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Abstract

In this work, we address communication, computation, and round efficiency of unconditionally se-
cure multi-party computation for arithmetic circuits in the honest majority setting. We achieve both
algorithmic and practical improvements:

• The best known result in the semi-honest setting has been due to Damg̊ard and Nielsen (CRYPTO
2007). Over the last decade, their construction has played an important role in the progress of
efficient secure computation. However despite a number of follow-up works, any significant improve-
ments to the basic semi-honest protocol have been hard to come by. We show 33% improvement in
communication complexity of this protocol. We show how to generalize this result to the malicious
setting, leading to the best known unconditional honest majority MPC with malicious security.

• We focus on the round complexity of the Damg̊ard and Nielsen protocol and improve it by a factor
of 2. Our improvement relies on a novel observation relating to an interplay between Damg̊ard and
Nielsen multiplication and Beaver triple multiplication. An implementation of our constructions
shows an execution run time improvement compared to the state of the art ranging from 30% to
50%.

1 Introduction

Secure Multi-Party Computation (MPC) allows n ≥ 2 parties to compute a function on privately held
inputs, such that the desired output is correctly computed and is the only new information released. This
should hold even if t out of n parties have been corrupted by a semi-honest or malicious adversary. Since
its introduction in the 1980s [Yao82, GMW87], a lot of research has been done to improve the efficiency of
MPC protocols. Thanks to these efforts, MPC has rapidly moved from theory to practice.

In this work, our focus is on honest majority protocols in the presence of a malicious adversary. We note
that the fastest known implementations of MPC have come in the honest majority setting, which does not
necessarily require public key operations. For example, the recent work of Chida et al. [CGH+18] showed
that their secure-with-abort protocol can evaluate 1 million multiplication gates within 1 second for up to
7 parties, 4 seconds for 50 parties, and 8 seconds for 110 parties. Another attractive feature of the honest
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majority setting is that it allows one to achieve the stronger properties of fairness and guaranteed output
delivery which are otherwise impossible with dishonest majority.

For over a decade, the most efficient MPC protocol with semi-honest security in the honest majority
setting has been the protocol of Damg̊ard and Nielsen [DN07], hereafter known as the DN protocol. By
using the Shamir secret sharing scheme [Sha79], addition gates can be evaluated without any communica-
tion. To evaluate a multiplication gate, each party only needs to communicate 6 field elements. In the
computational setting, the communication complexity can be reduced to 3 field elements by using pseudo-
random generators [NV18] (improved further to 1.5 elements by Boneh et al. [BBCG+19] for a constant
number of parties). Due to its simplicity and efficiency, many subsequent works have used the DN protocol
to achieve security-with-abort [GIP+14, CGH+18, NV18, BBCG+19, GSZ20] or guaranteed output delivery
[BSFO12, GSZ20].

Despite the important role played by the DN protocol in the honest majority setting, any improvement
to the basic protocol has been hard to come by unless one resorts to other approaches using computational
assumptions. An exception is the recent work of Goyal et al. [GSZ20] who proposed a marginal improvement
over DN of 6 field elements per multiplication gate to 5.5 field elements.

1.1 Our Contributions

We propose ATLAS, an unconditionally secure MPC protocol in the honest majority setting with reduced
communication complexity over the celebrated DN protocol even in the honest but curious setting, as well as
malicious setting. Our protocol ATLAS enjoys the following efficiency improvements over the DN protocol:

• We improve the basic DN protocol leading to a communication complexity of 4 field elements per
multiplication gate per party. Our results are in the information-theoretic setting assuming a majority
of the parties are honest and the adversary is semi-honest. This leads to the most communication-
efficient semi-honest MPC protocol with honest majority.

• We note that the recent works [BBCG+19, GSZ20] compiled the DN protocol to get security-with-abort
without increasing the communication complexity. We show that our protocol continues to satisfy the
properties needed for this compilation to work. It allows us to present a secure-with-abort protocol
with only 4 field elements per multiplication gate per party in the information-theoretic setting.

• Next, we focus on the round complexity of the DN protocol. Instead of evaluating multiplication gates
of the same layer in parallel, we show how to evaluate all multiplication gates in a two-layer circuit
in parallel. This allows us to improve the concrete efficiency even further and reduce the number of
rounds by a factor of 2. The achieved amortized communication cost per multiplication gate in this
setting is 4.5 field elements per party but halving the number of rounds.

• In the computational setting, where one can use pseudo-random generators based on any one-way
function (in practice, one can use an AES based PRG in counter-mode), we show how to further reduce
the communication complexity by making black-box use of any pseudo-random generator. The concrete
efficiency can be improved to 2 field elements per party per gate in both semi-honest and secure-with-
abort settings, and 2.5 field elements for the variant with the improvement of round complexity.

We implement ATLAS in the information-theoretic setting and compare with the previously best-known
results [CGH+18, GSZ20] in the setting of security-with-abort. We measure the running time for circuits
with 1 million and 10 million multiplication gates, with circuit depth from 20 to 10,000, and the number
of parties from 3 to 21. By combining improvements on both communication and round complexity, our
protocol shows around 2x speedup comparing with the protocol in [CGH+18], and around 1.4x speedup
comparing with the protocol in [GSZ20] in all tested cases.
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1.2 Other Related Works

The notion of MPC was first introduced in [Yao82, GMW87] in 1980s. Feasibility results for MPC were
obtained by [Yao82, GMW87, CDVdG87] under cryptographic assumptions, and by [BOGW88, CCD88]
in the information-theoretic setting. Subsequently, a large number of works have focused on improving the
efficiency of MPC protocols in various settings.

A series of works focus on improving the communication efficiency of MPC with guaranteed output
delivery in the settings with different thresholds on the number of corrupted parties. In the setting of honest
majority setting, assuming the existence of a broadcast channel, the works [BSFO12, GSZ20] have shown
that guaranteed output delivery can be achieved efficiently. In the setting where t < n/3, a rich line of
works [HMP00, HM01, DN07, BTH08, GLS19] have focused on improving the asymptotic communication
complexity in this setting. In the setting where t < (1/3 − ε)n, packed secret sharing can be used to hide
a batch of values, resulting in more efficient protocols. E.g., Damg̊ard et al. [DIK10] introduced a protocol
with communication complexity of O(C logC log n · κ+D2

Mpoly(n, logC)κ) bits.
A rich line of works have also focused on the performance of MPC in practice for two parties [LP12,

NNOB12], or three parties [FLNW17, ABF+17].

1.3 Road Map

The overall structure of our paper is as follows. In Section 2, we give an overview of our techniques. In
Section 3, we introduce our model, the standard Shamir secret sharing scheme [Sha79], and several building
blocks used in our main construction. In Section 4, we introduce our improvements of the secure-with-abort
MPC protocol of [GSZ20]. In Section 5, we show the experiment results of our secure-with-abort MPC
protocols comparing with the previous works [CGH+18, GSZ20].

2 Technical Overview

We give an overview of our techniques in this section. In the following, we will use n to denote the number
of parties and t to denote the number of corrupted parties. In the setting of the honest majority, we have
n = 2t+ 1. Our construction is based on the standard Shamir Secret Sharing Scheme [Sha79]. We will use
[x]d to denote a degree-d Shamir sharing, or a (d + 1)-out-of-n Shamir sharing. It requires at least d + 1
shares to reconstruct the secret and any d shares do not leak any information about the secret.

2.1 Review: The Secure-with-abort MPC Protocol in [GSZ20]

In [GIP+14], Genkin et al. showed that the best-known semi-honest protocol [DN07] (hereafter referred to
as the DN protocol) is secure up to an additive attack in the presence of a fully malicious adversary. An
additive attack means that the adversary is able to change the multiplication result by adding an arbitrary
fixed value. As one corollary, the DN protocol provides full privacy of honest parties before reconstructing
the output. Therefore, a straightforward strategy to achieve security-with-abort is to (1) run the DN protocol
until the output phase, (2) check the correctness of the computation, and (3) reconstruct the output only if
the check passes.

In the DN protocol [DN07], all parties compute a degree-t Shamir sharing for each wire. Since the
Shamir secret sharing scheme is linearly homomorphic, addition gates can be evaluated without interaction.
Therefore, to achieve security-with-abort, the main task is to verify the multiplications. In [GSZ20], Goyal
et al. show that multiplications can be verified with sub-linear communication complexity in the number of
multiplications. This allows Goyal et al. to obtain the first secure-with-abort MPC protocol which achieves
the same concrete efficiency per gate as the best-known semi-honest protocol [DN07].

To make a further improvement in the concrete efficiency, we focus on the multiplication protocol
in [DN07] (hereafter referred to as the DN multiplication protocol). Our idea is to reuse the correlated-
randomness required in the DN multiplication protocol.
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Review of the DN Multiplication Protocol. To evaluate a multiplication gate, all parties first need to
prepare a pair of random sharings ([r]t, [r]2t) of the same secret r, where the first sharing is a degree-t Shamir
sharing and the second sharing is a degree-2t Shamir sharing. Such a pair of sharings is referred to as a pair
of double sharings. In [DN07], preparing a pair of random double sharings requires the communication of 4
elements per party.

For a multiplication gate, suppose the input sharings are denoted by [x]t, [y]t. To compute [z]t := [x · y]t,
a pair of random double sharings ([r]t, [r]2t) is consumed. All parties first agree on a special party Pking.
Then, all parties run the following steps:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends the value e to all other
parties.

3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.

Correctness follows from the properties of the Shamir secret sharing scheme. Note that each party needs to
send an element to Pking, and Pking needs to send an element to each party. The communication complexity
of this protocol is 2 elements per party. Including the communication cost for preparing double sharings,
the overall cost per multiplication gate is 6 elements per party.

2.2 Reducing the Communication Complexity via t-wise Independence

Starting Point. In [GSZ20], Goyal et al. observe that in the second step of the DN multiplication protocol,
Pking can alternatively distribute a degree-t Shamir sharing [e]t. Then in the last step, all parties can still
compute [z]t := [e]t − [r]t. This observation leads to an improvement from 6 elements to 5.5 elements. We
refer the readers to Section 4.2 for more discussion.

Our main observation is that, when Pking is an honest party, the corrupted parties only receive several
random elements from Pking if [e]t is a random degree-t Shamir sharing. In particular, it holds even if the
corrupted parties know the whole sharings [r]t and [r]2t. This is because the corrupted parties only receive
t shares of a random degree-t sharing [e]t from Pking, which are uniformly random and independent of the
secret. Therefore for an honest Pking, we do not need the double sharings to be uniformly random at all.
While for a corrupted Pking, we still need to use random double sharings, we can split the tasks of handling
multiplication gates as Pking to all parties. In this way, at least half of multiplication gates are handled by
honest Pking’s. We show that it allows us to reduce the cost of preparing double sharings by a factor of 2.

Relying on t-wise Independence. Suppose we have n multiplication gates and we let each party behave
as Pking for 1 multiplication gate. When Pking is a corrupted party, we still need to use a pair of random
double sharings to protect the secrecy of the result. If Pking is an honest party, as argued above, the double
sharings do not need to be random.

Our idea is to generate n pairs of double sharings such that any t pairs of them are independent and
uniformly random. This guarantees that the double sharings used for multiplication gates handled by
corrupted parties are uniformly random, which ensures the security of the MPC protocol. On the other
hand, given these double sharings, the other double sharings used for multiplication gates handled by honest
parties can be fixed and determined. It means that we only need to prepare t pairs of random and independent
double sharings for n multiplication gates.

To this end, all parties agree on a fixed hyper-invertible matrix of size n× t, denoted by M . The main
property of M is that any t × t sub-matrix of M is invertible. Since the Shamir secret sharing scheme
is a linear homomorphism, a linear combination of several pairs of double sharings is still a pair of double
sharings. All parties first prepare t pairs of random double sharings using the protocol in [DN07], denoted
by

([r(1)]t, [r
(1)]2t), . . . , ([r

(t)]t, [r
(t)]2t).
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Then, we expand these t pairs of double sharings to n pairs by computing

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M([r(1)]2t, . . . , [r
(t)]2t)

T.

We point out that this expansion can be done locally without interaction. Note that for all i ∈ [n],
([r̃(i)]t, [r̃

(i)]2t) is a pair of double sharings. Let C denote the set of corrupted parties. According to the
property of M , there is a one-to-one map from {([r̃(i)]t, [r̃(i)]2t)}i∈C to {([r(i)]t, [r(i)]2t)}i∈[t]. Since the
input double sharings are independent and uniformly random, we conclude that the double sharings in
{([r̃(i)]t, [r̃(i)]2t)}i∈C are independent and uniformly random.

When ([r̃(i)]t, [r̃
(i)]2t) is used to evaluate a multiplication gate, we require the party Pi to act as Pking. In

this way, the multiplication gates handled by corrupted parties will use double sharings in {([r̃(i)]t, [r̃(i)]2t)}i∈C ,
which are independent and uniformly random. We are able to show that the security still holds.

Concrete Efficiency of Our Improved Multiplication Protocol. Recall that in [DN07], preparing
a pair of random double sharings requires the communication of 4 elements per party. Relying on t-wise
independence, we only need to prepare t pairs of random double sharings for n multiplications. Thus, the
amortized communication cost per pair of double sharings is 4 · t/n ≈ 2 elements per party. Including the
communication cost of the multiplication protocol in [DN07], which is 2 elements per party, the overall cost
per multiplication is 4 elements per party.

In Section 4.2, we show that our multiplication protocol can be directly used in the secure-with-abort
MPC protocol in [GSZ20]. It yields a secure-with-abort MPC protocol with the concrete efficiency of 4
elements per party per gate.

2.3 Reducing the Number of Rounds via Beaver Triples

In the secure-with-abort MPC protocol in [GSZ20], multiplication gates in the same layer of the circuit
are evaluated in parallel.Therefore, the number of rounds is linear in the depth of the circuit. To further
improve the concrete efficiency, we pay our attention to the round complexity. We note that the question of
obtaining information theoretic constant round protocols for a general circuit has been opened for many years.
In particular, it has been shown in [DNPR16] that the dependency on the depth in the round complexity is
inherent for the DN protocol. Given this, we managed to reduce the number of rounds by a factor of 2 while
maintaining the communication efficiency.

To this end, we first consider a two-layer circuit, and try to evaluate all multiplication gates in parallel.

Starting Point. For a two-layer circuit, an input sharing of a multiplication gate in the second layer may
come from three places:

• This sharing is an input sharing of the circuit.

• This sharing is an output sharing of an addition gate in the first layer.

• This sharing is an output sharing of a multiplication gate in the first layer.

Note that an addition gate can be evaluated without interaction. Therefore for the first two cases, all parties
can locally compute this sharing. However, for the third case, communication is required to evaluate this
multiplication gate in the first layer. Therefore, the question becomes how to evaluate multiplication gates
in the second layer without learning the output sharings of multiplication gates in the first layer.

A Beaver triple [Bea92] consists of three degree-t Shamir sharings ([a]t, [b]t, [c]t) such that c = a · b.
Usually, a Beaver triple is used to transform one multiplication to two reconstructions. Concretely, given
two sharings [x]t, [y]t, suppose we want to compute [z]t such that z = x · y. Since

z = x · y
= (x+ a− a) · (y + b− b)
= (x+ a) · (y + b)− (x+ a) · b− (y + b) · a+ a · b,
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we can compute
[z]t := (x+ a) · (y + b)− (x+ a) · [b]t − (y + b) · [a]t + [c]t.

Therefore, the task of computing [z]t becomes to reconstruct two degree-t Shamir sharings [x]t + [a]t and
[y]t + [b]t. Observe that, if we set u = x+a and v = y+ b, the above equation allows us to locally compute a
degree-t Shamir sharing of z := (u− a) · (v− b) using a Beaver triple ([a]t, [b]t, [c]t) once u and v are publicly
known.

Beaver-triple Friendly Form. We say a sharing is in the Beaver-triple friendly form, if it can be written
as u − [a]t, where u is a public element and [a]t is a degree-t Shamir sharing. Now suppose for each
multiplication gate in the second layer, the input sharings are in the Beaver-triple friendly form, say u− [a]t
and v − [b]t. Given the Beaver triple ([a]t, [b]t, [c]t), one can non-interactively compute the output sharing
of this gate by

[z]t := u · v − u · [b]t − v · [a]t + [c]t.

Note that the Beaver triple ([a]t, [b]t, [c]t) can be prepared without learning u, v. Therefore, if for each
multiplication gate in the second layer, the input sharings are in the Beaver-triple friendly form u−[a]t, v−[b]t,
and [a]t, [b]t are learnt before evaluating the first layer, we can prepare the Beaver triple ([a]t, [b]t, [c]t) without
evaluating the first layer, and then non-interactively evaluate multiplication gates in the second layer after
learning u, v from the first layer.

Of course, the question remains: since the input sharings of the second layer come from the output
sharings of the first layer, how do we ensure that the output sharings of the first layer are in the Beaver-
triple friendly form?

Evaluating a Two-Layer Circuit. We observe that the original DN multiplication protocol in [DN07]
satisfies our requirement! Concretely, to evaluate a multiplication gate with input sharings [x]t, [y]t all parties
need to first prepare a pair of random double sharings ([r]t, [r]2t). In the last step of the DN multiplication
protocol, Pking sends the reconstruction result of [e]2t := [x]t · [y]t + [r]2t to all parties, and all parties can
compute the degree-t Shamir sharing [z]t := e− [r]t. In particular, the output sharing is in the Beaver-triple
friendly form, and the sharing [r]t is prepared before evaluating this multiplication gate. Therefore, we will
use the original DN multiplication protocol to evaluate multiplication gates in the first layer.

For a multiplication gate in the second layer, suppose that the two input wires are both the outputs
of multiplication gates in the first layer. Let e1 − [r1]t and e2 − [r2]t denote these two output sharings.
Now observe that e1 and e2 will already be public as part of evaluating the first layer. So to compute a
degree-t Shamir sharing of (e1 − r1)(e2 − r2), all we need is [r1 · r2]t. If we can pre-compute and distribute
([r1]t, [r2]t, [r1 · r2]t), we are done! Of course, since r1 and r2 are also used in the multiplication gates in the
first layer, we simultaneously need to compute degree-2t Shamir sharings of r1 and r2 as well. Fortunately,
this does not affect the security of the second layer. In other words, the outputs of the first layer feed nicely
into the second layer making the second layer non-interactive. At the same time, we are able to ensure that
these two different types of multiplication protocols do not destroy the security of each other despite sharing
randomness.

As we discussed above, the input sharing of a multiplication gate in the second layer may come from two
other places: (1) it may be an input sharing of this two-layer circuit, or (2) it may be an output sharing of an
addition gate in the first layer. In both cases, all parties can locally compute this sharing before evaluating
the multiplication gates in the first layer. Let [x]t denote such an input sharing. Note that [x]t = 0− (−[x]t)
is already in the Beaver-triple friendly form. Therefore, all the input sharings of multiplication gates in the
second layer are in the Beaver-triple friendly form. But now, the problem is that [x]t is not known before the
circuit evaluation starts (unlike [r1]t and [r2]t), and hence [x]t cannot be part of a Beaver triple pre-computed
before the evaluation. Fortunately, as observed earlier, parties hold [x]t before evaluating any multiplication
gates in the first layer. Now our idea is to prepare the Beaver triples for the second layer dependent on [x]t
in parallel with the multiplications in the first layer.

After preparing Beaver triples for the second layer and computing the output sharings of the multiplication
gates in the first layer, all parties can locally compute the degree-t Shamir sharings associated with the output

6



wires of this two-layer circuit. These sharings will be fed to the next two-layer circuit, which is sufficient
to start the evaluation since the original DN multiplication protocol does not require any special property
of the input sharings. Therefore in the evaluation of the whole circuit, these two types of multiplication
protocols are alternatively used in every two layers.

Improving the Communication Complexity. While the above helps us make progress, it does not
achieve our final goal. In particular, using the original DN protocol requires the communication of 6 elements
per party per gate. We note that for multiplications in different layers, we have different requirements:

• For multiplication gates in the first layer, we need the output sharings to have the Beaver-triple friendly
form.

• For multiplication gates in the second layer, we compute the Beaver triples in the form of ([a]t, [b]t, [c]t).
We only need to obtain the degree-t sharing of [c]t for each Beaver triple.

Therefore for multiplication gates in the second layer, we can use our improved multiplication protocol to
compute Beaver triples, which requires the communication of 4 elements per party per multiplication. For
multiplication gates in the first layer, however, Pking needs to send the same values to all parties. It seems
like our trick of using t-wise independence does not work in this scenario.

Having a closer look at our trick of using t-wise independence, for a multiplication gate handled by
an honest party, the secret r of the random double sharings is fixed given the double random sharings
used for multiplication gates handled by corrupted parties. Revealing the reconstruction result of [e]2t :=
[x]t · [y]t + [r]2t may leak the multiplication result to the adversary. Therefore, to be able to reveal the
reconstruction result, r needs to be uniformly random for every multiplication gate. However, we note that r
being uniformly random is not equivalent to the pair of double sharings ([r]t, [r]2t) being uniformly random.

Therefore, we want to decouple the relation between r and the double sharings. Note that a pair of
double sharings ([r]t, [r]2t) is equivalent to a pair of sharings ([r]t, [o]2t), where the first sharing is a degree-t
Shamir sharing of r and the second sharing is a degree-2t Shamir sharing of zero o = 0. To see this, given
([r]t, [r]2t), we can set [o]2t := [r]2t− [r]t; given ([r]t, [o]2t), we can set [r]2t := [r]t + [o]2t. When using a pair
of sharings ([r]t, [o]2t), the DN multiplication protocol becomes:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]t + [o]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends the value e to all other
parties.

3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.

Note that [o]2t is only used to compute [e]2t. When Pking is an honest party, [o]2t does not need to be a
uniformly random degree-2t sharing of 0. Thus, we can use t-wise independent [o]2t’s with uniformly random
degree-t sharings [r]t’s.

In [DN07], it has been shown that preparing a random degree-t random sharing requires the communi-
cation of 2 elements per party. In Section 4.3, following from the same idea of preparing random degree-t
Shamir sharings, we show that preparing a random degree-2t sharing of 0 requires the communication of
2 elements per party as well. Then, using our idea of t-wise independence, we expand t random degree-2t
sharings of 0 to n sharings with t-wise independence. In this way, the communication cost of preparing
correlated-randomness for one multiplication in the first layer is 2 + 2 · t/n ≈ 3 elements. Including the
communication cost of the multiplication protocol in [DN07], which is 2 elements per party, the overall cost
per multiplication in the first layer is 5 elements per party.

Recall that for multiplication gates in the second layer, we will use our improved multiplication protocol
to compute Beaver triples, which requires the communication of 4 elements per party per gate. To evaluate
the whole circuit, we first partition it into a sequence of two-layer sub-circuits. Then we use the above
strategy to evaluate each two-layer sub-circuit in a predetermined topological order. Assuming that the
number of multiplication gates in the first layer is roughly the same as the number of multiplication gates
in the second layer, the concrete efficiency is (4 + 5)/2 = 4.5 elements per party per gate.

7



Achieving Security-with-abort. We note that the correctness of the computation requires the following
two points:

• Pking parties send the same values to all other parties for multiplication gates in the first layer of all
sub-circuits.

• All multiplication tuples are correctly computed.

In the verification phase, all parties first check whether they receive the same values, which corresponds
to the first point above. This is done by checking a random linear combination of the values they receive.
Then, all parties use the verification of multiplications in [GSZ20] to efficiently check the correctness of all
multiplication tuples. In Section 4.3, we show that the communication complexity of the verification phase
is sub-linear in the number of multiplication gates. Therefore, the concrete efficiency of our protocol is the
same as that for each multiplication gate, i.e., 4.5 elements per party per gate. In particular, comparing
with the protocol in [GSZ20], we reduce the number of rounds by a factor of 2.

2.4 Using PRG to Reduce Communication Complexity

We note that the communication complexity can be further reduced by relying on pseudo-random generators.
This trick has been used in previous works such as [BBCG+19, LN17, NV18].

At a high-level, each pair of parties will first agree on a random seed, which is unknown to other parties.
When some party Pi needs to distribute a degree-t sharing, one can think that Pi first sends random elements
to the first t parties as their shares. Then Pi reconstructs the whole sharing using the secret and the first t
shares, and distributes the shares to the rest of parties. Relying on the PRG, Pi does not need to send shares
to the first t parties. Instead, each of the first t parties and Pi will simply run the PRG on their common
seed and take the same piece from the output as the share. In this way, the cost of distributing a degree-t
sharing can be reduced by a factor of 2. For a degree-2t sharing, one can think that Pi first sends random
elements to all other parties as their shares. Then Pi reconstructs the whole sharing using the secret and
the 2t shares distributed to other parties. Finally, Pi can compute its own share. Relying on PRG, Pi does
not need to communicate with any party. Instead, each party and Pi simply run the PRG on their common
seed and take the same piece from the output as the share. In this way, distributing a degree-2t sharing
can be done at no cost. Regarding the security, notice that the corrupted parties learn nothing about the
secret of a sharing distributed by an honest party even if the shares of corrupted parties are determined by
themselves. This is because the corrupted parties only learn t shares of either a degree-t Shamir sharing or
a degree-2t Shamir sharing, which are independent of the secret value.

As a result, for our first improvement of using t-wise independence, the concrete efficiency can be improved
to 2 elements per party per gate. For our second improvement of using Beaver triples, the communication
efficiency can be improved to 2.5 elements per party per gate. More details can be found in Section 4.4.

3 Preliminaries

3.1 Model

In this work, we focus on functions that can be represented as arithmetic circuits over a finite field F (with
|F| ≥ 2n)1 with input, addition, multiplication, and output gates. Let φ = log |F| be the size of an element
in F. We use κ to denote the security parameter and let K be an extension field of F (with |K| ≥ 2κ). For
simplicity, we assume that κ is the size of an element in K. Let cI , cM , cO be the number of input gates,
multiplication gates, and output gates respectively. We set C = cI + cM + cO to be the size of the circuit.

For the secure multi-party computation, we use the client-server model. In the client-server model, clients
provide inputs to the functionality and receive outputs, and servers can participate in the computation but

1The requirement of the field size is due to the use of so-called hyper-invertible matrices in our construction. See more
discussion in Section 3.2 of [BTH08].
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do not have inputs or get outputs. Each party may have different roles in the computation. Note that, if
every party plays a single client and a single server, this corresponds to a protocol in the standard MPC
model. Let c denote the number of clients and n = 2t+ 1 denote the number of servers. For all clients and
servers, we assume that every two of them are connected via a secure (private and authentic) synchronous
channel so that they can directly send messages to each other. The communication complexity is measured
by the number of bits via private channels.

3.1.1 Security Model.

Let c denote the number of clients and n = 2t+ 1 denote the number of servers. Let F be a secure function
evaluation functionality. An adversary A can corrupt at most c clients and t servers, provide inputs to
corrupted clients, and receive all messages sent to corrupted clients and servers. Corrupted clients and
servers can deviate from the protocol arbitrarily.

Real World Execution. In the real world, the adversary A controlling corrupted clients and servers
interacts with honest clients and servers. At the end of the protocol, the output of the real world execution
includes the inputs and outputs of honest clients and servers, and the view of the adversary.

Ideal World Execution. In the ideal world, a simulator Sim simulates honest clients and servers and
interacts with the adversary A. Furthermore, Sim has a one-time access to F , which includes providing
inputs of corrupted clients and servers to F , receiving the outputs of corrupted clients and servers, and
sending instructions specified in F (e.g., asking F to abort). The output of the ideal world execution
includes the inputs and outputs of honest clients and servers, and the view of the adversary.

We say that a protocol π securely computes F if there exists a simulator Sim, such that for all adversary
A, the distribution of the output of the real world execution is statistically close to the distribution of the
output of the ideal world execution. If π allows a premature abort, then we say π securely computes F with
abort. We refer the readers to [GIP+14] for a formal definition.

3.1.2 Benefits of the Client-Server Model.

In our construction, the clients only participate in the input phase and the output phase. The main com-
putation is conducted by the servers. For simplicity, we use {P1, . . . , Pn} to denote the n servers, and refer
to the servers as parties. Let C denote the set of all corrupted parties and H denote the set of all honest
parties. One benefit of the client-server model is the following theorem shown in [GIP+14].

Theorem 1 (Lemma 5.2 [GIP+14]). Let Π be a protocol computing a c-client circuit C using n = 2t + 1
parties. Then, if Π is secure against any adversary controlling exactly t parties, then Π is secure against any
adversary controlling at most t parties.

This theorem allows us to only consider the case where the adversary controls exactly t parties. Therefore
in the following, we assume that there are exactly t corrupted parties.

3.2 Secret Sharing

In this work, we will use the standard Shamir Secret Sharing Scheme [Sha79]. Let n be the number of parties
and F be a finite field of size |F| ≥ n+ 1. Let α1, . . . , αn be n distinct non-zero elements in F.

A degree-d Shamir sharing of x ∈ F is a vector (x1, . . . , xn) which satisfies that there exists a polynomial
f(·) ∈ F[X] of degree at most d such that f(0) = x and f(αi) = xi for i ∈ {1, . . . , n}. Each party Pi holds a
share xi and the whole sharing is denoted by [x]d.
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Properties of the Shamir Secret Sharing Scheme. In the following, we will utilize two properties of
the Shamir secret sharing scheme.

• Linear Homomorphism:
∀ [x]d, [y]d, [x+ y]d = [x]d + [y]d.

• Multiplying two degree-d sharings yields a degree-2d sharing. The secret value of the new sharing is
the product of the original two secrets.

∀ [x]d, [y]d, [x · y]2d = [x]d · [y]d.

For the first property, we equivalently add the underlying two polynomials. Therefore, the degree remains
the same and the secret value becomes the summation of the original two secrets. For the second property,
we equivalently multiply the underlying two polynomials. As a result, the degree becomes 2d and the secret
value is the product of the original two secrets.

3.3 Useful Building Blocks

In this part, we will introduce three functionalities which will be used in our main construction.

Preparing Random Degree-t Shamir Sharings. The first functionality Frand allows all parties to
prepare a random degree-t Shamir sharing [r]t. The description of Frand appears in Functionality 1. An
instantiation of Frand can be found in [DN07, GSZ20] (Protocol 2 in Section 3.3 of [GS20]). At a high-level,
the idea is to let each party generate and distribute a random degree-t Shamir sharing to all parties. Then,
all parties locally apply (the transpose of) a Vandermonde matrix, as a randomness extractor, on their
shares to obtain n− t random degree-t Shamir sharings. The amortized communication cost per sharing is
2 elements per party.

Functionality 1: Frand

1. Frand receives from the adversary the set of shares {ri}i∈C .

2. Frand randomly samples r. Based on the secret r and the t shares {ri}i∈C of corrupted parties,
Frand reconstructs the whole sharing [r]t and distributes the shares of [r]t to honest parties.

Preparing Random Double Sharings. The second functionality FdoubleRand allows all parties to prepare
a pair of random double sharings ([r]t, [r]2t). The description of FdoubleRand appears in Functionality 2. An
instantiation of FdoubleRand can be found in [DN07, GSZ20] (Protocol 4 in Section 3.4 of [GS20]). At a high-
level, the idea is to let each party generate and distribute a pair of random double sharings to all parties.
Then, all parties locally apply (the transpose of) a Vandermonde matrix, as a randomness extractor, on
their shares to obtain n− t pairs of random double sharings. The amortized communication cost per pair of
random double sharings is 4 elements per party.

Generating Random Coin. The third functionality Fcoin allows all parties to generate a random field
element in K. Recall that K is an extension field of F such that |K| ≥ 2κ, where κ is the security parameter.
The description of Fcoin appears in Functionality 3. An instantiation of Fcoin can be found in [GSZ20]
(Protocol 6 in Section 3.5 of [GS20]). At a high-level, the idea is to first invoke Frand to obtain a random
degree-t Shamir sharing. Then all parties exchange their shares and reconstruct the secret as their output,
which is a random field element. The communication complexity of the instantiation is O(n2κ) bits.

10



Functionality 2: FdoubleRand

1. FdoubleRand receives from the adversary two sets of shares {ri}i∈C and {r′i}i∈C . FdoubleRand view
the first set as the shares of corrupted party for the degree-t sharing, and the second set as the
shares for the degree-2t sharing.

2. FdoubleRand randomly samples r and prepares the double sharings as follows.

• For the degree-t sharing, based on the secret r and the t shares {ri}i∈C of corrupted parties,
FdoubleRand reconstructs the whole sharing [r]t.

• For the degree-2t sharing, FdoubleRand randomly samples t elements as the shares of the first
t honest parties. Based on the secret r, the t shares of the first t honest parties, and the t
shares {r′i}i∈C of corrupted parties, FdoubleRand reconstructs the whole sharing [r]2t.

Finally, FdoubleRand distributes the shares of ([r]t, [r]2t) to honest parties.

Functionality 3: Fcoin

1. Fcoin samples a random field element r in K.

2. Fcoin sends r to the adversary.

• If the adversary replies continue, Fcoin sends r to honest parties.

• If the adversary replies abort, Fcoin sends abort to honest parties.

4 ATLAS: Our Unconditional MPC Construction

In this section, we will introduce two improvements to the secure-with-abort MPC protocol in [GSZ20].

• The first improvement reduces the communication cost per multiplication gate per party from 5.5
elements to 4 elements.

• The second improvement reduces the communication cost per multiplication gate per party from 5.5
elements to 4.5 elements and reduce the number of rounds by a factor of 2.

Our core idea is to reuse the correlated-randomness prepared for multiplication gates.
We first give a short review of the construction in [GSZ20]. Then we introduce our two improvements.

Finally, we show how to use a pseudo-random generator to further reduce the communication complexity.

4.1 Review of the Secure-with-abort MPC Protocol in [GSZ20]

In [GIP+14], Genkin et al. showed that several semi-honest MPC protocols are secure up to an additive
attack in the presence of a fully malicious adversary. An additive attack means that the adversary is able
to change the multiplication result by adding an arbitrary fixed value. As one corollary, these semi-honest
protocols provide full privacy of honest parties before reconstructing the output. Therefore, a straightforward
strategy to achieve security-with-abort is to (1) run a semi-honest protocol till the output phase, (2) check
the correctness of the computation, and (3) reconstruct the output only if the check passes.

Fortunately, the best-known semi-honest protocol in this setting [DN07] is secure up to an additive
attack. At a high-level, the semi-honest protocol in [DN07] computes a degree-t Shamir sharing for each
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wire. Since the Shamir secret sharing scheme is linear homomorphic, addition gates can be evaluated without
interaction. Therefore, the main concern is multiplication gates. In [GSZ20], this kind of attack is modeled
in the functionality Fmult, which takes two degree-t Shamir sharings [x]t, [y]t and outputs the multiplication
result [x · y]t. The description of Fmult can be found in Functionality 4. The original multiplication protocol
in [DN07] requires 6 elements per party per gate. Goyal et al. [GSZ20] improve this protocol and reduce the
communication cost to 5.5 elements.

Functionality 4: Fmult

1. Let [x]t, [y]t denote the input sharings. Fmult receives from honest parties their shares of [x]t, [y]t.
Then Fmult reconstructs the secrets x, y. Fmult further computes the shares of [x]t, [y]t held by
corrupted parties, and sends these shares to the adversary.

2. Fmult receives from the adversary a value d and a set of shares {zi}i∈C .

3. Fmult computes x · y + d. Based on the secret z := x · y + d and the t shares {zi}i∈C , Fmult

reconstructs the whole sharing [z]t and distributes the shares of [z]t to honest parties.

Since Fmult does not guarantee the correctness of the multiplications, all parties need to verify the multi-
plications computed by Fmult at the end of the protocol. The functionality FmultVerify takes N multiplication
tuples as input and outputs to all parties a single bit b indicating whether all multiplication tuples are correct.
The description of FmultVerify can be found in Functionality 5.

Functionality 5: FmultVerify

1. Let N denote the number of multiplication tuples. The multiplication tuples are denoted by

([x(1)]t, [y
(1)]t, [z

(1)]t), ([x
(2)]t, [y

(2)]t, [z
(2)]t), . . . , ([x

(N)]t.[y
(N)]t, [z

(N)]t).

2. For all i ∈ [N ], FmultVerify receives from honest parties their shares of [x(i)]t, [y
(i)]t, [z

(i)]t.
Then FmultVerify reconstructs the secrets x(i), y(i), z(i). FmultVerify further computes the shares
of [x(i)]t, [y

(i)]t, [z
(i)]t held by corrupted parties and sends these shares to the adversary.

3. For all i ∈ [N ], FmultVerify computes d(i) = z(i) − x(i) · y(i) and sends d(i) to the adversary.

4. Finally, let b ∈ {abort, accept} denote whether there exists i ∈ [N ] such that d(i) 6= 0. FmultVerify

sends b to the adversary and waits for its response.

• If the adversary replies continue, FmultVerify sends b to honest parties.

• If the adversary replies abort, FmultVerify sends abort to honest parties.

In [GSZ20], Goyal et al. provide an instantiation of FmultVerify which has communication complexity
O(n2 · logC · κ) bits, where n is the number of parties and κ is the security parameter. Note that it is sub-
linear in the number of multiplication tuples. Relying on Fmult,FmultVerify, Goyal et al. [GSZ20] construct a
secure-with-abort MPC protocol with communication complexity O(Cnφ+n2 · logC · κ) bits. In particular,
the concrete efficiency per multiplication gate is the same as the communication cost of the instantiation of
Fmult, i.e., 5.5 elements per party.

12



4.2 Reducing the Communication Complexity via t-wise Independence

Our first improvement comes from a new protocol for Fmult. The amortized communication cost of our
new protocol is 4 elements per party. Relying on the secure-with-abort MPC protocol [GSZ20] which uses
Fmult,FmultVerify as building blocks, we directly obtain a secure-with-abort MPC protocol with the same
asymptotic communication complexity, i.e., O(Cnφ+n2 · logC ·κ) bits. In particular, the concrete efficiency
per multiplication gate is 4 elements per party. Our new protocol is based on the multiplication protocol
in [DN07]. We first give a quick review of the multiplication protocol in [DN07].

4.2.1 Review of the Multiplication Protocol in [DN07].

To evaluate a multiplication gate, all parties need to prepare a pair of random double sharings ([r]t, [r]2t).
This is done by invoking FdoubleRand introduced in Section 3.3. Recall that the amortized communication
complexity of the instanciation of FdoubleRand in [DN07, GSZ20] is 4 elements per party.

For a multiplication gate, suppose the input sharings are denoted by [x]t, [y]t. To compute [z]t := [x · y]t,
a pair of random double sharings ([r]t, [r]2t) is consumed. All parties first agree on a special party Pking.
Pking will help do the reconstruction in the multiplication protocol. Then, all parties run the following steps:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends the value e to all other
parties.

3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.

The correctness follows from the properties of the Shamir secret sharing scheme. Note that each party
needs to send an element to Pking, and Pking needs to send an element to each party. The communication
complexity of this protocol is 2 elements per party. Including the communication cost for preparing double
sharings, the overall cost per multiplication gate is 6 elements per party.

In [GSZ20], Goyal et al. observe that in the second step, Pking can alternatively distribute a degree-t
Shamir sharing [e]t. Then in the last step, all parties can still compute [z]t := [e]t − [r]t. Furthermore, since
e does not need to be private, Pking can set the shares of (a predetermined set of) t parties to be 0 in [e]t.
This means that Pking need not to communication these shares at all, reducing the communication by half.
This observation allows Goyal et al. to reduce the communication cost from 6 elements to 5.5 elements.

4.2.2 Our Observation.

As [GSZ20], we require Pking to distribute a degree-t Shamir sharing [e]t in the second step. However, we
further require Pking to generate a random sharing [e]t. In this way, when Pking is an honest party, corrupted
parties only receive t shares of a random degree-t sharing [e]t from Pking, which are uniform and independent
of the secret. As discussed in Section 2, it means that we do not need to use uniform double sharings when
Pking is honest.

For n multiplication gates, our idea is to let each party behave as Pking for one multiplication gate. Note
that only t out of n multiplications are handled by corrupted Pking’s. To make sure that all parties still
use a pair of random double sharings when Pking is corrupted, the n pairs of double sharings for these n
multiplication gates only need to be t-wise independent. To this end, we will first generate t pairs of random
double sharings, and then expand them to n pairs of double sharings with t-wise independence.

Specifically, all parties agree on an n×t hyper-invertible matrix M . Let ([r(1)]t, [r
(1)]2t), . . . , ([r

(t)]t, [r
(t)]2t)

be t pairs of random double sharings prepared by FdoubleRand. All parties execute Expand (Protocol 6) to
expand these t pairs into n pairs of t-wise independent double sharings.

Recall that C denotes the set of all corrupted parties. By the property of hyper-invertible matrices, there
is a one-to-one map from {([r̃(i)]t, [r̃(i)]2t)}i∈C to {[r(i)]t, [r(i)]2t}ti=1. Thus, {([r̃(i)]t, [r̃(i)]2t)}i∈C are t pairs
of random double sharings.
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Protocol 6: Expand

1. All parties agree on an n× t hyper-invertible matrix M . All parties locally compute

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M([r(1)]2t, . . . , [r
(t)]2t)

T

2. All parties output {([r̃(i)]t, [r̃(i)]2t, Pi)}ni=1, where ([r̃(i)]t, [r̃
(i)]2t, Pi) will be used for a multiplica-

tion gate handled by Pi.

4.2.3 ATLAS Multiplication Protocol.

To evaluate a multiplication gate, a pair of double sharings ([r]t, [r]2t, Pi) is consumed. All parties execute
Mult (Protocol 7).

Protocol 7: Mult

1. Let ([r]t, [r]2t, Pi) be the random double sharings which will be used in the protocol. Let [x]t, [y]t
denote the input sharings.

2. All parties locally compute [e]2t = [x]t · [y]t + [r]2t.

3. Pi collects all shares and reconstructs the secret e = x · y + r. Then Pi randomly generates a
degree-t Shamir sharing [e]t and distributes the shares to other parties.

4. All parties locally compute [z]t = [e]t − [r]t.

To show the security of ATLAS multiplication protocol, we consider the scenario where all parties evaluate
a sequence of N multiplication gates. In particular, the input sharings of each multiplication gate can depend
on the input sharings or output sharings of the previous multiplication gates. The functionality F ′mult appears
in Functionality 8, which invokes Fmult for each multiplication gate. One can view F ′mult as an interface of
Fmult. It allows us to replace the invocation of Fmult in the secure-with-abort MPC protocol [GSZ20] by
the invocation of F ′mult, and thus directly use ATLAS multiplication protocol in the protocol [GSZ20]. The
protocol ATLAS-Mult appears in Protocol 9.

Functionality 8: F ′mult

1. F ′mult receives N from all parties.

2. From i = 1 to N , let [x(i)]t, [y
(i)]t denote the input sharings of the i-th multiplication gate. F ′mult

invokes Fmult on [x(i)]t, [y
(i)]t.

Lemma 1. The protocol ATLAS-Mult securely computes the functionality F ′mult in the FdoubleRand-hybrid
model in the presence of a fully malicious adversary controlling t corrupted parties.
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Protocol 9: ATLAS-Mult

1. All parties set N to be the number of multiplication gates to be evaluated.

2. All parties invoke FdoubleRand to prepare N · t/n pairs of random double sharings, and invoke
Expand to obtain N pairs of double sharings in the form of ([r]t, [r]2t, Pj)

3. From i = 1 to N , let [x(i)]t, [y
(i)]t denote the input sharings of the i-th multiplication gate. Suppose

([r]t, [r]2t, Pj) is the first pair of unused double sharings. All parties invoke Mult on [x(i)]t, [y
(i)]t

and ([r]t, [r]2t, Pj).

Proof. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties. We first
show that the random degree-2t sharing [r]2t output by FdoubleRand satisfies that the shares of honest parties
are uniformly random, and are independent of the shares chosen by the adversary. Recall that FdoubleRand

receives from the adversary two sets of shares {ri}i∈C , {r′i}i∈C and randomly samples ([r]t, [r]2t) such that
the shares of [r]t, [r]2t held by corrupted parties are {ri}i∈C , {r′i}i∈C respectively. Consider the following
sampling process:

1. FdoubleRand randomly samples t+1 shares as the shares of [r]2t held by honest parties. Then, FdoubleRand

reconstructs the whole sharing [r]2t using the shares of honest parties and the shares {r′i}C of corrupted
parties, and computes the secret r.

2. FdoubleRand reconstructs the whole sharing [r]t based on the secret r and the shares {ri}i∈C of corrupted
parties.

Note that the above process output a pair of random double sharings with the same distribution as that
described in the original FdoubleRand. However, the shares of [r]2t held by honest parties are randomly chosen
in the first step and are independent of the shares {ri}i∈C , {r′i}i∈C .

Recall that in Expand, all parties compute

([r̃(1)]t, . . . , [r̃
(n)]t)

T = M([r(1)]t, . . . , [r
(t)]t)

T

([r̃(1)]2t, . . . , [r̃
(n)]2t)

T = M([r(1)]2t, . . . , [r
(t)]2t)

T,

where M is a hyper-invertible matrix. From the above argument, the shares of {[r(i)]2t}ti=1 held by honest
parties are uniformly random. According to the property of hyper-invertible matrices, there is a one-to-one
map from {[r(i)]2t}ti=1 to {[r̃(i)]2t}i∈C . Thus, the shares of {[r̃(i)]2t}i∈C held by honest parties are uniformly
random. This means that for all double sharings in the form of ([r]t, [r]2t, Pj) output by Expand, where Pj
is a corrupted party, the shares of [r]2t held by honest parties are uniformly random.

Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest parties.

Simulation for ATLAS-Mult. In the first step, S emulates FdoubleRand and receives the shares of random
double sharings held by corrupted parties. Then S follows Expand and computes the shares of the double
sharings in the form of ([r]t, [r]2t, Pj) held by corrupted parties.

In the second step, we describe the strategy of S for each invocation of Mult.

1. Let [x(i)]t, [y
(i)]t denote the input sharings. S receives from F ′mult the shares of [x(i)]t, [y

(i)]t held by
corrupted parties. Let ([r]t, [r]2t, Pj) be the first pair of unused double sharings. Recall that S has
learnt the shares of [r]t, [r]2t held by corrupted parties.

2. S computes the shares of [e(i)]2t := [x(i)]t · [y(i)]t + [r]2t held by corrupted parties. If Pj is corrupted,
S samples random elements as shares of [e(i)]2t of honest parties.
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3. Depending on whether Pj is honest, there are two cases:

• If Pj is honest, S receives the shares from corrupted parties. Let [ẽ(i)]2t denote the sharing
when using the shares received from corrupted parties. This is to distinguish from [e(i)]2t which
uses the shares computed by S for corrupted parties. Then S computes the shares of [d(i)]2t :=
[ẽ(i)]2t − [e(i)]2t held by corrupted parties. Note that the shares of [d(i)]2t held by honest parties
are 0. S reconstructs the secret d. Finally for [e(i)]t, S samples random elements as the shares of
corrupted parties.

• If Pj is corrupted, S sends the shares of [e(i)]2t of honest parties to Pj . Note that for [e(i)]2t, S
knows all the shares. S reconstructs the secret e. Then S receives the shares of [e(i)]t of honest
parties from Pj . S reconstructs the whole sharing and computes the secret of [e(i)]t, denoted by
ẽ(i). Finally, S computes d(i) := ẽ(i) − e(i).

4. In the last step, S computes the shares of [z(i)]t := [e(i)]t − [r̃(i)]t held by corrupted parties. Then S
sends the difference d(i) and the shares of [z(i)]t held by corrupted parties to F ′mult.

Hybrid Arguments. Now we show that S perfectly simulates the behaviors of honest parties. Consider
the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the shares of corrupted parties as described above. For each

multiplication tuple ([x(i)]t, [y
(i)]t, [z

(i)]t), S computes the difference d(i) := z(i) − x(i) · y(i) using the shares
of honest parties. Then for all i ∈ [N ], S sends the difference d(i) and the shares of [z(i)]t held by corrupted
parties to F ′mult. Note that the shares of honest parties are determined by the shares of corrupted parties
and the secrets. Therefore, the distribution of Hybrid1 is identical to the distribution of Hybrid0.

Hybrid2: In this hybrid, S computes the difference as described above. Note that:

• When Pj is honest, corrupted parties can change the multiplication result by sending incorrect shares
of [e(i)]2t to Pj . Therefore, the difference of this multiplication tuple is the secret of the sharing
[ẽ(i)]2t − [e(i)]2t, where [e(i)]2t is the sharing when using the shares computed by S for corrupted
parties, and [e]2t is the sharing when using the shares received from corrupted parties. Therefore, the
difference d(i) computed by S is identical to that in Hybrid1.

• When Pj is corrupted, S can learn the value ẽ(i) reconstructed by Pj from the shares of [e(i)]t held by
honest parties. S can also compute the correct e(i). Therefore, the difference d(i) computed by S is
identical to that in Hybrid1.

Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Hybrid3: In this hybrid, S uses random elements as shares of [e(i)]2t of honest parties when Pj is

corrupted. Recall that we have shown that for ([r]t, [r]2t, Pj) where Pj is corrupted, the shares of [r]2t held
by honest parties are uniformly random. Therefore, the shares of [e(i)]2t are also uniformly random in this
case. The distribution of Hybrid3 is identical to the distribution of Hybrid2.

Hybrid4: In this hybrid, S emulates FdoubleRand and does not generate the shares of honest parties.
Note that these shares are not used in Hybrid3. Therefore, the distribution of Hybrid4 is identical to the
distribution of Hybrid3.

Note that Hybrid4 is the execution in the ideal world, and the distribution of Hybrid4 is identical to
the distribution of Hybrid0, the execution in the real world.

Using F ′mult in the MPC protocol in [GSZ20]. In the secure-with-abort MPC protocol in [GSZ20],
all parties invoke Fmult for each multiplication gate. Note that F ′mult invoke Fmult for each multiplication.
Therefore, we view F ′mult as an interface of Fmult. All parties initialize F ′mult in the beginning of the protocol
with the number of multiplications they need to compute (which is determined by the circuit). Then we
replace each invocation of Fmult by F ′mult.
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Note that every t pairs of random double sharings generated by FdoubleRand are expanded to n pairs of
double sharings. Therefore, the communication cost per pair of double sharings is 4 · t/n ≈ 2 elements per
party. The overall cost per multiplication gate is 4 elements per party. Therefore, when using ATLAS-
Mult to instantiate F ′mult, we obtain a secure-with-abort MPC protocol with communication complexity of
O(Cnφ + n2 · logC · κ) bits. In particular, the concrete efficiency per multiplication gate is 4 elements per
party.

Remark 1. It has been observed in many previous works (e.g., [CGH+18, GSZ20]) that the DN multi-
plication protocol can be extended to compute an inner-product operation with the same communication
complexity as a multiplication operation. An inner-product operation is to compute the summation of
the coordinate-wise multiplications between two vectors. At a high-level, given two vectors of input shar-
ings ([x(1)]t, [x

(2)]t, . . . , [x
(`)]t), ([y

(1)]t, [y
(2)]t, . . . , [y

(`)]t), the goal is to compute a degree-t Shamir sharing of

z =
∑`
i=1 x

(i) ·y(i). Since all parties can locally compute a degree-2t Shamir sharing [z]2t =
∑`
i=1[x(i)]t ·[y(i)]t,

all parties can use the same technique as the DN multiplication protocol to do degree reduction.
We note that our technique of using t-wise independent double sharings also works in this extension.

As a result, we obtain an inner-product protocol with communication complexity of 4 elements per party,
which is secure up to an additive attack (see Functionality 7 in Section 4 of [GS20] for the description of the
corresponding functionality).

4.3 Reducing the Number of Rounds via Beaver Triples

For the secure-with-abort MPC protocol in [GSZ20], multiplication gates in the same layer of the circuit
are evaluated in parallel. Therefore, the number of rounds is linear in the depth of the circuit. To further
improve the concrete efficiency, we pay our attention to the round complexity. In this part, we show that
multiplication gates in a two-layer circuit can be evaluated in parallel. It allows us to reduce the number
of rounds by a factor of 2. The amortized communication cost per multiplication gate is 4.5 elements per
party.

4.3.1 An Overview of Our Approach.

We first start with a two-layer circuit. At a high-level, we use Beaver triples to evaluate multiplications in the
second layer. Recall that a Beaver triple consists of three degree-t Shamir sharings ([a]t, [b]t, [c]t) such that
c = a · b. Usually, a Beaver triple is used to transform one multiplication to two reconstructions. Concretely,
given two sharings [x]t, [y]t, suppose we want to compute [z]t such that z = x · y. Since

z = x · y = (x+ a− a) · (y + b− b)
= (x+ a) · (y + b)− (x+ a) · b− (y + b) · a+ a · b,

we can compute
[z]t := (x+ a) · (y + b)− (x+ a) · [b]t − (y + b) · [a]t + [c]t.

Therefore, the task of computing [z]t becomes to reconstruct two degree-t Shamir sharings [x]t + [a]t and
[y]t + [b]t. Observe that, if we set u = x+ a and v = y + b, the above equation allows us to locally compute
a degree-t Shamir sharing of z := (u − a) · (v − b) using a Beaver triple ([a]t, [b]t, [c]t). In particular, the
values u, v can be learnt after preparing the Beaver triple. For multiplications in the second layer, our idea
is to transform each input sharing to the form of u− [a]t, where u is a public element and [a]t is a degree-t
Shamir sharing. We refer to this form as the Beaver-triple friendly form. Moreover, the sharing [a]t is
known to all parties before evaluating the first layer. In this way, for an multiplication gate in the second
layer with input sharings u− [a]t and v− [b]t, we can prepare the Beaver triple ([a]t, [b]t, [c]t) in parallel with
the multiplications in the first layer.

We note that an input sharing of a multiplication gate in the second layer may come from three places:

• This sharing is an input sharing of the circuit.
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• This sharing is an output sharing of an addition gate in the first layer.

• This sharing is an output sharing of a multiplication gate in the first layer.

Note that an addition gate can be evaluated without interaction. For the first two cases, all parties can
locally compute this sharing. Let [x]t denote such a sharing. Note that [x]t = 0 − (−[x]t) is already in the
Beaver-triple friendly form, and (−[x]t) is known before evaluating the first layer. For the third case, we
want the output sharing of a multiplication gate in the first layer to have the Beaver-triple friendly form
u − [a]t, and [a]t is known before evaluating this gate. We note that the original multiplication protocol
in [DN07] satisfies our requirement. Recall that in the original multiplication protocol in [DN07]:

1. Pking reconstructs a degree-2t Shamir sharing [e]2t := [x]t · [y]t + [r]2t and sends e to other parties.

2. All parties locally compute [z]t := e− [r]t.

In particular, the random double sharings ([r]t, [r]2t) are prepared before evaluating this gate.
In summary, a two-layer circuit can be evaluated as follows:

• For each input sharing in the second layer, all parties transform it to the Beaver-triple friendly form,
denoted by u− [a]t, such that [a]t is known to all parties.

• For each multiplication gate in the first layer, suppose [x]t, [y]t are the input sharings. All parties use
the original multiplication protocol in [DN07] to compute [z]t, where z = x · y. For each multiplication
gate in the second layer, suppose u−[a]t, v−[b]t are the input sharings. All parties use our multiplication
protocol Mult on [a]t, [b]t to compute [c]t, where c = a ·b. Note that these two kinds of multiplications
can be computed in parallel.

• For each multiplication gate in the second layer, suppose u− [a]t, v − [b]t are the input sharings. Note
that we have learnt u, v when evaluating the first layer, and we have computed the Beaver triple
([a]t, [b]t, [c]t). Therefore, all parties compute [z]t := u · v − u · [b]t − v · [a]t + [c]t.

We note that the original multiplication protocol in [DN07] requires the communication of 6 elements
per party. Next, we show how to reduce the communication cost to 5 elements without breaking the form
of the output sharing.

4.3.2 Improving the Original Multiplication Protocol in [DN07].

Recall that in the original multiplication protocol in [DN07]:

1. Pking reconstructs a degree-2t Shamir sharing [e]2t := [x]t · [y]t + [r]2t and sends e to other parties.

2. All parties locally compute [z]t := e− [r]t.

To keep the form of the output sharing, Pking cannot replace e by a degree-t Shamir sharing [e]t. Furthermore,
to protect the secrecy of the multiplication result x ·y, r need to be uniformly random. Our main observation
is that r being uniform is not equivalent to the double sharings ([r]t, [r]2t) being uniform. To this end, we first
decouple the relation between r and ([r]t, [r]2t). Note that a pair of double sharings ([r]t, [r]2t) is equivalent
to a pair of sharings ([r]t, [o]2t), where the first sharing is a degree-t Shamir sharing of r and the second
sharing is a degree-2t Shamir sharing of o = 0. To see this, given ([r]t, [r]2t), we can set [o]2t := [r]2t − [r]t;
given ([r]t, [o]2t), we can set [r]2t := [r]t + [o]2t. When using a pair of sharings ([r]t, [o]2t), the multipliation
protocol becomes:

1. All parties locally compute [e]2t := [x]t · [y]t + [r]t + [o]2t.

2. Pking collects all shares of [e]2t and reconstructs the secret e. Then Pking sends the value e to all other
parties.

3. After receiving e from Pking, all parties locally compute [z]t := e− [r]t.
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Note that [o]2t is only used to compute [e]2t. When Pking is an honest party, [o]2t does not need to be a
uniformly random degree-2t sharing of 0. Thus, following the same argument as that in Section 4.2, we
can use t-wise independent [o]2t’s with uniformly random degree-t sharings [r]t’s. In the following, we first
introduce a protocol which allows all parties to generate random degree-2t Shamir sharings of 0. Then, we
will expand t such sharings into n sharings with t-wise independence.

Preparing Random Degree-2t Shamir Sharings of 0. The functionality Fzero appears in Function-
ality 10. We follow the idea of preparing random degree-t sharings in [DN07]. At a high-level, each party
generates and distributes a random degree-2t sharing of 0. Then, use the transpose of a Vandermonde matrix
acting as a randomness extractor to obtain t+1 random degree-2t sharings of 0 from the n sharings generated
by each party. Let MT be a predetermined and fixed Vandermonde matrix of size n × (t + 1) (therefore
M is a (t+ 1)× n matrix). The protocol Zero appears in Protocol 11. The communication complexity of
Zero is O(n2) field elements. The amortized cost per sharing is 2 elements per party.

Functionality 10: Fzero

1. Fzero receives from the adversary the set of shares {ri}i∈C .

2. Fzero randomly samples t elements as the shares of the first t honest parties. Based on the secret
o = 0, the t shares of the first t honest parties, and the t shares {ri}i∈C of corrupted parties, Fzero

reconstructs the whole sharing [o]2t. Fzero distributes the shares of [o]2t to honest parties.

Protocol 11: Zero

1. Each party Pi randomly samples a degree-2t Shamir sharing of 0, denoted by [o(i)]2t and distributes
the shares to other parties.

2. All parties agree on a Vandermonde matrix MT of size n × (t + 1). Then M is a matrix of size
(t+ 1)× n. All parties locally compute

([õ(1)]2t, [õ
(2)]2t, . . . , [õ

(t+1)]2t)
T = M([o(1)]2t, [o

(2)]2t, . . . , [o
(n)]2t)

T

and output [õ(1)]2t, [õ
(2)]2t, . . . , [õ

(t+1)]2t.

Lemma 2. The protocol Zero securely computes the functionality Fzero in the presence of a fully malicious
adversary controlling t corrupted parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties.

Simulation for Zero. In the first step, when an honest party Pi needs to distribute a random degree-2t
sharing [o(i)]2t of o(i) = 0, for each corrupted party Pj , S samples a random element as its share of [o(i)]2t
and sends it to the adversary. For each corrupted party Pi, S receives the shares of [o(i)]2t held by honest
parties. S samples a random degree-2t sharing based on the secret o(i) = 0 and the shares held by honest
parties, and views this degree-2t sharing as the one distributed by Pi.

In the second step, S computes the shares of [õ(i)]2t held by corrupted parties and passes these shares to
Fzero.
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Hybrid Arguments. Now we show that S perfectly simulates the behaviors of honest parties. Consider
the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S changes the way of preparing a random degree-2t Shamir sharing [o(i)]2t of

o(i) = 0 for each honest party Pi:

1. S first randomly samples the shares of [o(i)]2t held by corrupted parties and sends them to corrupted
parties.

2. Then, based on the secret o(i) = 0 and the shares of [o(i)]2t held by corrupted parties, S samples a
random degree-2t sharing [o(i)]2t (in the same way as Fzero in Step 2). Then S distributes the shares
to the rest of honest parties.

For each corrupted party Pi, S locally computes the shares of [o(i)]2t held by corrupted parties.
Note that this does not change the distribution of the random sharings generated by honest parties. The

distribution of Hybrid0 is identical to the distribution of Hybrid1.
Hybrid2: In this hybrid, S omits the second step when preparing [o(i)]2t for each honest party Pi in

Hybrid1. Recall that in Hybrid1, for all i ∈ [n], S has computed the shares of [o(i)]2t held by corrupted
parties. For each [õ(i)]2t, S computes the shares of corrupted parties and sends them to Fzero.

We show that the distribution of Hybrid2 is identical to the distribution of Hybrid1.
Let MH denote the sub-matrix of M containing the columns of M with indices in H and MC denote

the sub-matrix of M containing the columns of M with indices in C. Let ([o(i)]2t)H denote the vector of the
sharings dealt by parties in H and ([o(i)]2t)C denote the vector of the sharings dealt by parties in C. Then,

([õ(1)]2t, [õ
(2)]2t, . . . , [õ

(t+1)]2t)
T = M([o(1)]2t, [o

(2)]2t, . . . , [o
(n)]2t)

T

= MH([o(i)]2t)
T
H + MC([o(i)]2t)

T
C

Note that MH is a (t + 1) × (t + 1) matrix. By the property of Vandermonde matrices, MH is in-
vertible. Therefore, given the sharings {[o(i)]2t}i∈C dealt by corrupted parties, there is a one-to-one map
from {[o(i)]2t}i∈H to {[õ(i)]2t}i∈[t+1]. Note that the only difference between Hybrid1 and Hybrid2 is that,

in Hybrid1, {[o(i)]2t}i∈H are randomly generated (based on the shares which have been sent to corrupted
parties) while in Hybrid2, Fzero directly generates {[õ(i)]2t}i∈[t+1] based on the shares that corrupted parties

should hold. However, this does not change the distribution of the shares of {[õ(i)]2t}i∈[t+1] held by honest

parties. To see this, note that for any sharings {[õ(i)]2t}i∈[t+1] generated by Fzero, we can compute back to

a set of valid sharings {[o(i)]2t}i∈H. Therefore, the distribution of Hybrid2 is identical to the distribution
of Hybrid1.

Note that Hybrid2 is the execution in the ideal world and the distribution of Hybrid2 is identical to
the distribution of Hybrid0, the execution in the real world.

The Improved Multiplication Protocol. For a sequence of n multiplication gates, all parties first
prepare n random degree-t Shamir sharings using Frand, denoted by

[r(1)]t, . . . , [r
(n)]t.

Recall that the amortized communication cost of the instantiation of Frand in [DN07, GS20] is 2 elements
per sharing per party. Then, all parties invoke Fzero to prepare t random degree-2t Shamir sharings of 0,
denoted by

[o(1)]t, . . . , [o
(t)]t.

These t sharings are expanded to n sharings with t-wise independence. As Expand, we will use a predeter-
mined n× t hyper-invertible matrix M . The protocol ExpandZero appears in Protocol 12.

For the i-th multiplication gate, we will use ([r(i)]t, [õ
(i)]2t, Pi) and Pi will act as Pking. The protocol

MultDN appears in Protocol 13. As for the amortized communication cost per gate:
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Protocol 12: ExpandZero

1. All parties agree on an n× t hyper-intertible matrix M . All parties locally compute

([õ(1)]2t, . . . , [õ
(n)]2t)

T = M([o(1)]2t, . . . , [o
(t)]2t)

T

2. All parties output {([õ(i)]2t, Pi)}ni=1, where ([õ(i)]2t, Pi) will be used for a multiplication gate han-
dled by Pi.

• Preparing one random degree-t Shamir sharing using Frand requires to communicate 2 elements per
party.

• Preparing one t-wise independent degree-2t Shamir sharing of 0 using Fzero and ExpandZero requires
to communicate 2 · t/n elements per party.

• The protocol MultDN requires to communicate 2 elements per party.

In summary, the amortized communication cost per gate is 5 elements per party.

Protocol 13: MultDN

1. Let ([r]t, [o]2t, Pi) be the random sharings which will be used in the protocol. Let [x]t, [y]t denote
the input sharings.

2. All parties locally compute [e]2t = [x]t · [y]t + [r]t + [o]2t.

3. Pi collects all shares and reconstructs the secret e = x · y + r. Then Pi sends e to other parties.

4. All parties locally compute [z]t = e− [r]t.

4.3.3 Evaluating a Two-Layer Circuit.

Given a two-layer circuit, we assume that all parties hold a degree-t Shamir sharing for each input wire in
the beginning. As described above, we will use MultDN to evaluate multiplication gates in the first layer.
For multiplication gates in the second layer, note that all parties only need to obtain the output sharings.
Therefore, we can use Mult, which only requires 4 elements per gate per party, to evaluate multiplication
gates in the second layer.

Suppose there are N1 multiplication gates in the first layer, and N2 multiplication gates in the second
layer. We assume that all parties have prepared the correlated randomness associated with these multipli-
cation gates, i.e., N1 pairs of sharings in the form of ([r]t, [o]t, Pi), and N2 pairs of sharings in the form of
([r]t, [r]2t, Pi). In the main protocol, these sharings are prepared together at the beginning of the protocol.
Then all parties execute Evaluate (Protocol 14) to compute the output sharings of this circuit.

4.3.4 Main Protocol.

Now we are ready to present the main protocol. Recall that we are in the client-server model. In particular,
all the inputs belong to the clients, and only the clients receive the outputs. The functionality Fmain appears
in Functionality 15.

As [GSZ20], our protocol includes 4 phases:
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Protocol 14: Evaluate

1. All parties start with holding a degree-t Shamir sharing for each input wire of this circuit. For each
multiplication gate in the second layer, we will transform the input sharings to the Beaver-triple
friendly form u− [a]t. Consider the following three cases.

• If this sharing is an input sharing of the circuit, denoted by [x]t, all parties set u := 0 and
[a]t := −[x]t.

• If this sharing is an output sharing of an addition gate in the first layer, all parties first locally
compute this sharing, denoted by [x]t, and then set u := 0 and [a]t := −[x]t.

• If this sharing is an output sharing of a multiplication gate in the first layer, suppose
([r]t, [o]2t, Pi) are associated with this gate. All parties set [a]t := [r]t. The value u, which
corresponds to e in MultDN, will be computed when this multiplication gate is evaluated.

2. For each multiplication gate with input sharings [x]t, [y]t in the first layer, all parties invoke
MultDN to compute [z]t where z := x · y. For each multiplication gate with input sharings
(u − [a]t), (v − [b]t) in the second layer, where all parties have learnt the sharings [a]t, [b]t, all
parties invoke Mult to compute [c]t where c := a · b.

3. For each multiplication gate in the first layer, let e be the reconstruction result distributed by Pking

in MultDN. If the output sharing of this gate is used as an input sharing of a multiplication gate
in the second layer, all parties set u := e for this input sharing.

4. Finally, for each multiplication gate with input sharings (u − [a]t), (v − [b]t) in the second layer,
all parties locally compute

[z]t := u · v − u · [b]t − v · [a]t + [c]t

as the output sharing of this gate.

Functionality 15: Fmain

1. Fmain receives from all clients their inputs.

2. Fmain evaluates the circuit and computes the output. Fmain first sends the output of corrupted
clients to the adversary.

• If the adversary replies continue, Fmain distributes the output to honest clients.

• If the adversary replies abort, Fmain sends abort to honest clients.

• Input Phase: The clients will share their inputs to the parties.

• Computation Phase: The whole circuit will be partitioned into a sequence of two-layer sub-circuits.
We will evaluate each sub-circuit using Evaluate.

• Verification Phase: To check the correctness of the computation, we will check that

– All parties receive the same values when using MultDN to evaluate multiplication gates in the
first layer of each sub-circuit.

– Multiplication tuples computed by MultDN and Mult are correct.
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• Output Phase: All parties reconstruct the outputs to the clients.

To check that all parties receive the same values when using MultDN, all parties will compute a random
linear combination of the values they received in MultDN and exchange their results. If a party receives
different values, this party will abort. We will use the functionality Fcoin introduced in Section 3.3 to
generate a random element. The protocol CheckConsistency appears in Protocol 16. Recall that the
communication complexity of the instaniation of Fcoin in [GSZ20] is O(n2κ) bits. The communication
complexity of CheckConsistency is O(n2κ) bits.

Protocol 16: CheckConsistency(N, {x(1), . . . , x(N)})
1. All parties invoke Fcoin to generate a random element r ∈ K. All parties locally compute

x := x(1) + x(2) · r + . . .+ x(N) · rN−1.

2. All parties exchange their results x’s and check whether they are the same. If a party Pi receives
different x’s, Pi aborts.

Lemma 3. If there exists two honest parties who receive different set of values {x(1), . . . , x(N)}, then with
overwhelming probability, at least one honest party will abort in the protocol CheckConsistency.

Proof. Suppose Pi, Pj are two honest parties and they receive {x(1), . . . , x(N)} and {x̃(1), . . . , x̃(N)} respec-
tively. Suppose that there exists i ∈ [N ] such that x(i) 6= x̃(i). Consider the following two polynomials in
K:

f(r) = x(1) + x(2) · r + . . .+ x(N) · rN−1

f̃(r) = x̃(1) + x̃(2) · r + . . .+ x̃(N) · rN−1

Since there exists i ∈ [N ] such that x(i) 6= x̃(i), f(·) and f̃(·) are two different polynomials. The number of
r such that f(r) = f̃(r) is bounded by the degree of f(·)− f̃(·), which is N − 1. Since r is uniformly chosen
from K, the probability that f(r) = f̃(r) is at most N−1

|K| ≤
N−1
2κ . Therefore, with overwhelming probability,

f(r) 6= f̃(r), which means that Pi, Pj will receive different values from each other and abort in the protocol
CheckConsistency.

To check that multiplication tuples computed by MultDN and Mult are correct, we will use FmultVerify

from [GSZ20]. The protocol Main appears in Protocol 17.

Theorem 2. Let c be the number of clients and n = 2t + 1 be the number of parties. The protocol Main
securely computes Fmain with abort in the {Frand,Fzero, FdoubleRand,Fcoin,FmultVerify}-hybrid model in the
presence of a fully malicious adversary controlling up to c clients and t parties.

Proof. According to Theorem 1, we assume that the adversary controls exactly t parties.
Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest parties

and honest clients. Recall that C denotes the set of corrupted parties and H denotes the set of honest parties.

Simulation for Main. We describe the strategy of S phase by phase.

• Simulation for Input Phase:

For an input x belongs to an honest client, S randomly samples t elements as the shares of [x]t of
corrupted parties. Then S sends these shares to corrupted parties.
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Protocol 17: Main

1. Input Phase:

For each client input x, client randomly samples a degree-t sharing [x]t and distributes the shares
to all parties.

2. Computation Phase – Preparing Correlated Randomness:

All parties start with holding a degree-t sharing for each input gate. The circuit is partitioned
into a sequence of two-layer sub-circuits. Let N1 denote the number of multiplications in the first
layer of all sub-circuits, and N2 denote the number of multiplications in the second layer of all
sub-circuits. All parties prepare the correlated randomness as follows:

• All parties invoke Frand to prepare N1 random degree-t Shamir sharings. Then all parties in-
voke Fzero to prepareN1·t/n random degree-2t Shamir sharings of 0, and invoke ExpandZero
to obtain N1 degree-2t Shamir sharings of 0. These sharings are transformed to N1 pairs of
sharings in the form of ([r]t, [o]2t, Pi).

• All parties invoke FdoubleRand to prepare N2 · t/n pairs of random double sharings. Then all
parties invoke Expand to obtain N2 pairs of double sharings in the form of ([r]t, [r]2t, Pi).

3. Computation Phase – Evaluating Two-Layer Circuits:

All sub-circuits are evaluated in a predetermined topological order. For each sub-circuit with all
the input sharings prepared, all parties invoke Evaluate to compute the output sharings.

4. Verification Phase:

• Suppose e(1), . . . , e(N1) are the values all parties received in MultDN invoked in Evaluate.
All parties invoke CheckConsistency to check that they receive the same values.

• Suppose {([x(i)]t, [y(i)]t, [z(i)]t)}N1
i=1 denote the multiplication tuples computed by MultDN

invoked in Evaluate, and {([a(i)]t, [b(i)]t, [c(i)]t)}N2
i=1 denote the multiplication tuples com-

puted by Mult invoked in Evaluate. All parties invoke FmultVerify to check the correctness
of these N1 +N2 multiplication tuples.

5. Output Phase:

For each output gate, suppose [x]t is the sharing associated with this gate and client is the client
who should receive this output. All parties send their shares of [x]t to client. client checks whether
the shares of [x]t is consistent. If not, client aborts. Otherwise, client reconstructs the result x.

For an input x belongs to a corrupted client, S receives from the adversary the shares held by honest
parties. Note that, S learns t+ 1 shares of [x]t. S reconstructs the whole sharing [x]t and sends x as
the input of this corrupted client to Fmain.

Note that for each input sharing, S learns the shares held by corrupted parties.

• Simulation for Computation Phase – Preparing Correlated Randomness:

In this part, S emulates Frand,Fzero,FdoubleRand and receives the shares of corrupted parties. S follows
the protocol ExpandZero and Expand to compute the shares of corrupted parties.

• Simulation for Computation Phase – Evaluating Two-Layer Circuits:

In this part, S simulates the behaviors of honest parties in Evaluate for each sub-circuit. For each
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sub-circuit with all the input sharings prepared, S will know the shares held by corrupted parties.
Note that this is true for the first sub-circuit. We describe the strategy of S step by step.

– In the first step, S follows the protocol to compute the shares of corrupted parties for the input
sharings of each multiplication gate in the second layer.

– In the second step, S simulates MultDN and Mult as follows. For MultDN:

∗ Let [x]t, [y]t denote the input sharings. S has computed the shares of [x]t, [y]t held by cor-
rupted parties. Let ([r]t, [o]2t, Pi) denote the sharings associated with this gate. S learns
the shares of [r]t, [o]2t held by corrupted parties when emulating Frand,Fzero and simulating
ExpandZero.

∗ S computes the shares of [e]2t := [x]t · [y]t + [r]t + [o]2t held by corrupted parties. If Pi is
corrupted, S samples random elements as shares of [e]2t of honest parties.

∗ Depending on whether Pi is honest, there are two cases:

· If Pi is honest, S receives the shares from corrupted parties. Let [ẽ]2t denote the sharing
when using the shares received from corrupted parties. This is to distinguish from [e]2t
which uses the shares computed by S for corrupted parties. Then S computes the shares
of [d]2t := [ẽ]2t − [e]2t held by corrupted parties. Note that the shares of [d]2t held by
honest parties are 0. S reconstructs the secret d. Finally, S samples a random element
as e and sends e to corrupted parties.

· If Pi is corrupted, S sends the shares of [e]2t of honest parties to Pi. Note that for [e]2t,
S knows all the shares. S reconstructs the secret e. Then S receives the value ẽ from Pi.
If Pi sends different values to different honest parties, S marks this execution as fail,
and uses the value of the first honest party. Finally, S computes d := ẽ− e.

∗ In the last step, S computes the shares of [z]t := ẽ− [r]t held by corrupted parties.

For Mult:

∗ Let [x]t, [y]t denote the input sharings. S has computed the shares of [x]t, [y]t held by cor-
rupted parties. Let ([r]t, [r]2t, Pi) denote the sharings associated with this gate. S learns
the shares of [r]t, [r]2t held by corrupted parties when emulating FdoubleRand and simulating
Expand.

∗ S computes the shares of [e]2t := [x]t · [y]t+[r]2t held by corrupted parties. If Pi is corrupted,
S samples random elements as shares of [e]2t of honest parties.

∗ Depending on whether Pi is honest, there are two cases:

· If Pi is honest, S receives the shares from corrupted parties. Let [ẽ]2t denote the sharing
when using the shares received from corrupted parties. This is to distinguish from [e]2t
which uses the shares computed by S for corrupted parties. Then S computes the shares
of [d]2t := [ẽ]2t − [e]2t held by corrupted parties. Note that the shares of [d]2t held by
honest parties are 0. S reconstructs the secret d. Finally, for [e]t, S samples random
elements as the shares of corrupted parties.

· If Pi is corrupted, S sends the shares of [e]2t of honest parties to Pi. Note that for [e]2t,
S knows all the shares. S reconstructs the secret e. Then S receives the shares of [e]t of
honest parties from Pi. S reconstructs the whole sharing and computes the secret of [e]t,
denoted by ẽ. Finally, S computes d := ẽ− e.

∗ In the last step, S computes the shares of [z]t := [e]t − [r]t held by corrupted parties.

– In the rest of two steps (which only contain local computation), S follows the protocol and
computes the shares of corrupted parties for each degree-t Shamir sharing.

• Simulation for Verification Phase:

– S first simulates CheckConsistency. Note that e(1), . . . , e(N1) are either received from corrupted
Pking’s or explicitly generated by S. S follows the protocol honestly. If any party aborts or S has
marked this execution as fail, S sends abort to Fmain and aborts.
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– S then emulates the functionality FmultVerify. Recall that in the simulation of the computation
phase, S has computed the shares of each multiplication tuple held by corrupted parties and the
difference. S directly sends these shares and differences to the adversary as in FmultVerify. If there
exists a non-zero difference, S sets b = abort. Otherwise, S sets b = accept. Then S sends b to
the adversary.

∗ If b = accept and the adversary replies continue, S moves to the next phase.

∗ Otherwise, S sends abort to Fmain and aborts.

• Simulation for Output Phase:

For each output gate with [x]t associated with it, if the receiver is an honest client, S receives from
the adversary the shares held by corrupted parties. Then S checks whether the shares are the same as
the ones computed by S. If true, S accepts the output. Otherwise, S rejects the output.

If the receiver is a corrupted client, S receives the result x from Fmain. Then, based on the shares of
[x]t held by corrupted parties and the secret x, S reconstructs the shares held by honest parties, and
sends these shares to the adversary.

Finally, if S rejects any output of honest clients, S sends abort to Fmain. Otherwise, S sends continue
to Fmain.

Hybrid Arguments. Now we show that S perfectly simulates the behaviors of honest parties with over-
whelming probability. Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S computes the input of corrupted clients and sends them to Fmain. The

distribution of Hybrid1 is identical to Hybrid0.
Hybrid2: In this hybrid, S simulates CheckConsistency. Concretely, S checks whether all honest

parties receive the same values from Pking in MultDN. If not, S sends abort to Fmain and aborts. According
to Lemma 3, the probability that an honest party aborts in this case is overwhelming. Therefore, the
distribution of Hybrid2 is statistically close to the distribution of Hybrid1.

Hybrid3: In this hybrid, S simulates the output phase as described above. Note that the output phase
is executed after the verification phase, which ensures the correctness of MultDN and Mult. Therefore,
the output phase is executed only when the computation is correct. For an output gate with [x]t associated
with it, if the receiver is an honest client, the shares that corrupted parties should hold are determined by
the shares of honest parties. Therefore, if corrupted parties send different shares from the ones computed by
S, the shares of [x]t will be inconsistent and the client will reject the output. If the receiver is a corrupted
client, the shares of honest parties are determined by the output x and the shares held by corrupted parties.
Therefore, the shares prepared by S are identical to the real shares held by honest parties.

Therefore, the distribution of Hybrid3 is identical to the distribution of Hybrid2.
Hybrid4: In this hybrid, S computes the difference of each multiplication tuple in the computation

phase. Then S simulates the verification phase. Note that FmultVerify simply checks whether there is an
incorrect multiplication tuple, which is equivalent to check whether there is a non-zero difference.

Therefore, the distribution of Hybrid4 is identical to the distribution of Hybrid3.
Hybrid5: In this hybrid, S simulates Evaluate. Since the parts which require interaction are MultDN

and Mult, we only focus on the simulation of these two protocols. We argue the following two points:

• When a corrupted party Pi behaves as Pking, the shares of [e]2t of honest parties are uniformly random
in both MultDN and Mult.

• When Pking’s send the same values to all honest parties in MultDN, S extracts the correct difference
for each multiplication tuple computed by MultDN and Mult.

For the first point, following from a similar argument in Lemma 1, the random sharing [r]t+[o]2t in MultDN
and the random sharing [r]2t in Mult satisfy that the shares of honest parties are uniformly random.
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Therefore, the shares of [e]2t of honest parties are uniformly random. For the second point, when Pking’s
send the same values to all honest parties, all degree-t Shamir sharings are consistent in the sense that the
shares of corrupted parties computed by S are consistent with the shares of honest parties. In this case,
following from a similar argument in Lemma 1, S extracts the correct difference for each multiplication tuple
computed by MultDN and Mult.

Note that FmultVerify is only executed when all parties receive the same values from Pking’s in MultDN.
Therefore, the above two points show that the distribution of Hybrid5 is identical to the distribution of
Hybrid4.

Hybrid6: In this hybrid, S emulates Frand,FdoubleRand,Fzero and simulates ExpandZero and Expand
as described above. Note that only the shares of corrupted parties are used in the rest of steps in Hybrid5.
Therefore, the distribution of Hybrid6 is identical to the distribution of Hybrid5.

Hybrid7: In this hybrid, S simulates the input phase. The only difference between Hybrid6 and
Hybrid7 is that, in Hybrid6, S uses the real input of honest clients to generate the input sharings, while in
Hybrid7, S simply samples random elements as the shares of corrupted parties. Note that the distributions
of the shares of corrupted parties in both hybrids are the same. Therefore, the distribution of Hybrid7 is
the same as Hybrid6.

Note that Hybrid7 is the execution in the ideal world, and the distribution of Hybrid7 is identical to
the distribution of Hybrid0, the execution in the real world.

Analysis of the Concrete Efficiency. In Main, all multiplication gates in the first layer of all sub-
circuits are evaluated by MultDN, which requires 5 elements per party per gate. All multiplication gates
in the second layer of all sub-circuits are evaluated by Mult, which requires 4 elements per party per gate.
Assuming that the number of multiplication gates in the first layer is roughly the same as the number of
multiplication gates in the second layer, the concrete efficiency of Main is 4.5 elements per party per gate.
Note that each sub-circuit is evaluated within one round of multiplication. Therefore, we reduce the number
of rounds by a factor of 2. The overall communication complexity is the same as that in [GSZ20], i.e.,
O(Cnφ+ n2 · logC · κ) bits.

4.4 Using PRG to Reduce Communication Complexity

We note that, relying on a pseudo-random generator (PRG), one can further reduce the communication
complexity. This idea is not new and has appeared in previous works such as [LN17, NV18, BBCG+19].

The high-level idea is to let each pair of parties hold a common random seed, which is not known to
other parties. For these two parties, they first evaluate the PRG on the common seed and chop the output
string into several segments. When one party needs to send a random field element to the other party, both
parties will transform the first unused segment into a field element. In this way, the communication cost of
sending random shares can be saved.

To set up a common random seed for each pair of parties, one party simply generates a random seed and
sends it to the other party. When a party Pi needs to distribute a random sharing [r]t, Pi first sends random
field elements to the first t parties {P1, . . . , Pt} (which is achieved by using PRG without communication).
Then Pi reconstructs the whole sharing [r]t using the shares of the first t parties and the secret r, and sends
the shares to the rest of t+ 1 parties. In this way, the communication cost of distributing a random sharing
is reduced to t+ 1 field elements.

When a party Pi needs to distribute a pair of random double shairngs ([r]t, [r]2t), the random degree-t
sharings can be distributed as above. Regarding [r]2t, Pi sends random field elements to all other parties as
their shares of [r]2t (which is achieved by using PRG without communication). Then, Pi can compute its
share of [r]2t by using the shares of the other parties and the secret r. In this way, the communication cost
of distributing a random sharing is reduced to t+ 1 field elements.

We briefly discuss how to use PRG in our two improvements.

• For the first improvement, recall that we transform t pairs of random double sharings generated by
FdoubleRand to n pairs of double sharings which are t-wise independent. Then a multiplication gate
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is evaluated by Mult with one pair of t-wise independent double sharings. We can use PRG in the
following two points:

1. In the instantiation of FdoubleRand in [DN07, GSZ20], each party generates a pair of random double
sharings, and all parties then locally transform these n pairs to t + 1 pairs of uniformly random
double sharings. Relying on PRG, the communication cost of distributing a pair of random double
sharings is reduced from 2n elements to t + 1 ≈ 0.5n elements. Therefore, the communication
cost of generating one pair of random double sharings is reduced from 4 elements per party to 1
elements per party.

2. In Mult, when Pking needs to distribute a random degree-t sharing of the reconstruction result,
it only needs to send t+ 1 elements instead of n elements. Therefore, the communication cost of
Mult is reduced from 2 elements to 1.5 elements.

Originally, each multiplication gate requires to communicate 4·t/n+2 ≈ 4 elements per party, including
4 · t/n elements for generating a pair of t-wise independent double sharings and 2 elements for Mult.
Relying on PRG, the communication cost is reduced to 1 · t/n+ 1.5 ≈ 2 elements per party.

• For the second improvement, note that multiplication gates in the second-layer of all sub-circuits are
evaluated by Mult, which require 2 elements per gate per party. For the multiplication gates in the
first layer, they are evaluated by MultDN. we can use PRG in the following two points:

1. In the instantiation of Frand in [DN07, GSZ20], each party generates a random degree-t Shamir
sharing, and all parties then locally transform these n sharings to t+ 1 uniformly random degree-
t Shamir sharings. Relying on PRG, the communication cost of distributing a random degree-t
Shamir sharing is reduced from n elements to t+1 ≈ 0.5n elements. Therefore, the communication
cost of generating one random degree-t Shamir sharing is reduced from 2 elements per party to 1
elements per party.

2. In Zero, all parties need to prepare random degree-2t Shamir sharings of 0. Relying on PRG, no
communication is required when one party needs to distribute a random degree-2t Shamir sharing
of 0. Therefore, generating random degree-2t sharings of 0 are free.

Originally, each multiplication gate requires to communicate 2 + 2 · t/n + 2 ≈ 5 elements per party,
including 2 elements for generating a random degree-t Shamir sharing, 2 · t/n elements for generat-
ing a t-wise independent degree-2t Shamir sharing of 0, and 2 elements for MultDN. Relying on
PRG, the communication cost is reduced to 1 + 2 = 3 elements per party. Therefore on average, the
communication cost per multiplication is reduced to (2 + 3)/2 = 2.5 elements per party.

Regarding the security, we first start from the case where every pair of honest parties still uses truly
random shares. Note that the corrupted parties learn nothing about the secret of a sharing distributed by
an honest party even if the shares of corrupted parties are determined by themselves. This is because the
corrupted parties only learn t shares of either a degree-t sharing or a degree-2t sharing, which are independent
of the secret value. Now, we can change the use of truly random shares to the shares generated by PRG for
each pair of honest parties one by one. The security follows from a straightforward hybrid argument.

5 Experimental Evaluation

In this section, we evaluate and compare the concrete efficiency of our proposed improvements. As a baseline
for comparison, we use the publicly available implementation of [CGH+18]. We also use a setup similar to
[CGH+18].
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5.0.1 Experiment Setup.

We run each party on an independent C4.large instance (2 cores with 2.9GHz and 3.75GB RAM) on
Amazon AWS. The instances are all located in the same region (i.e. a LAN configuration). Throughout our
experiments, we use the 61-bit Mersenne field, and we report the average of 5 executions as [CGH+18].

Our benchmark consists of two sets of synthetic arithmetic circuits. The first set has 4 circuits of 1
million multiplication gates, ranging from 20 layers to 10,000 layers. The second set has 2 circuits of 10
million multiplication gates, each with 20 layers and 100 layers. Together, the two sets cover scenarios
ranging from wide-and-shallow circuits to narrow-and-deep ones. We generate these two sets of synthetic
arithmetic circuits by using the code from [CGH+18]. We show running time on these circuits with 3 to 21
parties.

5.0.2 Benchmark Results.

Depth version 3 5 7 9 11 15 21

20 [CGH+18] 1126 1235 1642 1739 2029 2315 2762
20 [GSZ20] 763 857 1007 1068 1177 1301 1528
20 round-compression 642 709 810 858 974 989 1118
20 t-wise 545 622 711 752 842 917 1047
20 speedup vs [CGH+18] 2.1x 2.0x 2.3x 2.3x 2.4x 2.5x 2.6x
20 speedup vs [GSZ20] 1.4x 1.4x 1.4x 1.4x 1.4x 1.4x 1.5x

100 [CGH+18] 1122 1174 1591 1729 2033 2442 2915
100 [GSZ20] 696 887 1096 1122 1230 1430 1830
100 round-compression 655 719 839 849 914 1050 1190
100 t-wise 535 618 770 820 910 1038 1250
100 speedup vs [CGH+18] 2.1x 1.9x 2.1x 2.1x 2.2x 2.4x 2.3x
100 speedup vs [GSZ20] 1.3x 1.4x 1.4x 1.4x 1.4x 1.4x 1.5x

1k [CGH+18] 1480 1802 2510 2793 3232 4053 5093
1k [GSZ20] 1146 1358 1748 1920 2332 2744 3543
1k t-wise 939 1136 1490 1618 1983 2389 3108
1k round-compression 855 976 1195 1268 1511 1700 2100
1k speedup vs [CGH+18] 1.7x 1.8x 2.1x 2.2x 2.1x 2.4x 2.4x
1k speedup vs [GSZ20] 1.3x 1.4x 1.5x 1.5x 1.5x 1.6x 1.7x

10k [CGH+18] 4470 6444 9641 10702 15040 18398 24693
10k [GSZ20] 4457 5892 8747 9850 12832 18630 23026
10k t-wise 4333 5641 8570 9327 12323 16580 22220
10k round-compression 2477 3252 4713 5173 6633 8713 11719
10k speedup vs [CGH+18] 1.8x 2.0x 2.0x 2.1x 2.3x 2.1x 2.1x
10k speedup vs [GSZ20] 1.8x 1.8x 1.9x 1.9x 1.9x 2.1x 2.0x

Table 1: This table shows running times (in milliseconds) for circuits with 1 million multiplication gates
and of various depths. The columns show running times for different number of parties.

In Table 1 and Table 2, we compare the running time of four protocols: the baseline from [CGH+18], the
secure-with-abort protocol from [GSZ20], our improved protocol using t-wise independence (abbreviated as
t-wise), and the further improved version with round compression (abbreviated as round-compression).
The orders of the protocols shown in both tables are based on the running times. Table 1 shows results for
circuits of 1 million multiplication gates, and Table 2 shows results for circuits of 10 million multiplication
gates. Note that in Table 2, the baseline implementation runs out of memory when running with 11, 15, or
21 parties. We put N/A in those cases.

We observe that when the circuit depthD is small relative to its size (e.g. D = 20, 100), the t-wise version
achieves better speedup than the round-compression version. When D is large (e.g. D = 1, 000, 10, 000),
the round-compression version achieves significant further speedup.
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D version 3 5 7 9 11 15 21

20 [CGH+18] 11312 15118 17265 18988 N/A N/A N/A
20 [GSZ20] 7374 8795 10487 10883 11860 13520 15298
20 round-compression 5959 7176 8577 8846 9454 10538 11353
20 t-wise 5568 6461 7309 7892 8628 9524 10450
20 speedup vs [CGH+18] 2.0x 2.3x 2.4x 2.4x N/A N/A N/A
20 speedup vs [GSZ20] 1.3x 1.4x 1.4x 1.4x 1.4x 1.4x 1.5x

100 [CGH+18] 12279 15434 17797 19273 N/A N/A N/A
100 [GSZ20] 7502 8220 10480 10845 12467 13112 14766
100 round-compression 6799 7319 8333 8867 9545 10396 11309
100 t-wise 5503 6076 7254 7818 8849 9144 10250
100 speedup vs [CGH+18] 2.2x 2.5x 2.5x 2.5x N/A N/A N/A
100 speedup vs [GSZ20] 1.4x 1.4x 1.4x 1.4x 1.4x 1.4x 1.4x

Table 2: This table shows running times (in milliseconds) for circuits with 10 million multiplication gates
and of various depths. The columns show running times for different number of parties.

This is because when D is small, communication bandwidth is the bottleneck of running times. The
t-wise version effectively reduces the number of bytes communicated in each round, hence speeds up the
running time. The overhead of the round-compression version when D is small surpasses its improvement
in running time. However, when D is large, round latency becomes the bottleneck of running times, and
improvements on communication complexity become less significant. The round-compression version in
this case achieves significant speedup by reducing the round complexity.

In practice, we can have a switch in the code to decide whether to use the t-wise version or the
round-compression version according to the size and depth of each input circuit. By combining the two
improvements, we achieve around 2 times speedup compared with [CGH+18] in the overall running time,
which includes both communication and computation time, in all cases, and around 1.4 times speedup
compared with [GSZ20].
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