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Abstract

Modern cryptography fundamentally relies on the assumption that the adversary trying to
break the scheme is computationally bounded. This assumption lets us construct cryptographic
protocols and primitives that are known to be impossible otherwise. In this work we explore
the effect of bounding the adversary’s power in other information theoretic proof-systems and
show how to use this assumption to bypass impossibility results.

We first consider the question of constructing succinct PCPs. These are PCPs whose length
is polynomial only in the length of the original NP witness (in contrast to standard PCPs whose
length is proportional to the non-deterministic verification time). Unfortunately, succinct PCPs
are known to be impossible to construct under standard complexity assumptions. Assuming
the sub-exponential hardness of the learning with errors (LWE) problem, we construct succinct
probabilistically checkable arguments or PCAs (Zimand 2001, Kalai and Raz 2009), which are
PCPs in which soundness is guaranteed against efficiently generated false proofs. Our PCA
construction is for every NP relation that can be verified by a small-depth circuit (e.g., SAT,
clique, TSP, etc.) and in contrast to prior work is publicly verifiable and has constant query
complexity. Curiously, we also show, as a proof-of-concept, that such publicly-verifiable PCAs
can be used to derive hardness of approximation results.

Second, we consider the notion of Instance Compression (Harnik and Naor, 2006). An
instance compression scheme lets one compress, for example, a CNF formula ϕ on m variables
and n� m clauses to a new formula ϕ′ with only poly(m) clauses, so that ϕ is satisfiable if and
only if ϕ′ is satisfiable. Instance compression has been shown to be closely related to succinct
PCPs and is similarly highly unlikely to exist. We introduce a computational analog of instance
compression in which we require that if ϕ is unsatisfiable then ϕ′ is effectively unsatisfiable, in the
sense that it is computationally infeasible to find a satisfying assignment for ϕ′ (although such
an assignment may exist). Assuming the same sub-exponential LWE assumption, we construct
such computational instance compression schemes for every bounded-depth NP relation. As an
application, this lets one compress k formulas φ1, . . . , φk into a single short formula φ that is
effectively satisfiable if and only if at least one of the original formulas was satisfiable.
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Israeli Science Foundation (Grants No. 1262/18 and 2137/19), and the Technion Hiroshi Fujiwara cyber security
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1 Introduction

The question of instance compression, introduced by Harnik and Naor [HN10], asks whether it is
possible to compresses long instances of an NP relation down to their witness length, which can
be significantly shorter, while preserving the “correctness” of the statement. In more detail, an
instance compression scheme for an NP relation R is a polytime computable function f , such that
for every instance x, of length n, with corresponding witness length m � n, it holds that (1) the
compressed instance f(x) has length |f(x)| = poly(m), and (2) x is a true statement (i.e., exists w
such that (x,w) ∈ R) if and only if f(x) is a true statement. The definition can be extended to
allow for f to map instances of R to a different NP relation R′ and to allow for a poly-logarithmic
dependence on the instance length n.

For example, consider the relation SAT of all satisfiable Boolean formulas (in conjunctive normal
form). An instance compression scheme for SAT can compress a long formula ϕ over m variables
with n� m clauses to a new formula ϕ′ with only poly(m) clauses, such that ϕ is satisfiable if and
only if ϕ′ is satisfiable.1

Harnik and Naor as well as followup works [FS11, Dru15, BDFH09], have shown that instance
compression scheme can be quite useful. Some of their diverse applications include natural ones
such as efficiently storing instances in order to solve them later (see [HN10]), or as a preprocessing
step for solving algorithmic problems (see [BDFH09]), as well as more surprising applications such
as establishing the existence of a variety of fundamental cryptographic primitives (see [HN10] for
details).

Unfortunately, Fortnow and Santhanam [FS11] showed that, under standard complexity as-
sumptions (namely, that the polynomial hierarchy does not collapse), instance compression cannot
exist for some NP languages. More specifically, they showed that the existence of instance com-
pression for SAT implies that NP ⊆ coNP/poly (and therefore the polynomial hierarchy collapses).

To establish their result, Fortnow and Santhanam showed that instance compression is closely
related (and, in a sense, equivalent) to the notion of succinct probabilistically checkable proofs
(succinct PCPs) [KR08, FS11]. Recall that a PCP is a special format for writing proofs that can be
verified by only reading a few of the bits from the proof. The PCP theorem [ALM+98] shows that
every NP language has a constant-query PCP whose length is polynomial in the non-deterministic
verification time of the language.2 In contrast, a PCP is succinct if its length is polynomial only
in the witness length. For example, the PCP theorem guarantees that SAT on m variables and n
clauses has a PCP of length poly(n,m), whereas a succinct PCP would have length roughly poly(m).

Fortnow and Santhanam showed that the existence of a succinct PCP for SAT implies that
SAT also has an instance compression scheme. In particular, this implies that SAT cannot have a
succinct PCP, unless the polynomial hierarchy collapses.

This leaves us at the unfortunate state of affairs that (under a widely believed assumption)
these two natural objects (i.e., instance compression schemes and succinct PCPs) do not exist. In
this work we show how to bypass these negative results by taking a cryptographic perspective and
considering computational analogs of PCPs and instance compression. We further show that some
of the applications of instance compression and succinct PCPs remain valid also for these relaxed

1We denote the number of variables by m and the number of clauses by n (rather than vice-versa, as typically
done) to better align with the notation for general NP relations, in which the instance length is denoted by n and
the witness length by m.

2The dependence of the length of the PCP on the non-deterministic verification time has since been improved to
quasi-linear [BS08, Din07]
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notions.

1.1 Our Results

To get around the barriers posed by [FS11], we consider probabilistically checkable arguments
(PCAs), which are similar to PCPs except that soundness is only guaranteed against proof-strings
that are efficiently generated. The notion of PCAs was first considered by Zimand [Zim01] in the
context of constructing a lightweight version of the PCP theorem and by Kalai and Raz [KR09]
with the exact same motivation as in our work: constructing PCPs whose length is proportional to
the witness size.

We also introduce computational instance compression (CIC), a relaxation of instance compres-
sion in which for false statements x it may be the case that the compressed statement f(x) is true,
but it should be computationally infeasible to find a witness for f(x).

We first discuss our results for PCAs (in Section 1.1.1) and then the results for computational
instance compression (in Section 1.1.2).

1.1.1 Probabilistically Checkable Arguments

As noted above, PCAs are a natural computational analog of PCPs. Similarly to a PCP verifier, a
PCA verifier is a probabilistic machine that can only read a few bits from the proof, and is required
to accept correct proofs (with high probability). However, while a PCP verifier is guaranteed to
reject any proof for a false statement (with high probability), a PCA verifier is only required to
reject false proofs generated by computationally bounded malicious provers. In other words, there
can exist accepting proofs for false statements, but it should be intractable to find them. Since
an accepting proof can be non-uniformly hardwired into the adversary, PCAs are defined in the
common reference string model. In this model, a common reference string (CRS) is sampled before
the beginning of the protocol, and is available both to the PCA prover and the verifier. In analogy
to PCPs, we say that a PCA is succinct if the proof length is proportional to the witness length.3

Kalai and Raz [KR09] constructed succinct PCAs for a large class of NP relations. However,
their construction suffers from two significant caveats. First, their PCA is only privately-verifiable.
That is, the PCA verifier is given a secret trapdoor to the CRS which can be used for verification.
We emphasize that for soundness to hold in this model it is imperative that the prover does not
know the trapdoor. The fact that the PCA is only privately-verifiable limits its applicability. In
particular, only the designated verifier that has the trapdoor can verify the proof. In contrast, we
consider publicly-verifiable PCAs. In other words, the verifier does not get a trapdoor to the CRS,
and anyone can verify the PCA proof, given the corresponding CRS and by making a few queries
(see Definition 3.1 for the formal definition). As shall be discussed further below, public-verifiability
is crucial for some of the applications of PCAs.

The second major caveat of the [KR09] construction is that the query complexity, while small, is
super-constant. More specifically, while typical PCP verifiers only need to make a constant number

3It is well known that PCPs, or any other interactive proof for that matter, cannot be shorter than the witness
length [GH98, GVW02]. In contrast, under extremely strong cryptographic assumptions we can construct PCAs (with
non-trivial query complexity) that are shorter than the witness length. We refer to such PCAs (i.e., whose proof
length is shorter than the witness) as super-succinct. Since our focus is on standard cryptographic assumptions, we
leave the study of super-succinct PCAs for future work. See further discussion at the end of the current subsection.
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of queries in order to obtain constant soundness error, the PCA verifier of [KR09] needs to make
poly(log n, λ) queries, where n is the instance length and λ is the computational security parameter.

In this work we resolve both of these caveats. Assuming the sub-exponential hardness of the
learning with errors problem (LWE), we construct a publicly-verifiable PCA for a rich subclass of
NP relations, with constant query complexity.

Theorem 1.1 (Informally stated, see Theorem 3.3). Assume the sub-exponential hardness of LWE.
Then, for every NP relation R, for which membership can be decided in logspace uniform NC, there
exists a succinct constant-query publicly-verifiable PCA with constant soundness error.

We remark that the subclass of NP relations for which we construct PCAs is identical to the
subclass considered by Kalai and Raz [KR09]. It should be noted that this class seems quite rich
and in particular contains many well-known NP relations, such as SAT, k-Clique, 3Col, etc.4

Our proof of Theorem 1.1 follows the approach of [KR09] while replacing a privately-verifiable
non-interactive argument that they use (based on [KR08, GKR15]) with a new publicly-verifiable
non-interactive argument of Jawale et. al [JKKZ20]. Actually making this approach work, while
obtaining constant query complexity, turns out to be non-trivial. See Section 1.2 for details.

PCAs and Hardness of Approximation. As an additional contribution, we also show that
publicly-verifiable PCAs can be used to obtain hardness of approximation results. We find this
surprising since, typically, the NP-hardness of approximation problems is equivalent to the existence
of PCPs.5

While we only give a proof-of-concept construction, we believe that this aspect of PCAs could
have important implications for hardness of approximation. We note that results establishing hard-
ness of approximation based on cryptography (or more generally, average-case hardness assump-
tions) have been demonstrated in the past. For example, lattice based cryptography inherently
relies on hardness of approximation (of geometric properties of integer lattices), whereas “local
cryptography” is tightly related to approximating CSPs (see in particular the recent work of Ap-
plebaum [App17] and references therein). Nevertheless, we find the approach for using PCAs for
hardness of approximation more generic and hope that it may allow to bypass known limitations
of PCPs. See Section 1.3 for details.

Beyond the Witness Length. It is natural to ask if the witness length is indeed a barrier for
PCAs. In particular, a so-called “SNARG for NP” (see Section 1.4) achieves length that is shorter
than the witness, albeit with relatively poor query complexity, as the SNARG verifier has to read its
entire proof. We believe that our techniques can possibly also be useful in the context of converting
SNARGs to be highly-efficient PCAs but leave the study of such “super-succinct” PCAs to future
work.

1.1.2 Computational Instance Compression

In order to bypass the impossibility result of Fortnow and Santhanam for instance compression, we
introduce a new computational variant, which we call computational instance compression (CIC).

4The Cook-Levin theorem implies that every NP language has an NP relation that can be verified by a bounded
depth circuit (in fact, a CNF). However, this transformation blows up the witness size. Here we refer to the natural
NP relations for these well-known problems.

5For example, the NP completeness of, e.g., GapSAT, is equivalent to the PCP theorem.
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In a nutshell, a CIC scheme also compresses the instance down to the witness length, but we require
that if the instance x is false, then it should be computationally infeasible (but not necessarily
impossible) to find a witness for the compressed instance f(x). It may be useful to contrast CICs
with cryptographic hashing. Such hash functions can similarly be used to compress an instance x
but the result is a “cryptographic string” that mainly serves as a commitment that can later be
opened by someone who knows x. In contrast the result of compression by a CIC is a new instance
x′ which can be used independently of the original input x, while preserving its effective correctness.

In more detail, let R and R′ be NP-relations, where the instance length of R is denoted by n and
the witness length by m. A computational instance compression (CIC) scheme from R to R′ is an
efficiently computable function f such that |f(x)| = poly(m, log n) with the following requirements:

1. If x is true then x′ = f(x) is true.

2. If x is false, then it is infeasible for a polynomial-size adversary, given x′ = f(x), to find a
witness w′ such that (x′, w′) ∈ R′.

3. In contrast, there is a polynomial-time algorithm that given a true statement x, and a corre-
sponding witness w (i.e., (x,w) ∈ R), finds a witness w′ for x′ = f(x).

(Our actual definition of CICs is in the common reference string model - that is, all algorithms are
further given a common reference string. For simplicity we ignore this aspect here.)

The notion of CIC is indeed suitable for the main application of instance compression: efficient
storage of long instances: The compressed output x′ is a short instance of R′ which preserves the
effective correctness of the original input x.

At first glance, it may not be entirely clear why we insist that it is possible to efficiently find
a witness for the compressed instance given a witness for the original witness (i.e., requirement
3 above). However, this requirement is indeed crucial for many applications. For example, for
efficient storage, if one has a witness for the original instance then the third requirement lets one
preserve this witness for the compressed instance. Moreover, if we omit this requirement then
there is a trivial construction that satisfies the first two requirements (in a non-interesting way):
to compress an instance x, simply ignore x, and output some x′ which is a hard instance of L′ (i.e.,
an instance which is computationally indistinguishable from x′′ /∈ L′). Such an instance x′ is true
but a satisfying witness cannot be efficiently found.

In this paper we construct CICs for the same subclass of NP relations as in Theorem 1.1 and
under the same assumption - the sub-exponential hardness of LWE.

Theorem 1.2 (Informally stated, see Theorem 3.5). Assume the sub-exponential hardness of LWE.
Then, for every NP relation R, for which membership can be decided in logspace uniform NC, there
exists a CIC scheme from R to SAT.

As explained above, the class of source NP-relations, from which we can compress, includes
many natural relations. As for the target relation, the choice of SAT is somewhat arbitrary (but
convenient). In particular, we can replace SAT with any NP relation R′ for which (x,w), an
instance-witness pair for SAT can be efficiently translated to an instance-witness pair (x′, w′) for
R′, and vice-versa. This includes most natural NP complete problems that we are aware of.
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An Application: OR-SAT. Consider the following problem: we are given as input k different
formulas ϕ1, . . . , ϕk and want to generate a new formula ϕ′ such that ϕ′ is satisfiable if and only if
at least one of the ϕi’s is satisfiable.

This problem, referred to by Harnik and Naor [HN10] as OR-compression, can be viewed as a
special case of instance compression where the source relation OR-SAT =

{(
(ϕ1, . . . , ϕk), w

)
: ∃i ∈

[k], (ϕi, w) ∈ SAT
}

consists of k formulas out of which at least one is satisfiable, and the target
relation is simply SAT. In their aforementioned work, Fortnow and Santhanam [FS11] also rule
out the existence of OR-instance compression for SAT, assuming the polynomial hierarchy does
not collapse.

We bypass this impossibility result and obtain a computational OR instance compression scheme.
In such a scheme the compressed formula is effectively sound if and only if at least one of the orig-
inal formulas was sound. Indeed, leveraging the fact that OR-SAT has witnesses of length that
is independent of k (namely a witness that satisfies at least one of the k formulas), the following
corollary is immediate from Theorem 1.2.

Corollary 1.3. Assume the sub-exponential hardness of LWE. Then, there exists a CIC scheme
from OR-SAT to SAT.

We find Corollary 1.3 particularly appealing. It gives a method to reduce k formulas to a single
formula while preserving the effective satisfiability.

On AND-compression. It is natural to ask whether a similar statement to Corollary 1.3 holds
when replacing OR with AND - namely, the resulting formula should be satisfiable if and only if
all of the source formulas are satisfiable. This is called AND-instance compression, and has been
shown not to exist in the information theoretic setting, assuming the polynomial hierarchy does
not collapse [Dru15, Del16].

Unfortunately, since the witnesses in the case of AND do grow linearly with k, Theorem 1.1 does
not seem to imply anything meaningful in this case. We leave the study of AND-computational
instance compression for future work (this question seems closely related to that of non-interactive
batch verification, see Section 1.4).

1.2 Technical Overview

The main technical contribution of this work is a construction of a publicly-verifiable constant-query
succinct PCA. We give an overview of this construction in Section 1.2.1. Then, in Section 1.2.2,
building on techniques from [FS11], we show how to use our PCA construction to build CICs.

1.2.1 Publicly-Verifiable PCAs from Publicly-Verifiable PSNARGs

We construct our publicly-verifiable PCAs by using a recent publicly-verifiable Succinct Non-
interactive ARGument (SNARG) constructed by Jawale et al. [JKKZ20]. A SNARG, as its name
suggests, is a non-interactive argument-system (in the common reference string model) in which
the verifier runs in time that is sublinear in the computation.6

6Actually somewhat different definitions of the notion exist in the literature. Some works require only short
communication but allow a long verification time, and other works insist on strictly poly-logarithmic verification
time.
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Usually, SNARGs are considered in the context of NP languages, and the succinctness require-
ment implies, in particular, that the proof string be shorter than the length of the NP witness. In
contrast, we will focus on non-interactive arguments for languages in P. To avoid confusion we refer
to such arguments as PSNARGs. Note that since we insist on sublinear verification, it is (highly)
non-trivial to construct PSNARGs (even for problems in P).

Moreover, in the following we will sometimes refer to PSNARGs for an NP relation R. What we
mean by this is that we view the membership problem in R (i.e., given an instance and a witness -
check if they satisfy the relation) as a problem in P. Therefore, the key difference between a SNARG
or a PSNARG for an NP relation R is that in the latter the verifier gets access to the instance and
the witness, whereas in the former it gets only the instance.

The starting point for our construction is a recent publicly-verifiable PSNARG for logspace-
uniform NC due to Jawale et. al [JKKZ20], based on a secure application of Fiat-Shamir transform
[FS86] to the [GKR15] doubly-efficient interactive proof-system. This result relies on the sub-
exponential hardness of LWE (via [CCH+19, PS19]).

With this result in hand, consider an NP relation R for which membership can be decided in
logspace-uniform NC. Given an instance x of R, consider a proof string that consists of the witness
w for x appended with a PSNARG proof π showing that (x,w) ∈ R.

The proof string (w, π) is very short but it is still not locally checkable. Thus, a natural idea is
for the prover to further append a standard PCP proof π′ attesting that (w, π) are such that π is
an accepting PSNARG proof for (x,w) ∈ R. Intuitively we seem to have made progress since the
PCP proof length corresponds to the verification time, which is short due to the efficient PSNARG
verification.

Before proceeding, a small correction is in order. Since a PCP verifier needs to read its entire
main input (which in our case is all of w and π) what we will actually use is a PCP of proximity
(PCPP). In the current context it suffices to think of a PCP of proximity as a PCP in which the
verifier only needs to read a few bits from the input (as well as the proof), as long as the input is
encoded under an error-correcting code.

Thus, as our first attempt, consider a PCA proof-string that consists of (E(w, π), π′), where E
is a suitable error-correcting code (i.e., with polynomial or even linear block length). The PCA
verifier emulates the PCPP verifier while using (E(x), E(w, π)) as the input oracle and π′ as the
proof oracle (note that the verifier can generate E(x) by itself).

While natural, this construction runs into several problems that we have to resolve and are
discussed next.

Adaptivity. The first problem we encounter with the construction is that of adaptivity. Namely,
a malicious PCA prover can choose a witness w∗, which serves as part of the input for the PSNARG,
after seeing the sampled CRS. In particular, the PSNARG of [JKKZ20], is non-adaptive: soundness
only holds if the input is fixed before the CRS is given to the prover.

Thankfully, there is a relatively standard and simple solution to this problem via complexity
leveraging. Namely, we use complexity leveraging to transform sub-exponentially secure PSNARGs
to ones which are adaptively sound in the choice of the witness. In a nutshell this is done by increas-
ing the security parameter as to ensure that the soundness error of the PSNARG is so small that
we can afford to take a union bound over all possible witnesses. Crucially, the overhead incurred
by this transformation is a fixed polynomial only in the witness length m (rather than the instance
size n).
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Having resolved the adaptivity issue, we turn to a more pressing problem that arises when
examining the PCA proof length more closely.

The PCA Proof Length. The proof-string consists of (an encoding of) w which has length m,
and π which has length poly(log(n), λ), where λ is the security parameter. In addition, the PCA
contains π′, a PCPP proof that the PSNARG verifier would accept. While the PSNARG verifier runs
in time that is sublinear in the verification time of R, at very least the verifier needs to read its
input (x,w) which has length n+m. This means that the length of the PCPP proof string π′ is at
least poly(n), whereas we were aiming for a polynomial dependence only on m.

Holographic Proofs to the Rescue? As a first idea one might try to get around this by
leveraging the fact that the [JKKZ20] verifier is holographic. A PSNARG is said to be holographic
if the verifier can run in time that it is sublinear in the input, as long as it is given oracle access to
an encoding of the input. The verifier in the protocol [JKKZ20] is indeed holographic, with respect
to the low degree extension code.7 Indeed, given oracle access to the low degree extension of the
input, the PSNARG verifier of [JKKZ20] runs in time polylog(n).

One would hope that this observation suffices to reduce the PCPP length to poly(m, log(n)).
Unfortunately, this is not the case. The difficulty that we encounter now is that PCPPs are not
designed for computations involving an oracle. In particular, it is known that the PCP theorem
does not relativize [AIV92, For94] and it is unclear how to construct a PCPP in which the input is
given as an oracle (without materializing the input).

Sublinear Verification via Crypto. To cope with this difficulty we take, yet again, a crypto-
graphic approach. In particular, we propose a simple PSNARG construction in which the PSNARG
verifier truly runs in sublinear time, after a suitable pre-processing step. Our construction is inspired
by, and closely related to, ideas arising in the context of memory delegation [CKLR11, KP16].

The sublinear PSNARG is obtained by having the verifier first, as a pre-processing step, generate
the low degree extension of its input and hash the low degree extension using a Merkle tree. At
this point all that the verifier needs to remember is the root of the hash tree. In the online phase,
the prover provides a standard PSNARG proof, but in addition also provides authentication paths
for all of the verifier’s queries to the input. This results in a pre-processing sublinear PSNARG
construction.

We note that the fact that this solution works relies on two critical facts. First, the fact that
the PSNARG prover knows, already when sending the proof, which locations of encoding of the
input the holographic verifier is going to query. Indeed, this follows from the fact that the PSNARG
is publicly-verifiable (and we could not apply similar reasoning, e.g., to the [KR09] construction).
Second, we need that it be possible for the verifier to fully materialize the low degree extension of
the input in poly(n) time. This is actually non-trivial since the low degree extension has length that
is polynomial in the input only for some parameter settings. In particular, using the parameter
setting of [JKKZ20] results in sub-exponential length (due to their use of extremely large finite

7Recall that [JKKZ20] is constructed by applying the Fiat-Shamir transform to the [GKR15] protocol, which
is known to be holographic. The holographic property is preserved by the Fiat-Shamir transform because, since
[JKKZ20] are only aiming for non-adaptive soundness, they do not include the instance as an input to the Fiat-
Shamir hash function.
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fields). To solve this we rely on the followup work of Holmgren et al. [HLR21] who extend the
[JKKZ20] protocol to work also for small fields and in particular, when the block length of the low
degree extension is polynomial.

Using this observation, we can reduce the PSNARG verification time, and therefore the PCPP
length to be sublinear. Having done so, the entire PCA proof length becomes polynomial only in
the witness length, as desired.

Relation to Fiat-Shamir of Kilian’s Protocol. Given that the [JKKZ20, HLR21] protocols
rely on a secure application of the Fiat-Shamir transform, and we are applying this transform based
on a Merkle hash of the instance, our construction bears some resemblance to a secure application
of Fiat-Shamir to Kilian’s [Kil92] celebrated protocol. Since the question of securely applying Fiat-
Shamir to Kilian’s protocol (as envisioned by Micali [Mic00]) in the standard-model is wide open
(with mainly negative evidence thusfar [BBH+19]) this may seem surprising. In a nutshell the key
difference that we leverage is the fact that the verifier has a trusted Merkle hash of the instance.
We refer the reader to Appendix A for a more detailed discussion.

1.2.2 CICs from Succinct Publicly-Verifiable PCAs

Fortnow and Santhanam [FS11] show how to convert a succinct PCP into an instance compression
scheme for SAT. We follow their approach in order to convert our succinct PCA construction into
a CIC for SAT.

Let V be a PCA verifier for SAT, and ϕ be an instance (i.e., formula) of SAT. Fixing ϕ, the
verifier V tosses random coins, reads q = O(1) bits from its proof π and runs some predicate over
the answers that it read in order to decide whether to accept or reject.

The compressed formula ϕ′ is generated in the following manner: The variables for ϕ′ correspond
to the bits of the PCA string π. To construct the clauses of ϕ′, we enumerate over all possible random
strings of V, and for each such random string ρ, we consider the residual decision predicate Vϕ,ρ of
V when both the random string and input formula ϕ are fixed. Assuming that the verifier makes
non-adaptive queries (this is indeed the case for our PCA construction and is also true without loss
of generality whenever the query complexity is constant), each random string is associated with a
sequence of q indices from the proof and the predicate Vϕ,ρ : {0, 1}q → {0, 1}.

Note that each Vϕ,ρ can be represented as a CNF on 2q clauses. We let our compressed formula
ϕ′ =

∧
ρ Vϕ,ρ simply be the conjunction of all of these clauses. The length of ϕ′ is exponential in

the randomness complexity of V. Since our V has O(logm+ log log n) randomness complexity, the
output formula has length |ϕ′| = poly(m, log n) as desired.8

For ϕ ∈ SAT, by the completeness of the PCA, there exists a proof π satisfying all predicates,
meaning (ϕ′, π) ∈ RSAT. Thus, ϕ′ is satisfiable (as per the first CIC requirement), and using the
witness w for ϕ, it is possible to efficiently find w′ = π a witness for ϕ′ (as per the third CIC
requirement). For ϕ /∈ SAT, by the soundness of the PCA, it is computationally infeasible to find
a proof string π∗ satisfying over half of the predicates {Vϕ,ρ}. This means that it is intractable to
find a satisfying assignment for the compressed formula ϕ′, as per the second CIC requirement.

8We note that even if our verifier had larger randomness complexity, it would have still been possible to build a
CIC from a succinct-PCA, similarly to [FS11].
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1.3 Applications to Hardness of Approximation and Future Directions

PCPs have had an incredible impact on the field of hardness of approximation. The seminal work of
Feige et. al [FGL+96] showed how to use PCPs to derive hardness of approximation results, and this
result has blossomed into a major technique in the field, leading to optimal inapproximabilty results
for many important problems (see, e.g., [H̊as01]). This is achieved by constructing suitable PCPs
which enable us to show the NP-completeness of gap versions of natural optimization problems.

We show that the weaker notion of a PCA can, in principle, also yield hardness of approximation
results. Moving forward, we believe that this observation has significant potential for bypassing
limitations of PCPs in the context of hardness of approximation.

The main difference between using PCPs and PCAs to show hardness of approximation is that
we will only be able to derive hardness of search versions of the gap problems, and the hardness
will be based on a Cook reduction rather than a Karp reduction. Nevertheless, these results suffice
to demonstrate that the underlying optimization problem is hard to approximate.

As a proof-of-concept we next sketch how to use PCAs to rule out a polynomial-time approxi-
mation algorithm for MaxSAT. Namely, an algorithm that, given a formula ϕ finds an assignment
that satisfies approximately the maximal number of satisfiable clauses in ϕ. We emphasize that the
conclusion is not surprising since it follows from the PCP theorem that GapSAT (deciding whether
a formula is satisfiable or if any assignment satisfies at most a constant fraction of the clauses) is
NP-complete. What we find surprising is that the notion of a PCA suffices to establish this result.
We note that for this result we do not need succinct PCAs, but believe that the fact that such PCAs
exist may be useful for establishing new hardness of approximation results, e.g., in the context of
fine-grained complexity (see more below). We also emphasize that this result crucially relies on
the PCA being publicly verifiable - we do not know how to establish any hardness of approximation
results based on privately verifiable PCAs (such as those of [KR09]) - see further discussion below.

Given a CNF formula ϕ : {0, 1}m → {0, 1} over n clauses, and an assignment z ∈ {0, 1}m,
let |ϕ(z)| denote the number of clauses satisfied by z in ϕ. Recall that in the MaxSAT problem,
the goal is to find an assignment z that maximizes |ϕ(z)|. Consider the following approximation
problem:

Definition 1.4 (Approximate MaxSATε). In the Approximate MaxSATε problem, the input is a

CNF formula ϕ. Denote α = maxz∈{0,1}m
|ϕ(z)|
n the maximally satisfiable fraction of clauses of ϕ.

The goal is to output an assignment z, such that |ϕ(z)|n ≥ (1− ε) · α.

Theorem 1.5. Assume P 6= NP. If there exists a publicly-verifiable constant-query PCA for SAT,
then there exists ε > 0 for which there does not exist a polynomial-time algorithm solving Approxi-
mate MaxSATε.

Since Theorem 1.5 is only a proof-of-concept, we do not make any attempt to optimize the
constant ε.

Proof Sketch of Theorem 1.5. Assume for contradiction that there existsA, a polynomial time algo-
rithm solving Approximate MaxSATε, for a constant ε > 0 specified below. We show a polynomial-
time decision procedure for SAT.

Let V be a constant-query PCA verifier for SAT, and ϕ an instance of SAT over m variables
and n clauses. With ϕ fixed, and a fixed CRS sampled from the generator, the verifier V samples a
random string ρ and runs a predicate Vϕ,ρ : {0, 1}q → {0, 1}, over the q = O(1) values it reads from
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its proof π. The predicate Vϕ,ρ can be represented as CNF formula with 2q clauses. We denote by
ϕ′ =

∧
ρ
Vϕ,ρ the conjunction of all these formulas. Denote by n′ and m′ the number of clauses and

variables in ϕ′, respectively.
If ϕ ∈ SAT, then by the completeness of the PCA, there exists a proof satisfying every predicate

{Vϕ,ρ}ρ. This means that ϕ′ is satisfiable, i.e., has α = max
z∈{0,1}m′

|ϕ′(z)|
n′ = 1. Therefore, by the

definition of A, for z = A(ϕ′) it holds that |ϕ
′(z)|
n′ ≥ (1− ε) · α = 1− ε.

If ϕ /∈ SAT, then by the computational soundness of the PCA, no polynomial-time algorithm
can find a proof satisfying half of the verifier’s predicates {Vϕ,ρ}ρ. For each such rejecting predicate,

at least one of its 2q clauses has to evaluate to False. Therefore, for ε = 1
2q+1 , it holds that no

polynomial-time algorithm can find an assignment satisfying a (1− ε)-fraction of the clauses in ϕ′.

Consequently, if for some ϕ /∈ SAT the algorithm A outputs z = A(ϕ′) for which |ϕ′(z)|
n′ ≥ 1 − ε,

then A breaks the computational soundness of the PCA for instance ϕ, which is a contradiction.

Therefore, for every ϕ /∈ SAT and z = A(ϕ′) it holds that |ϕ
′(z)|
n′ < 1 − ε. In this case, it is

possible to decide SAT in polynomial time. This is done in the following manner: Given a CNF

formula ϕ, compute ϕ′ as above, run the algorithm z = A(ϕ′), and consider the value β = |ϕ′(z)|
n′ .

• If β ≥ 1− ε, output ϕ ∈ SAT. As discussed above, if ϕ ∈ SAT then ϕ′ ∈ SAT, and β ≥ 1− ε.
Thus, ϕ ∈ SAT is accepted.

• If β < 1 − ε, output ϕ /∈ SAT. If ϕ /∈ SAT and A doesn’t break the PCA, then β < 1 − ε.
Thus, ϕ /∈ SAT is rejected.

Therefore, it is possible to decide SAT in polynomial time, contradicting the assumption that
P 6= NP.

We discuss two important points regarding the reduction above: The first, is that unlike the
hardness of approximation results using PCPs, the reduction using PCAs is a Cook reduction rather
than a Karp reduction. The second point is about the importance of the public-verifiability of
the PCA (mentioned briefly above). The reduction above does not work with privately-verifiable
PCAs, in which the verification relies on a secret trapdoor τ for the CRS. Specifically, generating
the formula ϕ′ is problematic: Hard-wiring τ to ϕ′ prevents it from being a “hard” instance, as
breaking the privately-verifiable PCA is trivial given the trapdoor. On the other hand, it is not
clear how to compute β when omitting τ from ϕ′, as the PCA proof is only verifiable given its secret
key. Thus, public-verifiability seems essential to the reduction above.

Hardness of approximation in Fine-Grained Complexity: A potential use-case. The
field of fine-grained complexity aims to understand the precise complexity of fundamental problems
that are already known to be solvable in polynomial time: for example, whether one can compute
the edit distance of two strings in sub-quadratic time. Negative results here are usually shown by
assuming a precise hardness for a core problem, and using so-called “fine-grained reductions” to
prove lower bounds for the problem at hand [Wil15].

A recent line of work in this field [ARW17, CGL+19] uses proof systems, such as PCPs and
interactive proofs, to show the fine-grained inapproximability of problems in P. We believe succinct
PCAs may have applications in this field as well. To demonstrate a possible use case, consider the

12



3SUM problem, in which we are given a list of integers a1, ..., an, each over polylog(n) bits, and
need to decide whether there exist i, j, k ∈ [n] such that ai + aj + ak = 0. This problem can be
solved in time Õ(n2), but it is conjectured that there are no substantially faster algorithms.

Observe that while it seems that 3SUM may be hard to solve in time O(n), it is easy to verify
given an NP witness - namely the indices i, j and k. Applying, e.g., the [BS08, Din07] short
PCP yields a constant-query PCP for 3SUM of length Õ(n). In contrast, since the NP witness
has logarithmic length, our succinct PCA for 3SUM (which follows from Theorem 1.1) has poly-
logarithmic length and constant-query complexity. We believe that this use of PCAs has potential
for deriving new inapproximability results in the context of fine-grained complexity.

1.4 Additional Related Works

Succinct Non-interactive Arguments. SNARGs for NP have drawn considerable attention
recently (see, e.g., [Tha] for a recent survey). We note that a SNARG for NP, with say poly-
logarithmic proof length can be viewed as an (extremely short) PCA with poly-logarithmic query
complexity (i.e., the verifier reads the entire proof).

Unfortunately, all known SNARG constructions rely on assumptions that are not-falsifiable
[Nao03] (e.g., knowledge-of-exponent or heuristic instantiations of Fiat-Shamir) and this is known
to be inherent for blackbox constructions (achieving adaptive soundness) [GW11].

Nevertheless, there has recently been significant progress on constructing SNARGs for languages
in P. For example, the PSNARG of [JKKZ20] that we use in our construction. We also note that
a publicly-verifiable PSNARGs for all of P was constructed by Kalai, Paneth and Yang [KPY19]
based on a new, but falsifiable, assumption on groups with bilinear maps. However, since the
[KPY20] construction does not appear to be holographic, it does not seem to be directly usable in
our construction.

In a very recent and exciting independent work, Choudhuri et. al [CJJ21] constructed a PSNARG
for all of P, based on the LWE assumption. If their construction can be shown (or modified) to
be holographic (using sufficiently small fields) then it could potentially be used to extend our
PCA and CIC constructions to all of NP and to relax the assumption to plain LWE rather than
sub-exponential LWE.

Batch Verification. Given an NP language L it is interesting to ask what is the complexity of
verifying that k different instances x1, . . . , xk all belong to L. This question seems closely related to
the question of AND-compression in which one wants to compress x1, . . . , xk into a short instance x′

that is true if and only if x1, . . . , xk ∈ L. In the statistical setting general purpose batch verification
is known for any language in UP (i.e., NP relations in which the YES instances have a unique
witness) [RRR16, RRR18, RR20b] and for statistical zero-knowledge proofs [KRR+20, KRV21]. In
the cryptographic setting, non-interactive batch verification is known for language in P [BHK17],
albeit in the designated-verifier model. The aforementioned work of [CJJ21] constructs publicly-
verifiable batch verification for NP. Lastly, we note the related notion of folding schemes which
allows one to perform a type of AND-compression, by interacting with the prover in order to
perform the compression itself [KST21].

Interactive PCPs and IOPs. Kalai and Raz [KR08] introduced the model of interactive PCPs as
a different way to circumvent the impossibility result for succinct PCPs. In an interactive PCP, the
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prover first sends a PCP proof string but afterwards the prover and verifier engage in a standard
(public-coin) interactive proof in order to verify the PCP. This model can also be seen as a special
case of the more recent notion of interactive oracle proof (IOP) [BCS16, RRR16]. Kalai and Raz
constructed interactive PCPs whose length is polynomial in the witness length. More recently, Ron-
Zewi and Rothblum [RR20a] constructed interactive PCPs whose length is only additively longer
than the witness length.

1.5 Organization

We start with preliminaries in Section 2. Then, in Section 3 we describe our main results. Our
succinct PCA construction is given in Section 4 and the CIC construction (and equivalence to
succinct PCAs) is shown in Section 5.

2 Preliminaries

A function ε : N → R is negligible if for every c ∈ N it holds that ε(λ) = O(λ−c). The relative

distance between strings x, y ∈ Σ` over alphabet Σ is ∆(x, y) = |{i:xi 6=yi}|
` . The relative distance

between a string x ∈ Σ` and a non-empty set S ⊆ Σ` is ∆(x, S) = min
y∈S

(
∆(x, y)

)
.

2.1 Proof Systems

2.1.1 Argument Systems

We start by defining argument systems. We restrict our attention to non-interactive arguments for
languages in P.

Definition 2.1 (Non-interactive argument system). A non-interactive argument system for L ∈ P,
with soundness error s : N → [0, 1] and adversary size T : N → N, is a triplet of probabilistic
polynomial time algorithms (G,P,V) such that:

1. Completeness: For every x ∈ L and every security parameter λ, it holds that

Pr
CRS←G(1|x|,1λ)

[
V(x,CRS, π) = 1

]
= 1,

for π = P(x,CRS).

2. Computational soundness: For every x /∈ L, every security parameter λ, and every mali-
cious prover P∗ of size ≤ T (λ), it holds that

Pr
CRS←G(1|x|,1λ)

[
V(x,CRS, π∗) = 1

]
≤ s(λ),

for π∗ = P∗(x,CRS).

The string generated by G is called a common reference string (CRS). The message π sent by
P called the proof.

An argument system is said to be public-coin if the CRS generated by G is simply a common
random string, and V is deterministic.
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By default, unless specified otherwise, an argument system is secure against adversaries of size
T = poly(λ), with s = negl(λ).

We now define a stronger notion of soundness for argument systems, in which the malicious
prover gets to choose the input for the verifier after the CRS has been sampled.

Definition 2.2 (Adaptive computational soundness). A non-interactive argument (G,P,V) for
language L ∈ P is said to be (T, s)-adaptively sound if for every instance length n, security param-
eter λ, and every malicious prover P∗ of size ≤ T (λ), it holds that

Pr
CRS←G(n,1λ)

[
V(CRS, x∗, π∗) = 1 ∧ x∗ /∈ L

]
≤ s(λ)

for (x∗, π∗) = P∗(CRS), where x∗ is of length n.

2.1.2 Holographic Argument Systems

We now define holographic argument systems. In such a system, the verifier can run in sublinear
time as long as it can make a few queries to the low degree extension of its input.

Let F be a field, H a subfield of F of size |H| ≥ log(|F|), and ` ∈ N. Let x : H` → F. The low
degree extension of x, denoted LDEF,H,`(x), is the unique (|H| − 1)-individual degree polynomial
x̂ : F` → F such that x̂ |H`≡ x. For t = (t1, ..., t`) ∈ F`, the value x̂(t) can be computed in the
following manner:

x̂(t) =
∑

b1,...,b`∈H
ÊQ(t1, ..., t`; b1, ..., b`) · x(b1, ..., b`),

where EQ : H` ×H` → {0, 1} is the function defined as

EQ(t1, ..., t`; b1, ..., b`) = 1 ⇐⇒ ∀i : ti = bi.

Moreover, as shown in [JKKZ20, Section 6.1], the low degree extension ÊQ : F` × F` → F of EQ
can be computed in the following manner:

ÊQ(t1, ..., t`; b1, ..., b`) =
∏̀
i=1

∑
α∈H

∏
β∈H\{α}

(β − ti) · (β − bi)
(β − α)2

.

Proposition 2.3 ([RRR16, Proposition 3.8]). Let H and F be field ensembles such that F is an
extension field of H and |H| ≥ log(|F|). There exist procedures LDECompose and LDEDeompose as
follows:

• LDECompose: Given oracle access to x̂1, ..., x̂k over F, and a point i ∈ F`, for ` = log(k) +
maxj∈[k] log|H|(|xj |), the procedure LDECompose makes a single query to each x̂j, runs in time

k · poly(|H|,
∑k

j=1 log|H|(|xj |), log(k)), and outputs ̂(x1, ..., xk)(i).

• LDEDeompose: Given oracle access to ̂(x1, ..., xk), some j ∈ [k], and a point i ∈ Flog|H|(|xj |), the
procedure LDEDeompose makes a single oracle query, runs in time poly(|H|, log(k),

∑k
j=1 log|H|(|xj |))

and outputs x̂j(i).
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Definition 2.4 (Holographic argument system). Let C be a code. Let (P,V) be an argument
system, and let q : N → N. The verifier V is said to be q-query C-holographic in its input x, if
given oracle access to C(x) ( without direct access to x), security parameter λ, and transcript τ
from the interaction with P, the computation VC(x)(τ, 1λ) can be divided into two steps:

1. V1(τ, 1λ) runs a poly(|τ |, λ)-time computation to verify the transcript τ .

2. VC(x)
2 (τ, 1λ) parses the transcript τ to get I, a set of query indices of size q = q(λ), and Z a

set of field elements of size q, and accepts if and only if C(x) |I= Z.

We consider the complexity of a holographic verifier V to be its runtime given the oracle to
C(x).

Let H be a field, F an extension field of H of size |H| ≥ log(|F|), and ` ∈ N. The q-query
LDEF,H,`-holographic verifier can be implemented in the standard model by directly computing the
value of x̂ at the queried indices, which results in an additional q · |H|` ·poly(|H|, `) overhead in the
running time (see, e.g. [Rot09, Claim 3.2.2]).

2.1.3 Probabilistically Checkable Proofs

A probabilistically checkable proof (PCP) is a special format for writing a proof that can be verified
by only reading a few bits.

Definition 2.5 (Probabilistically checkable proof). A probabilistically checkable proof (PCP) for
language L ∈ NTIME(T ) consists of a poly(T ) prover P, that gets as input the instance x as well
as a witness w, and a polylog(T ) time oracle machine V, that receives x as input as well as an
oracle to a proof string π. For every x the following holds:

1. Completeness: If x ∈ L and w is a corresponding witness, for π = P(x,w) it holds that

Pr[Vπ(x) = 1] = 1.

2. Soundness: If x /∈ L, for every oracle π∗ it holds that

Pr[Vπ∗(x) = 1] ≤ 1

2
.

The length of π as a function of |x| and |w| is called the proof length. In order to verify its
oracle, the verifier V tosses r = r(|x|) random coins, and makes q = q(|x|) queries to π. The
functions r and q are called the randomness complexity and query complexity, respectively.

We note that unlike some PCP definitions in the literature, we require that the PCP prover run
in polynomial time given the witness (but standard constructions do satisfy this requirement).

The celebrated PCP theorem [ALM+98] establishes the expressive power of PCPs.

Theorem 2.6 ([ALM+98]). Every L ∈ NP has a PCP with constant query complexity and loga-
rithmic randomness complexity.

A PCP for L ∈ NP is said to be succinct [KR08, FS11] if there exists a polynomial p (which may
depend on L), such that for every (x,w) ∈ RL it holds that |π| = p(|w|, log |x|), for π = P(x,w).
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2.1.4 Probabilistically Checkable Proofs of Proximity

Similarly to a PCP, a probabilistically checkable proof of proximity (PCPP) [BGH+05, DR06] is a
special format of writing proofs in which the verifier only has to read a few bits from the proof.
Unlike PCPs however, a PCPP verifier only has to read a few bits from its input, and is therefore
only required to reject inputs that are far from its language. Following [BGH+06], we define PCPPs
for pair languages.

Pair languages. A language L is said to be a pair language if L ⊆ {0, 1}∗ × {0, 1}∗. Given
instance x, the projection of L on x is the set L(x) = {y : (x, y) ∈ L}.

Definition 2.7 (Probabilistically checkable proof of proximity). A probabilistically checkable proof
of proximity (PCPP) for a pair-language L ∈ DTIME(T ) consists of a poly(T ) time prover P that
gets as input a pair (x, y) as well as a witness w, and a probabilistic polylog(T ) time oracle machine
V that receives x as an explicit input, oracle access to implicit input y, and oracle access to a proof
string π. The verifier also receives (explicitly) a proximity parameter δ > 0. For every proximity
parameter δ ∈ [0, 1] and input (x, y) it holds that:

1. Completeness: If (x, y) ∈ L, for π = P(x, y) it holds that

Pr[Vy,π(x, |y|, |π|, δ) = 1] = 1.

2. Soundness: If ∆(y,L(x)) ≥ δ, for every oracle π∗ it holds that

Pr[Vy,π∗(x, |y|, |π∗|, δ) = 1] <
1

2
.

The length of π as a function of |x| and |y| is called the proof length. In order to verify its
oracles, the verifier V tosses r = r(|x|, |y|, δ) random coins, and makes q = q(|x|, |y|, δ) queries
to y and π. The functions r and q are called the randomness complexity and query complexity,
respectively.

We omit the lengths |y| and |π| when these are clear from the context.
Note that our definition of PCPPs differs from the standard definition in the literature, as we

require that the PCPP prover run in polynomial time, but as above most constructions satisfy this
requirement. In particular:

Theorem 2.8 ([BGH+05]). Let L be a pair language, with instances (x, y), computable in time
T = T (|x|, |y|), and let δ ∈ [0, 1]. There exists a PCPP for L with respect to proximity parameter
δ, with query complexity O(1/δ), randomness complexity O(log T

δ ), and proof length poly(T ). The
verifier runs in time polylog(T, 1δ ) and the prover runs in time poly(T ).

2.2 Cryptographic Tools

2.2.1 Collision Resistant Hash Functions

Definition 2.9 (Collision resistant hash function ensemble). A hash function ensemble H = {Hλ}λ,

for Hλ =
{
h : {0, 1}2λ → {0, 1}λ

}
h
, is said to be (T, s)-collision resistant (CRHF), for functions
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T : N → N and s : N → [0, 1], if there exists a probabilistic polynomial time algorithm H.Gen that
on input 1λ outputs an efficiently computable function h ∈ Hλ, such that for every adversary A of
size ≤ T (λ) it holds that

Pr
h←H.Gen(1λ)

[
h(x) = h(x′)

]
≤ s(λ),

for (x, x′) = A(h).

By default, we assume a CRHF is secure against T = poly(λ) size adversaries, with s = negl(λ).

2.2.2 Merkle Trees

Merkle trees [Mer87] allow one to commitment to a long string, with succinct openings of specific
blocks.

Definition 2.10 (Merkle commitment scheme). Let H = {Hλ}λ∈N be a (T, s)-collision hash func-
tion ensemble.

A Merkle tree commitment scheme is a triplet of algorithms (MC,MO,MV) which fulfill the
following requirements:

• The commitment algorithm MC(h,m) takes as input a hash function h : {0, 1}2λ → {0, 1}λ

sampled from Hλ, and a message m ∈ {0, 1}2
d·λ.

The algorithm parses m as (`d1‖...‖`d2d), where each `di ∈ {0, 1}
λ, and for every j ∈ [d] and

every i ∈ [2j−1] computes `j−1i = h(`j2i−1‖`
j
2i). The algorithm outputs root = `01.

• The opening algorithm MO(h,m, i) takes as input the hash function h, a message m ∈
{0, 1}2

d·λ, and an index i ∈ [2d].

It outputs open = {(cj , sibj , pj)}dj=0, where each cj , sibj ∈ {0, 1}λ, pj ∈ {left, right}, c0 =
MC(h,m), and cd is the i-th block of m. For every j ∈ {1, ..., d}, it holds that if pj = left then
cj−1 = h(sibj , cj) and otherwise, for pj = right, it holds that cj−1 = h(cj , sibj).

For open = MO(h,m, i), we denote by open |i the i-th block of m as described by open, i.e.,
for open = {(cj , sibj , pj)}dj=0 it holds that open |i= cd.

• The verification algorithm MV(h, root, i, open) takes as input the hash function h, the com-
mitment root, an index i ∈ [2d], and openings open. It parses open = {(cj , sibj , pj)}dj=0, where

cj , sibj ∈ {0, 1}λ and pj ∈ {left, right}.

The algorithm checks that {pj}dj=0 correspond to the i-th block. From j = d to j = 1 it checks
that if pj = left then cj−1 = h(sibj‖cj), and if pj = right then cj−1 = h(cj‖sibj). Lastly, it
checks that c0 = root. It outputs 1 if all of the checks above pass, otherwise it outputs 0.

Given I = {i1, ..., iq} ⊆ [2d] we define the output of MO(h,m, I) to be open = MO(h,m, i1)‖...‖MO(h,m, iq),
and MV(h, root, I, open) =

∧
i∈I

MV(h, root, i, open).

Claim 2.11 ([Mer87]). Assume there exists a (T, s)-CRHF ensemble H = {Hλ}λ. Then, the Merkle
tree commitment scheme (MC,MO,MV) defined above has the following properties:
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1. Correctness: For every security parameter λ ∈ N, every message m ∈ {0, 1}2
d·λ, and every

i ∈ [2d], it holds that

Pr
h←H.Gen(1λ)

[
MV(h, root, i, open) = 1

]
= 1,

where root = MC(h,m) and open = MO(h,m, i).

2. Computational binding: For every security parameter λ ∈ N, every message m ∈ {0, 1}2
d·λ,

every i ∈ [2d], and every adversary A of size ≤ T (λ), it holds that

Pr
h←H.Gen(1λ)

[
MV(h, root, i, open∗) = 1 ∧ open∗|i 6= m|i

]
≤ s(λ),

where open∗ = A(h, root, i), root = MC(h,m), open∗|i is the block corresponding to i revealed
in open∗, and m|i is the i-th block of m.

3. Succinctness: For every security parameter λ ∈ N, every m ∈ {0, 1}2
d·λ, and every i ∈ [2d],

it holds that |root|, |open| = O(λ · log(|m|)), for root = MC(h,m) and open = MO(h,m, i).

3 Our Results

In this section we state our main results. First, in Section 3.1 we define the notion of publicly-
verifiable probabilistically checkable arguments (PCAs). We then state a theorem showing the exis-
tence of succinct publicly-verifiable PCAs for a large subclass of NP, assuming the sub-exponential
hardness of LWE. Then, in Section 3.2 we introduce the notion of computational instance compres-
sion (CICs). Assuming the sub-exponential hardness of LWE, we show the existence of CIC for a
large subclass of NP.

3.1 Probabilistically Checkable Arguments

Much like a PCP, a probabilistically checkable argument (PCA) is a special format for writing a
proof in which the verifier only has to read a few bits from the proof. Unlike PCPs, in which every
alleged proof for a false statement is rejected with high probability, for PCAs, accepting proofs may
exist, but we require that it is intractable to find them. This relaxation enables us to build PCAs of
length polynomial in the length of the witness, rather than the non-deterministic verification time,
a result which is unlikely to be possible for PCPs [FS11]. In contrast to PCPs, PCAs are constructed
with respect to a common reference string (CRS), which can be accessed both by the prover and
the verifier.

PCAs were originally introduced by Kalai and Raz [KR09]. We consider a natural restriction
of their definition that mandates that the PCA is publicly-verifiable - that is, given the PCA proof-
string π (and the CRS) anyone can verify the proof by making only a few queries to π.

Definition 3.1 (Publicly verifiable PCA). A publicly-verifiable probabilistically checkable argu-
ment (PCA) for an NP relation R, with adversary size T : N→ N and soundness error s : N→ [0, 1],
is a triplet of poly(n,m, λ)-time algorithms (G,P,V), with deterministic P and probabilistic G and
V, such that for every instance length n and witness length m the following holds:
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• Completeness: For every x ∈ {0, 1}n and w ∈ {0, 1}m, such that (x,w) ∈ R, every λ ∈ N,
and every CRS← G(1n, 1m, 1λ) it holds that

Pr
[
Vπ(x,CRS) = 1

]
= 1, (1)

where π = P(x,w,CRS), and the probability in Eq. (1) is only on V’s coin tosses.

• Computational soundness: For every x ∈ {0, 1}n s.t. R(x) = ∅, every λ ∈ N, and every
P∗ of size ≤ T (λ), with all but s(λ) probability over the choice of CRS ← G(1n, 1m, 1λ) it
holds that [

Vπ∗(x,CRS) = 1
]
≤ 1

2
, (2)

where π∗ = P∗(x,CRS), and again the probability in Eq. (2) is only on V’s coin tosses.

The length of π, as a function of n,m, and λ is called the proof length. In order to verify its
oracle, the verifier V tosses r = r(n,m, λ) random coins, and makes q = q(n,m, λ) queries to π.
The functions r and q are called the randomness complexity and query complexity, respectively.

We reiterate that in contrast to the definition of [KR09], our PCA verifier is not given a trapdoor
to the CRS. In this work we only discuss publicly-verifiable PCAs, and in what follows whenever
we say PCA we refer to the publicly-verifiable variant. Also, by default we assume that PCAs are
secure against malicious T = poly(λ) size provers, with soundness error s = negl(λ).

Note that in Definition 3.1 we distinguish between the randomness of G (used to generate the
CRS) and that of V (used to check the proof). This separation is done since we would like the
CRS to be “good” with overwhelming probability, but since the verifier only makes a small number
of queries, can only guaranteed that its checks will fail (in case x /∈ L) with constant probability.
In particular, this distinction allows us to easily reduce the soundness error of V arbitrarily, and
without increasing the proof length. We do so in the natural way - by simply having the verifier
generate more query sets.

Fact 3.2. Let (G,P,V) be a PCA for relation R, with adversary size T and soundness error s.
Denote by Vk the verifier which runs the verifier k times and accepts if and only if every run
accepts. Then, for every n,m, λ ∈ N, every x ∈ {0, 1}n such that R(x) = ∅, and P∗ of size ≤ T (λ),
with all but s(λ) probability over the choice of CRS← G(1n, 1m, 1λ) it holds that

Pr
[
Vπ∗k (x,CRS) = 1

]
≤ 1

2k
,

where π∗ = P∗(x,CRS).

Succinct PCAs. A PCA for an NP relation R, which is decidable in some time t = t(n,m) ≥ n,
is said to be succinct if the PCA proof is of length poly(m,λ, log(t)), where poly refers to a fixed
universal polynomial (that does not depend on the relation R).

Our first main result shows the existence of succinct publicly-verifiable PCAs for a large subclass
of NP.

Theorem 3.3. Assume the sub-exponential hardness of LWE. Let R be an NP relation where
membership can be decided in logspace-uniform NC, given the instance of length n and witness of
length m. Then, there exists a succinct constant-query publicly-verifiable PCA for R. Further-
more, the verifier runs runs in time poly(n, log(m), λ) and has randomness complexity O(log(m) +
log log(n) + log(λ)).
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(Note that the furthermore clause is non-trivial as the requirement for the PCA verifier runtime
is poly(n,m, λ), where as we achieve poly(n, log(m), λ).)

The proof of Theorem 3.3 is given in Section 4.

3.2 Computational Instance Compression

Instance compression [HN10] is a mechanism for compressing a long instance with a short witness,
down to (roughly) the witness length. Formally, an instance compression from NP-relation R
to NP-relation R′ is a poly-time computable function f , such that for every x of length n with
corresponding witness length m, the compressed value x′ = f(x) is an instance of R′ with length
and witness length poly(m, log(n)), and R(x) = ∅ ⇐⇒ R′(x′) = ∅.

Unfortunately, instance compression for SAT and many other NP-complete problems does not
exist, unless NP ⊆ coNP/poly, in which case the polynomial hierarchy collapses [FS11]. In this work
we consider a relaxation of instance compression which we call computational instance compression
(CIC). A CIC consists of three polynomial-time algorithms: a generator G, an instance compressor
IC, and a witness transformer WT . Loosely speaking, we require that:

• The generator G which, given the security parameter and instance and witness lengths, gen-
erates a CRS.

• If R(x) 6= ∅, then the (deterministic) instance compressor IC outputs x′ = IC(x,CRS) such
that R′(x′) 6= ∅. Moreover, given a witness w for x, the (deterministic) witness transformer
WT produces a corresponding witness w′ for x′.

• If R(x) = ∅, we require that it is computationally intractable to find a witness w′ for x′ =
IC(x,CRS) (even though it may be that such witnesses exist).

Definition 3.4 (Computational instance compression). Let R and R′ be NP-relations. Denote by
n the instance length for R, and by m the corresponding witness length. A computational instance
compression (CIC) scheme from R to R′, with adversary size T : N → N and soundness error
s : N → [0, 1], is a triplet of poly(n,m, λ)-time algorithms (G, IC,WT ), for probabilistic G and
deterministic IC and WT , such that:

• Completeness: For x ∈ {0, 1}n and w ∈ {0, 1}m such that (x,w) ∈ R, and every λ, it holds
that

Pr
CRS←G(1n,1m,1λ)

[(
IC(x,CRS),WT (x,w,CRS)

)
∈ R′

]
= 1.

• Computational soundness: For every x ∈ {0, 1}n with R(x) = ∅, every λ ∈ N, and every
adversary A of size ≤ T (λ) it holds that

Pr
CRS←G(1n,1m,1λ)

[
(IC(x,CRS), w∗) ∈ R′

]
≤ s(λ),

where w∗ = A(x,CRS).

By default, we assume a CIC scheme is secure against adversaries of size T = poly(λ), with
s = negl(λ).
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Discussion. We briefly discuss some important points regarding the definition of CICs:

1. The first point that we highlight, is that for x a NO instance, it could very well be the
case that x′ is a YES instance (indeed, this is virtually a certainty in our construction).
Whereas standard instance compression requires that x′ be a NO instance, the CIC soundness
requirement states that if x′ is indeed a YES instance, then finding a witness w′ for x′ is
intractable.

2. One may also consider a strengthening of CIC in which the compression algorithm, applied to
a NO instance, outputs x′ that is computationally indistinguishable from a false instance. We
refer to this notion as a strong CIC and note that it indeed implies the weaker notion, since
if x′ is indistinguishable from a NO instance, then it is intractable to find a witness w′ for x′.
We leave the study of strong CICs to future work.

3. The last point is regarding the importance of the witness transform algorithmWT . One might
wonder whether the requirement that such an efficient transformation exists is significant. In
particular, one can consider a weaker notion of CIC in which it is not required that a witness
w′ for x′ can be efficiently found from (x,w), i.e., forgoing the use of WT .

This weaker definition seems substantially less useful to us. In particular, it does not suffice
for a main application of instance compression - storing instances more efficiently, in order to
reveal their solution at a later time. Using classical instance compression, finding a witness
w′ for x′ proves that there exists a witness w for x. As for CIC, without WT , it’s not clear
how to find a witness w′ for x′, even given a witness w for x.

Moreover, we note that this weaker definition can be trivially realized for languages L′ that
are hard on average as follows: the instance compressor ignores x and simply outputs a “hard”
false instance x′ (i.e., a YES instance x′ that is computationally indistinguishable from a NO
instance x′′). This trivial compressor satisfies the property that (1) a YES instance is mapped
to a YES instance, whereas (2) for a NO instance x it is computationally intractable to find
a witness w′ for x′ (as this would distinguish x′ from x′′).

Our second main result is a construction of CICs from (sub-exponential) LWE.

Theorem 3.5. Assume the sub-exponential hardness of LWE. Then, every NP relation R, for
which membership can be decided in logspace-uniform NC, is computationally instance compressible
to SAT.

The proof of Theorem 3.5 is given in Section 5.1. We remark that the proof of Theorem 3.5
follows in a relatively straightforward manner from Theorem 3.3. In particular, Lemma 5.1 states
that if a language L has a PCA, then L is computationally compressible to SAT. Combining
Lemma 5.1 with Theorem 3.3 yields Theorem 3.5. A complementary result is given in Section 5.2,
showing that if L is computationally compressible to SAT then L has a succinct PCA.

4 Probabilistically Checkable Arguments

In this section we construct PCAs for all NP relations that are decidable by (logspace uniform) NC
circuits. These include many natural NP relations such as SAT, k-Clique, 3Col, etc. The hardness
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assumption for our construction is the sub-exponential hardness of the LWE problem (see, e.g.,
[Reg10]).

This section is organized as follows:

1. First, we build a PSNARG which is both holographic and partially-adaptively sound, a tech-
nical tool for our PCA construction. The definition and construction of this PSNARG is done
in Section 4.1.

2. We then use the holographic and partially-adaptively sound PSNARG to prove Theorem 3.3.
This is done in Section 4.2.

4.1 A Technical Tool — Holographic and Partially-Adaptive PSNARGs

A technical tool we use in our construction is a PSNARG. In short, it is a non-interactive argument
for a relation R ∈ P, which is succinct in the first coordinate of its input.

Definition 4.1 (Partial-succinctness). A non-interactive argument-system for a relation R ∈ P
is said to be partially-succinct if for every instance (x1, x2) of R with |x1| = n, and |x2| = m,
and every security parameter λ ∈ N, the communication complexity of the argument-system is
poly(m, log n, λ). That is, polylogarithmic in n, the length of the first component.

Definition 4.2 (PSNARG). A PSNARG is a partially-succinct public-coin non-interactive argument-
system for a relation R ∈ P.

In this section we construct PSNARGs geared toward our PCA construction. Since it is somewhat
confusing, we should first clarify the difference between a PSNARG and a regular SNARG. A regular
SNARG is defined with respect to an NP relation R and the assumption is that the prover gets the
witness but the verifier does not. In contrast, a PSNARG is also defined with respect to a relation
that is decidable in P (thus R is an NP relation but we focus on the task of deciding membership
in R given also the witness). In a PSNARG the verifier gets both the instance and the witness.
Verifying that the pair satisfies the relation is non-trivial since we aim for the verification to be
highly efficient.

Given instance x, our goal for the PCA construction in the next section is to have the prover
send (1) a witness w, (2) a PSNARG proving that (x,w) ∈ R, (3) and a PCPP proving that, had
the verifier read the PSNARG, it would have accepted. The prover generates its proof after seeing
the CRS. To maintain soundness, it means that for x /∈ L, a polytime malicious prover should
be incapable of finding a false witness w∗ and a PSNARG proof π∗ which convince the PSNARG
verifier. Therefore, we need the PSNARG verifier to be adaptively sound, at least in the witness w.

Additionally, since the PCPP proves the the computation of the PSNARG, it holds that the
length of the PCPP is proportional to the runtime of the PSNARG verifier. Non-holographic verifiers
have to, at the very least, read their input x, which would result in a proof of length proportional
to |x|. Therefore, it is essential that the PSNARG verifier be holographic to minimize its runtime.

For a large subset of relations R ∈ P, we build a PSNARG for R which is both holographic, and
adaptively sound in the second component.

Definition 4.3 (Partial-adaptive soundness). Let R ⊆ {0, 1}n×{0, 1}m be a relation. A PSNARG
(G,P,V) for membership in R is said to be (T, s)-partially-adaptively sound if for every x1 ∈
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{0, 1}n, every λ ∈ N, and every P∗ of size ≤ T (λ) it holds that

Pr
CRS←G(1n,1m,1λ)

[
V
(
(x1, x

∗
2),CRS, π

∗) = 1 ∧ (x1, x
∗
2) /∈ R

]
≤ s(λ)

for (x∗2, π
∗) = P∗(CRS) with x∗2 of length m.

We rely on the recent work of [JKKZ20] (and an improvement due to [HLR21]), who construct
PSNARGs for all relations in logspace uniform NC. We note that this construction, as-is, provides
only non-adaptive soundness, but this will be easy to fix (at a moderate cost).

Theorem 4.4 ([JKKZ20, HLR21]). Assume the sub-exponential hardness of LWE.
Let C : {0, 1}N → {0, 1} be a log-space uniform circuit of size S = S(N) and depth D = D(N)

for inputs of length N .9 Let H be a field of size |H| = O(log(N)), F be an extension field of H of

size |F| = O(log2(N)), and ` = log(N)
log log(N) .

Then, there exists a non-interactive argument for the language {x : C(x) = 0} in the CRS model.
This non-interactive argument has the following efficiency guarantees: for security parameter λ,
the prover runs in time poly(λ, S), the verifier runs in time (D + N) · poly(λ, logS), and the
communication complexity is D · poly(λ, logS).

Furthermore, the non-interactive argument has a soundness error 2−λ
ε

against adversaries of

size 2λ
ε′

, for some constants ε, ε′ > 0, and is LDEF,H,`-holographic with poly(λ)-queries to its input
(as per Definition 2.4).

The furthermore clause does not hold for the [JKKZ20] construction, but follows from an
improvement in [HLR21] and some simple observations, detailed next.

First, while [JKKZ20] only show polynomial-hardness, it is straightforward to show that their
PSNARG has sub-exponential soundness assuming the sub-exponential hardness of LWE.

Second, the holographic property is due to the the following reason: The [JKKZ20] protocol is
constructed by applying the Fiat-Shamir10 transform [FS86] to the GKR protocol [GKR15]. The
GKR protocol is shown to be holographic in [GKR15]. This feature is preserved by the Fiat-
Shamir transform because [JKKZ20] do not feed the main input as an input to the Fiat-Shamir
hash function11.

Third, in our construction we instantiate GKR with a small field, of size polylog(N) = polylog(n,m),
in order to allow our PCA verifier to generate a full representation of the low degree extension of the
input. To do so we take poly(λ) parallel repetitions of the base GKR protocol over the small field,
and compile the resulting protocol using Fiat-Shamir. We rely here on the work of [HLR21] who
show this can be done (using list recoverable codes). We remark that in this variant (in contrast
to vanilla GKR), the number of queries by the PSNARG verifier to the low-degree extension of its

9In Theorem 4.4 the input length is denoted by N , whereas elsewhere in this manuscript we denote the input
length by n. This is done because later on we will view the input here as consisting of two parts, one of length n and
the other of length m (i.e., N = n + m).

10The Fiat-Shamir transform is a generic method for reducing the number of rounds of arbitrary public-coin
protocols. In a nutshell, instead of getting the random coins from the public-coin verifier, the prover generates the
coins by applying a complex hash function over the transcript generated thus far.

11Typically when using the Fiat-Shamir transform the main input of the verifier is also used as part of the input
to the hash function. This is done in order to obtain adaptive soundness. Since the techniques of [JKKZ20, HLR21]
do not provide adaptive soundness anyhow, they do not use the main input when applying the hash, which means
that their proof-system remains holographic.
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input is poly(λ).

Next, we show how to generically use complexity leveraging to transform a sub-exponentially
secure PSNARG for a relation R ∈ P (such as the one from Theorem 4.4) into one that is partially-
adaptively sound.

Lemma 4.5. Let R ∈ P be a relation, and (G,P,V) be a PSNARG for R with sub-exponential
soundness error. Then, R has a PSNARG which is partially-adaptively sound.

Proof. Let (x1, x2) be an instance of R, of length |x1| = n, |x2| = m, and let λ be the security
parameter. By the sub-exponential computational soundness of V, there exists a constant ε such
that if (x1, x2) /∈ R, then for every P∗ of size ≤ poly(λ) it holds that

Pr
CRS←G(1n,1m,1λ)
π∗←P∗((x1,x2),CRS)

[
V
(
(x1, x2),CRS, π

∗) = 1
]
≤ 2−λ

ε
.

Therefore, for a choice of λ′ = (λ+m)1/ε, for every P∗ of size ≤ T (λ′) it holds that

Pr
CRS←G(1n,1m,1λ′ )
π∗←P∗((x1,x2),CRS)

[
V
(
(x1, x2),CRS, π

∗) = 1
]
≤ 2−(λ

′)ε = 2−(λ+m)ε·1/ε = 2−λ−m.

Let x1 and P∗ a malicious adversary of size ≤ T (λ′). Given CRS, if P∗ chooses x∗2 adaptively,
such that (x1, x

∗
2) /∈ R, by the law of total probability it holds that

Pr
CRS←G(1n,1m,1λ′ )
x∗2,π

∗←P∗(x1,CRS)

[
V
(
(x1, x

∗
2),CRS, π

∗) = 1
]

=
∑

x2∈{0,1}m
Pr

CRS←G(1n,1m,1λ′ )
x∗2,π

∗←P∗(x1,CRS)

[ (
V
(
(x1, x

∗
2),CRS, π

∗) = 1
)

∧
(
x∗2 = x2

) ]

≤
∑

x2∈{0,1}m
Pr

CRS←G(1n,1m,1λ′ )
π∗←P∗(x,CRS)

[
V
(
(x1, x2),CRS, π

∗) = 1
]

≤ 2m · 2(−λ′)ε

= 2−λ.

Since λ′ is a fixed polynomial in λ and m, the overhead in communication complexity is poly-
nomial in λ and m.

Combining Theorem 4.4 and Lemma 4.5 we obtain:

Corollary 4.6. Let R be a relation which is decidable by a family of logspace-uniform circuits of
size S = S(n,m) and depth D = D(n,m), for instance (x1, x2) with lengths |x1| = n, |x2| = m.
Let H be a field of size |H| = O(log(n+m)), F be an extension field of size |F| = O(log2(n+m)),

and ` = log(n+m)
log log(n+m) .

Assuming the sub-exponential hardness of LWE, there exists a PSNARG for R in which the
communication complexity is D · poly(λ, logS), the prover runs in time poly(λ, S), and the verifier
runs in time (D + m) · poly(λ, logS), for λ a fixed polynomial of m. Moreover, the verifier is
LDEF,H,`-holographic in its input (x1, x2), and partially-adaptively sound.
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We note that while the starting point for our partially-adaptive holographic PSNARG construc-
tion is the PSNARG of [JKKZ20, HLR21], there exists another construction of publicly-verifiable
PSNARGs for P, due to Kalai, Paneth and Yang [KPY19]. This PSNARG holds for all of P, rather
than only NC as in [JKKZ20], under a new assumption on groups with bi-linear maps. The PSNARG
of [KPY19] is known to be adaptively sound. If it can also be shown to be holographic, then it
can be used for our PCA construction, thus giving succinct PCAs for all of NP, under the same
cryptographic assumption as in [KPY19].

An additional technical tool we need for our PCA construction is collision resistant hash func-
tions (CRHFs, see Definition 2.9).

Theorem 4.7 ([GGH11]). Assuming the hardness of LWE, there exist collision-resistant hash
function ensembles.

4.2 Proof of Theorem 3.3: Succinct PCAs from LWE

To prove Theorem 3.3 we start with a lemma showing how to construct (public-coin) PCAs, from
holographic partially-adaptive PSNARGs and collision-resistant hash functions.

Lemma 4.8. Let R be an NP-relation. We use n to denote the instance length and m to denote
the witness length.

Let H be a field of size |H| = O(log(n + m)), and F an extension field of H of size |F| =
O
(

log2(n+m)
)
. Assume that field operations over F and H can be performed in time polylog(n,m).

Denote by ` = log(n+m)
log log(n+m) , `n = log(n)

log log(n+m) , `m = log(m)
log log(n+m) .

Assume there exists a public-coin PSNARG (GPSNARG,PPSNARG,VPSNARG) for R which is holo-
graphic in (x,w), partially-adaptively sound, has communication complexity cc = cc(n,m, λ), ver-
ifier complexity vc = vc(n,m, λ), and prover complexity pc = pc(n,m, λ). Assume also, that there
exist CRHF.

Then, there exists a public-coin constant-query PCA for L with proof length poly(m, log(n), λ, cc, vc).
Furthermore, the PCA verifier runs in time poly(n, log(m), λ, log vc) and has randomness complex-
ity O(log log(n) + log(m) + log(λ) + log(vc)), and the prover runs in time poly(n,m, λ, pc, vc).

Theorem 3.3 follows immediately by combining Corollary 4.6, Theorem 4.7, and Lemma 4.8.
Therefore, the remainder of this section is devoted to the proof of Lemma 4.8.

Let R ∈ P be an NP-relation. Let (GPSNARG,PPSNARG,VPSNARG) be the holographic, partially-
adaptively sound PSNARG for R.

Note that |H|` ≥ n + m, |H|`n ≥ n, |H|`m ≥ m, and that |F|` = O
(
(n + m)2

)
, |F|`n = O(n2),

and |F|`m = O(m2).
The proof will take the following steps:

1. First, we construct V ′PSNARG, a modified PSNARG verifier forR, which runs in time poly(m, log(n), λ)
(i.e., polylogarithmic in the input length), given a Merkle commitment to x̂, the low degree
extension of the input x. This is done in Section 4.2.1.

2. We construct a PCA for L (based on V ′PSNARG). This is done in Section 4.2.2.

3. Lastly, we prove the complexity, completeness, and soundness of the PCA. This is done in
Section 4.2.3.

26



4.2.1 A Sublinear PSNARG Verifier

Our eventual goal is to compose a PCP on top of the computation performed by the PSNARG
verifier. Since the length of the PCP is proportional to the size of this computation, we would like
for the size of the verifier’s computation to depend only (poly-)logarithmically on the input length
n.

At first glance, this task might seem trivial as a holographic PSNARG verifier runs in polyloga-
rithmic time, given oracle access to x̂, the low degree extension of its input x. The main problem
lies with composing a PCP on top of the computation of an oracle machine. Current PCP techniques
do not allow for poly(T )-long proofs of time T machines with oracles of length much larger than
T , and instead require that the input of the machine be explicit. In this case, a PSNARG verifier
which receives x̂ or even x explicitly would have to at least read its input, which would result in a
running time proportional to n, rather than log(n). This results in a proof of length poly(n), which
we cannot afford.

In this subsection we use cryptographic tools (namely Merkle hashing, see Definition 2.10) to re-
solve this problem. The following Lemma achieves a PSNARG verifier which runs in (poly)logarithmic
time in n.

Lemma 4.9. Let R be an NP-relation. Denote by n the instance length and by m the witness
length for R. Let VPSNARG be the poly(λ)-query LDEF,H,`-holographic and partially-adaptively sound
PSNARG verifier for R. Let H = {Hλ}λ be a CRHF ensemble.

Then, there exists a PSNARG verifier V ′PSNARG for R which runs in time poly(m, log(n), λ),
given root, the Merkle root of x̂ (with respect to a random h ∈ H).

Proof of Lemma 4.9. Since the verifier VPSNARG is q-query LDE-holographic, as discussed in Defi-
nition 2.4 for q = poly(λ), we divide its implementation into two steps:

First step, V1PSNARG(CRS, π). This step emulates the holographic verifier VPSNARG, other than

checking the holographic queries to (̂x,w). The computation performed by V1PSNARG takes time vc.

Second step, V2PSNARG(x,w, π). The second step implements the query to (̂x,w) in the standard
model. It parses the proof π to get a set of indices I = (i1, ..., iq) ⊆ F` and corresponding field

elements Z = (z1, ..., zq) ⊆ F, and accepts if and only if (̂x,w) |I= Z.

Using Proposition 2.3, we implement the holographic query of V2PSNARG by running LDECompose, a

procedure which allows us to break each query to (̂x,w) into two separate queries, one to x̂ and one
to ŵ. We denote by Ix and Iw the sets of queries made by LDECompose to x̂ and ŵ, respectively.
In other words, V2PSNARG checks that LDECompose

(
x̂ |Ix , ŵ |Iw)

)
= Z. As stated in Definition 2.4,

this step takes time q · |H|` · poly(|H|, `) = poly(n,m, λ), which is too long for our needs.

Succinct second step, V2′PSNARG(h, root, w, π, open). The procedure turns to the prover to pro-
vide the values x̂ |Ix , which we denote by Zx , x̂ |Ix . These values are fixed by the CRS, the input
(x,w), and the proof π, and therefore known to the PSNARG prover when writing the proof. In
order to prevent the prover from providing incorrect values, we ask that the prover provide Zx by
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revealing local openings of x̂ using root, a commitment of x̂ with respect to the collision resistant
hash function h, which we assume is known in advance to both parties.

In more detail, V2′PSNARG(h, root, w, π, open) does the following:

1. Receives as input h, a collision resistant hash function, root = MC(h, x̂) the commitment to
the LDE x̂, the witness w, the PSNARG proof π, and open, the Merkle openings to Zx, the
supposed value of x̂ at coordinates Ix.

2. Checks that MV(h, root, Ix, open) = 1.

3. Parses open to get the value Zx, which supposedly maintains that Zx = x̂ |Ix . It then runs
LDECompose, with the oracle query to x̂ |Ix being replaced by Zx, and the oracle access to
ŵ being implemented in the standard model, and checks that the result is equal to Z as
described in π. In other words, the check is LDECompose(Zx, ŵ |Iw) = Z.

4. Accepts if and only if all previous checks passed.

The second step of V2′PSNARG takes time q · log(n) · poly(λ) = poly(m, log(n), λ). In the third step
of V2′PSNARG, the computation of ŵ |Iw takes time q · |H|`m · poly(|H|, `m) = poly(m, log(n), λ), and
the computation of LDECompose takes time q · poly(|H|, `n + `m) = poly(m, log(n), λ). Therefore,
V2′PSNARG runs in time poly(m, log(n), λ), and can thus be proven to accept by a PCP of length
poly(m, log(n), λ).

In conclusion, our verifier is defined by

V ′PSNARG(CRS, h, root, w, π, open) = 1 ⇐⇒ V1PSNARG(CRS, π) = 1∧ V2′PSNARG(h, root, w, π, open) = 1

and runs in time vc + poly(m, log(n), λ).

Claim 4.10 (Completeness). There exists a deterministic poly(n,m, λ)-time prover P ′PSNARG such
that for every (x,w) ∈ R, of lengths |x| = n, |w| = m, it holds that

Pr
CRS←GPSNARG(1n,1m,1λ)

h←H.Gen(1λ)

[
V ′PSNARG(CRS, h, root, w, π, open) = 1

]
= 1,

where root = MC(h, x̂) and (π, open) = P ′PSNARG(x,w,CRS, h).

Proof. Given (x,w,CRS, h) the prover P ′PSNARG does the following: It computes π = PPSNARG(x,w,CRS)

and parses π to find the set of indices I for queries in (̂x,w), and field elements Z. Using
LDECompose and I, it finds Ix, the set indices for queries to x̂. It then computes open =
MO(h, x̂, Ix), and sends the proof (π, open) to V ′PSNARG.

Upon receiving (π, open), the verifier V ′PSNARG runs V1PSNARG(CRS, π) and V2′PSNARG(h, root, w, π, open).
For the first step, by the completeness of VPSNARG and the fact that π was generated by the honest
prover PPSNARG, it holds that V1PSNARG(CRS, π) accepts. For the second step, it holds that open is
the honest opening to Zx = x̂ |Ix , which, by the correctness property of the Merkle commitment
scheme, implies that MV(h, root, Ix, open) = 1. By the definition of LDECompose it also holds that
LDECompose(Zx, ŵ |Iw) = LDECompose(x̂ |Ix , ŵ |Iw) = Z, which means V2′PSNARG accepts.

Since both steps accept it holds that V ′PSNARG accepts with probability 1.
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Claim 4.11 (Partial-adaptive soundness). For every x ∈ {0, 1}n, and every P∗ of size poly(λ), it
holds that

Pr
CRS←GPSNARG(n,m,1λ)

h←H.Gen(1λ)

[
V ′PSNARG(CRS, h, root, w∗, π∗, open∗) = 1 ∧ (x,w∗) /∈ R

]
≤ negl(λ),

where root = MC(h, x̂), (w∗, π∗, open∗) = P∗(CRS, h), and |w∗| = m.

Proof. Assume for contradiction there exists x, a prover P∗ of size poly(λ), and a polynomial p
such that

Pr
CRS←GPSNARG(n,m,1λ)

h←H.Gen(1λ)

[
V ′PSNARG(CRS, h, root, w∗, π∗, open∗) = 1 ∧ (x,w∗) /∈ R

]
≥ 1

p(λ)
,

where root = MC(h, x̂), (w∗, π∗, open∗) = P∗(CRS, h), and |w∗| = m. By the definition of V ′PSNARG

it holds that V1PSNARG(CRS, π∗) = 1 and V2′PSNARG(h, root, w∗, π∗, open∗) = 1.
Consider the case where the holographic claim described in π∗ is true. That is, the prover

P∗ finds w∗ and π∗ such that (̂x,w∗) |I∗= Z∗, for indices I∗ and field elements Z∗ described in
π∗. Since V2PSNARG only checks the validity of the holographic claim, and in this case the claim is
true, it holds that V2PSNARG

(
(x,w∗), π∗

)
accepts. Since both V1PSNARG and V2PSNARG accept it holds

that VPSNARG

(
(x,w∗),CRS, π∗

)
accepts, despite the fact that (x,w∗) /∈ R. This contradicts the

partial-adaptive soundness of VPSNARG.
Therefore, consider the case where the holographic claim described in π∗ is false. That is,

(̂x,w∗) |I∗ 6= Z∗. Denote by I∗x and I∗w the query indices made by LDECompose to x̂ and ŵ, re-
spectively, when composing for the queries described in I∗. Namely, LDECompose(x̂ |I∗x , ŵ |I∗w) =

(̂x,w∗) |I∗ 6= Z∗. Denote by Z∗x the alleged value of x̂ |I∗x revealed in open∗. Since V2′PSNARG ac-
cepts it must be that the revealed value passed the holographic check, i.e., LDECompose(Z∗x, ŵ |I∗w
) = Z∗. Thus, on the one hand LDECompose(x̂ |I∗x , ŵ |I∗w) 6= Z∗, while on the other hand

LDECompose(Z∗x, ŵ |I∗w) = Z∗. This implies that x̂ |I∗x 6= Z∗x. Since V2′PSNARG accepts, it holds
that MV(h, root, I∗x, open

∗) = 1, for root = MC(h, x̂) the honest commitment to x̂ which we assume
is given to V ′PSNARG. This means that open∗ is a valid opening to a value which is different from the
committed value of x̂, thus contradicting the binding property of the Merkle commitment scheme.

In either case, the poly(λ)-size adversary P∗ breaks the cryptographic tools with non-negligible
probability. Therefore, no such adversary exists, and V ′PSNARG is partially-adaptively sound.

This completes the proof of Lemma 4.9.

4.2.2 The Succinct PCA

Before defining the PCA scheme, we first define an auxiliary pair language L′ which we will use in
our construction. Let E be an efficiently encodable and decodable error correcting code ensemble
with relative distance δ > 0. Denote by E−1 the (poly-time) decoding algorithm for E. The
language L′ is defined as follows:

L′ =
{((

CRS, h, root
)
, E
(
w‖π1‖open

))
: V ′PSNARG(CRS, h, root, w, π1, open) = 1

}
.

In other words, the language L′ is the set of pairs of the following structure:
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1. The first component consists of inputs known to V ′PSNARG explicitly, namely, the common
reference string CRS, a collision resistant hash function h, and root a Merkle root which we
assume is given to V ′PSNARG.

2. The second component consists of inputs given to V ′PSNARG by the prover, namely, the witness
w, the PSNARG proof π1, and the opening open. All of these are encoded by the error
correcting code E.

The language consists of such pairs which make V ′PSNARG accept. Note that L′ ∈ P, since E is
efficient and the verifier V ′PSNARG runs in deterministic time vc+ poly(m, log(n), λ) given its inputs
of size poly(m, log(n), λ).

Note that we can’t use a regular PCP for L′ in our PCA construction, as a PCP verifier reads its
entire input, which in particular would read all of w, thus making the PCA construction trivial. We
therefore use a PCPP (see Definition 2.7), in which the verifier only has to read a few bits from the
oracle to its implicit input. In this case, the PCPP verifier can treat the second component of an
instance of L′ as the implicit input, thus only having to read a few bits from the second component.

The PCPP soundness requirement states that if the implicit input is far from the set of valid
implicit inputs, then the PCPP verifier will reject with constant probability. Note that the set of
explicit inputs L′1 = {x | ∃y : (x, y) ∈ L′} can potentially be all of Σ∗, as there can exist accepting
PSNARG proofs and Merkle openings for every claim. The soundness of the PSNARG and the bind-
ing property of the Merkle commitment make it so that finding a valid implicit input is intractable.
However, these properties do not rule out the feasibility of finding a string which is close to a valid
implicit input. Therefore, the second component of L′ is encoded under E, in order ensure that if
the adversary found a string which is close to a valid implicit input, that string can be decoded to
break the PSNARG or the Merkle commitment.

Since L′ ∈ P, by Theorem 2.8, for the choice of proximity parameter δ
2 , there exists a PCPP

for L′ with constant query complexity, logarithmic randomness complexity, and polynomial proof
length. Denote by PPCPP and VPCPP the PCPP prover and verifier for L′, respectively.

We are now ready to present the PCA. The common reference string for the PCA consists of a
CRS for the PSNARG, and a collision resistant hash function. Let x be an instance of R. The first
half of the PCA proof consists of E(w‖π1‖open). The second half of the PCA proof is π2, the PCPP
proof for the fact that

(
(CRS, h, root), E(w‖π1‖open)

)
∈ L′.

Formally, the PCA scheme
(
G(1n, 1m, 1λ),P(x,w,CRS),Vπ(x,CRS)

)
is defined as follows:

The CRS generator G(1n, 1m, 1λ). The generator G(1n, 1m, 1λ) outputs CRS′ = (CRS, h) where
CRS← GPSNARG(1n, 1m, 1λ) and h← H.Gen(1λ).

The prover P
(
x,w, (CRS, h)

)
. Given common reference string (CRS, h), input x ∈ {0, 1}n, and

corresponding witness w ∈ {0, 1}m, the prover P
(
x,w, (CRS, h)

)
sends

π =
(
E
(
w‖π1‖open

))
‖ π2

where:

• E is the error correcting code mentioned above.
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• π1 is a PSNARG proof for the claim that (x,w) ∈ R, for the given CRS. Formally, π1 =
PPSNARG((x,w),CRS).

The PSNARG proof π1 specifies a set of indices I ⊆ F` and a set of values Z ⊆ F, with the

associated claim that (̂x,w) |I= Z.

• open = MO(h, x̂, Ix) is the Merkle tree local opening, with respect to hash function h, revealing
the values of Zx = x̂ |Ix , for Ix the queries to x̂ made by LDECompose for the index set I.

• π2 is a PCPP for L′, namely, π2 = PPCPP
(
CRS, h, root, E(w‖π1‖open)

)
.

The verifier Vπ
(
x, (CRS, h)

)
. Given common reference string (CRS, h), input x ∈ {0, 1}n, and

oracle access to the proof π, the verifier Vπ
(
x, (CRS, h)

)
does the following:

1. Compute x̂, and root = MC(h, x̂).

2. Parse π as π = E(w‖π1‖open)‖π2, where |w| = m, |π1| = cc, |open| = log(n) · poly(λ), and
|π2| = Õ(vc) + poly(m, log(n), λ).

3. Run VPCPP, the PCPP verifier for the language L′, with explicit input (CRS, h, root), implicit
input E(w‖π1‖open), proof π2, and proximity parameter δ. The PCA verifier V accepts if and

only if VPCPP accepts. That is, if and only if VE(w‖π1‖open),π2
PCPP

(
(CRS, h, root), δ2

)
= 1.

4.2.3 Analysis of the PCA

Complexity: For the communication complexity, since E is a constant rate code, the proof is of
length

|π| = O
(
|w|+ |π1|+ |open|

)
+ |π2|.

It holds that |w| = m, |π1| = cc, |open| = λ · O(log(n)), meaning the first part of π is of length
O
(
m + cc + λ · O(log(n))

)
, for cc the communication complexity of the PSNARG. Since deciding

L′ takes time vc + poly(m, log(n), λ), for vc the verifier complexity of the PSNARG, by Theo-
rem 2.8 it holds that |π2| = poly(m, log(n), λ, vc). In conclusion, the entire proof is of length
|π| = poly(m, log(n), λ, cc, vc).

For the prover complexity, the prover P first has to compute π1 the PSNARG proof for R, which
takes time pc. It then computes x̂, root, and open, which takes time poly(n, log(m), λ). Lastly,
it computes π2 the PCPP proof for L′ which, by Theorem 2.8, takes time poly(m, log(n), λ, vc).
Therefore, the prover runs in time poly(n,m, λ, pc, vc).

For the verifier complexity, the verifier V first computes the low-degree extension x̂ and its
Merkle commitment root, which takes time poly(n, log(m), λ), by Claim 2.11. It then runs VPCPP,
which, by Theorem 2.8, takes time polylog

(
vc + poly(m, log(n), λ)

)
= polylog(m, log(n), λ, vc). In

total, V runs in time poly(n, log(m), λ, log vc).
For the randomness complexity, since V only uses randomness to run VPCPP, it has randomness

complexity log(vc + poly(m, log(n), λ)) = O(log(m) + log log(n) + log(λ) + log(vc)).
Lastly, for the query complexity, since V only queries its oracle when running VPCPP for a fixed

proximity parameter, by Theorem 2.8, the query complexity is O(1).
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Completeness: Let (x,w) ∈ R, where |x| = n and |w| = m. By Claim 4.10, there exists
a PSNARG prover strategy P ′PSNARG such that for every CRS ← GPSNARG(1n, 1m, 1λ) and h ←
H.Gen(1λ) it holds that V ′PSNARG accepts the proof given by P ′PSNARG. In other words, it holds
that V ′PSNARG(CRS, h, root, w, π1, open) = 1, for (π1, open) = P ′PSNARG(x,w,CRS, h). Therefore,
given (CRS, h)← G(1n, 1m, 1λ), the PCA prover P first runs (π1, open) = P ′PSNARG(x,w,CRS, h). It
then runs the PCPP prover for L′ over the resulting instance, namely, it computes the PCPP π2 =
PPCPP(CRS, h, root, E(w‖π1‖open)). The prover sends an oracle to the proof π = E(w‖π1‖open)‖π2.

Given oracle access to π = E(w‖π1‖open)‖π2, the PCA verifier first computes root = MC(h, x̂).
It then runs the PCPP verifier for L′. By Claim 4.10, the PCPP proof π2 corresponds to a correct
claim. Therefore, by the completeness of the PCPP verifier, it holds that VPCPP accepts input(
(CRS, h, root), E(w‖π1‖open)

)
with proof π2 with probability 1. Thus, the PCA verifier accepts

input x with proof π.

Computational soundness: Let x of length n ∈ N withR(x) = ∅, alleged witness length m ∈ N,
security parameter λ ∈ N, and deterministic12 malicious prover P∗ of size poly(λ).

Let (CRS, h) ← G(1n, 1m, 1λ) and π∗ = P∗(CRS, h). Parse the proof as π∗ = τ∗1 ‖τ∗2 , for |τ∗1 | =
O(m + cc + λ · O(log(n))) and |τ∗2 | = poly(m, log(n), λ, vc), corresponding to the lengths of the
components of an honest proof for input length n and witness length m.

Consider the case where ∆(τ∗1 , Image(E)) ≥ δ
2 . In this case, it holds that ∆(τ∗1 ,L′(CRS, h, root)) ≥

δ
2 , for root = MC(h, x̂), as L′(CRS, h, root) ⊆ Image(E). Therefore, by its soundness property, the

PCPP verifier for L′ with proximity parameter δ
2 rejects input

(
(CRS, h, root), τ1

)
, given the proof

τ∗2 , with constant probability. By definition, this means that V rejects with constant probability as
required.

Therefore, we assume without loss of generality that ∆(τ∗1 , Image(E)) < δ
2 . In this case, the

prefix τ∗1 can be decoded efficiently into w∗‖π∗1‖open∗ = E−1(τ∗1 ).
A PCA proof π∗ is said to be convincing with respect to (CRS, h) if π∗ = τ∗1 ‖τ∗2 can be decoded

as w∗‖π∗1‖open∗ = E−1(τ∗1 ), such that at least one of the following happens:

1. VPSNARG((x,w∗),CRS, π∗1) = 1. In other words, the proof π∗ contains a false witness w∗, and
an accepting PSNARG proof π∗1 for the statement that (x,w∗) ∈ R with respect to CRS,
despite the statement being false (since R(x) = ∅).

2. MV(h, root, I∗x, open
∗) = 1 and x̂ |I∗x 6= Z∗x, for I∗x ⊆ F`n the set of queries to x̂ described in π∗1,

and Z∗x, the supposed value of x̂ |I∗x , revealed in open∗. In other words, the proof π∗ contains
Merkle openings to the indices I∗x which pass the Merkle verification procedure, but specify
values which are not consistent with the honest commitment values.

Based on the definition of convincing proofs discussed above, we define the set BAD, a set of
common reference strings for which the adversary outputs a convincing proof. We’ll argue that (1)
the probability of sampling a PCA common reference string in BAD is negligible, and (2) assuming
the sampled common reference string isn’t in BAD, the PCA verifier has a soundness error of 1

2 .
Define the set BAD as follows:

BAD = {(CRS, h) : π∗ = P∗(CRS, h) is convincing w.r.t. (CRS, h)}.
12A non-uniform adversary can be assumed to be deterministic without loss of generality. This is because the

adversary can be hardwired with the best choice of randomness.

32



It holds that
Pr

(CRS,h)←G(1n,1m,1λ)

[
(CRS, h) ∈ BAD

]
≤ negl(λ)

since if this were not the case then with non-negligible probability the sampled (CRS, h) ∈ BAD,
which means π∗ = P∗(CRS, h) would be convincing with non-negligible probability. In this case, at
least one of the following holds:

1. The proof π∗ contains w∗ and π∗1, an accepting PSNARG proof that “(x,w∗) ∈ R” despite
this being false. This means π∗ breaks the partial-adaptive soundness of VPSNARG.

2. The proof π∗ contains a PSNARG proof π∗1 specifying indices I∗x, and a valid opening open∗

to these indices revealing Z∗x, such that x̂ |I∗x 6= Z∗x. This means that π∗ breaks the binding
property of the Merkle tree commitment.

Therefore, the poly(λ)-sized prover P∗ can be used to break the partial-adaptive soundness of
VPSNARG, or the binding property of the Merkle tree commitment, with non-negligible probability,
which is a contradiction. Thus, we conclude that Pr(CRS,h)←G(1λ)

[
(CRS, h) ∈ BAD

]
≤ negl(λ).

Next, we argue that conditioned on (CRS, h) /∈ BAD it holds that Pr[Vπ∗
(
x, (CRS, h)

)
= 1] ≤

1
2 . Let us therefore fix (CRS, h) /∈ BAD. By Claim 4.11 and the choice of (CRS, h) /∈ BAD it
holds that V ′PSNARG rejects its input. Therefore, the claim proven by π∗2 is false. In this case, by
the soundness of the PCPP verifier for L′ it holds that the probability of VPCPP accepting input
(CRS, h, root), E(w∗‖π∗1‖open∗)) with proof π∗2 is at most 1

2 . Thus, with all but negl(λ) probability
over the choice of (CRS, h), the probability of V accepting x with proof π is at most 1

2 .
This completes the proof of Lemma 4.8.

An alternative PCA construction. In the construction above, the PCA proof consists of π =
E(w‖π1‖open)‖π2, for w the witness, π1 a PSNARG proof, open a Merkle opening, and π2 a PCPP
proof for L′ defined above (Section 4.2.2).

We outline an alternative PCA construction, which has the advantage of being somewhat sim-
pler, but unfortunately has super-constant query complexity. The construction does the following:
Instead of considering L′ as a language in P, consider L′ as an NP relation. Formally, define

R′ =
{(

(CRS, h, root), E(w‖π1‖open)
)

: V ′PSNARG(CRS, h, root, w, π1, open) = 1)
}

an NP-relation (which is exactly L′). An instance in this relation consists of a CRS, a collision
resistant hash function h, and a Merkle commitment root for x̂. A witness for this relation consists
of w a witness for x, a PSNARG proof π1, and a Merkle opening open.

Given (CRS, h)← G, the PCA proof string for input x will be π, a proof of the membership of
(CRS, h, root) in the language corresponding to R′.

We note that potentially, every string can belong in the language corresponding to R′. This
is because V ′PSNARG is only computationally sound, i.e., for every (CRS, h, root), there can exist
E(w∗‖π∗1‖open∗) which make V ′PSNARG accept. Thus, a PCP proof for R′ will not suffice, as such
proofs are virtually guaranteed to exist and might be tractable to find.

Instead, we use a PCP of knowledge [BG08, BCGT13]. A PCP of knowledge states that if
a prover manages to convince the verifier to accept an instance x, then the prover must know
a witness w for x (see Definition 5.3 for a formal definition). In this case, if a polytime prover
finds an accepting PCP of knowledge for a “false” instance (CRS, h, root), then he must know a
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witness E(w∗‖π∗1‖open∗), which breaks the computational soundness property of V ′PSNARG. Thus,
a construction which simply sends a PCP of knowledge for membership in R′ makes for a sound
PCA.

Unfortunately, to the best of our knowledge, existing PCPs of knowledge [BG08, BCGT13] have
super-constant query complexity, which results in a PCA with super-constant query complexity.
Therefore, in order to build constant-query PCAs, we resort to the (more complicated) construction
described above based on PCPPs.

5 Computational Instance Compression

In this section we prove Theorem 3.5 by constructing a general purpose CIC scheme based on the
subexponential hardness of LWE. As discussed in Section 3.2, in order to so so it suffices to show
that PCAs yield CICs and then apply Theorem 3.3. We establish this connection in Section 5.1.
Later, in Section 5.2 we show a complementary result: that CICs imply PCAs.

5.1 From PCAs to CICs

The following lemma shows how to use PCAs to construct CICs.

Lemma 5.1. Let R be an NP relation with instance length n and witness length m. If R has a
publicly-verifiable constant-query PCA with proof length poly(m, log(n), λ) and randomness com-
plexity r = O(log(m) + log log(n) + log(λ)), then there exists a computational instance compression
scheme from R to SAT.

The proof of Theorem 3.5 follows by combining Lemma 5.1 with Theorem 3.3. We remark that
our proof of Lemma 5.1 is similar to the construction of standard instance compression from PCPs,
as shown by Fortnow and Santhanam [FS11].

Proof of Lemma 5.1. Let (GPCA,PPCA,VPCA) be a (non-adaptive) PCA for the NP relation R, with
query complexity q = O(1) and randomness complexity r = r(n,m, λ). The computational instance
compression scheme (G, IC,WT ) is defined as follows:

The compression generator G(1n, 1m, 1λ). Given instance length n, witness length m, and se-
curity parameter λ, the compression generator G(1n, 1m, 1λ) simply outputs CRS← GPCA(1n, 1m, 1λ).

The instance compressor IC(x,CRS). Given CRS and x ∈ {0, 1}n, the instance compression
function IC(x,CRS) does the following:

1. The variables for the output formula ϕ correspond to bits of the PCA proof π.

2. For ρ ∈ {0, 1}r:

(a) Compute the decision predicate of the verifier when the input is fixed to x and the
random string is fixed to ρ. In other words, Vx,ρ : {0, 1}q → {0, 1}, such that Vx,ρ(Q) =
1 ⇐⇒ VπPCA(x,CRS; ρ), where Q is the result of the queries to π.

(b) Compute ϕx,ρ a CNF representation of Vx,ρ.

3. Output ϕ =
∧

ρ∈{0,1}r
ϕx,ρ.
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The witness transformer WT (x,w,CRS). Given CRS and (x,w) ∈ R, the witness transform
WT (x,w,CRS) simply outputs w′ = PPCA(x,w,CRS).

Next, we prove that the above scheme satisfies all of the requirements for computational instance
compression.

Complexity: First, the compressed formula ϕ = IC(x,CRS) is indeed a CNF formula and there-
fore an instance of SAT.

For the output length, observe that ϕ is obtained by taking the conjunction of 2r sub-formulas.
For every ρ ∈ {0, 1}r it holds that Vx,ρ is a predicate over q variables, and can therefore be expressed
by ϕx,ρ, a CNF formula of size Õ(2q). Therefore, the entire formula ϕ is of length 2r · Õ(2q) =
poly(m, log(n), λ), where we use here our specific setting of r = O(log(m)+log log(n)+log(λ)) and
q = O(1).

The generator runs in time poly(n,m, λ). The compression function IC runs in time 2r ·
poly(n,m, λ) = poly(n,m, λ). Lastly, the witness transform WT runs in time poly(n,m, λ).

Completeness: Let (x,w) ∈ R. By the completeness of VPCA, it holds that

Pr
CRS←GPCA(1n,1m,1λ)

ρ∈R{0,1}r

[
VπPCA(CRS, x; ρ) = 1

]
= 1,

for π = PPCA(x,w,CRS). This means that for every ρ ∈ {0, 1}r, the predicate Vx,ρ run by VPCA is
satisfied by π. Therefore, every one of the CNF formulas ϕx,ρ is satisfied by π, which means that
ϕ =

∧
ρ∈{0,1}r

ϕx,ρ is also satisfied by π. Thus, for the transformed witness w′ = WT (x,w,CRS),

which is simply w′ = π, it holds that (ϕ,w′) ∈ RSAT .

Computational soundness: Assume for contradiction there exists x with R(x) = ∅, a (deter-
ministic) adversary A of size poly(λ), and a polynomial p, such that for infinitely many λ’s

Pr
CRS←G(1n,1m,1λ)

[
(ϕ,w∗) ∈ RSAT

]
≥ 1

p(λ)
,

for ϕ = IC(x,CRS) and w∗ = A(x,CRS). Since ϕ corresponds to the conjunction of all predicates
run by VPCA over its proof, and since (ϕ,w∗) ∈ RSAT, it must be that w∗ satisfies every predicate of
VPCA. Therefore, with non-negligible probability ≥ 1

p(λ) over the choice of the CRS, the adversary

A finds a proof π∗ = w∗, which causes the verifier to accept with probability 1.
Thus, we have a contradiction to the soundness of VPCA, which implies that no such adversary

can exist.

5.2 From CICs to PCAs

In the previous section we proved that succinct PCAs imply the existence of CICs. Now we show
that the converse is also true, albeit with super-constant query complexity.
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Lemma 5.2. If L ∈ NP is computationally compressible to SAT, then there exists a succinct
publicly-verifiable PCA for L with polylog(m, log n, λ) query complexity.

We note that the query complexity of this PCA verifier is super-constant. This is because in
our construction below, we use the PCPs of [BG08, BCGT13] with the proof-of-knowledge property
(defined below), which have polylogarithmic query complexity. We believe there exist constant-
query PCPs with the proof-of-knowledge property (e.g., the original [ALM+98] construction), but
unfortunately a reference does not seem to appear in the literature.

Proof of Lemma 5.2. In order to show that CICs imply PCAs, we will use PCPs with the proof-of-
knowledge property.

Definition 5.3 (Proof-of-knowledge). Let (P,V) be a PCP for L as described in Definition 2.5.
Denote the soundness error of V by ε.

The verifier V is said to have the proof-of-knowledge property if there exists a polynomial-time
oracle machine E such that the following holds: For every x and π, if Pr[Vπ(x) = 1] ≥ ε(|x|), then
there exists w such that (x,w) ∈ RL and Pr[Eπ(x, 1ε ) = w] ≥ 2

3 .

The following theorem states the existence of such PCPs for NP.

Theorem 5.4 ([BG08], [BCGT13]). Let L ∈ NP. There exists (P,V) a PCP for L ∈ NP with
negligible soundness error, polylogarithmic query complexity, polynomial proof length, and the proof-
of-knowledge property.

Let (G, IC,WT ) be the CIC scheme and let (PPCP,VPCP) be the PCP described in Theorem 5.4.
The PCA (GPCA,PPCA,VPCA) is described as follows:

The generator GPCA(1n, 1m, 1λ). Given instance length n, witness length m, and security pa-
rameter λ, the generator GPCA(1n, 1m, 1λ) outputs CRS← G(1n, 1m, 1λ).

The prover PPCA(x,w,CRS). Given CRS, instance x ∈ {0, 1}n, and witness w ∈ {0, 1}m, the
prover PPCA(x,w,CRS) does the following:

1. Compute x′ = IC(x,CRS) and w′ =WT (x,w,CRS).

2. Output π = PPCP(x′, w′).

The verifier VπPCA(x,CRS). Given CRS and instance x of length n and witness length m, the
verifier VπPCA(x,CRS) does the following:

1. Compute x′ = IC(x,CRS).

2. Interpret π as a PCP proof for the claim that x′ ∈ SAT, and accept if and only if VπPCP(x′)
accepts.
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Complexity: As x′ and w′ are both of length poly(m, log(n), λ) it holds that the PCP proof π is
of length poly(|x′|, |w′|) = poly(m, log(n), λ), and therefore succinct.

The PCA prover PPCA runs the compression scheme and the witness transform, which take time
poly(n,m, λ). It then runs PPCP over a SAT instance of length |x′| = poly(n,m, λ), and witness
length |w′| = poly(n,m, λ), which takes a total of poly(n,m, λ).

The PCA verifier VPCA runs the compression scheme and then runs VPCP over an input of length
poly(m, log n, λ), which takes time poly(m, log n, λ). As mentioned in Theorem 5.4, the query
complexity of VPCA is polylog(|x′|, |w′|) = polylog(m, log n, λ).

Completeness: Let x ∈ L. By the completeness of the of CIC, for every sampled CRS ←
GPCA(1n, 1m, 1λ) it holds that (x′, w′) =

(
IC(x,CRS),WT (x,w,CRS)

)
∈ RSAT , meaning π is a

valid PCP proof for x′ ∈ SAT. Therefore,

Pr
CRS←GPCA(1n,1m,1λ)

[
VπPCA(x,CRS) = 1

]
= 1,

for π = PPCA(x,w,CRS).

Computational soundness: Assume for contradiction there exists x /∈ L of length n, alleged
witness length m, and a deterministic malicious prover P∗PCA of size poly(λ), such that

Pr
CRS←GPCA(1n,1m,1λ)

[
Vπ∗PCA(x,CRS) = 1

]
= Pr

CRS←GPCA(1n,1m,1λ)

[
Vπ∗PCP(x′) = 1

]
≥ 1

2
,

for x′ = IC(x,CRS), and π∗ = P∗PCA(CRS). Let E be the extractor described in Theorem 5.4 for
ε = 1

2 . Consider A, an adversary to break the CIC in the following manner:

1. Given CRS and compressed instance x′, run π∗ = P∗PCA(x′,CRS).

2. Since π∗ makes VPCP accept with probability ≥ ε, compute w′ ← Eπ∗(x′, 1ε ).

3. Output w∗ = w′.

It holds that

Pr
CRS←GPCA(1n,1m,1λ)

w∗←A(x,CRS)

[
(x′, w∗) ∈ RSAT

]
= Pr

CRS←GPCA(1n,1m,1λ)
w′←E(x′,1m)

[
(x′, w′) ∈ RSAT

]
≥ 1

2
,

for x′ = IC(x,CRS), which contradicts the soundness of the CIC.
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A Securely Instantiating Fiat-Shamir of Kilian’s Protocol

Our sublinear SNARG, described in Section 4.2.1, may seem (and is indeed) related to an application
of Fiat-Shamir [FS86] to Kilian’s protocol [Kil92]. At first glance this may seem perplexing since
there is a line of research proving the (in)security of applying Fiat-Shamir over arguments [Bar01,
GK03, BBH+19]. Of particular relevance is the result of Bartusek et al. who show that applying
Fiat-Shamir to Kilian’s protocol is not sound if one uses either the collision resistant hash function
or PCP (or more precisely IOP) in a generic way [BBH+19].

To understand how we escape this paradigm, let us briefly recall Kilian’s construction. In short,
the 4-message protocol of Kilian [Kil92] for L ∈ NP has the following structure:

1. The verifier VKilian samples h, a collision-resistant hash function, and sends h to the prover.

2. Given input x, the prover PKilian computes π, the PCP proving that x ∈ L. It then computes
root, the Merkle hash for π using h, and sends it to the verifier.

3. The verifier VKilian sends the prover its random query indices for π.

4. The prover PKilian sends open, the opening corresponding to the query indices, using the root
and h.

The verifier checks the consistency of open, and runs the PCP predicate with respect to the
revealed values. It accepts if and only if both checks passed.

The main conceptual difference between applying Fiat-Shamir to the above protocol, vs. our
PCA construction is that in the latter the verifier has a trusted hash of the input (which it generated
by itself in a preprocessing step).

Consider therefore, the following setting: The verifier VKilian is assumed to have root, the root
corresponding to the honest proof π with respect to its input x. Specifically, for x ∈ L and w its
witness, the verifier receives root = MC(h, π), for π = PPCP(x,w). For x /∈ L, the verifier receives
root the commitment of π = PPCP(x, 0m), for m the alleged witness length for x.

For completeness, consider (x,w) ∈ RL. The verifier has root, and generates indices I and
sends them to the prover. The prover computes the opening open to indices I of π, which passes
the Merkle verification procedure, and satisfies the PCP predicate, thus making the verifier accept.

For soundness, let x /∈ L and P∗PCP a malicious prover. With high probability, querying π =
PPCP(x, 0m) will make the verifier reject. Therefore, the malicious prover P∗PCP cannot send the
honest opening to π at I. Since the verifier already has root, the malicious prover can only cheat
by searching for a false opening open∗ to root which passes the Merkle verification procedure. This
requires breaking the binding property of the Merkle commitment scheme, which means the prover
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will fail, and thus the verifier will reject. Therefore, in this setting, applying the Fiat-Shamir
transform to Kilian’s protocol is indeed sound (but of course the assumption that the verifier has
access to a trusted Merkle root is hard to justify in the usual context).
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