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Abstract. General-purpose zero-knowledge proofs for all NP languages greatly simplify secure proto-
col design. However, they inherently require the code of the underlying relation. If the relation contains
black-box calls to a cryptographic function, the code of that function must be known to use the ZK
proof, even if both the relation and the proof require only black-box access to the function. Rosulek
(Crypto’12) shows that non-trivial proofs for even simple statements, such as membership in the range
of a one-way function, require non-black-box access.

We propose an alternative approach to bypass Rosulek’s impossibility result. Instead of asking for a ZK
proof directly for the given one-way function f , we seek to construct a new one-way function F given
only black-box access to f , and an associated ZK protocol for proving non-trivial statements, such as
range membership, over its output. We say that F , along with its proof system, is a proof-based one-
way function. We similarly define proof-based versions of other primitives, specifically pseudo-random
generators and collision-resistant hash functions.

We show how to construct proof-based versions of each of the primitives mentioned above from their
ordinary counterparts under mild but necessary restrictions over the input. More specifically,

– We first show that if the prover entirely chooses the input, then proof-based pseudo-random gen-
erators cannot be constructed from ordinary ones in a black-box manner, thus establishing that
some restrictions over the input are necessary.

– We next present black-box constructions handling inputs of the form (x, r) where r is chosen
uniformly by the verifier. This is similar to the restrictions in the widely used Goldreich-Levin
theorem. The associated ZK proofs support range membership over the output as well as arbitrary
predicates over prefixes of the input.

Our results open up the possibility that general-purpose ZK proofs for relations that require black-box
access to the primitives above may be possible in the future without violating their black-box nature
by instantiating them using proof-based primitives instead of ordinary ones.
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1 Introduction

Zero-knowledge proofs (ZKPs) are a method to prove that a statement is true without revealing any additional
knowledge [GMR85]. A significant achievement in cryptography has been the construction of ZKPs for NP-
complete problems [GMW86]. Since every NP relation can be efficiently reduced to any NP-complete relation
[Coo71, Kar72, Lev73], this yields a ZKP for all languages in NP. Due to this reason, ZKPs for NP-complete
problems are often called general-purpose proofs. As evidenced by numerous follow-up works, general-purpose
proofs have been incredibly useful to the theory of cryptography.

Early constructions of general-purpose ZKPs required only black-box access to any one-way function
(OWF), i.e., they used the given OWF as an oracle. A black-box construction of this kind thus depends only
on the input/output behavior of the given cryptographic primitive. In particular, it is independent of the
specific implementation or code of the primitive.

A black-box construction is often preferred over a non-black one due to its attractive properties. For
example, it remains valid even if the primitive/oracle is based on a physical object such as a noisy-channel or
tamper-proof hardware [Wyn75, CK88, GLM+04]. Also, its efficiency does not depend on the implementation
details of the primitive, thus establishing that efficiency can be theoretically independent of the primitive’s
code.

Unfortunately, general-purpose proofs are unsuitable when seeking a black-box construction for some
desired cryptographic task since they inherently require the full code of the underlying relation to perform
the NP reduction. In other words, if the relation requires black-box access to a OWF, the code of the OWF
must be known even though neither the ZKP nor the relation needs it. In fact, this has been the main reason
for the non-black-box nature of many cryptographic constructions that are otherwise optimal. Analogous
black-box constructions often require significant effort and technical innovation, as evidenced by the secure
computation literature, e.g., [Kil88, DI05, IKLP06, IKOS07, Hai08, IPS08, PW09, Wee10, Goy11, GLOV12,
LP12, Kiy14, GGMP16, HV16, GKP18, CLP20, GLPV20].

In light of the above situation, it is tempting to imagine a “dream version” of general-purpose proofs
where, if the underlying relation R requires black-box access to a cryptographic function f , say from a
specified class such as the class of OWFs, then so should the general-purpose ZKP for proving membership
in R. We informally refer to such relations as black-box relations. Such a result, if possible, would greatly
simplify the task of future black-box constructions and potentially unify the diverse set of techniques that
exist in this area.

As one might suspect, this dream version is too good to be true. In his beautiful work, Rosulek [Ros12]
rules out ZKPs for proving membership in the range of a OWF f given as an oracle. More specifically,
assuming injective OWFs, Rosulek rules out (even honest-verifier) witness-hiding protocols [FS90] for the
relation Rf = {(y, x) | y = f(x)} where f is chosen from the class of all OWFs and provided as an oracle to
the protocol.

In contrast to the negative result for OWFs, a large body of literature constructs so-called black-box
commit-and-prove protocols [IKOS07, GLOV12, GOSV14, HV18, KOS18, Kiy20]. Informally speaking, a
commit-and-prove protocol between a committer and a receiver ensures that at the end of the protocol,
the committer is committed to some hidden value satisfying a predefined property. This primitive can be
constructed with only black-box access to an ordinary commitment scheme which may originally not sup-
port any proofs whatsoever. In many situations, commit-and-prove protocols serve as a good substitute for
ordinary commitments; moreover, their ability to support proofs over committed values makes them a great
tool for constructing larger black-box protocols.

In hindsight, we can view black-box commit-and-prove protocols as an alternative to bypass the afore-
mentioned negative result of [Ros12]. That is, instead of constructing ZKP directly for every OWF, we ask
the following indirect question:

Given only black-box access to an OWF f , can we construct a new OWF F and a ZKP system
ΠF for proving membership in the range of F?

Of course, we can ask for general properties instead of merely range membership.
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The idea is that F can be used as a substitute for f in any computation C(·) that requires only black-
box access to OWFs. More importantly, it gives hope that general-purpose black-box ZKPs for proving the
correctness of computation C(·) may be possible since the correctness of responses from F can be ensured
using ΠF , all while requiring only black-box access to f . We remark that we do not obtain such a result
for general computations in this work and merely point out that the existence of (F,ΠF ) may open a path
towards it.

We call the pair (F,ΠF ) a proof-based one-way function (PB-OWF). Analogously, we consider proof-
based versions of other primitives, specifically pseudo-random generators (PRGs) and collision-resistant
hash functions (CRHFs). Motivated by the aforementioned possibility of a general-purpose proof system
for black-box cryptographic computations C(·), this paper initiates a study of black-box constructions of
proof-based cryptographic primitives. We obtain a mix of both negative and positive results as outlined
below.

1.1 Our Results

Given the existence of black-box commit-and-prove protocols, it is not unreasonable to expect that black-
box proof-based versions of OWFs, PRGs, and CRHFs may also exist. Interestingly, the fact that these
primitives are deterministic functions truly separates them from commitments. The existence of their proof-
based versions seems to depend on how we view the input, as discussed below.

Negative Results via Black-Box Separation. In common applications of non-interactive primitives such
as OWFs and PRGs, the entire input is usually controlled by the evaluator of these functions. We show that
proof-based PRGs where the input (i.e., the seed) is entirely chosen by the evaluator cannot be constructed
in a black-box manner from an (ordinary) OWF chosen from the class of all OWFs. Since PRGs can be
constructed in a fully-black-box manner from OWFs [GL89, ILL89, HILL99], this separates proof-based
PRGs from ordinary PRGs.

More specifically, black-box construction of a proof-based PRG from (ordinary) OWFs consists of a

deterministic and efficient oracle algorithm G(·), along with an efficient protocol, Π
(·)
G = 〈P (·), V (·)〉, of two

interactive oracle machines.1 For every OWF f , algorithm Gf should be a PRG, and protocol Πf = 〈P f , V f 〉
should be a ZKP system for the relation RfG = {(y, x) | s.t. y = Gf (x)}. Then, we show that a fully-black-box
reduction [IR89, RTV04] from proof-based PRGs to ordinary OWFs does not exist if the prover chooses the
entire seed.

The range-membership relation Rf = {(y, x) | y = f(x)} ruled out in [Ros12] is a special case of the

aforementioned relation RfG = {(y, x) | s.t. y = Gf (x)}. In our terminology, Rosulek rules out a special type

of proof-based OWF (F (·),Π
(·)
F ) where F is just a “delegate” for the oracle OWF; i.e., it returns the oracle’s

response when queried on the given input. This is captured in [Ros12] by formally defining the notion of
functionally-black-box (FBB) protocols. In contrast, the relation we consider can make polynomially many
queries to the oracle on arbitrary inputs and compute over the responses to produce the output. We extend
the notion of FBB protocols to formally capture these extensions.

Partly due to these differences and our overall goals, our negative result is incomparable to Rosulek’s.
While Rosulek rules out black-box proofs for the range membership for OWFs assuming injective OWFs,
ours is only a black-box separation, albeit without any additional assumptions. A black-box separation is
the best one can hope for in our setting since non-black-box constructions of proof-based OWFs that use the
code of the oracle trivially exist.

Positive Results. We next investigate whether mild restrictions on the inputs can help bypass the black-
box separation result. One option is to consider modifications along the lines of the Goldreich-Levin (GL)
hardcore predicate [GL89], where one considers a OWF F constructed from any given OWF f on inputs
of the form (x, r). This makes it possible to show that predicate hc(x, r) := ⊕i(xi · ri) is hardcore for the

1 Note that the protocol is allowed to depend on G(·) but not on the oracle which may be arbitrarily chosen later.
The same holds for the relation Rf

G introduced next.
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modified function F (x, r) := r‖f(x) even though a hardcore predicate for arbitrary OWFs is still unknown.
These changes to the function and the input do not seem to affect the applicability of their result significantly.

We adopt a similar approach to construct proof-based primitives. Continuing with OWFs as an example,
we seek to construct a proof-based OWF F (·) which can be instantiated with only black-box access to any
OWF f and takes inputs of the form (x, r). As in the GL setting, x will act as the “main input” chosen by
the evaluator/prover, and r will be publicly accessible from the output of F f (x, r). However, in a crucial

difference, r will be chosen by the verifier during the execution of ZKP Πf
F . There are no other restrictions

on any of the objects. Some remarks are in order.

1. In light of our black-box separation result, it is essential to let the verifier choose r since no other
restrictions are present. This means that the computation of y = F f (x, r) must be performed during the

proof. We formalize this by modeling Πf
F as a secure two-party computation protocol for evaluating the

functionality that on inputs x and r from relevant parties, returns y. The ZK property is captured by
requiring simulation-based security against malicious receivers; for soundness, we only require that the
honest verifier, with high probability, does not output a y∗ that is not in the range. This is effectively a
black-box ZKP for the relation RfF (r) = {(y, x) | s.t. y = F f (x, r)}.2

2. The verifier must choose r from an unpredictable distribution such as the uniform distribution over
sufficiently long strings, since otherwise, the soundness would be impossible as a cheating prover can
simply guess r, bringing us back to the setting of the separation result.

3. Since the verifier may maliciously choose r to violate the one-way property of F f , we require that for
every string r, the function defined by F f (·, r) is one-way as long as f is one-way.

We follow the same approach for formally defining proof-based versions of PRGs and CRHFs. Having settled
on a satisfactory definition, we present black-box constructions of the proof-based versions of OWFs (for
range membership), as well as PRGs and CRHFs, directly from their ordinary counterparts.

Theorem 1 (Informal). There is a fully-black-box construction of proof-based primitive as described above
for the range-membership relation with two-party inputs of the form (x, r), assuming that primitive exists,
where primitive ∈ {OWF,PRG,CRHF}.

At first glance, one may wonder whether black-box commit-and-prove protocols already yield proof-
based OWFs. That is, the commit stage of such protocols can be viewed as a one-way function over the
input (x, r) where x is the value to be committed and r is the randomness, the output y is the transcript of
the commit-phase, and the proof-phase plays the role of associated ZKP. This approach does not work since
the commit-and-prove protocols merely bind the prover to a well-defined value x. They do not guarantee that
w.h.p. every accepting transcript has a valid “preimage” (x, r) that maps to it. In contrast, the soundness
of range-membership proofs of proof-based OWFs requires that w.h.p. a preimage must exist for the output
accepted by the honest verifier. At a technical level, the black-box commit-and-prove protocols are based on
cut-and-choose techniques that can only guarantee that the accepted value is close to an honestly generated
value, which is insufficient to guarantee a preimage.

Supporting Predicates. We show that it is possible to construct a slightly more general proof-system than
merely range membership for each of our proof-based primitives. Continuing with the OWF example, we can
construct a black-box proof-based OWF F f such that for any predicate φ, the verifier learns a value y with
the guarantee that there exists an input (x, r) such that: (1) y = F f (x, r) where r is chosen uniformly by the
honest receiver, (2) x = α‖x′, and (3) φ(α) = 1. That is, we can support any predicate (in fact, computation
of any function) over a prefix of the preimage of the output. The ZKP system here depends on the code of
φ but not that of f as before.

This extension is motivated by similar results for commit-and-prove, which are quite useful in construct-
ing larger black-box protocols [GLOV12, KOS18]. We achieve this by presenting a new construction that

2 For now, we only focus on range-membership proofs. The definitional approach is consistent with the commit-and-
prove literature, although there are important differences since we are dealing with deterministic primitives.
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combines our ideas for range-membership with the “MPC-in-the-head” technique [IKOS07]. More details are
provided in Sec. 8.

2 Technical Overview

2.1 Black-Box Separation

We first present a very brief overview of our black-box separation. A detailed overview is given in Sec. 4.2
after setting up necessary notation and definitions.

Let us first recall how Rosulek [Ros12] rules out FBB constructions of honest-verifier witness-hiding
(HVWH) protocols for the range-membership of OWFs, assuming injective OWFs exist.

The proof starts by assuming that such protocols exist. In particular, when instantiated with an injective
OWF f , the protocol (P f , V f ) is HVWH for Rf = {(y, x) | s.t. y = f(x)}. Since f is injective, for a pair
(x∗, y∗ = f(x∗)) remapping f(x∗) to a value different from y∗ will give us a new OWF f ′ whose range does not
contain y∗ anymore. Moreover, the verifier accepts in 〈P f (x∗, y∗), V f

′
(y∗)〉 with roughly the same probability

as in 〈P f (x∗, y∗), V f (y∗)〉. This is because the only opportunity to distinguish these two executions is when
the verifier queries its oracle on x∗; but this happens with negligible probability because of the HVWH
property of the protocol. However, this contradicts the soundness: V ’s oracle now becomes f ′, and @x s.t.
(y∗, x) ∈ Rf ′ .

It is unclear how to reuse the above technique to rule out PB-OWFs. As mentioned earlier, there are no
restrictions on how the F (·) part behaves. In particular, F f is not guaranteed to be injective even if f is
injective. Thus, “carving out” a value from the range of f may not affect the range of F f .

To derive the desired contradiction, we take a fundamentally different approach to construct f ′. We first
define a set QEasy, which consists of only the queries made by the verifier with “high” probability during
the (honest) execution 〈P f (x∗, y∗), V f (y∗)〉. We then define f ′ by maintaining the same behavior as f on
QEasy, and re-sampling all the remaining points uniformly at random. Note that the receiver will still accept
with “high” probability even if we change its oracle to f ′, because f ′ and f only differ at the points that are
queried with “low” probability (i.e., the points outside QEasy). Now, the only thing left is to show that y∗ is
not in the range of F f

′
. Unfortunately, due to the generality of F (·), we do not know how to do that.

However, if we switch our focus to a PB-PRG Gf (instead of PB-OWF F f ), we can prove the following
claim which helps separate PB-PRGs from OWFs:

Claim 1 (Informal Statement of Claim 4). Let f , and f ′ be as defined above. If we start with a y∗ in
the range of Gf , y∗ is still in the range of Gf

′
with probability ≤ 0.5 + negl(λ), where G(·) is a PRG when

instantiated with any OWF f as its oracle.

Let us show the intuition behind Claim 1. Assume the lemma is false. In the pseudo-randomness game for
Gf , we show how to identify the case y∗ ∈ Range(Gf ) correctly, with probability noticeably greater than 0.5,
thus contradicting pseudo-randomness. To do that, the adversary simply estimates the probability that y∗ ∈
Range(Gf

′
). We will show that, if this probability is noticeably greater than 0.5, then Pr

[
y∗ ∈ Range(Gf )

]
is also noticeably greater than 0.5.

To perform the above estimation successfully, the adversary must know QEasy, but it does not. However,
the adversary can run the HVZK simulator many times to get an estimate Q̃Easy for the real QEasy. We will
show that Q̃Easy suffices for our proof. There is a caveat that the adversary needs to perform exponential work
to estimate the probability that y∗ ∈ Range(Gf

′
), even if it knows the set Q̃Easy. Fortunately, it only makes

polynomially many oracle queries (when executing the HVZK simulator), which suffices for establishing a
fully-black-box separation.

2.2 Proof-Based One-Way Functions (and PRGs)

Let us start by considering the following basic construction for PB-OWF (F f ,Πf
F ) over inputs of the form

(x, r). The construction is based on the “cut-and-choose” technique, where the sender queries the oracle f on
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“blocks” of x, and the receiver checks a size-t random subset (defined by r) of the responses. This method is
not sound, since it can only guarantee that the sender’s response is correct on most but not all blocks. We
will handle this issue by introducing a new idea.

Basic Construction. PB-OWF (F f ,Πf
F ) handles inputs of the form (x, r). F f computes as follows:

1. Parse x as (x1, . . . , xn).

2. Interpret r as a size-t (t < n) subset of [n], denoted by {b1, . . . , bt} .

3. Output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r, where yi = f(xi) for all i ∈ [n].

On input x to Sf (the sender) and r to Rf (the receiver)3, the execution 〈Sf (x), Rf (r)〉 is as follows:

1. Sf parses x as (x1, . . . , xn), and computes (y1, . . . , yn) via its oracle access to f (i.e., yi = f(xi)). It sends
(y1, . . . , yn) to the receiver.

2. Rf sends its input r to Sf . Same as in F f , the r specifies a size-t subset {b1, . . . , bt} of [n]. Recall that
the honest receiver’s input r is random. In this case, {b1, . . . , bt} is a random subset of [n].

3. Sf sends (xb1 , . . . , xbt), i.e., the xi’s whose indices are specified by r.

4. Rf checks (via its oracle access to f) if ybi = f(xbi) for all i ∈ [t]. If all the checks pass, Rf output
y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r.

Completeness is straightforward; furthermore, F f (·, r) is trivially one-way for every r since t < n and f is a

OWF. Let us first consider the honest-verifier zero-knowledge (HVZK) property of protocol Πf
F .

Recall that the ZK property is defined via the ideal/real paradigm for secure computation, and it requires
simulation-security against malicious receivers. Thus, to prove the HVZK property, we need to show an ideal-
world simulator Sim for the honest receiver. This is easy since the honest receiver will always use the given
input r, which is uniformly distributed. More specifically, Sim works by sampling a uniform r by itself, sending
the r to the ideal functionality, and receiving in turn the output y = (y1, . . . , yn)‖(xb1 , . . . , xbt)‖r. With this
y, Sim can easily generate a simulated transcript that is identically distributed to the real one.

ZK Against Malicious Receivers. The above simulation strategy does not work for malicious receivers,
because they may not use the given input r. Therefore, the simulator needs to somehow extract the candidate
input r∗ from the malicious receiver. However, the receiver will not give out its r∗ until the sender/simulator
sends the {yi}i∈[n] values.

We point out that this issue cannot be fixed using standard methods such as requiring the receiver to
commit to r and to open it later. This is because later, we will introduce a pre-image editing condition and
require that the sender’s computation of F f be consistent with this editing.

We therefore use a different idea. We modify the protocol to use a black-box commit-and-prove scheme
ΠZKCnP = (BBCom,BBProve) with ZK property (see Def. 8). This scheme has a pair of simulators (Sim1,Sim2)
that can be used to simulate the receiver’s view in the commit stage and the prove stage respectively. Our
new Πf

F is the same as before except for the following changes:

– In Step 1, instead of sending yi’s as before, the sender commits to them using BBCom. Formally, the
sender sets ν = (y1, . . . , yn) and executes BBCom(ν) with the receiver.

– In Step 3, the sender sends both {xbi}i∈[n] and the value ν. It then proves using BBProve that this ν is
indeed the value committed in BBCom.

As before, the receiver needs (y1, . . . , yn) to execute Step 4. Now, these values are contained in ν, and
BBProve guarantees that the sender cannot change ν.

With these modifications, we can prove the ZK property for malicious receivers as follows. The simu-
lator starts by running Sim1 (the commit-phase simulator) with the malicious receiver R∗f . In this way,

3 Henceforth, we will call the two parties “sender” and “receiver” instead of “prover” and “verifier”. This is because
our ZKP is captured by considering a secure computation style definition for two parties.
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the simulator can go through Step 1 smoothly, without knowing the actual {yi}i∈[n] values. Then, it

will receive the r∗ from R∗f . The simulator sends r∗ to the ideal functionality and receives back y =
(y1, . . . , yn)‖(xb1 , . . . , xbt)‖r∗. It sends ν = (y1, . . . , yn) and (xb1 , . . . , xbt) to the receiver. Then, instead
of executing BBProve, the simulator invokes Sim2 to help itself go through the BBProve stage. It is easy to
see that the ν and {xbi}i∈[t] sent by the simulator meet the consistency requirement in Step 4. Relying on
the ZK property of ΠZKCnP, one can formally prove that the simulation is done properly.

Soundness and Preimage Editing. As mentioned earlier, the “cut-and-choose” structure is not sufficient
to guarantee the existence of a preimage. To see that, consider a malicious sender who picks an i∗ ∈ [n] at
random, sets yi∗ to some value not in the range of f , or behaves honestly otherwise. This malicious sender
can still make the honest receiver accept with non-negligible probability, even if t is as large as n − 1 (the
upper bound for t to achieve any non-trivial ZK property). This is addressed by modifying the construction
of F f .

We start by noting that the “cut-and-choose” trick ensures that most of the yi’s are “good” (i.e., having
preimages under f). For example, if t is a constant fraction of n, then the protocol ensures (except with
negligible probability) that at most k of the yi’s are “bad”, where k is another constant fraction of n.
Therefore, our idea is to extend the range of F f to include all the images y that have ≤ k bad yi’s. More
specifically, our new F f works as follows. On input (x, r), it still interprets r as {b1, . . . , bt}. But it will parse
x as

x = (x1, . . . , xn)‖ (p1, y
′
p1), . . . , (pk, y

′
pk

)︸ ︷︷ ︸
β

,

where the {p1, . . . , pk} form a size-k subset of [n]. The evaluation of F f (x, r) consists of two cases:

– Non-Editing Case: if {b1, . . . , bt}∩{p1, . . . , pk} 6= ∅, then it computes y as before, ignoring the β part.
That is, it outputs y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖r, where si = yi for all i ∈ [n].

– Editing Case: if {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅, then at positions specified by pi’s, it replace ypi with

y′pi . Namely, it outputs y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖r, where si :=

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

Let us explain how this editing technique resolves the soundness issue. Consider a y∗ learned by the honest
receiver with input r. As mentioned before, there are at most k yi values (among those contained in y∗)
that do not have preimages under f . These values can be expressed as {y∗p1 , . . . , y

∗
pk
}, i.e., their indices

are {p1, . . . , pk}. Moreover, this set of bad indices does not overlap with the {b1, . . . , bt} specified by r;
otherwise, the receiver would abort when performing the checks in Step 4. Therefore, by setting the β part
to (p1, y

∗
p1), . . . , (pk, y

∗
pk

), we will obtain a valid preimage for y∗ under our new F f (·, r).
One may wonder whether a malicious sender can cheat by taking advantage of the editing case. However,

since the honest receiver will use a random r, the set {b1, . . . , bt} will always overlap with {p1, . . . , pk} (except
with negligible probability). That is, although we prove soundness by relying on the editing case, it almost
never happens in a real execution. So, this will not give malicious senders any extra power.

We remark that the above preimage-editing idea is compatible with our technique for achieving (full) ZK.
Now, the sender will append (y1, . . . , yn) and β to the committed value ν. Upon receiving Rf ’s challenge r, the
sender computes s = (s1, . . . , sn) according to the above definition of F f . It sends both s and {xb1 , . . . , xbt}
to the receivers. Then, it runs BBProve to prove that it does the editing (or non-editing) honestly. Note that
this statement can be expressed as a predicate on the values s, r, β, and {yi}i∈[n], where the last two are
committed in BBCom(ν). Since it does not involve the code of f , the protocol remains black-box in f . We
provide more details in Sec. 5.2.

Proof-Based PRGs. Following the above paradigm, we also obtain a proof-based PRG by simply replacing
the oracle OWF f with a PRG in the above PB-OWF construction. We provide a formal treatment in
Appx. A.
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2.3 Proof-Based Collision-Resistant Hash Functions

Recall that a PB-CRHF consists of a function Hh and a protocol Πh
H such that for any CRHF h:

– For all r, Hh(·, r) is a CRHF; and

– Πh
H = (Sh, Rh) is protocol satisfying similar completeness, soundness, and ZK properties as for our

PB-OWFs, but w.r.t. Hh.

Let us first try to reuse the idea from our PB-OWFs. On input (x, r), the Hh first parses x as (x1, . . . , xn)‖β,
where the β has the same structure as before, for the purpose of preimage editing. It then generates {yi}i∈[n]

where yi = h(xi), and outputs y = s‖(xb1 , . . . , xbt)‖r, where the value s = (s1, . . . , sn) is computed by editing
{yi} (in the same way as for our PB-OWFs).

Since h is also a OWF, the Hh is surely one-way. However, it is not collision-resistant. To see that, recall
that in the non-editing case, the β part is not used when computing Hh(x, r). This implies the following
collision-finding attack. For a fix r, the adversary first computes y∗ = Hh(x∗, r) with an x∗ whose β part does
not trigger the editing condition. Then, it can easily find many preimages for y∗ by using different β’s as
long as they do not trigger the editing condition. Therefore, we need to come up with a new editing method
that does not compromise collision resistance.

To do that, we modify Hh as follows. We sample a public string z and hard-wire it in Hh. In this way,
Hh
z can be viewed as a member of the public-coin collision-resistant hash family indexed by z instead of

a single CRHF. Then, we can think of x as containing additionally two strings τ and µ. When evaluating
Hh
z (x, r), we will perform the editing if {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅ and α 6= z and h(τ) = h(z). Moreover,

we include the value t = h(β‖τ‖µ) in the output y. Intuitively, this hash of β in y prevents the adversary
from constructing collisions using a different β.

We now explain how to perform editing in this setting. First, we will include in x an additional value τ
such that τ 6= z and h(τ) = h(z). This allows us to trigger the editing condition. With z sampled randomly,
it is not hard to see that such a τ exists with overwhelming probability4. We can then set β as before to
ensure that the (x1, . . . , xn) part is “edited” properly. However, note that the y∗ here contains additionally
a t∗ value. To handle this, we modify the construction of Hf

z slightly—We require that, when the editing
condition is triggered, Hf

z sets t = µ in its output y. With this change, when performing editing, we can
simply let µ equal the t∗. It is not hard to verify that this editing technique will lead to a valid preimage for
y∗.

Finally, we remark that our real construction uses a Merkle tree for the prefix (x1, . . . , xn) of x. We only
put the Merkle root in y instead of the element-wise hash values described above. The soundness can be
proved following essentially the same idea as above, except that we now “edit” the Merkle tree, which is
done by extending the editing ideas to the tree setting. This allows us to compress a prefix of any length
to a fixed-length string, such as 256 bits if using SHA256 for h. We refer the reader to Sec. 7 for a formal
treatment of PB-CRHF.

2.4 Supporting Predicates

We discuss how to extend our constructions using “MPC-in-the-head” to additionally guarantee not only
that the output learned by the receiver is in the range of the deterministic primitives, but also that the set
of preimages contains one whose prefix satisfies some predicate φ.

Let us take a fresh look at the PB-OWF construction. It first parses the input as x = α‖β. The β is
for preimage editing; and the α = (x1, . . . , xn) can be regarded as a form of Encoding the prefix of x, i.e.
Enc(α) = (x1, . . . , xn). Then, it computes yi = f(xi) for all i ∈ [n]. Since this is mainly to introduce hardness
(or one-wayness) to the final output, we can refer to this step as Hardness Inducing.

4 This holds if the size of range of h is exponentially larger than its image space. It is also worth noting that τ does
not need to be efficiently computable, because our soundness proof (or the editing technique) is only an existential
argument.
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To support the proof of a predicate φ, we update the construction with new Encoding and Hardness
Inducing methods. We first secret-share α to ([α]1, . . . , [α]n) using a verifiable secret sharing (VSS) scheme.
This can be viewed as a new encoding method: Enc(α) = VSS(α) = ([α]1, . . . , [α]n).

Next, we commit to these shares using Naor’s commitment [Nao90], which can be built from the oracle
OWF f in a black-box manner. This can be thought of as a new Hardness Inducing method. Now, the
output of F f is of the following form:

F f (x, r) = (Com([α]1), . . . ,Com([α]n))‖([α]b1 , . . . , [α]bt)‖r.

In the protocol Πf
F , we additionally ask the sender to compute the value φ(α) using the MPC-in-the-head

technique. That is, the sender imagines n virtual parties {Pi}i∈[n], where Pi has [α]i as its input. These n
parties then execute a MPC protocol w.r.t. to the ideal functionality, which recovers α from the VSS shares,
and outputs φ(α) to each party. Let vi denote the view of party i from the execution. The sender first
commits to these views, and then opens some of them (picked by the receiver) for the receiver to check that
the MPC for φ(α) was performed honestly. In this way, the receiver not only learns φ(α), but also believes
that the sender did not cheat.

Finally, we make a few remarks:

– To achieve soundness, we also need to apply the preimage editing idea to the above construction.

– Both the VSS and Com require randomness, which can come from x. That is, we require that the x is long
enough such that it also contains an η part (in addition to α and β). This η will provide the randomness
for VSS and Com.

– The above approach applies directly to the PB-PRG and PB-CRHF constructions to make them support
predicates on the α part of the preimage.

3 Preliminaries

Familiarity with basic cryptographic concepts such as ensembles, indistinguishability, and interactive Turing
machines, etc. are assumed; we refer to [Gol01, Gol04] for formal treatments of these.

Notations. We use “\” to denote set difference. That is, for any two sets A and B, A\B := {x : (x ∈ A)∧(x /∈
B)}. The security parameter is denoted by λ. Symbols

c
≈,

s
≈ and

i.d.
== are used to denote computational,

statistical, and perfect indistinguishability respectively; and negl(λ) denotes negligible functions of λ. For a
distribution D, x ← D means that x is sampled according to D. Unless emphasized otherwise, we assume
uniform distribution by default. We use y ∈ D to mean that y is in the support of D. For a set S we
overload the notation by using x← S to indicate that x is chosen uniformly at random from S. PPT denotes
probabilistic polynomial time.

Let p be a predicate and D1, D2, . . . probability distributions, then the notation Pr
[
x1 ← D1;x2 ←

D2; . . . : p(x1, x2, . . .)
]

denotes the probability that p(x1, x2, . . .) holds after the ordered execution of the
probabilistic assignments x1 ← D1;x2 ← D2; . . .. The notation {x1 ← D1;x2 ← D2; . . . : p(x1, x2, . . .)}
denotes the new probability distribution over {(x1, x2, . . .)}.

3.1 Standard Primitives

Commitment Schemes. We will use Naor’s two-round commitment scheme [Nao90], which is computationally-
hiding and statistically-binding. It can be constructed from any OWFs in a black-box manner. The original
scheme is for committing a single bit. But it can be extended to multi-bit messages by applying it bit-wise.
We recall how this works. To commit a single bit b, R sends a string ρ ∈ {0, 1}3λ to S. Then S picks a
random seed s ← {0, 1}λ and applies a pseudo-random generator PRG(·) (which can be constructed from
any OWFs in a black-box way). If b = 0, S sends cm = PRG(s); if b = 1, S sends cm = PRG(s)⊕ ρ.

Collision-Resistant Hash Families. We use the definition from [HR04].
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Definition 1 (Collision-Resistant Hash Families). A private-coin collision-resistant hash family (CRHF)
is a collection of functions H = {hi}i∈I for some index set I, where hi : {0, 1}`(|i|) → {0, 1}`′(|i|) and
`(|i|) > `′(|i|). It satisfies the following requirements:

– Key Generation. There exists a PPT key generating algorithm KGen, so that KGen(1λ) ∈ {0, 1}m(λ)∩I,
where m(λ) is a polynomial on λ representing the length of the key.

– Efficient Evaluation. There exists a (deterministic) polynomial time algorithm Eval such that ∀i ∈ I
and ∀x ∈ {0, 1}`(|i|), Eval(i, x) = hi(x).

– Non-Uniform Collision Resistance. For any non-uniform PPT machine A, the following holds:

Pr
[
i← KGen(1λ), (x, x′)← A(i) : x 6= x′ ∧ hi(x) = hi(x

′)
]
≤ negl(λ).

Remark 1 (Public-Coin CRHFs). The CRHFs defined above is private-coin. In the above definition, if the
index set I is {0, 1}∗ and KGen(1λ) outputs a uniformly distributed string from {0, 1}m(λ), then we say that
it is a public-coin CRHF, i.e., the family remains collision-resistant even if the randomness used to generate
the key is known to the adversary. Also, we emphasize that the collision-resistance property holds against
non-uniform PPT adversaries.

3.2 Verifiable Secret Sharing Schemes

A verifiable secret sharing (VSS) [CGMA85] scheme is a two-stage secret sharing protocol for implementing
the following functionality. In the first stage, denoted by VSSShare, a special player referred to as dealer, shares
a secret s among n players, in the presence of at most t corrupted players. In the second stage, denoted by
VSSRecon, players exchange their views of the Share stage, and reconstruct the values. The functionality
ensures that when the dealer is honest, before the second stage begins, the t corrupted players have no
information about the secret. Moreover, when the dealer is dishonest, at the end of the Share stage the
honest players would have realized it through an accusation mechanism that disqualifies the dealer.

The formal definition is presented in Def. 2. [BGW88, CDD+99] implemented (n + 1, bn/3c)-perfectly
secure VSS schemes, and (n + 1, bn/4c)-perfectly secure VSS schemes can be found in [GIKR01]. These
constructions suffices for our purpose in Sec. 8 where we only need that t = o(n).

Definition 2 (Verifiable Secret Sharing). An (n + 1, t)-perfectly secure VSS scheme ΠVSS consists of
a pair of protocols (VSSShare,VSSRecon) that implement respectively the sharing and reconstruction phases as
follows.

– Sharing Phase VSSShare: Player Pn+1 (referred to as dealer) runs on input a secret s and randomness
rn+1, while any other player Pi (i ∈ [n]) runs on input a randomness ri. During this phase players can
send (both private and broadcast) messages in multiple rounds.

– Reconstruction Phase VSSRecon: Each shareholder sends its view vi (i ∈ [n]) of the sharing phase to
each other player, and on input the views of all players (that can include bad or empty views) each player
outputs a reconstruction of the secret s.

All computations performed by honest players are efficient. The computationally unbounded adversary can
corrupt up to t players that can deviate from the above procedures. The following security properties hold.

– Commitment: if the dealer is dishonest, then one of the following two cases happen: 1) during the
sharing phase honest players disqualify the dealer, therefore they output a special value ⊥ and will refuse
to play the reconstruction phase; 2) during the sharing phase honest players do not disqualify the dealer,
therefore such a phase determines a unique value s∗ that belongs to the set of possible legal values that
does not include ⊥, which will be reconstructed by the honest players during the reconstruction phase.

– Secrecy: if the dealer is honest, then the adversary obtains no information about the shared secret before
running the protocol Recon.

– Correctness: if the dealer is honest throughout the protocols, then each honest player will output the
shared secret s at the end of protocol Recon.
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3.3 MPC-in-the-Head

We first recall information-theoretically secure MPCs and relevant notion that will be employed in the MPC-
in-the-head paradigm shown later.

Information-Theoretical MPC. Secure multi-party computation protocols allow several parties to com-
pute a function f on their joint private inputs even in the presence of corrupted parties that try to glean
other parties’ inputs. Formally, we consider n different parties, of whom t parties are corrupted. Further, let
A denote a real world adversary for protocol Π that recieves auxillary input z, and S denote an ideal world
adversary for Π. Denote by REALΠ,A(z),I(x̄) the random variable consisting of the output of A controlling
a set of corrupted parties I, and the outputs of the honest parties with respect to an execution of Π where
party Pi has input xi for i ∈ [n], and x̄ = (x1, . . . xn). Similarly, denote by IDEALf,S(z),I(x̄) the corresponding
output of S and other honest parties after an ideal execution with a trusted party computing f on inputs x̄.
We refer the reader to [Gol04] for a detailed description of the ideal and real executions.

Definition 3 (Perfectly/Statistically-Secure MPC). Let f : ({0, 1}∗)n −→ ({0, 1}∗)n be an n-ary
functionality, and let Π be a protocol. We say that Π (n, t)-perfectly (resp., statistically) securely computes
f if for every static, malicious, and (possibly-inefficient) probabilistic adversary A in the real model, there
exists a probabilistic adversary S of comparable complexity (i.e., with runtime polynomial in that of A) in the
ideal model, such that for every I ⊂ [n] of cardinality at most t, every x̄ = (x1, . . . , xn) ∈ ({0, 1}∗)n (where
|x1| = · · · = |xn|), and every z ∈ {0, 1}∗, it holds that:

{REALΠ,A(z),I(x̄)} i.d.
== {IDEALf,S(z),I(x̄)}

(
resp., {REALΠ,A(z),I(x̄)}

s
≈ {IDEALf,S(z),I(x̄)}

)
.

Recall that the MPC protocol from [BGW88] achieves (n, t)-perfect security (against static and malicious
adversaries) with t being a constant fraction of n.

Theorem 2 ([BGW88]). Consider a synchronous network with pairwise private channels. Then, for every
n-ary functionality f , there exists a protocol that (n, t)-perfectly securely computes f in the presence of a
static malicious adversary for any t < n/3.

Consistency, Privacy, and Robustness. We now define some notation related to MPC protocols. Their
roles will become clear when we discuss the MPC-in-the-head technique later.

Definition 4 (View Consistency). A view Viewi of an honest player Pi during an MPC computation
Π contains input and randomness used in the computation, and all messages received from and sent to the
communication tapes. We have that a pair of views (Viewi,Viewj) are consistent with each other if

1. Both corresponding players Pi and Pj individually computed each outgoing message honestly by using the
random tapes, inputs and incoming messages specified in Viewi and Viewj respectively, and:

2. All output messages of Pi to Pj appearing in Viewi are consistent with incoming messages of Pj received
from Pi appearing in Viewj (and vice versa).

We further define the notions of correctness, privacy and robustness for multiparty protocols.

Definition 5 (Semi-Honest Computational Privacy). Let 1 ≤ t < n, let Π be an MPC protocol, and
let A be any static, PPT, and semi-honest adversary. We say that Π realizes a function f : ({0, 1}∗)n −→
({0, 1}∗)n with semi-honest (n, t)-computational privacy if there is a PPT simulator Sim such that for any
inputs x,w1, . . . , wn, every subset T ⊂ [n] (|T | ≤ t) of players corrupted by A, and every D with circuit size
at most poly(λ), it holds that∣∣Pr[D(ViewT (x,w1, . . . , wn)) = 1]− Pr[D(Sim(T, x, {wi}i∈T , fT (x,w1, . . . , wn))) = 1]

∣∣ ≤ negl(λ), (1)

where ViewT (x,w1, . . . , wn) is the joint view of all players.
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Definition 6 (Statistical/Perfect Correctness). Let Π be an MPC protocol. We say that Π realizes
a deterministic n-party functionality f(x,w1, . . . , wn) with perfect (resp., statistical) correctness if for all
inputs x,w1, . . . , wn, the probability that the output of some party is different from the output of some party
is different from the actual output of f is 0 (resp., negligible in k), where the probability is over the independent
choices of the random inputs r1, . . . , rn of these parties.

Definition 7 (Perfect/Statistical Robustness). Assume the same setting as the previous definition. We
say that Π realizes f with (n, t)-perfect (resp., statistical) robustness if in addition to being perfectly (resp.,
statistical) correct in the presence of a semi-honest adversary as above, it enjoys the following robustness
property against any computationally unbounded malicious adversary corrupting a set T of at most t parties,
and for any inputs (x,w1, . . . , wn): if there is no (w′1, . . . , w

′
n) such that f(x,w′1, . . . , w

′
n) = 1, then the

probability that some uncorrupted player outputs 1 in an execution of Π in which the inputs of the honest
parties are consistent with (x,w1, . . . , wn) is 0 (resp., negligible in λ).

MPC-in-the-Head. MPC-in-the-head is a technique developed for constructing black-box ZK protocols
from MPC protocols [IKOS07]. Very roughly, the MPC-in-the-head idea is the following. Let Fzk be the
zero-knowledge functionality for an NP language. Fzk takes as public input x and one share from each party,
and outputs 1 iff the secret reconstructed from the shares is a valid witness. To build a ZK protocol, the
prover runs in his head an execution of MPC w.r.t. Fzk among n imaginary parties, each one participating in
the protocol with a share of the witness. Then, it commits to the view of each party separately. The verifier
obtains t randomly chosen views, checks that such views are “consistent” (see Def. 4), and accepts if the
output of every party is 1. The idea is that, by selecting the t views at random, V will catch inconsistent
views if the prover cheats.

We emphasize that, in this paradigm, a malicious prover decides the randomness of each virtual party,
including those not checked by the verifier (corresponding to honest parties in the MPC execution). Therefore,
MPC protocols with standard computational security may not protect against such attacks. We need to
ensure that the adversary cannot force a wrong output even if it additionally controls the honest parties’
random tape. The (n, bn/3c)-perfectly secure MPC protocol in Thm. 2 suffices for this purpose (see also
Rmk. 2).

One can extend this technique further (as in [GLOV12]), to prove a general predicate φ about an arbitrary
value α. Namely, one can consider the functionality Fφ in which party i participates with input a VSS share
[α]i. Fφ collects all such shares, and outputs 1 iff φ(VSSRecon([α]1, . . . , [α]n)) = 1.

Remark 2 (Exact Security Requirements on the Underlying MPC.). To be more accurate, any MPC protocol
that achieves semi-honest (n, t)-computational privacy (see Def. 5) and (n, t)-perfect robustness (see Def. 7)
will suffice for the MPC-in-the-head application.5 These two requirements are satisfied by any (n, t)-perfectly
secure MPC (and, in particular, the one from Thm. 2).

3.4 Black-Box Zero-Knowledge Commit-and-Prove

We need a zero-knowledge commit-and-prove protocol ΠZKCnP with the following additional properties:

– it consists of two separate phases: a Commit stage BBCom and a Prove stage BBProve;

– the Commit stage itself constitutes a statistically-binding commitment scheme;

– for a public predicate φ(·), the Prove stage constitutes a zero-knowledge argument for the value φ(x),
where x is the value committed in BBCom;

– ΠZKCnP can be constructed assuming only black-box access to OWFs.

We present the formal definition in Def. 8. There exist constructions satisfying this definition while making
only black-box use of OWFs (e.g., [IKOS07, GLOV12, CLP20]).

5 It is also worth noting that the (n, t)-perfect robustness could be replaced with adaptive (n, t)-statistical robustness.
See [IKOS07, Section 4.2] for more details.
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Definition 8 (Zero-Knowledge Commit-and-Prove). A black-box zero-knowledge commit-and-prove
scheme consists of a pair of protocols ΠZKCnP = (BBCom,BBProve) executed between a pair of PPT machines
P and V . These protocols are executed in the following phases:

– Commit Stage: P and V invoke BBCom(x) such that at the end of this protocol, P is statistically
committed to the value x. We use τ to denote the transcript from BBCom(1λ, x) execution. P stores
private state ST.

– Prove Stage: P and V take the transcript τ and a predicate φ as common input. P takes ST as its
private input. P proves to V using BBProve(1λ, φ) that there exists some value x such that τ is a valid
commitment to x, and also φ(x) = 1.

We require that the following properties are satisfied:

– Black-Box. Both phases only require black-box access to cryptographic primitives.

– Committing. The Commit stage BBCom(x) constitutes a statistically-binding commitment to the value
x.

– Completeness. If P and V are honest and φ(x) = 1, then V accepts the proof with probability 1.

– Soundness. For any PPT prover P ∗, the following holds except with negligible probability: V accepts
only if φ(x) = 1, where x is the value to which the Commit stage is statistically bound.

– Zero-Knowledge. There exists a pair of PPT machines (Sim1,Sim2) satisfying the following require-

ment. Given oracle access to a machine V ∗, SimV ∗

1 (1λ) generates a transcript τ̃ and stores a private state

ST; then for any predicate φ, SimV ∗

2 (1λ, φ,ST) generates a transcripts View. For every PPT verifier V ∗,
every z ∈ {0, 1}∗, every PPT predicate φ and every x s.t. φ(x) = 1, it holds that

{(
SimV ∗

1 (1λ), SimV ∗

2 (1λ, φ,ST, z)
)}
λ∈N

c
≈ {ViewP (x)

V ∗ (1λ, φ, z)}λ∈N,

where the ST is the private state of SimV ∗

1 (1λ) at termination, and View
P (x)
V ∗ (1λ, φ, z) denotes the view

of V ∗(1λ, φ, z) in both Commit stage and Prove stage, resulted from its interaction with P (1λ, x, φ),
where both parties learn φ at the beginning of Prove stage. We will refer to Sim1 as the Commit-stage
simulator, and Sim2 the Prove-stage simulator.

3.5 The One-Oracle Separation Technique

We first recall in Def. 9 the notion of fully-black-box reductions. We say that P cannot be obtained from Q
in a fully-black-box way if there is no fully-black-box reduction from Q to P .

Definition 9 (Fully-Black-Box Reductions [RTV04]). There exists a fully-black-box reduction from a
primitive Q to a primitive P , if there exist PPT oracle machines G and S such that:

– Correctness: For every (possibly-inefficient) f that implements P , Gf implements Q;

– Security: For every (possibly-inefficient) f that implements P and every (possibly-inefficient) machine
A, if A breaks Gf (w.r.t. Q-security), then SA,f breaks f (w.r.t. P -security).

A useful paradigm to rule out fully-black-box constructions is to design an oracle O, and show that,
relative to O, primitive P exists but Q does not. A critical step in this proof is to construct an oracle
machine AO that breaks the security of Q. We emphasize that A is allowed to be computationally unbounded
as long as it only makes polynomially-many queries to O (see e.g., [IR89, BM17]). Our fully-black-box
separation results in Sec. 4 will follow this paradigm.
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4 The Impossibility Results

4.1 Meta-Functionally Black-Box Constructions

Functionally Black-Box Protocols. To capture MPC protocols that “do not know” the code of the target
function g, Rosulek [Ros12] proposed the following notion of functionally-black-box protocols.

Definition 10 (Functionally-Black-Box Protocols [Ros12]). Let C be a class of functions, and let F (·)

be an ideal functionality that is an (uninstantiated) oracle machine. Let A(·) and B(·) be PPT interactive
oracle machines. Then, we say that (A(·), B(·)) is a functionally-black-box (FBB) protocol for FC in a certain
security model if, for all g ∈ C, the protocol (Ag, Bg) is a secure protocol (in the model in question) for the
ideal functionality Fg.

By instantiating C and F (·) properly, Def. 10 could capture black-box constructions of many useful
cryptographic protocols. For example, let Cowf be the collection of OWFs. For any g ∈ Cowf, let Fgzk be the
functionality that takes input x from party A, queries its oracle g to obtain y = g(x), and outputs y to
party B. Such an Fgzk is essentially a zero-knowledge argument (of knowledge) functionality for statements
of the form “∃x s.t. g(x) = y”. However, Rosulek showed that if injective OWFs exist, then it is impossible
to have FBB protocols that implement FCowf

zk with semi-honest security (in the standard MPC setting), even
in the presence of an arbitrary trusted setup. Given the broad application of ZK proofs, this result is quite
discouraging.

Meta-FBB Functionalities. Observe that the above Fgzk functionality simply collects input x from A,
queries its oracle g, and sends g(x) to B. It only plays the role of a delegate for A and B to interact with
the OWF g. Therefore, it is temping to investigate whether we can circumvent Rosulek’s lower bound by
allowing the “delegate” Fzk to perform extra computations, such as preprocessing x, post-processing g(x),
or making multiple queries to the oracle g, etc.

More formally, we want a non-cryptographic and deterministic computation F (used to capture the
aforementioned extra computations), such that C′owf = {F g | g ∈ Cowf} is a collection of OWFs. And we
hope that there exists a FBB protocol (Ag, Bg) implementing FF g

zk for all F g ∈ C′owf (we can also denote it

as FC
′
owf

zk ). Note that we require (A(·), B(·)) to access g in a black-box way only; they can make use the code

of F . Since C′owf is also a collection of one-way families, FC
′
owf

zk can be used as a substitute for FCowf
zk , with the

only overhead coming from the computations represented by F (·). Because F (·) is supposed to contain only

simple non-cryptographic operations, the implementation of FC
′
owf

zk should be as efficient as that of FCowf
zk .

Therefore, if this approach is possible, it will alleviate the negative implications of Rosulek’s lower bound.

We can also interpret FC
′
owf

zk as a new FBB functionality FCowf
zk [F ], i.e., a new oracle machine F (·)

zk [F ] to
be instantiated with oracle OWFs from the original collection Cowf. For any g ∈ Cowf, Fgzk[F ] collects the
input X from Party A, evaluates F g(X), and sends y = F g(X) to Party B.

With this interpretation, FC
′
owf

zk is just an instantiation of Def. 10 with F (·) = F (·)
zk [F ] and C = Cowf. To

distinguish with Rosulek’s F (·)
zk functionality. We call F (·)

zk [F ] the Meta-FBB ZK Functionality. Similarly, one

can also extend other FBB functionalities in [Ros12] (e.g., 2-party secure function evaluation F (·)
sfe, pseudo-

random generator F (·)
prg, where sender A holds the seed and receiver B holds the key) to the corresponding

Meta-FBB version.

4.2 The Main Theorem

In this part, we show that although we relax Rosulek’s FBB notion to the Meta-FBB one, there still exists
strong impossibility result. More specifically, we prove that, given only black-box access to OWFs, it is
impossible to build a PRG that admits Meta-FBB honest-verifier zero-knowledge protocols.

Definition 11 (Fully-Black-Box PRGs from OWFs). Let C be the collection of OWFs. A (determinis-
tic) polynomial-time oracle machines G(·) is a fully-black-box construction of PRG from OWF if there exists
a PPT oracle machines A(·,·) such that:
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– Correctness: ∀f ∈ C, Gf is a PRG;

– Security: ∀f ∈ C and every (possibly inefficient) machine M , if M breaks the pseudo-randomness of
Gf , then AM,f breaks the one-wayness of f .

Theorem 3 (Main Theorem). Let C = {f | f is a OWF}. There does not exist a (deterministic) oracle
machine G(·) such that

1. G(·) is a fully-black-box construction of PRG from OWF; and

2. for all f ∈ C, there exists a stand-alone, Meta-FBB, honest-verifier zero-knowledge argument system
Πf = 〈P f , V f 〉 for the functionality Ffzk[G].

Before showing the full proof in Sec. 4.3, let us provide the high-level idea.

Proof Overview. We start by assuming (for contradiction) that the G(·) and Π(·) specified in the theorem
exist. We will construct a special oracle denoted as O �QEasy (explained later) such that:

1. The oracle O � QEasy is one-way. Thus, GO�QEasy

will be a PRG and ΠO�QEasy

will be the HVZK system

for the language L = {Y : ∃X s.t. Y = GO�QEasy

(X)}.

2. There exist a Ÿ /∈ L (the false statement) and a PO�QEasy

(the cheating prover P with the oracle O�QEasy)

that is able to make V O�QEasy

(Ÿ ) accept.

This will give us the desired contradiction as it breaks the soundness of the protocol ΠO�QEasy

.
Toward the above goal, we first sample two random oracles O, O′, a random string X, and compute

Y = GO(X). Let Q = {(q1,O(q1)), . . . , (qt,O(qt))} denote the query-answer pairs exchanged between G and

its oracle O during computation Y = GO(X). We now define the oracle O′�Q(q) :=

{
O(q) if (q,O(q)) ∈ Q
O′(q) otherwise

.

It is not hard to verify that Y = GO′�Q(X). By completeness, V will accept with probability 1− δc (where

δc is the completeness error) in the execution ExecO
′�Q

X,Y = 〈PO′�Q(X,Y ), V O′�Q(Y )〉.
Note that during ExecO

′�Q
X,Y , the verifier may make queries to its oracle O′ �Q. We define a set of “easy”

queries:

QEasy := {(q,O(q))
∣∣ V queries q with “high” probability during ExecO

′�Q
X,Y }.

Let QHard be the set difference Q\QEasy. It is not hard to see that Y = GO′�(QEasy∪QHard)(X). By completeness,

V will accepts with probability 1− δc in the execution Exec
O′�(QEasy∪QHard)
X,Y .

Now, consider the execution 〈PO′�(QEasy∪QHard)(X,Y ), V O′�QEasy

(Y )〉, which is identical to Exec
O′�(QEasy∪QHard)
X,Y ,

except that we remove the QHard from the verifier’s oracle. In this execution, the probability that V accepts

will not differ too much from that in Exec
O′�(QEasy∪QHard)
X,Y , because the queries in QHard are asked by V with

only “low” probability.

We then prove that Y is in the range of GO′�QEasy

(·) with probability at most 0.5 (up to negligible

error). But the previous argument says that V O′�QEasy

(Y ) accepts with probability close to 1. It then follows

from an averaging argument that there exists “bad” Ö, Ö′ and Ẍ6 such that Ÿ = GÖ(Ẍ) is not in the

range of GÖ′�Q̈Easy

(·), but V Ö′�Q̈Easy

(Ÿ ) can be convinced with probability close to 1, by the malicious prover

P Ö′�(Q̈Easy∪Q̈Hard)(Ẍ, Ÿ ) (which can be viewed as an oracle machine PÖ′�Q̈Easy

with non-uniform advice Ẍ, Ÿ ,

and Q̈Hard). This breaks the soundness of ΠÖ′�Q̈Easy

, thus completing the proof.

We remark that proving Y is in the range of GO′�QEasy

(·) with probability ≤ 0.5 (up to negligible error)
is the most involved part. And this is where the HVZK property of Π(·) plays an essential role. Roughly, we
will show that if this claim does not hold, then there exists an adversary AO

prg that can break the pseudo-
randomness of GO(·) by making polynomially many oracle queries. As we will explain later, this reduction

6 Note that these values already determine the sets Q̈, Q̈Easy, and Q̈Hard as defined above.
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requires AO
prg to know the set QEasy w.r.t. the challenge string Y in the security game of PRG. But note that

AO
prg does not know the preimage X (if Y is indeed in the range), which is necessary to figure out QEasy.

This is where the HVZK simulator comes to our rescue. We will run the simulator SimO
V (Y ) repeatedly for

(polynomially) many times to get an estimate Q̃Easy for the set QEasy. This Q̃Easy will be good enough to
finish our proof. A more detailed overview of this strategy is provided at the beginning of Sec. 4.4.

4.3 Proof of Thm. 3

Assume for contradiction that there exists an oracle machine G(·) and a protocol 〈P (·), V (·)〉 such that given
the access to any one-way function {fn}n∈N:

1. Gfn : {0, 1}` → {0, 1}`+1 is a PRG (` and n are polynomially related); and

2. Π = 〈P fn , V fn〉 is a semi-honest zero-knowledge argument system for the Meta-FBB functionality

Ffnzk [G].

We first recall the following lemma, which says that the measure-one of randomly-sampled oracles is
one-way.

Lemma 1 (One-Wayness of Random Oracles [IR89, Yer11]). Let O = {On}n∈N be a collection
of oracles where each On is chosen uniformly from the space of functions from {0, 1}n to {0, 1}n. With
probability 1 over the choice of O, O is one-way against unbounded adversaries that make only polynomially
many oracle queries to O.

Let both O = {On}n∈N and O′ = {O′n}n∈N be defined (independently) as in Lem. 1. It follows from
Lem. 1 that, with probability 1, both O and O′ are one-way.

In the following, we show two hybrids. From the second hybrid, we will construct a malicious prover
breaking the soundness of Π(·) (with the oracle being instantiated by a special one-way oracle defined later).
This will give us the desired contradiction, and thus will finish the proof of Thm. 3.

Notation. We first define some notation. For an oracle H and a set of tuples S = {(q1, a1), . . . , (qt, at)}, we
define a new oracle H � S as follows: if q equals some qi for which there exists a pair (qi, ai) in the set S, the
oracle H � S returns ai; otherwise, it returns H(q). Formally,

H � S(q) =

{
H(q) if q /∈ {q1, . . . , qt}
ai if q = qi ∈ {q1, . . . , qt}

.

Hybrid H0. This hybrid samples Xn ← {0, 1}`(n), and computes Yn = GOn(Xn). W.l.o.g., we assume
that G on input Xn makes t(n) distinct queries to its oracle On, where t(n) is a polynomial of n. Let
Qn =

{(
q1,On(q1)

)
, . . . ,

(
qt,On(qt)

)}
be the query-answer pairs during the computation Yn = GOn(Xn).

Let Exec
O′n�Qn

Xn,Yn
= 〈PO′n�Qn(Xn, Yn), V O′n�Qn(Yn)〉 denote the execution where P proves to V that there

exists an Xn such that Yn = GO′n�Qn(Xn). Note that during this execution, the verifier may query its oracle

O′n �Qn. For each qi ∈ {0, 1}n, let pi denote the probability that qi is queried by V during Exec
O′n�Qn

Xn,Yn
. Let

QEasy
n defines the set of “easy” queries and their corresponding answers:

QEasy
n :=

{(
qi,O

′
n �Qn(qi)

) ∣∣ pi ≥ 1

t(n) · n
during Exec

O′n�Qn

Xn,Yn

}
. (2)

Let QHard
n be the set difference Qn \QEasy

n . We remark that Qn and QEasy
n ∪QHard

n may not be the same, but
it must hold that Qn ⊆ QEasy

n ∪QHard
n .

Looking ahead, we will instantiate G(·) and Π(·) with the oracle O′n � (QEasy
n ∪QHard

n ). Note that G(·) and
Π(·) will have the desired property only if they are instantiated with one-way functions. Therefore, we show
in Claim 2 that the composed oracle O′n � (QEasy

n ∪QHard
n ) is one-way. It is worth noting that the one-wayness

of this composed oracle is independent of the choice of {Xn}, though the definition of Qn, QEasy
n and QHard

n

depends on Xn.
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Claim 2. The collection of oracles
{
O′n � (QEasy

n ∪ QHard
n )

}
n∈N defined above is one-way with probability 1,

where the probability is taken over the sampling of O = {On}n and O′ = {O′n}n, and is independent of the
distribution of {Xn}n∈N.

Proof. The query-answer pairs in QEasy
n and QHard

n are of the form
(
q,On(q)

)
or
(
q,O′n(q)

)
. Although Xn

decides which (q, ∗)7 will be inQEasy
n andQHard

n , the answer part On(q)’s and O′n(q)’s are uniformly distributed,
independent of Xn. That is, if On and O′n are sampled randomly, then for any Xn ∈ {0, 1}`(n), O′n � (QEasy

n ∪
QHard
n ) will also be a random oracle. Therefore, for any {Xn}n∈N where Xn ∈ {0, 1}`(n), the following holds{

O′n � (QEasy
n ∪QHard

n )
}
n∈N

i.d.
== {O′′n}n∈N,

where each O′′n is sampled uniformly from the space of functions from {0, 1}n to {0, 1}n. Since it follows from
Lem. 1 that {O′′n}n∈N is one-way with probability 1, so is

{
O′n � (QEasy

n ∪QHard
n )

}
n∈N.

Claim 2 (together with our assumption) implies that, with probability 1 taken over the sampling of O
and O′:

– GO′n�(Q
Easy
n ∪QHard

n ) : {0, 1}`(n) → {0, 1}`(n)+1 is pseudo-random against all (unbounded) adversaries that
make polynomially many queries to the oracle O′n � (QEasy

n ∪QHard
n ); and

– ΠO′n�(Q
Easy
n ∪QHard

n ) is a semi-honest zero-knowledge argument for the Meta-FBB functionality FO′n�(Q
Easy
n ∪QHard

n )
zk [G].

Let Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

denote the following execution:

〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�(Q
Easy
n ∪QHard

n )(Yn)〉.

Let Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

= 1 denote the event that the verifier accepts at the end of this execution. Then, it

follows from Claim 2 and the completeness of ΠO′n�(Q
Easy
n ∪QHard

n ) that:

Pr
O,O′

[
For sufficient large n ∈ N,∀Xn ∈ {0, 1}`(n), Yn = GOn(Xn),

Pr
[
Exec

O′n�(Q
Easy
n ∪QHard

n )
Xn,Yn

= 1
]
≥ 1− δc(n)

]
= 1, (3)

where the inner probability is taken over the random coins of the prover and the verifier in the execution

Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

, and δc(n) is the completeness error.

Hybrid H1. This hybrid is identical to the previous one, except that H1 executes the protocol

〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉. (4)

(Compared with the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

in H0, the only difference is that H1 remove QHard
n from

the verifier’s oracle.)
As mentioned in the Proof Sketch of Thm. 3, we want to show that the verifier accepts in Execution 4

with probability close to that in the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

. This is formalized as Claim 3.

Claim 3. With probability 1 taken over the sampling of O and O′, for sufficiently large n ∈ N, it holds that
∀Xn ∈ {0, 1}`(n) and Yn = GOn(Xn),

Pr
[
〈PO′n�(Q

Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉 = 1

]
≥ Pr

[
Exec

O′n�(Q
Easy
n ∪QHard

n )
Xn,Yn

= 1
]
− 1

n
, (5)

where the probabilities in the above inequality are taken over the random coins of the prover and the verifier
during the corresponding executions.

7 The symbol “∗” denotes the wildcard that matches any answer to q.
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Proof. First, we remark that the “with probability 1” part in this claim is to ensure that {O′n�(QEasy
n ∪QHard

n )}n
is one-way (see Claim 2). In the following, we proceed with {O′n � (QEasy

n ∪ QHard
n )}n being one-way (so the

probabilities below are not taken over O and O′).
By definition, any query8 q ∈ QHard

n is asked by V during Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

with probability < 1
t(n)·n .

Let us define the following event:

– EventNoHard: no q ∈ QHard
n is asked by V in Exec

O′n�(Q
Easy
n ∪QHard

n )
Xn,Yn

.

It follows from the union bound that

Pr
[
EventNoHard

]
≥ 1− 1

n
, (6)

where the probability is taken over the random coins of P and V in the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

.
Now, we prove Inequality (5). In the following, for succinctness, let

– Exec0 denote the execution 〈PO′n�(Q
Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉;

– Exec1 denote the execution Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

.

Then, we have (probabilities below are taken over the random coins over P and V in the corresponding
executions):

Pr[Exec1 = 1] ≥ Pr
[
Exec1 = 1

∣∣ EventNoHard] · Pr
[
EventNoHard

]
= Pr

[
Exec0 = 1

∣∣ EventNoHard] · Pr
[
EventNoHard

]
(7)

≥ Pr[Exec0 = 1]− Pr[¬EventNoHard] (8)

≥ Pr[Exec0 = 1]− 1

n
(9)

where Step 7 is due to the fact that Exec1 and Exec0 are identical assuming V does not make any query
q ∈ QHard

n , Step 8 follows from the basic probability inequality that Pr
[
A
∣∣B] ·Pr[B] ≥ Pr[A]−Pr[¬B], and

Step 9 follows from Inequality (6).
This finishes the proof of Claim 3.

Claim 3 indicates that the verifier in Execution 4 accepts with “good” probability: at least as large as the

accepting probability of Exec
O′n�(Q

Easy
n ∪QHard

n )
Xn,Yn

minus 1/n. Thus, we will have the desired contradiction if the

Yn in Execution 4 is a false statement, namely that Yn is not in the range of GO′n�Q
Easy
n (i.e. G(·) instantiated

by the verifier’s oracle in Execution 4). This argument is formalized and proved in Claims 4 and 5, which
will eventually finish the proof of Thm. 3.

Claim 4. Let QEasy
n be defined as in Expression (2). For sufficiently large n ∈ N, the following holds:

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q

Easy
n
(
{0, 1}`(n)

)]
≤ 1

2
+ negl(n). (10)

Note that the above probability is taken (additionally) over Xn ← {0, 1}`(n).

Claim 5. If Claim 4 holds, then Thm. 3 holds.

The proof of Claim 4 is quite involved. It constitutes the main technical challenge of the current proof
(of Thm. 3). Thus, we will deal with it in Sec. 4.4. In the following, we show the proof of Claim 5.

8 Technically, elements in QHard
n are query-answer pairs. From here on, we override the notation “∈” such that

q ∈ QHard
n also means that there exists a pair (q, ∗) in QHard

n .
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Proof of Claim 5. It follows from Expression (3) and Claim 3 that

Pr
O,O′

[
For sufficient large n ∈ N,∀Xn ∈ {0, 1}`(n), Yn = GOn(Xn),

Pr
[
〈PO′n�(Q

Easy
n ∪QHard

n )(Xn, Yn), V O′n�Q
Easy
n (Yn)〉 = 1

]
≥ 1− 1

n − δc(n)

]
= 1. (11)

Following the same argument as for Claim 2, we can prove the one-wayness of the oracle {O′n �QEasy
n }n

as follows. For each (q,On(q)) ∈ QEasy
n , the On(q) is a randomly sampled string from {0, 1}n. Therefore, no

matter what Xn is, O′n �QEasy
n is always a randomly sampled oracle (though QEasy

n is determined by Xn). It
then follows from Lem. 1 that:

Pr
O,O′

[
∀Xn ∈ {0, 1}`(n), {O′n �QEasy

n }n∈N is one-way
]

= 1. (12)

By an averaging argument over Expressions (10) to (12), it follows that there exists fixed sequences
{Ön}n∈N, {Ö′n}n∈N and {Ẍn}n∈N9 such that for sufficiently large n ∈ N,

– {Ön�Q̈Easy
n }n is one-way; thus, GÖn�Q̈Easy

n is a PRG and ΠÖn�Q̈Easy
n is an HVZK protocol for the membership

of GÖn�Q̈Easy
n ; and

– Ÿn is not in the range of GÖn�Q̈Easy
n ; and

– Pr
[
〈P Ö′n�(Q̈

Easy
n ∪Q̈Hard

n )(Ẍn, Ÿn), V Ö′n�Q̈
Easy
n (Ÿn)〉 = 1

]
≥ 1 − 1

n − δc(n), where the probability is taken over

the random coins of P and V .
Note that we can treat P Ö′n�(Q̈

Easy
n ∪Q̈Hard

n )(Ẍn, Ÿn) as an oracle machine PÖ′n�Q̈
Easy
n , which has (Q̈Easy

n , Ẍn, Ÿn)
as non-uniform advice and makes only polynomially many queries to its oracle Ö′n � Q̈Easy

n .

Since the completeness error δc(·) is negligible, the above means that PÖ′n�Q̈
Easy
n (with its non-uniform advice)

convinces the verifier with non-negligible probability on the following false statement:

Ÿn ∈ GÖ′n�Q̈
Easy
n
(
{0, 1}`(n)

)
.

This contradicts the soundness of ΠÖ′n�Q̈
Easy
n , thus finishing the proof of Claim 5.

4.4 Proof of Claim 4

Proof Overview. Before diving into the proof, we first provide a high-level overview.
We assume for contradiction that Claim 4 is false and try to break the pseudo-randomness of GOn . First,

observe that if Yn = GOn(Xn) where Xn ← {0, 1}`(n), then our assumption implies that Yn is in the range of

GO′n�Q
Easy
n (·) with probability noticeably larger than 1/2. Therefore, on an input Yn, if we can efficiently test

if Yn ∈ GO′n�Q
Easy
n

(
{0, 1}`(n)

)
, we should have some advantage in the PRG game for GOn(·). This strategy has

the following potential problems:

1. Without the preimage Xn, we cannot compute the set QEasy
n (see Expression (2)) using only polynomially

many queries to On;

2. If the input Yn /∈ GOn
(
{0, 1}`(n)

)
, the set Qn (thus QEasy

n ) is not even well-defined, as there is no preimage
Xn.

To avoid using Xn, we will run the HVZK simulator to obtain an estimate of the set QEasy
n in the following

way. Recall that QEasy
n contains the “easy” queries made by the verifier during Exec

O′n�Qn

Xn,Yn
. By the HVZK

property of the protocol ΠO′n�Qn , each query in QEasy
n should be made with similar probability in the simulated

execution Sim
O′n�Qn

V (Yn). Therefore, repeating Sim
O′n�Qn

V (Yn) (polynomially) many times will give us a good
estimate to QEasy

n .

9 Note that these values also fix the corresponding {Ÿn}n∈N, {Q̈Easy
n }n∈N and {Q̈Hard

n }n∈N as in the above.
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Algorithm 1: Sampling the Set Q̃Easy
n

Input: a string Yn ∈ {0, 1}`(n)+1.

Oracle: an oracle On mapping {0, 1}n to {0, 1}n.

Let 0 < c < 1 be a constant. This algorithm initializes a table T to the records of the form
(
qi,Count[qi] = 0

)
for all qi ∈ {0, 1}n. T will be used to store the number that each query being asked.
This algorithm repeats the following procedure for N = 3n/c2 times, using fresh randomness for each
repetition:

– It invokes the HVZK simulator SimOn

V (Yn). Note that the simulated view View ← SimOn

V (Yn) contains
the query-answer pairs exchanged between V and On. For every query-answer pair (qi,On(qi)) appeared
in View, increase Count[qi] by 1.

For any query qi ∈ {0, 1}n, let p̂i denotes the frequency (i.e. the empirical mean) that qi is asked by the

verifier during the above N repetitions. The hybrid then computes the set Q̃Easy
n as follows:

Q̃Easy
n :=

{(
qi,On(qi)

) ∣∣∣ p̂i ≥ 1

n · t(n)
− 2c

}
, where p̂i :=

Count[qi]

N
. (14)

However, without Xn, we cannot figure out the set Qn, which is necessary if we want to run Sim
O′n�Qn

V (Yn).
Fortunately, by a similar argument as that for Claim 2, we can prove that the oracle {On}n and {O′n �Qn}n
are identically distributed, even given Xn and Yn = GOn(Xn). Therefore, running SimOn

V (Yn) will be just as

good as running Sim
O′n�Qn

V (Yn). Note that this also solves Problem 2, because the simulator still works when
invoked on false statements.

Now, we can construct the PRG distinguisher AOn
prg(Yn) as follows: on input Yn, AOn

prg(Yn) obtains an

estimate Q̃Easy
n to QEasy

n by running SimOn

V (Yn) polynomially many times. It then samples a random function

O′n : {0, 1}n → {0, 1}n, and outputs 1 if Yn ∈ GO′n�Q̃
Easy
n

(
{0, 1}`(n)

)
; otherwise, it outputs 0. Note that

although sampling O′ requires exponential time, AOn
prg(Yn) only makes polynomially many queries to the

oracle On.

If Yn = GOn(Xn) where Xn ← {0, 1}`(n), then by our assumption AOn(Yn) outputs 1 with probability
noticeably larger than 1/2; if Yn ← {0, 1}`(n)+1, then Yn is independent of On. Moreover, using a similar

argument as for Claim 2, we can prove that Yn is independent of the oracle Q̃Easy
n (thus O′n � Q̃Easy

n ). Since the

function GO′n�Q̃
Easy
n (·) stretch by 1 bit, the random Yn will be in its range with probability 1/2. This means

AOn(Yn) outputs 1 with probability exactly 1/2.

This gives us the desired contradiction.

The Formal Proof. We now present the formal proof for Claim 4. First, we describe in Algo. 1 how to
compute the set Q̃Easy

n , which is the estimate to QEasy
n by running SimOn

V (Yn) (see the above proof overview
). In the following, we break Claim 4 into Claims 6 and 8, and prove them one-by-one.

Claim 6. For sufficiently large n ∈ N, it holds that

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q

Easy
n
(
{0, 1}`(n))] ≤ Pr

O,O′,Xn,Q̃
Easy
n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n))]+ negl(n). (13)

Proof. Let Yn = GOn(Xn). Let ExecOn

Xn,Yn
denote the execution 〈POn(Xn, Yn), V On(Yn)〉. For each qi ∈ {0, 1}n,

let pi denote the probability that qi is asked by the verifier during ExecOn

Xn,Yn
. We now define the following

set:

Q̄Easy
n :=

{(
qi,On(qi)

) ∣∣ pi ≥ 1

t(n) · n
during ExecOn

Xn,Yn

}
. (15)
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We remark that Q̄Easy
n is the same as QEasy

n (Expression (2)) but is w.r.t. ExecOn

Xn,Yn
. In Claim 7, we show

that Q̄Easy
n and QEasy

n are identically distributed. Looking ahead, this claim will allow us to replace QEasy
n with

Q̄Easy
n , for which we can obtain a “good” estimate (via the HVZK simulator) without knowing the preimage

Xn.

Claim 7. Let QEasy be as in Expression (2). Let Q̄Easy be as in Expression (15). The following holds:

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q

Easy
n
(
{0, 1}`(n)

)]
= Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q̄

Easy
n
(
{0, 1}`(n)

)]
(16)

Proof. We first claim that the following two ensembles are identically distributed:

{Xn, G
On(Xn),On}n∈N

i.d.
== {Xn, G

On(Xn),O′n �Qn}n∈N, (17)

where Xn ← {0, 1}`(n), On and O′n are random functions mapping {0, 1}n to {0, 1}n, and Qn is defined as in
hybrid H0 (the set of query-answer pairs during the evaluation of GOn(Xn)). To show Expression (17), we
only need to show that given {Xn}n, the oracles {On}n and {O′n �Qn}n are identically distributed. This is
true as they agree on all the query-answer pairs contained in Qn, and the queries (and their answers) not in
Qn are identically distributed (uniform).

Then, note that {Q̄Easy}n is determined (deterministically) by the left-hand side of Expression (17) in the
same way as {Q}n is determined by the right-hand side of Expression (17). So {QEasy}n and {Q̄Easy}n are
also identically distributed. Thus, Eq. (16) follows.

Next, we prove that the Q̃Easy
n defined in Algo. 1 is a good estimate to the set Q̄Easy

n in the sense that Q̄Easy
n is

a subset of Q̃Easy
n except with negligible probability taken over the sampling of Q̃Easy

n . For any qi ∈ {0, 1}n, let
p̃i denote the probability that qi is asked by the verifier in the simulated transcript View← SimOn

V (Yn). Due
to the HVZK property of ΠOn , it holds that p̃i ≥ pi − negl(n). Recall the quantity p̂i from Expression (14),
which is the empirical mean of the frequency that pi is asked by the verifier in 3n/c2 repetitions of SimOn

V (Y ).
It then follows from the Chernoff bound that

Pr
p̂i

[
|p̂i − p̃i| ≥ c

]
≤ 1

2n
= negl(n). (18)

By definition, each qi ∈ Q̄Easy
n will be asked with probability pi ≥ 1

n·t(n)
during the execution ExecOn

Xn,Yn
. It

then follows from Inequality (18) that for any qi ∈ Q̄Easy
n , the following holds except with negligible probability

taken over the sampling of p̂i:

p̂i ≥ p̃i − c = pi − c− negl(n) ≥ 1

n · t(n)
− c− negl(n) >

1

n · t(n)
− 2c,

which means qi ∈ Q̃Easy
n by the definition of Q̃Easy

n . Since |Q̄Easy
n | is a polynomial of n, it follows from union

bound that
Pr
Q̃Easy

n

[
Q̄Easy
n ⊆ Q̃Easy

n ] ≥ 1− negl(n)
(
⇔ Pr

Q̃Easy
n

[
Q̄Easy
n * Q̃Easy

n ] ≤ negl(n)
)
. (19)

Then we have

Pr
O,O′,Xn

[
GOn(Xn) ∈ GO′n�Q̄

Easy
n
(
{0, 1}`(n)

)]
≤ Pr

[
GOn(Xn) ∈ GO′n�Q̄

Easy
n
(
{0, 1}`(n)

) ∣∣ Q̄Easy
n ⊆ Q̃Easy

n

]
· Pr

[
Q̄Easy
n ⊆ Q̃Easy

n

]
+ Pr

[
Q̄Easy
n * Q̃Easy

n

]
≤ Pr

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

) ∣∣ Q̄Easy
n ⊆ Q̃Easy

n

]
· Pr

[
Q̄Easy
n ⊆ Q̃Easy

n

]
+ Pr

[
Q̄Easy
n * Q̃Easy

n

]
≤ Pr

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
+ Pr

[
Q̄Easy
n * Q̃Easy

n

]
≤ Pr
O,O′,Xn,Q̃

Easy
n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
+ negl(n) (20)

where Inequality (20) follows from Inequality (19).
Eq. (16) and Inequality (20) finish the proof of Claim 6.
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Remark 3 (On the Probability Space). Algo. 1 run the HVZK simulator for the protocol ΠOn . We want to
point out that ΠOn is an HVZK protocol (i.e. the simulator exists) only if O = {On}n is one-way. Therefore,
in the above proof, whenever we try to argue about some probability of the form

Pr
O,Q̃Easy

n

[
Event(On, Q̃

Easy
n )

]
= value (21)

with the probability taken over both O and Q̃Easy
n (e.g. Inequalities (18), (19) and (20), and some expressions

in the next claim), the technically correct way is to say: with probability 1 taken over O = {On}n (thus
being one-way), it holds that

Pr
Q̃Easy

n

[
Event(On, Q̃

Easy
n )

]
= value. (22)

Or, put in another way:

1. PrO [O is one-way] = 1; and

2. PrQ̃Easy
n

[
Event(On, Q̃

Easy
n )

∣∣O is one-way
]

= value.

However, the form of Expression (21) is also correct because it is actually a consequence of Expression (22):

let A denote the event Event(On, Q̃
Easy
n ), and B the event that O is one-way, then

Pr
O,Q̃Easy

n

[A] = Pr
Q̃Easy

n

[A
∣∣B] · Pr

O
[B] + Pr

Q̃Easy
n

[A
∣∣ ¬B] · Pr

O
[¬B]

= Pr
Q̃Easy

n

[A
∣∣B] · 1 + Pr

Q̃Easy
n

[A
∣∣ ¬B] · 0 = Pr

Q̃Easy
n

[A
∣∣B] = value.

So, it is fine to use Expression (21).

Claim 8. For sufficiently large n ∈ N, it holds that

Pr
O,O′,Xn,Q̃

Easy
n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
≤ 1

2
+ negl(n) (23)

Proof. At a high level, this proof goes as follows. Assuming for contradiction that the claim does not hold, we
show an adversaryAOn

prg that breaks the pseudo-randomness of GOn(·). This gives us the desired contradiction,
because GOn(·) is a PRG given that O = {On}n∈N is one-way.

Formally, we assume for contradiction that there exists a polynomial polyprg(·) such that, for infinitely
many n ∈ N, the following holds:

Pr
O,O′,Xn,Q̃

Easy
n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
h

(
{0, 1}`(n)

)]
≥ 1

2
+

1

polyprg(n)
. (24)

On input Yn ∈ {0, 1}`(n)+1, AOn
prg proceeds as follows:

1. Compute Q̃Easy
n using Algo. 1;

2. AOn
prg samples O′n uniformly from all functions mapping {0, 1}n to {0, 1}n. With the Q̃Easy

n from Step 1,

AOn
prg now has the full description of O′n � Q̃Easy

n . AOn
prg then tests if Y ∈ GO′n�Q̃

Easy
n

(
{0, 1}`(n)

)
. We remark

that it takes exponential computation to sample O′n. However, this step does not incur any calls to the
oracle On.

3. Output: If Yn ∈ GO′n�Q̃
Easy
n

(
{0, 1}`(n)

)
, output 1; otherwise, output 0.

If Yn is the output of GOn(·) on a random Xn, then it follows from above description of AOn
prg that

Pr
O,O′,Xn

[
AOn

prg

(
GOn(Xn)

)
= 1
]

= Pr
O,O′,Xn,Q̃

Easy
n

[
GOn(Xn) ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
≥ 1

2
+ negl(n); (25)

23



If Yn ← {0, 1}`(n)+1, then the oracle O′n � Q̃Easy
n and Yn are independently distributed. We emphasize that

although Q̃Easy
n is obtained by running SimOn

V on Yn (for N = 3n/c2 times), for each (q,On(q)) ∈ Q̃Easy
n , the

answer On(q) is independent of Yn. Therefore, Yn is independent of O′n � Q̃Easy
n . In this case, Yn is the range

of the PRG with probability exactly 1/2. Formally,

Pr
O,O′,Yn

[
AOn

prg(Yn) = 1
]

= Pr
O,O′,Yn,Q̃

Easy
n

[
Yn ∈ GO′n�Q̃

Easy
n
(
{0, 1}`(n)

)]
= Pr

Yn,O′′n

[
Yn ∈ GO′′n

(
{0, 1}`(n)

)]
=

1

2
(26)

Expressions (25) and (26) imply that AOn
prg breaks the pseudo-randomness of GOn(·). This completes the

proof of Claim 8.

This completes the proof of Claim 4.

5 Proof-Based One-Way Functions

5.1 Definition

Definition 12 (Proof-Based OWFs). Let λ ∈ N be the security parameter. Let a(·), b(·) and c(·) be
polynomials. A proof-based one-way function consists of a function Fλ : {0, 1}a(λ) × {0, 1}b(λ) → {0, 1}c(λ)

and a protocol Π = (S,R) of a pair of PPT machines. We use (X,Y ) ← 〈S(1λ, x), R(1λ, r)〉 to denote the
execution of protocol Π where the security parameter is λ, the inputs to S and R are x and r respectively,
and the outputs of S and R are X and Y respectively. Let Y = ⊥ denote that R aborts in the execution. The
following conditions hold:

– One-Wayness. The function {Fλ}λ is one-way in the following sense:

• Easy to compute: for all λ ∈ N and all (x, r) ∈ {0, 1}a(λ) × {0, 1}b(λ), Fλ(x‖r) can be computed in
polynomial time on λ.

• Hard to invert: for any non-uniform PPT adversary A, there exists a negligible function negl(·) such
that ∀r ∈ {0, 1}b(λ),

Pr
[
x← {0, 1}a(λ), X∗ ← A

(
1λ, Fλ(x‖r)

)
: Fλ(x‖r) = Fλ(X∗)

]
≤ negl(λ),

– Completeness. The protocol Π computes the ideal functionality FF defined in Fig. 1. Namely, ∀λ ∈ N,
∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ), if (X,Y )← 〈S(1λ, x), R(1λ, r)〉, then X = x‖r and Y = Fλ(x‖r).

– Soundness. For every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗, there exists a negligible
function negl(·) such that

Pr

[
r← {0, 1}b(λ);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 :

Y 6= ⊥ and
@x s.t. Fλ(x‖r) = Y

]
≤ negl(λ),

– Zero-Knowledge. This property is defined by requiring only security against corrupted R in the ideal-
real paradigm for 2PC w.r.t. the ideal functionality FF in Fig. 1. Concretely, denote by REALΠ,A(z)(1

λ, x, r)
the random variable consisting of the output of S and the output of the adversary A controlling R in
an execution of Π, where x is the input to S and r to R. Similarly, denote by IDEALFF ,Sim(z)(1

λ, x, r)
the corresponding output of S and Sim from the ideal execution.10 Then there exist a PPT simu-
lator Sim such that for any PPT adversary A, ∀x ∈ {0, 1}a(λ), ∀r ∈ {0, 1}b(λ), and ∀z ∈ {0, 1}∗,{
REALΠ,A(z)(1

λ, x, r)
}
λ∈N

c
≈
{
IDEALFF ,Sim(z)(1

λ, x, r)
}
λ∈N.

If the constructions of both F and Π makes only black-box access to other primitives, we call this a black-box
PB-OWF.

10 We refer the reader to [Gol04] for a detailed description of the ideal and real executions.

24



Figure 1: Functionality FF for Proof-Based OWFs

The ideal functionality FF interacts with a sender S and a receiver R. Upon receiving the input x ∈ {0, 1}a(λ)

from S and r ∈ {0, 1}b(λ) from R, the functionality FF sends x‖r to S, and F (x‖r) to R.

Construction 1: One-Way Function F f

Let m(λ) and n(λ) be polynomials on λ. Let 0 < δ < 1 be a constant, and k(λ) = δn(λ). Let t(λ) = log2(λ)
(see Rmk. 4). Assume that f : {0, 1}λ → {0, 1}m(λ) is a one-way function. On input x ∈ {0, 1}nλ+(log(n)+m)k

and r ∈ {0, 1}t log(n), F f parses them as

x = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), and r = (b1, . . . , bt),

where |xi| = λ, |y′pi | = m, {pi}i∈[k] is a size-k subset of [n], and {bi}i∈[t] is a size-t subset of [n]. F f

computes via its oracle access to f(·) the values (y1, . . . , yn), where yi = f(xi) for all i ∈ [n]. Then, it
computes s = (s1, . . . , sn) as follows:

1. if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then let si := yi for all i ∈ [n].

2. if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then let si :=

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

It finally outputs Y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt).

5.2 Our Construction

Following the high-level idea described in Sec. 2.2, we show that PB-OWFs can be obtained assuming black-
box access to OWFs.

Theorem 4 (Black-Box PB-OWFs from OWFs). There exists a PB-OWF that satisfies Def. 12 and
makes only black-box use of OWFs.

Our construction consists of a one-way function F f (Constr. 1) together with a protocol Πf
F (Prot. 1).

The construction relies on the following building blocks:

– a one-way function f ;

– a zero-knowledge commit-and-prove protocol ΠZKCnP = (BBCom,BBProve) as per Def. 8. Such protocols
can also be constructed assuming only black-box access to f .

It follows immediately from the description that our construction makes only black-box access to OWFs.

Remark 4 (On the Parameters in Constr. 1). The choice of t(λ) = log2(λ) is somewhat arbitrary. In fact,
any t(λ) = ω(log λ) works as long as (n − k − t) is some positive polynomial of λ for sufficiently large
λ. This is to ensure that we can prove one-wayness in Lem. 2 and (1 − δ)t is negligible on λ, which is
needed when we prove soundness (Claim 9). We also remark that the role of r is to specify a size-t subset
of [n]. The canonical way of mapping r to a size-t subset of [n] may consume slightly less randomness than
|r| = t log(n). For simplicity, we forego further discussion and assume that there is a deterministic bijection
between {0, 1}t log(n) and all size-t subsets of [n]. Similarly, the {p1, . . . , pk} are interpreted as a size-k subset
of [n], though we assign each pi a length of log(n).

5.3 Security Proof for Our PB-OWFs

Proof Overview. Before presenting the formal proof of security, we first provide an overview.
One-wayness, completeness, and ZK follow from rather standard techniques. In the following, let us

explain more about the soundness proof (shown formally as Lem. 3).
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Protocol 1: Protocol Πf
F for Our Proof-Based One-Way Function

Let f , m, n, t, and k be as in Constr. 1.

Input: the security parameter 1λ is the common input. Sender S takes x ∈ {0, 1}nλ+(log(n)+m)k as its private
input; receiver R takes r ∈ {0, 1}t·log(n) as its private input.

1. S parses the input as x = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), where |xi| = λ for all i ∈ [n], |y′pj | = m

for all j ∈ [k], and {pi}i∈[k] forms a size-k subset of [n]. S defines a 2 × n matrix M =

[
x1 · · · xn
y1 · · · yn

]
,

where yi = f(xi) for all i ∈ [n].

2. S and R execute BBCom(α), the Commit stage of ΠZKCnP, where S commits to the value

α := M‖(p1, y
′
p1

), . . . , (pk, y
′
pk

). (27)

3. R sends r to S.

4. S interprets r as a size-t subset (b1, . . . , bt) ⊆ [n]. S then defines Mr =

[
xb1 · · · xbt
yb1 · · · ybt

]
, i.e. the columns

of M specified by r. S also computes s = (s1, . . . , sn) in the way specified in Constr. 1. S sends to R
the values Mr and s.

5. With Mr, R checks (via its oracle access to f(·)) if f(xbi) = ybi holds for all i ∈ [t]; R also checks if
sbi = ybi holds for all i ∈ [t]. If all the checks pass, R proceeds to next step; otherwise, R halts and
outputs ⊥.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that it performs Stage 4 honestly.
Namely, S proves that the α committed at Stage 2 satisfies the following conditions:

(a) the values {p1, . . . , pk} contained in α form a size-k subset of [n]; and

(b) the Mr does consist of the columns in M specified by r; and

(c) The s = (s1, . . . , sn) satisfies the following conditions:

– if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then si = yi for all i ∈ [n].

– if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

We remark that these conditions can indeed be expressed a predicate φ on the α committed at Stage 2.
For completeness, we show the formal definition of φ in Fig. 2. It is also worth noting that predicate
φ needs to have the values r and s hard-wired, which are defined at Stages 3 and 4 respectively. This
is why we need a ΠZKCnP that allows us to defer the definition of the predicate until the Prove stage
(Def. 8).

7. (Receiver’s Output). R outputs Y = (s1, . . . , sn)‖(xb1 , . . . xbt)‖(b1, . . . , bt).
8. (Sender’s Output). S outputs X = (x1, . . . , xn)‖(p1, y

′
p1

), . . . , (pk, y
′
pk

)‖(b1, . . . , bt).

First, note that the r = {b1, . . . , bt} sent by R in Stage 3 is a size-t random subset of [n]. It will overlap
with {p1, . . . , pk} with negligible probability. Therefore, the Editing condition will almost never be triggered
during a real execution of Prot. 1, thus can be safely ignored.

Stages 2 to 5 can be though as the following cut-and-choose procedure: the sender computes {yi =
f(xi)}i∈[n]; then the receiver checks t of them randomly. This ensures that a malicious S∗ cannot cheat on
more than k = δn of the yi’s. We prove this statement formally in Claim 9, which requires us to handle
extra technicalities due to the commit-and-prove structure and Editing condition. But this claim implies

26



Figure 2: Predicate φλ,m,t,n,k,r,s(·)
Predicate φ has the values (λ,m, t, n, k, r, s) (as defined in Prot. 1) hard-wired. On the input α,
φλ,m,t,n,k,r,s(α) = 1 if and only if all of the following hold:

– the α can be parsed as M‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), where M =

[
x1 · · · xn
y1 · · · yn

]
such that |xj | = λ and

|yj | = m ∀j ∈ [n], |pi| = log(n) and |y′pi | = m ∀i ∈ [k]; and

– the values {p1, . . . , pk} form a size-k subset of [n]; and

– the Mr consists of the columns in M specified by r; and

– the s = (s1, . . . , sn) satisfy the following requirement (recall that the {b1, . . . , bt} are from r):

• if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then si = yi for all i ∈ [n].

• if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
y′i i ∈ {p1, . . . , pk}
yi i ∈ [n] \ {p1, . . . , pk}

.

that a non-aborting Y output by an honest receiver contains at most k = δn many si’s that does not have a
preimage under f (except with negligible probability). Let us assume w.l.o.g. that there are exactly k such
“no-preimage” si’s, which can be denoted as {sp1 , . . . , spk} (i.e. we denote the indices of these no-preimage
si’s by {p1, . . . , pk}). Then, for each si where i ∈ [n] \ {p1, . . . , pk}, this si must have (at least) one preimage
under f(·). We denote an arbitrary preimage of such si as f−1(si). In particular, if i is equal to some
bj ∈ {b1, . . . , bt}, the Y already contains the preimage for sbj , which is xbj .

We emphasize that, conditioned on Y 6= ⊥, we have {p1, . . . , pk}∩{b1, . . . , bt} = ∅. To see this, recall that
R checks at Stage 5 that ybi = f(xbi) and sbi = ybi for all bi ∈ {b1, . . . , bt}. If there is a pi falling in the set
{b1, . . . , bt}, then spi (= ypi) does not have a preimage under f(·). Then, R will output Y = ⊥ at Stage 5.

With these observations, we show in the following how to construct x and r such that F f (x‖r) = Y . At
a high-level, we take advantage of Case 2. We will use the no-preimage spi ’s together with their indices as
the (pi, y

′
pi

) part in x. We will set r to the {b1, . . . , bt} contained in Y . Since {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅,
the function F f will put the no-preimage spi ’s at the positions specified by pi’s (according to Case 2), which
will give us Y . Concretely, we set:

x = (x′1, . . . , x
′
n)‖(p1, sp1), . . . , (pk, spk) and r = (b1, . . . , bt),

where x′i’s are defined as follows: ∀i ∈ [n], x′i =


xi i ∈ {b1, . . . , bt}
0λ i ∈ {p1, . . . , pk}
f−1(si) otherwise

.

We remark that f−1(si) may not be efficiently computable (indeed, f is a one-way function). But the
above proof only relies on the existence of f−1(si). Also, we have {p1. . . . , pk} ∩ {b1, . . . , bt} = ∅. It then
follows from the description in Constr. 1 (in particular, Case 2) that F f (x‖r) = Y .

The Full Proof. We now formally prove that the function F f in Constr. 1 and Prot. 1 constitute a black-
box OWF with proof (as per Def. 12). In Lem. 2, we prove that F f satisfies the one-wayness requirement in
Def. 12. Given Constr. 1, the completeness of Prot. 1 follows immediately by construction. We then establish
the soundness and zero-knowledge property for Prot. 1 in Lem. 3 and 4 respectively.

Lemma 2 (One-Wayness). The function F f in Constr. 1 is one-way as defined in Def. 12.

Proof. From the description of Constr. 1, it is easy to see that F f is efficiently computable. In the following,
we show that it is also “hard to invert”.
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Assume for contradiction that F f is not hard to invert, i.e. there exist a PPT AF and r ∈ {0, 1}t log(n)

such that for x← {0, 1}nλ+(log(n)+m)k, AF inverts F f (x‖r) with non-negligible probability. We show how to
construct a PPT Af that inverts f with non-negligible probability.

On input y∗, Af first samples a string x ← {0, 1}nλ+(log(n)+m)k and computes the following Y value as
per Constr. 1:

Y = F f (x‖r) = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt).

It then samples i∗ ← [n] \ {b1, . . . , bt}, and gets Y ′ by substituting the si∗ in Y with y∗. Af then feeds Y ′ to
AF and receives X ′, which is supposed to be the preimage of Y ′ under F f . In the following, we argue that
X ′ contains the preimage of y∗ under f with non-negligible probability.

Suppose that AF produces an X ′ satisfying F f (X ′) = Y ′. This X ′ must be of the following form:

X ′ = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

)‖(b1, . . . , bt).

Then, by Constr. 1, we must have f(xi∗) = y∗ except for the “bad case” where {p1, . . . , pk}∩{b1, . . . , bt} = ∅
and there is a pj = i∗ (in which case xi∗ could be arbitrary as long as AF sets y′pj = y∗). However, since i∗

is picked uniformly from [n] \ {b1, . . . , bt}, the “bad case” happens with probability ≤ 1/(n− t− k), which is
1/poly(λ) by our choice of n, t, and k. Thus, if AF breaks the one-wayness of F f with some non-negligible
probability ε(λ), Af will break the one-wayness of f with probability ≥ (1− 1/poly(λ)) · ε(λ), which is
non-negligible.

Lemma 3 (Soundness.). For every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗, there exists
a negligible function negl(·) such that

Pr

[
r← {0, 1}t·log(n);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 :

Y 6= ⊥ and
@x s.t. F f (x‖r) = Y

]
≤ negl(λ). (28)

Proof. Let us first define “non-trivial” S∗’s, which are the malicious provers that can make the honest receiver
accepts with non-negligible probability.

Definition 13 (Non-Trivial S∗). A PPT machine S∗ is non-trivial if there exists some auxiliary input
z ∈ {0, 1}∗ such that the following holds: there exits a polynomial poly(·) such that for infinitely many λ ∈ N,

Pr
[
r← {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 : Y 6= ⊥

]
≥ 1

poly(λ)
. (29)

It is not hard to see that if a PPT machine S∗(1λ, z) is not non-trivial, then Inequality (28) holds
immediately. Therefore, to prove Lem. 3, we only need to focus on the non-trivial S∗’s.

For any Y of the form (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt), we define the following event:

– BadY : there are more than k = δn number of si’s such that @x s.t. f(x) = si.

In the following, we present a claim (Claim 9). We will first show how to prove Lem. 3 assuming that Claim 9
holds and then present its proof.

Claim 9. For every non-trivial S∗ with the z ∈ {0, 1}∗ satisfying Inequality (29), there exists a negligible
function negl(·) such that

Pr
[
r← {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 : BadY

∣∣ Y 6= ⊥] ≤ negl(λ). (30)

Consider the Y output by R from 〈S∗(1λ, z), R(1λ, r)〉, where S∗(1λ, z) is non-trivial and r← {0, 1}t log(n).
If Y 6= ⊥, it must be of the following form:

Y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt),

where si = f(xi) for all i ∈ {b1, . . . , bt}. Assuming that Claim 9 holds, to finish the proof of Lem. 3, it suffices
to show the following claim:

28



– Conditioned on Y 6= ⊥, if BadY does not happen, then there exist an x and an r such that F f (x‖r) = Y .

Conditioned on Y 6= ⊥, Claim 9 implies that there are at most k = δn many si’s that do not have a
preimage under f (except with negligible probability). In the following, we assume w.l.o.g. that there are
exactly k such “no-preimage” si’s. We denote them as {sp1 , . . . , spk} (i.e. we denote the indices of these
no-preimage si’s by {p1, . . . , pk}). Then, for each si where i ∈ [n] \ {p1, . . . , pk}, this si must have (at least)
one preimage under f(·). We denote an arbitrary preimage of such si as f−1(si). In particular, if i is equal
to some bj ∈ {b1, . . . , bt}, then Y already contains the preimage for sbj , which is xbj .

We emphasize that, conditioned on Y 6= ⊥, {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅. To see this, recall that R
checks at Stage 5 that ybi = f(xbi) and sbi = ybi for all bi ∈ {b1, . . . , bt}. If there is a pi falling in the set
{b1, . . . , bt}, then spi (= ypi) does not have a preimage under f(·). Then, R will output Y = ⊥ at Stage 5.

With these observations, we show in the following how to construct x and r such that F f (x‖r) = Y ,
assuming that BadY does not happen. At a high-level, we take advantage of Case 2. we will use the no-
preimage spi ’s together with their indices as the (pi, y

′
pi

) part in x. We will set r to the {b1, . . . , bt} contained

in Y . Since {b1, . . . , bt} ∩ {p1, . . . , pk} = ∅, the function F f will put the no-preimage spi ’s at the positions
specified by pi’s (according to Case 2), which will give us Y . Concretely, we set:

x = (x′1, . . . , x
′
n)‖(p1, sp1), . . . , (pk, spk) and r = (b1, . . . , bt),

where x′i’s are defined as follows: ∀i ∈ [n], x′i =


xi i ∈ {b1, . . . , bt}
0λ i ∈ {p1, . . . , pk}
f−1(si) otherwise

. We remark that f−1(si) may

not be efficiently computable (indeed, f is a one-way function). But this proof only relies on the existence
of f−1(si). Also, we have {p1. . . . , pk} ∩ {b1, . . . , bt} = ∅. It then follows from the description in Constr. 1 (in
particular, Case 2) that F f (x‖r) = Y .

In the following, we show the proof for Claim 9, which will complete the proof for Lem. 3.

Proof of Claim 9. All the probabilities appearing in this proof are taken over the following random
procedure:

r← {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉,

where S∗ and z are as described in Claim 9.

First, note that Pr
[
BadY

∣∣ Y 6= ⊥] · Pr[Y 6= ⊥] = Pr[BadY ∧ (Y 6= ⊥)]. Since S∗ is non-trivial, we know
from Inequality (29) that Pr[Y 6= ⊥] is non-negligible. Therefore, to prove Inequality (30), it suffices to show

Pr[BadY ∧ (Y 6= ⊥)] ≤ negl(λ), (31)

which we prove in the following.

Consider the execution (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 where Y 6= ⊥. Observe that S∗ at Stage 2 commits
a value α11 of the form shown in Expression (27). For this execution, we define the following sequence of
events:

– E1: {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅. The {pi}i∈[k] are contained in α and {bi}i∈[t] are contained in Y .

– E2: ∀i ∈ [n], yi = si. The {yi}i∈[n] are contained in the second row of M (which is in turn contained in
α), and {si}i∈[n] are contained in Y .

– E3: The Mr sent by S∗ at Stage 4 indeed consists of the columns of M specified by r = {b1, . . . , bt}
(contained in Y ).

– E4: there are more than k = δn number of yi’s (contained in the second row of M) that do not have a
preimage under f(·).

11 This α is well-defined as BBCom is statistically-binding.
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We first claim:
Pr[E4 ∧ (Y 6= ⊥)] ≤ negl(λ). (32)

To see that, first notice the following:

Pr[E4 ∧ (Y 6= ⊥)] = Pr[E4 ∧ (Y 6= ⊥) ∧ E3] + Pr
[
E4 ∧ (Y 6= ⊥) ∧ E3

]
≤ Pr

[
(Y 6= ⊥)

∣∣ E3 ∧ E4

]︸ ︷︷ ︸
P1

+ Pr
[
(Y 6= ⊥) ∧ E3

]︸ ︷︷ ︸
P2

.

We now show that both P1 and P2 are negligible. First, recall that R checks at Stage 5 if yi = f(xi) for
all columns [xi yi]

T contained in Mr. Thus, conditioned on E3, the receiver does not abort only if the set
r = {b1, . . . , bt} does not select any “bad” column [xi yi]

T in M s.t. yi 6= f(xi). Moreover, E4 ensures that
there are more than k = δn such “bad” columns in M . Therefore, the probability P1 is smaller than (1− δ)t,
which is negligible as 0 < δ < 1 is a constant and t is ω(log λ).

Also, observe that E3 was actually proved at Stage 6 (as Item 6b) by S∗ via the commit-and-prove
protocol ΠZKCnP. The soundness of ΠZKCnP implies that P2 is negligible.

Next, we make another claim:

Pr
[
BadY ∧ (Y 6= ⊥) ∧ E2

]
≤ negl(λ). (33)

To prove this inequality, notice the following:

Pr
[
BadY ∧ (Y 6= ⊥) ∧ E2

]
= Pr

[
BadY ∧ (Y 6= ⊥) ∧ E2 ∧ E1

]
+ Pr

[
BadY ∧ (Y 6= ⊥) ∧ E2 ∧ E1

]
≤ Pr[E1]︸ ︷︷ ︸

P3

+ Pr
[
(Y 6= ⊥) ∧ E2

∣∣ E1

]︸ ︷︷ ︸
P4

.

We now show that both P3 and P4 are negligible. Recall that E1 is the event that the set {p1, . . . , pk}
contained in α does not overlap with r = {b1, . . . , bt}. First, note that the ΠZKCnP proof at Stage 6 ensures
that the set {p1, . . . , pk} is a size-k subset of [n] (i.e. Item 6a) except with negligible probability. Also, observe
that the r is a size-t random subset of [n] that is sampled independently of {p1, . . . , pk}. Therefore, E1 happens
with probability ≤ (1− δ)t + negl(λ), which is negligible.

According to Constr. 1, if {p1, . . . , pk}∩{b1, . . . , bt} 6= ∅ (which is exactly the event E1), then it must hold
that yi = si for all i ∈ [n] (which is exactly E2). Also, recall that this condition is enforced by the BBProve
performed by S∗ at Stage 6 (see Item 6c). The soundness of the ΠZKCnP guarantees that, conditioned on E1,
if E2 does not hold, then R will abort with overwhelming probability. Therefore, P4 is negligible.

We are now ready to derive Inequality (31):

Pr[BadY ∧ (Y 6= ⊥)] = Pr[BadY ∧ (Y 6= ⊥) ∧ E2] + Pr
[
BadY ∧ (Y 6= ⊥) ∧ E2

]
= Pr[E4 ∧ (Y 6= ⊥) ∧ E2] + Pr

[
BadY ∧ (Y 6= ⊥) ∧ E2

]
(34)

≤ Pr[E4 ∧ (Y 6= ⊥)] + Pr
[
BadY ∧ (Y 6= ⊥) ∧ E2

]
≤ negl(λ) (35)

where Eq. (34) follows from the fact that, conditioned on E2, the events BadY and E4 are identical. Also,
note that Inequality (35) follows from Inequalities (32) and (33).

This finishes the proof of Claim 9 and thus also the proof for Lem. 3.

Lemma 4 (Zero-knowledge). Prot. 1 satisfies the zero-knowledge property as in Def. 12.

Proof. To prove the zero-knowledge property, we need to show a PPT ideal-world simulator Sim for any
PPT malicious receiver R∗. At a high-level, such a simulator can be constructed as follows. Sim will use
the simulator of the commit-and-prove protocol ΠZKCnP at Stages 2 and 6. This allows Sim to finish the
interaction without knowing the sender’s input x.
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Formally, we will show a sequence of hybrids starting from the real execution between the honest sender
and R∗, and show that the last hybrid is essentially the simulator we want. We use OutHi

to denote the
output of hybrid Hi.

Hybrid H0(1λ, x, z). This hybrid uses the strategy of the honest S(1λ, x) to interact with the corrupted
receiver R∗(1λ, z). At the end of the execution, H0 outputs whatever R∗ outputs. This hybrid is exactly the
real execution.

Hybrid H1(1λ, x, z). This hybrid is identical to the previous one, except that

– At Stage 2, instead of executing BBCom, H1 uses the strategy of Sim1 in its communication with R∗,
where Sim1 is the simulator for the Commit stage of ΠZKCnP (see Def. 8).

– At Stage 6, instead of doing the proof honestly, H1 uses the strategy of Sim2in its communication with
R∗, where Sim1 is the simulator for the Prove stage of ΠZKCnP (see Def. 8).

OutH0

c
≈ OutH1

: This is due to the ZK property of ΠZKCnP.

The simulator Sim(1λ, z). We now describe the simulator Sim for the ideal execution. Sim is identical to
H1, except that

– Sim does not need to execute Stage 1;

– Upon receiving r at Stage 3, Sim sends it to the idea functionality FF f , and receives back the value
Y = (s1, . . . , sn)‖(xb1 , . . . , xbt)‖(b1, . . . , bt);

– At Stage 4, Sim sets M̃r =

[
xb1 · · · xbt
sb1 · · · sbt

]
, and sends to R the values M̃r and s = (s1, . . . , sn), where the

si’s are those contained in Y .

We remark that, unlike H1, Sim does not need to know the input x to the sender; the Y that it obtained from
FF f contains all the necessary information to finish its interaction with R∗. In particular, although the xbi ’s

in M̃r and the s now come from the Y that Sim obtained from the ideal functionality, they are identically
distributed to the ones generated by the honest sender in a real execution. It then follows that the output
of Sim is identical to H1.

This finishes the proof for Lem. 4.

6 Proof-Based Pseudo-Random Generators (Overview)

We can also define proof-based pseudo-random generators (PB-PRGs) in a similar way as for PB-OWFs. It
consists of a two-input function Gg(·, ·) and a protocol Πg

G = (Sg, Rg) such that for any PRG g, Gg(·, r) is
a PRG for any choice of r, and Πg

G satisfies the same completeness, soundness, and ZK requirements as in
Def. 12 but w.r.t. Gg.

Our PB-PRG can be constructed by simply replacing the oracle OWF f with a PRG g in both Constr. 1
and Prot. 1 (our PB-OWF construction). There is one caveat: the output Y of Constr. 1 contains the
preimage xbi for ybi (or sbi). While this is fine for one-wayness, such a Y will not be pseudo-random, because
an adversary can always learn if Y is in the range of Gg(·, r) by testing whether ybi = g(xbi). To fix this, in
the output Y , we will place xbi in the position where we originally put ybi (and we can drop the (xb1 , . . . , xbt)
part from Y ). We will show that this modification lead to a valid PB-PRG.

We present the definition, construction, and the security proof for PB-PRGs in Appx. A, due to their
pronounced similarity to our PB-OWF.
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7 Proof-Based Collision-Resistant Hash Families

We now discuss proof-based collision-resistant hash families (PB-CRHFs). As mentioned in Sec. 2.3, the
definition and construction of PB-CRHF follow the same template as our PB-OWFs, except that we need
to handle the Editing condition differently.

7.1 Definition

Our PB-CRHF consists of an oracle machine H(·) and an oracle protocol Π
(·)
H . As mentioned in Sec. 2.3, the

H(·) will be instantiated as a hash family. That is, given a collision-resistant hash family H′, we first run its
KGen′ to sample a function hi ∈ H′, and then instantiate H(·)’s oracle as hi. Therefore, Hhi is also a hash
family whose KGen simply runs KGen′ for H′ (and samples a random string z that we will describe later).

Once H(·) and Π
(·)
H are instantiated with an hi ← KGen′(1λ), we can start talking about security. Same

as in Def. 12, Hhi takes two inputs x and r. We require that, for all r, Hhi(·, r) is collision-resistant on its first
input. The protocol Πhi

H satisfies similar completeness, soundness, and ZK requirements as those in Def. 12.
We provide the formal definition in Def. 14.

Definition 14 (Proof-Based CRHF). Let a(λ), b(λ) and c(λ) be polynomials on λ such that a(λ)+b(λ) <
c(λ). A proof-based collision-resistant hash family (PB-CRHF) is a function family H = {Hi}i∈I for some
index set I, where Hi : {0, 1}a(λ)×{0, 1}b(λ) → {0, 1}c(λ). For each Hi ∈ H, there exists a protocol Πi = (S,R)i
consisting of a pair of PPT machines. H is a collision-resistant hash family in the following sense.:

– Collision-Resistance. H has PPT algorithms KGen and Eval, which satisfy the same requirements as
in Def. 1; it further satisfies the following collision-resistant requirement: for any non-uniform PPT
adversary A, there exists a negligible function negl(·) such that ∀r ∈ {0, 1}b(λ),

Pr
[
i← KGen(1λ), (x, x′)← A(1λ, i) : x 6= x′ ∧Hi(x‖r) = Hi(x

′‖r)
]
≤ negl(λ).

Let (X,Y ) ← 〈S(1λ, x), R(1λ, r)〉i denote the execution of the protocol Πi, where the security parameter is
λ, the input to S and R are x and r respectively, and the output of S and R are X and Y respectively. Let
Y = ⊥ denote the event that R aborts in the execution. The following properties for protocol Πi = (S,R)i
hold with overwhelming probability over the choice of i← KGen(1λ) (see also Rmk. 5):

– Completeness. ∀λ ∈ N, ∀i ∈ {0, 1}λ, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ),

Pr
[
(X,Y )← 〈S(1λ, x), R(1λ, r)〉i : X = x‖r and Y = Hi(x‖r)

]
= 1,

where the probability is taken over the the randomness used by S and R.

– Soundness. For every PPT machine S∗ and every auxiliary input aux ∈ {0, 1}∗, there exists a negligible
function negl(·) such that

Pr

[
r← {0, 1}b(λ);
(·, Y )← 〈S∗(1λ, aux), R(1λ, r)〉i

:
Y 6= ⊥ and
@x s.t. Hi(x‖r) = Y

]
≤ negl(λ)

where the probability is taken over the random sampling of i and r,and the randomness used by S∗ and
R.

– Zero-Knowledge. This property is defined as only requiring security against corrupted R in the ideal-
real paradigm for 2PC w.r.t. the ideal functionality FHi

in Fig. 3. Namely, there exist a PPT simulator
Sim such that for any PPT adversary A, ∀aux ∈ {0, 1}∗, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ),

REALΠi,A(aux)(x, r)
c
≈ IDEALFHi

,Sim(aux)(x, r),

where REALΠi,A(aux)(x, r) and IDEALFHi
,Sim(aux)(x, r) are defined in the same way as in Def. 12.
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Figure 3: Functionality FHi
for Proof-Based CRHFs

The ideal functionality FHi
interacts with a sender S and a receiver R. Upon receiving the input x ∈

{0, 1}a(λ) from S and r ∈ {0, 1}b(λ) from R, the functionality FHi
sends x‖r to S, and Hi(x‖r) to R.

If both the constructions of H and Π only involve black-box access to other primitives, we obtain black-box
PB-CRHF.

Remark 5. Similar to the case of PB-OWFs, the protocol here is meant to be a ZK system for the range-
membership of the function. But note thatH in the above PB-CRHF is a family of functions, and the concrete
function Hi is sampled by running the key generation algorithm. So, the range-membership is well-defined
only when Hi is sampled and fixed. Therefore, the security properties of protocol Πi will depend on the
sampling of Hi by running KGen. This idea already appears explicitly in the definition of collision-resistant
hash families—the adversary’s winning probability in the collision-resistant game depends on the random
procedure of executing KGen.

7.2 Merkle Tree Related Notation

As mentioned in the technical overview (Sec. 2.3), our construction makes use of the Merkle hashing tree
[Mer90]. In this part, we setup related notation.

Notation for Perfect Binary Trees. A perfect binary tree is a binary tree in which all interior nodes have
two children and all leaves have the same depth. A perfect binary tree of hight ` has 2`+1 − 1 nodes, where
2` of the nodes are leaves. There exist canonical methods (e.g., array representation) to index the nodes in
the tree, which forms a bijection between the nodes and the set [2`+1 − 1]. We will use the indices to refer
to the corresponding nodes under this bijection. In particular, we require that the first 2` indices (i.e. [2`])
represent the leaves.

For each node k ∈ [2`+1− 1], vk denotes the content/value of this node. For a leaf node i ∈ 2`, the sibling
path of i consists of the value vi together with the values of all the siblings of nodes on the path from i to
the root. We use Pi to denote the sibling path of leaf i, and Ind(Pi) denotes the collection of indices of the
nodes on path Pi. For k sibling paths (Pi1 , . . . ,Pik), we use Ind(i1, . . . , ik) to denote the collection of indices
of the nodes on all these paths, i.e.,

Ind(i1, . . . , ik) := Ind(Pi1) ∪ . . . ∪ Ind(Pi1). (36)

We remark that Ind(i1, . . . , ik) is a set of indices for nodes. It does not depend on the contents/values of
nodes. Once the structure of the tree is fixed, this set is then fixed, even if the tree contains only dummy
nodes.

Merkle Trees. A Merkle hashing tree [Mer90] is a special type of perfect binary tree constructed as follows.
Let n = 2l for some integer l. Given a hash function h : {0, 1}2m → {0, 1}m and a length-mn string X, the
Merkle tree MTh,m(X) is a size-(2n− 1) perfect binary tree of the following form:

– X is parsed as n blocks (x1, . . . , xn), each xi is of length m. These xi’s are the contents of the n leaves;

– (Merkle Consistency.) For any non-leaf node k and its left child ` and right child r, their contents
satisfy the equation h(vk) = h(v`‖vr).

A sibling path Pi (i ∈ [n]) is said to be Merkle-consistent if all the nodes on this path satisfy the above
Merkle consistency condition.

7.3 Our Construction
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Construction 2: Collision-Resistant Hash Family Hhi
z

Let m(λ) and n(λ) be polynomials of λ. Assume w.l.o.g. that is n a power of 2 (i.e., n = 2` for some `).
Let 0 < δ < 1 be a constant, and k(λ) = δn(λ). Let t(λ) = log2(λ) (see also Rmk. 4). Let H′ = {hi}i∈I be
a collision-resistant hash family where hi : {0, 1}2m(λ) → {0, 1}m(λ). Denote its key generation as KGen′.

– Key Generation. On input 1λ, sample a function from H′ by running hi ← KGen′(1λ); sample a
random string z ← {0, 1}m(λ); outputs (i, z) as the hash key.

– Evaluation. On input x ∈ {0, 1}nm+k(log(2n)+m)+3m and r ∈ {0, 1}t log(n), the evaluation algorithm
parses them as:

x = (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk)‖τ‖µ, r = (b1, . . . , bt), (37)

where |xi| = |vpi | = m, {pi}i∈[k] is a size-k subset of [2n− 1], and {bi}i∈[t] is a size-t subset of [n]. The
set {bi}i∈[t] specifies t leaves out of all the n leaves.
The algorithm builds a perfect binary tree T that has n leaves, where all the nodes are dummies.
As discussed in Sec. 7.2, the indices of the nodes in T are well-defined, even though T now contains
only dummy nodes. The evaluation procedure outputs Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt), which is
computed as follows:

1. Non-Editing: If τ = z or hi(τ) 6= hi(z) or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} 6= ∅:

(a) It fills the tree T as follows. It places (x1, . . . , xn) at the n leaves. For any other node in T , its
content is the hash value under hi on the concatenation of its left child and right child. Denote
the root value as t1.

(b) For i ∈ [t], Pbi is the sibling path of leaf xbi in the above tree T ;

(c) Use hi to hasha the following Λ value to a length-m string denoted as t2:

Λ = (p1, vp1), . . . , (pk, vpk)‖τ‖µ.

2. Editing: if τ 6= z and hi(τ) = hi(z) and Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅:
(a) It fills the tree T as follows. It places (x1, . . . , xn) at the n leaf positions in T . Then, fill the tree

bottom up, following the rule for Merkle tree (i.e. the hashing of two children nodes’ contents
is the parent node’s content), with the following exception: for node pi ∈ {p1, . . . , pk}, it fills
node pi with the vpi contained in x instead of the hash of the children of node pi. Denote the
root value as t1.

(b) For i ∈ [t], Pbi is defined as the sibling path of leaf xbi in the tree T ;

(c) Set t2 = µ (recall that µ is contained in x);

a Note that the input to hi should have length 2m. But |Λ| > 2m. This can be handled using domain-extension
techniques, e.g., the Merkle-Damg̊ard transformation [Mer90, Dam90].

The formal construction is provided in Constr. 2 and Prot. 2. We follow the high-level idea described in
Sec. 2.3 with the following modifications. Instead of hashing the (x1, . . . , xn) (contained in x) separately, we
build a Merkle tree using them as the leaves. In Constr. 2, Pi denotes the sibling path from leaf xi to the
root; Ind(b1, . . . , bt) denotes the set of indices of the nodes on path Pb1 , . . . ,Pbt . (See Sec. 7.2 for relevant
notation.) In Prot. 2, the receiver checks t leaves and their corresponding sibling paths. This ensures that
there are at least (n− k) “good” leaves, in the sense that there are valid sibling paths from the Merkle root
to them. In the Editing case, this will allow us to perform preimage editing by planting the vpi values on
the k “bad” paths to obtain a (partial) tree consistent with the root t1 contained in Y . Note that we also
hash the Λ in Step 1c. As explained in Sec. 2.3, this is to prevent the adversary from taking advantage of
preimage editing to find collisions.
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Protocol 2: Protocol Πhi
z for Our PB-CHRF

Let H′, m, n, δ, t and k be as in Constr. 2. Let ΠZKCnP = (BBCom,BBProve) be a black-box commit-and-
prove protocol. For a function defined by (i, z) from the PB-CRHF in Constr. 2, this protocol proceeds
as follows. Both parties take the security parameter 1λ as the common input. Sender S takes a string
x ∈ {0, 1}nm+k(log(n)+m)+3m as private input; receiver R takes a string r ∈ {0, 1}t log(n) as private input.

1. S parses x as (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk)‖τ‖µ (in the same manner as in Expression (37)). S
build a Merkle tree MT ′h,m(x) using (x1, . . . , xn) as the leaves (this is identical to Step 1a). Denote the
root of this tree as tx.

2. S and R execute BBCom(ν), the Commit stage of ΠZKCnP, where S commits to the following value

ν := tx‖(p1, . . . , pk). (38)

3. R sends the value r.

4. S parses r as (b1, . . . , bt) where each bi is of length log(n). With the values x and r, S evaluates the
function Hhi

z as per Constr. 2 to compute the following Y , which it sends to R:

Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt).

5. R checks if Pbi is Merkle-consistent for all i ∈ [t]. R aborts if any of the check fails.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that the ν committed in Stage 2
satisfies the following conditions:

(a) the {p1, . . . , pk} in ν form a size-k subset of [2n− 1], where k = δn; and

(b) the tx contained in τ is equal to t1, or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅.
7. (Receiver’s Output). R outputs Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt).
8. (Sender’s Output). S outputs X = (x1, . . . , xn)‖(p1, vp1), . . . , (pk, vpk)‖τ‖µ‖(b1, . . . , bt).

It is also worth noting that Constr. 2 and Prot. 2 work for an x of fixed length. But since we hash the
{xi}i∈[n] part using a Merkle tree, we can handle x with a various-length {xi}i∈[n] part (which dominates the
length of x). To maintain security, we simply include the height of the Merkle tree in Y .

7.4 Proof of Security

In this section, we prove the following theorem.

Theorem 5. The construction shown in Constr. 2 and Prot. 2 is a PB-CRHF (as per Def. 14) that makes
only black-box use of a CRHF H′. Moreover, the PB-OWF is private-coin (resp. public-coin) if H′ is private-
coin (resp. public-coin).

It follows immediately from the description that our construction makes only black-box use of H′, and
it also satisfies the complement requirement as per Def. 14. In the following, we first prove the collision
resistance of Constr. 2 in Lem. 5. Then, we establish the soundness and zero-knowledge property for Prot. 2
in Lem. 6 and Lem. 7, respectively.

Lemma 5 (Collision Resistance). Constr. 2 satisfies the collision-resistant requirement as in Def. 14.
Moreover, Constr. 2 is private-coin (resp. public-coin) if H′ is private-coin (resp. public-coin).

Proof. We first show that the function is input-compressing. According to Constr. 2. the input is of length:

|X| = |x|+ |r| = nm+ k(log(2n) +m) + 3m+ t log(n),
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and the output is the length

|Y | = 2m+ 2`m+ t log(n),

where ` = log(n) is the height of the Merkle tree T . Thus, we have |X| > |Y |.

Public-Coin v.s. Private-Coin. Let us recall the key generation algorithm in Constr. 2. In addition to
running the KGen′ of H′, it only sample a random string z ∈ {0, 1}m(λ), which is a public-key operation.
Therefore, this key generation procedure is private-coin (resp. public-coin) if H′ is private-coin (resp. public-
coin).

Collision Resistance. Assume for contradiction that there is a PPT adversary A that breaks the collision-
resistance property of Constr. 2.

Consider a function Hhi,z sampled from the family, where hi ← KGen(1λ) and z ← {0, 1}2m. First, we
claim that A cannot output an X that contains a τ satisfying τ 6= z and hi(τ) = hi(z); otherwise, A can be
used to break the collision resistance of h. Therefore, we assume in the following that the purported collision
pair X,X ′ output by A will not trigger the Editing condition.

Conditioned on the event that the Editing condition is not triggered, if Hhi,z(X) = Hhi,z(X
′), X and

X ′ must differ in the (x1, . . . , xn) part. This is because the output of Hhi,z contains the values (b1, . . . , bt)
(thus, the collision will not happen here); it also contains a hash of the value Λ = (p1, vp1), . . . , (pk, vpk)‖τ‖µ.
If X and X ′ have different Λ’s, A breaks the collision-resistant property of hi.

The above argument implies that X and X ′ contain different (x1, . . . , xn) values, but Hhi(X) and Hhi(X ′)
contain the same t1, the root of the Merkle tree on (x1, . . . , xn). Therefore, A can be converted to a collision-
finder that breaks the collision-resistant of hi (in the Step 1a Merkle tree).

Completeness follows immediately from the description of Constr. 2 and Prot. 2. In the following, we
prove soundness (Lem. 6) and zero-knowledge (Lem. 7).

Lemma 6 (Soundness). Prot. 2 satisfies the soundness requirement defined in Def. 14.

Proof. First, let Badt1 denote the following event: there does not exist an n-leaf full and complete binary
tree rooted at t1 (contained in Y ) such that at least (1 − δ)n leaves with their corresponding sibling paths
satisfy the Merkle consistency requirement.

At a high-level, the proof for Lem. 6 follows the approach of that for Lem. 3. First, we assert in Claim 10
that it is impossible (except with negligible probability) that R accepts the execution and the event Badt1
happens. Second, we show that whenever R accepts and Badt1 does not happen, there must exist a valid
preimage for the Y learned by R. These two claims together imply Lem. 6.

Claim 10. For every PPT machine S∗ and every auxiliary input aux ∈ {0, 1}∗, there exists a negligible
function negl(·) such that

Pr
[
r← {0, 1}t log(n); (·, Y )← 〈S∗(1λ, aux), R(1λ, r)〉 : (Y 6= ⊥) ∧ Badt1

]
≤ negl(λ),

where the probability is taken over the random sampling of r,and the randomness used by S∗ and R.

Proof. We claim that, except with negligible probability, the t1 in Y that S∗ sends in Stage 4 is equal to
the tx in ν committed in Stage 2. Due to the soundness of the BBProve performed in Stage 6, the following
holds with overwhelming probability

t1 = tx, or Ind(b1, . . . , bt) ∩ {p1, . . . , pk} = ∅.

Moreover, since the values {bi}ti=1 form a random size-t subset of [n], the event Ind(b1, . . . , bt)∩{p1, . . . , pk} = ∅
will only happen with probability ≤ (1 − δ)t (recall that k = δn), which is negligible as 0 < δ < 1 is a
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Fig. 1. A tree with 16 leaves, 8 Bad leaves, and 4 Bad (non-leaf) nodes. Solid lines indicate consistent hash
relation and dashed lines indicate inconsistent hash relation.

constant and t = ω(log λ). This implies that t1 = tx must happen with overwhelming probability. Therefore,
the following holds:

Pr [(Y 6= ⊥) ∧ Badt1 ]

= Pr [(Y 6= ⊥) ∧ Badt1 ∧ (t1 = tx)] + Pr [(Y 6= ⊥) ∧ Badt1 ∧ (t1 6= tx)]

= Pr[Badt1 ∧ (t1 = tx)] · Pr
[
(Y 6= ⊥)

∣∣ Badt1 ∧ (t1 = tx)
]

+ negl(λ),

where the probability is taken over the same random procedure as in Claim 10. To prove Claim 10, it now
suffices to show the following

Pr
[
(Y 6= ⊥)

∣∣ Badt1 ∧ (t1 = tx)
]
≤ negl(λ).

Note that Y 6= ⊥ represents the event that R does not abort until the end of the protocol. Therefore, we only
need to prove that

Pr
[
R does not abort until Stage 5 (inclusively)

∣∣ Badt1 ∧ t1 = tx
]
≤ negl(λ). (39)

Assuming that Badt1 happens and that t1 = tx, R does not abort in Stage 5 only if its challenge r = (b1, . . . , bt)
(in Stage 3) hits the leaves that have sibling paths consistent with the root t1 (= tx). Since tx is fixed before
r (a random subset of [n]), this event happens with probability < (1 − δ)t, which is negligible as 0 < δ < 1
is a constant and t = ω(λ). Therefore, Inequality (39) holds.

This finishes the proof for Claim 10.

In the following, we show the existence of a preimage for Y given that Y 6= ⊥ and that Badt1 does not
happen. Note that Y can be parsed as

Y = t1‖t2‖(Pb1 , . . . ,Pbt)‖(b1, . . . , bt),

where (Pb1 , . . . ,Pbt) are consistent with t1. Since Badt1 does not happen, there is a perfect binary tree
consistent with the root t1 that has at most δn “Bad” leaves. On the path from the root t1 to each Bad
leaf, there exists a node of minimal depth (i.e. closest to the root) for which the hash consistency breaks
(i.e. this node is not equal to the hash value of the concatenation of its two children). We call such nodes
Bad nodes. Note that the number of Bad nodes cannot exceed δn. (See Fig. 1 for an example.) W.l.o.g., we
assume that there are exact k = δn Bad nodes, and denote their indices in the tree as {p1, . . . , pk}. We refer
to the content of node pi as vpi for all i ∈ [k].
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Figure 4: Functionality FF,φ for Proof-Based OWFs Supporting Predicates

The ideal functionality FF interacts with a sender S and a receiver R. Upon receiving the input x ∈ {0, 1}a(λ)

from S and r ∈ {0, 1}b(λ) from R, the functionality FF sends x‖r to S, and (F (x‖r), φ(α)) to R, where α is
the prefix of x with the length satisfying φ’s input requirement.

Now we describe how to find a preimage X = x‖r for Y . We set r as the (b1, . . . , bt) part in Y . The xi’s
in x are defined in the following way: if the i-th leaf in the above binary tree is not Bad, set xi to be the
contents of this leaf; otherwise, set xi to be a dummy string (e.g. 0λ). The (pi, vpi)’s consist of the indices
and corresponding contents Bad nodes. We set τ such that it triggers the Editing condition in Constr. 2
(i.e. τ 6= z and h(τ) = h(z))12. And µ is set to the value t2 in Y .

To see why the above x‖r is a valid preimage for Y under Hhi
z , just follow the evaluation procedure in

Constr. 2. The Editing condition is triggered due to the way we set τ and the fact that the set of Bad
indices {p1, . . . , pk} does not overlap with Ind(b1, . . . , bt) (i.e. the indices of nodes on the sibling paths of
leaves {xb1 , . . . , xbt}). Therefore, when building the Merkle tree, we will place vpi once we reach node pi.
Since all the non-Bad nodes in this Merkle tree are identical to the above binary tree, they necessarily share
the same root value t1. Finally, t2 value will also be put in the correct position in Y as t2 = µ in the Editing
case.

Lemma 7 (Zero-Knowledge). Prot. 2 satisfies the zero-knowledge requirement defined in Def. 14.

Proof (Sketch). This lemma follows from an argument similar to that for Lem. 4. The ideal-world simulator
Sim use S1 (the Commit-stage simulator for ΠZKCnP) and S2 (the Prove-stage simulator for ΠZKCnP) to go
through Stage 2 and Stage 6 respectively. Note that Sim receives R’s challenge r in Stage 3. It sends this r to
the ideal functionality to learn Y . Similar as in the proof of Lem. 4, this Y value contains all the information
to finish the remainder of the simulated interaction with R.

8 Proof-Based One-Way Functions Supporting Predicates

Following the approach discussed in Sec. 2.4, we now describe how to extend our PB-OWF construction
from Sec. 5 to support a predicate.

8.1 Definition

Definition 15 (PB-OWFs Supporting Predicates). Let a(λ), b(λ) and c(λ) be polynomials on λ. Let
φ be an efficiently computable predicate. A proof-based one-way function supporting φ, denoted as (F,Πφ),
consists of a function Fλ : {0, 1}a(λ) × {0, 1}b(λ) → {0, 1}c(λ) and a protocol Πφ = 〈S,R〉φ of a pair of PPT
machines. The function F satisfies the following one-wayness requirement:

– One-Wayness. Fλ satisfies the same one-way requirement as in Def. 12. That is, for all r ∈ {0, 1}b(λ),
Fλ(·, r) is one-way.

In the protocol Π, both parties take the security parameter (which we omit henceforth for simplicity) and
a predicate φ as public input. The private input for S and R are x and r, respectively. At the end of the
protocol, S outputs X, and R outputs Y ‖u. The protocol satisfies the following requirements:

– Completeness. The protocol Π computes the ideal functionality FF defined in Fig. 4. Namely, ∀x ∈
{0, 1}a(λ) and ∀r ∈ {0, 1}b(λ), if (X,Y ‖u)← 〈S(x), R(r)〉φ, then X = x‖r, Y = Fλ(X) and u = φ(α).

12 Note that such a τ exists with overwhelming probability. Because hi maps length-2m strings to length-m ones,
it cannot be injective on more than 2m strings in its domain. Since we pick z ← {0, 1}2m, with probability
at least (1− 1

2m
), there exists a τ 6= z s.t. h(z) = h(τ).
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– Soundness. For every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗, there exists a negligible
function negl(·) such that

Pr

[
r← {0, 1}b(λ);
(·, Y ‖u)← 〈S∗(z), R(r)〉φ

:
Y 6= ⊥ and
@x s.t. (Fλ(x‖r) = Y ∧ φ(α) = u)

]
≤ negl(λ)

where the probability is taken over the random sampling of r, and the randomness used by S∗ and R.

– Zero-Knowledge. This property is defined in the same way as the ZK property of Def. 12, but w.r.t.
the ideal functionality specified in Fig. 4.

8.2 Our Construction

To show how we can modify the constructions in Sec. 5 to satisfy the above requirements, we first review
Constr. 1 and Prot. 1 from a new perspective.

A New Interpretation of Our PB-OWF Construction. Recall that the input to F f in Constr. 1 takes
the following form:

x = (x1, . . . , xn)︸ ︷︷ ︸
α

‖ (p1, y
′
p1

), . . . , (pk, y
′
pk

)︸ ︷︷ ︸
β

, and r = (b1, . . . , bt).

On an input x = α‖β‖r, we can think of Constr. 1 as applying the following 3 steps:

– Encoding: apply some encoding Enc on α. In Constr. 1, Enc(α) simply partitions α to xi’;

– Hardness-Inducing: perform some one-way operation on Enc(α) to ensure that the output is hard
to invert. In Constr. 1, this one-way operation is just applying the oracle OWF f to each element of
Enc(α) = (x1, . . . , xn). In Prot. 1, the sender reveals some portion of Enc(α) specified by the receiver’s
challenge r. These openings allow R to check if S performs honestly. However, this can only ensure that
S∗ does not cheat for a large portion of Enc(α); there is still a small part (say, a δ fraction) of Enc(α) on
which S∗ can cheat. Therefore, we need the following Editing step;

– Editing: when β and r satisfy some predefined condition, we will edit the output of last step using the
values contained in β. This step is critical to ensure the existence of a preimage under F f for the Y
learned by the receiver: as mentioned in last step, there is a small portion of Enc(α) on which S∗ may
cheat. This Editing step essentially extends the pre-image set of Y from a single Enc(α) to all the strings
within a δ fractional distance to the valid Enc(α). In this way, Y 6= ⊥ will always have a preimage even
if S∗ can cheat on a δ fraction of Enc(α) without being caught by R.

In light of the above perspective, we now discuss how to make the construction support ZK proofs for an
arbitrary predicate φ(·). Very roughly, we will pick a more robust Encoding approach that binds the sender
to a unique α after the execution of the Compute stage. Moreover, it should be flexible enough to allow the
sender to prove that this α satisfies some predicate φ(·) later in the Prove stage. The Hardness-Inducing
step will also need some change to accommodate our new Encoding method (such that we do not hurt the
one-wayness). In the following, we elaborate on our construction.

The New Function F f . We use a (n, t)-perfectly secure verifiable secret sharing VSS as our new Enc.
Note that VSS is a randomized procedure. Fortunately, x is a random string. So we will draw randomness
from some part (denoted as η) of x. That is, we encode α as Enc(α; η) := VSSShare(α; η) = ([α]1, . . . , [α]n),
where {[α]i} are the VSS shares. Now, we want to apply some Hardness-Inducing on Enc(α; η). Note that
it does not suffice anymore to apply the oracle OWF f on these shares (like what we did in Constr. 1),
because these VSS shares are correlated (thus, α may be recoverable from {f([α]i)}i∈[n]). Therefore, we
instead apply Naor’s commitment to these shares, which can be built from OWF in black-box. Note that
Naor’s commitment also requires randomness, which will be obtained from other parts of x. For the Editing
step, we use the same approach as in Constr. 1. We formalize the above intuition by showing the complete
description of our new F f in Constr. 3.
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The New Protocol Πf . The protocol that computes our new F f follows the same template as Prot. 1.
The formal description is given in Prot. 3. We now explain it by comparing it with Prot. 1. The R in Prot. 3
additionally takes a string ρ as input. Looking ahead, this ρ will be used as the first message for Naor’s
commitment. The sender parses its input x as:

x = α‖η‖ (γ1, . . . , γn)︸ ︷︷ ︸
γ

‖(p1, c
′
p1

), . . . , (pk, c
′
pk

).

Same as before, S first encodes α using a (n, t)-perfectly secure VSS scheme with randomness η. Denote the
resulting shares as {[α]i}i∈[n]. S then commits to these shares (in parallel) using Naor’s commitment, using
ρ as the first message and {γ}i∈[n] as the respective randomness. That is, S define the following values:

c1 = Comρ([α]1; γ1), . . . , cn = Comρ([α]n; γn).

Note that S has not sent to R these values yet. These {ci}i∈[n] values should be viewed as the analogs of
{yi}i=[n] in Stage 1 of Prot. 1. One can think of them as the result of our new Encoding and Hardness-
Inducing performed on the α part in x.

Recall that the protocol Πf needs to additionally let R learn φ(α). To do that, we use the “MPC-in-the-
head” technique [IKOS07, GLOV12]. The sender emulates “in his head” n parties {Pi}i∈[n], where Pi’s input
is the i-th share [α]i. These parties execute a (n, t)-perfectly secure MPC protocol for computing φ(α). Let
{v1, . . . , vn} denote the views of the n parties during the MPC execution. The sender appends these views
to the ν committed in BBCom, and later reveals those specified by receiver’s r (see below). From now on,
Prot. 3 proceeds in an identical way as Prot. 1 except for the “consistency-checking” step:

– in Stage 5 of Prot. 1, R only checks yi = f(xi) for the (xi, yi) pairs revealed by S according to r;

– while in Stage 7 of Prot. 3, the revealed {cbi , [α]bi , vbi}i∈[t] values (according to r) have a slightly more
complex relation due to our new Encoding and Hardness-Inducing method. Here, R needs to verify
that cbi is indeed a valid Naor’s commitment to [α]bi , and that the revealed {[α]bi , vbi}i∈[t] values are
consistent MPC inputs and views for the corresponding parties. This is crucial for us to obtain soundness
in this setting (proved formally in Lem. 9).

Other parts of the Compute phase (especially, how the Editing is handled) are done in the same way as
Prot. 1. The ZK property can be proved as before, plus the (n, t)-privacy of the VSS and MPC protocol.

Formal Description. We present the formal construction in Constr. 3 and Prot. 3, relying on the following
building blocks (in addition to the f and ΠZKCnP for the construction in Sec. 5).

– Naor’s commitment scheme Com [Nao90], which is a two-round statistically-binding commitment making
only black-box use of f .

– (n+ 1, t)-perfectly secure VSS scheme VSS = (VSSShare,VSSRecon) (see Def. 2);

– A (n, t)-perfectly secure MPC protocol (see Def. 3 and Rmk. 2);

For the VSS and MPC protocols, we require that t is a constant fraction of n such that t ≤ n/3. There are
known constructions satisfying these properties [BGW88, CDD+99].

8.3 Security Proof

Theorem 6. The constructions shown in Constr. 3 and Prot. 3 is a PB-OWF that supports predicates (as
per Def. 15). Moreover, it only makes black-box use of OWFs.

It follows immediately from the description that our construction makes only black-box use of the OWF f ,
and it also satisfies the complement requirement as per Def. 15. In the following, we establish the one-wayness
in Lem. 8, soundness in Lem. 9, and zero-knowledge property in Lem. 10.

Lemma 8 (One-Wayness). The function F f in Constr. 3 is one-way as defined in Def. 15.
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Construction 3: The New One-Way Function F f (·)
Let n(λ) be a polynomial on λ. Let both t and k be a constant fraction of n such that k < t ≤ n/3. On
input X, F f (X) is be computed as follows:

1. Parse the input X as the following two parts:

x = α‖η‖γ‖(p1, c
′
p1

), . . . , (pk, c
′
pk

), and r‖ρ where r = (b1, . . . , bt),

where |α| = λ, |ρ| = 3λ, and {pi}i∈[k] and {bi}i∈[t] should be long enough such that they form a size-k
subset and a size-t subset of [n], respectively (also see Rmk. 4).

Remark 6. (On the length of η, γ and c′pi ’s) The η should be long enough such that it can be used
as the random tape in the VSS execution. The γ should be long enough such that it can be used as
the randomness used in Step 3 to commit to the VSS shares of α. Each c′pi is of the same length as a
commitment to a VSS share (i.e., the length of ci in Step 3). Given a concrete VSS scheme, the length
of these values can be determined accordingly.

2. Emulate n+ 1 (virtual) players {Pi}i∈[n+1] to execute the VSS protocol, where the input to Pn+1 (i.e.,
the Dealer) is α. At the end of the execution, each player Pi (i ∈ [n]) obtains a share of α denoted as
[α]i. The randomness for this part is taken from η.

3. For i ∈ [n], apply Naor’s commitment Com on each [α]i, where the first message for Com is set to ρ,
and the randomness used by the committer is from γ = (γ1, . . . , γn). Namely, it generates:

c1 = Comρ([α]1; γ1), . . . , cn = Comρ([α]n; γn).

4. Compute (s1, . . . , sn) as follows:

(a) if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then let si := ci for all i ∈ [n].

(b) if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then let si :=

{
c′i i ∈ {p1, . . . , pk}
ci i ∈ [n] \ {p1, . . . , pk}

.

5. Output Y = (s1, . . . , sn)‖([α]b1 , γb1), . . . , ([α]bt , γbt)‖ρ‖(b1, . . . , bt).

Proof. We reduce one-wayness to the computationally-hiding property of Naor’s commitment Com. Con-
cretely, given a PPT machine Aow breaking one-wayness of F f , we will construct a PPT machine ACom that
breaks the security of Com. The machine ACom works in the following way:

– It samples randomly the x = α‖η‖γ‖(p1, c
′
p1

), . . . , (pk, c
′
pk

), r = {b1, . . . , bt} and ρ defined in Constr. 3.

– It computes {[α]1, . . . , [α]n} as specified in Step 2 of Constr. 3.

– ACom forwards ρ (the first-round message for Naor’s commitment) and m0 = {0|[α]i|}i∈[n]\r and m1 =
{[α]i}i∈[n]\r to the Com challenger.

– The challenger picks a random bit b← {0, 1} and commits to each element in mb in parallel, using ρ as
the first message. Denote the commitments from the challenger as {c∗i }i∈[n]\r.

– ACom then computes {si}i∈[n] where si =

{
c∗i i ∈ [n] \ r
Comρ([α]i; γi) i ∈ r

.

– It internally invokes Aow on the input

Y ∗ := (s1, . . . , sn)‖([α]b1 , γb1), . . . , ([α]bt , γbt)‖ρ‖(b1, . . . , bt),

and in turn receives a value X∗.
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Protocol 3: Protocol Πf
F,φ

Input: the security parameter 1λ is the common input. The sender S takes x as its private input; the
receiver R takes (r, ρ) as its private input.

1. R sends ρ to S;

2. S parses the input as x = α‖η‖γ‖(p1, c
′
p1

), . . . , (pk, c
′
pk

). S computes the (c1, . . . , cn) as defined in Step 3
of Constr. 3. Note that {ci}i∈[n] are supposed to be the commitments to the VSS shares {[α]i}i∈[n].

3. S emulates in its head n (virtual) players {Pi}i∈[n], where Pi’s input is [α]i. These n parties execute the
the (n, t)-perfectly secure MPC protocol for the following functionality: the functionality reconstructs
α from {[α]i}i∈[n] (collected from each party), and sends φ(α) to all the parties as their output. For
i ∈ [n], let vi be the view of party Pi during the MPC execution.

4. S and R executes BBCom(ν), the Commit stage of ΠZKCnP, where S commits to the value

ν := (c1, . . . , cn)‖(v1, . . . , vn)‖(p1, c
′
p1

), . . . , (pk, c
′
pk

). (40)

5. R sends r to S.

6. S interprets r as a size-t subset {b1, . . . , bt} ⊆ [n]. S computes the s = (s1, . . . , sn) as defined in Step 4
of Constr. 3. S sends to R the values s and {(cbi , [α]bi , γbi , vbi)}i∈[t]. (Recall that [α]bi is the value
committed in cbi using randomness γbi .)

7. Upon receiving the values S sends in last stage, R checks:

(a) Comρ([α]bi ; γbi) = cbi holds for all i ∈ [t]; and

(b) {[α]b1 , . . . , [α]bt} are consistent w.r.t. the VSS procedure; and

(c) {vb1 , . . . , vbt} constitute consistent (as per Def. 4) views w.r.t. the MPC execution as described in
Stage 3. We remark that this includes checking that [α]bi is the prefix of vbi .

If all the checks pass, R proceeds to next step; otherwise, R halts and outputs ⊥.

8. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that it performed Stage 6
honestly. That is, S proves that the ν committed at Stage 4 satisfies the following conditions:

(a) the values {p1, . . . , pk} contained in ν form a size-k subset of [n]; and

(b) the (cb1 , . . . , cbt) revealed by S in Stage 6 do consist of the subset of {ci}i∈[n] (contained in ν)
specified by r (sent by R in Stage 5); and

(c) the (vb1 , . . . , vbt) revealed by S in Stage 6 do consist of the subset of {vi}i∈[n] specified by r; and

(d) The s = (s1, . . . , sn) satisfies the following conditions:
– if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then si = ci for all i ∈ [n].

– if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then si =

{
c′i i ∈ {p1, . . . , pk}
ci i ∈ [n] \ {p1, . . . , pk}

.

9. (Receiver’s Output.) R outputs Y = (s1, . . . , sn)‖([α]b1 , γb1), . . . , ([α]bt , γbt)‖ρ‖(b1, . . . , bt) and u =
φ(α) (this value can be obtained from the MPC views revealed to R).

10. (Sender’s Output.) S outputs X = α‖η‖γ‖(p1, c
′
p1

), . . . , (pk, c
′
pk

)‖ρ‖(b1, . . . , bt).

– ACom outputs 1 if and only if F f (X∗) = Y ∗.

We then argue that ACom wins the hiding game with non-negligible probability. There are two possible
cases depending on the Com challenger’s choice of b:

1. the challenger commits to m1: the Y ∗ is identically distributed as a F f (·) evaluation on a random input.
Thus, Aow will find a valid preimage X∗ with non-negligible probability, which implies that ACom will

42



guess b = 1 correctly with non-negligible probability. We remark that there is a negligible chance that
r ∩ {p1, . . . , pk} 6= ∅. But this can be safely ignored without affecting the current proof.

2. the challenger commits to m0: note that m0 ∪{vi}i∈[n]\r cannot be consistent VSS shares as m0 contains
only 0 strings. Moreover, it follows from the statistically-binding property that {c∗b1}i∈[t] (the commit-
ments to m0) cannot be interpreted as commitments to values other than m0 (except with negligible
probability). Since these {c∗b1}i∈[t] values are contained in Y ∗, even an unbounded adversary cannot find
and X∗ such that F f (X∗) = Y ∗ (except with negligible probability). Thus, in this case, ACom will output
1 with negligible probability.

The above analysis shows that
∣∣Pr[ACom = 1|b = 1]−Pr[ACom = 1|b = 0]

∣∣ is non-negligible. Therefore, ACom

breaks the hiding property of Com.

Lemma 9 (Soundness.). Prot. 3 satisfies the soundness property specified in Def. 15.

Proof. From our new perspective described at the beginning of Sec. 8.2, it is not hard to see that the
soundness follows from the same argument used for Lem. 3 except for the following two caveats:

1. As mentioned earlier, the Encoding and Hardness-Inducing methods used in Prot. 3 (and Constr. 3)
are different from those in Prot. 1. As a result, the receiver in Prot. 3 needs to check the consistency of
the revealed VSS shares. We need to argue that such checks suffice to ensure the existence of a preimage.

2. Lem. 3 ensures the existence of a preimage X for the non-aborting Y learned by R. In Prot. 3, R
additionally output a value u; so we need to (additionally) argue that u is the result of φ evaluated on
the prefix α of X.

In the following, we address the above two points in order.

Addressing the First Point. To prove soundness for the current construction, we need to argue formally
that if S∗ cheats on the (c1, . . . , cn) values, R will abort with overwhelming probability. Recall that the
counterpart of ci’s in Prot. 1 are (y1, . . . , yn), where yi is supposed to be f(xi) for some underlying xi; and
in the proof of Lem. 3, we need to prove Claim 9, which says that there are at most δn many “bad” yi’s (i.e.,
there are no pre-images for them). In the current proof, we need an analog of this claim: here, the ci’s are
commitments to VSS shares; so we need to argue that if S∗ commits to more than k “bad” shares (defined
later), R will abort with overwhelming probability by checking t (out of n) shares.

Formally, let ([α]∗1, . . . , [α]∗n) be the values committed in {ci}i∈[n] by S∗. We denote the following event,
which should be considered as an analog of the event “BadY ” defined in the proof of Lem. 3:

– BadY : there are at least k = δn shares in {[α]∗i }i∈[n] that are “bad”, i.e., it is impossible to convert these
{[α]∗i }i∈[n] values to consistent VSS shares by modifying less than k = δn of them (where 0 < δ < 1 is a
constant).

We now show that, by checking a size-t random subset of them, R will catch at least one pair of inconsistent
shares with overwhelming probability. In the following, we prove it relying on the “inconsistency graph”
technique from [IKOS07].

Define a graph G with n vertices (corresponding to the n views). Assign an edge between node i and j in
G if the views [α]∗i and [α]∗j are inconsistent w.r.t. VSS. When BadY happens, it must be that the minimum
vertex cover of G has size at least k = δn. We would like to argue that a random choice of t (a constant
fraction of n) vertices will hit an edge with overwhelming probability. For this, we use the well-known
connection between the size of a minimum vertex cover to the size of a maximum matching. Concretely, the
graph G must have a matching M of size at least δn

2
. (Otherwise, if the maximum matching contains less

than δn
2

edges, the vertices of this matching form a vertex cover of size less than δn.) If the receiver R picks
at least one edge of G, he will reject. The probability that the t vertices (shares) that the receiver picks miss
all the edges of G is smaller than the probability that he misses all edges in M. As shown in the following,
the latter is negligible.

We use P to denote the number of distinct pairs of vertices in G, i.e. P :=
(
n
2

)
. We use T to denote the

distinct pairs of t different vertices, i.e. T :=
(
t
2

)
. We use K to denote the size ofM, i.e. K := δn

2
. Then, the
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following holds:

Pr[all edges in M are missed] =

(
P−K
T

)(
P
T

) =
(P −K − T + 1)(P −K − T + 2) · · · (P −K)

(P − T + 1)(P − T + 2) · · ·P

=

(
1− K

P − T + 1

)(
1− K

P − T + 2

)
· · ·
(

1− K

P

)

≤
(

1− K

P

)T
=

(
1− δ

n− 1

) t(t−1)
2

= e−Ω( t2

n ) (41)

By our choice of parameters, t is a constant fraction of n. Therefore, the above probability is negligible.

Remark 7 (Binding to α). It is worth noting that the above argument shows that there are at least (n −
k) consistent VSS shares. Since the parameter k is no larger than the VSS threshold t (by our choice of
parameter), these (n− k) consistent shares statistically bind the sender to a unique α.

Addressing the Second Point. To handle this issue, Prot. 3 follows the black-box commit-and-prove
technique in [IKOS07, GLOV12, GOSV14]: in Stage 3, the sender performs the MPC-in-the-head execution
to compute φ(α); later in Stage 5 and Stage 7c, the receiver checks a size-t random subset of the views of
the MPC-in-the-head parties. Following the same “inconsistency graph” argument as before, it is not hard
to see that at least (n − k) parties have consistent views w.r.t. the MPC execution for φ(α). Since k ≤ t
and the MPC protocol used in our construction is (n, t)-perfectly secure13, it follows that φ(α) is computed
honestly. More accurately, this means that at least (n−k) parties receive the same φ(α) value as the output,
where the α is the (unique) value reconstructed from the VSS shares from these (n− k) parties’ input (i.e.,
the value to which S was bound as described in Rmk. 7).

This finishes the proof for soundness.

Lemma 10 (Zero-Knowledge). Prot. 3 satisfies the zero-knowledge property defined in Def. 15.

Proof. To prove the zero-knowledge property, we need to show a PPT ideal-world simulator Sim for any
PPT malicious receiver R∗. At a high-level, such a simulator can be constructed as follows. Sim will use the
simulator of the commit-and-prove protocol ΠZKCnP at Stages 4 and 8. We will show how this allows Sim to
finish the interaction without knowing the sender’s input x.

Formally, we will build 2 hybrids starting from the real execution between the honest sender and R∗, and
show that the second hybrid is essentially the simulator we want. We use OutHi

(i ∈ {0, 1}) to denote the
output of hybrid Hi.

Hybrid H0(1λ, x, z). This hybrid uses the strategy of the honest S(1λ, x) to interact with the corrupted
receiver R∗(1λ, z). At the end of the execution, H0 outputs whatever R∗ outputs. This hybrid is exactly the
real execution.

Hybrid H1(1λ, x, z). This hybrid is identical to the previous one, except that

– At Stage 4, instead of executing BBCom, H1 uses the strategy of Sim1 in its communication with R∗,
where Sim1 is the simulator for the Commit stage of ΠZKCnP (see Def. 8).

– At Stage 8, instead of doing the proof honestly, H1 uses the strategy of Sim2 in its communication with
R∗, where Sim1 is the simulator for the Prove stage of ΠZKCnP (see Def. 8).

OutH0

c
≈ OutH1

: This is due to the ZK property of ΠZKCnP.

The Simulator Sim(1λ, z). We now describe the simulator Sim for the ideal execution. Sim is identical to
H1 except for the following changes:

13 Here, (n, t)-perfect robustness (Def. 7) will suffice.
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– Sim does not need to execute Stage 2;

– Upon receiving r = (b1, . . . , bt) at Stage 5, Sim sends r and ρ (received from Stage 1) to the idea
functionality FF,φ, and receives back

Y = (s1, . . . , sn)‖([α]b1 , γb1), . . . , ([α]bt , γbt)‖ρ‖(b1, . . . , bt), and φ(α).

– With {[α]bi}i∈[t] (the input to Pbi ’s) and φ(x) (the output of Pbi ’s), Sim run the MPC simulator to
generate the simulated views {ṽbi}i∈[t] for parties {Pbi}i∈[t]. Since the MPC protocol is (n, t)-perfectly
secure14, the simulated views are identically distributed to the views in the real execution.

– At Stage 6, Sim sends to R∗ the values s = (s1, . . . , sn) and {(cbi , [α]bi , γbi , ṽbi)}i∈[t] (Note that s and
{(cbi , [α]bi , γbi)}i∈[t] are contained in Y ∗.)

We remark that, unlike H1, Sim does not need to know the input x to the sender; the Y ∗ it obtained from
FF,φ contains all the information it needs to finish its execution with R∗. In particular, although the s and
{(cbi , [α]bi , γbi)}i∈[t] values now come from the ideal functionality FF,φ, they are identically distributed to the
ones generated by the honest sender. As mentioned earlier, the simulated views {ṽbi}i∈[t] are also identically
distributed to the views in the real execution. It then follows that the output of Sim is identical to H1.

This finishes the proof for Lem. 10.
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Supplementary Material

A Proof-Based Pseudo-Random Generators (Full Version)

A.1 Definition

Definition 16 (Proof-Based PRGs). Let a(λ), b(λ) and c(λ) be polynomials on λ. A proof-based pseu-
dorandom generator consists of function Gλ : {0, 1}a(λ)+b(λ) → {0, 1}c(λ) and a protocol Π = (S,R) involving
a pair of PPT machines. We use (X,Y ) ← 〈S(1λ, x), R(1λ, r)〉 to denote the execution of protocol Π where
the security parameter is λ, the inputs to S and R are x and r respectively, and the outputs of S and R are
X and Y respectively. Let Y = ⊥ denote that R aborts in the execution. The following conditions hold:

– Pseudo-randomness. For every r ∈ {0, 1}b(λ), Gλ(·‖r) is a PRG on its first input. That is, it is
efficiently computable, length stretching, and

{x← {0, 1}a(λ) : Gλ(x‖r)}λ∈N
c
≈ {Uc(λ)}λ∈N.

– Completeness. ∀λ ∈ N, ∀x ∈ {0, 1}a(λ) and ∀r ∈ {0, 1}b(λ), if (X,Y ) ← 〈S(1λ, x), R(1λ, r)〉, then
X = x‖r and Y = Gλ(x‖r).

– Soundness. For every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗, there exists a negligible
function negl(·) such that

Pr

[
r← {0, 1}b(λ);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 :

Y 6= ⊥ and
@x s.t. Gλ(x‖r) = Y

]
≤ negl(λ)

where the probability is taken over the random sampling of r,and the randomness used by S∗ and R.

– Zero-Knowledge. This property is defined by requiring the security against corrupted R in the ideal-
real paradigm for 2PC w.r.t. the ideal functionality FG, which is obtained by replacing F with G in
Fig. 1. Namely, there exist a PPT simulator Sim such that for any PPT adversary A, ∀x ∈ {0, 1}a(λ),
∀r ∈ {0, 1}b(λ), and ∀z ∈ {0, 1}∗,{

REALΠ,A(z)(1
λ, x, r)

}
λ∈N

c
≈
{
IDEALFG,Sim(z)(1

λ, x, r)
}
λ∈N .

where REALΠ,A(z)(1
λ, x, r) and IDEALFG,Sim(z)(1

λ, x, r) are defined in the same way as in Def. 12.

A.2 Our Construction

We now present our construction for proof-based PRGs, thus establishing the following theorem.

Theorem 7. There exists a PB-PRG that satisfies Def. 16 and makes only black-box use of PRGs.

Our construction consists of a PRG Gg (Constr. 4) together with a black-box protocol (Prot. 4) that
proves the membership for Gg. The construction relies on the following building blocks:

– A pseudo-random generator g;

– A zero-knowledge commit-and-prove protocol ΠZKCnP = (BBCom,BBProve) as per Def. 8. Such protocols
can be constructed assuming only black-box access to g.

It follows immediately from the description that our construction makes only black-box access to PRGs. In
Appx. A.3, we show that it satisfies definition Def. 16.
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Construction 4: Pseudo-Random Generator Gg

Let m(λ) and n(λ) be polynomials on λ. Let 0 < δ < 1 be a constant, and k(λ) = δn(λ). Let t(λ) = log2(λ).
Assume that g : {0, 1}λ → {0, 1}m(λ) is a PRG. On input x ∈ {0, 1}nλ+k(log(n)+m) and r ∈ {0, 1}t log(n), Gg

parses them as
x = (x1, . . . , xn)‖(p1, y

′
p1

), . . . , (pk, y
′
pk

), and r = (b1, . . . , bt),

where |xi| = λ, |y′pi | = m, {pi}i∈[k] is a size-k subset of [n], and {bi}i∈[t] is a size-t subset of [n]. Gg outputs
Y = (z1, . . . , zn), which are computed as follows:

1. if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then zi =

{
xi i ∈ {b1, . . . , bt}
g(xi) otherwise

;

2. if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then zi :=


xi i ∈ {b1, . . . , bt}
y′i i ∈ {p1, . . . , pk}
g(xi) otherwise

.

A.3 Proof of Security

In this section, we prove that the function Gg in Constr. 4 and Prot. 4 constitute a black-box PRG with
proof (as per Def. 16). In Lem. 11, we prove that Gg satisfies the pseudo-randomness requirement in Def. 16.
Given the description of Constr. 4, the completeness of Prot. 4 follows immediately by construction. We then
establish the soundness and zero-knowledge property in Lem. 12 and 13 respectively.

Lemma 11 (Pseudo-randomness of Gg). Constr. 4 satisfies the pseudo-randomness property defined in
Def. 16.

Proof (Sketch). We first argue that Gg is length-stretching. To see that, note that the input and output are
of the following length respectively:

|X| = |x|+ |r| = δnm+ δn log(n) + λn+ t log(n), and |Y | = nm− tm+ λt,

where 0 < δ < 1 is a constant, t = log2(λ) (see also Rmk. 4), and m and n are polynomials on λ. Note that
we have control over choice of m and n. For example, If we set n = Ω(λ2) and |m| = Ω(log n), then the
dominating term for the input length will be δmn, and the dominating term for the output length will be
mn. Since 0 < δ < 1, Gg is length-stretching.

The pseudo-randomness of Gg follows from standard hybrid arguments. The only point that requires
extra attention is that the input to Gg has two parts x and r, and we need to prove the pseudo-randomness
of its output for all r ∈ {0, 1}b(λ). Note that since x is sampled randomly, Case 1 in Constr. 4 happens
with overwhelming probability. Therefore, the pseudo-randomness of Gg (for all r) can be reduced to the
pseudo-randomness of g by standard hybrid technique. We omit the details.

Lemma 12 (Soundness). Protocol Πprgp in Prot. 4 satisfies the soundness property defined in Def. 16.
Namely, for every PPT machine S∗ and every auxiliary input z ∈ {0, 1}∗, there exists a negligible function
negl(·) such that

Pr

[
r← {0, 1}t log(n);
(·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 :

Y 6= ⊥ and
@x s.t. Gg(x‖r) = Y

]
≤ negl(λ). (43)

Proof. Let us first define “non-trivial” S∗’s, which are the malicious provers that can make the honest receiver
accept with non-negligible probability.

Definition 17 (Non-Trivial S∗). A PPT machine S∗ is non-trivial if there exists some auxiliary input
z ∈ {0, 1}∗ such that the following holds: there exits a polynomial poly(·) such that for infinitely many λ ∈ N,

Pr
[
r← {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 : Y 6= ⊥

]
≥ 1

poly(λ)
. (44)
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Protocol 4: Protocol Πg
G for Our Proof-Based Pseudorandom Generator

Let g, m, n, k and t be as in Constr. 4.

Input: both parties take the security parameter 1λ as the common input. Sender S takes a string x ∈
{0, 1}nλ+(log(n)+m)k as private input; receiver R takes a string r ∈ {0, 1}t·log(n) as private input.

1. S parses the input as x = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

), where |xi| = λ for all i ∈ [n], |y′pj | = m

for all j ∈ [k], and {pi}i∈[k] forms a size-k subset of [n]. S defines a 2 × n matrix M =

[
x1 · · · xn
y1 · · · yn

]
,

where yi = g(xi) for all i ∈ [n].

2. S and R execute BBCom(α), the Commit stage of ΠZKCnP, where S commits to the value

α := M‖(p1, y
′
p1

), . . . , (pk, y
′
pk

). (42)

3. R sends r to S.

4. S interprets r as a size-t subset {b1, . . . , bt} ⊆ [n], and defines Mr =

[
xb1 · · · xbt
yb1 · · · ybt

]
, i.e. the columns of M

specified by r. S also computes (z1, . . . , zn) in the way specified in Constr. 4. S sends to R the values
Mr and (z1, . . . , zn).

5. With Mr, R checks (via its oracle access to g(·)) if g(xbi) = ybi holds for all i ∈ [t]. If all the checks
pass, R proceeds to next step; otherwise, R halts and outputs ⊥.

6. S and R execute BBProve, the Prove stage of ΠZKCnP, where S proves that it performs Stage 4 honestly.
Namely, S proves that the α committed at Stage 2 satisfies the following conditions:

(a) the values {p1, . . . , pk} contained in α form a size-k subset of [n]; and

(b) the Mr does consist of the columns in M specified by r; and

(c) the (z1, . . . , zt) satisfy the following conditions:

– if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅, then zi =

{
xi i ∈ {b1, . . . , bt}
yi otherwise

;

– if {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅, then zi :=


xi i ∈ {b1, . . . , bt}
y′i i ∈ {p1, . . . , pk}
yi otherwise

.

Similar as in Prot. 1, these conditions can be expressed a predicate on α.

7. (Receiver’s Output). R outputs Y = (z1, . . . , zn).

8. (Sender’s Output). S outputs X = (x1, . . . , xn)‖(p1, y
′
p1

), . . . , (pk, y
′
pk

)‖(b1, . . . , bt).

It is not hard to see that if a PPT machine S∗(1λ, z) is not non-trivial for all z ∈ {0, 1}∗, then Inequal-
ity (43) holds immediately. Therefore, to prove Lem. 12, we only need to focus on the non-trivial S∗’s.

For any (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 such that Y 6= ⊥, the Y can then be parsed as (z1, . . . , zn) such that
|zi| = λ for i ∈ {b1, . . . , bt} and |zi| = m for i ∈ [n] \ {b1, . . . , bt}. Recall that {b1, . . . , bt} is the size-t subset
of [n] specified by r. Given such a Y and r, we say that a zi is “no-preimage” if it satisfies the following
requirements:

– zi is in the set {z1, . . . , zn} \ {zb1 , . . . , zbt}; and

– there does not exist any x ∈ {0, 1}λ such that g(x) = zi

We then define the following event
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– BadY,r: there are more than k = δn number of “no-preimage” zi’s in Y .

In the following, we present a claim. We will first show how to prove Lem. 12 assuming that Claim 11 holds,
and then present its proof.

Claim 11. For every non-trivial S∗ with the z ∈ {0, 1}∗ satisfying Inequality (44), there exists a negligible
function negl(·) such that

Pr
[
r← {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 : BadY,r

∣∣ Y 6= ⊥] ≤ negl(λ). (45)

Consider the Y output by R from 〈S∗(1λ, z), R(1λ, r)〉, where S∗(1λ, z) is non-trivial and r← {0, 1}t log(n).
If Y 6= ⊥, it must be of the form (z1, . . . , zn), where |zi| = λ for i ∈ {b1, . . . , bt} and |zi| = m for i ∈
[n] \ {b1, . . . , bt}. Recall that {b1, . . . , bt} is the size-t subset of [n] specified by r.

Assuming that Claim 11 holds, to finish the proof of Lem. 12, it suffices to show the following claim:

– Conditioned on Y 6= ⊥, if BadY,r does not happen, then there exist an x and a r such that Gg(x‖r) = Y .

Conditioned on Y 6= ⊥, Claim 11 implies that there are at most k = δn no-preimage zi’s (except with
negligible probability). In the following, we assume w.l.o.g. that there are exactly k no-preimage zi’s. We
denote them as {zp1 , . . . , zpk} (i.e. we denote the indices of these no-preimage zi’s by {p1, . . . , pk}). Then,
for each zi where i ∈ [n] \ {p1, . . . , pk}, this zi must have (at least) one preimage under g(·). We denote
an arbitrary preimage of such zi as g−1(zi). By definition, a no-preimage zi is not in the set {zb1 , . . . , zbt}.
Therefore, we must have that {p1, . . . , pk} ∩ {b1, . . . , bt} = ∅.

With these observations, we show in the following how to construct x and r such that Gg(x‖r) =
(z1, . . . , zn). At a high-level, we take advantage of Case 2. At a high-level, we will put those no-preimage zi’s
together with their indices as the (pi, y

′
pi

) part of x. We will use the above r = {b1, . . . , bt} from R. Since
{b1, . . . , bt} ∩ {p1, . . . , pk} = ∅, Gg will put the no-preimage zpi ’s at position pi’s (are required by Case 2).
This will give us the desired Y . Concretely, we set:

x := (x′1, . . . , x
′
n)‖(p1, zp1), . . . , (pk, zpk), r := (b1, . . . , , bt)

where x′i’s are defined as follows: ∀i ∈ [n], x′i :=


zi i ∈ {b1, . . . , bt}
0λ i ∈ {p1, . . . , pk}
g−1(zi) otherwise

.

We remark that g−1(zi) may not be efficiently computable (indeed, g is a PRG). But this is fine since we
only require the existence of g−1(zi). Also, note that {p1. . . . , pk} ∩ {b1, . . . , bt} = ∅. It then follows from the
description in Constr. 1 (in particular, Case 2) that Gg(x‖r) = Y .

In the following, we show the proof for Claim 11, which will complete the proof for Lem. 12.

Proof of Claim 11. All the probabilities appearing in this proof are taken over the following random
procedure:

r← {0, 1}t·log(n); (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉,

where S∗ and z are as described in Claim 11.
First, note that Pr

[
BadY,r

∣∣ (Y 6= ⊥)
]
·Pr[Y 6= ⊥] = Pr[BadY,r ∧ (Y 6= ⊥)]. Since S∗ is non-trivial, we know

from Inequality (44) that Pr[Y 6= ⊥] is non-negligible. Therefore, to prove Inequality (45), it suffices to show

Pr[BadY,r ∧ (Y 6= ⊥)] ≤ negl(λ), (46)

which we prove in the following.
Consider the execution (·, Y )← 〈S∗(1λ, z), R(1λ, r)〉 where Y 6= ⊥. Observe that S∗ at Stage 2 commits

a value α15 of the form shown in Expression (42). For this execution, we define the following sequence of
events:

15 This α is well-defined as BBCom is statistically-binding.
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– E1: {p1, . . . , pk}∩ {b1, . . . , bt} = ∅. The {pi}i∈[k] are those contained in α and {bi}i∈[t] are those specified
by R’s input r.

– E2: ∀i ∈ [n] \ {b1, . . . , bt}, yi = zi. The yi’s are contained in the second row of M (which is in turn
contained in α), and zi’s are contained in Y .

– E3: the Mr sent by S∗ at Stage 4 does consist of the columns of M specified by r = {b1, . . . , bt}.
– E4: there are more than k = δn number of yi’s (contained in the second row of M) that satisfy the

following requirement: there does not exist any x ∈ {0, 1}λ such that g(x) = yi.

We first claim:
Pr[E4 ∧ (Y 6= ⊥)] ≤ negl(λ) (47)

To see that, first notice the folloing:

Pr[E4 ∧ (Y 6= ⊥)] = Pr[E4 ∧ (Y 6= ⊥) ∧ E3] + Pr
[
E4 ∧ (Y 6= ⊥) ∧ E3

]
≤ Pr

[
(Y 6= ⊥)

∣∣ E3 ∧ E4

]︸ ︷︷ ︸
P1

+ Pr
[
(Y 6= ⊥) ∧ E3

]︸ ︷︷ ︸
P2

We now show that both P1 and P2 are negligible. First, recall that R checks at Stage 5 if yi = g(xi) for
all columns [xi yi]

T contained in Mr. Thus, conditioned on E3, the receiver does not abort only if the set
r = {b1, . . . , bt} does not select any “bad” column [xi yi]

T in M s.t. yi 6= f(xi). Moreover, E4 ensures that
there are more than k = δn such “bad” columns in M . Therefore, the probability P1 is smaller than (1− δ)t,
which is negligible as 0 < δ < 1 is a constant and t is ω(log λ).

Also, observe that E3 was actually proved at Stage 6 (as Item 6b) by S∗ via the commit-and-prove
protocol ΠZKCnP. The soundness of ΠZKCnP implies that P2 is negligible.

Next, we make another claim:

Pr
[
BadY,r ∧ (Y 6= ⊥) ∧ E2

]
≤ negl(λ) (48)

To prove this inequality, notice the following:

Pr
[
BadY,r ∧ (Y 6= ⊥) ∧ E2

]
= Pr

[
BadY,r ∧ (Y 6= ⊥) ∧ E2 ∧ E1

]
+ Pr

[
BadY,r ∧ (Y 6= ⊥) ∧ E2 ∧ E1

]
≤ Pr[E1]︸ ︷︷ ︸

P3

+ Pr
[
(Y 6= ⊥) ∧ E2

∣∣ E1

]︸ ︷︷ ︸
P4

We now show that both P3 and P4 are negligible. Recall that E1 is the event that the set {p1, . . . , pk}
contained in α does not overlap with r = {b1, . . . , bt}. First, note that the ΠZKCnP proof at Stage 6 ensures
that, except with negligible probability, the set {p1, . . . , pk} is a size-k subset of [n] (i.e. Item 6a). Also,
observe that the r is a size-t random subset of [n] that is sampled independently of {p1, . . . , pk}. Therefore,
E1 happens with probability ≤ (1− δ)t + negl(λ), which is negligible.

According to Constr. 1, if {p1, . . . , pk} ∩ {b1, . . . , bt} 6= ∅ (which is exactly the event E1), then it must
hold that yi = zi for all i ∈ [n] \ {b1, . . . , bt} (which is exactly E2). Also, recall that this condition is enforced
by the BBProve performed by S∗ at Stage 6 (see Item 6c). The soundness of the ΠZKCnP guarantees that,
conditioned on E1, if E2 does not hold, then R will abort with overwhelming probability. Therefore, P4 is
negligible.

Before proving Inequality (46), we need one more claim:

Pr
[
BadY,r

∣∣ E2

]
≤ Pr

[
E4

∣∣ E2

]
(49)

To prove the above inequality, recall that if BadY,r happens, then there are more than k = δn many zi’s
in {z1, . . . , zn} \ {zb1 , . . . , zbt} that do not have any preimage under g(·). Moreover, conditioned on E2, we
known that zi = yi for all i ∈ [n] \ {b1, . . . , bt}. In this case, BadY,r implies that there are more than δn many
yi’s, among all the yi’s whose index lies in [n] \ {b1, . . . , bt}, that do not have any preimage under g(·). Thus,
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there are definitely more than k = δn many yi’s (among all the yi’s contained in the second row of M) that
do not have any preimage, which is exactly the event E4. Therefore, conditioned on E2, BadY,r implies E4.
This gives us Inequality (49).

We are now ready to derive Inequality (46):

Pr[BadY ∧ (Y 6= ⊥)] = Pr[BadY ∧ (Y 6= ⊥) ∧ E2] + Pr
[
BadY ∧ (Y 6= ⊥) ∧ E2

]
≤ Pr[E4 ∧ (Y 6= ⊥) ∧ E2] + Pr

[
BadY ∧ (Y 6= ⊥) ∧ E2

]
(50)

≤ Pr[E4 ∧ (Y 6= ⊥)] + Pr
[
BadY ∧ (Y 6= ⊥) ∧ E2

]
≤ negl(λ) (51)

where Inequality (50) follows from Inequality (49). Also, note that Inequality (51) follows from Inequali-
ties (47) and (48). This finishes the proof of Claim 11.

This finishes the proof for Lem. 12.

Lemma 13 (Zero-Knowledge). Protocol Πg
G in Prot. 4 satisfies the zero-knowledge property defined in

Def. 16.

Proof. To prove the zero-knowledge property, we need to show a PPT ideal-world simulator Sim for any
PPT malicious receiver R∗. At a high-level, such a simulator can be constructed as follows. Sim will use
the simulator of the commit-and-prove protocol ΠZKCnP at Stages 2 and 6. This allows Sim to finish the
interaction without knowing the sender’s input x.

Formally, we will show two hybrids H0 and H1, where the H0 is the real execution between the honest
sender and R∗, and show that H1 is essentially the simulator we want. We use OutHi

to denote the output
of hybrid Hi.

Hybrid H0(1λ, x, z). This hybrid uses the strategy of the honest S(1λ, x) to interact with the corrupted
receiver R∗(1λ, z). At the end of the execution, H0 outputs whatever R∗ outputs. This hybrid is exactly the
real execution.

Hybrid H1(1λ, x, z). This hybrid is identical to the previous one, except that

– At Stage 2, instead of executing BBCom, H1 uses the strategy of Sim1 in its communication with R∗,
where Sim1 is the simulator for the Commit stage of ΠZKCnP (see Def. 8).

– At Stage 6, instead of doing the proof honestly, H1 uses the strategy of Sim2 in its communication with
R∗, where Sim1 is the simulator for the Prove stage of ΠZKCnP (see Def. 8).

OutH0

c
≈ OutH1

: This is due to the ZK property of ΠZKCnP.

The Simulator Sim(1λ, z). We now describe the simulator Sim for the ideal execution. Sim is identical to
H1 except for the following changes:

– Sim does not need to execute Stage 1;

– Upon receiving r = (b1, . . . , bt) at Stage 3, Sim sends it to the idea functionality FGg , and receives back
Y = (z1, . . . , zn).

– At Stage 4, Sim (with its oracle access to g(·)) sets M̃r =

[
zb1 · · · zbt
g(zb1) · · · g(zbt)

]
, and sends M̃r and (z1, . . . , zn)

to R∗.

We remark that, unlike H1, Sim does not need to know the input x to the sender; the values (z1, . . . , zn) it
obtains from FGg contain all the information to finish its execution with R∗. In particular, although the zi’s
now come from the ideal functionality, they are identically distributed to the ones generated by the honest
sender. Thus, the M̃r is also identically distributed to the Mr in H1. It Then follows that the output of Sim
is identical to H1.

This finishes the proof for Lem. 13.
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