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Abstract

The best known n party unconditional multiparty computation protocols with an optimal corruption
threshold communicates O(n) field elements per gate. This has been the case even in the semi-honest
setting despite over a decade of research on communication complexity in this setting. Going to the
slightly sub-optimal corruption setting, the work of Damg̊ard, Ishai, and Krøigaard (EUROCRYPT
2010) provided the first protocol for a single circuit achieving communication complexity of O(log |C|)
elements per gate. While a number of works have improved upon this result, obtaining a protocol with
O(1) field elements per gate has been an open problem.

In this work, we construct the first unconditional multi-party computation protocol evaluating a single
arithmetic circuit with amortized communication complexity of O(1) elements per gate.

1 Introduction

Secure Multi-Party Computation (MPC) enables a set of n parties to mutually run a protocol that computes
some function f on their private inputs without compromising the privacy of their inputs or the correctness
of the outputs [Yao82, GMW87, CCD88, BOGW88]. An important distinction in designing MPC protocols is
that of the power of the adversary. An adversary in a semi-honest protocol follows the protocol’s specification
but tries to learn information from the received messages, and an adversary in a malicious protocol is allowed
to deviate from the protocol’s specification in arbitrary ways.

In this work, our focus is on the communication complexity of information theoretic protocols evaluating
an arithmetic circuit in the presence of semi-honest or malicious adversaries. The “dream” in the uncon-
ditional setting is to get as close to |C| as possible (or even below) where |C| is the circuit size. The best
known protocols in the so called optimal threshold regime tolerating t = (n− 1)/2 corrupted parties require
communicating O(n · |C|) field elements (ignoring circuit independent terms) [DN07, GIP+14, CGH+18,
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NV18, BBCG+19, GSZ20, BGIN20]. There are no constructions known beating this barrier even in the
semi-honest setting despite over a decade of research.

Moving to Sub-optimal Corruption Threshold. In a remarkable result, Damg̊ard et al. [DIK10]
showed an unconditional MPC protocol with communication complexity of O(log |C|·n/k) per gate (ignoring
circuit independent terms) tolerating t′ = (n − 1)/3 − k + 1 corrupted parties. This was later extended by
Genkin et al. [GIP15] to obtain a construction tolerating t′ = (n− 1)/2−k+ 1 corrupted parties with also a
constant factor improvement in the communication complexity. These works rely on the packed secret sharing
technique introduced by Franklin and Yung [FY92] where k secrets are packed into a single secret sharing.
An incomparable result was given by Garay et al. [GIOZ17] who obtained a protocol with communication
complexity O(log1+δ n · |C|) where δ is any positive constant. If one was interested in evaluating the same
circuit multiple times on different inputs, Franklin and Yung [FY92] showed how to use packed secret sharing
to evaluate k copies of the circuit with amortized communication complexity of O(n/k) elements per gate
or O(1) elements when k = O(n). However in case of a single circuit evaluation, the works mentioned
[GIP15, GIOZ17] remains the best known.

To our knowledge, there is no known unconditional MPC protocol which only requires communicating
O(1) field elements per gate for any corruption threshold (assuming the number of corrupted parties is at
least super-constant). This raises the following natural question:

Is it possible to construct information theoretic MPC protocols for computing a single arithmetic circuit
with communication complexity O(1) field elements per gate?

We answer the above question in the affirmative by constructing an information theoretic n-party pro-
tocol based on packed secret sharing for an arithmetic circuit over a finite field F of size |F| ≥ 2n. Our
communication complexity amortized over the multiplication gates within the same circuit (rather than
amortized over multiple circuits) is O(n/k) field elements per multiplication gate. Informally, we prove the
following:

Theorem 1 (informal). Assume a point-to-point channel between every pair or parties. For all 1 ≤ k ≤ t
where t = b(n− 1)/2c, there exists an information theoretic n-party MPC protocol which securely computes
a single arithmetic circuit in the presence of a semi-honest (malicious) adversary controlling up to t− k+ 1
parties with an communication complexity of O(n/k) field elements per multiplication gate. For the case
where k = O(n), the achieved communication complexity is O(1) elements per gate. In addition, our finite
field F is of size |F| ≥ 2n.

Our formal theorem for semi-honest security (with perfect security) can be found in Theorem 7 and for
malicious security (with abort and statistical security) in Theorem 8. In order to achieve these results, we
introduce a set of combinatorial lemmas which could be of independent interest. In particular, we marry
packed secret sharing with techniques from graph theory. A key technical challenge with using packed secret
sharing in the context of a single circuit is to make sure that all the required secrets for a batch of gates
appear in a single packed secret sharing. In addition, one needs to ensure that these secrets appear in the
correct order. Our key technical contributions in this paper relate to performing secure permutations of the
secrets efficiency by using techniques from perfect matching in bipartite graphs. In particular, we make an
extensive use of Hall’s Marriage Theorem.

1.1 Related Works

We note that the work [GIOZ17] focuses on the same setting as our paper (i.e., the corruption threshold
is t′ < (1/2 − ε)n but uses a different approach to evaluate a single circuit. Their goal is to achieve
communication complexity that is sublinear in the total number of parties. The high-level idea is to first select
a small subset of parties as the committee, which follows honest majority with overwhelming probability, and
then evaluate the circuit using an efficient protocol in the honest majority setting among the committee. As a
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result, their protocol achieves communication complexity of O(log1+δ n · |C|) elements with error probability
negligible in n for any constant δ > 0. Compared with ours, when measuring the communication complexity
per gate, our protocol achieves O(1) elements while the protocol in [GIOZ17] requires O(log1+δ n) elements.
In Appendix C, we show that we can combine the techniques in [GIOZ17] with ours to further reduce the
communication complexity.

Recently, two independent works [GSY21, BGJK21] also use the packed secret sharing technique in
the MPC paradigm. The work [GSY21] uses the packed secret sharing to prepare Beaver triples in the
preparation phase. Then these Beaver triples are unpacked by using additive sharings and distributed to
the parties for the online phase. The use of packed secret sharing allows Gorden, et al. [GSY21] to achieve
O(1) elements per Beaver triple in the communication complexity during the preparation phase. However,
these Beaver triples are used individually after unpacking, which leads to O(n) elements per gate in the
online phase. Gorden, et al. [GSY21] discusses how to use (one or more) small committees to mitigate the
communication cost in the online phase. But they still do not achieve O(1) elements per gate in the online
phase. Moreover, the work [GSY21] highly relies on computational assumptions.

The work [BGJK21] studies a special class of circuits that have a highly repetitive structure. Informally,
a highly repetitive circuit is composed of several blocks with sufficient width that recur sufficient number of
times throughout the circuit. Beck, et al. [BGJK21] show that O(1) elements per gate can be achieved for
such a kind of circuits. Technically, the highly repetitive structure allows Beck, et al. [BGJK21] to efficiently
prepare random sharings to perform permutations on the secrets in a single sharing. Informally, when using
the packed secret sharing technique to evaluate a batch of (multiplication or addition) gates, we need to
ensure that the secrets of the two input sharings are in the correct order, i.e., for each input sharing, the
i-th secret corresponds to the input of the i-th gate. To achieve the correct order, we need to permute the
secrets in a single sharing. Known techniques from [DIK10] require all parties to first prepare a pair of
random sharings in a specific structure that is related to the permutation we want to perform. The main
bottleneck is that such a pair of random sharings can only be efficiently prepared in a batch way (of batch
size O(n)). It requires that this permutation needs to be performed at least O(n) times to achieve the
communication complexity O(1) elements per gate. See more discussions about this overhead in Section 2.2.
The highly repetitive structure ensures this property directly since each kind of permutations that is required
to perform in the circuit is guaranteed to be used at least once in each recursion. Compared with [BGJK21],
we achieve the same communication complexity, i.e., O(1) elements per gate, with no requirement in the
circuit structure.

The notion of MPC was first introduced in [Yao82, GMW87] in 1980s. Feasibility results for MPC
were obtained by [Yao82, GMW87] under cryptographic assumptions, and by [BOGW88, CCD88] in the
information-theoretic setting. Subsequently, a large number of works have focused on improving the efficiency
of MPC protocols in various settings.

In the setting of honest majority, a rich line of works focus on malicious security-with-abort and improv-
ing the communication efficiency [DN07, GIP+14, CGH+18, NV18, BBCG+19, GSZ20, BGIN20]. When
assuming the existence of a broadcast channel, the works [BSFO12, GSZ20] have shown that guaranteed
output delivery can also be achieved efficiently.

It is known that perfect security (where there is no error and the protocol is guaranteed to succeed)
requires the corruption threshold t < n/3. In this setting, a series of works [HMP00, HM01, DN07, BTH08,
GLS19] focused on improving the asymptotic communication complexity.

2 Technical Overview

In the following, we will use n = 2t + 1 to denote the number of parties. Let 1 ≤ k ≤ t be an integer. We
consider the scenario where an adversary is allowed to corrupt t′ = t−k+ 1 parties. For simplicity, we focus
on the semi-honest setting. We will discuss how to achieve malicious security at a later point.

Our construction will use the packed secret-sharing technique introduced by Franklin and Yung [FY92].
This is a generalization of the standard Shamir secret sharing scheme [Sha79]. It allows to secret-share a
batch of secrets within a single Shamir sharing. In the case that t′ = t− k+ 1, we can use a degree-t Shamir
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sharing, which requires t + 1 shares to reconstruct the whole sharing, to store k secrets such that any t′

shares are independent of the secrets. We refer to such a sharing as a degree-t packed Shamir sharing. Let
x be a vector of dimension k. We use [x] to denote a degree-t packed Shamir sharing of the secrets x.

In this work, we are interested in the information-theoretic setting. Our goal is to construct a semi-honest
MPC protocol for a single arithmetic circuit over a finite field F (of size |F| ≥ 2n), such that the amortized
communication complexity (of each party) per gate is O(n/k) elements. Note that when k = O(n), the
amortized communication complexity per gate becomes O(1) elements.

2.1 Background: Using the Packed Secret-sharing Technique in MPC

In the information-theoretic setting, a general approach to construct an MPC protocol is to compute a secret
sharing for each wire of the circuit. The circuit is evaluated gate by gate, and the problem is reduced to
compute the output sharing of an addition gate or a multiplication gate given the input sharings. When
the corruption threshold can be relaxed to t′ = t− k + 1 where t = n−1

2 , a natural way of using the packed
secret-sharing technique [FY92] is to compute k ≥ 1 copies of the same circuit (i.e., a SIMD circuit): by
storing the value related to the i-th copy in the i-th position of the secret sharing for each wire, all copies of
the same circuit are evaluated simultaneously. Moreover, the communication complexity of a single operation
for packed secret sharings is usually the same as that for standard secret sharings. Effectively, the amortized
communication complexity per copy is reduced by a factor of k.

In 2010, Damg̊ard et al. [DIK10] provided the first protocol of using packed secret-sharing technique to
evaluate a single circuit. The original work focuses on the corruption threshold t′ < (1/3− ε)n and perfect
security. It is later extended by [GIP15] to the setting of security with abort against t′ < (1/2−ε)n corrupted
parties with a constant factor improvement in the communication complexity1. At a high-level, the idea is
to divide the gates of the same type in each layer into groups of k. Each group of gates will be evaluated at
the same time. For each group of gates, all parties need to prepare the input sharings by using the output
sharings from previous layers. Unlike the case when evaluating a SIMD circuit, input sharings for each group
of gates do not come for free:

• The secrets needed to be in a single sharing may be scattered in different output sharings of previous
layers.

• Even if we have all the secrets in a single sharing, we need the secrets to be in the correct order so that
the i-th secret is the input of the i-th gate.

The naive approach of preparing a single input sharing by collecting the secret one by one would require O(k)
operations, which eliminates the benefit of using the packed secret-sharing technique. In [DIK10], they solve
this problem by compiling the circuit into a special form of a universal circuit such that it can be viewed as
k copies of the same circuit. In particular, the compilation uses the so-called Beneš network, which increases
the circuit size by a factor of log |C|, where |C| is the circuit size. As a result, the amortized communication
complexity per gate is O(log |C| · n/k) elements.

Our work aims to remove the log |C| factor in the communication complexity and achieves the same
communication efficiency as that for the evaluation of many copies of the same circuit. In this paper, we
describe our idea from the bottom up:

1. We start with the basic protocols to evaluate input gates, addition gates, multiplication gates, and
output gates using the packed Shamir sharing scheme. These protocols are simple variants of the
protocols in [DN07], which focuses on the adversary that can corrupt t parties.

2. To use these protocols to evaluate addition gates and multiplication gates, we need the secrets in the
input packed Shamir sharings to have the correct order. Assuming each input sharing contains all the
secrets we want, we discuss how to permute the secrets in each input sharing to the correct order.

1While the semi-honest version of the protocol in [GIP15] can use a field F of size O(n), the maliciously secure protocol
requires to use a large enough field since the error probability is proportional to the field size.
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3. Next, we show how to collect the secrets of an input packed Shamir sharing from the output sharings
of previous layers. Our solution requires that each output wire from each layer is only used once in
the computation, as an input wire to a single layer. This requirement can be met by further requiring
that there is a fan-out gate right after each gate that copies the output wire the number of times it is
used in later layers.

4. After that, we discuss how to evaluate fan-out gates efficiently.

5. Finally, we discuss how to achieve malicious security.

Our key techniques lie on the second point and the third point. We will focus on these two points in the
technical overview, which are in Section 2.2 and Section 2.3. We will briefly discuss the last two points in
Section 2.4 and Section 2.6.

2.2 Performing an Arbitrary Permutation on the Secrets of a Single Sharing

During the computation, we may encounter the scenario that the order of the secrets is not what we want. For
example, when k = 2 and we want to compute two multiplication gates with input secrets (x1, y1), (x2, y2),
ideally we want all parties to hold two packed Shamir sharings of x = (x1, x2) and y = (y1, y2) so that when
we use the multiplication protocol with these two packed Shamir sharing, we can obtain a packed Shamir
sharing of the secret x ∗ y = (x1 · y1, x2 · y2). During the computation, however, all parties may hold two
packed Shamir sharings of x = (x1, x2) and y′ = (y2, y1). In particular, the secrets in the second sharing are
not in the order we want. Using these two packed Shamir sharings in the multiplication protocol, we can only
obtain a packed Shamir sharing of x∗y′ = (x1 ·y2, x2 ·y1) instead of the correct result x∗y = (x1 ·y1, x2 ·y2).

To solve it, we need to construct a protocol which allows all parties to perform an arbitrary permutation
on the secrets of a single sharing. Let p(·) be a permutation over {1, 2, . . . , k}. We use Fp to denote the
linear map which maps x to x̃ such that xi = x̃p(i) for all i ∈ {1, 2, . . . , k}. In other words, Fp maps the
i-th value of x to the p(i)-th position. Given the input sharing [x], the goal is to compute a degree-t packed
Shamir sharing [Fp(x)].

We first review the approach in [DIK10] for permuting the secrets of [x]:

1. All parties prepare two random degree-t packed Shamir sharings ([r], [r̃]), where r̃ = Fp(r) and p(·) is
the permutation we want to perform.

2. All parties locally compute [e] := [x] + [r] and send their shares to the first party P1.

3. P1 reconstructs the secrets e and computes ẽ = Fp(e). P1 generates a random degree-t packed Shamir
sharing [ẽ] and distributes the shares to other parties.

4. All parties locally compute [x̃] := [ẽ]− [r̃].

To see the correctness, note that in the second step we have e = x+ r. Therefore,

x̃ = Fp(x) = Fp(e− r) = Fp(e)− Fp(r) = ẽ− r̃.

The communication complexity of this protocol is O(n/k) elements per secret (excluding the cost for the
preparation of ([r], [r̃])).

As noted in [DIK10], the main issue of this approach is how to efficiently prepare a pair of random sharings
([r], [r̃]). Although there are known techniques to prepare random sharings ([r], [r̃]) for a fixed permutation
p such that the amortized communication complexity per pair is O(n) elements where in turn the amortized
cost per secret is O(n/k) elements, these techniques suffer a large overhead (at least O(n2) elements) that is
independent of the number of sharings we want to prepare. It means that the overhead of preparing random
sharings depends on the number of different permutations we want to perform. In the worst case where each
time we need to perform a different permutation, the overhead of each pair of random sharings is as large
as O(n2) elements, which eliminates the benefit of using the packed Shamir sharing scheme. In [DIK10],
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this issue is solved by compiling the circuit such that only O(log n) different permutations are needed in
the computation with the cost of blowing up the circuit size by a factor of O(log |C|), where |C| is the
circuit size. This approach does not achieve our goal since the amortized communication complexity per
gate becomes O(log |C| ·n/k) elements. To generate random sharings for m permutations, our idea is to first
generate random sharings for a limited number (O(n2)) of different permutations which are related to the
input permutations, and then transform them to the random sharings for the desired permutations (the input
permutations). In this way, since we only need to prepare random sharings for O(n2) different permutations,
we do not suffer the quadratic overhead in the communication complexity even if all the input permutations
are different. Moreover, we do not need to compile the circuit and therefore do not suffer the O(log |C|) factor
in the communication complexity as that in [DIK10]. As a result, the amortized communication complexity
of our permutation protocol is O(n/k) elements per secret.

Before introducing our idea, we first introduce a useful functionality Fselect, which selects secrets from
one or more packed Shamir sharings and outputs a single sharing which contains the chosen secrets. Later
on, we will use Fselect to solve the above issue of preparing random sharings for permutations. Concretely,
Fselect takes as input k degree-t packed Shamir sharings {[x(i)]}ki=1 (which do not need to be distinct) and

outputs a degree-t packed Shamir sharing of y such that yi = x
(i)
i . Effectively, Fselect chooses the i-th secret

of [x(i)] and generates a new degree-t packed Shamir sharing [y] that contains the chosen secrets. Note
that the secrets we choose are from different positions and the positions of these secrets remain unchanged
in the output sharing. To realize Fselect, we observe that y can be computed by

∑k
i=1 e

(i) ∗ x(i), where
e(i) is a constant vector where the i-th entry is 1 and all other entries are 0, and ∗ denotes the coordinate-
wise multiplication operation. We realize Fselect by extending the basic protocol for multiplication gates as
described in Section 4.2. The amortized communication complexity of Fselect is O(n/k) elements per secret.

Using Fselect to Generate Random Sharings for Permuting Secrets. For all i, j ∈ {1, 2, . . . , k}, we
say a pair of degree-t packed Shamir sharings ([x], [y]) contains an (i, j)-component if xi = yj . To perform
a permutation p(·), we need to prepare two random degree-t packed Shamir sharings ([r], [Fp(r)]). We can
view ([r], [Fp(r)]) as a composition of an (i, p(i))-component for all i ∈ [k].

Now we introduce a new approach for preparing random sharings ([r], [Fp(r)]):

1. Let q1, q2, . . . , qk be k different permutations over {1, 2, . . . , k} such that for all i ∈ [k], qi(i) = p(i).

2. All parties prepare a pair of random sharings for each permutation qi, denoted by ([r(i)], [Fqi(r
(i))]).

Since qi(i) = pi, ([r(i)], [Fqi(r
(i))]) contains an (i, p(i))-component.

3. To prepare ([r], [Fp(r)]), we can use Fselect to select the (i, p(i))-component from ([r(i)], [Fqi(r
(i))]) for

all i ∈ [k]. More concretely, for [r], we use Fselect to select the i-th secret of [r(i)] for all i ∈ [k]. For
[Fp(r)], we use Fselect to select the p(i)-th secret of [Fqi(r

(i))] for all i ∈ [k].

While this way of preparing a single pair of random sharings for the permutation p requires k pairs of
random sharings for k permutations q1, . . . , qk, we note that the unused components of ([r(i)], [Fqi(r

(i))]) can
potentially be used to prepare random sharings for other permutations.

In general, when we want to prepare random sharings for m permutations p1(·), p2(·), . . . , pm(·), relying
on Fselect, it is sufficient to alternatively prepare random sharings for m permutations q1(·), q2(·), . . . , qm(·)
such that:

• For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm} which satisfies that p(i) = j
is equal to the number of permutations q ∈ {q1, q2, . . . , qm} which satisfies that q(i) = j.

Then, from i = 1 to m, a pair of random sharings for the permutation pi can be prepared by using Fselect to
choose the first unused (j, pi(j))-component for all j ∈ [k].

The major benefit of this approach is that we can limit the number of different permutations in {q1, q2, . . . , qm}
as we show in Theorem 2.

Theorem 2. Let m, k ≥ 1 be integers. For all m permutations p1, p2, . . . , pm over {1, 2, . . . , k}, there exists
m permutations q1, q2, . . . , qm over {1, 2, . . . , k} such that:
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• For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm} such that p(i) = j is the
same as the number of permutations q ∈ {q1, q2, . . . , qm} such that q(i) = j.

• q1, q2, . . . , qm contain at most k2 different permutations.

Moreover, q1, q2, . . . , qm can be found within polynomial time given p1, p2, . . . , pm.

Recall that the issue of using known techniques to prepare random sharings for p1, p2, . . . , pm is that there
will be an overhead of O(n2) elements per different permutation in p1, p2, . . . , pm. Relying on Fselect, we
only need to prepare random sharings for permutations q1, . . . , qm, which contain at most k2 ≤ n2 different
permutations. In this way, the overhead is independent of the number of permutations and the circuit size.
Recall that the amortized communication complexity for each pair of random sharings is O(n/k) elements
per secret, and our protocol for Fselect and the permutation protocol from [DIK10] also have the same
amortized communication complexity, i.e., O(n/k) elements per secret. Therefore, the overall communication
complexity to perform an arbitrary permutation on the secrets of a single secret sharing is O(n/k) elements
per secret.

Using Hall’s Marriage Theorem to Prove Theorem 2. We note that Theorem 2 has a close connection
to graph theory. We first introduce two basic notions.

• For a graph G = (V,E), we say G is a bipartite graph if there exists a partition (V1, V2) of V such that
all edges are between vertices in V1 and vertices in V2. Such a graph is denoted by G = (V1, V2, E).

• For a bipartite graph G = (V1, V2, E) where |V1| = |V2|, a perfect matching is a subset of edges E ∈ E
which satisfies that each vertex in the sub-graph (V1, V2, E) has degree exactly 1.

Note that a permutation p over {1, 2, . . . , k} corresponds to a perfect matching in a bipartite graph: the set
of vertices are V1 = V2 = {1, 2, . . . , k}, and the set of edges are E = {(i, p(i))}ki=1.

We first construct a bipartite graph G = (V1, V2, E) where V1 = V2 = {1, 2, . . . , k} and E contains all
edges in the perfect matching that p1, p2, . . . , pm correspond to. Strictly speaking, G is a multi-graph since
a pair of vertices may have multiple edges. Note that Theorem 2 is equivalent to decomposing G into m
perfect matching such that the number of different perfect matching is bounded by k2. Our idea of finding
these m perfect matching is to repeat the following steps until E becomes empty:

1. We first find a perfect matching E ⊂ E in G.

2. We repeatedly remove E from E until E is no longer a subset of E. The number of times that E is
removed from E is the number of times that E appears in the output perfect matching.

Note that the number of different perfect matches is the same as the number of iterations of the above two
steps. Suppose the first step always succeeds. The second step guarantees that in each iteration, we will
completely use up the edges between one pair of vertices in E. Since there are at most k2 different pairs of
vertices, the above process will terminate within k2 iterations.

For the first step, we use Hall’s Marriage Theorem to prove the existence of a perfect matching.

Theorem 3 (Hall’s Marriage Theorem). For a bipartite graph (V1, V2, E) such that |V1| = |V2|, there exists
a perfect matching iff for all subset V ′1 ⊂ V1, the number of the neighbors of vertices in V2 is at least |V ′1 |.

Hall’s Marriage Theorem is a well-known theorem in graph theory which has many applications in math-
ematics and computer science. It provides a necessary and sufficient condition of the existence of a perfect
matching in a bipartite graph. In addition, there are known efficient polynomial-time algorithms to find a
perfect matching in a bipartite graph, e.g. the Hopcroft-Karp algorithm.

To prove the existence of a perfect matching, we show that the graph G at the beginning of each
iteration satisfies the necessary and sufficient condition in Hall’s Marriage Theorem. We say a bipartite
graph G′ = (V ′1 , V

′
2 , E

′) is d-regular if the degree of each vertex in V ′1
⋃
V ′2 is d. A well-known corollary of

Hall’s Marriage Theorem states that:
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Corollary 1. There exists a perfect matching in a d-regular bipartite graph.

Therefore, it is sufficient to show that the graph G at the beginning of each iteration is a d-regular
bipartite graph. Recall that in the beginning, the set of edges E contains all edges in the perfect matching
that p1, p2, . . . , pm correspond to. Since by definition, the degree of each vertex in a perfect matching is
exactly 1, the degree of each vertex in G is m, which means that G is a m-regular bipartite graph. In each
iteration, we first find a perfect matching in Step 1 and then repeatedly remove this perfect matching from
E in Step 2. Each time of removing a perfect matching reduces the degree of each vertex in G by 1. Thus,
G is still a d-regular bipartite graph after each remove of a perfect matching. Therefore, the graph G at the
beginning of each iteration is a d-regular bipartite graph.

2.3 Obtaining Input Sharings for Multiplication Gates and Addition Gates

So far, we have introduced how to perform a permutation to the secrets of a single sharing to obtain the
correct order. However, this only solves the problem when we have all the values we want in a single sharing.
During the computation, such a sharing does not come for free since the values we want may be scattered
in one or more output sharings of previous layers. This requires us to collect the secrets from those sharings
and generate a single sharing for these secrets efficiently.

Our starting point is the functionality Fselect. Recall that Fselect allows us to select secrets from one
or more sharings and generate a new sharing for the chosen secrets if the secrets we select are in different
positions. To use Fselect, we consider what we call the non-collision property stated in Property 1.

Property 1 (Non-collision). For each input sharing of each layer, the secrets of this input sharing come
from different positions in the output sharings of previous layers.

Note that if we can guarantee the non-collision property, then we can use Fselect to generate the input
sharing we want. Unfortunately, this property does not hold in general. A counterexample is that we need
the same secret twice in a single input sharing. Then these two secrets will always come from the same
position. To solve this problem, we require that

• every output wire of the input layer and all intermediate layers is used exactly once as an input wire
of a later layer (which may not be the next layer).

Note that this requirement can be met without loss of generality by assuming that there is a fan-out gate
right after each (input, addition, or multiplication) gate that copies the output wire the number of times it
is used in later layers. In the next subsection, we will discuss how to evaluate fan-out gates efficiently. With
this requirement, there is a bijective map between the output wires (of the input layer and all intermediate
layers) and the input wires (of the output layer and all intermediate layers).

Note that only meeting this requirement is not enough: it is still possible that two secrets of a single
input sharing come from the same position but in two different output sharings. Our idea is to perform a
permutation on each output sharing to achieve the non-collision property.

Since every output wire from every layer is only used once as an input wire of another layer, the number
of output sharings in the circuit is the same as the number of input sharings in the circuit. Let m denote the
number of output packed Shamir sharings of the input layer and all intermediate layers in the circuit. Then
the number of input packed Shamir sharings of the output layer and all intermediate layers is also m. We
label all the output sharings by 1, 2, . . . ,m and all the input sharings also by 1, 2, . . . ,m. Consider a matrix
N ∈ {1, 2, . . . ,m}m×k where Ni,j is the index of the input sharing that the j-th secret of the i-th output
sharing wants to go to. Then for all ` ∈ {1, 2, . . . ,m}, there are exactly k entries of N which are equal to `.
We will prove the following theorem.

Theorem 4. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m× k in {1, 2, . . . ,m}m×k such
that for all ` ∈ {1, 2, . . . ,m}, the number of entries of N which are equal to ` is k. Then, there exists m
permutations p1, p2, . . . , pm over {1, 2, . . . , k} such that after performing the permutation pi on the i-th row
of N , the new matrix N ′ satisfies that each column of N ′ is a permutation over (1, 2, . . . ,m). Furthermore,
the permutations p1, p2, . . . , pm can be found within polynomial time.
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Jumping ahead, when we apply pi to the i-th output sharing for all i ∈ {1, 2, . . . ,m}, Theorem 4
guarantees that for all j ∈ {1, 2, . . . , k} the j-th secrets of all output sharings want to go to different input
sharings. Note that this ensures the non-collision property. During the computation, we will perform the
permutation pi on the i-th output sharing right after it is computed. Note that when preparing an input
sharing, the secrets we need only come from the output sharings which have been computed. The secrets of
these output sharings have been properly permuted such that the secrets we want are in different positions.
Therefore, we can use Fselect to choose these secrets and obtain the desired input sharing.

Using Hall’s Marriage Theorem to Prove Theorem 4. Let N be the matrix in Theorem 4. Our
idea is to repeat the following steps:

1. In the `-th iteration, for each row of N , we pick a value in the last k− `+ 1 entries of this row (so that
the first `− 1 entries will not be chosen), such that the values we pick in all rows form a permutation
over {1, 2, . . . ,m}.

2. For each row of N , we swap the `-th entry with the value we picked in this row. In this way, the `-th
column of N is a permutation over {1, 2, . . . ,m}.

Note that in each iteration, we switch two elements in each row. At the end of the above process, we can
compute the permutation for each row based on the elements we switched in each iteration.

To make this idea work, we need to show that we can always find the values which form a permutation
over {1, 2, . . . ,m} in Step 1. We transform this problem to finding a perfect matching in a bipartite graph.
We explain our solution for the first iteration.

Consider a graph G = (V1, V2, E) where V1 = V2 = {1, 2, . . . ,m}. For each entry Ni,j , there is an edge
(i,Ni,j) in E. Then picking a value in each row is equivalent to picking an edge for each vertex in V1. The
chosen values forming a permutation over {1, 2, . . . ,m} is equivalent to the chosen edges forming a perfect
matching in G. To prove the existence of a perfect matching, we show that the graph G is a k-regular
bipartite graph and rely on the corollary (Corollary 1) of Hall’s Marriage Theorem. For all vertex i ∈ V1,
there is an edge (i,Ni,j) in E for each entry in the i-th row of N . Therefore, the degree of the vertex i is k.
For all vertex j ∈ V2, the degree of j equals to the number of entries in N which equal to j. Note that there
are exactly k entries which equals to j. Thus, the degree of the vertex j is k. Therefore G is a k-regular
graph. By Corollary 1, there exists a perfect matching in G. The same arguments work for other iterations.
We refer the readers to Section 4.3 for more details.

It is worth noting that we use Hall’s Marriage Theorem to solve two different problems:

• In Theorem 2, we use Hall’s Marriage Theorem to find a different set of permutations q1, q2, . . . , qm
given the permutations p1, p2, . . . , pm and limit the number of different permutations in q1, q2, . . . , qm.

• In Theorem 4, we use Hall’s Marriage Theorem to find a permutation for each output sharing to achieve
the non-collision property (Property 1).

2.4 Handling Fan-out Gates

We briefly discuss how to evaluate fan-out gates efficiently. We first model the problem as follows: given a
degree-t packed Shamir sharing [x] along with a vector (n1, n2, . . . , nk) ∈ Nk, where ni ≥ 1 is the number
of times that xi is used in later layers, the goal is to compute n1+n2+...+nk

k degree-t packed Shamir sharings
which contain ni copies of the value xi for all i ∈ {1, 2, . . . , k}. (For simplicity, we assume that n1+n2+. . .+nk
is a multiple of k. We refer the readers to Section 5.1 for how we handle the edge case.)

Our idea is to compute the output sharings one by one. For each output sharing [y], all values of y
come from x, which means that we may write y as a linear function of x. Let F be a linear map such that
y = F (x). To compute [y], we can prepare a pair of random sharings ([r], [F (r)]) and use the same method
to compute [y] as that for permutations. Then we face the same problem that naively preparing the random
sharings ([r], [F (r)]) suffer an overhead which depends on the number of different linear maps F . In the
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worst case where we need a different linear map for different output packed Shamir sharing, the overhead of
preparing each pair of random sharings is as large as O(n2) elements, which eliminate the benefit of using
the packed Shamir sharing scheme.

We follow the same idea as that for permutation to prepare the random sharings ([r], [F (r)]): Given m
different linear maps F1, F2, . . . , Fm, we will prepare random sharings for m other linear maps G1, G2, . . . , Gm
and then recompose the components in the random sharings for G1, G2, . . . , Gm to obtain random sharings
for F1, F2, . . . , Fm. The main difficulty is that it is unclear how to define a component. Our solution includes
the following additional steps:

• We require the secrets of the output packed Shamir sharings to be in a specific order.

• To compute each output packed Shamir sharing [y], we first permute the secrets of [x] based on y.

These two steps allow us to properly define a component in a way that we can efficiently find G1, G2, . . . , Gm
such that the above idea works. We refer the readers to Section 4.4 for more details.

2.5 Overview of Our Semi-honest Protocol

So far, we have introduced all the building blocks we need in our semi-honest protocol. To evaluate a single
circuit:

1. All parties first transform the circuit to a good form in the sense that the number of gates of each
type in each layer is a multiple of k. The transformation is done locally by running a deterministic
algorithm. Unlike [DIK10], our transformation only increases the circuit size by a constant factor and
an additive term O(k · Depth), where the latter term comes from the fact that the number of gates in
each layer is a multiple of k after the transformation. The same term (or a larger term) also exists
in [DIK10, GIP15]. We refer the readers to Section 5.1 for more details.

2. All parties preprocess the circuit to determine how the wire values should be packed. Also, all parties
compute a permutation for each output sharing for the non-collision property (see Property 1 in
Section 2.3). This step is also done locally. We refer the readers to Section 5.2 for more details.

3. Finally, all parties evaluate the circuits using the protocols we described above. We refer the readers
to Section 5.3 for more details.

Note that only the third step requires communication. We briefly analyze the communication complexity.
For each group of k gates, all parties use the basic protocol to evaluate these gates. The communication
complexity of the basic protocol is O(n) elements. To prepare the input sharings for this group of k (addition,
multiplication, or output) gates, we need to evaluate fan-out gates, perform permutations to achieve the non-
collision property, use Fselect to collect the secrets of the input sharings, and perform permutations again
to obtain the correct orders. Since each operation requires O(n) elements, the amortized communication
complexity per gate is O(n/k) elements.

2.6 Achieving Malicious Security

We briefly discuss how to compile our semi-honest protocol to a fully malicious one. Our main observation
is that most of our semi-honest protocols have already achieved perfect privacy against a fully malicious
adversary, namely the executions of these protocols do not leak any information to the adversary. Also, the
deviation of a fully malicious adversary can be reduced to the following two kinds of attacks:

• An adversary can distribute an inconsistent degree-t packed Shamir sharing.

• An adversary can add additive errors to the secrets of the output sharing.
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To achieve malicious security, our idea is to first run our semi-honest protocol before the output phase, check
whether the above two kinds of attacks are launched by the adversary, and finally reconstruct the output.

To this end, for each semi-honest protocol, we first construct a functionality which allows the adversary
to launch the above two kinds of attacks, and prove that our semi-honest protocol securely (with abort)
computes the new functionality against a fully malicious adversary (see Section 6 for more details). Then we
construct protocols to check whether the above two kinds of attacks are launched by the adversary. We view
the computation as a composition of two parts: (1) evaluation of the basic gates, i.e., addition gates and
multiplication gates, and (2) network routing, i.e., computing input sharings of each layer using the output
sharings from previous layers.

• For the first part, since addition gates are computed without interaction, it is sufficient to only check
the correctness of multiplications. We extend the recent sub-linear verification techniques [BBCG+19,
GSZ20] which are used in the honest majority setting (i.e., the corruption threshold t′ = t) to our
setting (i.e., the corruption threshold t′ = t − k + 1). We refer the readers to Section 7.1 for more
details.

• For the second part, it includes evaluating fan-out gates, performing permutations to achieve the non-
collision property, using Fselect to collect the secrets of the input sharings, performing permutations
again to obtain the correct orders. We note that the network routing does not change the secret
values. Instead, its goal is to create new sharings which contain the secret values we want in the
correct positions. Thus, it is sufficient to only focus on the front sharing before the network routing
and the end sharing after the network routing, and check whether they have the same values. We refer
the readers to Section 7.2 for more details.

Finally, when both checks pass, all parties reconstruct the output as the semi-honest protocol.

Remark 1. We note that the multiplication protocol is an exception in the sense that it cannot be reduced
directly to the additive attacks we mention above. In fact, the work [GIP15] showed that a malicious attack
can only be reduced to a linear attack, where the error in the output secret can depend on the input secrets.
Our observation is that the linear attack is due to the inconsistency of the input sharings. If the input
sharings are consistent, then the linear attack in [GIP15] degenerates to an additive attack to the final result.
To model such a security property, we use a weaker functionality for the multiplication protocol, which does
not guarantee the correctness of the multiplication result when the input sharings are inconsistent. The
verification is done by first checking the consistency of all sharings. If the verification passes, then the attack
of an adversary degenerates to additive attacks, which allows us to use the efficient verification protocol for
multiplication gates in previous works. More discussion can be found in Section 6.1 for the multiplication
protocol, and Section 7.1 for the verification protocol.

3 Preliminaries

3.1 The Model

In this work, we use the client-server model for the secure multi-party computation. In the client-server
model, clients provide inputs to the functionality and receive outputs, and servers can participate in the
computation but do not have inputs or get outputs. Each party may have different roles in the computation.
Note that, if every party plays a single client and a single server, this corresponds to a protocol in the
standard MPC model. Let c denote the number of clients and n = 2t+ 1 denote the number of servers. For
all clients and servers, we assume that every two of them are connected via a secure (private and authentic)
synchronous channel so that they can directly send messages to each other. The communication complexity
is measured by the number of bits via private channels.

We focus on functions that can be represented as arithmetic circuits over a finite field F with input,
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addition, multiplication, and output gates2. We use κ to denote the security parameter, C to denote the
circuit, and |C| for the size of the circuit. We assume that the field size is |F| ≥ 2n.

3.1.1 Security Definition.

Let 1 ≤ k ≤ t be an integer. Let F be a secure function evaluation functionality. An adversary A can corrupt
at most c clients and t′ = t− k+ 1 servers, provide inputs to corrupted clients, and receive all messages sent
to corrupted clients and servers. In this work, we consider both semi-honest adversaries and fully malicious
adversaries.

• If A is semi-honest, then corrupted clients and servers honestly follow the protocol.

• If A is fully malicious, then corrupted clients and servers can deviate from the protocol arbitrarily.

Real-World Execution. In the real world, the adversary A controlling corrupted clients and servers
interacts with honest clients and servers. At the end of the protocol, the output of the real-world execution
includes the inputs and outputs of honest clients and servers and the view of the adversary.

Ideal-World Execution. In the ideal world, a simulator Sim simulates honest clients and servers and
interacts with the adversary A. Furthermore, Sim has one-time access to F , which includes providing inputs
of corrupted clients and servers to F , receiving the outputs of corrupted clients and servers, and sending
instructions specified in F (e.g., asking F to abort). The output of the ideal-world execution includes the
inputs and outputs of honest clients and servers and the view of the adversary.

We say that a protocol π securely computes F if there exists a simulator Sim, such that for all adversaryA,
the distribution of the output of the real-world execution is statistically indistinguishable from the distribution
of the output of the ideal-world execution. We refer the readers to [GIP+14] for a formal definition.

3.1.2 Benefits of the Client-Server Model.

In our construction, the clients only participate in the input phase and the output phase. The main com-
putation is conducted by the servers. For simplicity, we use {P1, . . . , Pn} to denote the n servers, and refer
to the servers as parties. Let C denote the set of all corrupted parties and H denote the set of all honest
parties. One benefit of the client-server model is that it is sufficient to only consider maximum adversaries,
i.e., adversaries which corrupt t′ = t − k + 1 parties. At a high-level, for an adversary A which controls
t′ < t−k+1 parties, we may construct another adversary A′ which controls additional (t−k+1)− t′ parties
and behaves as follows:

• For a party corrupted by A, A′ follows the structure of A. This is achieved by passing messages
between this party and other n− t′ honest parties.

• For a party which is not corrupted by A, but controlled by A′, A′ honestly follows the protocol.

Note that, if a protocol is secure against A′, then this protocol is also secure against A since the additional
(t−k+1)−t′ parties controlled by A′ honestly follow the protocol in both cases. Thus, we only need to focus
on A′ instead of A. Note that in the regular model, each honest party may have input. The same argument
does not hold since the input of honest parties controlled by A′ may be compromised. In the following, we
assume that there are exactly t′ = t− k + 1 corrupted parties.

2In this work, we only focus on determinsitic functions. A randomized function can be transformed to a deterministic
function by taking as input an additional random tape from each party. The XOR of the input random tapes of all parties is
used as the randomness of the randomized function.

12



3.2 Secret Sharing Scheme

Packed Shamir Secret Sharing Scheme. In this work, we will use the packed secret-sharing technique
introduced by Franklin and Yung [FY92]. This is a generalization of the standard Shamir secret sharing
scheme [Sha79]. Let n be the number of parties and k be the number of secrets that are packed in one
sharing. Let α1, . . . , αn, β1, . . . , βk be n+ k distinct non-zero elements in F.

A degree-d (d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a vector (w1, . . . , wn) which
satisfies that, there exists a polynomial f(·) ∈ F[X] of degree at most d such that ∀i ∈ [k], f(βi) = xi and
∀i ∈ [n], f(αi) = wi. The i-th share wi is held by party Pi. Reconstructing a degree-d packed Shamir sharing
requires d + 1 shares and can be done by Lagrange interpolation. For a random degree-d packed Shamir
sharing of x, any d− k + 1 shares are independent of the secret x.

We will use [x] to denote a degree-t packed Shamir sharing of x ∈ Fk, and 〈x〉 to denote a degree-2t
packed Shamir sharing. Recall that the number of corrupted parties is at most t − k + 1. Therefore, using
degree-t packed Shamir sharings is sufficient to protect the privacy of the secrets. In the following, operations
(addition and multiplication) between two packed Shamir sharings are coordinate-wise.

We recall two properties of the packed Shamir sharing scheme:

• Linear Homomorphism: For all x,y ∈ Fk, [x+ y] = [x] + [y].

• Multiplication: Let ∗ denote coordinate-wise multiplication. For all x,y ∈ Fk, 〈x ∗ y〉 = [x] · [y].

These two properties directly follow from the computation of the polynomials.
For a constant vector v ∈ Fk which is known by all parties, sometimes it is convenient to transform it

to a degree-t packed Shamir sharing. This can be done by constructing a polynomial f(·) ∈ F [X] of degree
k − 1 such that for all i ∈ [k], f(βi) = vi. The i-th share of [v] is defined to be f(αi) as usual.

Abstract General Linear Secret Sharing Schemes. We adopt the notion of an abstract definition
of a general linear secret sharing scheme (GLSSS) in [CCXY18]. The following notations are borrowed
from [CCXY18].

For non-empty sets U and I, UI denotes the indexed Cartesian product
∏
i∈I U := {f : I → U}. When

I is a finite set, one may think that each element in
∏
i∈I U is a vector of dimension |I| where each entry is

an element in U associated with a unique index in I. For a non-empty set A ⊂ I, the natural projection πA
maps a tuple u = (ui)i∈I ∈ UI to the tuple (ui)i∈A ∈ UA. Let K be a field.

Definition 1 (Abstract K-GLSSS [CCXY18]). A general K-linear secret sharing scheme Σ consists of the
following data:

• A set of parties I = {1, . . . , n}

• A finite-dimensional K-vector space Z, the secret space.

• A finite-dimensional K-vector space U , the share space.

• A K-linear subspace C ⊂ UI , where the latter is considered a K-vector space in the usual way (i.e.,
direct sum).

• A surjective K-linear map Φ : C → Z, its defining map.

Definition 2 ([CCXY18]). Suppose A ⊂ I is nonempty. Then A is a privacy set if the K-linear map

(Φ, πA) : C −→ Z × πA(C), x 7→ (Φ(x), πA(x))

is surjective. Finally, A is a reconstruction set if, for all x ∈ C, it holds that

πA(x) = 0⇒ Φ(x) = 0.
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We give a high-level explanation of why Definition 2 accords with the intuitive definitions of privacy sets
and reconstruction sets. We say A is a privacy set if the shares of parties in A are independent of the secret.
In Definition 2, the K-linear map (Φ, πA) maps each sharing in C to its secret and the shares of parties in
A. When this map is surjective, the secret can take all possible values in the secret space no matter what
the shares of parties in A are, which means that the secret is independent of the shares of parties in A.

We say A is a reconstruction set if the shares of parties in A fully determine the secret. In other words,
if two different sharings have the same shares for parties in A, they should have the same secret. For two
different sharings y, y′ ∈ C, we have

πA(y) = πA(y′)⇒ πA(y − y′) = 0⇒ Φ(y − y′) = 0⇒ Φ(y) = Φ(y′),

where the second step follows from Definition 2 and the last equation shows that the secrets of y and y′ are
the same.

3.3 Useful Building Blocks

In this part, we will introduce two functionalities that will be used in our main construction.

• The first functionality Fcoin allows all parties to generate a random element.

• The second functionality Frand allows all parties to prepare a random sharing for a given F-linear secret
sharing scheme.

Generating Random Coins The first functionality Fcoin(F) allows all parties to generate a random field
element in F. The description of Fcoin(F) appears in Functionality 1.

Functionality 1: Fcoin(F)

1. Fcoin samples a random field element r in F.

2. Fcoin sends r to the adversary.

• If the adversary replies continue, Fcoin sends r to honest parties.

• If the adversary replies abort, Fcoin sends abort to honest parties.

An instantiation of this functionality can be found in [GSZ20] (Protocol 6 in Section 3.5 of [GS20]), which
has communication complexity of O(n2) elements in F. The original protocol is secure when up to t parties
are corrupted. Therefore, it is also secure in our case where the number of corrupted parties is bounded by
t′ = t− k + 1.

Preparing Random Sharings for F-GLSSS In this part, we introduce a functionality Frand, which
comes from [PS21]. It allows all parties to prepare a random sharing for a given F-linear secret sharing
scheme Σ. Let [[x]] denote a sharing in Σ of secret x. For a set A ⊂ I, recall that πA([[x]]) refers to the shares
of [[x]] held by parties in A. We assume that Σ satisfies the following property:

• Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, let

Σ(A, (ai)i∈A) := {[[x]]| [[x]] ∈ Σ and πA([[x]]) = (ai)i∈A}.

Then, there is an efficient algorithm which outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing
[[x]] in Σ(A, (ai)i∈A).
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The description of the functionality Frand appears in Functionality 2. In short, Frand allows the adversary
to specify the shares held by corrupted parties. Based on these shares, Frand generates a random sharing in
Σ and distributes the shares to honest parties. Note that, when the set of corrupted parties is a privacy set,
the secret is independent of the shares chosen by the adversary.

Functionality 2: Frand

1. Frand receives from the adversary the set of corrupted parties, denoted by C, and a set of shares
(si)i∈C such that Σ(C, (si)i∈C) 6= ∅. Then Frand randomly samples [[r]] ∈ Σ(C, (si)i∈C).

2. Frand asks the adversary whether it should continue or not.

• If the adversary replies abort, Frand sends abort to honest parties.

• If the adversary replies continue, for each honest party Pi, Frand sends the i-th share of [[r]]
to Pi.

In [PS21], Polychroniadou and Song proposed an instantiation of Frand which is secure against an adver-
sary that corrupts t parties. We note that we can easily modify their protocol to achieve security against an
adversary that corrupts t− k + 1 parties. For completeness, we provide the details of the protocol and the
proof in Appendix A. Suppose the share size of a sharing in σ is sh field elements in F. The communication
complexity of generating N random sharings in Σ is O(N · n · sh + n3 · κ) elements in F.

3.4 Permutation Matrix, Bipartite Graph and Hall’s Marriage Theorem

Definition 3 (Permutation Matrix). Let k ≥ 1 be an integer. A matrix M ∈ {0, 1}k×k is a permutation
matrix if for each row and each column, there is exactly one entry which is 1.

For a permutation p(·) over {1, 2, . . . , k}, letMp be a permutation matrix such that for all i, j ∈ {1, . . . , k},
(Mp)j,i = 1 iff p(i) = j. Note that for each permutation matrix M ′, there exists a permutation p(·) such
that M ′ = Mp. For a vector x of dimension k, Mp · x maps the i-th value xi to the j-th position for all
i ∈ {1, 2, . . . , k}.

Definition 4 (Balanced Matrix). Let k ≥ 1 be an integer. A matrix M ∈ Nk×k is a balanced matrix if for
each row and each column, the summation of all the entries is the same.

Note that for all permutations p(·) over {1, 2, . . . , k}, the permutation matrix Mp is a balanced matrix
since the summation of the entries in each row and each column is 1.

Definition 5 (Bipartite Graph). A graph G = (V,E) is a bipartite graph if there exists a partition (V1, V2)
of V such that for all edge (vi, vj) ∈ E, vi ∈ V1 and vj ∈ V2.

In the following, we will use (V1, V2, E) to denote a bipartite graph. We say a bipartite graph (V1, V2, E)
is d-regular if the degree of each vertex in V1

⋃
V2 is d.

Definition 6 (Perfect Matching). For a bipartite graph (V1, V2, E) such that |V1| = |V2|, a perfect matching
is a subset of edges E ∈ E which satisfies that each vertex in the sub-graph (V1, V2, E) has degree 1.

Theorem 3 (Hall’s Marriage Theorem). For a bipartite graph (V1, V2, E) such that |V1| = |V2|, there exists
a perfect matching iff for all subset V ′1 ⊂ V1, the number of the neighbors of vertices in V2 is at least |V ′1 |.

In this work, we will make use of the following two well-known corollaries of Hall’s Marriage Theorem.
For completeness, we also provide proofs for the corollaries.

Corollary 1. There exists a perfect matching in a d-regular bipartite graph.
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Proof. Let G = (V1, V2, E) denote the d-regular bipartite graph. To show the existence of a perfect matching
in G, it is sufficient to examine the requirement of Hall’s Marriage Theorem.

For all subset V ′1 ⊂ V1, let N(V ′1) denote the set of vertices in V2 which are connected to vertices in V ′1 .
It is sufficient to show that |N(V ′1)| ≥ |V ′1 |. Consider the sub-graph G′ = (V ′1 , N(V ′1), E′) which contains all
the edges between V ′1 and N(V ′1). Since G is a d-regular graph, the number of edges in G′ is |E′| = d · |V ′1 |.
On the other hand, we have d · |N(V ′1)| ≥ |E′| since the degree of each vertex in |N(V ′1)| is upper bounded
by d. Therefore d · |N(V ′1)| ≥ |E′| = d · |V ′1 |, which means |N(V ′1)| ≥ |V ′1 |.

Corollary 2. Let k ≥ 1 be an integer. For all non-zero balanced matrix N ∈ Nk×k, there exists a permutation
matrix M such that for all i, j ∈ {1, 2, . . . , k}, Ni,j ≥Mi,j.

Proof. For a matrix N ∈ Nk×k, we can map it to a bipartite graph G = (V1, V2, E), where V1 = V2 =
{1, 2, . . . , k} and the number of edges between (i, j) ∈ V1 × V2 is Ni,j .

Therefore, a non-zero balanced matrixN ∈ Nk×k maps to a regular bipartite graph G, and a permutation
matrix M maps to a perfect matching in G. According to Corollary 1, there exists a perfect matching in G,
which can map back to a permutation matrix M . Note that for all i, j ∈ {1, 2, . . . , k}, Mi,j is 1 iff (i, j) is
in the perfect matching, which is an edge in G, implying that Ni,j ≥ 1. Therefore, for all i, j ∈ {1, 2, . . . , k},
Ni,j ≥Mi,j .

4 Circuit Evaluation - Against a Semi-honest Adversary

In this section, we discuss how to evaluate a general circuit by using the packed Shamir sharing scheme. For
simplicity, we assume the adversary is semi-honest. Here is a high-level structure of this section.

1. We start with the basic protocols to evaluate input gates, addition gates, multiplication gates, and
output gates using the packed Shamir sharing scheme. These protocols are simple variants of the
protocols in [DN07], which focuses on the adversary that can corrupt t parties.

2. To use these protocols to evaluate addition gates and multiplication gates, we need the secrets in the
input packed Shamir sharings to have the correct order. Assuming each input sharing contains all the
secret values we want, we discuss how to permute the secrets in each input sharing to the correct order.

3. Next, we show how to collect the secrets of an input packed Shamir sharing from the output sharings
of previous layers. Our solution requires that each output wire from each layer is only used once in
the computation, as an input wire to a single layer. This requirement can be met by further requiring
that there is a fan-out gate right after each gate that copies the output wire the number of times it is
used in later layers.

4. Finally, we discuss how to evaluate fan-out gates efficiently.

Recall that we are in the client-server model where there are c clients and n = 2t + 1 parties (servers).
Recall that 1 ≤ k ≤ t is an integer. An adversary is allowed to corrupt t′ = t−k+ 1 parties. We will use the
degree-t packed Shamir sharing scheme, which can store k secrets within one sharing. Recall that C denotes
the set of corrupted parties and H denotes the set of honest parties.

4.1 Basic Protocols for Input Gates, Addition Gates, Multiplication Gates, and
Output Gates

We distinguish input gates and output gates belonging to different clients. For each client, we assume the
number of input gates belonging to this client and the number of output gates belonging to this client are
multiples of k. For each layer, we assume that the number of addition gates and the number of multiplication
gates are multiples of k. In Section 5, we will show how to compile a general circuit to meet this requirement.
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Functionality 3: Finput-semi

1. Suppose x ∈ Fk is the input associated with the input gate which belongs to the Client. Finput-semi

receives the input x from the Client.

2. Finput-semi receives from the adversary a set of shares {si}i∈C . Finput-semi samples a random degree-t
packed Shamir sharing [x] such that for all Pi ∈ C, the i-th share of [x] is si.

3. Finput-semi distributes the shares of [x] to honest parties.

Functionality 4: Foutput-semi

1. Suppose [x] is the sharing associated with the output gate which belongs to the Client. Foutput-semi

receives the shares of [x] from honest parties.

2. Foutput-semi recovers the whole sharing [x], and sends the shares of corrupted parties to the adver-
sary.

3. Foutput-semi reconstructs x and sends it to the Client.

Evaluating Input Gates and Output Gates. The functionalities Finput-semi and Foutput-semi are de-
scribed in Functionality 3 and Functionality 4 respectively.

For input gates, the client who holds the input x ∈ Fk generates a random degree-t packed Shamir sharing
and distributes the shares to all parties. For output gates, all parties send their shares to the client who
should receive the results to allow the client to reconstruct the outputs. The protocols Input and Output
appear in Protocol 5 and Protocol 6 respectively. The communication complexity of each protocol is O(n)
field elements.

Protocol 5: Input

1. Suppose x ∈ Fk is the input associated with the input gate which belongs to the Client. The Client
generates a random degree-t packed Shamir sharing [x].

2. The Client distributes the shares of [x] to all parties.

Protocol 6: Output

1. Suppose [x] is the sharing associated with the output gate which belongs to the Client. All parties
send their shares of [x] to the Client.

2. The Client reconstructs the result x from the shares of [x].
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Lemma 1. Protocol Input securely computes Finput-semi against a semi-honest adversary who controls
t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

If the Client is corrupted, S receives the shares of honest parties from the Client. Note that there are
n− t′ = t+ k ≥ t+ 1 honest parties. S uses the shares of honest parties to recover the whole sharing [x]. S
sends the secrets x to Finput-semi on behalf of the Client. Then S sends the shares of [x] held by corrupted
parties to Finput-semi. Note that a degree-t packed Shamir sharing is determined by the shares of corrupted
parties and the secrets, which are t′ + k = t + 1 shares and secrets. Therefore, the sharing generated by
Finput-semi is identical to [x].

If the Client is honest, S generates t′ random elements in F as the shares of [x] held by corrupted parties
and distributes them to corrupted parties on behalf of the Client. Note that these shares have the same
distribution as the shares generated by the Client in the real world. S sends the shares of [x] of corrupted
parties to Finput-semi. Since the whole sharing [x] is determined by the shares of corrupted parties and the
secrets, and the shares of corrupted parties in both worlds have the same distribution, the distributions of
[x] in both worlds are identical.

Lemma 2. Protocol Output securely computes Foutput-semi against a semi-honest adversary who controls
t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

If the Client is corrupted, S receives the shares of corrupted parties from Foutput-semi. S also receives
the secrets x from Foutput-semi. Then S recovers the whole sharing [x] and sends the shares of [x] of honest
parties to the Client. Note that a degree-t packed Shamir sharing is determined by the shares of corrupted
parties and the secrets, which are t′ + k = t + 1 shares and secrets. Therefore, the shares of [x] computed
by S are identical to the shares of [x] held by honest parties.

If the Client is honest, S does not need to do anything. In the real world, the Client is able to recover
x from the shares received from all parties. In the ideal world, Foutput-semi can recover the whole sharing
from the shares of [x] held by honest parties. Therefore, the Client will receive x from Foutput-semi. Thus,
the output of the Client is identical in both worlds.

Evaluating Addition Gates and Multiplication Gates. In the following, we use [x], [y] to denote the
input degree-t packed Shamir sharings.

For an addition gate, all parties want to compute [x + y]. Note that this can be done by computing
[x + y] := [x] + [y], i.e., each party locally adds its shares of [x], [y]. The correctness follows from the
property that packed Shamir sharing is linearly homomorphic.

Recall that ∗ denotes the coordinate-wise multiplication. For a multiplication gate, all parties want to
compute a degree-t packed Shamir sharing of z := x ∗ y. We summarize the functionality Fmult-semi in
Functionality 7.

A multiplication gate can be evaluated by a natural extension of the DN multiplication protocol in [DN07].
The main observation is that all parties can locally compute a degree-2t packed Shamir sharing 〈z〉 = 〈x∗y〉 =
[x] · [y]. The only task is to reduce the degree of 〈z〉. Following the approach in [DN07], this can be achieved
by preparing a pair of two random sharings ([r], 〈r〉) of the same secrets r. All parties do the following steps:

• All parties compute 〈e〉 := [x] · [y] + 〈r〉.

• All parties send their shares of 〈e〉 to the first party P1.

• P1 reconstructs the secrets e, generates a random degree-t packed Shamir sharing [e], and distributes
the shares to all other parties.

• All parties compute [z] := [e]− [r].
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Functionality 7: Fmult-semi

1. Suppose [x], [y] are the input degree-t packed Shamir sharings. Fmult-semi receives the shares of
[x], [y] from honest parties.

2. Fmult-semi recovers the whole sharings [x], [y] and reconstructs the secrets x,y. Fmult-semi computes
z := x ∗ y.

3. Fmult-semi receives from the adversary a set of shares {si}i∈C . Fmult-semi samples a random degree-t
packed Shamir sharing [z] such that for all Pi ∈ C, the i-th share of [z] is si.

4. Fmult-semi distributes the shares of [z] to honest parties.

The correctness is straightforward. As for secrecy, the degree-2t packed Shamir sharing 〈r〉 is used as a
random mask to protect the multiplication result x ∗ y in the first step. Therefore, P1 only receives a
random degree-2t packed Shamir sharing from all parties.

The preparation of a pair of two random sharings ([r], 〈r〉) can be done by using Frand as described in
Appendix B.1. The communication complexity of generating m pairs of random sharings in the form of
([r], 〈r〉) is O(m · n + n3 · κ) elements in F. We describe the multiplication protocol Mult in Protocol 8.
The communication complexity of m invocations of Mult is O(m · n+ n3 · κ) field elements.

Protocol 8: Mult

1. Suppose [x], [y] denote the input packed Shamir sharings of the multiplication gate.

2. All parties invoke Frand to prepare a pair of random sharings ([r], 〈r〉).

3. All parties locally compute 〈e〉 := [x] · [y] + 〈r〉.

4. All parties send their shares of 〈e〉 to the first party P1.

5. P1 reconstructs the secrets e, generates a random degree-t packed Shamir sharing [e], and dis-
tributes the shares to other parties.

6. All parties locally compute [z] := [e]− [r].

Lemma 3. Protocol Mult securely computes Fmult-semi in the Frand-hybrid model against a semi-honest
adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

We first prove that, given the shares of [r], 〈r〉 held by corrupted parties, the shares of 〈r〉 held by honest
parties are uniform. First note that the number of corrupted parties is |C| = t − k + 1, which is a privacy
set to both degree-t packed Shamir sharing scheme and degree-2t packed Shamir sharing scheme. I.e., the
shares of a degree-t packed Shamir sharing (or a degree-2t packed Shamir sharing) held by corrupted parties
are independent of the secret. Recall that Frand receives a set of shares {si}i∈C from the adversary. Here

each share si is a pair of elements (s
(0)
i , s

(1)
i ) in F. When Frand prepares a pair of random sharings ([r], 〈r〉)

given the shares held by corrupted parties {(s(0)i , s
(1)
i )}i∈C , Frand can do the following steps:
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1. Frand first prepares a degree-2t packed Shamir sharing 〈r〉. This is done by choosing a random element

in F for each honest party. Then using the shares {s(1)i }i∈C , Frand reconstructs the whole sharing 〈r〉
and the secrets r.

2. Frand then prepares a degree-t packed Shamir sharing [r]. Based on the shares {s(0)i }i∈C and the secrets
r, Frand reconstructs the whole sharing [r].

Note that the above steps output a pair of random sharings ([r], 〈r〉) given the shares {(s(0)i , s
(1)
i )}i∈C . In

particular, the shares of 〈r〉 held by honest parties are uniform given the shares {(s(0)i , s
(1)
i )}i∈C .

Now we describe the construction of the simulator S. In Step 2, S emulates Frand and receives the shares

{(s(0)i , s
(1)
i )}i∈C from the adversary. In Step 3, S generates a random element in F for each honest party as

its share of 〈e〉. Since the shares of 〈r〉 of honest parties in the real world are uniform, the distribution of
the shares of 〈e〉 of honest parties generated by S is identical to that in the real world. S honestly follows
Step 4 and Step 5. At the end of Step 5, S learns the shares of [e] held by honest parties. In Step 6, S
computes the shares of [z] held by corrupted parties. This can be computed by using the shares of [e] and
[r] held by corrupted parties, where

• the shares of [e] held by corrupted parties can be computed by the shares of honest parties S learnt in
Step 5,

• and the shares of [r] held by corrupted parties are received when S emulates Frand in Step 2.

Then S sends the shares of [z] held by corrupted parties to Fmult-semi.
It is clear that S perfectly simulates the behaviors of honest parties. As for the output, note that the

whole sharing [z] is determined by the secrets z and the shares held by corrupted parties, which are identical
in both worlds. Therefore, the output of honest parties is identical in both worlds.

4.2 Performing an Arbitrary Permutation on the Secrets of a Single Sharing

During the computation, we may encounter the scenario that the order of the secrets is not what we want.
For example, when using Fmult-semi to evaluate k multiplication gates, for all i ∈ [k], we need the i-th secrets
of both input degree-t packed Shamir sharings to be the input of the i-th multiplication gate. If the secrets
of either sharing are not in the correct order, we cannot get the correct multiplication result.

To solve it, we need a functionality which allows us to perform an arbitrary permutation on the secrets
of a single sharing. Let p(·) be a permutation over {1, 2, . . . , k}. Recall that each permutation p(·) maps to
a permutation matrix Mp ∈ {0, 1}k×k where (Mp)j,i = 1 iff p(i) = j. To permute a vector x to x̃ such that
xi = x̃p(i) for all i ∈ {1, 2, . . . , k}, it is equivalent to computing x̃ = Mp · x. We model the functionality
Fpermute-semi in Functionality 9.

Functionality 9: Fpermute-semi

1. Fpermute-semi receives a permutation p and the shares of a degree-t packed Shamir sharing [x] from
honest parties.

2. Fpermute-semi reconstructs the secrets x from the shares of honest parties, and computes x̃ = Mp ·x.

3. Fpermute-semi receives from the adversary a set of shares {si}i∈C . Fpermute-semi samples a random
degree-t packed Shamir sharing [x̃] such that for all Pi ∈ C, the i-th share of [x̃] is si.

4. Fpermute-semi distributes the shares of [x̃] to honest parties.

Following the techniques in [DIK10], Fpermute-semi can be realized as follows:
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1. All parties prepare two random degree-t packed Shamir sharings ([r], [r̃]), where r̃ = Mp · r and p(·)
is the permutation we want to perform.

2. All parties locally compute [e] := [x] + [r].

3. All parties send their shares of [e] to the first party P1.

4. P1 reconstructs the secrets e and computes ẽ = Mp ·e. P1 generates a random degree-t packed Shamir
sharing [ẽ] and distributes the shares to other parties.

5. All parties locally compute [x̃] := [ẽ]− [r̃].

To see the correctness, note that in the second step we have e = x+ r. Therefore,

x̃ = Mp · x = Mp · (e− r) = Mp · e−Mp · r = ẽ− r̃.

As noted in [DIK10], the main issue of this approach is how to efficiently prepare a pair of random
sharings ([r], [r̃]). Indeed, such a pair of random sharings can be prepared using Frand with a suitable F-
linear secret sharing scheme. However, for different permutations, the F-linear secret sharing schemes used in
Frand are also different. Although the amortized communication complexity of the implementation of Frand

is O(n) field elements, it has an overhead of O(n3 · κ) field elements which is independent of the number of
sharings we want to prepare. In the worst case where each time we need to perform a different permutation,
the overhead of preparing each pair of random sharings becomes O(n3 · κ), which eliminates the benefit we
gain when using the packed Shamir sharing scheme. In [DIK10], this issue is solved by compiling the circuit
such that only O(log n) different permutations are needed in the computation with the cost of blowing up
the circuit size and the circuit depth by a factor of O(log |C|), where |C| is the circuit size. This approach
does not achieve our goal since the amortized communication complexity per gate becomes O(log |C| · n/k)
elements.

Before introducing our idea, we first introduce a useful functionality Fselect, which selects secrets from
one or more packed Shamir sharings and outputs a single sharing which contains the chosen secrets. Later
on, we will use Fselect to solve the above issue of preparing random sharings for permutations.

Selecting Secrets from One or More Packed Shamir Sharings. Concretely, we want to realize the
functionality Fselect-semi, which takes as input k degree-t packed Shamir sharings [x(1)], [x(2)], . . . , [x(k)] and
a permutation p(·) over {1, 2, . . . , k}, and outputs a degree-t packed Shamir sharing [y] such that for all

i ∈ [k], yp(i) = x
(i)
p(i), where x

(i)
j is the j-th value of x(i). Effectively, Fselect-semi chooses the p(1)-th secret of

[x(1)], the p(2)-th secret of [x(2)], ..., the p(k)-th secret of [x(k)] and generates a new degree-t packed Shamir
sharing [y] which contains the chosen secrets. Note that the positions of the chosen secrets remain the same.
Therefore, we require p to be a permutation so that the chosen secrets come from different positions. The
description of Fselect-semi appears in Functionality 10.

For all i ∈ [k], let ei ∈ {0, 1}k denote the vector where the i-th entry is 1 and for all j 6= i, the j-th entry
is 0. Recall that in Section 3.2 we show how to transform a constant vector to a degree-t packed Shamir
sharing. Let [ei] denote the degree-t packed Shamir sharing of ei.

To realize Fselect-semi, note that [ep(i)] · [x(i)] is a degree-2t packed Shamir sharing of ep(i) ∗x(i). Also note

that y =
∑k
i=1 ep(i) ∗x(i). Therefore, all parties can locally compute 〈y〉 =

∑k
i=1[ep(i)] · [x(i)]. And the only

task is to reduce the degree of 〈y〉. Note that this can be achieved by the same technique as Mult. The
description of the protocol Select appears in Protocol 11. The communication complexity of m invocations
of Select is O(m · n+ n3 · κ) field elements.

Lemma 4. Protocol Select securely computes Fselect-semi in the Frand-hybrid model against a semi-honest
adversary who controls t′ = t− k + 1 parties.

This lemma can be proved in the same way as that for Lemma 3. Therefore, for simplicity, we omit the
details.
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Functionality 10: Fselect-semi

1. Fselect-semi receives from honest parties their shares of k degree-t packed Shamir sharings
[x(1)], [x(2)], . . . , [x(k)]. Fselect-semi also receives a permutation p from honest parties.

2. Fselect-semi reconstructs x(1),x(2), . . . ,x(k). Then Fselect-semi sets y = (y1, y2, . . . , yk) such that for

all i ∈ [k], yp(i) = x
(i)
p(i), where x

(i)
j is the j-th value of x(i).

3. Fselect-semi receives from the adversary a set of shares {si}i∈C . Fselect-semi samples a random
degree-t packed Shamir sharing [y] such that for all Pi ∈ C, the i-th share of [y] is si.

4. Fselect-semi distributes the shares of [y] to honest parties.

Protocol 11: Select

1. Let [x(1)], [x(2)], . . . , [x(k)] denote the k input packed Shamir sharings and p(·) denote the per-
mutation. The goal is to generate a degree-t packed Shamir sharing [y] such that for all i ∈ [k],

yp(i) = x
(i)
p(i). Recall that ei ∈ {0, 1}k denote the vector where the i-th entry is 1 and for all

j 6= i, the j-th entry is 0. For all i ∈ [k], all parties agree on the whole sharing [ei] based on the
transformation in Section 3.2.

2. All parties invoke Frand to prepare a pair of random sharings ([r], 〈r〉).

3. All parties locally compute 〈e〉 :=
∑k
i=1[ep(i)] · [x(i)] + 〈r〉.

4. All parties send their shares of 〈e〉 to the first party P1.

5. P1 reconstructs the secrets e, generates a random degree-t packed Shamir sharing [e], and dis-
tributes the shares to other parties.

6. All parties locally compute [y] := [e]− [r].

Using Fselect-semi to Generate Random Sharings for Permuting Secrets. For all i, j ∈ {1, 2, . . . , k},
we say a pair of degree-t packed Shamir sharings ([x], [y]) contains an (i, j)-component if the secrets of these
two sharings satisfy that xi = yj .

To perform a permutation p(·), we need to prepare two random degree-t packed Shamir sharings ([r], [Mp ·
r]). We can view ([r], [Mp · r]) as a composition of a (1, p(1))-component, a (2, p(2))-component, . . . , and a
(k, p(k))-component.

Let m denote the number of permutations we want to prepare random sharings for. These permutations
are denoted by p1(·), p2(·), . . . , pm(·). Our idea is as follows:

1. We first find m permutations q1(·), q2(·), . . . , qm(·) such that:

• For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm} which satisfies that
p(i) = j is equal to the number of permutations q ∈ {q1, q2, . . . , qm} which satisfies that q(i) = j.

2. All parties prepare random sharings for permutations q1, q2, . . . , qm.

3. From i = 1 to m, a pair of random sharings for the permutation pi is prepared by using Fselect-semi to
choose the first unused (j, pi(j))-component from the random sharings for q1, q2, . . . , qm for all j ∈ [k].
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We refer the readers to Section 2.2 for a more detailed explanation.
The major benefit of this approach is that we can limit the number of different permutations in {q1, q2, . . . , qm}

as we show below. More concretely, we will prove the following theorem:

Theorem 2. Let m, k ≥ 1 be integers. For all m permutations p1, p2, . . . , pm over {1, 2, . . . , k}, there exists
m permutations q1, q2, . . . , qm over {1, 2, . . . , k} such that:

• For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm} such that p(i) = j is the
same as the number of permutations q ∈ {q1, q2, . . . , qm} such that q(i) = j.

• q1, q2, . . . , qm contain at most k2 different permutations.

Moreover, q1, q2, . . . , qm can be found within polynomial time given p1, p2, . . . , pm.

Recall that the issue of using Frand to prepare random sharings for p1, p2, . . . , pm is that there will be
an overhead of O(n3 · κ) elements per different permutation in p1, p2, . . . , pm. Since there are k! different
permutations over {1, 2, . . . , k}, p1, p2, . . . , pm can be m different permutations. In the worst case, this
overhead can be as large as O(n3 · κ ·m), which eliminates the benefit of using the packed Shamir sharing
scheme. Relying on Fselect-semi, we only need to prepare random sharings for permutations q1, . . . , qm, which
contain at most k2 ≤ n2 different permutations. In this way, the overhead is upper-bounded by O(n5 · κ),
which is independent of the number of permutations and the circuit size.

Proof of Theorem 2. Recall that each permutation p(·) over {1, 2, . . . , k} maps to a permutation matrix
Mp ∈ {0, 1}k×k such that for all i, j ∈ {1, 2, . . . , k}, (Mp)j,i = 1 iff p(i) = j.

Let Mdemand :=
∑m
i=1Mpi , where p1, p2, . . . , pm are the given permutations. Then (Mdemand)j,i is the

number of permutations p ∈ {p1, p2, . . . , pm} such that p(i) = j. Therefore, our goal is to find m permutations
q1, q2, . . . , qm, which contain at most k2 different permutations, such that

∑m
i=1Mqi = Mdemand.

Recall that a matrix M ∈ Nk×k is a balanced matrix if for each row and each column, the summation of
all the entries is the same. Since each permutation matrix is a balanced matrix, Mdemand is also a balanced
matrix.

Consider the following process to find the permutations q1, q2, . . . , qm.

1. Initially set the list of permutation Q to be empty. Let N = Mdemand.

2. While N is non-zero, run the following steps:

(a) Find a permutation matrix M such that for all i, j ∈ {1, 2, . . . , k}, Ni,j ≥Mi,j .

(b) Let q′ denote the permutation which corresponds to the permutation matrix M . Let

n′ = min{Nq′(1),1,Nq′(2),2, . . . ,Nq′(k),k}.

Insert n′ times of q′ into the list Q.

(c) Compute N := N − n′ ·M . Note that N is still a balanced matrix.

3. Output the permutations in Q.

We first show that the above process will finally terminate. In the beginning, N = Mdemand is a balanced
matrix. N represents the summation of the permutation matrices we still need to generate. We show that
this property is maintained in Step 2. In Step 2.(a), according to Corollary 2, such a permutation matrix
exists and can be found within polynomial time. In Step 2.(b), n′ is the largest number of q′ we can have.
In Step 3, we compute the new matrix N by subtracting n′ times of M . Note that each entry of the new
matrix N is still non-negative. Since the permutation matrix M we subtract is also a balanced matrix, for
each row and each column of the new matrix N , the summation of all the entries is still the same. Therefore,
the new matrix N is a balanced matrix. Note that the summation of all the entries in N decreases in each
iteration. We conclude that the above process will finally terminate.
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Now we show that the number of different permutations in Q is bounded by k2. It is sufficient to show
that Step 2 will terminate within k2 rounds since in each round we only insert the same type of permutations
into Q. To this end, we count the number of 0-entries in N . Note that in each round, the way we choose
n′ in Step 2.(b) guarantees that at least one entry of N will become 0 after subtracting n′ times of M .
Therefore, the number of 0-entries in N increases at least by 1 in each round. Since there are k2 entries in
N , Step 2 will terminate within k2 rounds.

Preparing Random Sharings for Different Permutations. We are ready to introduce the function-
ality and its implementation for preparing random sharings for different permutations. The functionality
Frand-perm-semi appears in Functionality 12.

Functionality 12: Frand-perm-semi

1. Frand-perm-semi receives from honest parties m permutations p1, p2, . . . , pm over {1, 2, . . . , k}.

2. For all i ∈ [m], Frand-perm-semi receives from the adversary a set of shares {(u(i)j , v
(i)
j )}j∈C .

Frand-perm-semi samples a random vector r(i) ∈ Fk and samples two degree-t packed Shamir sharings

([r(i)], [Mpi · r(i)]) such that for all Pj ∈ C, the j-th share of ([r(i)], [Mpi · r(i)]) is (u
(i)
j , v

(i)
j ).

3. For all i ∈ [m], Frand-perm-semi distributes the shares of ([r(i)], [Mpi · r(i)]) to honest parties.

For a fixed permutation p(·) over {1, 2, . . . , k}, we show how to use Frand to prepare a pair of random
sharings ([r], [Mp · r]) in Appendix B.2. The communication complexity of preparing m pairs of random
sharings in the form of ([r], [Mp · r]) for a fixed permutation p(·) is O(m · n + n3 · κ) elements in F. We
describe the protocol for Frand-perm-semi in Protocol 13. The communication complexity of using Rand-Perm
to prepare random sharings for m permutations is O(m · n+ n5 · κ) field elements.

Lemma 5. Protocol Rand-Perm securely computes Frand-perm-semi in the (Frand,Fselect-semi)-hybrid model
against a semi-honest adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

In Step 1 and Step 2, S honestly follows the protocol and computes the permutations q1, q2, . . . , qm. In
Step 3, S emulates Frand when generating the random sharings ([r(i)], [Mqi · r(i)]) for each permutation qi.
Since the number of corrupted parties is t − k + 1, by the property of the degree-t packed Shamir sharing
scheme, the secrets r(i) are uniform and independent of the shares held by corrupted parties. In Step 4, S
honestly constructs the lists. In Step 5, S emulates Fselect-semi and receives the shares of corrupted parties
for all ([v(`)], [ṽ(`)]). Then, S sends these shares to Frand-perm-semi.

Note that through the protocol, corrupted parties do not receive any messages from honest parties.
Therefore, it is sufficient to argue that the distribution of the output in both worlds are identical. First, for
all ` ∈ {1, 2, . . . ,m}, the shares of [v(`)] and [ṽ(`)] held by corrupted parties are chosen by themselves in both
worlds. For the secrets v(`) and ṽ(`), in the ideal world, v(`) is a uniform vector in Fk and ṽ(`) = Mp` ·v(`). In
the real world, there is a one-to-one map from {r(`)}`∈[m] to {v(`)}`∈[m]. Therefore each vector v(`) is uniform.

As for ṽ(`), note that in Step 5, Case 2.2, we have v
(`)
i = r

(`i)
i = (Mq`i

·r(`i))q`i (i) = (Mq`i
·r(`i))p`(i) = ṽ

(`)
p`(i)

for all i ∈ [k]. Therefore ṽ(`) = Mp` · v(`). Thus, the distribution of the output in both worlds are
identical.

Realizing Fpermute-semi. Now we are ready to present the protocol for Fpermute-semi. The protocol Per-
mute uses Frand-perm-semi to prepare the random sharings for the permutation we want to perform and then
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Protocol 13: Rand-Perm

1. Let p1, p2, . . . , pm be the permutations over {1, 2, . . . , k} that all parties want to prepare random
sharings for.

2. All parties use a deterministic algorithm that all parties agree on to compute m permutations
q1, q2, . . . , qm such that

• For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm} such that p(i) = j
is the same as the number of permutations q ∈ {q1, q2, . . . , qm} such that q(i) = j.

• q1, q2, . . . , qm contain at most k2 different permutations.

The existence of such an algorithm is guaranteed by Theorem 2.

3. Suppose q′1, q
′
2, . . . , q

′
k2 denote the different permutations in q1, q2, . . . , qm. For all i ∈ {1, 2, . . . , k2},

let n′i denote the number of times that q′i appears in q1, q2, . . . , qm. All parties invoke Frand to
prepare n′i pairs of random sharings in the form ([r], [Mq′i

· r]) for all i ∈ {1, 2, . . . , k2}. Note
that we have prepared a pair of random sharings for each permutation qi for all i ∈ [m]. Let
([r(i)], [Mqi · r(i)]) denote the random sharings for the permutation qi.

4. For all i, j ∈ {1, 2, . . . , k}, all parties initiate an empty list Li,j . From ` = 1 to m, for all i, j ∈
{1, 2, . . . , k}, if ([r(`)], [Mq` ·r(`)]) contains an (i, j)-component, all parties insert ([r(`)], [Mq` ·r(`)])
into the list Li,j .

5. From ` = 1 to m, all parties prepare a pair of random sharings for p` as follows:

• From i = 1 to k, let ([r(`i)], [Mq`i
·r(`i)]) denote the first pair of sharings in the list Li,p`(i), and

then remove it from Li,p`(i). Note that ([r(`i)], [Mq`i
·r(`i)]) contains an (i, p`(i))-component,

which is not used when preparing random sharings for p1, p2, . . . , p`−1.

• Let I denote the identity permutation over {1, 2, . . . , k}.
– All parties invoke Fselect-semi with

[r(`1)], [r(`2)], . . . , [r(`k)]

and the permutation I. The output is denoted by [v(`)].

– All parties invoke Fselect-semi with

[Mq`1
· r(`1)], [Mq`2

· r(`2)], . . . , [Mq`k
· r(`k)]

and the permutation p`. The output is denoted by [ṽ(`)]. Note that for all i ∈ [k],

v
(`)
i = r

(`i)
i = (Mq`i

· r(`i))q`i (i) = (Mq`i
· r(`i))p`(i) = ṽ

(`)
p`(i)

.

6. All parties take ([v(1)], [ṽ(1)]), ([v(2)], [ṽ(2)]), . . . , ([v(m)], [ṽ(m)]) as output.

follows the techniques in [DIK10]. In Permute, we will prepare a random degree-2t packed Shamir sharing
of 0 ∈ Fk, which is used as a random mask for the shares of honest parties (see the proof of Lemma 6). This
is not needed for semi-honest security but will be helpful when we consider a fully malicious adversary at a
later point.

We show how to use Frand to prepare a random degree-2t packed Shamir sharing of 0 ∈ Fk in Ap-
pendix B.3. The communication complexity of preparing m random degree-2t packed Shamir sharings of 0
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is O(m ·n+n3 ·κ) elements in F. The description of Permute appears in Protocol 14. The communication
complexity of m invocations of Permute is O(m · n+ n5 · κ) field elements.

Protocol 14: Permute

1. Let [x] denote the input degree-t packed Shamir sharing and p(·) denote the permutation all parties
want to perform on x.

2. All parties invoke Frand-perm-semi with p to prepare a pair of random sharings ([r], [Mp · r]). All
parties invoke Frand to prepare a random degree-2t packed Shamir sharing 〈0〉.

3. All parties locally compute 〈e〉 := [x] + [r] + 〈0〉.

4. All parties send their shares of 〈e〉 to the first party P1.

5. P1 reconstructs the secrets e, and computes ẽ = Mp · e. Then P1 generates a random degree-t
packed Shamir sharing [ẽ], and distributes the shares to other parties.

6. All parties locally compute [x̃] := [ẽ]− [Mp · r].

Lemma 6. Protocol Permute securely computes Fpermute-semi in the (Frand,Frand-perm-semi)-hybrid model
against a semi-honest adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

Let [r] be a random degree-t packed Shamir sharing, and 〈0〉 be a random degree-2t packed Shamir
sharing of 0 ∈ Fk. We show that, given the shares of [r] and 〈0〉 held by corrupted parties, the shares of
〈r〉 := [r]+ 〈0〉 held by honest parties are uniform. Note that there exists a one-to-one map from ([r], 〈0〉) to
([r], 〈r〉). Recall that in Lemma 3, we have shown that, given the shares of [r] and 〈r〉 of corrupted parties,
the shares of of 〈r〉 held by honest parties are uniform. Since the shares of 〈0〉 held by corrupted parties can
be computed from the shares of 〈r〉 and [r] held by corrupted parties, the statement holds.

Now we describe the construction of S. In Step 2, S emulates the Frand-perm-semi and Frand, and receives
the shares of ([r], [Mp · r]) and 〈0〉 held by corrupted parties. In Step 3, for each honest party, S generates
a random element in F as its share of 〈e〉. As we argued above, the share of 〈r〉 := [r] + 〈0〉 held by each
honest party is uniform. Therefore, the share of 〈e〉 held by each honest party is also uniform. In Step 4,
Step 5 and Step 6, S honestly follows the protocol. At the end of the protocol, S computes the shares of [x̃]
held by corrupted parties. This can be computed by using the shares of [ẽ] and [Mp · r] held by corrupted
parties, where

• the shares of [ẽ] held by corrupted parties can be computed by the shares of honest parties S learnt in
Step 5,

• and the shares of [Mp · r] held by corrupted parties are received when S emulates Frand-perm-semi in
Step 2.

Then S sends the shares of [x̃] held by corrupted parties to Fpermute-semi.
It is clear that S perfectly simulates the behaviors of honest parties. As for the output, note that

the whole sharing [x̃] is determined by the secrets x̃ and the shares of corrupted parties. In both worlds,
x̃ = Mp · x. As for the shares of [x̃] held by corrupted parties, they are chosen by the adversary in both
worlds. Therefore, the output of honest parties is identical in both worlds.
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Remark 2. We note that the functionality Frand-perm-semi needs to know all the permutations before gener-
ating the random sharings. In the real execution, all the invocations of Permute will first run the second
step to submit the permutation to Frand-perm-semi. This can be done since the permutations that needed to be
performed during the computation are determined by the circuit and are independent of the inputs.

4.3 Obtaining Input Sharings for Multiplication Gates and Addition Gates

So far, we have introduced how to evaluate multiplication gates and addition gates using the packed Shamir
sharing scheme. In the case that the secrets of an input sharing are not in the correct order, we have shown
how to efficiently perform a permutation to obtain the correct order. During the computation, however, input
sharings of multiplication gates and addition gates do not come for free. When evaluating the multiplication
gates and addition gates in some layer, the secrets we want to be in a single sharing may be scattered in one
or more output sharings from the previous layers. This requires us to collect the secrets from those sharings
and generate a single sharing for these secrets efficiently.

Our starting point is the functionality Fselect-semi. Recall that Fselect-semi allows us to select secrets from
one or more sharings and generate a new sharing for the chosen secrets if the secrets we select are in different
positions. To use Fselect-semi, we consider what we call the non-collision property stated in Property 1.

Property 1 (Non-collision). For each input sharing of each layer, the secrets of this input sharing come
from different positions in the output sharings of previous layers.

Note that if we can guarantee the non-collision property, then we can use Fselect-semi to generate the
input sharing we want. Unfortunately, this property does not hold in general. A counterexample is that we
need the same secret twice in a single input sharing. Then these two secrets will always come from the same
position. To solve this problem, we require that

• every output wire of the input layer and all intermediate layers is used exactly once as an input wire
of a later layer (which may not be the next layer).

Note that this requirement can be met without loss of generality by assuming that there is a fan-out gate
right after each (input, addition, or multiplication) gate that copies the output wire the number of times it
is used in later layers. In the next subsection, we will discuss how to evaluate fan-out gates efficiently. With
this requirement, there is a bijective map between the output wires (of the input layer and all intermediate
layers) and the input wires (of the output layer and all intermediate layers).

Note that only meeting this requirement is not enough: it is still possible that two secrets of a single
input sharing come from the same position but in two different output sharings. Our idea is to perform a
permutation on each output sharing to achieve the property we want.

In the following, when we use the term ”output sharings”, we refer to the output sharings from the input
layer and all intermediate layers. When we use the term ”input sharings”, we refer to the input sharings of
the output layer and all intermediate layers. We further assume that the number of the input wires and the
number of the output wires of each layer are multiples of k, where recall that k is the number of secrets we
can store in a single packed Shamir sharing. In Section 5, we will show how to compile a general circuit to
meet this requirement.

Since every output wire from every layer is only used once as an input wire of another layer, the number
of output sharings in the circuit is the same as the number of input sharings in the circuit. Let m denote
the number of output sharings in the circuit. Then the number of input sharings is also m. We will label
all the output sharings by 1, 2, . . . ,m and all the input sharings also by 1, 2, . . . ,m. Consider a matrix
N ∈ {1, 2, . . . ,m}m×k where Ni,j is the index of the input sharing that the j-th secret of the i-th output
sharing wants to go to. Then for all ` ∈ {1, 2, . . . ,m}, there are exactly k entries of N which are equal to
`. And the secrets at those positions are the secrets we want to collect for the `-th input sharing. We will
prove the following theorem.

Theorem 4. Let m ≥ 1, k ≥ 1 be integers. Let N be a matrix of dimension m× k in {1, 2, . . . ,m}m×k such
that for all ` ∈ {1, 2, . . . ,m}, the number of entries of N which are equal to ` is k. Then, there exists m
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permutations p1, p2, . . . , pm over {1, 2, . . . , k} such that after performing the permutation pi on the i-th row
of N , the new matrix N ′ satisfies that each column of N ′ is a permutation over (1, 2, . . . ,m). Furthermore,
the permutations p1, p2, . . . , pm can be found within polynomial time.

Jumping ahead, when we apply pi to the i-th output sharing for all i ∈ {1, 2, . . . ,m}, Theorem 4
guarantees that for all j ∈ {1, 2, . . . , k} the j-th secrets of all output sharings need to go to different input
sharings. Note that this ensures the non-collision property. During the computation, we will perform the
permutation pi on the i-th output sharing right after it is computed. Note that when preparing an input
sharing, the secrets we need only come from the output sharings which have been computed. The secrets of
these output sharings have been properly permuted such that the secrets we want are in different positions.
Therefore, we can use Fselect-semi to choose these secrets and obtain the desired input sharing.

Proof of Theorem 4. We will prove the theorem by induction on k.
When k = 1, N is a matrix of dimension m×1. Since each value ` ∈ {1, 2, . . . ,m} appears once inN , and

N only has one column, the column of N is a permutation of (1, 2, . . .m). The permutations p1, p2, . . . , pm
will just be the identities.

Assume the theorem holds for k = k′ ≥ 1. Let’s consider the case when k = k′ + 1. We first construct a
bipartite graph G = (V1, V2, E). Let V1 = V2 = {1, 2, . . . ,m}. For all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , k},
if Ni,j = `, we create an edge (i, `) ∈ V1 × V2 and insert (i, `) in E.

Now we show that G is a regular-k bipartite graph. For all vertex i ∈ V1, we create an edge for each
entry in the i-th row of N . Therefore, the degree of the vertex i is k. For all vertex ` ∈ V2, we create an
edge for each entry in N which is equal to `. Since in N , the number of entries that are equal to ` is k, the
degree of each vertex ` ∈ V2 is k. Thus, G is a regular-k bipartite graph.

According to Corollary 1, there exists a perfect matching in G. Suppose (1, `1), (2, `2), . . . , (m, `m) are the
edges in the perfect matching. Then (`1, `2, . . . , `m) is a permutation of (1, 2, . . . ,m). For all i ∈ {1, 2, . . . ,m},
let ji be the first position that Ni,ji = `i. Now for all i ∈ {1, 2, . . . ,m}, we switch the k-th entry and the

ji-th entry in the i-th row, and denote the new matrix to be Ñ . In this way, the last column of Ñ becomes
a permutation of (1, 2, . . . ,m).

Let M be the sub-matrix of Ñ which contains the first k − 1 columns. Then M is a matrix in
{1, 2, . . . ,m}m×(k−1), and for all ` ∈ {1, 2, . . . ,m}, the number of entries of M which are equal to ` is k− 1.
According to the induction hypothesis, there exists m permutations p′1, p

′
2, . . . , p

′
m over {1, 2, . . . , k− 1} such

that after performing the permutation p′i on the i-th row of M , the new matrix M ′ satisfies that each
column of M ′ is a permutation of (1, 2, . . . ,m).

Now we construct the permutations p1, p2, . . . , pm over {1, 2, . . . , k} as follows: For all i ∈ {1, 2, . . . ,m}

• for all j ∈ {1, 2, . . . , k − 1} and j 6= ji, pi(j) = p′i(j);

• for ji, pi(ji) = k;

• for k, pi(k) = p′i(ji).

Let N ′ denote the matrix after performing the permutation pi on the i-th row of N for all i ∈ {1, 2, . . . ,m}.
Note that for all i ∈ {1, 2, . . . ,m}, performing the permutation pi on the i-th row of N is equivalent to
first switching the k-th entry and the ji-th entry and then performing the permutation p′i on the first k − 1
entries. Therefore, for all j ∈ {1, 2, . . . , k − 1}, the j-th column of N ′ is the same as the j-th column of
M ′, and the k-th column of N ′ is the same as the k-th column of Ñ . Therefore each column of N ′ is a
permutation of (1, 2, . . . ,m).

According to Corollary 1, the perfect matching of G can be found within polynomial time. According to
the induction hypothesis, p′1, p

′
2, . . . , p

′
m can be found within polynomial time. Therefore, p1, p2, . . . , pm can

be constructed within polynomial time.
Therefore, the theorem holds for all integers k ≥ 1.
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4.4 Handling Fan-out Gates

In the last subsection, we discussed how to prepare the input sharings for multiplication gates and addition
gates. Our solution requires that

• every output wire of the input layer and all intermediate layers is used exactly once as an input wire
of a later layer (which may not be the next layer).

This requirement can be met by inserting fan-out gates in each layer, which copy each output wire the number
of times it is used in later layers. Specifically, we consider a functionality Ffan-out-semi which takes as input
a degree-t packed Shamir sharing of x = (x1, x2, . . . , xk) ∈ Fk along with a vector (n1, n2, . . . , nk) ∈ Nk,
where ni ≥ 1 is the number of times that xi is used in later layers, and outputs n1+n2+...+nk

k degree-t packed

Shamir sharings which contain ni copies of the value xi for all i ∈ {1, 2, . . . , k}. We assume that
∑k
i=1 ni is

a multiple of k. In Section 5, we will show how to compile a general circuit to meet this requirement. The
description of Ffan-out-semi appears in Functionality 15.

Functionality 15: Ffan-out-semi

1. Ffan-out-semi receives from honest parties the shares of [x] and a vector (n1, n2, . . . , nk).

2. Ffan-out-semi reconstructs the secrets x = (x1, x2, . . . , xk). Then Ffan-out-semi initiates an empty list
L. From i = 1 to k, Ffan-out-semi inserts ni times of xi into L.

3. Let m = n1+n2+...+nk
k . From i = 1 to m,

(a) Ffan-out-semi sets x(i) to be the vector of the first k elements in L, and then removes the first
k elements in L.

(b) Ffan-out-semi receives from the adversary a set of shares {s(i)j }j∈C . Ffan-out-semi generates a

degree-t packed Shamir sharing [x(i)] such that the j-th share of [x(i)] is s
(i)
j .

(c) Ffan-out-semi distributes the shares of [x(i)] to honest parties.

Let [y] ∈ {[x(1)], [x(2)], . . . , [x(m)]}. We will focus on how to generate [y] from [x] in the following.
Ffan-out-semi can be realized by generating [x(1)], [x(2)], . . . , [x(m)] one by one.

Observe that y has the following form:

• y is a composition of ` vectors y(1),y(2), . . . ,y(`);

• each vector y(i) only contains the same value;

• if let vi be the value in y(i), then v1, v2, . . . , v` are ` distinct values.

This is because, in Ffan-out-semi, we gather the same values when generating the list L. Therefore, for each
vector y ∈ {x(1),x(2), . . . ,x(m)}, the entries that have the same value are also gathered.

For all i ∈ {1, 2, . . . , `}, let wi be the first position of y where vi appears. Let w`+1 = k+ 1. Then for all
i ∈ {1, 2, . . . , `}, entries with the indices between wi and wi+1 − 1 are equal to vi. To obtain [y] from [x],
our idea is to do the following two steps:

1. All parties first permute the secrets of [x] such that for all i ∈ {1, 2, . . . , `}, vi is at position wi. Let
[x′] denote the new sharing.

2. For all i ∈ {1, 2, . . . , `} and wi ≤ j ≤ wi+1 − 1, all parties change the j-th secret of x′ to be the same
as the wi-th secret of x′. Note that the result will be a sharing of y.
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For Step 1, we can use Fpermute-semi introduced in Section 4.2. For Step 2, relying on the techniques
in [DIK10], it can be done by the following steps:

1. All parties prepare two random degree-t packed Shamir sharings ([r], [r̃]), such that r is a uniform
vector in Fk, and for all i ∈ {1, 2, . . . , `} and wi ≤ j ≤ wi+1 − 1, r̃j = rwi .

2. All parties locally compute [e] := [x′] + [r].

3. All parties send their shares of [e] to the first party P1.

4. P1 reconstructs the secrets e. Then P1 sets ẽ to be a vector in Fk such that for all i ∈ {1, 2, . . . , `} and
wi ≤ j ≤ wi+1−1, ẽj = ewi . P1 generates a random degree-t packed Shamir sharing [ẽ] and distributes
the shares to other parties.

5. All parties locally compute [y] := [ẽ]− [r̃].

As for the correctness, note that e = x′ + r. Therefore, for all i ∈ {1, 2, . . . , `}, ewi = x′wi + rwi = vi + rwi .
In Step 4, we have ẽj = ewi = vi + rwi for all i ∈ {1, 2, . . . , `} and wi ≤ j ≤ wi+1 − 1. In the last step, for
all i ∈ {1, 2, . . . , `} and wi ≤ j ≤ wi+1 − 1, ẽj − r̃j = vi + rwi − rwi = vi = yj .

As in Section 4.2, the main issue of this approach is how to efficiently prepare a pair of random sharings
([r], [r̃]). Indeed, such a pair of random sharings can be prepared using Frand with a suitable F-linear secret
sharing scheme. However, for different structures of y, the F-linear secret sharing schemes used in Frand are
also different. Although the amortized communication complexity of the implementation of Frand is O(n)
field elements, it has an overhead of O(n3 · κ) field elements which is independent of the number of sharings
we want to prepare. In the worst case where each time we need to prepare a different kind of random sharings
([r], [r̃]), the overhead of obtaining [y] from [x] becomes O(n3 ·κ), which eliminates the benefit we gain when
using the packed Shamir sharing scheme.

In [DIK10], they use a different way to handle the fan-out gate which increases the depth of the circuit
by a factor of O(log |C|), where |C| is the circuit size. We will use the same idea as that in Section 4.2 to
prepare the random sharings we want.

Using Fselect-semi to Generate Random Sharings for Copying Secrets. For all i1, i2 ∈ {1, 2, . . . , k},
we say a pair of degree-t packed Shamir sharings ([x], [y]) contains an (i1, i2)-block if for all i1 ≤ j ≤ i2 the
secrets of these two sharings satisfy that yj = xi1 . We say a point j ∈ {1, 2, . . . , k} is covered by an (i1, i2)-
block if i1 ≤ j ≤ i2. A pattern π is defined to be a list of blocks such that for all j ∈ {1, 2, . . . , k}, j is covered
by exactly one block in π. Then, the random sharings ([r], [r̃]) we want to prepare correspond to a pattern
π which contains the ` blocks: a (w1, w2 − 1)-block, a (w2, w3 − 1)-block, . . . , and a (w`, w`+1 − 1)-block.
Therefore, the problem we want to solve is to prepare a pair of random sharings for a pattern π.

Let m denote the number of patterns we want to prepare random sharings for. These patterns are denoted
by π1, π2, . . . , πm. Our idea is as follows:

1. We first find m patterns ρ1, ρ2, . . . , ρm such that:

• For all i, j ∈ {1, 2, . . . , k}, the number of patterns in {π1, π2, . . . , πm} that contain an (i, j)-block
is equal to the number of patterns in {ρ1, ρ2, . . . , ρm} that contain an (i, j)-block.

2. All parties prepare random sharings for patterns ρ1, ρ2, . . . , ρm.

3. From i = 1 to m, a pair of random sharings for the pattern πi can be prepared as follows: for all
(j1, j2)-block in πi, all parties use Fselect-semi to choose the first unused (j1, j2)-block from the random
sharings for ρ1, ρ2, . . . , ρm.

The major benefit of this approach is that we can limit the number of different patterns in {ρ1, ρ2, . . . , ρm}
as we show below. More concretely, we will prove the following theorem:
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Theorem 5. Let m, k ≥ 1 be integers. Let (i, j)-block and pattern be defined as above. For all m patterns
π1, π2, . . . , πm, there exists m patterns ρ1, ρ2, . . . , ρm such that:

• For all i, j ∈ {1, 2, . . . , k}, the number of patterns π ∈ {π1, π2, . . . , πm} such that (i, j)-block is in π is
the same as the number of patterns ρ ∈ {ρ1, ρ2, . . . , ρm} such that (i, j)-block is in ρ.

• ρ1, ρ2, . . . , ρm contain at most k2 different patterns.

Moreover, ρ1, ρ2, . . . , ρm can be found within polynomial time given π1, π2, . . . , πm.

Recall that the issue of using Frand to prepare random sharings for π1, π2, . . . , πm is that there will be an
overhead O(n3 ·κ) per different pattern in π1, π2, . . . , πm. In the worst case, this overhead can be as large as
O(n3 ·κ ·m), which eliminates the benefit of using the packed Shamir sharing scheme. Relying on Fselect-semi,
we only need to prepare random sharings for patterns ρ1, . . . , ρm, which contain at most k2 ≤ n2 different
patterns. In this way, the overhead is upper-bounded by O(n5 · κ), which is independent of the number of
patterns we want to prepare random sharings for.

Proof of Theorem 5. Recall that we say a value j ∈ {1, 2, . . . , k} is covered by an (i1, i2)-block if i1 ≤ j ≤ i2,
and a pattern is defined to be a set of blocks such that each value in {1, 2, . . . , k} is covered by exactly one
block. One may view each block as a small segment, and a pattern as a segment coverage of the segment
[1, k].

Let L be a two-dimensional list with indices i, j ∈ {1, 2, . . . , k}, such that L(i, j) is the number of patterns
π ∈ {π1, π2, . . . , πm} such that (i, j)-block is in π. Then, L is a list of demand. We say a two-dimensional
list L a balanced list if

• for all j ∈ {1, 2, . . . , k}, the summation
∑
i1≤j≤i2 L(i1, i2) is the same.

The summation
∑
i1≤j≤i2 L(i1, i2) represents the number of blocks that cover j. Therefore, a balanced list

corresponds to a set of blocks such that for all j ∈ {1, 2, . . . , k}, j is covered by the same number of times.
We first prove the following property of a balanced list L:

Property 2 (Pattern). For all i ≤ j < k, if L(i, j) ≥ 1, then there exists j < j′ ≤ k such that L(j+1, j′) ≥ 1.

In another word, this property says that for the set of blocks that L corresponds to, if there exists an
(i, j)-block where j < k, then there exists another block which starts from j + 1. To see this, note that L is
a balanced list. Therefore, j and j + 1 are covered by the same number of blocks. Since we already have a
block which covers j but not j + 1, there must exist a block which covers j + 1 but not j, which means that
this block starts from j + 1.

Consider the following process to find the patterns ρ1, ρ2, . . . , ρm.

1. Initially set the list of patterns Q to be empty. Let L′ := L. Note that L′ is a balanced list.

2. While L′ contains a non-zero entry, run the following steps:

(a) Initially set ρ to be an empty set of blocks. Set i = 1 which represents the first value which is not
covered by the blocks in ρ.

(b) While i ≤ k:

i. Find the first entry j ≥ i such that L′(i, j) ≥ 1.

ii. Insert (i, j)-block in ρ.

iii. Set i := j + 1.

(c) Let n′ = min{L′(i1, i2)| (i1, i2)-block is in ρ}. For all i1, i2 ∈ {1, 2, . . . , k} such that (i1, i2)-block
is in ρ, set L′(i1, i2) := L′(i1, i2)− n′.

(d) Insert n′ times of ρ into the list Q.

3. Output the patterns in Q.
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We first show that the above process will finally terminate. In the beginning, L′ = L is a balanced list.
We maintain this property in each iteration of Step 2. At the beginning of Step 2, since L′ is a non-zero
balanced list, the value 1 is covered by at least 1 block. Therefore, we can find j ≥ 1 such that L′(1, j) ≥ 1.
For 1 < i ≤ k, since we have found a block which ends at the value i− 1, by the property of a balanced list,
there exists j ≥ i such that L′(i, j) ≥ 1. This process ends when i = k + 1. Note that the blocks we select
form a pattern. In Step 2.(c), n′ is the largest number of the patterns ρ we can have. Having more than
n′ times of pattern ρ will lead to at least one block having more supply than demand. Since ρ is a pattern,
each value is covered by exactly one block in ρ. Therefore, after updating the list of demand L′, L′ is still
a balanced list. Note that the summation of all the entries in L′ decreases in each iteration. We conclude
that the above process will finally terminate.

Now we show that the number of different patterns in Q is bounded by k2. It is sufficient to show that
Step 2 will terminate within k2 rounds since in each round we only insert the same type of patterns into Q.
To this end, we count the number of 0-entries in L′. Note that in each round, the way we choose n′ in Step
2.(c) guarantees that at least one entry of L′ will become 0 after updating L′ in Step 2.(c). Therefore, the
number of 0-entries in L′ increases at least by 1 in each round. Since there are k2 entries in L′, Step 2 will
terminate within k2 rounds.

Preparing Random Sharings for Different Patterns. We are ready to introduce the functionality and
its implementation for preparing random sharings for different patterns. The functionality Frand-pattern-semi

appears in Functionality 16.

Functionality 16: Frand-pattern-semi

1. Frand-pattern-semi receives from honest parties m patterns π1, π2, . . . , πm.

2. For all i ∈ [m], Frand-pattern-semi receives from the adversary a set of shares {(u(i)j , v
(i)
j )}j∈C .

Frand-pattern-semi samples a random vector r(i) ∈ Fk and computes a vector r̃(i) such that for

all (i1, i2)-block in πi and i1 ≤ j ≤ i2, r̃
(i)
j = r

(i)
i1

. Frand-pattern-semi samples two degree-t packed

Shamir sharings ([r(i)], [r̃(i)]) such that for all Pj ∈ C, the j-th share of ([r(i)], [r̃(i)]) is (u
(i)
j , v

(i)
j ).

3. For all i ∈ [m], Frand-pattern-semi distributes the shares of ([r(i)], [r̃(i)]) to honest parties.

For a fixed pattern π, we show how to use Frand to prepare a pair of random sharings for π in Ap-
pendix B.4. The communication complexity of preparing m pairs of random sharings for a fixed pattern π is
O(m · n+ n3 · κ) elements in F. We describe the protocol for Frand-pattern-semi in Protocol 17. The commu-
nication complexity of using Rand-Pattern to prepare random sharings for m patterns is O(m ·n+n5 ·κ)
field elements.

Lemma 7. Protocol Rand-Pattern securely computes Frand-pattern-semi in the (Frand,Fselect-semi)-hybrid
model against a semi-honest adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

In Step 1 and Step 2, S honestly follows the protocol and computes the patterns ρ1, ρ2, . . . , ρm. In Step 3,
S emulates Frand when generating the random sharings ([r(i)], [r̃(i)]) for each pattern ρi. Since the number
of corrupted parties is t− k + 1, by the property of the degree-t packed Shamir sharing scheme, the secrets
r(i) are uniform and independent of the shares held by corrupted parties. In Step 4, S honestly constructs
the lists. In Step 5, S emulates Fselect-semi and receives the shares of corrupted parties for all ([v(`)], [ṽ(`)]).
Then, S sends these shares to Frand-pattern-semi.

32



Protocol 17: Rand-Pattern

1. Let π1, π2, . . . , πm be the patterns that all parties want to prepare random sharings for.

2. All parties use a deterministic algorithm that all parties agree on to compute m patterns
ρ1, ρ2, . . . , ρm such that

• For all i, j ∈ {1, 2, . . . , k}, the number of patterns π ∈ {π1, π2, . . . , πm} such that (i, j)-block
is in π is the same as the number of patterns ρ ∈ {ρ1, ρ2, . . . , ρm} such that (i, j)-block is in
ρ.

• ρ1, ρ2, . . . , ρm contain at most k2 different patterns.

The existence of such an algorithm is guaranteed by Theorem 5.

3. Suppose ρ′1, ρ
′
2, . . . , ρ

′
k2 denote the different patterns in ρ1, ρ2, . . . , ρm. For all i ∈ {1, 2, . . . , k2},

let n′i denote the number of times that ρ′i appears in ρ1, ρ2, . . . , ρm. All parties invoke Frand to
prepare n′i pairs of random sharings for the pattern ρ′i for all i ∈ {1, 2, . . . , k2}. Note that we have
prepared a pair of random sharings for pattern ρi for all i ∈ [m]. Let ([r(i)], [r̃(i)]) denote the
random sharings for the pattern ρi.

4. For all i, j ∈ {1, 2, . . . , k}, all parties initiate an empty list Li,j . From ` = 1 to m, for all
i, j ∈ {1, 2, . . . , k}, if ([r(`)], [r̃(`)]) contains an (i, j)-block, all parties insert ([r(`)], [r̃(`)]) into the
list Li,j .

5. From ` = 1 to m, all parties prepare a pair of random sharings for π` as follows:

• Let s denote the number of blocks in π`. The blocks in π` are denoted by (w1, w2 − 1)-
block, (w2, w3 − 1)-block, . . . , (ws, ws+1 − 1)-block, where w1 = 1, ws+1 = k + 1 and w1 <
w2 < . . . < ws+1. From i = 1 to s, let ([r(`i)], [r̃(`i)]) denote the first pair of sharings in
the list Lwi,wi+1−1, and then remove it from Lwi,wi+1−1. Note that ([r(`i)], [r̃(`i)]) contains a
(wi, wi+1 − 1)-block, which is not used when preparing random sharings for π1, π2, . . . , π`−1.

• Let I denote the identity permutation over {1, 2, . . . , k}.
– All parties initiate an empty list Q. For all j ∈ {1, 2, . . . , k}, let ij denote the index such

that wij ≤ j < wij+1. From j = 1 to k, all parties insert [r(`ij )] into Q. Then, all parties
invoke Fselect-semi with the degree-t packed Shamir sharings in Q and the permutation I.
The output is denoted by [v(`)].

– All parties initiate an empty list Q′. From j = 1 to k, all parties insert [r̃(`ij )] into Q′.
Then, all parties invoke Fselect-semi with the degree-t packed Shamir sharings in Q′ and
the permutation I. The output is denoted by [ṽ(`)]. Note that for all i ∈ {1, 2, . . . , s}
and wi ≤ j < wi+1, v

(`)
j = r

(`i)
j and ṽ

(`)
j = r̃

(`i)
j = r

(`i)
wi = v

(`)
wi .

6. All parties take ([v(1)], [ṽ(1)]), ([v(2)], [ṽ(2)]), . . . , ([v(m)], [ṽ(m)]) as output.

Note that through the protocol, corrupted parties do not receive any messages from honest parties.
Therefore, it is sufficient to argue that the distribution of the output in both worlds are identical. First,
for all ` ∈ {1, 2, . . . ,m}, the shares of [v(`)] and [ṽ(`)] held by corrupted parties are chosen by themselves in
both worlds. For the secrets v(`) and ṽ(`), let s denote the number of blocks in π`, and the blocks in π` are
denoted by (w1, w2 − 1)-block, (w2, w3 − 1)-block, . . . , (ws, ws+1 − 1)-block, where w1 = 1, ws+1 = k + 1
and w1 < w2 < . . . < ws+1. Then in the ideal world, v(`) is a uniform vector in Fk and ṽ(`) satisfies that
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for all i ∈ {1, 2, . . . , s} and wi ≤ j < wi+1, ṽ
(`)
j = v

(`)
wi . In the real world, there is a one-to-one map from

{r(`)}`∈[m] to {v(`)}`∈[m]. Therefore each vector v(`) is uniform. As for ṽ(`), note that in Step 5, Case 2.2,

for all i ∈ {1, 2, . . . , s} and wi ≤ j < wi+1, v
(`)
j = r

(`i)
j and ṽ

(`)
j = r̃

(`i)
j = r

(`i)
wi = v

(`)
wi , where the second

equation is because ([r(`i)], [r̃(`i)]) contains a (wi, wi+1 − 1)-block. Therefore, the distribution of the output
in both worlds are identical.

Realizing Ffan-out-semi. Now we are ready to present the protocol for Ffan-out-semi. Recall that our idea
for Ffan-out-semi is to generate the output sharings one by one. For each output sharing, we do the following
two steps:

1. In the first step, we permute the input sharing such that each secret we need to copy for this output
sharing is in the first position of each block.

2. In the second step, we use Frand-pattern-semi to prepare the random sharings we want and then follow
the techniques in [DIK10] as discussed above.

Similarly to Permute, we will prepare a random degree-2t packed Shamir sharing of 0 ∈ Fk, which is
used as a random mask for the shares of honest parties (see the proof of Lemma 8). This is not needed
for semi-honest security but will be helpful when we consider a fully malicious adversary at a later point.
The description of Fan-out appears in Protocol 18. As for the communication complexity of Fan-out, we
measure it by the number of output sharings. This is because, in Fan-out, the first two steps do not require
any communication and are used to determine the structures of the secrets of the output sharings. In Step
3, output sharings are prepared one by one. Therefore, the communication complexity only depends on the
number of output sharings even if the output sharings are coming from different invocations of Fan-out with
different input sharings. The communication complexity of using Fan-out to generate m output sharings
is O(m · n+ n5 · κ) field elements.

Lemma 8. Protocol Fan-out securely computes Ffan-out-semi in the (Frand,Frand-pattern-semi)-hybrid model
against a semi-honest adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

Recall that in Lemma 6, we have shown that, for a random degree-t packed Shamir sharing [r] and a
random degree-2t packed Shamir sharing of 0 ∈ Fk, given the shares of [r] and 〈0〉 held by corrupted parties,
the shares of 〈r〉 := [r] + 〈0〉 held by honest parties are uniform.

We first prove the correctness of Fan-out. In Step 1 and Step 2, all parties determine the secrets of
each output degree-t packed Shamir sharing. The procedure is identical to that in Ffan-out-semi. Therefore,
it is sufficient to show that in Step 3, all parties can obtain each output sharing correctly.

In Step 3, for each y ∈ {x(1),x(2), . . . ,x(m)}, y is in the form that (1) y is a composition of ` small vectors
y(1),y(2), . . . ,y(`); (2) each small vector y(i) only contains the same value; and (3) if let vi be the value in
y(i), then v1, v2, . . . , v` are ` distinct values. This is because we gather the same values when we construct
the list L in Step 2. Therefore, for each y ∈ {x(1),x(2), . . . ,x(m)}, the entries that have the same value are
also gathered. In Step 3.(b), we permute the secrets of [x] such that the secrets x′ of the output sharing
satisfies that x′wi = vi = ywi for all i ∈ {1, 2, . . . , s}. Note that for all i ∈ {1, 2, . . . , s} and wi ≤ j < wi+1,
yj = ywi = vi. To see that all parties obtain the correct secrets y when running Step 3.(e) to Step 3.(h), note
that e = x′ + r. Therefore ewi = x′wi + rwi = vi + rwi for all i ∈ {1, 2, . . . , s}. Since for all i ∈ {1, 2, . . . , s}
and wi ≤ j < wi+1, ẽj = ewi and r̃j = rwi , we have yj = ẽj − r̃j = ewi − rwi = vi.

Now we describe the construction of S. S determines the secrets of each output degree-t packed Shamir
sharing by honestly following the protocol. In Step 3.(b), S emulates Fpermute-semi. In Step 3.(c) and Step
3.(d), S emulates Frand-pattern-semi and Frand, and receives the shares of ([r], [r̃]) and 〈0〉 held by corrupted
parties. In Step 3.(e), for each honest party, S generates a random element in F as its share of 〈e〉. As we
argued above, the share of 〈r〉 := [r] + 〈0〉 held by each honest party is uniform. Therefore, the share of 〈e〉
held by each honest party is also uniform. In Step 3.(f), Step 3.(g) and Step 3.(h), S honestly follows the

34



Protocol 18: Fan-out

1. Let [x] denote the input degree-t packed Shamir sharing and (n1, n2, . . . , nk) denote the vector in
Nk where ni is the number of times of the i-th entry of x that all parties want to copy.

2. All parties run the following steps to determine the secrets of each output sharing:

(a) Initially, L is set to be an empty list. From i = 1 to k, insert ni times of xi into L.

(b) Let m = n1+n2+...+nk
k . From i = 1 to m, let x(i) be the vector of the first k elements in

L, and then removes the first k elements in L. Then, x(i) are the secrets of the i-th output
degree-t packed Shamir sharing.

3. For each of y ∈ {x(1),x(2), . . . ,x(m)}, all parties run the following steps to generate a degree-t
packed Shamir sharing of y.

(a) Let s denote the number of different values in y. These different values are denoted by
v1, v2, . . . , vs. For all i ∈ {1, 2, . . . , s}, let wi denote the index of the first value of y that is
equal to vi. Let p(·) be a permutation over {1, 2, . . . , k} that all parties agree on such that,
after computing x′ = Mp · x, x′wi = vi for all i ∈ {1, 2, . . . , s}.

(b) All parties invoke Fpermute-semi with input sharing [x] and the permutation p. Let [x′] denote
the output.

(c) Let π be a pattern which contains (w1, w2− 1)-block, (w2, w3− 1)-block, . . . , (ws, ws+1− 1)-
block, where ws+1 = k + 1. All parties invoke Frand-pattern-semi with π to prepare a pair of
random sharings ([r], [r̃]) such that r is uniform in Fk and for all (wi, wi+1 − 1)-block in π
and wi ≤ j < wi+1, r̃j = rwi .

(d) All parties invoke Frand to prepare a random degree-2t packed Shamir sharing 〈0〉.
(e) All parties locally compute 〈e〉 := [x′] + [r] + 〈0〉.
(f) All parties send their shares of 〈e〉 to the first party P1.

(g) P1 reconstructs the secrets e, and computes ẽ such that for all (wi, wi+1 − 1)-block in π and
wi ≤ j < wi+1, ẽj = ewi . Then P1 generates a random degree-t packed Shamir sharing [ẽ],
and distributes the shares to other parties.

(h) All parties locally compute [y] := [ẽ]− [r̃].

protocol. At the end of the protocol, S computes the shares of [y] held by corrupted parties. This can be
computed by using the shares of [ẽ] and [r̃] held by corrupted parties, where

• the shares of [ẽ] held by corrupted parties can be computed by the shares of honest parties S learnt in
Step 3.(g),

• and the shares of [r̃] held by corrupted parties are received when S emulates Frand-pattern-semi in Step
3.(c).

Then S sends the shares of [y] held by corrupted parties to Ffan-out-semi.
It is clear that S perfectly simulates the behaviors of honest parties. As for the output, note that the

whole sharing [y] is determined by the secrets y and the shares of corrupted parties. Since y is determined
in the same way in both worlds, and the shares of [y] of corrupted parties are chosen by the adversary in
both worlds, the output of honest parties is identical in both worlds.
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Remark 3. We note that the functionality Frand-pattern-semi needs to know all the patterns before generating
the random sharings. In the real execution, all the invocations of Fan-out will first run Step 3.(b) to submit
the pattern to Frand-pattern-semi. This can be done since the patterns we need to prepare random sharings for
are determined by the circuit and are independent of the inputs.

5 Main Protocol - Against a Semi-honest Adversary

In this section, we will introduce our main protocol of using packed Shamir sharing to evaluate a gen-
eral circuit C against a semi-honest adversary. We first discuss how to compile a general circuit to meet
the requirements we assume in Section 4. Then we give the main protocol and analyze its security and
communication complexity.

Recall that we are in the client-server model where there are c clients and n = 2t + 1 parties (servers).
Recall that 1 ≤ k ≤ t is an integer. An adversary is allowed to corrupt t′ = t−k+ 1 parties. We will use the
degree-t packed Shamir sharing scheme, which can store k secrets within one sharing. Recall that C denotes
the set of corrupted parties and H denotes the set of honest parties.

5.1 Transforming a General Circuit C

In Section 4, we assume that the circuit has the following properties:

• In the input layer and the output layer, the number of input gates belonging to each client and the
number of output gates belonging to each client are multiples of k. In each intermediate layer, the
number of addition gates and the number of multiplication gates are multiples of k. (See Section 4.1.)

• For the input layer and all intermediate layers, the number of output wires of each layer is a multiple
of k. For the output layer and all intermediate layers, the number of input wires of each layer is a
multiple of k. Moreover, each output wire is only used once as an input wire in a later layer so that
there is a bijective map between the output wires and the input wires. (See Section 4.3.)

• During the computation, gates that have the same type (i.e., input gates belonging to the same client,
output gates belonging to the same client, multiplication gates, addition gates) in each layer are divided
into groups of k. Each group of gates are evaluated simultaneously. For the output wires of each group
of gates, the number of times that those wires are used as input wires in later layers is a multiple of k.
(See Section 4.4.)

Note that the second property is implied by the first property and the third property:

• As we argued in 4.3, without loss of generality, we assume that there is a fan-out gate right after each
of input gates, multiplication gates, and addition gates, which copies the output wire the number of
times that this output wire is used in later layers. In this way, every output wire is only used once as
an input wire in a later layer.

• According to the first property, the number of addition gates and the number of multiplication gates in
each intermediate layer are multiples of k. Therefore, the number of input wires of each intermediate
layer is a multiple of k. Similarly, for the output layer, since the number of output gates belonging to
each client is a multiple of k, the total number of input wires of the output layer is also a multiple of
k.

• According to the third property, after grouping the gates that have the same type in each layer, the
number of times that the output wires of each group of gates are used in later layers are multiples of
k. Therefore, after using fan-out gates to copy each output wire the number of times that this wire is
used in later layers, the number of output wires of each of the input layer and intermediate layers is a
multiple of k.
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Thus, it is sufficient to show the following theorem:

Theorem 6. Given an arithmetic circuit C with input coming from c clients, there exists an efficient
algorithm which takes C as input and outputs an arithmetic circuit C ′ with the following properties:

• For all input x, C(x) = C ′(x).

• In the input layer and the output layer, the number of input gates belonging to each client and the
number of output gates belonging to each client are multiples of k. In each intermediate layer, the
number of addition gates and the number of multiplication gates are multiples of k.

• After grouping the gates that have the same type in each layer, the number of times that the output
wires of each group are used in later layers is a multiple of k.

• Circuit size: |C ′| = O(|C| + k · (c + Depth)), where c is the number of clients that provide inputs and
Depth is the depth of C.

Proof. Let Client1,Client2, . . . ,Clientc denote the clients that provide inputs. We start by creating a virtual
client Client0. We will insert two new types of gates: input gates belonging to Client0 and output gates
belonging to Client0. The input gates belonging to Client0 are used to provide constant values for the
computation. The output gates belonging to Client0 are used to collect the wires that will not be output to
any clients. Initially, for each input wire carrying a constant value in C, we insert an input gate belonging
to Client0 for this wire. Without loss of generality, we assume that each input of Client0 is only used once in
the circuit. To see this, for an input of Client0 (which is known to all parties), if this input is used more than
once, we can simply insert multiple input gates that take the same value. (Note that the same argument
does not work for other clients since it allows a client to use different values for its input wires in C ′ which
should have the same value in C.)

Step 1. For each i, let Mi and Ai denote the number of multiplication gates and the number of addition
gates in layer i. We insert dMi

k e ·k−Mi multiplication gates and dAik e ·k−Ai addition gates in layer i. Each
of these new gates takes two inputs from Client0 and outputs to Client0 as well. The inputs are set to be
0. Therefore, we insert 2 input gates belonging to Client0 and one output gate belonging to Client0 for each
of the new multiplication gates and addition gates. In this way, the number of multiplication gates and the
number of addition gates are multiples of k. Note that this step increases the circuit size by O(k · Depth).

Step 2. For each intermediate layer, we divide the multiplication gates and addition gates into groups of k
respectively. For each group of gates, let (w1, w2, . . . , wk) denote the output wires, and (n1, n2, . . . , nk) denote
the number of times that each wire is used in later layers. Let n′k = dn1+n2+...+nk

k e·k−(n1+n2+. . .+nk). We
insert n′k output gates belonging to Client0 which take wk as the input wire. In this way, wk is used nk + n′k
times, and the total number of times that w1, w2, . . . , wk are used in later layers is a multiple of k. Note that
each wire wj is used at least once. Therefore, n′k < k ≤ n1 + n2 + . . . + nk. It means that for the output
wires of each group, we increase the number of times that these wires are used in later layers by at most a
factor of 2. Therefore this step increases the circuit size by at most a factor of 2. It is convenient to think
that for each group of gates, there is a fan-out gate which takes as input the output wires (w1, w2, . . . , wk)
and (n1, n2, . . . , nk + n′k), and outputs n1 copies of w1, n2 copies of w2, . . . , and nk + n′k copies of wk. We
consider the fan-out gates as a part of each intermediate layer.

Step 3. For each Clienti (i ≥ 1), let Ii denote the number of input gates belonging to Clienti. We insert
d Iik e · k − Ii input gates belonging to Clienti, which take 0 as input. We also insert the same number of
output gates belonging to Client0 which take these inputs as output. In this way, the number of input gates
belonging to each Clienti is a multiple of k. Similarly, let Oi denote the number of output gates belonging
to Clienti. We insert dOik e · k − Oi input gates belonging to Client0, which take 0 as input. We also insert
the same number of output gates belonging to Clienti which take these inputs as output. In this way, the
number of output gates belonging to each Clienti is a multiple of k. Note that this step increases the circuit
size by O(k · c).

Step 4. For Client0, let I0 denote the number of input gates belonging to Client0. We insert d I0k e · k− I0
input gates belonging to Client0, which take 0 as input. We also create the same number of output gates
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belonging to Client0 which take these inputs as output. In this way, the number of input gates belonging to
Client0 is a multiple of k. This step increases the circuit size by O(k).

Step 5. For each Clienti, we divide the input gates belonging to Clienti into groups of k. Similarly to
Step 2, for each group of gates, let (w1, w2, . . . , wk) denote the output wires, and (n1, n2, . . . , nk) denote
the number of times that each wire is used in later layers. Let n′k = dn1+n2+...+nk

k e · k− (n1 +n2 + . . .+nk).
We insert n′k output gates belonging to Client0 which take wk as the input wire. In this way, wk is used
nk + n′k times, and the total number of times that w1, w2, . . . , wk are used in later layers is a multiple of
k. Together with Step 2, the circuit size is increased by at most a factor of 2. It is convenient to think
that for each group of gates, there is a fan-out gate which takes as input the output wires (w1, w2, . . . , wk)
and (n1, n2, . . . , nk + n′k), and outputs n1 copies of w1, n2 copies of w2, . . . , and nk + n′k copies of wk. We
consider the fan-out gates as a part of the input layer. In this way, each output wire is only used once in
later layers.

This completes the transformation of the circuit.
Now we show that the circuit after the transformation has the desired properties:

• For the first property, note that we do not change the original gates and wires in C. Therefore, it is
sufficient to show that the gates and wires we add in the transformation do not change the functionality.
For the input layer, we create several new input gates belonging to each Clienti (i ≥ 1). These new
gates directly connect to the output gates of Client0, which means that these values are never used in
the computation. For the output layer, we create several new output gates belonging to each Clienti
(i ≥ 1). These new gates directly take the value 0 from the input gates of Client0, which do not affect
the final result. Therefore, the first property holds.

• For the second and the third property, we verify them layer by layer:

– For the input layer, by the way we insert new gates in Step 3 and Step 4, the number of input
gates belonging to each client is a multiple of k. By Step 5, the number of times that the output
wires of each group of gates are used in later layers is a multiple of k.

– For all intermediate layers, by the way we insert new gates in Step 1, the number of multiplication
gates and the number of addition gates in each layer are multiples of k. By Step 2, the number
of times that the output wires of each group of gates are used in later layers is a multiple of k.

– For the output layer, we only need to verify that the number of output gates belonging to each
client is a multiple of k. Note that it holds for Client1,Client2, . . . ,Clientc by the way we insert
new gates in Step 3. As for the output gates belonging to Client0, note that the total number
of output wires of the input layer and all intermediate layers is a multiple of k, and the number
of input wires of each intermediate layer is also a multiple of k. Therefore, the input wires of the
output layer is a multiple of k, which means that the number of output gates is a multiple of k.
Since the number of output gates belonging to each of Client1,Client2, . . . ,Clientc is a multiple of
k. We conclude that the number of output gates belonging to Client0 is also a multiple of k.

• In Step 1, the circuit size increases by O(k ·Depth). In Step 2 and Step 5, the circuit size increases by
at most a factor of 2. In Step 3, the circuit size increases by O(k·c). In Step 4, the circuit size increases
by O(k). Thus, the size of the circuit after transformation is bounded by O(|C|+ k · (c+ Depth)).

5.2 Preprocessing Phase

In this part, we describe how parties preprocess the circuit before doing the computation. During the
computation phase, a batch of k wire values are stored in a single packed Shamir sharing. The main task
of the preprocessing phase is to determine how the wire values should be packed. Also, all parties need to
compute a permutation for each output sharing using the algorithm in Theorem 4. These permutations are
used to achieve the non-collision property. See Section 4.3 for more details. The preprocessing phase only
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depends on the circuit C and does not need any communication. The description of Preprocess appears
in Protocol 19.

Protocol 19: Preprocess

1. Let C denote the circuit. All parties transform C to C ′.

2. Recall that in C ′, gates that have the same type in each layer are divided into groups of k. During
the computation phase, a batch of k wire values are stored in a single packed Shamir sharing. All
parties determine how the wire values should be packed as follows:

• For the input layer, for each group of k input gates belonging to the same client, the values
of the output wires will be stored in a single packed Shamir sharing.

• For each fan-out gate in the input layer, suppose it takes the wires (w1, w2, . . . , wk) and the
vector (n1, n2, . . . , nk) as input. Recall that in C ′, (w1, w2, . . . , wk) are the output wires of a
group of gates, ni is the number of times we need to make copies of wi, and n1+n2+. . .+nk is
a multiple of k. All parties follow the procedure in Ffan-out-semi to determine how the output
wires should be packed:

(a) Each party initiates an empty list L. From i = 1 to k, each party inserts ni times of wi
into L.

(b) Let m = n1+n2+...+nk
k . From i = 1 to m, the i-th output packed Shamir sharing will

contain the values of wires L((i− 1) · k + 1), L((i− 1) · k + 2), . . . , L(i · k).

• For all intermediate layers, for each group of k multiplication gates or addition gates,

– the values of the first input wires of these gates will be stored in a single packed Shamir
sharing,

– the values of the second input wires of these gates will be stored in a single packed Shamir
sharing,

– the values of the output wires of these gates will be stored in a single packed Shamir
sharing.

• For each fan-out gate in all intermediate layers, the wire values are packed in the same way
as that for each fan-out gate in the input layer.

• For the output layer, for each group of k output gates belonging to the same client, the values
of the input wires will be stored in a single packed Shamir sharing.

3. Let N denote the number of output sharings of the input layer and all intermediate layers. Then
the number of input sharings of the output layer and all intermediate layers is also N . The output
sharings are labeled by 1, 2, . . . , N , and the input sharings are also labeled by 1, 2, . . . , N .

4. All parties construct a matrix M ∈ {1, 2, . . . , N}N×k where Mi,j is the index of the input sharing
that the j-th secret in the i-th output sharing wants to go. All parties use a deterministic algorithm
that all parties agree on to compute N permutations p1, p2, . . . , pN such that after applying pi to
the i-th row of M , the new matrix M ′ satisfies that each column of M ′ is a permutation of
(1, 2, . . . , N). The existence of such an algorithm is guaranteed by Theorem 4. Then, all parties
associate pi with the i-th output sharing.
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5.3 Main Protocol - Against Semi-honest Adversary

We are ready to introduce our main protocol. At a high-level, given the preprocessed circuit,

• all parties use Finput-semi,Foutput-semi,Fmult-semi (see Section 4.1) to evaluate input gates, output gates,
multiplication gates, and addition gates in each layer;

• for the input layer and all intermediate layers, all parties use Ffan-out-semi to evaluate fan-out gates (see
Section 4.4);

• for each output sharing, all parties use Fpermute-semi to perform the permutation associated with this
sharing (see Section 4.2) to achieve the non-collision property (see Section 4.3);

• to prepare each input sharing for the next layer, all parties use Fselect-semi to choose the secrets it wants
from the output sharings from previous layers (see Section 4.2), and then use Fpermute-semi to permute
the secrets to the correct order (see Section 4.2).

The ideal functionality Fmain-semi appears in Functionality 20. The main protocol is introduced in Proto-
col 21.

Functionality 20: Fmain-semi

1. Fmain-semi receives the input from all clients. Let x denote the input.

2. Fmain-semi computes C(x) and distributes the output to all clients.

Lemma 9. Protocol Main-semi securely computes Fmain-semi in the (Finput-semi,Ffan-out-semi,Fpermute-semi,
Fselect-semi,Fmult-semi,Foutput-semi)-hybrid model against a semi-honest adversary who controls t′ = t−k+ 1
parties.

Proof. We first show that Main-semi correctly compute Fmain-semi. In the first step, all parties locally run
Preprocess. Let C ′ denote the circuit after transformation. By Theorem 6, it is sufficient to show that
all parties correctly compute C ′. In Preprocess, all parties determine how the wire values of C ′ should be
stored in packed Shamir sharings. It is sufficient to show that in Main-semi, all parties can obtain correct
packed Shamir sharings as they determine in Preprocess.

In Preprocess, for the input layer, for each group of k input gates belonging to the same client, the
values of the output wires will be stored in a single packed Shamir sharing. In Step 2.(a) of Main-semi,
each Clienti (i ≥ 1) uses Finput-semi to shares its input. By the correctness of Finput-semi, all parties obtain
a packed Shamir sharing of the input of Clienti for each group of k input gates belonging to Clienti. For
Client0, the input values x(0) are constant and known to all parties. Therefore, [x(0)] can be obtained by
following the approach in Section 3.2.

In Preprocess, for each fan-out gate in the input layer, all parties follow the same way as that in
Ffan-out-semi to determine the values stored in each output sharing. In Step 2.(b) of Main-semi, all parties
invoke Ffan-out-semi to evaluate each fan-out gate. By the correctness of Ffan-out-semi, all parties obtain correct
output sharings for each fan-out gate.

In Preprocess, each output sharing of the input layer and all intermediate layers is associated with a
permutation such that after permuting each output sharing using the permutation associated with it, for
each input sharing of the output layer and all intermediate layers, the secrets of this sharing come from
different positions in the output sharings from previous layers (i.e., the non-collision property). In Step 2.
(c) of Main-semi, for each output sharing of the input layer, all parties invoke Fpermute-semi to perform the
permutation associated with this sharing. By the correctness of Fpermute-semi, all parties obtain a packed
Shamir sharing containing the permuted secrets.
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Protocol 21: Main-semi

1. Circuit Transformation Phase. Let C denote the evaluated circuit. All parties preprocess the
circuit by running the Preprocess protocol. Let C ′ denote the circuit after transformation.

2. Input Phase. Let Client1,Client2, . . . ,Clientc denote the clients who provide inputs, and Client0
denote the virtual client who provides constants. Recall that Client0 is a virtual client we add
during the transformation of C. The input of Client0 only contains constant values which are
known to all parties. We refer the readers to Section 5.1 for more details.

(a) Input Secret-sharing Phase: For every group of k input gates of Clienti (i ≥ 1), Clienti invokes
Finput-semi to share its inputs x(i) to the parties. For every group of k input gates of Client0,
the inputs x(0) are constant values and known to all parties. All parties transform x(0) to a
degree-t packed Shamir sharing [x(0)] by following the approach in Section 3.2.

(b) Handling Fan-out Gates: For the output sharing [x] of each group of input gates, let ni
denote the number of times that the i-th secret of x is used in later layers. All parties invoke
Ffan-out-semi with input [x] and (n1, n2, . . . , nk).

(c) Achieving Non-Collision Property for the Next Layers: For each output sharing [y] of the
input layer, let p denote the permutation associated with it. All parties invoke Fpermute-semi

with input [y] and p.

3. Evaluation Phase. All parties evaluate the circuit layer by layer as follows:

(a) Permute Input Sharings from Previous Layers: For each input sharing [x], let [x(i)] denote
the output sharing from previous layers which contains the i-th secret xi, and let qi denote
the position of xi in [x(i)]. According to the non-collision property, (q1, q2, . . . , qk) is a per-
mutation of (1, 2, . . . , k). Let q(·) be a permutation over {1, 2, . . . , k} such that q(i) = qi. All
parties invoke Fselect-semi on [x(1)], [x(2)], . . . , [x(k)] and the permutation q. Let [x′] denote
the output of Fselect-semi. Then, all parties invoke Fpermute-semi with input [x′] and q−1 to
obtain [x].

(b) Evaluating Multiplication Gates and Addition Gates: For each group of multiplication gates
with input sharings [x], [y], all parties invoke Fmult-semi with input [x], [y]. For each group of
addition gates with input sharings [x], [y], all parties locally compute [x+ y] = [x] + [y].

(c) Handling Fan-out Gates: For the output sharing [x] of each group of multiplication gates or
addition gates, all parties follow the same step as Step 2.(b) to handle fan-out gates.

(d) Achieving Non-Collision Property: Follow Step 2.(c).

4. Output Phase.

(a) Permute Input Sharings from Previous Layers: For each input sharing [x], all parties follow
the same step as Step 3.(a) to prepare [x].

(b) Reconstruct the Output: For each group of output gates belonging to Clienti (i ≥ 1), let [x]
denote the input sharing. All parties invoke Foutput-semi with input [x] to let Clienti learn the
result x.

From now on, we assume that the secrets of the output sharings of previous layers have been permuted
using the permutations associated with these sharings. For each intermediate layer, in Step 3.(a), we prepare
the input sharings for this layer. According to the non-collision property, for each input sharing [x] of this
layer we want to prepare, the secrets come from different positions in the output sharings of previous
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layers. Let [x(i)] denote the output sharing from previous layers which contains the i-th secret xi, and let
qi denote the position of xi in [x(i)]. Then, (q1, q2, . . . , qk) is a permutation of (1, 2, . . . , k). Let q(·) be a
permutation over {1, 2, . . . , k} such that q(i) = qi. All parties invoke Fselect-semi on [x(1)], [x(2)], . . . , [x(k)]
and the permutation q. Let [x′] denote the output of Fselect-semi. By the correctness of Fselect-semi, the

q(i)-th secret x′q(i) is x
(i)
q(i) = xi. Then x can be obtained by performing q−1 on x′. To see this, let x̃ denote

the vector after performing q−1 on x′. Then xi = x′q(i) = x̃q−1(q(i)) = x̃i. Therefore, x̃ = x. All parties

invoke Fpermute-semi with input [x′] and q−1 to obtain [x]. By the correctness of Fpermute-semi, all parties can
obtain the correct input sharing [x].

In Preprocess, for all intermediate layers, for each group of k multiplication gates or addition gates,
the values of the first input wires of these gates will be stored in a single sharing, the values of the second
wires of these gates will be stored in a single sharing, and the values of the output wires will be stored in
a single sharing. In the last step, we have shown that all parties in Main-semi can prepare correct input
sharings for each intermediate layer, which includes the input sharings for each group of k multiplication
gates or addition gates. As for each group of multiplication gates, all parties invoke Fmult-semi to obtain
the output sharing. By the correctness of Fmult-semi, all parties can obtain the correct output sharing for
each group of multiplication gates. As for each group of addition gates, by the linear homomorphism of the
packed Shamir sharing, all parties can obtain the correct output sharing for each group of addition gates.

In Preprocess, for each fan-out gate in all intermediate layers, all parties follow the same way as that
in Ffan-out-semi to determine the values stored in each output sharing. In Step 3.(c) of Main-semi, all parties
invoke Ffan-out-semi to evaluate each fan-out gate. By the correctness of Ffan-out-semi, all parties obtain correct
output sharings for each fan-out gate.

In Step 3.(d) of Main-semi, all parties permute the secrets of each output sharings using the permutation
associated with this sharing to achieve the non-collision property.

For the output layer, in Step 4.(a), all parties prepare the input sharings of this layer. Similarly to that
for each intermediate layer, all parties can obtain correct input sharings relying on the non-collision property,
Fselect-semi, and Fpermute-semi.

Finally, in Step 4.(b), all parties invoke Foutput-semi to reconstruct the output to each client Clienti (i ≥ 1).
Thus, the correctness holds.
As for security, note that we can construct a simulator S which simply emulates the functionalities

Finput-semi,Ffan-out-semi,Fpermute-semi,Fselect-semi,Fmult-semi during the computation. S learns the inputs of
corrupted clients in Finput-semi and then passes them to Fmain-semi. In the meantime, S learns the shares
of each degree-t packed Shamir sharing held by corrupted parties when simulating these functionalities.
Therefore, S can compute the shares of each sharing associated with the output gates belonging to corrupted
clients by following the protocol. After receiving the outputs of corrupted client from Fmain-semi, S emulates
Foutput-semi using the shares of corrupted parties it computes and the results received from Fmain-semi. Note
that, during the computation, the adversary only receives messages from honest parties or ideal functionalities
when invoking Foutput-semi, which includes the shares of corrupted parties and the final results. Since the
shares of corrupted parties are computed by S following the protocol, the distribution of these shares is the
same in both the ideal world and the real world. The final results are also the same in both worlds according
to the correctness of Main-semi. Also, the output of each honest client is identical in both worlds according
to the correctness of Main-semi. Thus, Main-semi securely computes Fmain-semi.

Analysis of the Communication Complexity of Main-semi. Note that in Main-semi, interaction is
needed only when invoking the functionalities Finput-semi,Ffan-out-semi,Fpermute-semi,Fselect-semi,Fmult-semi,Foutput-semi.

For Finput-semi,Fmult-semi,Foutput-semi, they are used to evaluate input gates, multiplication gates, and
output gates in C ′. Since each functionality evaluates k gates of the same type each time, the total number
of invocations of these functionalities is bounded by |C ′|/k. Recall that for Finput-semi,Foutput-semi, the
implementations Input, Output have communication complexity of O(n) field elements. For Fmult-semi, for
all m ≥ 1, m invocations of the implementation Mult have communication complexity of O(m·n+n3 ·κ) field
elements. Therefore, the total communication complexity of Finput-semi,Fmult-semi,Foutput-semi is bounded
by O(|C ′| · n/k + n3 · κ) field elements.
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For Ffan-out-semi, recall that the communication complexity of using the implementation Fan-out to
generate m output sharings is O(m · n + n5 · κ) field elements. Note that we invoke Ffan-out-semi for the
input layer and all intermediate layers right after evaluating input gates, multiplication gates, and addition
gates. The output sharings of Ffan-out-semi are the output sharings of these layers. Since the number of
output wires of the input layer and all intermediate layers is bounded by |C ′|, the total number of output
sharings is bounded by |C ′|/k. Thus, the total communication complexity of Ffan-out-semi is bounded by
O(|C ′| · n/k + n5 · κ) field elements.

For Fpermute-semi, it is invoked once for each of output sharings and input sharings. Recall that for all
m ≥ 1, m invocations of the implementation Permute have communication complexity O(m · n + n5 · κ)
field elements. Therefore, the total communication complexity of Fpermute-semi is O(|C ′| · n/k + n5 · κ) field
elements.

For Fselect-semi, it is invoked once to prepare each input sharing for the output layer and all intermediate
layers. Since for all m ≥ 1, m invocations of the implementation Select have communication complexity
O(m · n + n3 · κ) field elements, the total communication complexity of Fselect-semi is bounded by O(|C ′| ·
n/k + n3 · κ) field elements.

Plugging in |C ′| = O(|C|+ k · (c+ Depth)), the communication complexity of Main-semi is

O(|C| · n/k + n · (c+ Depth) + n5 · κ)

field elements.

Theorem 7. In the client-server model, let c denote the number of clients, and n = 2t+1 denote the number
of parties (servers). Let κ denote the security parameter, and F denote a finite field. For an arithmetic circuit
C over F and for all 1 ≤ k ≤ t, there exists an information-theoretic MPC protocol which securely computes
the arithmetic circuit C in the presence of a semi-honest adversary controlling up to c clients and t− k + 1
parties. The communication complexity of this protocol is O(|C| · n/k + n · (c+ Depth) + n5 · κ) elements in
F.

6 Towards Security (with Abort) Against a Fully Malicious Ad-
versary

In this section, we discuss how to achieve malicious security with abort. We observe that most of protocols
described in Section 4 have already achieved perfect privacy against a fully malicious adversary, namely the
executions of these protocols do not leak any information to the adversary. Also, the deviation of a fully
malicious adversary can be reduced to the following two kinds of attacks:

• An adversary can distribute an inconsistent degree-t packed Shamir sharing.

• An adversary can add additive errors to the secrets of the output sharing.

To achieve malicious security, our idea is to run our semi-honest protocol described in Section 5 before
the output phase, check whether the above two kinds of attacks are launched by the adversary, and finally
reconstruct the output.

We first prove the security of our protocols described in Section 4 against a fully malicious adversary.
Recall that we are in the client-server model where there are c clients and n = 2t+1 parties (servers). Recall
that 1 ≤ k ≤ t is an integer. An adversary is allowed to corrupt t′ = t − k + 1 parties. We will use the
degree-t packed Shamir sharing scheme, which can store k secrets within one sharing. Recall that C denote
the set of corrupted parties and H denote the set of honest parties.

Let HH ⊂ H be a fixed subset of size t+ 1, and HC = H\HH. Note that the shares of parties in HH can
fully determine a degree-t packed Shamir sharing [x]. For a degree-t packed Shamir sharing [x] held by all
parties,

• we use the notation [x]H to denote the degree-t packed Shamir sharing determined by the shares of
parties in HH;
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• and we use [x]C to denote the sharing where the shares of parties in H are identical to the shares of [x]
held by parties in H, and the shares of parties in C are identical to the shares of [x]H held by parties
in C.

Note that [x]H is always a valid degree-t packed Shamir sharing, while [x]C can be inconsistent. We will
maintain the invariant that the adversary learns the shares of [x]H held by corrupted parties (i.e., the shares
corrupted parties should hold), and the difference ∆ = [x]C − [x]H, which describes the inconsistency of [x]
due to the deviation of corrupted parties. Note that ∆i 6= 0 iff Pi ∈ HC . The secrets of [x] are defined to be
the secrets of [x]H.

Note that for honest parties, the shares of [x]C are identical to the shares of [x]. The only difference
between [x] and [x]C is that we specify the shares of corrupted parties in [x]C to be the shares they should
hold. Since we will maintain the invariant that the adversary learns the shares that corrupted parties should
hold, we can assume that corrupted parties hold the correct shares while they may use incorrect values during
the computation. We will simply use [x] to represent [x]C . Note that, both [x]H and [x] are determined by
the shares of all honest parties.

6.1 Security of Input, Output, and Mult

Security of Input and Output. We first describe the functionalities Finput-mal and Foutput-mal. For
Finput-mal, the functionality allows the adversary to further specify an additive error ∆ which is added to
the output sharing. For Foutput-mal, the functionality further sends the shares of corrupted parties and the
additive error ∆ of the input sharing to the adversary, and it allows the adversary to abort the protocol
at any point. For Finput-mal, we show that Input securely computes Finput-mal against a fully malicious
adversary. For Foutput-mal, we change Output by requiring each client who receives an inconsistent sharing
in Step 2 to abort the protocol. Then we show that Output securely computes Foutput-mal against a fully
malicious adversary. We mark the changes in blue for Functionalities Finput-mal,Foutput-mal and Protocol
Output-mal compared with those in the semi-honest setting.

Functionality 22: Finput-mal

1. Suppose x ∈ Fk is the input associated with the input gate which belongs to the Client. Finput-mal

receives the input x from the Client.

2. Finput-mal receives from the adversary a set of shares {si}i∈C . Finput-mal samples a random degree-t
packed Shamir sharing [x]H such that for all Pi ∈ C, the i-th share of [x]H is si.

3. Finput-mal receives from the adversary a vector ∆ ∈ Fn such that for all Pi 6∈ HC , ∆i = 0. Finput-mal

computes [x] = [x]H + ∆.

4. Finput-mal distributes the shares of [x] to honest parties.

Lemma 10. Protocol Input (see Protocol 5) securely computes Finput-mal against a fully malicious adversary
who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

If the Client is corrupted, S receives the shares of honest parties from the Client. Then S recovers the
whole sharings [x]H and [x]. S computes the difference ∆ = [x]− [x]H. S sends the secrets x to Finput-mal

on behalf of the Client. S also sends the shares of [x]H of corrupted parties and ∆ to Finput-mal. Note that a
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Functionality 23: Foutput-mal

1. Suppose [x] is the sharing associated with the output gate which belongs to the Client. Foutput-mal

receives the shares of [x] from honest parties.

2. Foutput-mal recovers the whole sharings [x]H and [x]. Let x denote the secrets of [x]H. Foutput-mal

computes ∆ = [x]− [x]H and sends ∆ and the shares of [x]H of corrupted parties to the adversary.

3. Foutput-mal reconstructs x. Depending on whether the Client is honest or not, there are two cases:

• If the Client is corrupted, Foutput-mal sends x to the adversary. If the adversary replies abort,
Foutput-mal sends abort to all honest parties.

• If the Client is honest, Foutput-mal asks the adversary whether it should continue. If the
adversary replies abort, Foutput-mal sends abort to the Client and all honest parties. If the
adversary replies continue, Foutput-mal sends x to the Client.

Protocol 24: Output-mal

1. Suppose [x] is the sharing associated with the output gate which belongs to the Client. All parties
send their shares of [x] to the Client.

2. If the Client receives an inconsistent sharing [x], the Client aborts. Otherwise, the Client recon-
structs the result x from the shares of [x].

degree-t packed Shamir sharing [x]H is determined by the shares of corrupted parties and the secrets, which
are t′+ k = t+ 1 shares and secrets. Therefore, the sharing [x]H generated by Finput-mal is identical to [x]H
reconstructed by S. Furthermore, using ∆, Finput-mal can compute the same sharing [x] as that computed
by S. Recall that for [x], the shares of honest parties are identical to the shares received from the dealer
Client. Thus, the shares of honest parties distributed by Finput-mal in the ideal world are identical to the
shares of honest parties distributed by the Client in the real world.

If the Client is honest, S generates t′ random elements in F as the shares of [x] held by corrupted parties
and distributes them to corrupted parties on behalf of the Client. Note that these shares have the same
distribution as the shares generated by the Client in the real world. S sends the shares of [x] of corrupted
parties and an all-0 vector ∆ to Finput-mal. Note that when the Client is honest, the sharing distributed by
the Client is consistent, i.e., [x]H = [x]. Since the whole sharing [x]H is determined by the shares of corrupted
parties and the secrets, and the shares of corrupted parties in both worlds have the same distribution, the
distributions of [x]H in both worlds are identical. Since [x]H = [x], the distributions of the shares held by
honest parties in both worlds are identical.

Lemma 11. Protocol Output-mal (see Protocol 24) securely computes Foutput-mal against a fully malicious
adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.
S first receives from Foutput-mal the shares of [x]H held by corrupted parties and the difference ∆ =

[x]− [x]H.
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If the Client is corrupted, S also receives the secrets x from Foutput-mal. Then S recovers the whole
sharing [x]H by using the secrets x and the shares of [x]H held by corrupted parties. S computes [x] by
[x] = [x]H + ∆ and sends the shares of [x] of honest parties to the Client. Note that a degree-t packed
Shamir sharing is determined by the shares of corrupted parties and the secrets, which are t′ + k = t + 1
shares and secrets. Therefore, the sharing [x]H computed by S is identical to the sharing [x]H computed
by Foutput-mal. Using ∆ received from Foutput-mal, S computes the sharing [x], where the shares of [x] of
honest parties are identical to the shares Foutput-mal received from honest parties. Therefore the distribution
of the shares of honest parties computed by S in the ideal world is identical to the distribution of the shares
held by honest parties in the real world. If the Client aborts, S sends abort to Foutput-mal.

If the Client is honest, S receives from corrupted parties their shares of [x]. Then S checks whether
the shares of [x] S received from corrupted parties are the same as the shares of [x]H S received from
Foutput-mal, and whether ∆ = 0. If both checks pass, S sends continue to Foutput-mal. Otherwise, S sends
abort to Foutput-mal. Note that in the real world, the Client does not abort if and only if [x] is consistent,
i.e., [x] = [x]H. If either check fails, the Client does not receive a consistent sharing and will abort in the
real world. Otherwise, the Client can reconstruct the correct output x. Therefore, the output of the Client
is identical in both worlds.

Security of Mult. Suppose the input sharings of Mult are denoted by [x], [y], and [x]H, [y]H are defined
accordingly. Ideally, we want the ideal functionality to

1. compute x,y from [x]H, [y]H;

2. compute the multiplication result z := x ∗ y, where ∗ denotes the coordinate-wise multiplication;

3. receive additive errors d to the secrets z and additive errors ∆ to the shares held by parties in HC ;

4. generate a degree-t packed Shamir sharing [z + d]H and then add the additive errors [z + d] :=
[z + d]H + ∆.

However, there is a subtle issue due to the inconsistency of the input sharings. Recall that in Mult, all
parties locally compute 〈z〉 = [x] · [y] and then reduce the degree of 〈z〉. Even if corrupted parties honestly
use their shares of [x], [y] (i.e., the same shares as those of [x]H, [y]H) and honestly follow the protocol, all
parties can only compute

〈z〉 = [x] · [y] = [x]H · [y]H + ∆x ∗ [y]H + [x]H ∗∆y + ∆x ∗∆y,

where ∆x = [x] − [x]H and ∆y = [y] − [y]H. Unfortunately, the cross term ∆x ∗ [y]H + [x]H ∗∆y adds
errors which are related to the inputs x,y to the secrets x ∗ y. It means that we cannot reduce this kind of
errors to additive errors chosen by the adversary.

To solve it, the functionality will compute z using 〈z〉 = [x] · [y] instead of using the secrets x,y. It
means that z = x ∗ y holds only if ∆x = ∆y = 0. To ensure the correctness, all parties will verify the
consistency of all degree-t packed Shamir sharings at the end of the protocol. The description of Fmult-mal

appears in Functionality 25. We mark the changes in blue for Functionality Fmult-mal compared with that
in the semi-honest setting.

Lemma 12. Protocol Mult (see Protocol 8) securely computes Fmult-mal in the Frand-hybrid model against
a fully malicious adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

Recall that in Lemma 3, we have shown that, for a pair of two random sharings ([r], 〈r〉), given the shares
of [r], 〈r〉 held by corrupted parties, the shares of 〈r〉 held by honest parties are uniform.
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Functionality 25: Fmult-mal

1. Suppose [x], [y] are the input degree-t packed Shamir sharings. Fmult-mal receives the shares of
[x], [y] from honest parties.

2. Fmult-mal recovers the whole sharings [x]H, [x] and [y]H, [y]. Fmult-mal computes ∆x = [x]− [x]H
and ∆y = [y] − [y]H. Then Fmult-mal sends the shares of [x]H, [y]H of corrupted parties and
∆x,∆y to the adversary.

3. Fmult-mal receives from the adversary a vector d ∈ Fk. Fmult-mal computes 〈z〉 := [x] · [y] and
reconstructs the secrets z. Fmult-mal computes z := z + d.

4. Fmult-mal receives from the adversary a set of shares {si}i∈C . Fmult-mal samples a random degree-t
packed Shamir sharing [z]H such that for all Pi ∈ C, the i-th share of [z]H is si.

5. Fmult-mal receives from the adversary a vector ∆z ∈ Fn such that for all Pi 6∈ HC , (∆z)i = 0.
Fmult-mal computes [z] = [z]H + ∆z.

6. Fmult-mal distributes the shares of [z] to honest parties.

Simulation for Mult. Now we describe the construction of the simulator S.

• In the beginning, S receives from Fmult-mal the shares of [x]H, [y]H held by corrupted parties and
∆x,∆y.

• In Step 2, S emulates Frand and receives the shares {(s(0)i , s
(1)
i )}i∈C from the adversary.

• In Step 3, S generates a random element in F for each honest party as its share of 〈e〉. Since the
shares of 〈r〉 of honest parties in the real world are uniform, the distribution of the shares of 〈e〉 of
honest parties generated by S is identical to that in the real world. Using the shares of [x]H, [y]H, 〈r〉
held by corrupted parties, S computes the shares of 〈e〉 that corrupted parties should hold. Then S
reconstructs the secrets e.

• S honestly follows Step 4 and Step 5. Let [e′] denote the sharing distributed by P1. At the end of Step
5, S learns the shares of [e′] held by honest parties. S reconstructs the whole sharings [e′]H, [e

′] and
computes the secrets e′ of [e′]H. S sets d = e′ − e and ∆z = [e′]− [e′]H.

• In Step 6, S computes the shares of [z]H held by corrupted parties by using the shares of [e′]H and [r]
held by corrupted parties.

• Finally, S sends to Fmult-mal the vector d, the shares of [z]H held by corrupted parties, and the vector
∆z.

Analyze the Security of Mult. It is clear that S perfectly simulates the behaviors of honest parties. It
is sufficient to show that the shares of honest parties in both worlds have the same distribution.

• In the real world, we have 〈e〉 := [x] · [y] + 〈r〉. Let [e′] denote the degree-t packed Shamir sharing
distributed by P1. Then, the secrets of the output sharing are e′ − r = (e′ − e) + (e − r). In
the ideal world, Fmult-mal computes the secrets z of 〈z〉 := [x] · [y], which are equal to e − r. The
simulator computes d = e′ − e as above and sends d to Fmult-mal. The final secrets are set to be
z := z + d = e− r + e′ − e = e′ − r. Thus, the secrets z in both worlds have the same distribution.

47



• In the real world, the output sharing [z] is computed by [e′] − [r]. Then we have [z] = [e′] − [r] and
[z]H = [e′]H − [r] since [r] is guaranteed to be consistent according to Frand. Recall that the shares of
[z] that corrupted parties should hold are the shares of [z]H of corrupted parties. In the ideal world, S
computes the shares of [z]H of corrupted parties using the shares of [e′]H and [r] of corrupted parties
as above. Therefore, the shares of [z] that corrupted parties should hold in both worlds are identical.

• In the real world, the additive errors to the shares of [z] of parties in HC are [z] − [z]H. Note that
[z]− [z]H = [e′]− [e′]H. Therefore, the additive errors ∆z = [e′]− [e′]H computed by S are identical
to the additive errors in the real world.

Note that [z] distributed by Fmult-mal is determined by the secrets z, the shares of corrupted parties, and
the additive errors to the shares of parties in HC . The distributions of them in both worlds are identical.
Therefore, the shares of honest parties in both worlds have the same distribution.

6.2 Security of Select, Rand-Perm, and Permute

Security of Select. Recall that the functionality of Select is to select k secrets in different positions
from k different input degree-t packed Shamir sharings and output a single degree-t packed Shamir sharing
which contains the chosen secrets. More concretely, let [x(1)], [x(2)], . . . , [x(k)] denote the input sharings, and
p be a permutation over {1, 2, . . . , k}. The goal is to generate a degree-t packed Shamir sharing of y such

that for all i ∈ {1, 2, . . . , k}, yp(i) = x
(i)
p(i), i.e., choosing the p(i)-th secret of [x(i)].

Recall that for all i ∈ {1, 2, . . . , k}, ei ∈ {0, 1}k is a vector where the i-th entry is 1 and all other entries
are 0. Following the approach in Section 3.2, all parties hold a degree-t packed Shamir sharing [ei] for
each i ∈ {1, 2, . . . , k}, and the whole sharing [ei] is known to all parties. The idea of computing [y] is to

first compute 〈y〉 :=
∑k
i=1[ei] · [x(i)] and then use the same technique as Mult to do degree reduction.

Unlike Mult where both input sharings are not public, for Select, each [ei] is public and is guaranteed
to be consistent. We will show that the inconsistency of the input sharings [x(1)], [x(2)], . . . , [x(k)] can be
transformed to additive errors to the secrets y. The description of Fselect-mal appears in Functionality 26.
We mark the changes in blue for Functionality Fselect-mal compared with that in the semi-honest setting.

Functionality 26: Fselect-mal

1. Fselect-mal receives from honest parties their shares of k degree-t packed Shamir sharings
[x(1)], [x(2)], . . . , [x(k)]. Fselect-mal also receives a permutation p from honest parties.

2. For all i ∈ {1, 2, . . . , k}, Fselect-mal reconstructs the whole sharings [x(i)]H, [x
(i)] and computes

∆(i) := [x(i)]− [x(i)]H. Then Fselect-mal sends the shares of [x(i)]H of corrupted parties and ∆(i)

to the adversary.

3. Fselect-mal reconstructs x(1),x(2), . . . ,x(k). Then Fselect-mal sets y = (y1, y2, . . . , yk) such that for

all i ∈ [k], yp(i) = x
(i)
p(i), where x

(i)
j is the j-th value of x(i).

4. Fselect-mal receives from the adversary a vector d ∈ Fk and sets y := y + d.

5. Fselect-mal receives from the adversary a set of shares {si}i∈C . Fselect-mal samples a random degree-t
packed Shamir sharing [y]H such that for all Pi ∈ C, the i-th share of [y]H is si.

6. Fselect-mal receives from the adversary a vector ∆ ∈ Fn such that for all Pi 6∈ HC , ∆i = 0. Fselect-mal

computes [y] = [y]H + ∆.

7. Fselect-mal distributes the shares of [y] to honest parties.
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Lemma 13. Protocol Select (see Protocol 11) securely computes Fselect-mal in the Frand-hybrid model
against a fully malicious adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

Recall that in Lemma 3, we have shown that, for a pair of two random sharings ([r], 〈r〉), given the shares
of [r], 〈r〉 held by corrupted parties, the shares of 〈r〉 held by honest parties are uniform.

Simulation for Select. Now we describe the construction of the simulator S.

• In the beginning, S receives from Fselect-mal the shares of [x(i)]H held by corrupted parties and ∆(i)

for all i ∈ {1, 2, . . . , k}.

• In Step 2, S emulates Frand and receives the shares {(s(0)i , s
(1)
i )}i∈C from the adversary.

• In Step 3, S generates a random element in F for each honest party as its share of 〈e〉. Since the shares of
〈r〉 of honest parties in the real world are uniform, the distribution of the shares of 〈e〉 of honest parties
generated by S is identical to that in the real world. Using the shares of [x(1)]H, [x

(2)]H, . . . , [x
(k)]H

and 〈r〉 held by corrupted parties, S computes the shares of 〈e〉 that corrupted parties should hold by

〈e〉 =

k∑
i=1

[ep(i)] · [x(i)] + 〈r〉.

Let

〈ê〉 =

k∑
i=1

[ep(i)] · [x(i)]H + 〈r〉,

which corresponds to the case when parties in HC use the shares without additive errors. Note that

〈ê〉 =

k∑
i=1

[ep(i)] · ([x(i)]−∆(i)) + 〈r〉 = 〈e〉 −
k∑
i=1

[ei] ∗∆(i).

Since for all i ∈ {1, 2, . . . , k}, S learns ∆(i) and [ei] is known to all parties (including S), S computes
the whole sharing 〈ê〉 and reconstructs ê.

• S honestly follows Step 4 and Step 5. Let [e′] denote the sharing distributed by P1. At the end of Step
5, S learns the shares of [e′] held by honest parties. S reconstructs the whole sharings [e′]H, [e

′] and
computes the secrets e′ of [e′]H. S sets d = e′ − ê and ∆ = [e′]− [e′]H.

• In Step 6, S computes the shares of [y]H held by corrupted parties by using the shares of [e′]H and [r]
held by corrupted parties.

• Finally, S sends to Fselect-mal the vector d, the shares of [y]H held by corrupted parties, and the vector
∆.

Analyze the Security of Select. It is clear that S perfectly simulates the behaviors of honest parties.
It is sufficient to show that the shares of honest parties in both worlds have the same distribution.

• In the real world, let [e′] denote the degree-t packed Shamir sharing distributed by P1. Then, the
secrets of the output sharing are e′ − r. In the ideal world, Fselect-mal first computes the secrets
y =

∑k
i=1 ep(i) ∗ x(i). Note that y are the secrets of 〈y〉 :=

∑k
i=1[ep(i)] · [x(i)]H. Recall that 〈ê〉 :=∑k

i=1[ep(i)] · [x(i)]H + 〈r〉. Therefore, y = ê − r. The simulator computes d = e′ − ê as above and
sends d to Fselect-mal. The final secrets are set to be y := y + d = ê− r + e′ − ê = e′ − r. Thus, the
secrets y in both worlds have the same distribution.
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• In the real world, the output sharing [y] is computed by [e′] − [r]. Then we have [y] = [e′] − [r] and
[y]H = [e′]H− [r] since [r] is guaranteed to be consistent according to Frand. Recall that the shares of
[y] that corrupted parties should hold are the shares of [y]H of corrupted parties. In the ideal world, S
computes the shares of [y]H of corrupted parties using the shares of [e′]H and [r] of corrupted parties
as above. Therefore, the shares of [y] that corrupted parties should hold in both worlds are identical.

• In the real world, the additive errors to the shares of [y] of parties in HC are [y] − [y]H. Note that
[y] − [y]H = [e′] − [e′]H. Therefore, the additive errors ∆ = [e′] − [e′]H computed by S are identical
to the additive errors in the real world.

Note that [y] distributed by Fselect-mal is determined by the secrets y, the shares of corrupted parties, and
the additive errors to the shares of parties in HC . The distributions of them in both worlds are identical.
Therefore, the shares of honest parties in both worlds have the same distribution.

Security of Rand-Perm. In Rand-Perm, we prepare random sharings used to performing permutations
on the secrets of degree-t packed Shamir sharings. Let p(·) be a permutation over {1, 2, . . . , k}. Recall that
each permutation p(·) maps to a permutation matrix Mp ∈ {0, 1}k×k where (Mp)j,i = 1 iff p(i) = j. To
permute a vector x to x̃ such that xi = x̃p(i) for all i ∈ {1, 2, . . . , k}, it is equivalent to computing x̃ = Mp ·x.
Recall that to obtain [Mp · x] from [x], all parties need to prepare a pair of random sharings ([r], [Mp · r]).

Given m permutations p1, p2, . . . , pm, the high-level idea of Rand-Perm is to first use Theorem 2 to
obtain m permutations q1, q2, . . . , qm such that for all i, j ∈ {1, 2, . . . , k}, the number of permutations
p ∈ {p1, p2, . . . , pm} such that p(i) = j is the same as the number of permutations q ∈ {q1, q2, . . . , qm} such
that q(i) = j, and the number of different permutations in q1, q2, . . . , qm is bounded by k2. Then all parties
prepare random sharings for q1, q2, . . . , qm. To obtain random sharings for each permutation pi, all parties
use Select to choose suitable components from random sharings for q1, q2, . . . , qm. We refer the readers to
Section 4.2 for more details.

We model the functionality Frand-perm-mal in Functionality 27. It allows the adversary to add additive
errors to the shares of parties in HC and additive errors to the secrets of the second sharing of each pair.
For the protocol Rand-Perm, we replace the invocations of Fselect-semi by invocations of Fselect-mal. See
Protocol 28 for more details. We mark the changes in blue for Functionality Frand-perm-mal and Protocol
Rand-Perm-mal compared with those in the semi-honest setting.

Functionality 27: Frand-perm-mal

1. Frand-perm-mal receives from honest parties m permutations p1, p2, . . . , pm over {1, 2, . . . , k}.

2. For all i ∈ [m], Frand-perm-mal receives from the adversary a vector d(i) ∈ Fk.

3. For all i ∈ [m], Frand-perm-mal receives from the adversary a set of shares {(u(i)j , v
(i)
j )}j∈C .

Frand-perm-mal samples a random vector r(i) ∈ Fk and samples two degree-t packed Shamir sharings
([r(i)]H, [Mpi · r(i) +d(i)]H) such that for all Pj ∈ C, the j-th share of ([r(i)]H, [Mpi · r(i) +d(i)]H)

is (u
(i)
j , v

(i)
j ).

4. For all i ∈ [m], Frand-perm-mal receives from the adversary two vectors ∆(i,0),∆(i,1) ∈ Fn such

that for all Pj 6∈ HC , ∆
(i,0)
j = ∆

(i,1)
j = 0. Frand-perm-mal computes [r(i)] = [r(i)]H + ∆(i,0) and

[Mpi · r(i) + d(i)] = [Mpi · r(i) + d(i)]H + ∆(i,1).

5. For all i ∈ [m], Frand-perm-mal distributes the shares of ([r(i)], [Mpi · r(i) + d(i)]) to honest parties.
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Protocol 28: Rand-Perm-mal

1. Let p1, p2, . . . , pm be the permutations over {1, 2, . . . , k} that all parties want to prepare random
sharings for.

2. All parties use a deterministic algorithm that all parties agree on to compute m permutations
q1, q2, . . . , qm such that

• For all i, j ∈ {1, 2, . . . , k}, the number of permutations p ∈ {p1, p2, . . . , pm} such that p(i) = j
is the same as the number of permutations q ∈ {q1, q2, . . . , qm} such that q(i) = j.

• q1, q2, . . . , qm contain at most k2 different permutations.

The existence of such an algorithm is guaranteed by Theorem 2.

3. Suppose q′1, q
′
2, . . . , q

′
k2 denote the different permutations in q1, q2, . . . , qm. For all i ∈ {1, 2, . . . , k2},

let n′i denote the number of times that q′i appears in q1, q2, . . . , qm. All parties invoke Frand to
prepare n′i pairs of random sharings in the form ([r], [Mq′i

· r]) for all i ∈ {1, 2, . . . , k2}. Note
that we have prepared a pair of random sharings for each permutation qi for all i ∈ [m]. Let
([r(i)], [Mqi · r(i)]) denote the random sharings for the permutation qi.

4. For all i, j ∈ {1, 2, . . . , k}, all parties initiate an empty list Li,j . From ` = 1 to m, for all i, j ∈
{1, 2, . . . , k}, if ([r(`)], [Mq` ·r(`)]) contains an (i, j)-component, all parties insert ([r(`)], [Mq` ·r(`)])
into the list Li,j .

5. From ` = 1 to m, all parties prepare a pair of random sharings for p` as follows:

• From i = 1 to k, let ([r(`i)], [Mq`i
·r(`i)]) denote the first pair of sharings in the list Li,p`(i), and

then remove it from Li,p`(i). Note that ([r(`i)], [Mq`i
·r(`i)]) contains an (i, p`(i))-component,

which is not used when preparing random sharings for p1, p2, . . . , p`−1.

• Let I denote the identity permutation over {1, 2, . . . , k}.
– All parties invoke Fselect-mal with

[r(`1)], [r(`2)], . . . , [r(`k)]

and the permutation I. The output is denoted by [v(`)].

– All parties invoke Fselect-mal with

[Mq`1
· r(`1)], [Mq`2

· r(`2)], . . . , [Mq`k
· r(`k)]

and the permutation p`. The output is denoted by [ṽ(`)]. Note that for all i ∈ [k],

v
(`)
i = r

(`i)
i = (Mq`i

· r(`i))q`i (i) = (Mq`i
· r(`i))p`(i) = ṽ

(`)
p`(i)

.

6. All parties take ([v(1)], [ṽ(1)]), ([v(2)], [ṽ(2)]), . . . , ([v(m)], [ṽ(m)]) as output.

Lemma 14. Protocol Rand-Perm-mal (see Protocol 28) securely computes Frand-perm-mal in the (Frand,Fselect-mal)-
hybrid model against a fully malicious adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.
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Simulation for Rand-Perm-mal. Now we describe the construction of the simulator S.

• In Step 1 and Step 2, S honestly follows the protocol and computes the permutations q1, q2, . . . , qm.

• In Step 3, S emulates Frand and receives the shares of corrupted parties when generating the random
sharings ([r(i)], [Mqi ·r(i)]) for each permutation qi. Since the number of corrupted parties is t−k+1, by
the property of the degree-t packed Shamir sharing scheme, the secrets r(i) are uniform and independent
of the shares held by corrupted parties.

• In Step 4, S honestly constructs the lists.

• In Step 5, from ` = 1 to m, S emulates Fselect-mal as follows:

1. Preparing [v(`)] using Fselect-mal: Recall that S learns the shares of each of [r(`1)], [r(`2)], . . . , [r(`k)]
of corrupted parties when emulating Frand in Step 3. According to Frand, these sharings are
guaranteed to be consistent. Therefore in Step 2 of Fselect-mal, S sets ∆(i) to be the all-0 vector
and sends to the adversary the shares of [r(`i)] of corrupted parties and ∆(i). From Step 4 to
Step 6, S receives from the adversary the additive errors to v(`) (denoted by δ(`,0)), the shares
of [v(`)] of corrupted parties, and the additive errors to the shares of parties in HC (denoted by
∆(`,0)).

2. Preparing [ṽ(`)] using Fselect-mal: Recall that S learns the shares of each of [Mq`1
· r(`1)], [Mq`2

·
r(`2)], . . . , [Mq`k

· r(`k)] of corrupted parties when emulating Frand in Step 3. According to Frand,

these sharings are guaranteed to be consistent. Therefore in Step 2 of Fselect-mal, S sets ∆(i) to
be the all-0 vector and sends to the adversary the shares of [Mq`i

· r(`i)] of corrupted parties and

∆(i). From Step 4 to Step 6, S receives from the adversary the additive errors to ṽ(`) (denoted
by δ(`,1)), the shares of [ṽ(`)] of corrupted parties, and the additive errors to the shares of parties
in HC (denoted by ∆(`,1)).

S sets d(`) = δ(`,1) −Mp` · δ(`,0).

• Finally, S sends to Frand-perm-mal the vector d(`), the shares of [v(`)], [ṽ(`)] of corrupted parties, and
the vectors ∆(`,0),∆(`,1).

Analyze the Security of Rand-Perm-mal. Note that throughout the protocol, corrupted parties do
not receive any messages from honest parties. The only messages the adversary receive are from Fselect-mal,
which contain the shares of the input sharings of corrupted parties and the additive errors to the shares of
parties in HC . Since the input sharings of Fselect-mal directly come from Frand, the sharings are guaranteed
to be consistent and the simulator S learns the shares of corrupted parties when emulating Frand. Therefore,
S perfectly simulates the behaviors of honest parties and the Fselect-mal. It is sufficient to argue that the
distributions of the output in both worlds are identical.

• In the real world, the adversary add additive errors δ(`,0), δ(`,1) to the secrets of ([v(`)], [ṽ(`)]). By the
correctness of Rand-Perm-mal, v(`)−δ(`,0) is a uniform vector, and Mp` ·(v(`)−δ(`,0)) = ṽ(`)−δ(`,1).
Since δ(`,0) is independent of v(`) − δ(`,0), v(`) is also a uniform vector. The additive errors to the
second secrets can be computed by

ṽ(`) −Mp` · v(`) = δ(`,1) −Mp` · δ(`,0).

In the ideal world, v(`) is a uniform vector. The simulator computes d(`) = δ(`,1)−Mp` ·δ(`,0) as above
and sends to Frand-perm-mal. Then the second secrets are set to be Mp` · v(`) + d(`) = ṽ(`). Therefore
the secrets of the output sharings in both worlds have the same distribution.

• In the real world, the shares of [v(`)], [ṽ(`)] of corrupted parties are chosen by the adversary. In the ideal
world, S learns these shares when emulating Fselect-mal and sends them to Frand-perm-mal. Therefore,
the shares of the output sharings of corrupted parties in both worlds have the same distribution.
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• In the real world, the additive errors to the shares of parties in HC are chosen by the adversary. In the
ideal world, S learns these additive errors when emulating Fselect-mal and sends them to Frand-perm-mal.
Therefore, the additive errors to the shares of parties in HC in both worlds have the same distribution.

Thus, the shares of honest parties in both worlds have the same distribution.

Security of Permute. We model the functionality Fpermute-mal in Functionality 29. In Permute, we
replace the invocation of Frand-perm-semi by the invocation of Frand-perm-mal. See Protocol 30 for more details.
We mark the changes in blue for Functionality Fpermute-mal and Protocol Permute-mal compared with
those in the semi-honest setting.

Functionality 29: Fpermute-mal

1. Fpermute-mal receives a permutation p and the shares of a degree-t packed Shamir sharing [x] from
honest parties.

2. Fpermute-mal reconstructs the whole sharings [x]H, [x] and computes ∆x := [x] − [x]H. Then
Fpermute-mal sends the shares of [x]H of corrupted parties and ∆x to the adversary.

3. Fpermute-mal reconstructs the secrets x from the shares of honest parties, and computes x̃ = Mp ·x.

4. Fpermute-mal receives from the adversary a vector d ∈ Fk and sets x̃ := x̃+ d.

5. Fpermute-mal receives from the adversary a set of shares {si}i∈C . Fpermute-mal samples a random
degree-t packed Shamir sharing [x̃]H such that for all Pi ∈ C, the i-th share of [x̃]H is si.

6. Fpermute-mal receives from the adversary a vector ∆x̃ ∈ Fn such that for all Pi 6∈ HC , (∆x̃)i = 0.
Fpermute-mal computes [x̃] = [x̃]H + ∆x̃.

7. Fpermute-mal distributes the shares of [x̃] to honest parties.

Protocol 30: Permute-mal

1. Let [x] denote the input degree-t packed Shamir sharing and p(·) denote the permutation all parties
want to perform on x.

2. All parties invoke Frand-perm-mal with p to prepare a pair of random sharings ([r], [r̃]). All parties
invoke Frand to prepare a random degree-2t packed Shamir sharing 〈0〉.

3. All parties locally compute 〈e〉 := [x] + [r] + 〈0〉.

4. All parties send their shares of 〈e〉 to the first party P1.

5. P1 reconstructs the secrets e, and computes ẽ = Mp · e. Then P1 generates a random degree-t
packed Shamir sharing [ẽ], and distributes the shares to other parties.

6. All parties locally compute [x̃] := [ẽ]− [r̃].

Lemma 15. Protocol Permute-mal (see Protocol 30) securely computes Fpermute-mal in the (Frand,Frand-perm-mal)-
hybrid model against a fully malicious adversary who controls t′ = t− k + 1 parties.
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Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

Let [r] be a random degree-t packed Shamir sharing, and 〈0〉 be a random degree-2t packed Shamir
sharing of 0 ∈ Fk. In Lemma 6, we have shown that, given the shares of [r] and 〈0〉 held by corrupted
parties, the shares of 〈r〉 := [r] + 〈0〉 held by honest parties are uniform.

Simulation for Permute-mal. Now we describe the construction of S.

• In the beginning, S receives from Fpermute-mal the shares of [x] of corrupted parties and the additive
errors ∆x to the shares of parties in HC .

• In Step 2, S emulates Frand-perm-mal and Frand, and receives the shares of ([r], [r̃]) and 〈0〉 held by
corrupted parties. In addition, during the emulation of Frand-perm-mal, S receives the additive errors δ
to the secrets r̃ and the additive errors ∆(0),∆(1) to the shares of ([r], [r̃]) of parties in HC .

• In Step 3, for each honest party, S generates a random element in F as its share of 〈e〉. Note that
〈e〉 = [x] + [r] + 〈0〉 = [x] + ∆(0) + [r]H+ 〈0〉. As we argued above, the share of 〈r〉 := [r]H+ 〈0〉 held
by each honest party is uniform. Therefore, the share of 〈e〉 held by each honest party is also uniform.
S computes the shares of 〈e〉 that corrupted parties should hold by

〈e〉 = [x] + [r] + 〈0〉.

Let
〈ê〉 = [x]H + [r]H + 〈0〉,

which corresponds to the case when parties in HC use the shares without additive errors. Note that

〈ê〉 = [x]−∆x + [r]−∆(0) + 〈0〉 = 〈e〉 −∆x −∆(0).

Since S received ∆x from Fpermute-mal in the beginning and received ∆(0) when emulating Frand-perm-mal

in Step 2, S computes the whole sharing 〈ê〉 and reconstructs ê.

• In Step 4, Step 5 and Step 6, S honestly follows the protocol. Let [ẽ′] denote the sharing distributed
by P1. At the end of Step 5, S learns the shares of [ẽ′] held by honest parties. S reconstructs the
whole sharings [ẽ′]H, [ẽ

′] and computes the secrets ẽ′ of [ẽ′]H. S sets d := ẽ′ −Mp · ê − δ, where δ
are the additive errors to the secrets r̃ that S received when emulating Frand-perm-mal in Step 2, and
∆x̃ := [ẽ′]− [ẽ′]H −∆(1), where ∆(1) are the additive errors to the shares of [r̃] of parties in HC that
S received when emulating Frand-perm-mal in Step 2.

• In Step 6, S computes the shares of [x̃] held by corrupted parties using the shares of [ẽ′]H and [r̃] held
by corrupted parties.

• Finally, S sends to Fpermute-mal the vector d, the shares of [x̃] held by corrupted parties, and the vector
∆x̃.

Analyze the Security of Permute-mal. Throughout the protocol, the only place where honest parties
need to send messages to corrupted parties is in Step 4 when P1 is corrupted. As we argued above, in the
real world, the share of 〈e〉 of each honest party is uniformly random. In the ideal world, the simulator S
samples a uniform element as the share of 〈e〉 of each honest party. Therefore, S perfectly simulates the
behaviors of honest parties. It is sufficient to argue that the distributions of the output in both worlds are
identical.
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• In the real world, the adversary adds additive errors δ to the secrets of [r̃] in Step 2. Therefore, we
have r̃ − δ = Mp · r. Let [ẽ′] denote the sharing distributed by P1. Then the secrets of the output
sharing are

x̃ = ẽ′ − r̃ = ẽ′ −Mp · r − δ.

In the ideal world, Fpermute-mal first computes x̃ = Mp · x. Recall that during the simulation, we set

〈ê〉 = [x]H + [r]H + 〈0〉.

Then ê = x+ r, which means x = ê− r. The simulator computes d = ẽ′ −Mp · ê− δ as above and
sends it to Fpermute-mal. The final secrets are set to be

x̃ := x̃+ d = Mp · (ê− r) + ẽ′ −Mp · ê− δ = ẽ′ −Mp · r − δ.

Thus, the secrets of the output sharing in both worlds are identical.

• In the real world, [x̃] = [ẽ′] − [r̃]. The shares of [x̃] of corrupted parties can be computed using the
shares of [ẽ′] and [r̃] held by corrupted parties. In the ideal world, S learns the shares of [r̃] of corrupted
parties when emulating Frand-perm-mal in Step 2, and S computes the shares of [ẽ′] of corrupted parties
using the shares of honest parties received from P1 in Step 5. S computes the shares of [x̃] of corrupted
parties accordingly and sends them to Fpermute-mal. Therefore, the shares of the output sharing of
corrupted parties in both worlds have the same distributions.

• In the real world, the additive errors to the shares of [x̃] of parties in HC can be computed by

[x̃]− [x̃]H = ([ẽ′]− [ẽ′]H)− ([r̃]− [r̃]H) = [ẽ′]− [ẽ′]H −∆(1).

They are exactly how S computes the additive errors ∆x̃. Therefore, the additive errors to the shares
of the output sharing of parties in HC in both worlds have the same distribution.

Thus, the shares of honest parties in both worlds have the same distribution.

6.3 Security of Rand-Pattern and Fan-out

Security of Rand-Pattern. In Rand-Pattern, we prepare random sharings used to evaluate fan-out
gates (i.e., copying each wire the number of times it used in later layers). We first recall two definitions in
Section 4.4.

• For all i1, i2 ∈ {1, 2, . . . , k}, we say a pair of degree-t packed Shamir sharings ([x], [y]) contains an
(i1, i2)-block if for all i1 ≤ j ≤ i2 the secrets of these two sharings satisfy that yj = xi1 . We say a
point j ∈ {1, 2, . . . , k} is covered by an (i1, i2)-block if i1 ≤ j ≤ i2.

• A pattern π is defined to be a list of blocks such that for all j ∈ {1, 2, . . . , k}, j is covered by exactly
one block in π.

For a pattern π, we say a pair of random degree-t packed Shamir sharings ([r], [r̃]) corresponds to π if
for all (i1, i2)-block in π, ([r], [r̃]) contains an (i1, i2)-block. Given m patterns π1, π2, . . . , πm, the goal of
Rand-Pattern is to prepare m pairs of random sharings which correspond to these patterns.

The high-level idea of Rand-Pattern is to first use Theorem 5 to obtain m patterns ρ1, ρ2, . . . , ρm such
that for all i, j ∈ {1, 2, . . . , k}, the number of patterns in {π1, π2, . . . , πm} that contain an (i, j)-block is
equal to the number of patterns in {ρ1, ρ2, . . . , ρm} that contain an (i, j)-block, and the number of different
patterns in ρ1, ρ2, . . . , ρm is bounded by k2. Then all parties prepare random sharings for ρ1, ρ2, . . . , ρm. To
obtain random sharings for each pattern πi, all parties use Select to choose suitable blocks from random
sharings for ρ1, ρ2, . . . , ρm. We refer the readers to Section 4.4 for more details.

We model the functionality Frand-pattern-mal in Functionality 31. It allows the adversary to add additive
errors to the shares of parties in HC and additive errors to the secrets of the second sharing of each pair.
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Functionality 31: Frand-pattern-mal

1. Frand-pattern-mal receives from honest parties m patterns π1, π2, . . . , πm.

2. For all i ∈ [m], Frand-pattern-mal receives from the adversary a vector d(i) ∈ Fk.

3. For all i ∈ [m], Frand-pattern-mal receives from the adversary a set of shares {(u(i)j , v
(i)
j )}j∈C .

Frand-pattern-mal samples a random vector r(i) ∈ Fk and computes a vector r̃(i) such that for

all (i1, i2)-block in πi and i1 ≤ j ≤ i2, r̃
(i)
j = r

(i)
i1

. Then Frand-pattern-mal sets r̃(i) := r̃(i) + d(i).

Frand-pattern-mal samples two degree-t packed Shamir sharings ([r(i)]H, [r̃
(i)]H) such that for all

Pj ∈ C, the j-th share of ([r(i)]H, [r̃
(i)]H) is (u

(i)
j , v

(i)
j ).

4. For all i ∈ [m], Frand-pattern-mal receives from the adversary two vectors ∆(i,0),∆(i,1) ∈ Fn such

that for all Pj 6∈ HC , ∆
(i,0)
j = ∆

(i,1)
j = 0. Frand-pattern-mal computes [r(i)] = [r(i)]H + ∆(i,0) and

[r̃(i)] = [r̃(i)]H + ∆(i,1).

5. For all i ∈ [m], Frand-pattern-mal distributes the shares of ([r(i)], [r̃(i)]) to honest parties.

For the protocol Rand-Pattern, we replace the invocations of Fselect-semi by invocations of Fselect-mal. See
Protocol 32 for more details. We mark the changes in blue for Functionality Frand-pattern-mal and Protocol
Rand-Pattern-mal compared with those in the semi-honest setting.

Lemma 16. Protocol Rand-Pattern-mal (see Protocol 32) securely computes Frand-pattern-mal in the
(Frand,Fselect-mal)-hybrid model against a fully malicious adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

Simulation for Rand-Pattern-mal. Now we describe the construction of the simulator S.

• In Step 1 and Step 2, S honestly follows the protocol and computes the patterns ρ1, ρ2, . . . , ρm.

• In Step 3, S emulates Frand and receives the shares of corrupted parties when generating the random
sharings ([r(i)], [r̃(i)]) for each pattern ρi. Since the number of corrupted parties is t − k + 1, by the
property of the degree-t packed Shamir sharing scheme, the secrets r(i) are uniform and independent
of the shares held by corrupted parties.

• In Step 4, S honestly constructs the lists.

• In Step 5, from ` = 1 to m, S emulates Fselect-mal as follows:

1. Preparing [v(`)] using Fselect-mal: Recall that S learns the shares of each of [r(`i1 )], [r(`i2 )], . . . , [r(`ik )]
of corrupted parties when emulating Frand in Step 3. According to Frand, these sharings are guar-
anteed to be consistent. Therefore in Step 2 of Fselect-mal, S sets ∆(j) to be the all-0 vector and
sends to the adversary the shares of [r(`ij )] of corrupted parties and ∆(j). From Step 4 to Step
6, S receives from the adversary the additive errors to v(`) (denoted by δ(`,0)), the shares of [v(`)]
of corrupted parties, and the additive errors to the shares of parties in HC (denoted by ∆(`,0)).

2. Preparing [ṽ(`)] using Fselect-mal: Recall that S learns the shares of each of [r̃(`i1 )], [r̃(`i2 )], . . . , [r̃(`ik )]
of corrupted parties when emulating Frand in Step 3. According to Frand, these sharings are guar-
anteed to be consistent. Therefore in Step 2 of Fselect-mal, S sets ∆(j) to be the all-0 vector and
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Protocol 32: Rand-Pattern-mal

1. Let π1, π2, . . . , πm be the patterns that all parties want to prepare random sharings for.

2. All parties use a deterministic algorithm that all parties agree on to compute m patterns
ρ1, ρ2, . . . , ρm such that

• For all i, j ∈ {1, 2, . . . , k}, the number of patterns π ∈ {π1, π2, . . . , πm} such that (i, j)-block
is in π is the same as the number of patterns ρ ∈ {ρ1, ρ2, . . . , ρm} such that (i, j)-block is in
ρ.

• ρ1, ρ2, . . . , ρm contain at most k2 different patterns.

The existence of such an algorithm is guaranteed by Theorem 5.

3. Suppose ρ′1, ρ
′
2, . . . , ρ

′
k2 denote the different patterns in ρ1, ρ2, . . . , ρm. For all i ∈ {1, 2, . . . , k2},

let n′i denote the number of times that ρ′i appears in ρ1, ρ2, . . . , ρm. All parties invoke Frand to
prepare n′i pairs of random sharings for the pattern ρ′i for all i ∈ {1, 2, . . . , k2}. Note that we have
prepared a pair of random sharings for pattern ρi for all i ∈ [m]. Let ([r(i)], [r̃(i)]) denote the
random sharings for the pattern ρi.

4. For all i, j ∈ {1, 2, . . . , k}, all parties initiate an empty list Li,j . From ` = 1 to m, for all
i, j ∈ {1, 2, . . . , k}, if ([r(`)], [r̃(`)]) contains an (i, j)-block, all parties insert ([r(`)], [r̃(`)]) into the
list Li,j .

5. From ` = 1 to m, all parties prepare a pair of random sharings for π` as follows:

• Let s denote the number of blocks in π`. The blocks in π` are denoted by (w1, w2 − 1)-
block, (w2, w3 − 1)-block, . . . , (ws, ws+1 − 1)-block, where w1 = 1, ws+1 = k + 1 and w1 <
w2 < . . . < ws+1. From i = 1 to s, let ([r(`i)], [r̃(`i)]) denote the first pair of sharings in
the list Lwi,wi+1−1, and then remove it from Lwi,wi+1−1. Note that ([r(`i)], [r̃(`i)]) contains a
(wi, wi+1 − 1)-block, which is not used when preparing random sharings for π1, π2, . . . , π`−1.

• Let I denote the identity permutation over {1, 2, . . . , k}.
– All parties initiate an empty list Q. For all j ∈ {1, 2, . . . , k}, let ij denote the index such

that wij ≤ j < wij+1. From j = 1 to k, all parties insert [r(`ij )] into Q. Then, all parties
invoke Fselect-mal with the degree-t packed Shamir sharings in Q and the permutation I.
The output is denoted by [v(`)].

– All parties initiate an empty list Q′. From j = 1 to k, all parties insert [r̃(`ij )] into Q′.
Then, all parties invoke invoke Fselect-mal with the degree-t packed Shamir sharings in Q′

and the permutation I. The output is denoted by [ṽ(`)]. Note that for all i ∈ {1, 2, . . . , s}
and wi ≤ j < wi+1, v

(`)
j = r

(`i)
j and ṽ

(`)
j = r̃

(`i)
j = r

(`i)
wi = v

(`)
wi .

6. All parties take ([v(1)], [ṽ(1)]), ([v(2)], [ṽ(2)]), . . . , ([v(m)], [ṽ(m)]) as output.

sends to the adversary the shares of [r̃(`ij )] of corrupted parties and ∆(j). From Step 4 to Step
6, S receives from the adversary the additive errors to ṽ(`) (denoted by δ(`,1)), the shares of [ṽ(`)]
of corrupted parties, and the additive errors to the shares of parties in HC (denoted by ∆(`,1)).

S computes a vector δ̂(`,0) such that for all (i1, i2)-block in π` and i1 ≤ j ≤ i2, δ̂
(`,0)
j = δ

(`,0)
i1

. S sets

d(`) = δ(`,1) − δ̂(`,0).
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• Finally, S sends to Frand-pattern-mal the vector d(`), the shares of [v(`)], [ṽ(`)] of corrupted parties, and
the vectors ∆(`,0),∆(`,1).

Analyze the Security of Rand-Pattern-mal. Note that throughout the protocol, corrupted parties do
not receive any messages from honest parties. The only messages the adversary receive are from Fselect-mal,
which contain the shares of the input sharings of corrupted parties and the additive errors to the shares of
parties in HC . Since the input sharings of Fselect-mal directly come from Frand, the sharings are guaranteed
to be consistent and the simulator S learns the shares of corrupted parties when emulating Frand. Therefore,
S perfectly simulates the behaviors of honest parties and the Fselect-mal. It is sufficient to argue that the
distributions of the output in both worlds are identical.

• In the real world, the adversary add additive errors δ(`,0), δ(`,1) to the secrets of ([v(`)], [ṽ(`)]). By the
correctness of Rand-Pattern-mal, v(`)−δ(`,0) is a uniform vector, and for all (i1, i2)-block in π` and
i1 ≤ j ≤ i2, (ṽ(`) − δ(`,1))j = (v(`) − δ(`,0))i1 . Since δ(`,0) is independent of v(`) − δ(`,0), v(`) is also

a uniform vector. Let v̂(`), δ̂(`,0) be two vectors such that for all (i1, i2)-block in π` and i1 ≤ j ≤ i2,

v̂
(`)
j = v

(`)
i1

and δ̂
(`,0)
j = δ

(`,0)
i1

. Then ṽ(`) − δ(`,1) = v̂(`) − δ̂(`,0). Note that v̂(`) are the correct secrets

of the second sharing corresponds to the secrets v(`) of the first sharing. The additive errors to the
second secrets can be computed by

ṽ(`) − v̂(`) = δ(`,1) − δ̂(`,0).

In the ideal world, v(`) is a uniform vector. Then Frand-pattern-mal computes v̂(`) as above. The

simulator computes δ̂(`,0) and d(`) = δ(`,1) − δ̂(`,0) as above and sends to Frand-pattern-mal. Then the
second secrets are set to be v̂(`) + d(`) = ṽ(`). Therefore the secrets of the output sharings in both
worlds have the same distribution.

• In the real world, the shares of [v(`)], [ṽ(`)] of corrupted parties are chosen by the adversary. In the ideal
world, S learns these shares when emulating Fselect-mal and sends them to Frand-pattern-mal. Therefore,
the shares of the output sharings of corrupted parties in both worlds have the same distribution.

• In the real world, the additive errors to the shares of parties in HC are chosen by the adversary. In the
ideal world, S learns these additive errors when emulating Fselect-mal and sends them to Frand-pattern-mal.
Therefore, the additive errors to the shares of parties in HC in both worlds have the same distribution.

Thus, the shares of honest parties in both worlds have the same distribution.

Security of Fan-out. We model the functionality Ffan-out-mal in Functionality 33. In Fan-out, we replace
the invocations of Fpermute-semi and Frand-pattern-semi by the invocations of Fpermute-mal and Frand-pattern-mal.
See Protocol 34 for more details. We mark the changes in blue for Functionality Ffan-out-mal and Protocol
Fan-out-mal compared with those in the semi-honest setting.

Lemma 17. Protocol Fan-out-mal (see Protocol 34) securely computes Ffan-out-mal in the (Frand,Fpermute-mal,
Frand-pattern-mal)-hybrid model against a fully malicious adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

Let [r] be a random degree-t packed Shamir sharing, and 〈0〉 be a random degree-2t packed Shamir
sharing of 0 ∈ Fk. In Lemma 6, we have shown that, given the shares of [r] and 〈0〉 held by corrupted
parties, the shares of 〈r〉 := [r] + 〈0〉 held by honest parties are uniform.
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Functionality 33: Ffan-out-mal

1. Ffan-out-mal receives from honest parties the shares of [x] and a vector (n1, n2, . . . , nk).

2. Ffan-out-mal reconstructs the whole sharings [x]H, [x] and computes ∆x := [x] − [x]H. Then
Ffan-out-mal sends the shares of [x]H of corrupted parties and ∆x to the adversary.

3. Ffan-out-mal reconstructs the secrets x = (x1, x2, . . . , xk). Then Ffan-out-mal initiates an empty list
L. From i = 1 to k, Ffan-out-mal inserts ni times of xi into L.

4. Let m = n1+n2+...+nk
k . From i = 1 to m,

(a) Ffan-out-mal sets x(i) to be the vector of the first k elements in L, and then removes the first
k elements in L.

(b) Ffan-out-mal receives from the adversary a vector d(i) ∈ Fk and sets x(i) := x(i) + d(i).

(c) Ffan-out-mal receives from the adversary a set of shares {s(i)j }j∈C . Ffan-out-mal generates a

degree-t packed Shamir sharing [x(i)]H such that the j-th share of [x(i)]H is s
(i)
j .

(d) Ffan-out-mal receives from the adversary a vector ∆(i) ∈ Fn such that for all Pj 6∈ HC , ∆
(i)
j = 0.

Fpermute-mal computes [x(i)] = [x(i)]H + ∆(i).

(e) Ffan-out-mal distributes the shares of [x(i)] to honest parties.

Simulation for Fan-out-mal. Now we describe the construction of S.

• In the beginning, S receives from Ffan-out-mal the shares of [x] of corrupted parties and the additive
errors ∆x to the shares of parties in HC .

• In Step 2, S determines the secrets of each output degree-t packed Shamir sharing by honestly following
the protocol.

• In Step 3.(b), let p denote the permutation all parties want to perform on x. S emulates Fpermute-mal

as follows: S first sends to the adversary the shares of [x] of corrupted parties and the additive errors
∆x to the shares of parties in HC . Note that they are learnt in the beginning from Ffan-out-mal. Let
[x′] denote the output sharing. S receives from the adversary the additive errors δx′ to the secrets x′,
the shares of [x′] held by corrupted parties, and the additive errors ∆x′ to the shares of [x′] of parties
in HC . Then the correct secrets of the output sharing should be x′ − δx′ .

• In Step 3.(c), let π denote the pattern all parties want to generate random sharings for. S emulates
Frand-pattern-mal and receives from the adversary the additive errors δr̃ to the secrets r̃, the shares of
([r], [r̃]) held by corrupted parties, and the additive errors ∆(0),∆(1) to the shares of ([r], [r̃]) of parties
in HC .

• In Step 3.(d), S emulates Frand and receives the shares of 〈0〉 of corrupted parties.

• In Step 3.(e), for each honest party, S generates a random element in F as its share of 〈e〉. Note that
〈e〉 = [x′]+ [r]+ 〈0〉 = [x′]+∆(0) +[r]H+ 〈0〉. As we argued above, the share of 〈r〉 := [r]H+ 〈0〉 held
by each honest party is uniform. Therefore, the share of 〈e〉 held by each honest party is also uniform.
S computes the shares of 〈e〉 that corrupted parties should hold by

〈e〉 = [x′] + [r] + 〈0〉.
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Protocol 34: Fan-out-mal

1. Let [x] denote the input degree-t packed Shamir sharing and (n1, n2, . . . , nk) denote the vector in
Nk where ni is the number of times of the i-th entry of x that all parties want to copy.

2. All parties run the following steps to determine the secrets of each output sharing:

(a) Initially, L is set to be an empty list. From i = 1 to k, insert ni times of xi into L.

(b) Let m = n1+n2+...+nk
k . From i = 1 to m, let x(i) be the vector of the first k elements in

L, and then removes the first k elements in L. Then, x(i) are the secrets of the i-th output
degree-t packed Shamir sharing.

3. For each of y ∈ {x(1),x(2), . . . ,x(m)}, all parties run the following steps to generate a degree-t
packed Shamir sharing of y.

(a) Let s denote the number of different values in y. These different values are denoted by
v1, v2, . . . , vs. For all i ∈ {1, 2, . . . , s}, let wi denote the index of the first value of y that is
equal to vi. Let p(·) be a permutation over {1, 2, . . . , k} that all parties agree on such that,
after computing x′ = Mp · x, x′wi = vi for all i ∈ {1, 2, . . . , s}.

(b) All parties invoke Fpermute-mal with input sharing [x] and the permutation p. Let [x′] denote
the output.

(c) Let π be a pattern which contains (w1, w2− 1)-block, (w2, w3− 1)-block, . . . , (ws, ws+1− 1)-
block, where ws+1 = k + 1. All parties invoke Frand-pattern-mal with π to prepare a pair of
random sharings ([r], [r̃]) such that r is uniform in Fk and for all (wi, wi+1 − 1)-block in π
and wi ≤ j < wi+1, r̃j = rwi .

(d) All parties invoke Frand to prepare a random degree-2t packed Shamir sharing 〈0〉.
(e) All parties locally compute 〈e〉 := [x′] + [r] + 〈0〉.
(f) All parties send their shares of 〈e〉 to the first party P1.

(g) P1 reconstructs the secrets e, and computes ẽ such that for all (wi, wi+1 − 1)-block in π and
wi ≤ j < wi+1, ẽj = ewi . Then P1 generates a random degree-t packed Shamir sharing [ẽ],
and distributes the shares to other parties.

(h) All parties locally compute [y] := [ẽ]− [r̃].

Let
〈ê〉 = [x′]H + [r]H + 〈0〉,

which corresponds to the case when parties in HC use the shares without additive errors. Note that

〈ê〉 = [x′]−∆x′ + [r]−∆(0) + 〈0〉 = 〈e〉 −∆x′ −∆(0).

Since S received ∆x′ from Ffan-out-mal in the beginning and received ∆(0) when emulating Frand-pattern-mal

in Step 3.(c), S computes the whole sharing 〈ê〉 and reconstructs ê.

• In Step 3.(f), Step 3.(g) and Step 3.(h), S honestly follows the protocol. Let [ẽ′] denote the sharing
distributed by P1. At the end of Step 5, S learns the shares of [ẽ′] held by honest parties. S reconstructs
the whole sharings [ẽ′]H, [ẽ

′] and computes the secrets ẽ′ of [ẽ′]H. S computes two vectors ê′ and
δ̃x′ such that for all (i1, i2)-block in π and i1 ≤ j ≤ i2, ê′j = êi1 and (δ̃x′)j = (δx′)i1 . S sets

d := ẽ′− ê′+ δ̃x′−δr̃, where δr̃ are the additive errors to the secrets r̃ that S received when emulating
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Frand-pattern-mal in Step 3.(c), and ∆ := [ẽ′]− [ẽ′]H −∆(1), where ∆(1) are the additive errors to the
shares of [r̃] of parties in HC that S received when emulating Frand-pattern-mal in Step 3.(c).

• In Step 3.(h), S computes the shares of [y] held by corrupted parties using the shares of [ẽ′]H and [r̃]
held by corrupted parties.

• Finally, S sends to Ffan-out-mal the vector d, the shares of [y] held by corrupted parties, and the vector
∆.

Analyze the Security of Fan-out-mal. Throughout the protocol, there are two places where honest
parties or the functionality need to send messages to corrupted parties or the adversary. In Step 3.(b),
the functionality Fpermute-mal needs to send to the adversary the shares of [x] of corrupted parties and the
additive errors of the shares of parties in HC . Note that S received them from Ffan-out-mal in the beginning.
In Step 3.(f), when P1 is corrupted, honest parties need to send their shares of 〈e〉 to the corrupted P1.
As we argued above, in the real world, the share of 〈e〉 of each honest party is uniformly random. In the
ideal world, the simulator S samples a uniform element as the share of 〈e〉 of each honest party. Therefore,
S perfectly simulates the behaviors of honest parties. It is sufficient to argue that the distributions of the
output in both worlds are identical.

• In the real world, the adversary adds additive errors δx′ to the secrets of [x′] in Step 3.(b), and additive
errors δr̃ to the secrets of [r̃] in Step 3.(c). Therefore, the correct secrets of [x′] and [r̃] should be
x′ − δx′ and r̃ − δr̃. In particular, the secrets of ([r], [r̃]) satisfy that for all (i1, i2)-block in π and
i1 ≤ j ≤ i2, (r̃ − δr̃)j = ri1 . Let [ẽ′] denote the sharing distributed by P1. Then the secrets of the
output sharing are

y = ẽ′ − r̃.

In the ideal world, Ffan-out-mal first computes y such that for all (i1, i2)-block in π and i1 ≤ j ≤ i2,
yj = (x′ − δx′)i1 . Recall that during the simulation, we set

〈ê〉 = [x′]H + [r]H + 〈0〉.

Then ê = x′ + r, which means x′ = ê − r. Recall that S also computes two vectors ê′, δ̃x′ such that
for all (i1, i2)-block in π and i1 ≤ j ≤ i2, ê′j = êi1 and (δ̃x′)j = (δx′)i1 . Therefore, y computed by

Ffan-out-mal are equal to ê′ − (r̃ − δr̃)− δ̃x′ . The simulator computes d := ẽ′ − ê′ + δ̃x′ − δr̃ as above
and sends it to Ffan-out-mal. The final secrets are set to be

y := y + d = ê′ − (r̃ − δr̃)− δ̃x′ + ẽ′ − ê′ + δ̃x′ − δr̃ = ẽ′ − r̃.

Thus, the secrets of the output sharing in both worlds are identical.

• In the real world, [y] = [ẽ′] − [r̃]. The shares of [y] of corrupted parties can be computed using the
shares of [ẽ′] and [r̃] held by corrupted parties. In the ideal world, S learns the shares of [r̃] of corrupted
parties when emulating Frand-pattern-mal in Step 3.(c), and S computes the shares of [ẽ′] of corrupted
parties using the shares of honest parties received from P1 in Step 3.(g). S computes the shares of [y]
of corrupted parties accordingly and sends them to Ffan-out-mal. Therefore, the shares of the output
sharing of corrupted parties in both worlds have the same distributions.

• In the real world, the additive errors to the shares of [y] of parties in HC can be computed by

[y]− [y]H = ([ẽ′]− [ẽ′]H)− ([r̃]− [r̃]H) = [ẽ′]− [ẽ′]H −∆(1).

They are exactly how S computes the additive errors ∆. Therefore, the additive errors to the shares
of the output sharing of parties in HC in both worlds have the same distribution.

Thus, the shares of honest parties in both worlds have the same distribution.
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7 Verification of the Computation

In Section 6, we discussed the security of our semi-honest protocols presented in Section 4 against a fully
malicious adversary. In particular, we have shown that most of our semi-honest protocols provide perfect
privacy against a fully malicious adversary, namely the executions of those protocols do not leak any infor-
mation to the adversary. To achieve malicious security, our idea is to first run the semi-honest protocol until
the output phase, then check the correctness of the computation, and finally reconstruct the output. The
perfect privacy of our semi-honest protocols allows us to postpone the verification till the end so that the
verification can be done in a batch way.

As for the verification, instead of checking the correctness of every single invocation of every protocol, we
view the computation as a composition of two parts: (1) evaluation of the basic gates, i.e., addition gates and
multiplication gates, and (2) network routing, i.e., computing input sharings of each layer using the output
sharings of previous layers. For the first part, since addition gates are computed without interaction, it is
sufficient to only check the correctness of multiplications. We will discuss the verification of multiplications
in Section 7.1. For the second part, it includes evaluating the fan-out gates we insert (see Section 4.4),
performing permutations on the secrets of sharings (see Section 4.2), and selecting secrets from the output
sharings in previous layers (see Section 4.2). We will discuss the verification of the network routing in
Section 7.2.

Recall that we are in the client-server model where there are c clients and n = 2t + 1 parties (servers).
Recall that 1 ≤ k ≤ t is an integer. An adversary is allowed to corrupt t′ = t−k+ 1 parties. We will use the
degree-t packed Shamir sharing scheme, which can store k secrets within one sharing. Recall that C denote
the set of corrupted parties and H denote the set of honest parties.

Recall that HH ⊂ H be a fixed subset of size t + 1, and HC = H\HH. For a degree-t packed Shamir
sharing held [x] by all parties, we use [x]H to denote the degree-t packed Shamir sharing determined by the
shares of parties in HH. We assume the shares of [x] of corrupted parties are the same as the shares of [x]H
of corrupted parties. See discussions in Section 6. We use ∆ = [x] − [x]H to denote the additive errors to
the shares of parties in HC .

7.1 Multiplication Verification

We first discuss how to check the correctness of multiplications. At a high-level, we follow the technique
in [BBCG+19, GSZ20] to achieve sub-linear communication complexity. The original technique focuses on
the case where the number of corrupted parties is t = (n − 1)/2, and each secret sharing only stores one
secret. We combine this technique and the packed secret-sharing technique to verify the multiplications.

We first introduce the functionality we want to achieve. Ideally, the functionality takes m multiplication
tuples (where each tuple containing three degree-t packed Shamir sharings corresponding to the input sharings
and the output sharing) and checks the correctness of multiplications. To allow an ideal adversary (or the
simulator) to generate the views of corrupted parties in the real world, the functionality further provides

1. the additive errors to the shares of parties in HC of each sharing,

2. the additive errors to the multiplication results of each multiplication tuple.

Recall that in Fmult-mal, the adversary is allowed to add additive errors to the shares of parties in HC of the
output sharing and additive errors to the secrets of the output sharing. Therefore, additive errors to the
shares of parties in HC for each sharing can be provided for free. However, recall that Fmult-mal computes
the multiplication results using the input sharings which contain the additive errors to the shares of parties
in HC instead of using the secrets of the input sharings. The multiplication results computed by Fmult-mal

are not guaranteed to be correct if the additive errors to the shares of parties in HC of the input sharings are
non-zero. It means that the additive errors to the secrets of the output sharing are not equal to the additive
errors to the multiplication results. Therefore, in the functionality, the additive errors to the multiplication
results for each multiplication tuple are only provided if the additive errors to the shares of parties in HC of
the input sharings of each multiplication tuple are 0 (which guarantee that Fmult-mal computes the correct
multiplication results). The functionality Fmult-veri can be found in Functionality 35.

62



Functionality 35: Fmult-veri

1. Let m denote the number of multiplication tuples. The multiplication tuples are denoted by

([x(1)], [y(1)], [z(1)]), ([x(2)], [y(2)], [z(2)]), . . . , ([x(m)].[y(m)], [z(m)]).

2. For all i ∈ [m], Fmult-veri receives from honest parties their shares of [x(i)], [y(i)], [z(i)]. Then
Fmult-veri reconstructs the whole sharings [x(i)]H, [x

(i)], [y(i)]H, [y
(i)], [z(i)]H, [z

(i)] and computes

∆
(i)
x := [x(i)]− [x(i)]H, ∆

(i)
y := [y(i)]− [y(i)]H, and ∆

(i)
z := [z(i)]− [z(i)]H. Fmult-veri reconstructs

the secrets x(i),y(i), z(i) and computes d(i) := z(i) − x(i) ∗ y(i).

3. For all i ∈ [m], Fmult-veri sends to the adversary the shares of [x(i)], [y(i)], [z(i)] of corrupted parties

and the vectors ∆
(i)
x ,∆

(i)
y ,∆

(i)
z . If ∆

(i)
x = ∆

(i)
y = 0, Fmult-veri sends to the adversary the vector

d(i).

4. Let b ∈ {abort, accept} denote whether there exists i ∈ [m] such that at least one of

∆
(i)
x ,∆

(i)
y ,∆

(i)
z ,d(i) is non-zero. Fmult-veri sends b to the adversary and waits for its response.

• If the adversary replies continue, Fmult-veri sends b to honest parties.

• If the adversary replies abort, Fmult-veri sends abort to honest parties.

7.1.1 Batch-wise Multiplication Verification from [BSFO12].

We first introduce a technique from [BSFO12] which allows all parties to compress the check of m multi-
plication tuples into the check of a single multiplication tuple with the cost of O(m) additional invocations
of Fmult-mal. The original work [BSFO12] focuses on the case where the number of corrupted parties is
t = (n − 1)/2, and each secret sharing only stores one secret. We show that it can be generalized and
combined with the packed secret-sharing technique.

Suppose the input multiplication tuples are denoted by

([x(1)], [y(1)], [z(1)]), ([x(2)], [y(2)], [z(2)]), . . . , ([x(m)].[y(m)], [z(m)]).

At a high-level, all parties will construct three vectors of polynomials F (·),G(·),H(·), where the coefficients
of these three polynomials are vectors in Fk, F ,G are of degree-(m− 1), and H is of degree-2(m− 1). The
first two polynomials F ,G are determined by the following m evaluation points: ∀i ∈ [m], F (i) = x(i) and
G(i) = y(i). For H, we want to achieve that

• If the input multiplication tuples are correct and all parties honestly follow the protocol, then H =
F ∗G.

• Otherwise, H 6= F ∗G.

In this way, it is sufficient to test whether H = F ∗G, which can be done by testing a random evaluation
point. To this end, for all i ∈ [m], H(i) = z(i). Note that we need additional m− 1 points to determine the
polynomial H. For all i ∈ {m + 1, . . . , 2m − 1}, all parties locally compute [F (i)], [G(i)], which are linear
combinations of [x(1)], . . . , [x(m)] and [y(1)], . . . , [y(m)] respectively. Then, all parties invoke Fmult-mal with
input sharings [F (i)], [G(i)] to compute [z(i)]. All parties determine H by the following 2m− 1 evaluation
points: ∀i ∈ {1, . . . , 2m − 1}, H(i) = z(i). Recall that Fcoin introduced in Section 3.3 allows all parties
to generate a random element in F. All parties use Fcoin to generate a random evaluation point λ ∈ F
and then take [F (λ)], [G(λ)], [H(λ)] as output. When F is large enough, it is sufficient to test whether
([F (λ)], [G(λ)], [H(λ)]) is a correct multiplication tuple.
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The description of Compress appears in Protocol 36. The communication complexity of Compress is
O(m · n · κ+ n3κ2) bits.

Protocol 36: Compress

1. Let m denote the number of multiplication tuples. The multiplication tuples are denoted by

([x(1)], [y(1)], [z(1)]), ([x(2)], [y(2)], [z(2)]), . . . , ([x(m)].[y(m)], [z(m)]).

2. Let F (·),G(·) be vectors of degree-(m− 1) polynomials such that

∀i ∈ [m],F (i) = x(i),G(i) = y(i).

All parties locally compute [F (·)] and [G(·)] by using {[x(i)]}i∈[m] and {[y(i)]}i∈[m] respec-

tively. Note that the coefficients of [F (·)] and [G(·)] are linear combinations of {[x(i)]}i∈[m] and

{[y(i)]}i∈[m] respectively

3. For all i ∈ {m + 1, . . . , 2m − 1}, all parties locally compute [F (i)] and [G(i)], and then invoke
Fmult-mal on ([F (i)], [G(i)]) to compute [z(i)] = [F (i) ∗G(i)].

4. Let H(·) be a vector of degree-2(m− 1) polynomials such that

∀i ∈ [2m− 1],H(i) = z(i).

All parties locally compute [H(·)] by using {[z(i)]}i∈[2m−1]. Note that the coefficients of [H(·)]
are linear combinations of {[z(i)]}i∈[2m−1].

5. All parties invoke Fcoin to generate a random field element λ. If λ ∈ [m], all parties abort.
Otherwise, output ([F (λ)], [G(λ)], [H(λ)]).

Lemma 18. Let κ be the security parameter and F be a finite field such that |F| ≥ 2κ. Then, with probability
at least 1− 7m/2κ,

• λ 6∈ [m];

• if there exists i ∈ [m] such that [x(i)] is inconsistent, then [F (λ)] is also inconsistent;

• if there exists i ∈ [m] such that [y(i)] is inconsistent, then [G(λ)] is also inconsistent;

• if there exists i ∈ [m] such that [z(i)] is inconsistent, then [H(λ)] is also inconsistent;

• if there exists i ∈ [m] such that z(i) 6= x(i) ∗ y(i), then H(λ) 6= F (λ) ∗G(λ).

Proof. We count the number of λ that breaks any of the conditions.

• The number of λ that breaks the first condition is m.

• For the second condition, we show that if there exists i ∈ [m] such that [y(i)] is inconsistent, then
the number of λ such that [F (λ)] is consistent is bounded by m− 1. Suppose there are m evaluation
points λ1, λ2, . . . , λm such that [F (λi)] is consistent for all i ∈ [m]. Since F is a vector of degree-
(m − 1) polynomials, the coefficients of [F (·)] are linear combinations of {[F (λi)]}mi=1, which means
that every coefficient of [F (·)] is a consistent degree-t packed Shamir sharing. Therefore for all λ,
[F (λ)] is consistent, which implies that [F (1)] = [x(1)], . . . , [F (m)] = [x(m)] are all consistent. It leads
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to a contradiction. Thus, the number of λ such that [F (λ)] is consistent is bounded by m − 1. The
number of λ that breaks the second condition is bounded by m− 1.

• With the same argument as that for the second condition, the number of λ that breaks the third
condition is bounded by m− 1.

• With the same argument as that for the second condition and the fact that H is a vector of degree-
2(m− 1) polynomials, the number of λ that breaks the fourth condition is bounded by 2(m− 1).

• For the last condition, consider a vector of degree-2(m− 1) polynomials δ(·) = H(·)− F (·) ∗H(·). If
there exists i ∈ [m] such that z(i) 6= x(i) ∗ y(i), then δ(·) is non-zero. Since δ is a vector of degree-
2(m− 1) polynomials, the number of λ such that δ(λ) = 0 is bounded by 2(m− 1). It means that the
number of λ such that H(λ) = F (λ) ∗H(λ) is bounded by 2(m− 1). Therefore, the number of λ that
breaks the last condition is bounded by 2(m− 1).

In summary, the number of λ that breaks any of the conditions is bounded by m+ (m− 1) + (m− 1) +
2(m− 1) + 2(m− 1) < 7m. Since λ is a random field element sampled by Fcoin, the probability that any of
the conditions does not hold is bounded by 7m/|F| ≤ 7m/2κ. The lemma follows.

Remark 4. We note that the technique from [BSFO12] is already a verification for multiplication tuples.
However, it inevitably requires a large enough field. While the requirement that |F| ≥ 2κ can be mitigated
by using a large enough extension field when choosing a random element λ in the last step of Compress,
the existence of H requires at least 2m − 1 different evaluation points, which means that |F| ≥ 2m − 1.
Note that we need to invoke additional O(m) times of Fmult-mal. It will affect the overall communication
complexity. There are some discussions in [BSFO12] regarding how to mitigate the requirement of a large
enough field. It requires to choose the parameters very carefully. On the other hand, using the technique
in [BBCG+19, GSZ20], we can safely lift the multiplication tuples into a large enough extension field without
affecting the overall communication complexity since the communication complexity of the verification is
sub-linear in the number of multiplications.

7.1.2 Extensions of Mult and Compress.

Before introducing the verification technique from [BBCG+19, GSZ20], we first extend Mult to support
inner-product operations and extend Compress to support the verification of inner-product tuples. The idea
of extending Mult to support inner-product has been widely used in many papers. The idea of extending
Compress to support the verification of inner-product tuples is first noted in [NV18], which is then used
in [GSZ20] to construct a more efficient verification. For completeness, we provide the full details below.

An Extension of Mult. Consider that we have two input vectors of sharings ([x(1)], [x(2)], . . . , [x(`)]) and

([y(1)], [y(2)], . . . , [y(`)]). The goal is to compute a degree-t packed Shamir sharing of z =
∑`
i=1 x

(i) ∗ y(i).

Note that all parties can locally compute 〈z〉 :=
∑`
i=1[x(i)] · [y(i)]. Then use the approach in [DN07] to

reduce the degree of 〈z〉. The functionality Finner-product-mal appears in Functionality 37, and the protocol
Inner-product appears in Protocol 38. Note that the communication complexity of Inner-product is
the same as the communication complexity of Mult.

Lemma 19. Protocol Inner-product (see Protocol 38) securely computes Finner-product-mal in the Frand-
hybrid model against a fully malicious adversary who controls t′ = t− k + 1 parties.

This lemma can be proved in the same way as that for Lemma 12. Therefore, for simplicity, we omit the
details.
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Functionality 37: Finner-product-mal

1. Suppose ([x(1)], [x(2)], . . . , [x(`)]) and ([y(1)], [y(2)], . . . , [y(`)]) are the input vectors of degree-t
packed Shamir sharings. Finner-product-mal receives the shares of {[x(i)], [y(i)]}`i=1 from honest
parties.

2. For all i ∈ [`], Finner-product-mal recovers the whole sharings [x(i)]H, [x
(i)] and [y(i)]H, [y

(i)].

Finner-product-mal computes ∆
(i)
x = [x(i)]−[x(i)]H and ∆

(i)
y = [y(i)]−[y(i)]H. Then Finner-product-mal

sends the shares of [x(i)]H, [y
(i)]H of corrupted parties and ∆

(i)
x ,∆

(i)
y to the adversary.

3. Finner-product-mal receives from the adversary a vector d ∈ Fk. Finner-product-mal computes 〈z〉 :=∑`
i=1[x(i)] · [y(i)] and reconstructs the secrets z. Finner-product-mal computes z := z + d.

4. Finner-product-mal receives from the adversary a set of shares {si}i∈C . Finner-product-mal samples a
random degree-t packed Shamir sharing [z]H such that for all Pi ∈ C, the i-th share of [z]H is si.

5. Finner-product-mal receives from the adversary a vector ∆z ∈ Fn such that for all Pi 6∈ HC , (∆z)i = 0.
Finner-product-mal computes [z] = [z]H + ∆z.

6. Finner-product-mal distributes the shares of [z] to honest parties.

Protocol 38: Inner-product

1. Suppose ([x(1)], [x(2)], . . . , [x(`)]) and ([y(1)], [y(2)], . . . , [y(`)]) denote the input vectors of degree-t
packed Shamir sharings of the multiplication gate.

2. All parties invoke Frand to prepare a pair of random sharings ([r], 〈r〉).

3. All parties locally compute 〈e〉 :=
∑`
i=1[x(i)] · [y(i)] + 〈r〉.

4. All parties send their shares of 〈e〉 to the first party P1.

5. P1 reconstructs the secrets e, generates a random degree-t packed Shamir sharing [e], and dis-
tributes the shares to other parties.

6. All parties locally compute [z] := [e]− [r].

An Extension of Compress. Consider the scenario where we want to check the correctness of m inner-
product tuples of the same dimension `, where the i-th tuple is represented by

(([x(i,1)], [x(i,2)], . . . , [x(i,`)]), ([y(i,1)], [y(i,2)], . . . , [y(i,`)]), [z(i)]).

At a high-level, all parties will construct 2`+ 1 vectors of polynomials

(F (1)(·),F (2)(·), . . . ,F (`)(·)), (G(1)(·),G(2)(·), . . . ,G(`)(·)),H(·),

where the coefficients of these polynomials are vectors in Fk, F (j),G(j) are of degree-(m− 1) for all j ∈ [`],
and H is of degree-2(m− 1). For all j ∈ [`], F (j),G(j) are determined by the following m evaluation points:
∀i ∈ [m], F (j)(i) = x(i,j) and G(j)(i) = y(i,j). For H, we want to achieve that
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• If the input inner-product tuples are correct and all parties honestly follow the protocol, then H =∑`
j=1 F

(j) ∗G(j).

• Otherwise, H 6=
∑`
j=1 F

(j) ∗G(j).

In this way, it is sufficient to test whether H =
∑`
j=1 F

(j) ∗G(j), which can be done by testing a random

evaluation point. To this end, for all i ∈ [m], H(i) = z(i). Note that we need additional m−1 points to deter-
mine the polynomial H. For all i ∈ {m+1, . . . , 2m−1}, j ∈ [`], all parties locally compute [F (j)(i)], [G(j)(i)],
which are linear combinations of [x(1,j)], . . . , [x(m,j)] and [y(1,j)], . . . , [y(m,j)] respectively. Then, all parties
invoke Finner-product-mal with input sharings ([F (1)(i)], . . . , [F (`)(i)]) and ([G(1)(i)], . . . , [G(`)(i)]) to compute
[z(i)]. All parties determine H by the following 2m−1 evaluation points: ∀i ∈ {1, . . . , 2m−1}, H(i) = z(i).

Recall that Fcoin introduced in Section 3.3 allows all parties to generate a random element in F. All
parties use Fcoin to generate a random evaluation point λ ∈ F and then take

([F (1)(λ)], . . . ,F (`)(λ)), ([G(1)(λ)], . . . ,G(`)(λ)), [H(λ)]

as output. When F is large enough, it is sufficient to test whether

(([F (1)(λ)], . . . ,F (`)(λ)), ([G(1)(λ)], . . . ,G(`)(λ)), [H(λ)])

is a correct multiplication tuple.
The description of Extend-Compress appears in Protocol 39. The communication complexity of

Extend-Compress is O(m · n · κ+ n3 · κ2) bits.

Lemma 20. Let κ be the security parameter and F be a finite field such that |F| ≥ 2κ. Then, with probability
at least 1− (2`+ 5)m/2κ,

• λ 6∈ [m];

• for all j ∈ [`], if there exists i ∈ [m] such that [x(i,j)] is inconsistent, then [F (j)(λ)] is also inconsistent;

• for all j ∈ [`], if there exists i ∈ [m] such that [y(i,j)] is inconsistent, then [G(j)(λ)] is also inconsistent;

• if there exists i ∈ [m] such that [z(i)] is inconsistent, then [H(λ)] is also inconsistent;

• if there exists i ∈ [m] such that z(i) 6=
∑`
j=1 x

(i,j) ∗ y(i,j), then H(λ) 6=
∑`
j=1 F

(j)(λ) ∗G(j)(λ).

Proof. We count the number of λ that breaks any of the conditions.

• The number of λ that breaks the first condition is m.

• For the second condition, following the same argument as that in Lemma 18, for each fixed j, the
number of λ that breaks the second condition is bounded by m− 1. Therefore, the total number of λ
that breaks the second condition is bounded by `(m− 1).

• With the same argument as that for the second condition, the number of λ that breaks the third
condition is bounded by `(m− 1).

• With the same argument as that in Lemma 18, the number of λ that breaks the fourth condition is
bounded by 2(m− 1).

• For the last condition, consider a vector of degree-2(m− 1) polynomials δ(·) = H(·)−
∑`
j=1 F

(j)(·) ∗
H(j)(·). If there exists i ∈ [m] such that z(i) 6=

∑`
j=1 x

(i,j) ∗ y(i,j), then δ(·) is non-zero. Since δ is a
vector of degree-2(m − 1) polynomials, the number of λ such that δ(λ) = 0 is bounded by 2(m − 1).

It means that the number of λ such that H(λ) =
∑`
j=1 F

(j)(λ) ∗H(j)(λ) is bounded by 2(m − 1).
Therefore, the number of λ that breaks the last condition is bounded by 2(m− 1).

In summary, the number of λ that breaks any of the conditions is bounded by m+ `(m− 1) + `(m− 1) +
2(m− 1) + 2(m− 1) < (2`+ 5)m. Since λ is a random field element sampled by Fcoin, the probability that
any of the conditions does not hold is bounded by (2`+ 5)m/|F| ≤ (2`+ 5)m/2κ. The lemma follows.
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Protocol 39: Extend-Compress

1. Let m denote the number of inner-product tuples and ` denote the dimension of each inner-product
tuple. For all i ∈ [m], the i-th inner-product tuple is denoted by

(([x(i,1)], [x(i,2)], . . . , [x(i,`)]), ([y(i,1)], [y(i,2)], . . . , [y(i,`)]), [z(i)]).

2. For all j ∈ [`], let F (j)(·),G(j)(·) be vectors of degree-(m− 1) polynomials such that

∀i ∈ [m],F (j)(i) = x(i,j),G(j)(i) = y(i,j).

All parties locally compute [F (j)(·)] and [G(j)(·)] by using {[x(i,j)]}i∈[m] and {[y(i,j)]}i∈[m] respec-

tively. Note that the coefficients of [F (j)(·)] and [G(j)(·)] are linear combinations of {[x(i,j)]}i∈[m]

and {[y(i,j)]}i∈[m] respectively

3. For all i ∈ {m + 1, . . . , 2m − 1}, all parties locally compute [F (j)(i)] and [G(j)(i)], and then
invoke Finner-product-mal on ([F (1)(i)], . . . , [F (m)(i)]), ([G(1)(i)], . . . , [G(m)(i)]) to compute [z(i)] =

[
∑`
j=1 F

(j)(i) ∗G(j)(i)].

4. Let H(·) be a vector of degree-2(m− 1) polynomials such that

∀i ∈ [2m− 1],H(i) = z(i).

All parties locally compute [H(·)] by using {[z(i)]}i∈[2m−1]. Note that the coefficients of [H(·)]
are linear combinations of {[z(i)]}i∈[2m−1].

5. All parties invoke Fcoin to generate a random field element λ. If λ ∈ [m], all parties abort.
Otherwise, output

(([F (1)(λ)], . . . ,F (`)(λ)), ([G(1)(λ)], . . . ,G(`)(λ)), [H(λ)]).

7.1.3 Multiplication Verification from [GSZ20].

Now we are ready to discuss how to use the technique in [BBCG+19, GSZ20] to verify multiplication tuples.
We will follow the approach in [GSZ20]. At a high-level, the verification is done by the following three steps:

1. De-Linearization: The first step is to transform the m input multiplication tuples into a single inner-
product tuple of dimension m such that if there exists an incorrect multiplication tuple, the inner-
product tuple is also incorrect with overwhelming probability.

2. Dimension-Reduction: The second step is to reduce the dimension of the inner-product tuple we
obtained in Step 1 by a factor of κ, where κ is the security parameter. More concretely, taking as input
an inner-product tuple of dimension m, the output is an inner-product tuple of dimension m/κ such
that if the input inner-product tuple is incorrect, the output inner-product tuple is also incorrect with
overwhelming probability.

3. Recursion and Randomization: We will repeat the second step until the dimension becomes 1, i.e., the
final output becomes a single multiplication tuple. To simplify the checking process for the last step,
the last iteration will use additional randomness.

In the following, we will lift all the sharings into a large enough extension field of F, denoted by K, such
that |K| ≥ 2κ. We assume that κ is the size of a field element in K.
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Step 1: De-Linearization. The first step is to transform these m tuples to a single inner-product tuple of
dimensionm. The description of De-Linearization appears in Protocol 40. The communication complexity
of De-Linearization is O(n2 · κ) bits.

Protocol 40: De-Linearization

1. Let m denote the number of multiplication tuples. The multiplication tuples are denoted by

([x(1)], [y(1)], [z(1)]), ([x(2)], [y(2)], [z(2)]), . . . , ([x(m)].[y(m)], [z(m)]).

2. All parties invoke Fcoin to generate a random field element r ∈ K.

3. For all i ∈ [m], all parties set [a(i)] = ri−1 · [x(i)] and set [b(i)] = [y(i)]. All parties compute

[c] =

m∑
i=1

ri−1 · [z(i)]

and output the inner-product tuple

(([a(1)], [a(2)], . . . , [a(m)]), ([b(1)], [b(2)], . . . , [b](m)), [c]).

Lemma 21. In De-Linearization, with probability at least 1− 2m/2κ,

• if there exists i ∈ [m] such that [z(i)] is inconsistent, then [c] is also inconsistent;

• if there exists i ∈ [m] such that z(i) 6= x(i) ∗ y(i), then c 6=
∑m
i=1 a

(i) ∗ b(i).
Proof. Consider two vectors of polynomials F ,G defined by

F (X) = (x(1) ∗ y(1)) + (x(2) ∗ y(2)) ·X + . . .+ (x(m) ∗ y(m)) ·Xm−1,

G(X) = z(1) + z(2) ·X + . . .+ z(m) ·Xm−1.

Note that the inner-product between (a(1),a(2), . . . ,a(m)) and (b(1), b(2), . . . , b(m)) is F (r), and c = G(r).
We count the number of r that breaks either of the conditions.

• For the first condition, consider the polynomial

[G(X)] = [z(1)] + [z(2)] ·X + . . .+ [z(m)] ·Xm−1.

Suppose there are m evaluation points r1, r2, . . . , rm such that [G(ri)] is consistent for all i ∈ [m].
Since G is a vector of degree-(m − 1) polynomials, the coefficients of [G(·)] are linear combinations
of {[G(ri)]}mi=1, which means that every coefficient of [G(·)] is a consistent degree-t packed Shamir
sharing. Therefore [z(1)], . . . , [z(m)] are all consistent. It means that if there exists i ∈ [m] such that
[z(i)] is inconsistent, then the number of r such that [G(r)] is consistent is bounded by m− 1. Thus,
the number of r that breaks the first condition is bounded by m− 1.

• For the second condition, consider a vector of degree-m − 1 polynomials δ(·) = G(·) − F (·). If there
exists i ∈ [m] such that z(i) 6= x(i) ∗ y(i), then δ(·) is non-zero. Since δ is a vector of degree-m − 1
polynomials, the number of r such that δ(r) = 0 is bounded by m− 1. It means that the number of r
such that c =

∑m
i=1 a

(i) ∗ b(i) is bounded by m− 1. Therefore, the number of r that breaks the second
condition is bounded by m− 1.

In summary, the number of r that breaks any of the conditions is bounded by (m− 1) + (m− 1) < 2m.
Since r is a random field element sampled by Fcoin, the probability that either of the conditions does not
hold is bounded by 2m/|K| ≤ 2m/2κ. The lemma follows.
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Step 2: Dimension-Reduction. The second step is to reduce the dimension of the inner-product tuple
we obtained in Step 1 by a factor of κ, where κ is the security parameter. Let m denote the dimension
of the input inner-product tuple and ` = m/κ. At a high-level, all parties first partition the two input
vectors of the inner-product tuple into κ sub-vectors of the same length `. For all i ∈ [κ], all parties invoke
Finner-product-mal to compute the inner-product between the i-th sub-vectors of the two input vectors of the
original inner-product tuple. In this way, all parties obtain κ inner-product tuples of dimension `. Finally
all parties invoke Extend-Compress to compress the check of these κ inner-product tuples into one check
of a single inner-product tuple. The description of Dimension-Reduction appears in Protocol 41. The
communication complexity of Dimension-Reduction is O(n3 · κ2) bits.

Protocol 41: Dimension-Reduction

1. Suppose the input inner-product tuple is denoted by

(([x(1)], [x(2)], . . . , [x(m)]), ([y(1)], [y(2)], . . . , [y](m)), [z]).

Recall that κ is the security parameter. Let ` = m/κ.

2. For all i ∈ [κ], j ∈ [`], all parties set [a(i,j)] := [x((i−1)·`+j)] and [b(i,j)] := [y((i−1)·`+j)].

3. For i ∈ [κ − 1], all parties invoke Finner-product-mal on ([a(i,1)], . . . , [a(i,`)]), ([b(i,1)], . . . , [b(i,`)]) to

compute [c(i)] = [
∑`
j=1 a

(i,j) ∗ b(i,j)]

4. All parties set

[c(κ)] = [z]−
κ−1∑
i=1

[c(i)].

5. All parties invoke Extend-Compress on the following κ inner-product tuples:

{(([a(i,1)], . . . , [a(i,`)]), ([b(i,1)], . . . , [b(i,`)]), [c(i)])}κi=1.

The output is denoted by

(([a(1)], . . . , [a(`)]), ([b(1)], . . . , [b(`)]), [c]).

All parties take this new inner-product tuple as output.

Lemma 22. In Dimension-Reduction, with probability at least 1− (2`+ 5)m/2κ,

• if there exists j ∈ [m] such that [x(j)] is inconsistent, then there exists j′ ∈ [`] such that [a(j′)] is
inconsistent;

• if there exists j ∈ [m] such that [y(j)] is inconsistent, then there exists j′ ∈ [`] such that [b(j
′)] is

inconsistent;

• if [z] is inconsistent, then [c] is inconsistent;

• if z 6=
∑m
j=1 x

(j) ∗ y(j), then c 6=
∑`
j=1 a

(j) ∗ b(j).

Proof. We first show that, if [z] is inconsistent, then there exists i′ ∈ [κ] such that [c(i
′)] is inconsistent.
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Note that in Dimension-Reduction, we have

[z] =

κ∑
i=1

[c(i)].

If for all i ∈ [κ], [c(i)] is consistent, then [z] is also consistent, which leads to a contradiction.

We then show that, if z 6=
∑m
i=1 x

(i) ∗y(i), then there exists i′ ∈ [κ] such that c(i
′) 6=

∑`
j=1 a

(i′,j) ∗b(i′,j).
Note that

m∑
j=1

x(j) ∗ y(j) =

κ∑
i=1

∑̀
j=1

a(i,j) ∗ b(i,j),

and

z =

κ∑
i=1

c(i).

If for all i ∈ [κ], c(i) =
∑`
j=1 a

(i,j) ∗ b(i,j), then

κ∑
i=1

c(i) =

κ∑
i=1

∑̀
j=1

a(i,j) ∗ b(i,j) =

m∑
j=1

x(j) ∗ y(j) = z,

which leads to a contradiction.
Note that the first condition corresponds to the second condition in Lemma 20. The second condition

corresponds to the third condition in Lemma 20. The third condition, after transforming [z] being incon-
sistent to the existence of i′ ∈ [κ] such that [c(i

′)] is inconsistent, corresponds to the fourth condition in
Lemma 20. The fourth condition, after transforming z 6=

∑m
j=1 x

(j) ∗ y(j) to the existence of i′ ∈ [κ] such

that c(i
′) 6=

∑`
j=1 a

(i′,j) ∗ b(i′,j), corresponds to the last condition in Lemma 20. Thus, by Lemma 20, with
probability at least 1− (2`+ 5)m/2κ, all conditions hold.

Step 3: Randomization In the last step, we make use of additional randomness to simplify the verifica-
tion of the final multiplication tuple. Specifically, in the last call of the second step, we need to compress the
check of κ multiplication tuples into a check of a single multiplication tuple. All parties prepare a random
multiplication tuple as masks and include it when invoking Compress.

Suppose ([a], [b], [c]) is the final multiplication tuple we want to check. In [GSZ20], all parties simply
open these three sharings and check whether it is a correct multiplication tuple. Note that opening all three
sharings will leak the difference c−a∗b to the adversary. As we discussed at the beginning of this subsection,
we need to ensure that the input sharings of all the invocations of Mult and Inner-product are consistent
before leaking the difference. Fortunately, we will show that it is sufficient to only check the consistency of
the sharings [a], [b]. Therefore, we make the following changes when checking the final multiplication tuple:

1. All parties exchange their shares of [a], [b] and verify the consistency of [a], [b]. If one of [a], [b] is
inconsistent, all parties abort.

2. All parties then exchange their shares of [z] and verify the multiplication tuple. If [c] is inconsistent
or c 6= a ∗ b, all parties abort.

The description of Randomization appears in Protocol 42. The communication complexity of Random-
ization is O(n3 · κ2) bits.

Lemma 23. In Randomization, if the input inner-product tuple is incorrect or any sharing is not consis-
tent, with probability at least 1− 7m/2κ, at least one honest party aborts at the end of the protocol.

Proof. Following from the same argument as that in Lemma 22, we have that
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Protocol 42: Randomization

1. Suppose the input inner-product tuple is denoted by

(([x(1)], [x(2)], . . . , [x(κ)]), ([y(1)], [y(2)], . . . , [y](κ)), [z]).

Recall that κ is the security parameter.

2. All parties invoke Frand to prepare two random degree-t packed Shamir sharings [x(0)], [y(0)].

3. All parties invoke Fmult-mal on ([x(0)], [y(0)]) to compute [z(0)] = [x(0) ∗ y(0)].

4. For all i ∈ [κ − 1], all parties invoke Fmult-mal on ([x(i)], [y(i)]) to compute [z(i)] = [x(i) ∗ y(i)].
Then set

[z(κ)] = [z]−
κ−1∑
i=1

[z(i)].

5. All parties invoke Compress on

([x(0)], [y(0)], [z(0)]), ([x(1)], [y(1)], [z(1)]), . . . , ([x(κ)], [y(κ)], [z(κ)]).

The output is denoted by ([a], [b], [c]).

6. All parties send their shares of [a], [b] to all other parties. Each party Pi checks whether the shares
of [a], [b] it received form valid degree-t packed Shamir sharings. If not, Pi aborts.

7. All parties send their shares of [c] to all other parties. Each party Pi checks whether the shares of
[c] it received form valid degree-t packed Shamir sharing and c = a ∗ b. If not, Pi aborts.

• if [z] is inconsistent, then there exists i′ ∈ [κ] such that [z(i
′)] is inconsistent;

• if z 6=
∑κ
i=1 x

(i) ∗ y(i), then there exists i′ ∈ [κ] such that z(i
′) 6= x(i′) ∗ y(i′).

Therefore, if the input inner-product tuple is incorrect or any sharing is not consistent, at least one of the
input multiplication tuples of Compress is incorrect or at least one sharing in these input multiplication
tuples is inconsistent. By Lemma 18, with probability 1−7m/2κ, the output multiplication tuple ([a], [b], [c])
is either incorrect or at least one of [a], [b], [c] is inconsistent. In either case, at least one honest party aborts
in the last two steps of Randomization.

Main Protocol for Fmult-veri. We present the protocol Mult-veri in Protocol 43, which is a combination
of De-Linearization, Dimension-Reduction, and Randomization.

Lemma 24. Protocol Mult-veri (see Protocol 43) securely computes Fmult-veri in the (Frand,Fmult-mal,
Finner-product-mal)-hybrid model against a fully malicious adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

Simulation for Mult-veri. In the beginning, for all i ∈ [m], S receives from Fmult-veri the shares of

[x(i)], [y(i)], [z(i)] held by corrupted parties and the additive errors ∆
(i)
x ,∆

(i)
y ,∆

(i)
z to the shares of parties
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Protocol 43: Mult-veri

1. Recall that κ is the security parameter. The multiplication tuples are denoted by

([x(1)], [y(1)], [z(1)]), ([x(2)], [y(2)], [z(2)]), . . . , ([x(m)].[y(m)], [z(m)]).

2. All parties invoke De-Linearization on these m multiplication tuples. Let

(([a(1)], . . . , [a(m)]), ([b(1)], . . . , [b(m)]), [c])

denote the output.

3. Let ` denote the dimension of the inner-product tuple. Initially ` = m. While ` ≥ κ, all parties
run the following steps.

(a) All parties invoke Dimension-Reduction on the current inner-product tuple and obtain a
new inner-product tuple, denoted by

(([a(1)], . . . , [a(`/κ)]), ([b(1)], . . . , [b(`/κ)]), [c]).

(b) All parties set ` := `/κ.

4. Let
(([a(1)], . . . , [a(κ)]), ([b(1)], . . . , [b(κ)]), [c])

denote the inner-product tuple from the last step. All parties invoke Randomization on this
inner-product tuple.

in HC . If ∆
(i)
x = ∆

(i)
y = 0, S also receives the difference d(i) = z(i) − x(i) ∗ y(i). Furthermore, S receives

b ∈ {abort, accept} indicating whether the multiplications are correct.

• Simulation of De-Linearization:

When Fcoin is invoked in Step 2, S emulates Fcoin and generates a random field element r ∈ K. The
output inner-product tuple is

(([a(1)], [a(2)], . . . , [a(m)]), ([b(1)], [b(2)], . . . , [b](m)), [c]).

For each sharing, S computes the shares held by corrupted parties and the additive errors to the shares
of parties in HC . If S receives from Fmult-veri all the additive errors to the multiplication results of
the input multiplication tuples, S also computes the additive errors to the inner-product results of the
output inner-product tuple. More concretely,

1. For all i ∈ [m], since [a(i)] = ri−1 · [x(i)], the shares of [a(i)] held by corrupted parties can be
computed by using the shares of [x(i)] held by corrupted parties. The additive errors to the shares

of [a(i)] of parties in HC are ∆
(i)
a = r(i−1) ·∆(i)

x .

2. For all i ∈ [m], since [b(i)] = [y(i)], the shares of [b(i)] held by corrupted parties are the same as
the shares of [y(i)] held by corrupted parties. The additive errors to the shares of [b(i)] of parties

in HC are ∆
(i)
b = ∆

(i)
y .

3. Since [c] =
∑m
i=1 r

i−1 · [z(i)], the shares of [c] held by corrupted parties can be computed using the
shares of {[z(i)]}mi=1 held by corrupted parties. The additive errors to the shares of [c] of parties
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in HC are ∆c =
∑`
i=1 r

i−1 ·∆(i)
z . The additive errors to the inner-product results of the output

inner-product tuple are d =
∑m
i=1 r

i−1 · d(i).

Note that for all i ∈ [m], if [x(i)] is consistent, then [a(i)] = ri−1 · [x(i)] is also consistent. For all
i ∈ [m], if [y(i)] is consistent, then [b(i)] = [y(i)] is also consistent. If either of the following conditions
holds, S aborts:

– if ∆c = 0 but there exists i ∈ [m] such that ∆
(i)
z 6= 0;

– if d = 0 but there exists i ∈ [m] such that d(i) 6= 0.

Note that these two conditions correspond to the two conditions in Lemma 21 respectively. According
to Lemma 21, it only happens with negligible probability.

• Simulation of Dimension-Reduction:

We will maintain the invariant that, for the input inner-product tuple

(([x(1)], [x(2)], . . . , [x(m)]), ([y(1)], [y(2)], . . . , [y](m)), [z]),

S learns the shares held by corrupted parties, and the additive errors to the shares of parties in HC
which are denoted by {∆(i)

x }mi=1, {∆
(i)
y }mi=1,∆z respectively. In addition, if ∆

(i)
x = ∆

(i)
y = 0 for all

i ∈ [m], then S learns the additive errors to the inner-product results, i.e., d = z−
∑m
i=1 x

(i)∗y(i). Note
that this is true for the first invocation of Dimension-Reduction since these values are computed
when simulating De-Linearization.

In Step 2, for all i ∈ [κ], j ∈ [`], S computes the shares of [a(i,j)], [b(i,j)] held by corrupted parties, and

the additive errors to the shares of [a(i,j)], [b(i,j)] of parties in HC which are denoted by ∆
(i,j)
a ,∆

(i,j)
b .

Note that they are just the same as those of [x((i−1)·`+j)], [y((i−1)·`+j)].

In Step 3, for all i ∈ [κ − 1], S emulates Finner-product-mal when computing [c(i)]. For all j ∈ [`], S
sends to the adversary the shares of [a(i,j)], [b(i,j)] held by corrupted parties and ∆

(i,j)
a ,∆

(i,j)
b . Then

S receives the shares of [c(i)] held by corrupted parties and the additive errors ∆
(i)
c to the shares of

[c(i)] of parties in HC . S also receives additive errors d(i) to the secrets of [c(i)]. Note that if for all

j ∈ [`], ∆
(i,j)
x = ∆

(i,j)
y = 0, then d(i) = c(i) −

∑`
j=1 a

(i,j) ∗ b(i,j).

In Step 4, S computes the shares of [c(κ)] of corrupted parties by following the protocol, and the

additive errors ∆
(κ)
c = ∆z −

∑κ−1
i=1 ∆

(i)
c . Since ∆z =

∑κ
i=1 ∆

(i)
c , if ∆z 6= 0, then there exists i ∈ [κ]

such that ∆
(i)
c 6= 0, which means that [c(i)] is inconsistent. If ∆

(i)
x = ∆

(i)
y = 0 for all i ∈ [m], S

computes d(κ) = d−
∑κ−1
i=1 d

(i). Note that in this case, d(κ) = c(κ) −
∑`
j=1 a

(i,j) ∗ b(i,j).
In Step 5, S needs to simulate the behaviors of honest parties in Extend-Compress. Note that
Extend-Compress only contains local computation and invocations of Finner-product-mal,Fcoin. For
Finner-product-mal, the input sharings are linear combinations of {[a(i,j)], [b(i,j)]}i∈[κ],j∈[`], therefore S
can computes the shares of corrupted parties and the additive errors to the shares of parties in HC . S
emulates Finner-product-mal as above, and receives from the adversary the shares of the output sharing
held by corrupted parties and the additive errors to the shares of the output sharing of parties in HC .
S also receives the additive errors to the secrets of the output sharing. For Fcoin, S faithfully generates
a random element. Let

(([a(1)], . . . , [a(`)]), ([b(1)], . . . , [b(`)]), [c])

denote the output of Extend-Compress. By following the protocol, for each sharing, S can compute
the shares of corrupted parties and the additive errors to the shares of parties in HC . Note that for each
invocation of Finner-product-mal, the input sharings are linear combinations of {[a(i,j)], [b(i,j)]}i∈[κ],j∈[`],
which are just {[x(i)], [y(i)]}mi=1. Therefore, if ∆

(i)
x = ∆

(i)
y = 0 for all i ∈ [m], S learns the additive
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errors to the inner-product results of each inner-product tuple computed by Finner-product-mal. S further

computes the additive errors c−
∑`
j=1 a

(`) ∗ b(`).

Note that for all j ∈ [`], [a(j)], [b(j)] are linear combinations of {[x(i)]}mi=1, {[y(i)]}mi=1 respectively. If

∆
(i)
x = ∆

(i)
y = 0 for all i ∈ [m], then [a(j)], [b(j)] are consistent for all j ∈ [`]. In this case, S also

computes the additive errors c−
∑`
j=1 a

(`) ∗ b(`). This maintains the invariant for the next invocation
of Dimension-Reduction. If any of the following conditions holds, S aborts:

– if for all j ∈ [`], [a(j)] is consistent, but there exists i ∈ [m] such that ∆
(i)
x 6= 0;

– if for all j ∈ [`], [b(j)] is consistent, but there exists i ∈ [m] such that ∆
(i)
y 6= 0;

– if [c] is consistent but ∆z 6= 0;

– if the additive errors c−
∑`
j=1 a

(`) ∗ b(`) = 0 but d = z −
∑m
i=1 x

(i) ∗ y(i) 6= 0.

Note that these four conditions correspond to the four conditions in Lemma 22 respectively. According
to Lemma 22, it only happens with negligible probability.

• Simulation of Randomization:

Note that, for the input inner-product tuple

(([x(1)], [x(2)], . . . , [x(κ)]), ([y(1)], [y(2)], . . . , [y](κ)), [z]),

S learns the shares held by corrupted parties, and the additive errors to the shares of parties in HC
which are denoted by {∆(i)

x }κi=1, {∆
(i)
y }κi=1,∆z respectively. In addition, if ∆

(i)
x = ∆

(i)
y = 0 for all

i ∈ [κ], then S learns the additive errors to the inner-product results, i.e., d = z −
∑κ
i=1 x

(i) ∗ y(i). It
follows from the invariant we maintain when simulating Dimension-Reduction.

In Step 2, S emulates Frand when preparing [x(0)], [y(0)]. S receives from the adversary the shares

of corrupted parties. Note that Frand guarantees that [x(0)], [y(0)] are consistent. Therefore, ∆
(0)
x =

∆
(0)
y = 0.

In Step 3, S emulates Fmult-mal when computing [z(0)] = [x(0) ∗ y(0)]. S sends to the adversary the

shares of [x(0)], [y(0)] held by corrupted parties and ∆
(0)
x ,∆

(0)
y . Then S receives the shares of [z(0)]

of corrupted parties, the additive errors ∆
(0)
z to the shares of [z(0)] of parties in HC , and the additive

errors d(0) to the secrets of [z(0)]. Since ∆
(0)
x = ∆

(0)
y = 0, d(0) = z(0) − x(0) ∗ y(0).

Step 4 and Step 5 (including Compress) can be simulated in the same way as that for Dimension-
Reduction. Let ([a], [b], [c]) denote the output of Compress in Step 5. For the output multiplication
tuple, S learns the shares of corrupted parties, and the additive errors to the shares of parties in HC
which are denoted by ∆a,∆b,∆c respectively. If ∆

(i)
x = ∆

(i)
y = 0 for all i ∈ [κ], S also computes the

additive errors c− a ∗ b. If any of the following conditions holds, S aborts:

– if [a] is consistent, but there exists i ∈ [κ] such that ∆
(i)
x 6= 0;

– if [b] is consistent, but there exists i ∈ [κ] such that ∆
(i)
y 6= 0;

– if [c] is consistent but ∆z 6= 0;

– if the additive errors c− a ∗ b = 0 but d = z −
∑κ
i=1 x

(i) ∗ y(i) 6= 0.

Note that ∆z =
∑κ
i=1 ∆

(i)
z and d =

∑κ
i=1 d

(i)
z . Therefore, if ∆z 6= 0, then there exists i ∈ [κ] such

that [z(i)] is inconsistent. If d 6= 0, then there exists i ∈ [κ] such that d(i) = z(i) − x(i) ∗ y(i) 6= 0.
These four conditions correspond Condition 2 to Condition 5 in Lemma 18. By Lemma 18, it only
happens with negligible probability.

In Step 6, S samples two random vectors as a, b. Then S reconstructs the whole sharings [a], [b] using
the secrets a, b, the shares of corrupted parties, and the additive errors to the shares of parties in
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HC . S sends the shares of [a], [b] of honest parties to corrupted parties and then honestly checks the
consistency of [a], [b].

In Step 7, S computes c using a, b and the additive errors c− a ∗ b. S reconstructs the whole sharing
[c] using the secrets c, the shares of corrupted parties, and the additive errors to the shares of parties
in HC . S sends the shares of [c] of honest parties to corrupted parties and then honestly checks the
correctness of the multiplication tuple. Recall that S receives b ∈ {abort, accept} from Fmult-veri

indicating whether the multiplications are correct. If b = accept but an honest party aborts, S sends
abort to Fmult-veri. Otherwise, S sends continue to Fmult-veri.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties with over-
whelming probability. Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, for each sharing, S computes the shares of corrupted parties and the additive

errors to the shares of parties in HC as described above. For each multiplication tuple or each inner-product
tuple, S computes the additive errors to the multiplication results or the inner-product results as described
above. Then, S checks the additive errors to the shares of parties in HC and the additive errors to the
multiplication results and the inner-product results. Note that this does not change the behaviors of honest
parties. By Lemma 21, Lemma 22 and Lemma 18, the probability that S aborts during the check of the
additive errors is negligible. Therefore, the distribution of Hybrid1 is statistically close to Hybrid0.

Hybrid2: In this hybrid, instead of using the real sharings [a], [b], [c] in Randomization, S constructs
the sharings [a], [b]t, [c] as described above. Concretely, S randomly samples the secrets a, c and recon-
structs the whole sharings [a], [b] based on the secrets a, b, the shares of corrupted parties, and the additive
errors to the shares of [a], [b] of parties in HC . If S does not abort when checking the additive errors in
Randomization and [a], [b] are consistent, S has computed the additive errors c− a ∗ b. S computes the
secrets c using a, b and c − a ∗ c and reconstructs the whole sharing [c] based on the secrets c, the shares
of corrupted parties, and the additive errors to the shares of [c] of parties in HC .

Note that in Randomization, a and b are linear combinations of {x(i)}mi=0 and {b(i)}mi=0 respectively
and the coefficients are all non-zero, where the latter follows from the property of polynomials. Also note
that x(0) and y(0) are randomly chosen by Frand. Thus, a and b are uniformly random. The only difference
between Hybrid1 and Hybrid2 is that, in Hybrid1, a and b are masked by x(0) and y(0) which are
randomly chosen by Frand, while in Hybrid2, a and b are randomly chosen by S. However the distribution
of a and b remains unchanged. Since c is determined by a, b and the additive errors c−a∗b, the distributions
of c in both hybrids are the same. For each sharing of [a], [b], [c], the whole sharing is determined by the
secrets, the shares of corrupted parties, and the additive errors to the shares of parties in HC . Therefore,
the distributions of ([a], [b], [c]) in both hybrids are identical.

Therefore, the distribution of Hybrid2 is identical to Hybrid1.
Hybrid3: In this hybrid, S simulates the behaviors of honest parties as described above. Note that honest

parties need to communicate with corrupted parties only in Step 6 and Step 7 in Randomization where
all parties verify the correctness of the final multiplication tuple. However, the preparation of [a], [b], [c]
can be prepared by S without knowing the shares of honest parties. Also, when S emulating Fmult-mal and
Finner-product-mal, the shares of corrupted parties and the additive errors to the shares of parties in HC that
S needs to send to the adversary have been computed since Hybrid1. Therefore, emulating Fmult-mal and
Finner-product-mal does not need the shares of honest parties.

Therefore, the distribution of Hybrid3 is identical to Hybrid2.
Note that Hybrid3 is the execution in the ideal world, and the distribution of Hybrid3 is statistically

close to the distribution of Hybrid0, the execution in the real world.

Concrete Efficiency. Now we analyze the communication complexity of Mult-veri. Recall that each
time of running Dimension-Reduction reduces the dimension of the inner-product tuple by a factor of κ.
Therefore, Mult-veri includes 1 invocation of De-Linearization, (logκm−1) invocations of Dimension-

76



Reduction and 1 invocation of Randomization. Since κ is the security parameter, logκm is bounded by
a constant. The communication complexity of Mult-veri is O(n3 · κ2) bits.

7.2 Network Routing

In this subsection, we discuss how to verify the network routing. Recall that the network routing including

• evaluating the fan-out gates we insert (see Section 4.4),

• performing permutations on the secrets of the output sharings of each layer to achieve the non-collision
property (see Section 4.2 for performing permutation, and Section 4.3 for the non-collision property),

• selecting secrets from the output sharings in previous layers to form input sharings for the current
layer (see Section 4.2 for the idea of Fselect-semi),

• and finally permuting the secrets of each input sharing to the correct order (see Section 4.2).

Instead of verifying every invocation of every protocol, we choose to focus on the sharings before the network
routing and the sharings after the network routing. Note that the network routing does not change the secret
values. Instead, its goal is to create new sharings which contain the secret values we want in the correct
positions.

For each input sharing [y] of multiplication gates, addition gates, and output gates, and for each position
j ∈ [k], suppose yj comes from the i-th secret of [x] which is an output sharing of input gates, multiplication
gates, or addition gates in a previous layer. To verify the correctness of yj , it is sufficient to check whether
xi = yj . Note that this corresponds to the wire which carries the value xi = yj in the circuit. In general, let
m denote the number of wires in the circuit. For all ` ∈ [m], suppose the value carried by the `-th wire is

stored in the i`-th secret of [x(`)] and the j`-th secret of [y(`)]. We want to verify that x
(`)
i`

= y
(`)
j`

. In other
words, given m tuples

([x(1)], [y(1)], i1, j1), ([x(2)], [y(2)], i2, j2), . . . , ([x(m)], [y(m)], im, jm),

our goal is to check that ∀` ∈ [m], x
(`)
i`

= y
(`)
j`

. We refer to a tuple ([x], [y], i, j) as a wire tuple. The
functionality Fnetwork appears in Functionality 44. The functionality Fnetwork receives the wire tuples from
honest parties. For each wire tuple ([x], [y], i, j), Fnetwork checks whether xi = yj . In addition, Fnetwork

sends the difference yj −xi to the adversary. Note that, for protocols we need to run in the network routing,
the attacks that an adversary can do are limited to

• Adding additive errors to the secrets of the output sharings of these protocols,

• Adding additive errors to the shares of the output sharings of parties in HC .

Note that the additive errors to the shares of parties in HC do not affect the secrets since they are determined
by the shares of parties in HH. Therefore, the adversary knows the additive values to the wire w along the
way from xi to yj , which means that we can safely reveal yj − xi to the adversary.

In the following, we will lift all the sharings into a large enough extension field of F, denoted by K, such
that |K| ≥ 2κ. We assume that κ is the size of a field element in K. To realize Fnetwork, the idea is to first
classify all the wire tuples based on the positions we want to verify. Specifically, for all i, j ∈ {1, 2, . . . , k},
all parties construct a list L(i, j) containing all the wire tuples whose last two entries are i, j. To check
the correctness of the wire tuples in L(i, j), all parties compute a random linear combination of the tuples
in L(i, j) and obtain two sharings ([x?], [y?]). Note that if all the wire tuples are correct, we should have
x?i = y?j . On the other hand, we will show that with overwhelming probability, if there exists an incorrect
wire tuple in L(i, j), then x?i 6= y?j . To simplify the verification of the wire tuple ([x?], [y?], i, j), all parties

will use Frand to prepare a random wire tuple ([x(0)], [y(0)], i, j) and add it into the list L(i, j). This random
wire tuple serves as a random mask to ([x?], [y?], i, j) so that the verification of ([x?], [y?], i, j) can be done
by simply opening [x?], [y?].
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Functionality 44: Fnetwork

1. Let m denote the number of wire tuples all parties want to verify. For all ` ∈ [m], Fnetwork receives
from honest parties their shares of [x(`)], [y(`)] and two positions i`, j` ∈ [k]. The `-th tuple is
stored ([x(`)], [y(`)], i`, j`).

2. For all ` ∈ [m], Fnetwork reconstructs the whole sharings [x(`)]H, [x
(`)], [y(`)]H, [y

(`)] using the

shares of honest parties and computes ∆
(`)
x := [x(`)] − [x(`)]H and ∆

(`)
y := [y(`)] − [y(`)]H. Then

Fnetwork sends to the adversary the shares of [x(`)]H, [y
(`)]H of corrupted parties and the vectors

∆
(`)
x ,∆

(`)
y .

3. For all ` ∈ [m], Fnetwork reconstructs x(`),y(`) and computes d(`) = y
(`)
j`
− x(`)i` . Then Fnetwork

sends d(`) to the adversary.

4. Let b ∈ {abort, accept} denote whether there exists ` ∈ [m] such that d(`) 6= 0. Fnetwork sends b
to the adversary and waits for its response.

• If the adversary replies continue, Fnetwork sends b to honest parties.

• If the adversary replies abort, Fnetwork sends abort to honest parties.

For fixed i, j, We show how to use Frand to prepare a random wire tuple ([x], [y], i, j) in Appendix B.5.
The communication complexity of preparing m random wire tuples for fixed i, j is O(m ·n+n3 ·κ) elements
in K. In the implementation of Fnetwork, we only need one random wire tuple for each (i, j) ∈ {1, 2, . . . , k}2.
Therefore, the communication complexity of preparing the random wire tuples is O(n5 · κ) elements in
K, which is O(n5 · κ2) bits. The description of Network appears in Protocol 45. The communication
complexity of Network is O(n5 · κ2) bits.

Lemma 25. Protocol Network (see Protocol 45) securely computes Fnetwork in the (Frand,Fcoin)-hybrid
model against a fully malicious adversary who controls t′ = t− k + 1 parties with overwhelming probability.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

Simulation for Network. In the beginning, for all ` ∈ [m] S receives from Fnetwork the shares of

[x(`)]H, [y
(`)]H held by corrupted parties, the additive errors ∆

(`)
x ,∆

(`)
y to the shares of [x(`)], [y(`)] of parties

in HC , and the additive error d(`) = y
(`)
j`
− x(`)i` .

• In the first two steps, S honestly follow the protocol to classify the wire tuples based on the positions.

• In Step 3.(a), let

([a(1)], [b(1)], i, j), ([a(2)], [b(2)], i, j), . . . , ([a(m′)].[b(m
′)], i, j).

denote the wire tuples in L(i, j). For all ` ∈ [m′], S learns the shares of [a(`)]H, [b
(`)]H held by corrutped

parties, the additive errors ∆
(`)
a ,∆

(`)
b to the shares of [a(`)], [b(`)] of parties in HC , and the additive

error d̃(`) = b
(`)
j − a

(`)
i .

• In Step 3.(b), S emulates Frand when preparing a random wire tuple ([a(0)], [b(0)], i, j). S receives the
shares of [a(0)], [b(0)] held by corrupted parties. Note that [a(0)], [b(0)] are guaranteed to be consistent,

and a
(0)
i = b

(0)
j . Therefore, ∆

(0)
a = ∆

(0)
b = 0 and d̃(0) = 0.
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Protocol 45: Network

1. Let m denote the number of wire tuples all parties want to verify. The wire tuples are denoted by

([x(1)], [y(1)], i1, j1), ([x(2)], [y(2)], i2, j2), . . . , ([x(m)].[y(m)], im, jm).

2. For all i, j ∈ {1, 2, . . . , k}, all parties initiate an empty list L(i, j). From ` = 1 to m, all parties
insert ([x(`)], [y(`)], i`, j`) into the list L(i`, j`).

3. For all i, j ∈ {1, 2, . . . , k}, all parties verify the wire tuples in L(i, j) as follows:

(a) Let m′ denote the size of L(i, j) and the wire tuples in L(i, j) are denoted by

([a(1)], [b(1)], i, j), ([a(2)], [b(2)], i, j), . . . , ([a(m′)].[b(m
′)], i, j).

(b) All parties invoke Frand to prepare a random wire tuple ([a(0)], [b(0)], i, j) in K.

(c) All parties invoke Fcoin to generate a random element r ∈ K.

(d) All parties compute the following two sharings:

[a] =

m′∑
`=0

ri · [a(`)]

[b] =

m′∑
`=0

ri · [b(`)]

(e) All parties send their shares of [a], [b] to other parties. Then each party checks whether [a], [b]
are consistent and ai = bj . If not , this party aborts.

• In Step 3.(c), S emulates Fcoin and faithfully samples r ∈ K.

• In Step 3.(d), S computes ∆a =
∑m′

i=0 r
i ·∆(i)

a , ∆b =
∑m′

i=0 r
i ·∆(i)

b , and h̃ =
∑m′

i=0 r
i · h̃(i). S also

computes the shares of [a], [b] held by corrupted parties. Then, S samples a random vector in Kk as a.
Based on the secrets a, the shares of [a] held by corrupted parties, and the additive errors ∆a to the
shares of parties in HC , S reconstructs the whole sharing [a]. For [b], S sets bj = ai + d̃ and samples
k− 1 random elements in K as the values for {b`}` 6=j . Based on the secrets b, the shares of [b] held by
corrupted parties, and the additive errors ∆b to the shares of parties in HC , S reconstructs the whole
sharing [b].

• In Step 3.(e), S honestly follows the protocol.

• Finally, if an honest party aborts, S sends abort to Fnetwork. Otherwise, S sends continue to Fnetwork.

Analyze the Security of Network. We first show that S perfectly simulates the behaviors of honest
parties. Note that honest parties need to send messages to corrupted parties only in step 3.(e). Relying on
the values received from Fnetwork in the beginning and the values received from the adversary when emulating
Frand, S can compute the shares of [a], [b] held by corrupted parties and the additive errors to the shares of
parties in HC . Furthermore, S can compute the additive error d̃ = bj − ai. To determine the whole sharings
[a], [b], S only needs to know (the distribution) of a, b. In the real world, a, b are masked by a(0), b(0), which
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are random subject to a
(0)
i = b

(0)
j guaranteed by Frand. Therefore, a is a uniform vector, {b`} 6̀=j are uniform

elements in K, and bj = ai + d̃. In the ideal world, S randomly samples a and {b`}` 6=j , and sets bj = ai + d̃,
which have the same distribution as that in the real world. Therefore, S perfectly simulates the behaviors
of honest parties.

Now we analyze the distribution of the output. The only difference is when there exists a wire tuple
([a(`)], [b(`)], i, j) such that a`i 6= b`j but for the wire tuple ([a], [b], i, j), ai = bj . In the ideal world, all parties
will finally abort, while in the real world, all parties will continue. We show that this happens with negligible
probability. Note that it is sufficient to show that, if there exists ` ∈ [m′] such that d̃(`) 6= 0, then with
overwhelming probability, d̃ 6= 0.

Consider the polynomial δ(·) = d̃(0) + d̃(1) · r+ d̃(m
′) · rm′ . Then we have d̃ = δ(r). If there exists ` ∈ [m′]

such that d̃(`) 6= 0, then δ(·) is a non-zero polynomial. Since δ(·) is of degree-m′, the number of r such that
δ(r) = 0 is bounded by m′. Since r is randomly sampled by Fcoin in K, the probability that δ(r) = 0 is
bounded by m′/|K| ≤ m′/2κ, which is negligible. Therefore, with overwhelming probability, d̃ 6= 0.

8 Main Protocol - Against a Fully Malicious Adversary

In this section, we will introduce our main protocol of using packed Shamir sharing to evaluate a general
circuit C against a fully malicious adversary. As we discussed in Section 6, most of our semi-honest protocols
constructed in Section 4 achieve perfect privacy against a fully malicious adversary. Therefore, to achieve
malicious security, our idea is to run our semi-honest protocol described in Section 5 before the output phase,
check the correctness of the computation, and finally reconstruct the output only if the verification passes.
As we discussed in Section 7, we view the computation as a composition of two parts: (1) evaluation of
the basic gates, i.e., addition gates and multiplication gates, and (2) network routing, i.e., computing input
sharings of each layer using the output sharings of previous layers. All parties will use the two functionalities
we introduced in Section 7 to check these two parts.

Recall that we are in the client-server model where there are c clients and n = 2t + 1 parties (servers).
Recall that 1 ≤ k ≤ t is an integer. An adversary is allowed to corrupt t′ = t−k+ 1 parties. We will use the
degree-t packed Shamir sharing scheme, which can store k secrets within one sharing. Recall that C denote
the set of corrupted parties and H denote the set of honest parties.

The ideal functionality Fmain-mal appears in Functionality 46.

Functionality 46: Fmain-mal

1. Fmain-mal receives the input from all clients. Let x denote the input.

2. Fmain-mal computes C(x) and sends the output of corrupted clients to the adversary. Fmain-mal

waits for the response of the adversary.

• If the adversary replies abort, Fmain-mal sends abort to all clients.

• If the adversary replies continue, Fmain-mal distributes the output to all clients.

We will separate the main protocol into two parts. The first part follows the semi-honest protocol till
Step 4.(a), where all parties prepare the input sharings of the output layers, with the modification that the
invocations of semi-honest functionalities are replaced by the malicious variants. The second part includes
the verification of multiplications and network routing and Step 4.(b) of the semi-honest protocol, where
all parties reconstruct the output. The first part appears in Protocol 47 and the second part appears in
Protocol 48.
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Protocol 47: Main-Part I

1. Circuit Transformation Phase. Let C denote the evaluated circuit. All parties preprocess the
circuit by running the Preprocess protocol. Let C ′ denote the circuit after transformation.

2. Input Phase. Let Client1,Client2, . . . ,Clientc denote the clients who provide inputs, and Client0
denote the virtual client who provides constants.

(a) Input Secret-sharing Phase: For every group of k input gates of Clienti (i ≥ 1), Clienti invoke
Finput-mal to share its inputs x(i) to the parties. For every group of k input gates of Client0,
the inputs x(0) are constant values and known to all parties. All parties transform x(0) to a
degree-t packed Shamir sharing [x(0)] by following the approach in Section 3.2.

(b) Handling Fan-out Gates: For the output sharing [x] of each group of input gates, let ni
denote the number of times that the i-th secret of x is used in later layers. All parties invoke
Ffan-out-mal with input [x] and (n1, n2, . . . , nk).

(c) Achieving Non-Collision Property for the Next Layers: For each output sharing [y] of the
input layer, let p denote the permutation associated with it. All parties invoke Fpermute-mal

with input [y] and p.

3. Evaluation Phase. All parties evaluate the circuit layer by layer as follows:

(a) Permute Input Sharings from Previous Layers: For each input sharing [x], let [x(i)] denote
the output sharing from previous layers which contains the i-th secret xi, and let qi denote
the position of xi in [x(i)]. According to the non-collision property, (q1, q2, . . . , qk) is a per-
mutation of (1, 2, . . . , k). Let q(·) be a permutation over {1, 2, . . . , k} such that q(i) = qi. All
parties invoke Fselect-mal on [x(1)], [x(2)], . . . , [x(k)] and the permutation q. Let [x′] denote the
output of Fselect-mal. Then, all parties invoke Fpermute-mal with input [x′] and q−1 to obtain
[x].

(b) Evaluating Multiplication Gates and Addition Gates: For each group of multiplication gates
with input sharings [x], [y], all parties invoke Fmult-mal with input [x], [y]. For each group of
addition gates with input sharings [x], [y], all parties locally compute [x+ y] = [x] + [y].

(c) Handling Fan-out Gates: For the output sharing [x] of each group of multiplication gates or
addition gates, all parties follow the same step as Step 2.(b) to handle fan-out gates.

(d) Achieving Non-Collision Property: Follow Step 2.(c).

4. Preparing Input sharings of the output layer. For each input sharing [x], all parties follow
the same step as Step 3.(a) to prepare [x].

Lemma 26. Protocol Main (see Protocol 47 and Protocol 48) securely computes Fmain-mal in the (Finput-mal,
Ffan-out-mal,Fpermute-mal,Fselect-mal,Fmult-mal,Fmult-veri,Fnetwork,Foutput-mal)-hybrid model against a fully
malicious adversary who controls t′ = t− k + 1 parties.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties. Recall that
HH ⊂ H is a fixed subset of size t+ 1.

Compared with the semi-honest protocol Main-semi in Section 5, the only difference is that all parties
verify the correctness before reconstructing the output. Therefore, the correctness of Main follows from the
same argument as that in Lemma 9.
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Protocol 48: Main-Part II

5. Verification Phase.

(a) Let m denote the number of multiplication tuples computed by Fmult-mal. The multiplication
tuples are denoted by

([x(1)], [y(1)], [z(1)]), ([x(2)], [y(2)], [z(2)]), . . . , ([x(m)].[y(m)], [z(m)]).

All parties invoke Fmult-veri to check the correctness of the multiplication tuples.

(b) All parties locally prepare the wire tuples as follows: For each input sharing [y] of multiplica-
tion gates, addition gates, and output gates, and for each position j ∈ [k], suppose yj comes
from the i-th secret of [x] which is an output sharing of input gates, multiplication gates, or
addition gates in a previous layer. All parties set a wire tuple to be ([x], [y], i, j). Let m′

denote the number of wire tuples that all parties want to check. The wire tuples are denoted
by

([x(1)], [y(1)], i1, j1), ([x(2)], [y(2)], i2, j2), . . . , ([x(m′)], [y(m′)], im′ , jm′).

All parties invoke Fnetwork to check the correctness of the network routing.

6. Output Reconstruction. For each group of output gates belonging to Clienti (i ≥ 1), let [x]
denote the input sharing. All parties invoke Foutput-mal with input [x] to let Clienti learn the result
x.

Simulation of Main. We describe the strategy of S phase by phase. In the first step, S honestly follows
the protocol Preprocess.

• Simulation of Input Phase:

In Step 2.(a), S emulates Finput-mal. For each corrupted Clienti, S receives the input of Clienti. For
each output sharing, S receives from the adversary the shares of corrupted parties and the additive
errors to the shares of parties in HC . Then, S sends the input of corrupted clients to Fmain-mal.

In Step 2.(b), S emulates Ffan-out-mal. For the input sharing [x], S first sends to the adversary the
shares of corrupted parties and the additive errors to the shares of parties in HC . Note that they are
learnt when S emulates Finput-mal. For each output sharing, S receives from the adversary the shares
of corrupted parties, the additive errors to the secrets of the output sharing, and the additive errors to
the shares of parties in HC .
In Step 2.(c), S emulates Fpermute-mal. For the input sharing [y], S first sends to the adversary the
shares of corrupted parties and the additive errors to the shares of parties in HC . Note that they are
learnt when S emulates Ffan-out-mal. For the output sharing, S receives from the adversary the shares
of corrupted parties, the additive errors to the secrets of the output sharing, and the additive errors to
the shares of parties in HC .
In the following, we maintain the invariant that for each degree-t packed Shamir sharing, S learns the
shares of corrupted parties and the additive errors to the parties in HC . Note that the invariant holds
during the Input Phase.

• Simulation of Evaluation Phase:

In Step 3.(a), S emulates Fselect-semi and Fpermute-mal. For Fselect-semi, for each input sharing of
Fselect-semi, S first sends to the adversary the shares of corrupted parties and the additive errors to the
shares of parties in HC . By the invariant, S learnt these values when simulating previous steps. For
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the output sharing, S receives from the adversary the shares of corrupted parties, the additive errors
to the secrets of the output sharing, and the additive errors to the shares of parties in HC . S emulates
Fpermute-mal in the same way as that in Step 2.(c).

In Step 3.(b), for each group of multiplication gates, S emulates Fmult-mal. For the input sharings
[x], [y], S first sends to the adversary the shares of corrupted parties and the additive errors to the
shares of parties in HC . By the invariant, S learnt these values when simulating previous steps. For
the output sharing [z], S receives from the adversary the shares of corrpupted parties, the additive
errors to the secrets of the output sharing, and the additive errors to the shares of parties in HC . Let d
denote the additive errors to the secrets of the output sharing. Note that d = z−x ∗y holds if [x], [y]
are consistent, i.e., the additive errors to the shares of parties in HC are 0. For each group of addition
gates, S computes the shares of the output sharing of corrupted parties and the additive errors to the
shares of parties in HC .
S simulates Step 3.(c) and Step 3.(d) in the same way as that for Step 2.(b) and Step 2.(c). Note that
the that for each degree-t packed Shamir sharing in Step 3, S learns the shares of corrupted parties
and the additive errors to the parties in HC . Therefore, the invariant holds.

• Simulation of Step 4: S simulates Step 4 in the same way as that for Step 3.(a). Note that the that
for each degree-t packed Shamir sharing in Step 4, S learns the shares of corrupted parties and the
additive errors to the parties in HC . Therefore, the invariant holds.

• Simulation of Verification Phase:

In Step 5.(a), S emulates Fmult-veri. For each multiplication tuple ([x(i)], [y(i)], [z(i)]), S sends to the
adversary the shares of corrupted parties and the additive errors to the shares of parties in HC . They
are learnt when S emulates Fmult-mal to compute this tuple. Note that S also receives the additive
errors d(i) to the secrets of the output sharing when emulates Fmult-mal. Recall that if the additive
errors to the shares of ([x(i)], [y(i)] of parties in HC are 0, d(i) = z(i) − x(i) ∗ y(i). Therefore, if the
additive errors to the shares of ([x(i)], [y(i)] of parties in HC are 0, S sends d(i) to the adversary. S
honestly follows the rest of steps in Fmult-veri.

In Step 5.(b), S emulates Fnetwork. For each wire tuple ([x], [y], i, j), S first computes yj − xi. Note
that to obtain yj from xi, all parties invoke Ffan-out-mal,Fpermute-mal in Step 2.(b) and Step 2.(c) (or
Step 3.(c) and Step 3.(d) depending on whether xi is an output of an input gate, an addition gate, or a
multiplication gate), and then invoke Fselect-mal,Fpermute-mal in Step 3.(a) (or Step 4.(a) depending on
whether yi is an input of an addition gate, a multiplication gate, or an output gate). In each of these
invocations, S learns from the adversary the additive error to the value xi. Therefore, S can compute
yj − xi by adding up all the additive error to the value xi in these four invocations. Then, for each
wire tuple ([x], [y], i, j), S sends to the adversary the shares of corrupted parties, the additive errors
to the shares of parties in HC , and the additive error yj − xi. S honestly follows the rest of steps in
Fnetwork.

• Simulation of Step 6: S emulates Foutput-mal. For the input sharing [x], S first sends to the adversary
the shares of corrupted parties and the additive errors to the shares of parties in HC . If the receiver
is a corrupted client, S receives x from Fmain-mal and sends x to the receiver. If the receiver is an
honest client, S waits for the reply of the adversary. If the adversary replies abort, S sends abort to
Fmain-mal. If for all invocations of Foutput-mal, the adversary replies continue, S sends continue to
Fmain-mal.

Hybrids Argument. Now we show that S perfectly simulates the behaviors of honest parties. Consider
the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S honestly emulates Finput-mal. Then S sends the input of corrupted clients to

Fmain-mal. The distribution of Hybrid1 is identical to Hybrid0.
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Hybrid2: In this hybrid, S honestly emulates Foutput-mal with the modification that when the receiver
is corrupted, S uses the output received from Fmain-mal. Note that the output phase is executed only when
the computation is correct. The output received from Fmain-mal is the same as the output computed in the
protocol. Therefore, the distribution of Hybrid2 is identical to the distribution of Hybrid1.

Hybrid3: In this hybrid, S honestly emulates Fmult-mal and receives the additive errors to the secrets
of the output sharing. Then, in Fmult-veri, S directly uses these additive errors for each multiplication tuple
as above. Note that Fmult-veri only sends the additive errors to the adversary when the additive errors to
the shares of the two input sharings of parties in HC are 0. As we argued above, in this case, the additive
errors to the secrets of the output sharing are the same as the additive errors to the multiplication results.
Therefore, the distribution of Hybrid3 is identical to the distribution of Hybrid2.

Hybrid4: In this hybrid, S honestly emulates Ffan-out-mal,Fpermute-mal,Fselect-mal and recieves the ad-
ditive errors to the secrets of the output sharings. Then, in Fnetwork, S prepares the additive error of each
wire tuple as above. The distribution of Hybrid4 is identical to the distribution of Hybrid3.

Hybrid5: In this hybrid, S computes the shares of corrupted parties and the additive errors of the shares
of parties inHC . Then S uses these values to emulates Ffan-out-mal,Fpermute-mal,Fselect-mal,Fmult-mal,Fmult-veri,
Fnetwork,Foutput-mal as above. The only difference is that in Hybrid4, these functionalities use the real shares
of corrupted parties and the additive errors of the shares of parties in HC , while in Hybrid5, these function-
alities use the values computed by S. Therefore, the distribution of Hybrid5 is the same as the distribution
of Hybrid4.

Hybrid6: In this hybrid, S emulates Finput-mal as above. The only difference is that S does not generate
the shares of honest parties, which are not used in the future steps in Hybrid5. Therefore, the distribution
of Hybrid6 is the same as the distribution of Hybrid5.

Note that Hybrid6 is the execution in the ideal world, and the distribution of Hybrid6 is identical to
the distribution of Hybrid0, the execution in the real world.

Analysis of the Communication Complexity of Main. Compared with the semi-honest protocol
Main-semi, all parties only invoke two additional functionalities Fmult-veri,Fnetwork. For Fmult-veri, recall
that the communication complexity of its implementation Mult-veri is O(n3 · κ2) bits. For Fnetwork,
recall that the communication complexity of its implementation Network is O(n5 · κ2) bits. Thus, the
communication complexity of Main is

O(|C| · n/k + n · (c+ Depth) + n5 · κ2)

field elements.

Theorem 8. In the client-server model, let c denote the number of clients, and n = 2t+1 denote the number
of parties (servers). Let κ denote the security parameter, and F denote a finite field. For an arithmetic circuit
C over F and for all 1 ≤ k ≤ t, there exists an information-theoretic MPC protocol which securely computes
the arithmetic circuit C in the presence of a fully malicious adversary controlling up to c clients and t−k+1
parties. The communication complexity of this protocol is O(|C| · n/k+ n · (c+Depth) + n5 · κ2) elements in
F.
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[BTH08] Zuzana Beerliová-Trub́ıniová and Martin Hirt. Perfectly-secure mpc with linear communication
complexity. In Ran Canetti, editor, Theory of Cryptography, pages 213–230, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.
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A Realizing Frand

In this section, we introduce the protocol for Frand. For a general F-linear secret sharing scheme Σ, let [[x]]
denote a sharing in Σ of secret x. For a set A ⊂ I, recall that πA([[x]]) refers to the shares of [[x]] held by
parties in A. We assume that Σ satisfies the following property:

• Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, let

Σ(A, (ai)i∈A) := {[[x]]| [[x]] ∈ Σ and πA([[x]]) = (ai)i∈A}.

Then, there is an efficient algorithm which outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing
[[x]] in Σ(A, (ai)i∈A).

We first introduce a tensoring-up lemma from [CCXY18].
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A Tensoring-up Lemma. We follow the definition of interleaved GLSSS: the m-fold interleaved GLSSS
Σ×m is an n-party scheme which corresponds tom Σ-sharings. We have the following proposition from [CCXY18]:

Proposition 1 ([CCXY18]). Let G be a degree-m extension field of F and let Σ be a F-GLSSS. Then the
m-fold interleaved F-GLSSS Σ×m is naturally viewed as an G-GLSSS, compatible with its F-linearity.

This proposition allows us to define λ : Σ×m → Σ×m for every λ ∈ G such that for all [[x]] =
([[x1]], . . . , [[xm]]) ∈ Σ×m:

• for all λ ∈ F, λ · ([[x1]], . . . , [[xm]]) = (λ · [[x1]], . . . , λ · [[xm]]);

• for all λ1, λ2 ∈ G, λ1 · [[x]] + λ2 · [[x]] = (λ1 + λ2) · [[x]];

• for all λ1, λ2 ∈ G, λ1 · (λ2 · [[x]]) = (λ1 · λ2) · [[x]].

An Example of a GLSSS and Using the Tensoring-up Lemma. We will use the standard Shamir
secret sharing scheme as an example of a GLSSS and show how to use the tensoring-up lemma. For a field
F (of size |F| ≥ n + 1), we may define a secret sharing Σ which takes an input x ∈ F and outputs [x]t, i.e.,
a degree-t Shamir sharing. The secret space and the share space of Σ are F. According to the Lagrange
interpolation, the secret x can be written as a F-linear combination of all the shares. Therefore, the defining
map of Σ is F-linear. Thus Σ is a F-GLSSS.

A sharing [x]t = ([x1]t, [x2]t, . . . , [xm]t) ∈ Σ×m is a vector of m sharings in Σ. Let G be a degree-m
extension field of F. The tensoring-up lemma says that Σ×m is a G-GLSSS. Therefore we can perform
G-linear operations to the sharings in Σ×m.

A High-level Idea of the Construction. As [PS21], we will follow the idea in [BSFO12] of preparing
random degree-t Shamir sharings to prepare random sharings in Σ. At a high-level, each party first deals
a batch of random sharings in Σ. For each party, all parties together verify that the sharings dealt by this
party have the correct form. Then all parties locally convert the sharings dealt by each party to random
sharings such that the secrets are not known to any single party.

Recall that κ denotes the security parameter. Let G be an extension field of F such that |G| ≥ 2κ. Let
m = [G : F] denote the degree of the extension. Then m is bounded by κ. In the following, instead of
preparing random sharings in Σ, we choose to prepare random sharings in Σ×m, where each sharing [[x]] in
Σ×m is a vector of m sharings ([[x1]], [[x2]], . . . , [[xm]]) in Σ. According to Proposition 1, Σ×m is an G-GLSSS.

A.1 Preparing Verified Sharings.

The first step is to let each party deal a batch of random sharings in Σ×m. The protocol VerShare(Pd, N
′)

(Protocol 49) allows the dealer Pd to deal N ′ random sharings in Σ×m. Suppose the share size of a sharing
in Σ is sh field elements in F. Then the share size of a sharing in Σ×m is m ·sh field elements in F. Recall that
the communication complexity of the instantiation of Fcoin(G) in [GSZ20] is O(n2) elements in G, which is
O(n2 ·m) elements in G. The communication complexity of VerShare(Pd, N

′) is O(N ′ ·n ·m · sh+n2 ·m)
elements in F.

For a sharing [[s]] and a nonempty set A, we say that πA([[s]]) is valid if Σ(A, πA([[s]])) is nonempty. For
a sharing [[s]] and a nonempty set A, we say πA([[s]]) is valid if Σ×m(A, πA([[s]])) (which can be similarly
defined) is nonempty.

Lemma 27. Let H ⊂ I denote the set of all honest parties. If all parties accept the verification in the last
step of VerShare(Pd, N ′), then the probability that there exists [[s?]] ∈ {[[s(`)]]}N ′`=1 such that πH([[s?]]) is
invalid is bounded by N ′/2κ.
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Protocol 49: VerShare(Pd, N
′)

1. For ` = 1, 2, . . . , N ′, Pd randomly samples a sharing [[s(`)]] in Σ×m. Pd distributes the shares of
[[s(`)]] to all other parties.

2. Pd randomly samples a sharing [[s(0)]] in Σ×m. Pd distributes the shares of [[s(0)]] to all other
parties. This sharing is used as a random mask when verifying the random sharings generated in
Step 1.

3. All parties invoke Fcoin(G) and receive a random field element α ∈ G. Then, all parties locally
compute

[[s]] := [[s(0)]] + α · [[s(1)]] + α2 · [[s(2)]] + . . .+ αN
′
· [[s(N

′)]].

4. Each party Pj sends the j-th share of [[s]] to all other parties. Then, each party Pj verifies that

[[s]] is a valid sharing in Σ×m. If not, Pj aborts. Otherwise, all parties take {[[s(`)]]}N ′`=1 as output.

Proof. Suppose that there exists [[s?]] ∈ {[[s(`)]]}N ′`=1 such that πH([[s?]]) is invalid. Now we show that the
number of α ∈ G such that [[s]] passes the verification in the last step of VerShare(Pd, N

′) is bounded by
N ′. Then, the lemma follows from that α output by Fcoin is uniformly random in G and |G| ≥ 2κ. Note
that if [[s]] passes the verification, then πH([[s]]) is valid since [[s]] ∈ Σ×m(H, πH([[s]])).

Now assume that there are N ′ + 1 different values α0, α1, . . . , αN ′ such that for all i ∈ {0, 1, . . . N ′},

[[s′i]] := [[s(0)]] + αi · [[s(1)]] + α2
i · [[s(2)]] + . . .+ αN

′

i · [[s(N
′)]].

can pass the verification, which implies that for all i ∈ {0, 1, . . . , N ′}, πH([[s′i]]) is valid. Let M be a matrix

of size (N ′ + 1)× (N ′ + 1) in G such that Mij = αj−1i−1 . Then we have

([[s′0]], [[s′1]], . . . , [[s′N ′ ]])
T = M · ([[s(0)]], [[s(1)]], . . . , [[s(N

′)]])T.

Note that M is a (N ′ + 1)× (N ′ + 1) Vandermonde matrix, which is invertible. Therefore,

([[s(0)]], [[s(1)]], . . . , [[s(N
′)]])T = M−1 · ([[s′0]], [[s′1]], . . . , [[s′N ′ ]])

T.

Since Σ×m is G-linear, and πH([[s′i]]) is valid for all i ∈ {0, 1, . . . , N ′} by assumption, we have that

πH([[s(0)]]), πH([[s(1)]]), . . . , πH([[s(N
′)]])

are all valid, which leads to a contradiction.

A.2 Converting to Random Sharings.

Let [[sd]] denote a sharing in Σ×m dealt by Pd in VerShare. Let t′ < n denote the number of corrupted
parties. We will convert these n sharings, one sharing dealt by each party, to (n − t′) random sharings in
Σ×m. As [BSFO12], this is achieved by making use of the fact that the transpose of a Vandermonde matrix
acts as a randomness extractor. The description of Convert appears in Protocol 50.

Combining VerShare and Convert, we have Rand(N) (Protocol 51) which securely computes Frand.
Compared with [PS21], we show that this construction is secure for any corruption threshold t′ < n. How-
ever, the overall communication complexity will depend on the corruption threshold. We will analyze the
communication complexity after the proof of Lemma 28.

Lemma 28. Let t′ < n be a positive integer. Protocol Rand securely computes Frand (Functionality 2) with
abort in the Fcoin-hybrid model in the presence of a malicious adversary who controls t′ parties.
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Protocol 50: Convert

1. For each party Pd, let [[sd]] denote a sharing in Σ×m dealt by Pd in VerShare. Let MT be an
n× (n− t′) Vandermonde matrix in G. Then M is a matrix of size (n− t′)× n.

2. All parties compute
([[r1]], . . . , [[rn−t′ ]])

T := M · ([[s1]], . . . , [[sn]])T.

3. All parties take [[r1]], . . . , [[rn−t′ ]] as output.

Protocol 51: Rand(N)

1. Let N ′ = N
m(n−t′) . For each party Pd, all parties invoke VerShare(Pd, N

′). Let {[[s(`)d ]]}N ′`=1

denote the output.

2. For each ` ∈ {1, . . . , N ′}, all parties invoke Convert on {[[s(`)d ]]}nd=1. Let {[[r(`)i ]]}n−t
′

i=1 denote the
output.

3. For each sharing [[r
(`)
i ]], all parties separate it into m sharings in Σ. Note that there are in total

N ′ · (n− t′) ·m = N sharings in Σ.

Proof. Let A denote the adversary. We will construct a simulator S to simulate the behaviors of honest
parties. Let C denote the set of corrupted parties and H denote the set of honest parties.

Simulation for VerShare. We first consider the case where Pd is an honest party.

• In Step 1 and Step 2, Pd needs to distribute random sharings {[[s(`)]]}N ′`=0 in Σ×m. For each sharing
[[s(`)]], S samples a random sharing [[s(`)]] ∈ Σ×m and sends the shares of corrupted parties πC([[s

(`)]])
to A.

• In Step 3, S emulates Fcoin and generates a random field element α ∈ G. Then, S computes the
shares of [[s]] held by corrupted parties, i.e., πC([[s]]). Based on πC([[s]]), S randomly samples [[s]] ∈
Σ×m(C, πC([[s]])).

• In Step 4, S faithfully follows the protocol since the shares of [[s]] held by honest parties have been
explicitly generated.

When Pd is corrupted, S simply follows the protocol. If there exists some [[s(`)]] such that πH([[s(`)]]) is
invalid, S sends abort to Frand and aborts in Step 4 (even if the verification passes). Otherwise, for each
sharing [[s(`)]] dealt by Pd, S randomly samples [[s̃(`)]] ∈ Σ×m(H, πH([[s(`)]])), and views it as the sharing
dealt by Pd.

If some party aborts at the end of VerShare, S sends abort to Frand and aborts.

Simulation for Convert. Recall that Convert only involves local computation. For each sharing [[sd]],
S has computed πC([[sd]]) in the simulation of VerShare. In Convert, S computes πC([[ri]]) and sends
them to Frand. Then S sends continue to Frand.
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Hybrid Arguments. Now, we show that S perfectly simulates the behaviors of honest parties with
overwhelming probability. Consider the following hybrids.

Hybrid0: The execution in the real world.
Hybrid1: In this hybrid, S simulates VerShare for honest parties when the dealer Pd is corrupted.

Note that, S simply follows the protocol in this case and computes the shares held by corrupted parties.
The only difference is that S will abort if there exists some [[s(`)]] such that πH([[s(`)]]) is invalid even if the
verification in Step 4 passes. According to Lemma 27, this happens with negligible probability. Therefore,
the distribution of Hybrid1 is statistically close to the distribution of Hybrid0.

Hybrid2: In this hybrid, S first simulates VerShare for honest parties when the dealer Pd is honest.
Then, for each ` ∈ {1, . . . , N ′}, S re-samples a new random sharing [[s̃(`)]] ∈ Σ×m(C, πC([[s(`)]])). S takes
{[[s̃(`)]]}N ′`=1 as the sharings dealt by Pd.

Note that in Step 1 and Step 2, A only receives πC([[s
(`)]]). Therefore, [[s(`)]] is a random sharing in

Σ×m(C, πC([[s(`)]])). In Step 3, after receiving α ∈ G from Fcoin, all parties compute

[[s]] := [[s(0)]] + α · [[s(1)]] + α2 · [[s(2)]] + . . .+ αN
′
· [[s(N

′)]].

Therefore, [[s]] is a random sharing in Σ×m(C, πC([[s]])). Note that [[s]] is masked by a random sharing
[[s(0)]]. Thus, [[s]] is independent of {[[s(`)]]}N ′`=1. Therefore, given the view of A, each sharing [[s(`)]] is a
random sharing in Σ×m(C, πC([[s(`)]])). This means that S can re-sample and use a new random sharing
[[s̃(`)]] ∈ Σ×m(C, πC([[s(`)]])) instead of using the sharing [[s(`)]] generated in the beginning.

Thus, the distribution of Hybrid2 is the same as the distribution of Hybrid1.
Hybrid3: In this hybrid, S does not re-sample the sharings {[[s̃(`)]]}N ′`=1. Instead, S simulates Convert

for honest parties, which does not need to generate the whole sharing [[s̃(`)]].
LetMC denote the sub-matrix ofM containing columns with indices in C, andMH denote the sub-matrix

containing columns with indices in H. We have

([[r1]], . . . , [[rn−t′ ]])
T = M · ([[s1]], . . . , [[sn]])T = MC · ([[sj ]])Tj∈C +MH · ([[sj ]])Tj∈H.

Let

([[r
(H)
1 ]], . . . , [[r

(H)
n−t′ ]])

T := MH · ([[sj ]])Tj∈H
([[r

(C)
1 ]], . . . , [[r

(C)
n−t′ ]])

T := MC · ([[sj ]])Tj∈C .

Then ([[r1]], . . . , [[rn−t′ ]]) = ([[r
(C)
1 ]], . . . , [[r

(C)
n−t′ ]]) + ([[r

(H)
1 ]], . . . , [[r

(H)
n−t′ ]]).

Recall that MT is a Vandermonde matrix of size n× (n− t′). Therefore MT
H is a Vandermonde matrix of

size (n− t′)× (n− t′), which is invertible. There is a one-to-one map from ([[r
(H)
1 ]], . . . , [[r

(H)
n−t′ ]]) to ([[sj ]])j∈H.

Given ([[sj ]])j∈C , there is a one-to-one map from ([[r1]], . . . , [[rn−t′ ]]) to ([[r
(H)
1 ]], . . . , [[r

(H)
n−t′ ]]). Recall that for

each sharing [[sd]] dealt by a corrupted party Pd, S received the shares of honest parties πH([[sd]]) and sampled
a random sharing [[s̃d]] ∈ Σ×m(H, πH([[sd]])). Note that this may not be the sharing dealt by Pd since we do
not know the shares held by corrupted parties. However, we show that this does not affect the distribution
of the shares of honest parties generated by Frand.

To see this, note that for each valid ([[s̃j ]])j∈C , S computes {πC([[rj ]])}n−t
′

j=1 and sends them to Frand.

Then for each j ∈ {1, . . . , n− t′}, Frand samples a random sharing [[r̃j ]] ∈ Σ×m(C, πC([[rj ]])). These random

sharings {[[r̃j ]]}n−t
′

j=1 correspond to random sharings ([[s̃j ]])j∈H, which are independent of ([[s̃j ]])j∈C . Thus, the
distribution of Hybrid3 is the same as the distribution of Hybrid2.

Note that Hybrid3 is the execution in the ideal world and Hybrid3 is statistically close to Hybrid0,
the execution in the real world.

Analysis of the Communication Complexity of Rand(N). In Step 1, we need to invoke Ver-
Share(Pd, N

′) for each party Pd. Therefore, the communication complexity of Step 1 is O(N ′ · n2 ·m · sh+
n3 ·m) elements in F. Step 2 and Step 3 do not require any communication. Recall that N ′ = N

m(n−t′) and
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m = [G : F] is bounded by the security parameter κ. Therefore, the overall communication complexity of
Rand(N) is

O(N ′ · n2 ·m · sh + n3 ·m) = O(N · n2/(n− t′) · sh + n3 · κ)

elements in F.
In this work, we always have t′ ≤ n−1

2 . Therefore, n/(n−t′) is a constant. The communication complexity
of generating N random sharings in Σ is O(N · n · sh + n3 · κ) elements in F.

B Using Frand to Prepare Various Random Sharings

B.1 Preparing Random Sharings in the form of ([r], 〈r〉)
Consider a secret sharing scheme Σ which takes a vector x ∈ Fk and outputs a pair of packed Shamir sharing
([x], 〈x〉). Note that the packed Shamir sharing scheme is linear in F. Therefore Σ is an F-GLSSS. To use
Frand to prepare random sharings in Σ, we need to show that:

• Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing ([x], 〈x〉) ∈ Σ(A, (ai)i∈A). Note that each

share ai is a pair of elements (a
(0)
i , a

(1)
i ) in F.

Depending on the size of A, there are two cases:

• If |A| ≥ t + 1, by the property of the packed Shamir sharing scheme, the set of shares {a(0)i }i∈A can

fully determine the whole sharing [x] if exists. The algorithm checks whether the shares {a(0)i }i∈A
lie on a polynomial f(·) of degree at most t in F. If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅.
Otherwise, the algorithm recovers the whole sharing [x] and reconstructs the secrets x.

– If |A| ≥ 2t + 1 − k, by the property of the packed Shamir sharing scheme, the set of shares

{a(1)i }i∈A and the secrets x can fully determine the whole sharing 〈x〉 if exists. The algorithm

checks whether the shares {a(1)i }i∈A and the secrets x lie on a polynomial g(·) of degree at most
2t in F. If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm recovers the
whole sharing 〈x〉 and outputs ([x], 〈x〉).

– If |A| < 2t+1−k, by the property of the packed Shamir sharing scheme, the set of shares {a(1)i }i∈A
is independent of the secret. The algorithm randomly samples 2t + 1 − k − |A| elements in F as
the shares of the first 2t+ 1− k− |A| parties in I\A. Then, based on the secrets x, the shares of

the first 2t+ 1− k− |A| parties in I\A, and the shares {a(1)i }i∈A, the algorithm reconstructs the
whole packed Shamir sharing 〈x〉 and outputs ([x], 〈x〉).

• If |A| ≤ t, by the property of the packed Shamir sharing scheme, [x] needs additional t+ 1−|A| shares
to be determined. The algorithm randomly samples t+ 1− |A| elements in F as the shares of the first
t + 1 − |A| parties in I\A. Then, based on the shares of the first t + 1 − |A| parties in I\A and the

shares {a(0)i }i∈A, the algorithm reconstructs the whole packed Shamir sharing [x] and the secrets x.
For 〈x〉, it needs additional 2t+ 1− k − |A| shares to be determined since we already have |A| shares

{a(1)i }i∈A and the secrets x. The algorithm randomly samples 2t + 1 − k − |A| elements in F as the
shares of the first 2t+ 1− k− |A| parties in I\A. Then, based on the secrets x, the shares of the first

2t+ 1− k− |A| parties in I\A, and the shares {a(1)i }i∈A, the algorithm reconstructs the whole packed
Shamir sharing 〈x〉 and outputs ([x], 〈x〉).

Thus, we can use Frand to prepare random sharings in Σ defined above. Note that the share size of a
sharing in Σ is sh = 2 elements in F. Therefore, the communication complexity of generating m random
sharings in Σ is O(m · n+ n3 · κ) elements in F.
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B.2 Preparing Random Sharings in the form of ([r], [Mp ·r]) for a Fixed Permu-
tation p(·)

Consider a secret sharing scheme Σ which takes a vector r ∈ Fk and outputs a pair of two degree-t packed
Shamir sharings ([r], [Mp · r]). Note that both parts are linear in F. Therefore Σ is an F-GLSSS. To use
Frand to prepare random sharings in Σ, we need to show that:

• Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing ([r], [Mp · r]) ∈ Σ(A, (ai)i∈A). Note that

each share ai is a pair of elements (a
(0)
i , a

(1)
i ) in F.

Depending on the size of A, there are three cases:

• If |A| ≥ t+ 1, by the property of the degree-t packed Shamir sharing scheme, the set of shares {ai}i∈A
can fully determine the whole sharings if exist. The algorithm parses each share ai to (a

(0)
i , a

(1)
i ).

Then, the algorithm checks whether the shares {a(0)i }i∈A lie on a polynomial f(·) of degree at most t

in F, and, the shares {a(1)i }i∈A lie on a polynomial g(·) of degree at most t in F. If not, the algorithm
outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm sets [r] to be the sharing determined by f(·)
and [r′] to be the sharing determined by g(·). The algorithm checks whether r′ = Mp · r. If not, the
algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm outputs ([r], [r′]).

• If t − k + 1 < |A| ≤ t, the set of shares {ai}i∈A do not determine the whole sharings but are cor-

related with the secrets. The algorithm parses each share ai to (a
(0)
i , a

(1)
i ). To determine the whole

sharings, we need additional t + 1 − |A| shares. Let B denote the set of the first t + 1 − |A| par-

ties in I\A, and let {(x(0)i , x
(1)
i )}i∈B be the variables of the shares of parties in B. Then the secrets

r of the sharing determined by the shares {a(0)i }i∈A
⋃
{x(0)i }i∈B can be expressed by linear combi-

nations of {a(0)i }i∈A
⋃
{x(0)i }i∈B . Similarly, the secrets r′ of the sharing determined by the shares

{a(1)i }i∈A
⋃
{x(1)i }i∈B can be expressed by linear combinations of {a(1)i }i∈A

⋃
{x(1)i }i∈B . The require-

ment r′ = Mp · r establishes a set of linear equations among the variables {x(0)i , x
(1)
i }i∈B . It is well

known that linear equations can be solved within polynomial time, and it is possible to compute a
random solution if exists. The algorithm checks whether there exists a solution. If not, the algorithm
outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm computes a random solution. Let [r] denote the

sharing determined by the shares {a(0)i }i∈A
⋃
{x(0)i }i∈B , and [r′] denote the sharing determined by the

shares {a(1)i }i∈A
⋃
{x(1)i }i∈B . The algorithm outputs ([r], [r′]).

• If |A| ≤ t − k + 1, by the property of the degree-t packed Shamir sharing scheme, the set of shares
{ai}i∈A are independent of the secrets. Therefore, Σ(A, (ai)i∈A) 6= ∅. The algorithm randomly samples
r ∈ Fk and randomly samples t−k+1−|A| pairs of elements in F as the shares of the first t−k+1−|A|
parties in I\A. Then, based on the secrets r,Mp · r, the shares of the first t − k + 1 − |A| parties
in I\A, and the shares {ai}i∈A, the algorithm reconstructs the two degree-t packed Shamir sharings
[r], [Mp · r] and outputs ([r], [Mp · r]).

Thus, we can use Frand with the secret sharing scheme Σ to prepare random sharings ([r], [Mp ·r]). Note
that the share size of a sharing in Σ is sh = 2 elements in F. Therefore, the communication complexity of
preparing m random sharings in Σ is O(m · n+ n3 · κ) elements in F.

B.3 Preparing Random degree-2t packed Shamir sharings of 0

Consider a secret sharing scheme Σ which outputs a degree-2t packed Shamir sharing of 0 ∈ Fk. The secret
space of Σ is {0}. It is clear that Σ is an F-GLSSS. To use Frand to prepare random sharings in Σ, we need
to show that:
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• Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing 〈0〉 ∈ Σ(A, (ai)i∈A).

Depending on the size of A, there are two cases:

• If |A| ≥ 2t + 1 − k, then the whole sharing is determined by {ai}i∈A and the secrets 0 if exists.
The algorithm checks whether there exists a degree-2t polynomial f(·) in F such that for all i ∈ A,
f(αi) = ai, and for all i ∈ [k], f(βi) = 0. If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise,
the algorithm sets 〈0〉 to be the sharing determined by f(·) and outputs 〈0〉.

• If |A| < 2t+ 1− k, then the set Σ(A, (ai)i∈A) is non-empty. The algorithm randomly samples 2t+ 1−
k − |A| elements in F as the shares for the first 2t + 1− k − |A| parties in I\A. Based on the secrets
0, the shares of the first 2t + 1 − k − |A| parties in I\A, and the shares Σ(A, (ai)i∈A), the algorithm
reconstructs the whole sharing 〈0〉 and outputs 〈0〉.

Thus, we can use Frand with the secret sharing scheme Σ to prepare random degree-2t packed Shamir
sharings of 0. Note that the share size of a sharing in Σ is sh = 1 element in F. Therefore, the communication
complexity of preparing m random sharings in Σ is O(m · n+ n3 · κ) elements in F.

B.4 Preparing Random Sharings for a Fixed Pattern π

Recall that, for all i1, i2 ∈ {1, 2, . . . , k}, we say a pair of degree-t packed Shamir sharings ([x], [y]) contains
an (i1, i2)-block if for all i1 ≤ j ≤ i2 the secrets of these two sharings satisfy that yj = xi1 . We say a point
j ∈ {1, 2, . . . , k} is covered by an (i1, i2)-block if i1 ≤ j ≤ i2. A pattern π is defined to be a list of blocks
such that for all j ∈ {1, 2, . . . , k}, j is covered by exactly one block in π. For a fixed pattern π, our goal is
to prepare a pair of random sharings ([r], [r̃]) such that for all (i1, i2)-block in π and i1 ≤ j ≤ i2, r̃j = ri1 .

Consider a secret sharing scheme Σ which takes a vector r ∈ Fk and outputs a pair of two degree-t packed
Shamir sharings ([r], [r̃]) such that for all (i1, i2)-block in π and i1 ≤ j ≤ i2, r̃j = ri1 . Note that both parts
are linear in F. Therefore Σ is an F-GLSSS. To use Frand to prepare random sharings in Σ, we need to show
that:

• Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing ([r], [r̃]) ∈ Σ(A, (ai)i∈A). Note that each

share ai is a pair of elements (a
(0)
i , a

(1)
i ) in F.

Depending on the size of A, there are three cases:

• If |A| ≥ t+ 1, by the property of the degree-t packed Shamir sharing scheme, the set of shares {ai}i∈A
can fully determine the whole sharings if exist. The algorithm parses each share ai to (a

(0)
i , a

(1)
i ).

Then, the algorithm checks whether the shares {a(0)i }i∈A lie on a polynomial f(·) of degree at most t

in F, and, the shares {a(1)i }i∈A lie on a polynomial g(·) of degree at most t in F. If not, the algorithm
outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm sets [r] to be the sharing determined by f(·)
and [r̃] to be the sharing determined by g(·). The algorithm checks whether for all (i1, i2)-block in π
and i1 ≤ j ≤ i2, r̃j = ri1 . If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm
outputs ([r], [r̃]).

• If t − k + 1 < |A| ≤ t, the set of shares {ai}i∈A do not determine the whole sharings but are cor-

related with the secrets. The algorithm parses each share ai to (a
(0)
i , a

(1)
i ). To determine the whole

sharings, we need additional t + 1 − |A| shares. Let B denote the set of the first t + 1 − |A| par-

ties in I\A, and let {(x(0)i , x
(1)
i )}i∈B be the variables of the shares of parties in B. Then the secrets

r of the sharing determined by the shares {a(0)i }i∈A
⋃
{x(0)i }i∈B can be expressed by linear combi-

nations of {a(0)i }i∈A
⋃
{x(0)i }i∈B . Similarly, the secrets r̃ of the sharing determined by the shares

{a(1)i }i∈A
⋃
{x(1)i }i∈B can be expressed by linear combinations of {a(1)i }i∈A

⋃
{x(1)i }i∈B . The require-

ment that for all (i1, i2)-block in π and i1 ≤ j ≤ i2, r̃j = ri1 establishes a set of linear equations among
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the variables {x(0)i , x
(1)
i }i∈B . It is well known that linear equations can be solved within polynomial

time, and it is possible to compute a random solution if exists. The algorithm checks whether there
exists a solution. If not, the algorithm outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm computes

a random solution. Let [r] denote the sharing determined by the shares {a(0)i }i∈A
⋃
{x(0)i }i∈B , and [r̃]

denote the sharing determined by the shares {a(1)i }i∈A
⋃
{x(1)i }i∈B . The algorithm outputs ([r], [r̃]).

• If |A| ≤ t − k + 1, by the property of the degree-t packed Shamir sharing scheme, the set of shares
{ai}i∈A are independent of the secrets. Therefore, Σ(A, (ai)i∈A) 6= ∅. The algorithm randomly samples
r ∈ Fk and and computes a vector r̃ such that for all (i1, i2)-block in π and i1 ≤ j ≤ i2, r̃j = ri1 .
The algorithm also randomly samples t − k + 1 − |A| pairs of elements in F as the shares of the first
t − k + 1 − |A| parties in I\A. Then, based on the secrets r, r̃, the shares of the first t − k + 1 − |A|
parties in I\A, and the shares {ai}i∈A, the algorithm reconstructs the two degree-t packed Shamir
sharings [r], [r̃] and outputs ([r], [r̃]).

Thus, we can use Frand with the secret sharing scheme Σ to prepare random sharings ([r], [r̃]) for a fixed
pattern π. Note that the share size of a sharing in Σ is sh = 2 elements in F. Therefore, the communication
complexity of preparing m random sharings in Σ is O(m · n+ n3 · κ) elements in F.

B.5 Preparing Random Wire Tuples for Fixed i, j ∈ {1, 2, . . . , k}
Recall that a wire tuple ([x], [y], i, j) satisfies that xi = yj . Our goal is to prepare a random wire tuple for
fixed i, j.

Consider a secret sharing scheme Σ which takes a pair of elements (x,y) ∈ K2 such that xi = yj and
outputs a pair of two degree-t packed Shamir sharings ([x], [y]. Note that the secret space is K-linear and
both parts of the output are linear in K. Therefore Σ is an K-GLSSS. To use Frand to prepare random
sharings in Σ, we need to show that:

• Given a set A ⊂ I and a set of shares {ai}i∈A for parties in A, there exists an efficient algorithm which
outputs that either Σ(A, (ai)i∈A) = ∅, or a random sharing ([u], [v]) ∈ Σ(A, (ai)i∈A). Note that each

share ai is a pair of elements (a
(0)
i , a

(1)
i ) in K.

Depending on the size of A, there are two cases:

• If |A| ≥ t+ 1, by the property of the degree-t packed Shamir sharing scheme, the set of shares {ai}i∈A
can fully determine the whole sharings if exist. The algorithm parses each share ai to (a

(0)
i , a

(1)
i ).

Then, the algorithm checks whether the shares {a(0)i }i∈A lie on a polynomial f(·) of degree at most t

in K, and, the shares {a(1)i }i∈A lie on a polynomial g(·) of degree at most t in K. If not, the algorithm
outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm sets [u] to be the sharing determined by f(·) and
[v] to be the sharing determined by g(·). The algorithm checks whether ui = vj . If not, the algorithm
outputs Σ(A, (ai)i∈A) = ∅. Otherwise, the algorithm outputs ([u], [v]).

• If |A| ≤ t, we show that Σ(A, (ai)i∈A) 6= ∅. The algorithm parses each share ai to (a
(0)
i , a

(1)
i ). To

determine the whole sharings, we need additional t+1−|A| shares. For the first sharing, the algorithm
randomly samples t+ 1− |A| elements as the shares of the first t+ 1− |A| parties in I\A. Then, the
first sharing [u] is determined by the shares of the first t + 1 − |A| parties in I\A and the shares of
parties in A. The algorithm reconstructs the secrets u. Note that it fixes one secret in the second
sharing, i.e., vj = ui. For the second sharing, the algorithm randomly samples t− |A| elements as the
shares of the first t− |A| parties in I\A. Then, the second sharing [v] is determined by the j-th secret
vj = ui, the shares of the first t−|A| parties in I\A and the shares of parties in A. Note that ([u], [v])
is a random sharing in Σ(A, (ai)i∈A). The algorithm outputs ([u], [v]).

Thus, we can use Frand with the secret sharing scheme Σ to prepare random sharings ([u], [v]) such that
ui = vj . Note that the share size of a sharing in Σ is sh = 2 elements in K. Therefore, the communication
complexity of preparing m random sharings in Σ is O(m · n+ n3 · κ) elements in K.
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C Achieving Sublinear Communication Complexity in the Num-
ber of Parties

In this part, we explain how to use the techniques in [GIOZ17] to reduce the communication complexity of
our main protocol. At a high-level, this is achieved by choosing a small committee of size O(log1+δ n) for
some constant δ > 0, where n is the number of parties, and evaluating the circuit among parties in this small
committee. In more details, suppose the number of corrupted parties is bounded by t′ < ( 1

2 − ε)n. With
all but a negligible probability (in n), the ratio of corrupted parties in the chosen committee is bounded by
1
2 −

1
2ε. This is sufficient to use our main protocol.

The solution of choosing a committee in [GIOZ17] works as follows (with a few modifications to fit our
setting). For simplicity, we assume the existence of a broadcast channel. We will show how to remove this
assumption later.

1. Each party independently decides with probability p = log1+δ n
n to volunteer to be a member in the

committee. A party that decides to join the committee notifies all other parties by broadcasting its
choice. (Note that a party that does not join the committee does nothing.)

2. To prevent too many corrupted parties who volunteer to be in the committee, all partie set q =
(1 + 1

2ε) log1+δ n as the upper bound of the number of parties in the committee. If more than q parties
volunteer to be in the committee, all parties abort. We will prove that the threshold q satisfies that:

• If all parties behave honestly, then with all but a negligible probability (in n), the number of
parties in the committee is no more than q.

• With all but a negligible probability (in n), the number of honest parties in the committee is at
least ( 1

2 + 1
2ε)q.

Note that with overwhelming probability, the ratio of corrupted parties in the chosen committee is bounded
by ( 1

2 −
1
2ε).

We will make use of the Chernoff bound stated in Lemma 29.

Lemma 29. Let X1, X2, . . . , Xn be identical independent random variables taking values in {0, 1} and p
denote the probability that Xi = 1. Let X =

∑n
i=1Xi and µ = E[X]. Then for any 0 ≤ η ≤ 1,

Pr[X ≤ (1− η) · µ] ≤ e−
1
2η

2·µ

Pr[X ≥ (1 + η) · µ] ≤ e−
1
3η

2·µ

Let Xi be the random variable representing whether the i-th party Pi volunteers to be in the committee

for all i ∈ {1, 2, . . . , n}, and p = log1+δ n
n .

• If all parties behave honestly, then X1, X2, . . . , Xn are identical independent random variables taking
values in {0, 1} with probability p to be 1. The summation X =

∑n
i=1Xi is the number of parties

that volunteer to be in the committee. We have µ = E[X] = n · p = log1+δ n. Let η = 1
2ε. Then

q = (1 + 1
2ε) log1+δ n = (1 + η) · µ. According to the Chernoff bound, we have

Pr[X ≥ q] = Pr[X ≥ (1 + η) · µ] ≤ e− 1
3η

2·µ = e−
1
12 ε

2·log1+δ n,

which is negligible in n. Thus, the probability that the number of parties in the committee exceeds q
is negligible in n.

• Let H denote the set of honest parties, then {Xi}i∈H are identical independent random variables taking
values in {0, 1} with probability p to be 1. Let X ′ =

∑
i∈HXi. Then µ′ = E[X ′] is the number of

honest parties in the committee. Note that there are at least (1
2 + ε)n honest parties. Therefore,
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µ′ ≥ ( 1
2 + ε) log1+δ n. Our goal is to prove that there are at least ( 1

2 + 1
2ε)q = ( 1

2 + 1
2ε)(1 + 1

2ε) log1+δ n
honest parties in the committee. Let

η′ = 1−
( 1
2 + ε) log1+δ n

( 1
2 + 1

2ε)(1 + 1
2ε) log1+δ n

=
ε− ε2

2 + 3ε+ ε2
,

which is a constant in (0, 1). According to the Chernoff bound, we have

Pr[X ′ ≤ (
1

2
+

1

2
ε)q] = Pr[X ′ ≤ (1− η′)(1

2
+ ε) log1+δ n]

≤ Pr[X ′ ≤ (1− η′)µ′]
≤ e−

1
2 (η
′)2·µ′

≤ e−
1
2 (η
′)2·( 1

2+ε)·log
1+δ n,

which is negligible in n. Therefore, with all but a negligible probability in n, the number of honest
parties in the committee is at least ( 1

2 + 1
2ε)q.

Now we discuss how to achieve broadcasting (with abort) using point-to-point channels:

1. Each party that decides to join the committee sends its choice to all parties using point-to-point
channel.

2. Each party locally checks whether the notifications are no more than q and aborts if not. Each party set
the committee to be the parties that send notifications. Note that different parties may have different
versions of the committee due to the malicious behaviors of corrupted parties in Step 1.

3. Reaching an Agreement on the Committee Members:

(a) Each party that decides to join the committee sends its own version of the committee members
to all other committee members.

(b) Each party that decides to join the committee checks that whether the lists of committee members
it received from other parties are the same as its own version. If not, this party aborts.

4. Notifying the Clients:

(a) All parties in the committee send their lists of committee members to each client.

(b) Each client checks whether the lists of committee members it received are the same. If not, this
client aborts.

We argue that at the end of the above process, either all honest parties that decide to join the committee and
all honest clients reach an agreement on the committee members, or at least one of them aborts. Suppose
Pi, Pj are two honest parties that decide to join the committee. In Step 1, they notify each other that they
volunteer to be in the committee. Therefore, Pj (or Pi) is in Pi’s (or Pj ’s) list of committee members. In
Step 3, they send their own versions of the committee members to each other. Both Pi, Pj abort if the lists
are not the same. If no party aborts in Step 3, it means that the lists of Pi, Pj are the same. The same
argument applies to each pair of honest parties that decide to join the committee. Therefore, all honest
parties that decide to join the committee reach an agreement on the committee members. In Step 4, an
honest client either accepts the list received from an honest party or aborts. Therefore all honest clients also
agree on the same committee members as honest parties. The statement holds. Note that the (expected)
communication complexity of the above process is

O(q · n log n+ q3 · log n+ c · q2 · log n) = O((c+ n) · poly(log n)).

Then we may use our maliciously secure protocol among the clients and parties in the chosen committee.
The failure probability of our protocol is proportional to |C|/2κ, where κ is the security parameter. See
Lemma 21, Lemma 22, Lemma 23, and Lemma 25 for more details. To achieve negligible probability in n,
we may set κ = poly(log n). Together with Theorem 8, we have the following theorem:
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Theorem 9. In the client-server model, let c denote the number of clients, and n denote the number of parties
(servers). Let F denote a finite field. For an arithmetic circuit C over F and any given constant ε ∈ (0, 12 ),
there exists an information-theoremtic MPC protocol which securely computes the arithmetic circuit C in the
presence of a fully malicious adversary controlling up to c clients and ( 1

2−ε)n parties with all but a negligible
probability in n. The communication complexity of this protocol is O(|C| + (c + n + Depth) · poly(log n))
elements in F. Furthermore, if there exists a broadcast channel, the communication complexity can be reduced
to O(|C|+ (c+ Depth) · poly(log n)) elements in F plus O(poly(log n)) bits of broadcasting.
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