C of dimension 44. Note that these parameters are chosen at
the edge with respect to our theory. We could then choose a primitive polynomial gB of
degree 48 such that dimUB = 48 and such that the keyspace can be decomposed into
F96

2 = UB ⊕ TA,C ⊕ V with dimV = 4. Thus, we can break such a scheme with time
complexity 252 cipher evaluations and memory complexity 248 · 141 bit.4 The size of such
a table is 4512 TiB.

For larger key sizes, this approach quickly gets infeasible. For example, if we would aim
for a key length of κ = 112 bit (i.e., the minimum security required by NIST), we would
choose gA, gB, and gC of degrees 55, 56, and 57, respectively, such that dimTA,C = 50,
dimUB = 56 and dimV = 6. Other choices would only allow for other trade-offs between
memory and computation, but not for reducing both. The divide-and-conquer (or meet-in-
the-middle) attack against such a GEA-1 instance would require

2dimUB · (κ+ 1 + dimTA,C + dimV) = 256 · (113 + 56) = 256 · 169

bit of memory, which corresponds to 1,384,448 TiB. Hence this approach is tailored to
keys spaces of smaller sizes.

4.3 Experimental Verification
The part that remains to be done is to experimentally verify the plausibility of the heuristic.
As explained below, the experiments nicely match the theoretical predictions.

Recall that we assume that the polynomials constructed for a vector t ∈ Fκ2 as given in
Equation (2) and (3) behave as a uniform random pair of polynomials. In particular this

4The length of each entry in the table must be large enough to avoid false key candidates. Similarly as
described in [BDL+21, Section 3.1], we assume that each bitstring in the table is of size ` + dim(TA,C),
where ` is the minimum integer such that (1 − 2−`)2κ ≥ 0.5.

14 To Shift or Not to Shift: Understanding GEA-1

Table 1: For κ = 64 and ξ ∈ {23, 24, . . . , 28}, this table shows the number of p1 that yield
primitive divisors of degree ` (first number in cell), the number of p2 (with cs = κ

2 = 32)
that yield primitive divisors of degree ` (second number in cell), compared to the theoretical
estimate Ψ`2κ−2ξ rounded to the closest integer (number in parentheses).

(`, ξ) 23 24 25 26 27 28

29
8884 2190 442 76 24 0
9178 2224 544 114 40 0
(8988) (2247) (562) (140) (35) (9)

30
4242 1132 274 72 16 0
4322 1106 270 44 10 0
(4351) (1088) (272) (68) (17) (4)

31
9460 2158 506 126 44 18
8720 2052 518 106 26 14
(8456) (2114) (529) (132) (33) (8)

32
3822 966 226 40 0 0
4108 1110 272 68 12 4
(4096) (1024) (256) (64) (16) (4)

33
6416 1624 416 112 10 0
6158 1584 378 108 12 0
(6440) (1610) (402) (101) (25) (6)

34
4900 1194 314 46 18 6
5128 1268 336 78 18 10
(5140) (1285) (321) (80) (20) (5)

means that a fraction of Ψ`1 of the polynomials p1 have a primitive divisor of degree `1
and, similarly, a fraction of Ψ`2 of the polynomials p2 have a primitive divisor of degree `2.

For κ = 64 and values of ξ between 24 and 28, we computed the exact number of
polynomials p1 and p2 and compared this to the theoretical estimate.

More importantly, we checked the behaviour of pairs directly. In order to limit the set
of parameter to consider, we restricted to the case of `2 = `1 + 2 and κ = `1 + `2. For each
4 ≤ `1 ≤ 67 we compared the maximal dimension that could actually be constructed to the
maximal dimension that could have been expected to be possible following the heuristic.
The results, shown in Table 2 and verifiable by the sage code provided in Appendix A,
suggest that the heuristic is plausible.

5 Conclusion
Feeding a session key into LFSRs by making use of shifts is common in many designs, e.g.
besides in GEA-1 and GEA-2 it is also used in A5/1. Our work demonstrates that those
shifts, together with a clever choice of feedback polynomials, can be used to deliberately
weaken the construction.

We gave an explicit and efficient way to construct those choices for a large variety of
parameters. For the exact parameters of GEA-1 our construction includes the choices made
for GEA-1 indicating that this (or a related) strategy was used in the actual design process.
On the positive side, we see again that, in line with [BDL+21] this is unlikely to happen
unintentionally.

While our theory is described with a focus on LFSRs in Galois mode, it applies to
LFSRs in Fibonacci mode as well. Consequently, we also checked if a similar attack is

Christof Beierle, Patrick Felke and Gregor Leander 15

Table 2: Experiments for parameters `2 = `1 + 2, κ = `1 + `2, for 4 ≤ `1 ≤ 67. The
value ξ̄max gives the maximum ξ such that Ψ`1Ψ`22κ−2ξ ≥ 1. The value ξmax gives the
maximum ξ for which there exist p1, p2 that yield primitive divisors g1, g2 of degree `1 and
`2, respectively. The value # sol gives the number of such tuples (p1, p2). For all such
solutions, the dimension of TGg1 ,Gg2,cs

is equal to ξmax.
`1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ξexp 1 3 3 4 4 6 6 8 8 10 10 11 11 13 13 15
ξmax 3 2 3 4 4 5 6 7 7 11 9 11 10 13 13 15
sol 2 8∗ 4 2 2 8 2 4 2 2 6 2 14 2 2 4

`1 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
ξexp 15 17 17 19 19 21 21 23 23 25 25 26 27 28 28 30
ξmax 16 16 18 20 20 21 22 23 22 23 24 26 27 28 28 29
sol 2 8 2 2 2 4 4 2 2 14 10 4 2 6 2 6

`1 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
ξexp 30 32 32 34 34 36 36 38 38 40 40 42 42 44 44 46
ξmax 30 32 32 34 34 36 35 38 39 40 39 44 44 44 45 45
sol 2 2 2 4 4 4 8 2 4 2 2 2 2 2 2 2

`1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
ξexp 46 48 48 50 50 52 52 54 54 55 56 57 58 59 60 61
ξmax 46 48 47 50 49 53 51 53 53 55 56 57 58 60 59 60
sol 2 2 6 2 6 2 4 2 4 2 2 4 2 2 10 6

applicable to A5/1, but without success. This is probably not surprising as A5/1 makes
use of primitive polynomials with a minimal amount of feedback taps and a stuttering
mechanism. Even if a comparable decomposition of F64

2 would have existed for A5/1 it is
unclear to us how to exploit it due to the stuttering LFSRs. Finally our answer to the
question raised in the title is “if to shift, then double-check!”

Acknowledgments
This work was supported by the German Research Foundation (DFG) within the framework
of the Excellence Strategy of the Federal Government and the States – EXC 2092 CaSa –
39078197.

References
[BDL+21] Christof Beierle, Patrick Derbez, Gregor Leander, Gaetan Leurent, Håvard

Raddum, Yann Rotella, David Rupprecht, and Lukas Stennes. Cryptanalysis
of the GPRS encryption algorithms GEA-1 and GEA-2. In Anne Canteaut and
Francois-Xavier Standaert, editors, Advances in Cryptology - EUROCRYPT
2021, Proceedings, Lecture Notes in Computer Science. Springer, 2021.

[ETS98] ETSI. Security algorithms group of experts (sage); report on the specification,
evaluation and usage of the gsm gprs encryption algorithm (gea). Techni-
cal Report. Available at https://www.etsi.org/deliver/etsi_tr/101300_
101399/101375/01.01.01_60/tr_101375v010101p.pdf (accessed May 31,
2021), 1998.

https://www.etsi.org/deliver/etsi_tr/101300_101399/101375/01.01.01_60/tr_101375v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/101300_101399/101375/01.01.01_60/tr_101375v010101p.pdf

16 To Shift or Not to Shift: Understanding GEA-1

[HK04] Kenneth Hoffman and Ray A. Kunze. Linear Algebra. PHI Learning, 2004.

[Kob98] Neal Koblitz. Algebraic aspects of cryptography, volume 3 of Algorithms and
computation in mathematics. Springer, 1998.

[LN96] Rudolf Lidl and Harald Niederreiter. Finite Fields. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2 edition, 1996.

[Sag21] Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.3), 2021. https://www.sagemath.org.

[Sch96] Bruce Schneier. Applied cryptography - protocols, algorithms, and source code
in C, 2nd Edition. Wiley, 1996.

[War94] William P. Wardlaw. Matrix representation of finite fields. Mathematics
Magazine, 67(4):289–293, 1994.

A Source Code to Generate GEA1-like Systems

Listing 1: weakgea.sage
#GEA−1 parameter
kappa = 64
x i = 24
l 1 = 31
l 2 = 33
l 3 = 32

t ry s = 2∗∗16

hkappa = int (kappa /2)
qkappa = int (kappa /4)

def ge t In i tMat r i x_fa s t (p , keyLength , s h i f t) :
P.<x> = PolynomialRing (GF(2))
l = p . degree ()
#c o n s t r u c t t rans format ion matrix A f o r LFSR in Galo i s mode
A = companion_matrix (x^ l +1)
A[0] = l i s t (p) [0 : l] [: : − 1]
A = A. t ranspose ()
e0 = vecto r (GF(2) , [1]+ [0] ∗ (l −1))
M = zero_matrix (GF(2) , l , keyLength)
for c in range (keyLength) :

i f (c < s h i f t) :
M. set_column (c ,A∗∗(s h i f t −c)∗ e0)

else :
M. set_column (c ,A∗∗(keyLength−c+s h i f t)∗ e0)

return M. transpose ()

V = VectorSpace (GF(2) , (kappa−2∗x i)) ;
Pol .<X> = PolynomialRing (GF(2)) ;

s u c c e s s = False
c t r = 0
while (c t r < t ry s) :

v = V. random_element ()

Christof Beierle, Patrick Felke and Gregor Leander 17

p1 = X∗∗kappa+X∗∗ x i
j = 0
for i in [1 . . (hkappa−x i)]+ [hkappa . . (kappa−xi −1)] :

p1 = p1+v [j]∗X∗∗(kappa−i)
j = j+1

fp1 = l i s t (p1 . f a c t o r ())

for f in fp1 :
i f ((f [0] . degree ()== l1) and f [0] . i s_pr im i t i v e ()) :

p2 = X∗∗hkappa+X∗∗(hkappa+x i)
j = 0
for i in [1 . . (hkappa−x i)] :

p2 = p2+v [j]∗X∗∗(hkappa−i)
j = j+1

for i in [hkappa . . (kappa−xi −1)] :
p2 = p2+v [j]∗X∗∗(kappa−i+hkappa)
j = j+1

fp2 = l i s t (p2 . f a c t o r ())

for g in fp2 :
i f ((g [0] . degree ()== l2) and g [0] . i s_pr im i t i v e ()) :

g1 = f [0]
g2 = g [0]
print (’ g1␣=␣ ’ , g1)
print (’ g2␣=␣ ’ , g2)
c t r = t ry s

Initmat2 = ge t In i tMat r i x_fa s t (g2 , kappa , hkappa)
Initmat1 = ge t In i tMat r i x_fa s t (g1 , kappa , 0)

T = Initmat2 . k e rne l () . i n t e r s e c t i o n (Initmat1 . k e rne l ())
print (’ dim␣T␣=␣ ’ , T. dimension ())

c t r = 0
while (c t r < t ry s) :

g3 = X∗∗ l 3+1
for i in [1 . . (l3 −1)] :

g3 = g3+(GF(2) . random_element ())∗X∗∗ i
i f g3 . i s_pr im i t i v e () :

In itmat3 = ge t In i tMat r i x_fa s t (g3 , kappa , qkappa)
i f Initmat3 . k e rne l () . i n t e r s e c t i o n (T) . dimension ()==0:

print (’ g3␣=␣ ’ , g3)
c t r = t ry s

else :
print (’ t ry ␣ again ’)
c t r = c t r+1

	Introduction
	Our Contribution

	Preliminaries
	The Galois Mode

	GEA-1 and its Cryptoanalytic Properties
	Description of GEA-1
	The Attack on GEA-1

	Shifting Matters
	The Impact of Shifting
	Constructing The Galois Polynomials
	Experimental Verification

	Conclusion
	Source Code to Generate GEA1-like Systems

