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Abstract. Starting with the work of Rivest et al. in 1996, timed assump-
tions have found many applications in cryptography, building e.g. the
foundation of the blockchain technology. They also have been used in the
context of classical MPC, e.g. to enable fairness. We follow this line of
research to obtain composable generic MPC in the plain model.
This approach comes with a major advantage regarding environmental
friendliness, a property coined by Canetti et al. (FOCS 2013). Informally,
this means that our constructions do not “hurt” game-based security
properties of protocols that hold against polynomial-time adversaries
when executed alone.
As an additional property, they can be plugged into any UC-secure
protocol without loss of security.
Towards proving the security of our constructions, we introduce a variant
of the UC security notion that captures timed cryptographic assumptions.
Combining standard timed commitments and standard polynomial-time
hardness assumptions, we construct a composable commitment scheme in
the plain model. As this construction is constant-round and black-box, we
obtain the first fully environmentally friendly composable constant-round
black-box generic MPC protocol in the plain model from standard (timed)
assumptions.

1 Introduction

In order to achieve the very strong notion of UC security, trusted setups are
required [CF01]. However, in practice, trusted setups are often hard to come by.
Therefore, a long line of research (e.g. [Pas03; BS05; LPV09; Gar+12; GKP18;
Dac+13; PS04; CLP10; CLP13; Bro+17]) has investigated how composable multi-
party computation (MPC) can be achieved in the plain model, i.e. only assuming
authenticated communication channels.

Starting with the work of Pass [Pas03], many approaches for this task have
been proposed. Common to their techniques is that the simulation is environ-
mentally unfriendly, i.e. “hurts” the security of protocols that run along-side and
that rely on polynomial-time hardness assumptions.

Formally, this is captured by the notion of environmental friendliness as
defined by Canetti, Lin, and Pass [CLP13], which considers all game-based
security properties of a protocol against polynomial-time adversaries.



The typical reason for limited environmental friendliness is a super-polynomial
simulation, which can break polynomial-time assumptions used in other pro-
tocols, therefore impacting their security properties. This holds even if the
super-polynomial resources are restricted by e.g. an angel.

However, super-polynomial simulation techniques are not the only danger to
the security of other protocols: Non-uniform advice given to the simulator (e.g.
as in [LPV09]) may impact the security of previously started protocols—even if
they are concurrently composable and secure against non-uniform adversaries.
This additional property is not considered by the definition of environmental
friendliness.

Ever since composable MPC in the plain model has been investigated, the
following question has been left unanswered:

Can we achieve composable MPC in the plain model that is friendly to
protocols that are executed along-side and may have started previously?

Previous results suggest that a simulation technique that runs in polynomial-
time and does not rely on non-uniform advice is needed. Such a simulation
cannot be achieved, in principle, even by previous advanced approaches like
angel-based security or shielded oracles. Therefore, a novel approach to overcome
the impossibility results of the UC framework is needed.

With the advent of the blockchain era, timed cryptographic assumptions have
seen widespread use in the real world. A very popular example is the proof of work
protocol of the Bitcoin blockchain. Even though its hardness is not based on some
well-understood cryptographic assumption, it has proven to work nevertheless
for many years.

Timed variants for classic cryptographic primitives such as commitments can
be constructed from timed assumptions that are inspired by well-understood
standard assumptions. Rivest, Shamir, and Wagner [RSW96] have initiated this
study and proposed a time-lock puzzle based on the hardness of factoring and the
time required to square modulo a composite. Based on such assumptions, timed
cryptographic primitives such as time-lock puzzles and timed-release encryption
[RSW96] or timed signatures and timed commitments [BN00] can be constructed
in the plain model. More recently, stronger primitives such as non-malleable
time-lock puzzles and commitments have been constructed [Eph+20; KLX20]
using a setup.

As timed assumptions can be broken in polynomial-time by definition, they
seem destined to solve the problem of limited friendliness exhibited by previous
approaches for composable MPC in the plain model. In the following, we thus
investigate the following questions:

Can we use timed assumptions to achieve composable MPC in the plain
model? What are the advantages and disadvantages of such an approach?
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We answer this question affirmatively and propose a new approach for generic
MPC in the plain model based on asymmetries that are only temporary and
much smaller compared to previous approaches. Namely, these asymmetries
consist of only a polynomial number of computation steps sufficient to leverage
timed cryptographic assumptions. The very feasibility of this approach may
seem surprising as timed cryptographic primitives eventually lose their security.
For example, timed commitments will eventually leak their secret by definition.
Previous constructions crucially rely on this not to happen, i.e. the complexity
asymmetry and the ensuing security to hold throughout the whole execution.
We side-step this problem by using timed assumptions to merely set up short-
lived trapdoors that can only be used while the assumptions still hold. After
their security has expired, the (now possibly leaked) trapdoor is useless for the
adversary. Yet, a simulator can use it to establish a long-lived trapdoor based on
some classical polynomial-time assumption.

We introduce the notion of TLUC security, which is based on UC security
and cast in the unmodified UC framework. With TLUC, honest parties may
set up timers with some timeout ` ∈ N that expire when all entities have spent
more than ` steps in total. This allows to capture the security of (stand-alone)
timed primitives such as time-lock puzzles or timed commitment schemes. While
computations performed by protocol parties, environment and adversary are
counted against timers, computations performed by the simulator are not. This
allows simulators to break timed assumptions “at no cost” in terms of run-time
accounting, while always remaining polynomially bounded. Such a simulator can
then, for example, extract a timed commitment while it is still hiding for the
environment.

With respect to the question of environmental friendliness, it suffices to see
that the notion of TLUC security is a meaningful special case of UC security,
which is fully environmentally friendly. This already implies that our notion also
features full environmental friendliness as defined by [CLP13].

In order to be friendly to previously started protocols, a uniform simulation,
i.e. one that does not rely on non-uniform advice (also in the reductions), is
needed. Looking ahead, this is indeed the case for our composable commitment
scheme.

To the best of our knowledge, our techniques are the first to achieve both of
these properties simultaneously.

Leveraging timed assumptions for composability comes with a number of
additional advantages. Namely, our notion is UC-compatible in the sense that if
π UC-realizes φ for arbitrary protocols π and φ, then π also TLUC-realized φ.
TLUC security allows the reuse of UC protocols in the sense that one can take
a UC-secure protocol ρ making one subroutine call to F that UC-realizes some
ideal functionality G and replace F with its TLUC realization π. The composite
protocol ρπ is then guaranteed to TLUC-realize G. These properties are not
generally offered in full by other notions that allow composable general MPC
in the plain model and are not implied by (limited) environmental friendliness.
What is more, TLUC security is meaningful for ideal functionalities that rely
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on (even uniform) polynomial-time assumptions. This is in contrast to e.g. SPS
security, where such functionalities are affected by the super-polynomial simulator
or non-uniform simulation [LPV09].

Unfortunately, TLUC security is not closed under composition. Thus, one has
to manually prove that multiple instances of π TLUC-realize multiple instances
of F (i.e. π̂ TLUC-realizes F̂).

Like previous approaches for generic MPC in the plain model and even UC
security, TLUC security is not friendly to timed game-based properties of other
protocols, e.g. the timed hiding property of a timed commitment scheme. This
property is neither captured by the definition of environmental friendliness nor
fulfilled by any previous notion that allows composable MPC—not even UC
security.

Towards realizing composable generic MPC, we first construct a commitment
scheme that TLUC-realizes the ideal functionality for multiple commitments
FMCOM. In more detail, we combine a (possibly malleable) timed commitment
with a non-malleable commitment to construct a commitment that is equiv-
ocal and concurrently simulation-sound, i.e. retains its binding property even
if the adversary sees equivocated commitments. We show that this suffices to
replace the CRS of the UC-secure commitment scheme of Canetti and Fischlin
[CF01] with coin-tosses, assuming that trapdoor one-way permutations with
dense public description [DP92] exist. The resulting composable commitment
scheme is constant-round, black-box, in the plain model and makes use of stan-
dard polynomial-time and standard timed assumptions only. We note that our
approach is conceptually different from recent results [Eph+20; KLX20; Bau+20b;
Bau+20a] which define non-malleable or composable timed primitives and realize
them using a trusted setup.

Due to the reusability of UC protocols, we can plug our construction into
any UC protocol in the FMCOM-hybrid model while maintaining TLUC security.
Using e.g. a variant of the MPC protocol of Hazay and Venkitasubramaniam
[HV15], we are the first to obtain a composable constant-round, black-box and
environmentally friendly generic MPC protocol from standard polynomial-time
and timed assumptions that does not impact the security of other protocols
relying on (non-timed) polynomial-time hardness assumptions.

1.1 Related Work

Informally, the very strong impossibility results for UC security [CF01; CKL03;
PR08; KL11] imply that UC security can only be achieved using some kind of
trusted setup. Lindell [Lin03] has shown that the impossibilities are not due to the
particular definition of UC security, but apply to general concurrent composition.

Ever since, there have been numerous attemps to circumvent these impossi-
bility results at least partially by considering security notions that are weaker
than standard UC security.
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SPS Security, introduced by [Pas03], considers simulators that may have a super-
polynomial run-time, giving them an advantage over the polynomially-bounded
environment at the expense of environmental friendliness and UC reusability.

While earlier approaches such as [Pas03; BS05] require (non-standard) super-
polynomial hardness assumptions, newer approaches such as [LPV09; Gar+12;
GKP18] require only standard polynomial-time hardness assumptions.

Due to the complexity asymmetry between environment and simulator,
these constructions do not offer general composition. Thus, concurrent self-
composability of SPS-secure protocols is often proven in a non-modular way.he
transitivity of SPS security holds only with respect to protocols whose security
is not “hurt” by the stronger simulator, e.g. protocols that are information-
theoretically secure such as [IPS08]. Thus, (general) reusability of UC protocols
is lost.

[LPV09] have generalized the notion of UC security to (Cenv, Csim)-security,
where Cenv and Csim denote the complexity classes of environment resp. simu-
lator. They present a construction for non-malleable zero-knowledge from UC
puzzles that can be plugged into an appropriate generic MPC protocol. For their
construction in the plain model, [LPV09] assume simulators that run in non-
uniform polynomial-time while the environment runs in uniform polynomial-time.
However, the non-uniform simulation may impact the security of protocols that
have started in the past. Also, if Csim is non-uniform polynomial-time, then the
security notion is not meaningful for ideal functionalities that rely on uniform
polynomial-time hardness assumptions.

[Dac+13] have extended the work of [LPV09] by considering adaptive security.
Starting with a UC puzzle, they construct a commitment scheme satisfying their
new and strong notion of non-malleability from simulatable public-key encryption.
This non-black-box and non-constant-round construction can then be plugged
into an appropriate protocol, yielding adaptively secure composable generic MPC.

Recently, [GKP18] have presented a SPS-secure black-box OT protocol from
constant-round semi-honest OT and collision-resistant hash functions, i.e. stan-
dard polynomial-time hardness assumptions only. Their construction is secure
against static corruptions and has a lower round complexity than other constant-
round constructions such as [Bro+17].

Angel-based Security and Environmental Friendliness. The weak composition
properties of SPS security have subsequently been improved upon by notions
where the simulator itself remains polynomially bounded, but is aided by some
super-polynomial entity that is also available to the environment. Such frameworks
include Angel-based security [PS04], or UC with super-polynomial helpers [CLP10].
[CLP10] construct a non-constant-round CCA commitment scheme from one-
way functions and use it to realize the ideal functionality for commitments.
Their construction can be plugged into any constant-round UC protocol ρ in
the FCOM-hybrid model without losing security. This property, called round
robustness, has been generalized by [CLP13] to the property of environmental
friendliness. The helper of [CLP13] is environmentally friendly for protocols
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whose security is proven via black-box reductions to game-based cryptographic
hardness assumptions with bounded polynomial round complexity.

Shielded Oracles. [Bro+17] have introduced the notion of UC security with
shielded oracles that strictly lies between SPS security and Angel-based security.
Their construction for a composable commitment scheme makes use of standard
polynomial-time hardness assumptions only, is constant-round and black-box.
While their notion is not environmentally friendly, they showed that the con-
structions can be plugged into a special class of UC-secure protocols without loss
of security.

Other Models and Notions. There have been proposed a number of different
models which enable (composable) MPC in the plain model. The timing model
introduced by [KLP05] considers a communication network with time bounds
and parties that have access to a local clock with little drift. There, non-constant-
round non-black-box MPC secure under general composition is possible. This is
done by delaying other protocols that are executed concurrently and incomparable
to our approach.

The notion of input indistinguishability, first defined by [MPR06] and gen-
eralized and strengthened by [Gar+12], is another security notion capturing
concurrent self-composition that can be achieved in the plain model. However,
the constructions of [MPR06; Gar+12] are non-black-box. Also, input indistin-
guishability is weaker than UC security.

Non-Malleable Time-Lock Puzzles and Commitments [Eph+20] have introduced
the notion of non-malleable time-lock puzzles and timed commitments and present
constructions in the random oracle model. Similar results have been obtained by
[KLX20] in the algebraic group model. While both results can possibly be used
as building blocks in our constructions, they are not in the plain model.

TARDIS and CRAFT. TARDIS [Bau+20b] extends the GUC framework [Can+07]
to include a notion of abstract time and ticked functionalities whose behavior can
depend on the elapsed time. In this setting, universally composable abstractions
of time-lock puzzles can be defined and realized in the random oracle model. We
note that the goal of [Bau+20b] is different than ours. We use stand-alone-secure
and possibly malleable timed primitives such as (malleable) timed commitments
in order to achieve composability in the plain model. In contrast to TARDIS, we
do not aim to define composable security notions for timed primitives. CRAFT
[Bau+20a] realizes composable MPC in the TARDIS framework with additional
guarantees such as output-independent abort, also relying on a random oracle.

1.2 Our Results

New Security Notion for Composable Security. The notion of UC security con-
siders entities that are polynomially bounded and inherently unaware of other
computations going on. Thus, timed assumptions cannot be properly used in UC

6



protocols. With TLUC security, we consider a variant of UC security that allows
a party P to set up timers associated with a number of steps `. At any point,
P may query if the execution experiment in total (including the environment,
adversary and other protocol parties) has performed ` or more steps. This allows
the use of timed cryptographic primitives such as timed commitments.

Similar to SPS security, our security notion is not closed under composi-
tion (Appendix C.6) and features the single-instance composition theorem only
(Theorem 4).

Environmental Friendliness. Very informally, environmental friendliness, intro-
duced by Canetti, Lin, and Pass [CLP13], deals with the problem of negative
“side-effects” a protocol π may have on game-based properties of another protocol
π′ that runs along-side (where neither protocol is a subroutine of the other)
and relies on polynomial-time hardness assumptions. Formally, this is captured
in a stand-alone model for game-based security properties, cf. Appendix C.3.
Previous notions that feature generic MPC in the plain model suffer from lim-
ited environmental friendliness because super-polynomial simulation, e.g. due to
use of a super-polynomial helper, may break polynomial-time hardness assump-
tions of other protocols that run along-side, resulting in limited environmental
friendliness. While not considered by the definition of environmental friendli-
ness, giving the simulator non-uniform advice may hurt the security of (even
non-uniformly) secure protocols or protocols that have been previously executed.
Being a special case of UC security, TLUC security is fully environmentally
friendly (Proposition 6).

We note that the established notion does not consider timed game-based
properties such as the timed hiding property of a timed commitment scheme.
As such, our notion as well as all previous notions such as e.g. SPS security,
Angel-based security and even UC security are not fully friendly in this respect.

UC Compatibility and Reusability. As all UC protocols retain their security
under our notion (UC compatibility, Proposition 4) and TLUC simulators run in
strict polynomial-time, we can realize a UC-complete functionality F in TLUC
and plug it into any existing UC-secure protocol making one subroutine call to
F without loss of security (UC reusability, Corollary 3). This is not implied by
environmental friendliness per se. As the simulation is always polynomial-time,
(even uniformly only) computationally secure ideal functionalities are meaningful
in our framework.

Composable Commitment Scheme in the Plain Model. Combining a timed com-
mitment scheme and a pCCA-secure commitment scheme, we construct a non-
malleable and partially simulatable coin-toss that is sufficient to “bootstrap”
the CRS of a UC-secure commitment scheme such as the UCCOneTime scheme
of Canetti and Fischlin [CF01] in the plain model. The resulting commitment
scheme is concurrently composable and TLUC-realizes the ideal functionality
for multiple commitments FMCOM (Theorem 6). As all our reductions can be
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performed uniformly, πMCOM does not hurt the security of any protocol making
use of polynomial-time assumptions, including uniform ones.

Our protocols can also be easily adapted to other security notions, e.g. SPS
security (see Section 7.1).

Composable Constant-Round Generic MPC in the Plain Model. Plugging our
construction for FMCOM into a variant of the generic MPC protocol due to [HV15],
we obtain a constant-round black-box and environmentally friendly generic MPC
protocol from standard polynomial and standard timed assumptions in the plain
model (Theorem 7). We remark that our results are in the static corruption
setting.

2 Overview of our Techniques

In order to achieve composable security, the simulator needs an advantage over
to the environment. In the case of UC security, this advantage is the ability to
simulate the setup. For example, the simulator may embed a trapdoor into a
common reference string in a way that is indistinguishable for the environment.

In contrast, composable security in the plain model is usually achieved by
using a superpolynomial simulation, e.g. by either allowing simulators having
super-polynomial run-time complexity or by giving the polynomial-time sim-
ulator access to super-polynomial resources. The inherent drawback of such
approaches is that superpolynomial simulation affects other polynomial-time
protocols running concurrently. The consequences are two-fold: i) A protocol
π realizing some functionality F using super-polynomial simulation cannot be
plugged into arbitrary UC protocols ρ in the F-hybrid model while retaining
security. ii) The simulation may not be environmentally friendly, i.e. it may affect
the security of polynomial-time protocols running along-side independently.

In order to circumvent these problems, we propose a dual approach that is,
to the best of our knowledge, completely novel: Instead of giving an advantage
to the simulator, which remains polynomially bounded, we temporarily restrict
the environment in a way that allows the use of timed primitives such as timed
commitments in a meaningful way. As the simulator is not subject to the same
restrictions as the environment, it is still able to e.g. extract a timed commitment
that remains hiding for the environment for some time.

To this end, we allow parties to set up timers parameterized by a number of
steps t and require the environment to obey these timers. In our constructions, we
use timers to “protect” the timed hiding property of timed commitment schemes.
Informally, a timed commitment scheme has the following properties: i) There is a
bound t ∈ N such that commitments remain hiding for adversaries performing at
most t steps (timed hiding) and ii) there is an extraction algorithm that extracts
a valid commitments in polynomial time T > t (polynomial-time extractability,
binding). For the formal definition, see Section 3.3.

By setting up appropriate timers, we ensure that timed commitments where
the receiver is corrupted initially remain hiding for the environment. Conversely,
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the simulator, which is not required to obey timers, can extract timed com-
mitments created by the environment. This is sufficient to set up a long-lived
trapdoor based on standard polynomial-time hardness assumptions.

These fine-grained asymmetries are not captured by previous notions for
composable security. We thus introduce the notion of TLUC security, which is
a variant of UC security that allows the use of timed assumptions. As TLUC
simulators run in strict polynomial-time, TLUC-secure protocols are environmen-
tally friendly to all game-based properties against polynomial-time adversaries of
protocols running alongside.

In previous approaches, the simulator kept its advantage throughout and
beyond the protocol execution. In our setting, this is not the case anymore.
Indeed, the environment will eventually be able to break all timed assumptions
and thus e.g. learn the values of all timed commitments. We thus had to come up
with a novel simulation technique that allows the simulator to set up a trapdoor
while preventing the environment, which will eventually be just as powerful as
the simulator, to do the same. At the same time, the environment, will eventually
“catch up” the run-time advantage of the simulator, must not be able to notice
when the simulator sets up a long-lived trapdoor.

Combining stand-alone timed commitments with stand-alone non-malleable
commitments, we construct a commitment scheme that is concurrently realizes
many instances of FCOM under TLUC security.

Theorem 1 (Composable Commitments in the Plain Model, informal).
Assume that trapdoor PRGs with dense public description, perfectly binding

homomorphic commitment schemes and timed commitment schemes exist. Then,
there exists a black-box constant-round commitment scheme in the plain model
that concurrently TLUC-realizes FCOM.

As TLUC simulation is strictly strict polynomial-time, it does not “hurt” the
security of other polynomial-time protocols running concurrently. This allows us
to re-use arbitrary UC protocols without loss of security.

Proposition 1 (UC Reusability). Let ρ be a protocol that makes one sub-
routine call to a protocol φ such that ρφ UC-realizes σ for some protocol σ. Let π
be a protocol such that π TLUC-realizes φ. Then, ρπ TLUC-realizes σ.

Using an appropriate generic MPC protocol in the FCOM-hybrid model, we
can achieve composable generic TLUC-secure MPC in the plain model.

Theorem 2 (Constant-Round MPC in the Plain Model, informal).
Assume that timed commitment schemes and perfectly binding homomorphic
commitment schemes exist. Also, assume that enhanced trapdoor one-way per-
mutations with dense public descriptions exist. Then, for every well-formed
functionality F , there exists a constant-round black-box protocol πBBF in the plain
model such that πBBF concurrently TLUC-realizes F .

The resulting protocol is environmentally friendly.
In the following, we give a quick overview of the security notion, the compos-

able commitment scheme and one important building block.
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2.1 TLUC Security in a Nutshell

Timed primitives such as timed commitment schemes can be meaningfully used
in practice. Consider performing a coin-toss using a timed commitment scheme
secure for, say, t = 1015 steps. Assuming that the adversary can perform at most
1010 steps per second (equating 10 GHz, assuming that steps equate cycles)3,
a coin-toss using this timed commitment should be considered secure if the
adversary’s second-round message comes within e.g. one second of receiving the
timed commitment, with plenty time left as security margin.

TLUC Security. Unfortunately, this intuition is not easily captured in the UC
framework, which neither offers a notion of time nor makes assumptions with
respect to the (concrete) computational power of entities. Instead of considering
a model with time or modifying the framework, we propose a variant of UC
security, called TLUC security, that enables honest parties to check if more than
` steps have been performed since a certain point in the execution. This allows to
capture the security guarantees of timed primitives and to use them in protocols.

With TLUC, parties can set up timers parameterized by an ID and a number
of computation steps ` by sending (timer, id, `) to the adversary. At any point,
a party that has set up a timer may check if it has expired, i.e. if the whole
execution experiment has performed ` or more steps since the timer has been
set up. This is done by sending (notify, id) to the adversary. The adversary
queries the environment if the timer has expired answers with (notify, id, b),
where b = 1 denotes an expired timer and b = 0 an unexpired one.

Mechanisms. The correct handling of timers is ensured by considering only
legal environments and legal adversaries. Intuitively, legal environments correctly
account for timers set up by honest parties by never under-estimating the
number of computation steps performed by the execution experiment relative
to a presumptive execution of a protocol π (counting obliviously of the parties’
inputs and outputs) and adversary A, denoted by Z[π,A]. This guarantees that
timed assumptions protect against environment and adversary, but can be broken
by the simulator in polynomial time (as the environment Z[π,A] always counts
relative to π and A, even when interacting with φ and S). For technical reasons,
we require handling of timers and inquiries to go through the adversary. An
adversary is legal if it immediately and correctly forwards timer setup messages
or status inquiries by honest parties, as well as the environment’s responses.
Based on this, we define TLUC emulation as a special case of UC emulation,
and consider legal adversaries and environments only. At first glance, this might
seem restrictive, but when considering standard UC protocols without timers,
then all UC environments and adversaries are legal under our definition. Thus,
the restrictions only apply for classes of protocols that are not considered by UC
security.

3 This is even more plausible when using timed cryptographic assumptions that are
belived to be hard even for parallel adversaries.
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We want to emphasize that we have only modified the security notion (TLUC
security vs. UC security), but not the security framework itself (which is the
UC framework in both cases), e.g. the control function or the machine model.
Interestingly, not all properties of UC security carry over to TLUC security. An
important example is the composition theorem, which holds for the single-instance
case but not the general one. Even proving the properties that do carry over
require non-trivial proofs due to emulation overhead that is of no consequence
when considering polynomial-time security only.

2.2 Composable Commitment Scheme

Our main contribution is the composable commitment scheme πMCOM in the
plain model. Our construction is based on the UCCOneTime commitment scheme
in the FCRS-hybrid model due to Canetti and Fischlin [CF01].

In the original scheme UCCOneTime, which is suitable for a single commitment
only, the CRS consists of two parts: a pair of public keys (pk0, pk1) for a trapdoor
PRG PRG (cf. [CF01]) as well as a uniformly random string σ ∈ {0, 1}4κ. With
the knowledge of the associated secret keys (sk0, sk1) for the trapdoor PRG,
it is possible to extract commitments. By changing the distribution of σ in an
indistinguishable way, the commitment scheme becomes equivocal.

Assuming trapdoor one-way permutations with dense public description
[DP92], one can, in principle, use a coin-toss to generate (pk0, pk1) and σ. This
would, however, require a commitment scheme that is both extractable and
equivocal, which is essentially what we try to construct.

However, when analyzing the commitment scheme UCCOneTime carefully, one
sees that the knowledge of only one trapdoor, depending on which party is
corrupted, is sufficient. The other trapdoor does not even have to exist. This
allows to use a different approach: We perform one coin-toss for each part of
the CRS. Only the part of the CRS for the relevant property (equivocation or
extraction) needs to be simulatable, depending on which party is corrupted. In
this setting, a commitment scheme that is either equivocal or extractable suffices
as a building block for the coin-toss.

The commitment scheme SSCOM that we use for the coin-toss is straight-
line equivocal. This suffices to set up the extraction trapdoor if the sender is
corrupted by having the commitment receiver, played by the simulator, start the
coin-toss for (pk0, pk1). The simulator can equivocate the result to public keys for
which it knows the secret keys. Conversely, the coin-toss for σ is started by the
commitment sender. If it is honest, the simulator can simulate the coin-toss such
that σ contains an equivocation trapdoor. From that point on, UCCOneTime can
be executed as-is, using the values obtained by this preamble phase instead of the
CRS as in the original protocol. For each new commitment between two parties,
this preamble phase is re-executed. A similar approach is used in [Dac+13].

The key insight here is that the commitment must be equivocated in time,
i.e. before the coin-toss has finished. Even if the commitment were to become
equivocal later on, it would be too late for a malicious committer to bias the
result of the coin-toss. Looking ahead, we use a timed commitment to set up
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the equivocation trapdoor. The simulator can straight-line extract this timed
commitment early enough and thus simulate the coin-toss where it plays the
committer. The other coin-toss, where the environment acts as committer, is also
equivocal in principle. However, as long as the timed commitment remains hiding
until after the coin-toss has finished, the environment is unable to bias the result.

Interestingly, this technique protects to a certain extent from timed assump-
tions that eventually turn out to be false. This is because the timed commitments
only have to be secure while timers protecting them are active. Even if they
turn out to be completely insecure immediately after the timer’s expiration, a
protocol’s security is unaffected. That is a big difference to previous constructions
using e.g. sub-exponential hardness assumptions, whose security needs to hold
indefinitely.

To achieve concurrent self-composability, we need SSCOM to have additional
properties beyond equivocality. In particular, SSCOM commitments created
by the environment have to remain binding even if the environment receives
equivocated openings for commitments created by the simulator. This established
property is called simulation-soundness. However, previous definitions requiring
simulation-soundness against all polynomial-time adversaries are not applicable
to our setting. Such definitions would not allow the use timed commitments
as trapdoor. We thus define the relaxed notion of timed simulation-soundness
(Definition 3) for a setting where adversaries obey timers.

To the best of our knowledge, timed commitments have not been used in
conjunction with a polynomial-time assumption to establish a long-term trapdoor
before. We believe that this technique is of independent interest.

Construction 1 (Commitment Scheme πMCOM, informal). Parameterized by a
timed security parameter `(κ) and a trapdoor PRG PRG with key space {0, 1}l(κ)
for some polynomial l, domain {0, 1}κ and range {0, 1}4κ.

Commit Phase.

1. Upon receiving (commit, sid , cid , Pi, Pj , b) as input for the committer Pi,
committer Pi and receiver Pj execute two coin-tosses with timed security
parameter `(κ) to generate

(a) (pk0, pk1) ∈ {0, 1}l(κ)×{0, 1}l(κ) (the “extraction CRS”) with the receiver
acting as initiator in the coin-toss.

(b) σ ∈ {0, 1}4κ (the “equivocation CRS”) with the sender acting as initiator
in the coin-toss.

If both coin-tosses terminate successfully, both parties store
(sid , cid , (pk0, pk1, σ)). Otherwise, they halt the execution.

2. The committer samples r
$← {0, 1}κ and sets c = PRG(pk0, r) if b = 0 and c =

PRG(pk1, r)⊕σ if b = 1. Then, the committer sends (commitment, sid , cid , c)
to the receiver. The committer stores (sid , cid , (b, r, c)), the receiver stores
(sid , cid , c) and outputs (committed, sid , cid , Pi, Pj).
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Unveil Phase.

1. Upon receiving (unveil, sid , cid , Pi, Pj) as input, the committer sends
(unveil, sid , cid , (b, r)) to the receiver.

2. Upon receiving (unveil, sid , cid , (b, r)) from the sender, the receiver checks
if c = PRG(pk0, r) for b = 0 or if c = PRG(pk1, r) ⊕ σ for b = 1, relative
to the values stored for this (sid , cid). If the check is successful, the receiver
outputs (unveil, sid , cid , Pi, Pj , b) and halts otherwise.

2.3 Construction SSCOM

We now give a short overview of the construction SSCOM (Construction 2) for
a timed simulation-sound string commitment scheme, which is based on the
commitment scheme due to [Bro+17], which is inspired by [DS13]. Roughly, our
scheme works as follows: First, the committer creates κ 2-out-of-2 shares of the
secret and commits to these shares individually, using a standard non-timed
commitment scheme. Then, the committer commits to a random index vector
I ∈ {0, 1}κ chosen by the receiver, using a timed commitment. In the unveil phase,
the committer first sends its shares without unveiling the share commitments.
Then, the receiver unveils the commitment to I. Finally, the committer unveils
the share commitments denoted by I (i.e. if the i-th bit of I is b, then the b-th
share of the i-th share tuple is unveiled), while the other commitments remain
unopened. If the commitment to I can be extracted before sending the shares in
the unveil phase, the commitment is equivocal. As inconsistent share commitments
remain unopened and hiding, a malicious receiver cannot distinguish between an
equivocated and a honest commitment. If the unveil phase is finished before the
commitment to I loses its timed hiding property, the commitment is binding.

The main difference to the construction of [Bro+17] is the use of a timed
commitment scheme for the commitment to the index vector I, which allows
polynomial-time equivocation of SSCOM commitments.

We want to note that we need only a weak form of extractability for the
timed commitment: Due to the structure of the protocol, it does not matter if
the simulator accidentally extracts an invalid timed commitment to the index set.
This is because the protocol will abort early enough if the timed commitment
cannot be opened correctly. We account for this in our relaxed definition of timed
commitment schemes (Definition 1). Allowing this over-extraction may lead to
more efficient constructions in contrast to timed commitment schemes where the
receiver must be able to efficiently determine the validity after the commit phase,
as required by the established definition of [BN00].

At first glance, one might think that the timed commitment to I must be non-
malleable in order to achieve timed simulation-soundness. In practice, this would
constitute a problem as we are not aware of non-malleable timed commitments
from standard timed assumptions in the plain model. Fortunately, were able
to circumvent this problem by requiring the share commitment scheme to be
pCCA-secure (Definition 9). In order for the proofs to go through, we also had
to move the timed commitment to I to the end of the commit phase.
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Looking ahead to the proof of our composable commitment scheme, we
also need the SSCOM commitment scheme to be (not necessarily straight-line)
extractable. This can be easily achieved by using an appropriate extractable
commitment scheme for the share commitments.

In the following, we present our results in more detail.

3 Definitions

3.1 Notation

Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. Let Hi be some hybrid. Then
outi denotes the output of Hi. negl(κ) denotes an unspecified negligible function

in the security parameter κ ∈ N. x
$← Y denotes that x is drawn uniformly

at random from the set Y . x ← Y denotes that x is either the output of the
probabilistic algorithm Y or sampled according to the probability distribution Y .
Let π1, π2 be protocols. Then, π1 ≥UC π2 denotes that π1 UC-emulates π2 and
ππ2
1 denotes that π1 makes at least one subroutine call to π2.

3.2 Machine Model, Notion of Time

When considering polynomial-time hardness assumptions, the particularities of
machine models rarely matter. This is because different (classical) machine models
can be usually emulated by each other with polynomial run-time overhead or
speedup. With polynomial-time being closed under addition and multiplication,
polynomial-time hardness assumptions do not become insecure if there is a
machine model where some problem can be solved (polynomially) more efficient.

In this paper, we consider timed primitives such as timed commitment schemes.
For timed primitives, security often is only guaranteed against adversaries ad-
hering to some kind of (concrete) run-time bound in a fixed machine model. For
such assumptions, changing the machine model can make the difference between
security and insecurity. This is obvious for stark differences, e.g. when going from
a sequential to a parallel machine model when considering timed assumptions that
hold only against sequential adversaries. However, this problem also manifests
with more subtle changes like allowing a larger alphabet for Turing machines,
which may result in a linear speedup.

More problems arise during security reductions that require the emulation of
Turing machines. Suppose that we want to show the security of some protocol π
by using a `-bounded timed assumption. We call ` the timed security parameter.
In the security proof, the adversary A′ against the timed assumption has to
internally emulate the `-bounded adversary A as well as (parts of) the protocol
π. Just internally emulating the `-bounded adversary may incur an overhead that
does not allow the reduction to go through, because A′ may always require more
than ` steps due to its emulation overhead, even when just running the code
of A and relaying messages. Additional overhead may occur e.g. for extracting
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the correct answer based on the internally emulated adversary’s output. These
caveats have to be accounted for.

Later on, we use timed primitives in the UC framework (cf. Section 5). While
UC security can be stated using various machine models [Can01], we adhere
to the standard model of interactive Turing machines. However, as e.g. the
particular alphabet or the number of work tapes is left unspecified4, so is the
exact notion of run-time in that particular model. In order to argue about the
security of timed assumptions in our security notion, we thus have to map the
underspecified notion of run-time of interactive Turing machines as defined in the
UC framework to the (possibly also underspecified) notion of run-time for the
timed assumption. Following the Cobham-Edmonds thesis (see e.g. [Gol08]) or
the extended Church-Turing thesis, we assume that this is always possible with
a multiplicative polynomial overhead or speedup in a classical setting, i.e. when
not considering quantum computations. For common machine models such as
Turing machines, Boolean circuits or (parallel) random access machines, explicit
emulation constructions and bounds for the overhead resp. speedup are known.

When constructing a protocol with security against `(κ)-bounded adversaries,
we thus require the timed building blocks to be secure against adversaries with
timed security parameter `′(`(κ), κ)5 where `′ is a sufficiently large polynomial
that accounts for possible run-time mismatches due to emulation overhead,
reduction overhead or (polynomial) efficiency changes between machine models.
As we do not want to make assumptions about the machine models being used,
we do not explicitly specify `′. However, as soon as all machine models and
reductions are fixed, `′ is well-defined. Also, for our constructions, we show that
`′ is sufficiently generic and e.g. is independent of the TLUC environment under
consideration.

Note that the timed security parameter generally grows with increasing
protocol nesting depth, similar to the tightness loss in standard reductions.

In our protocols, we use timer messages parameterized by an ID id to allow
protocol parties later check if more steps than allowed by the timed security
parameter ` have been elapsed by sending a message (notify, id). If the answer
is (notify, id , 1), then more than ` steps have passed and we say that the “timer
has timed out” or “expired”. Conversely, (notify, id , 0) denotes that the timer
has not expired. Later on, we will only consider adversaries (or environments)
that handle such messages correctly.

As the default machine model and execution experiment of UC are inherently
sequential, we refer to computation steps instead of run-time, as the latter may
capture many steps performed in parallel, which we want to count individually.

4 Newer versions of the UC framework such as UC2020 explicitly allow multiple work
tapes, allowing the emulation of other Turing machines with only additive overhead.

5 In order to capture the setting where `(κ) is constant but e.g. the reduction overhead
depends on κ, we parameterize `′ with both values.
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3.3 Timed Commitment Schemes

Boneh and Naor [BN00] have introduced the notion of timed commitment schemes.
Instead of the hiding property holding against all polynomial-time adversaries, a
(T, `, ε)-timed commitment scheme guarantees the hiding property to hold only
for some bound of steps ` performed by an adversarial receiver, except with
probability ε.

However, the (`, ε)-hiding property does not guarantee that there exists a
value T ∈ N such that a valid timed commitment can be opened “forcefully”
in at most T > ` steps. To this end, the definition of [BN00] also requires the
existence of a forced-open algorithm that runs in time T , takes the transcript
of a successful commit phase and outputs the unique value v ∈ M committed
to, where M is the message space of the commitment scheme. In other words,
in addition to the binding property, a malicious committer must not be able
to open its commitment to a value that is inconsistent with the output of the
forced-open algorithm. This extractability is crucial for our simulation later on,
as it guarantees that simulators can extract timed commitments in polynomial
time (if T is bounded by a polynomial in κ).

In the definition of [BN00], timed commitment schemes have to exhibit a
soundness property which requires that at the end of the commit phase, the
receiver is “convinced” that running the forced-open algorithm will produce
the value v committed to. While not formally defined, the definition of [BN00]
also requires valid commitments to be efficiently recognizable by the receiver.

Looking ahead to our construction, we do not need valid timed commitments
to be efficiently recognizable. In particular, we can deal with the over-extraction
of invalid commitments, i.e. the case where forced-open outputs a value v ∈
M , even if the commitment cannot be unveiled. We call this property weak
extractability and will account for this in the following definition.

Also, the hiding property informally described in [BN00] seems to be relatively
weak, considering honestly created commitments only. Moreover, the adversary’s
steps are only counted after it is provided the transcript of a successful commit
phase. Our definition of timed hiding (Definition 7) is standard and stronger in
the sense that the commitment receiver may act maliciously. Also, we count the
adversary’s steps from the very beginning on. It is easy to see that the scheme
due to [BN00] satisfies this stronger notion.

With [BN00] not giving a formal definition, we define weakly extractable
timed commitment schemes as follows.

Definition 1 (Weakly Extractable Timed Commitment Scheme). A
tuple of ITMs TCOM = 〈C,R〉 is called a (T, `, ε)-weakly extractable timed
commitment scheme with message space M if 〈C,R〉 is a (`, ε)-hiding commitment
scheme for which there exists a deterministic algorithm forced-open that, given
a transcript c of a successful commit phase, outputs the unique value v ∈ M
committed to in at most T steps.

16



We say that TCOM is perfectly correct if for all κ ∈ N and all v ∈M ,

Pr[v? = v′ = v |(zC, zR, c)← out〈C(v),R(ε)〉(1κ, Commit),

v′ ← outR〈C(zC),R(zR)〉(Unveil), v? = forced-open(c)] = 1

The perfect correctness can be naturally relaxed to statistical correctness.
We say that TCOM is perfectly binding and weakly extractable if for all

(malicious) committers C∗, all κ ∈ N and all a ∈ {0, 1}∗ , it holds that

Pr[v? = v′ | (zC∗ , zR, c)← out〈C∗(a),R(ε)〉(1κ, Commit),

v′ ← outR〈C∗(zC∗),R(zR)〉(Unveil), v? = forced-open(c) ∧ v′ ∈M ] = 1

While the aforementioned properties do not state any requirements for the output
of forced-open on invalid commitments (i.e. allows over-extraction), it implies
the soundness requirement of [BN00] for valid commitments.

While Definition 1 is not concerned with the committer’s run-time, we note
that it may depend on all parameters, in particular T and `. This is important
for (proving) security properties that consider more than one commitment, e.g.
the timed simulation-soundness (Definition 3).

Boneh and Naor [BN00] also present a constant-round and black-box con-
struction based on the generalized BBS assumption that is secure against parallel
adversaries. Also, their construction admits a super-polynomial gap between the
number of steps needed to perform the commitment and the number of steps `
the commitment is secure against.

While [BN00] consider a machine model that admits parallel computations,
we consider (weaker) sequential models of computation only.

Recently, Ephraim et al. [Eph+20] and Katz, Loss, and Xu [KLX20] have
re-visited timed commitment schemes, providing formal definitions and new
constructions. However, as they consider (non-interactive) timed commitment
schemes with setups, their definitions are not easily applicable to our setting.

Timed commitments can also be constructed by combinding sequential func-
tions [MMV13] and universal hash functions. However, such a construction has
the drawback that both commit and unveil phase are computation-intensive. Still,
it suffices for a feasibility result with a symmetric assumption.

4 Timed Simulation-Sound Commitment Schemes

Looking ahead to our construction of a composable commitment scheme (Sec-
tion 6), we need a commitment scheme that is equivocal for a polynomial-time
simulator. At the same time, commitments created by a malicious committer (e.g.
by the UC environment) must remain binding sufficiently long. To this end, we
first define the security notion of timed simulation-soundness. Also, we present
the construction SSCOM that combines a possibly malleable timed commitment
scheme with a non-timed pCCA-secure commitment scheme and satisfies the
notion of timed simulation-soundness.
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4.1 Timed Simulation-Soundness

Based on the established notion of simulation-soundness [MY04; GMY03] and
inspired by the non-malleability notion of Dachman-Soled et al. [Dac+13], we
define a concurrent and timed variant of simulation-soundness that is suitable for
commitments where the binding property only holds temporarily (Definition 3).
Intuitively, this timed simulation-soundness ensures that commitments produced
by a malicious committer remain binding for a bounded adversary even if it
concurrently receives equivocated commitments. While somewhat similar to the
notion of non-malleability with respect to unveil or opening or decommitment
([DIO98; PR05; OPV08]), our definition is stronger in the sense that commit and
unveil phases may overlap (similar to the definition of [Dac+13]).

The Experiment. In the experiment for timed simulation-soundness, a man-in-
the-middle adversary acts as receiver in an unbounded number of instances
(“left sessions”) of some trapdoor commitment scheme. The adversary starts
left sessions by providing a tag of its choice, along with an efficiently samplable
and length-normal (cf. Definition 2) distribution. Only considering distributions
facilitates easier proofs and more general definitions and is sufficient for our
application. In each left session, the code of the trapdoor committer Ctrap is
executed. After the commit phase of a session has finished, the adversary may,
at some point of its choice, start the unveil phase. At its onset, a value from the
provided distribution is sampled and unveiled by the trapdoor committer.

In addition, the adversary acts as committer in one session (“right session”),
again using a tag of its choice that must be unique compared to all other tags that
will eventually be used in the experiment. The scheduling between all sessions
and their messages is fully controlled the adversary.

When the commit phase of the single right session has finished, the experiment
determines the value committed to. The commitment scheme is secure if the
adversary cannot unveil its single commitment to a value different from the
committed one, even when presented with equivocated commitments.

Timer-Related Parameters. In our setting, we do not consider simulation-
soundness against arbitrary polynomial-time adversaries. Indeed, our construc-
tion SSCOM is (intentionally) not simulation-sound or even binding against
polynomial-time adversaries: If a corrupted receiver manages to break a timed
commitment it receives from the (honest) sender early enough, the commitment
becomes equivocal. In our setting, protocol parties may set up timers and inquire
at some point whether the timer has expired. The timed simulation-soundness
experiment is thus parameterized with a timed security parameter `. This timed
security parameter denotes how many steps experiment and adversary may per-
form before the a timer set up by the honest receiver in the right session is
considered to have timed out. If no timeout occurs, the binding property of the
single right commitment should hold, even if left commitments are equivocated.

Timed simulation-sound commitments that use timed primitives such as timed
commitments as building block must choose their timed security parameter `′
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relative to `. Usually, to account for reduction overhead, e.g. to the timed hiding
property of a timed commitment scheme, `′ must be chosen sufficiently large
to account for this overhead. As the reduction overhead may depend on the
security parameter κ but `(κ) might be constant, `′ is also parameterized with
κ. Depending on the commitment scheme, increasing ` may lead to the timer
always expiring, e.g. because a sub-protocol protected by the timer requires more
than ` steps to execute (e.g. the commit phase of a timed commitment scheme,
which may take longer for larger `) for some values of `. In this case, proving
security becomes trivial as the adversary cannot win the game. However, this
also implies that scheme is secure in this case. When using appropriate building
blocks, e.g. non-interactive timed commitments or a timed commitment scheme
with a sufficiently large gap (e.g. the scheme of [BN00] has an exponential gap
between the time needed to create the commitment and its timed security), this
problem does not occur for sufficiently large `′.

In order to notify parties about timeouts, we require the adversary to obey the
following rules: When receiving a message (notify, id) for some ID id, it must
immediately answer (notify, id, 1) if it has previously received (timeout, id) and
the whole execution experiment, including the adversary and committers in left
sessions, has performed ` or more steps, where ` is the timed security parameter.
For our construction, this can be easily calculated as the run-time of the involved
algorithms do not depend on their internal randomness or secrets. If an exact
calculation is not possible, the adversary must use an appropriate upper bound.

This is in contrast to e.g. Definition 7 where only the steps of the adversary
are counted. There, this is possible as only one commitment session is considered.
Here, we consider an unbounded number of sessions. In a reduction to some
timed property, all the left sessions will have to be emulated by the reduction
adversary, counting against its time limit in the reduction.

As the algorithms C and Ctrap may require a different number of steps during
their execution, the adversary must count the maximum number of steps either
algorithm might need in order for reductions to go through. In our construction,
it would be sufficient to only count the steps of the honest committer Ctrap.

As the guarantees of timed cryptographic assumptions are only for honest
parties, the experiment does not answer notify messages.

In real life, one can of course not expect that a possibly malicious party obeys
these rules. However, if a timed primitive is believed to be secure for e.g. several
days considering the computation power available to the other party, assuming a
timeout after, say, one minute, should be sufficiently secure.

Relationship to Other Non-Malleability Notions. Similar to the simulation-based
non-malleability notion of [Dac+13], security must hold if the commit and
unveil phases on the left side are interleaved with the right session. However, in
contrast to [Dac+13], we do not require the commitment on the right side to be
concurrently extractable and also do not consider adaptive corruptions, leading
to a different security notion.
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Formal Definition. First, we define length-normal probability distributions as
distributions where all elements of the sample space are of equal length.6

Definition 2 (Length-normal Probability Distribution). Let D be a prob-
ability distribution over {0, 1}∗ with sample space Ω. D is called length-normal
if for all x, y ∈ Ω, it holds that |x| = |y|. Let |D| denote |x| for x ∈ Ω.

An example for a length-normal distribution is the uniform distribution Un
over {0, 1}n with |Un| = n.

Definition 3 (Timed Simulation-Soundness). A trapdoor commitment
scheme TRAPCOM with message space M ⊆ {0, 1}∗ is called `(κ)-timed
simulation-sound if for all legal PPT adversaries A, there exists a negligible
function negl such that for all κ ∈ N and for all z ∈ {0, 1}∗, it holds that

AdvSIMSOUND
A,TRAPCOM(κ, `(κ), z) := Pr[ExpSIMSOUND

A,TRAPCOM(κ, `(κ), z) = 1] ≤ negl(κ)

where the probability is over the random coins of the experiment and the ad-
versary. An adversary A is called legal if i) it immediately sends the message
(notify, id, 1) after receipt of (notify, id) and the experiment (including the
adversary) has performed more than or equal to `(κ) steps after having received
a message (timer, id), where steps performed by the committer on left sides are
counted as the maximum of steps of either the honest committer C or the actu-
ally running trapdoor committer Ctrap and ii) A sends commit-left messages
only parameterized with efficiently samplable and length-normal distributions (cf.
Definition 2) where the sample space Ω is a subset of the message space M .

The random variable ExpSIMSOUND
A,TRAPCOM(κ, `(κ), z) is defined as follows:

1. Start the adversary A with input (1κ, `(κ), z).
2. Upon receiving (commit-left, tag ,Dtag) from the adversary: Start the commit

phase of TRAPCOM with common input (1κ, commit, tag , `(κ)), acting as
trapdoor committer Ctrap with private input |Dtag | unless there already is a
session with tag tag.

3. Upon receiving (commit-right, tag) from the adversary: Start the commit
phase of the right session with common input (1κ, commit, tag , `(κ), κ), acting
as honest receiver R, unless the right session already exists or there is a left
session with tag tag. Let v′ ∈M denote the unique value committed to in the
right session. If no such unique value exists, set v′ = ⊥.

4. Upon receiving (unveil-left, tag) from the adversary: Sample vtag ← Dtag

and start the unveil phase of the i-th left session with common input
(unveil, tag) and private input vtag for the trapdoor committer, unless the
commit phase with tag tag has not finished or the unveil phase has already
started.

5. Upon receiving (unveil-right) from the adversary: Start the unveil phase of
the right session with common input (unveil, tag), acting as honest receiver
where tag is the tag specified in the commit phase. Let u denote the value
accepted by the receiver or ⊥ in case of an abort.

6 When considering an appropriate encoding, the definition can be extended to e.g.
group elements.
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6. Upon receiving (message, tag ,m) from the adversary, forward the message m
to the session with tag tag. Conversely, forward messages to the adversary.

7. After the right unveil phase has finished, output 1 if the receiver in the right
session has accepted and u 6= v′ ∧ u 6= ⊥ ∧ v′ 6= ⊥, where v′ is the value
committed to in the right session. Otherwise, output 0.

We also say that a commitment scheme fulfilling the above definition is
`(κ)-simulation-sound.

Like [Dac+13], we call an adversary that wins the above experiment with at
most negligible probability non-abusing, i.e. if its commitments remain binding
even when presented with equivocated commitments. Note that this notion is
only meaningful for commitments where the value committed to is uniquely
determined (except with negligible probability) if the receiver accepts. To capture
the general case, the definition has to be changed slightly.

4.2 Construction SSCOM

In the following, we present the construction SSCOM (Construction 2) for a timed
simulation-sound string commitment scheme, which is based on the commitment
scheme due to [Bro+17], which is inspired by [DS13]. Roughly, the scheme works
as follows: Committer and receiver perform a commitment to a random index
vector I ∈ {0, 1}κ chosen by the receiver. They then perform 2κ commitments
to pair-wise shares of the secret. In the unveil phase, the committer first sends
its shares without unveiling the share commitments. Then, the receiver unveils
the commitment to I. Finally, the committer unveils the share commitments
denoted by I, while the other commitments remain unopened. If the commitment
scheme used for I is extractable, the commitment is equivocal. As inconsistent
share commitments remain unopened and hiding, a malicious receiver cannot
distinguish between an equivocated and a honest commitment. In order to achieve
concurrent security, we require the share commitment scheme to be pCCA-secure
(Definition 9).

In contrast to the original construction of [Bro+17], we use a timed commit-
ment scheme for the commitment to the index vector I, which allows polynomial-
time equivocation of SSCOM commitments. Also, we move this timed commitment
to I to the end of the commit phase. For the sake of simpler proofs, we assume
that the commitment scheme for the shares is perfectly binding. However, this
requirement can be relaxed to statistically binding.

To facilitate easy integration with our composable commitment scheme and
the timed simulation-soundness definitions, SSCOM includes explicit messages to
set up timers and to check if they have expired. Again, the party answering the
timer status inquiry checks if both parties have performed ` or more steps since
the timer has been set up and answers accordingly. In the simulation-soundness
experiment, the answer is given by the adversary that is required to answer
truthfully. Again, it would have been possible to only count steps by the party
that has not set up the timer. However, counting the steps of both parties is
more consistent with our other definitions and more convenient in reductions.
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Construction 2 (Commitment Scheme SSCOM). Parameterized by a security
parameter κ, a timed security parameter `(κ), a pCCA-secure and perfectly binding
commitment scheme COMpCCA and a (T, `′(`(κ), κ), negl(κ))-weakly extractable
timed commitment scheme TCOM.

Commit Phase. On common input (1κ, commit, tag , `(κ)), committer and receiver
interact as follows:

1. The committer creates 2κ shares s1,0, s1,1, . . . , sκ,0, sκ,1 of its private input v

by sampling sm,0
$← {0, 1}|v| and setting sm,1 = v ⊕ sm,0, m = 1, . . . , κ.

2. For m = 1, . . . , κ, n = 0, 1, committer and receiver start 2κ instances of
COMpCCA on input common input (1κ, commit, (tag ,m, n)) in parallel. The
committer’s private input in the instance with tag (tag ,m, n) is sm,n.

3. The receiver samples an index vector I
$← {0, 1}κ and sends (timer, tag) to

the committer. Then, committer and receiver start an instance of TCOM
with common input (1κ, commit, `(`′(κ), κ)). The receiver of SSCOM acts as
committer with private input I.

Unveil Phase. On common input (unveil, tag), committer and receiver interact
as follows:

1. The committer sends the shares (s1,0, . . . , sκ,1) to the receiver.
2. The receiver sends (notify, tag) to the committer, which the receiver answers

with (notify, tag , b) where b = 1 if committer and receiver have spent more
than or equal to `(κ) steps since the timer has been set up. Otherwise, b = 0
indicates that less than `(κ) steps in total have elapsed. If the committer an-
swers with (notify, tag , 1), the receiver aborts. Otherwise, the receiver checks
that s1,0 ⊕ s1,1 = · · · = sκ,0 ⊕ sκ,1 and aborts if this does not hold. Otherwise,
committer and receiver perform the unveil phase of TCOM. Additionally, the
committer checks that the TCOM commitment can be opened in at most T
steps by using the forced-open algorithm. If this check fails, the committer
aborts. If the unveil phase or the check fail, the receiver aborts.

3. Committer and receiver perform κ unveil phases of COMpCCA as follows: If
I[m] = 0 for m = 1, . . . , κ, unveil the commitment to sm,0 with tag (tag ,m, 0).
Otherwise, unveil the commitment to sm,1 with tag (tag ,m, 1). Let s′m,n denote
the value decommitted to in the session with index (m,n).

4. After all unveil phases have finished, the receiver checks that s′m,I[m] = sm,I[m],
m = 1, . . . , κ. If this holds, the receiver outputs s1,0⊕s1,1. Otherwise, it aborts.

Algorithm of the Trapdoor Committer Ctrap.

1. On private input l in the commit phase, commit honestly to 0l.
2. On private input v ∈ {0, 1}l in the unveil phase, extract the timed commitment

using the forced-open algorithm to obtain the index vector I. If forced-open

fails, sample I
$← {0, 1}κ uniformly at random. For m = 1, . . . , κ, send

sm,1−I[m] = v⊕sm,I[m] as shares that will not be unveiled. Otherwise, perform
the unveil phase honestly.
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Theorem 3. Let COMpCCA be a pCCA-secure and perfectly binding commitment
scheme with message space M ⊆ {0, 1}∗. Let TCOM be a (T, `′(`(κ), κ), negl(κ))-
weakly extractable timed commitment scheme for some polynomially bounded T >
`′(`(κ), κ), sufficiently large timed security parameter `′(`(κ), κ) and negligible
function negl with message space {0, 1}κ. Then, SSCOM is an `(κ)-simulation-
sound and trapdoor commitment scheme with message space M .

It is easy to see that a successful commit phase of SSCOM statistically
determines the value committed to. Looking ahead to the security proof of
our composable commitment scheme, we will additionally need this value to
be extractable in the presence of concurrently equivocated left sides. For the
definition of extractability and the proof of Theorem 3, see Appendix B.

Possible Instantiations. Our construction SSCOM makes use of a weakly
extractable timed commitment scheme TCOM as well as a pCCA-secure and
perfectly binding commitment scheme COMpCCA. A possible instantiation for
the latter is the commitment scheme of Goyal et al. [Goy+14] which is pCCA-
secure [Bro+17], constant-round, non-black-box, parallel extractable and perfectly
binding if using e.g. the commitment scheme due to Blum [Blu81] based on one-
way permutations as elementary commitment. By using a perfectly binding and
homomorphic commitment scheme, the construction becomes perfectly binding
and black-box [Bre+15; Bro+17].

Corollary 1. Assume that constant-round, black-box perfectly binding and ho-
momorphic commitment schemes exist. Assume that constant-round, black-box
timed commitment schemes exist. Then, SSCOM is a constant-round, black-box
timed simulation-sound commitment scheme from standard assumptions.

An example for a constant-round black-box homomorphic commitment scheme
is the ElGamal commitment scheme based on the DDH assumption [ElG84].
With respect to the timed commitment scheme, we can e.g. use the scheme due
to Boneh and Naor [BN00] based on the generalized BBS assumption, which is
black-box and constant-round.

Corollary 2. Assume that the DDH assumption and the generalized BBS as-
sumption hold. Then, there exists a constant-round, black-box timed simulation-
sound commitment scheme.

5 TLUC Security in a Nutshell

Timed primitives such as timed commitment schemes can be meaningfully used
in practice. Consider performing a coin-toss using a timed commitment scheme
secure for, say, t = 1015 steps. Assuming that the adversary can perform at most
1010 steps per second (equating 10 GHz, assuming that steps equate cycles)7,

7 This is even more plausible when using cryptographic assumptions that are belived
to be hard even for parallel adversaries
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a coin-toss using this timed commitment should be considered secure if the
adversary’s second-round message comes within e.g. one second of receiving the
timed commitment, with plenty time left as security margin.

TLUC Security. Unfortunately, this intuition is not easily captured in the UC
framework, which neither offers a notion of time nor makes assumptions with
respect to the (concrete) computational power of entities. Instead of considering
a model with time or modifying the framework, we propose a variant of UC
security, called TLUC security, that enables honest parties to check if more than
` steps have been performed since a certain point in the execution. This allows to
capture the security guarantees of timed primitives and to use them in protocols.

With TLUC, parties can set up timers parameterized by an ID and a number
of computation steps ` by sending (timer, id, `) to the adversary8. At any point,
a party that has set up a timer may check if it has expired, i.e. if the whole
execution experiment has performed ` or more steps since the timer has been
set up. This is done by sending (notify, id) to the adversary. The adversary
queries the environment if the timer has expired answers with (notify, id, b),
where b = 1 denotes an expired timer and b = 0 an unexpired one.

Mechanisms. The correct handling of timers is ensured by considering only
legal environments and legal adversaries. Intuitively, legal environments correctly
account for timers set up by honest parties by never under-estimating the
number of computation steps performed by the execution experiment relative
to a presumptive execution of a protocol π (counting obliviously of the parties’
inputs and outputs) and adversary A, denoted by Z[π,A]. This guarantees that
timed assumptions protect against environment and adversary, but can be broken
by the simulator in polynomial time (as the environment Z[π,A] always counts
relative to π and A, even when interacting with φ and S). For technical reasons,
we require handling of timers and inquiries to go through the adversary. An
adversary is legal if it immediately and correctly forwards timer setup messages
or status inquiries by honest parties, as well as the environment’s responses.
Based on this, we define TLUC emulation as a special case of UC emulation,
and consider legal adversaries and environments only. At first glance, this might
seem restrictive, but when considering standard UC protocols without timers,
then all UC environments and adversaries are legal under our definition. Thus,
the restrictions only apply for classes of protocols that are not considered by UC
security.

Properties of TLUC Security. As we consider only a subset of the UC envi-
ronments and adversaries, properties of UC security do not necessarily carry
over to TLUC security, at least for protocols using timers. To the contrary, even

8 In contrast to stand-alone experiments where timer messages are not parameterlized
with the timed security parameter, we have chosen to do so in the TLUC setting
because the mechanism should be agnostic of the currently executed protocol and its
timed security parameter.
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properties such as the completeness of the dummy adversary are difficult to prove
if concrete time bounds must be adhered to. We show several properties such
as transitivity with UC protocols, i.e. protocols whose security does not rely on
timers9, completeness of the dummy adversary or full compatibility with UC
security as well as UC reusability, meaning that all UC-secure protocols are also
TLUC-secure and can be composed with TLUC protocols without loss of security.
With respect to the latter, we state the single instance composition theorem.

The ability of the simulator to break timed assumptions while environment
and real-world adversary are unable to do is sufficient to construct a composable
commitment scheme in the plain model. When, e.g., combining our commitment
scheme with a UC-secure generic MPC protocol in the FCOM- or FMCOM-hybrid
model10, we obtain a composable generic MPC protocol in the plain model.

While composable MPC in the plain model is already possible in a number of
other frameworks, previous approaches rely on some sort of super-polynomial or
non-uniform simulation. The first may affect the security of concurrently executed
protocols relying on polynomial-time hardness assumptions, resulting in limited
environmental friendliness as defined by [CLP13] or limited UC reusability. TLUC
security only considers entities that run in strict polynomial time. The second
may affect the security of protocols that have been previously started, even
ones that are secure against non-uniform adversaries. Our feasibility results also
hold for uniform PPT environments and adversaries. Thus, TLUC security is
the first notion that features composable constant-round black-box MPC in the
plain model from standard (timed) assumptions as well as full environmental
friendliness and does not hurt the security of previously started protocols relying
on polynomial-time assumptions.

Guide for the Reader. A full treatment of TLUC security and the proofs for its
properties can be found in Appendix C. However, the above informal description
is sufficient to understand the commitment construction in Section 6

5.1 Protocol Emulation

We define TLUC emulation in analogy to UC emulation.

Definition 4 (TLUC Emulation). Let π and φ be protocols. We say that
π TLUC-emulates φ if for all legal PPT adversaries A, there exists a PPT
simulator S such that for all legal PPT environments Z[π,A] there exists a
negligible function negl such that for all κ ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[Exec
(
π,A,Z[π,A]

)
(κ, a) = 1]− Pr[Exec

(
φ,S,Z[π,A]

)
(κ, a) = 1]| ≤ negl(κ)

9 A UC protocol π that UC-emulates an ideal functionality F may of course send
timer messages. However, as UC emulation also considers environments that handle
these messages arbitrarily, the security of π cannot rely on them.

10 FMCOM and the multi-session extension F̂COM of FCOM are equivalent [CR03].
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If π TLUC-emulates φ, we write π ≥TLUC φ. When omitting the non-uniform
input a, the notion of protocol emulation is uniform.

Note that in Definition 4, the environment Z is supposed to count the steps
according to the execution with π and A even if it is actually interacting with
φ and S. This allows the PPT-bounded simulator S to perform more steps
than the adversary A without triggering a time-out, allowing it to break timed
assumptions. If φ is an UC protocol, its security is not affected by such a powerful
simulator. In contrast, if φ is a protocol making use of timers, honest parties of
the protocol φ may not rely on timing assumptions as the adversary S is allowed
to violate them unnoticed.

Meaningfulness of TLUC Security. When introducing a new security notion, it
is important to argue that it does not allow to prove the security of “obviously”
insecure protocols. The basic idea behind TLUC security is the very same as
behind established simulation-based security notions, where a protocol’s security
is defined through the ideal functionality it realizes. For simulation-based security
notions, care has to be taken that the simulator’s capabilities do not affect
the security guarantees of the ideal functionality. For example, SPS security
is not meaningful for ideal functionalities that use a polynomial-time hardness
assumption like a signature scheme that can be broken by the super-polynomial
simulator. As the TLUC simulation is always polynomial-time, is does not affect
an ideal functionality that makes use of computational assumptions. What is
more, we show that non-trivial functionalities can be realized using a uniform
polynomial-time simulation.

In total analogy to both UC security and other composable security notions
that admit general MPC in the plain model, we can show strong impossibility
results. This underlines that the new mechanism of timers does not help the
simulator per se.

5.2 Properties of TLUC Security

Having defined protocol emulation, we can state important properties of TLUC
security in analogy to properties of UC security.

Proposition 2. The dummy adversary D is legal.

Proposition 2 immediately follows from the definition of the dummy adversary
in the UC framework.

Proposition 3 (Completeness of the Dummy Adversary). Let π and φ
be protocols. Then, π ≥TLUC φ if and only if π TLUC-emulates φ with respect to
the dummy adversary.

TLUC security is also compatible with UC security, meaning that UC-secure
protocols are also TLUC-secure.

Proposition 4 (Compatibility with UC Security). Let π, φ be protocols
such that π ≥UC φ. Then, π ≥TLUC φ.
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Transitivity. In contrast to UC security, TLUC security is not transitive. This
means that there exist protocols π1, π2, π3 such that π1 ≥TLUC π2 and π2 ≥TLUC

π3, but π1 6≥TLUC π3. For an example, see Appendix C.5. However, we can state
the following weaker and useful properties.

Also, TLUC emulation is transitive in conjunction with UC emulation.

Proposition 5 (TLUC-UC Transitivity). Let π1, π2, π3 be protocols. If
π1 ≥TLUC π2 and π2 ≥UC π3, then it holds that π1 ≥TLUC π3.

Composition. In the following, we consider the case of a protocol ρ that makes
one subroutine call to a protocol φ.

Theorem 4 (Single Instance Composition Theorem). Let π, φ be subroutine-
respecting protocols such that π ≥TLUC φ. Let ρ be a protocol that makes one
subroutine call to φ. Then, ρπ ≥TLUC ρ

φ.

Let ρ be a protocol that UC-realizes the ideal protocol IDEAL(G) of some ideal
functionality G and makes one subroutine call to the ideal protocol IDEAL(F) of
some ideal functionality F . Using Propositions 4 and 5 and Theorem 4, we can
import ρ into TLUC, replace IDEAL(F) with an appropriate TLUC protocol
while preserving security and conclude that the resulting composite protocol
TLUC-realizes IDEAL(G).

Corollary 3 (UC Reusability). Let ρ be a protocol that makes one subroutine
call to a protocol φ such that ρφ ≥UC σ for some protocol σ. Let π be a protocol
such that π ≥TLUC φ. Then, ρπ ≥TLUC σ.

Unfortunately, TLUC security is not closed under general composition. More
concretely, this means that there exist protocols π and φ such that π ≥TLUC φ
holds, but ρπ 6≥TLUC ρφ, where ρ makes multiple subroutine calls to φ. For an
example, see Appendix C.6.

Environmental Friendliness. UC security has the desirable property of environ-
mental friendliness [CLP13], which informally ensures that game-based security
properties of protocols running along UC protocols (“in the environment”) are
not impacted by the UC execution. Unfortunately, this property does not hold
for all game-based security properties for many notions that allow generic MPC
in the plain model due to the use of super-polynomial simulation. What is more,
determining whether the game-based property holds may be non-trivial, requiring
e.g. to consider the security proof of the protocol in question. However, as TLUC
security is a special case of UC security and considers polynomial-time simulation
only, it inherits the environmental friendliness of UC security.

For an explanation and definition of environmental friendliness, see Ap-
pendix C.3.

Proposition 6 (Environmental Friendliness of TLUC Security). Let
π be a protocol that TLUC-emulates the ideal protocol of some functionality G.
Then π is friendly to every (non-timed) game-based property P of a protocol Π
with property P .
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Protocols running alongside composable MPC protocols may not only be
affected by super-polynomial simulation, but also by non-uniform simulation.
For example, Lin, Pass, and Venkitasubramaniam [LPV09] propose a variant of
UC security where the environment runs in uniform polynomial-time, while the
simulator runs in non-uniform polynomial-time. The non-uniform input of the
simulator may impact the security of protocols that have started before the input
is given to the simulator—even if these protocols are secure against non-uniform
adversaries. As the definition of environmental friendliness is non-uniform, it
does not capture this property.

Both the simulation and the reductions for our composable commitment
scheme (Section 6) are uniform. Our constructions thus do not adversely affect
security properties of previously started protocols that hold against polynomial-
time adversaries.

Remark 1. Environmental friendliness as defined by [CLP13] is not meaningful
for timed game-based properties such as the timed hiding property of a timed
commitment scheme.

When considering an ideal functionality F and a concurrently executed
protocol π using timed assumptions, the functionality F may already be unfriendly
to timed properties of π. For example, F may perform computations that break
time-lock puzzles used in π.

In the experiment of environmental friendliness, no simulator is not used. The
(presumptive) simulator is only used to show that a protocol π is as friendly as
a functionality F (which may already be unfriendly in our setting). Thus, the
problems of environmental friendliness to protocols using timed assumptions start
well before considering the effects of the simulation, which additionally affect the
environmental friendliness.

To the best of our knowledge, this novel environmental friendliness for timed
game-based properties is not fulfilled by any security notion for composable
MPC—not even for UC security.

Non-Triviality. While there exists no general and formal definition of non-
triviality in the UC framework, Canetti et al. [Can+02] consider a protocol π to
be a non-trivial realization of F if π ≥UC IDEAL(F) and for all adversaries A
that deliver all messages and do not corrupt any party, the simulator S allows
all outputs generated by F .

With TLUC security, this notion is not sufficient as it does not consider the
possibility that a protocol aborts due to timeouts, which may, depending e.g. on
the environment, occur even if the adversary delivers all messages.

As an example, let π be a protocol that non-trivially UC-emulates FCOM and
takes t(κ) steps to execute successfully if all parties are honest. Now, let π′ be
the protocol that is identical to π, with the following exception. When receiving
its input, the honest committer sets up a timer with 10t(κ) steps. At the onset
of the unveil phase, it checks if the timer has expired and halts upon expiration.
Clearly, π′ should be considered non-trivial.
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However, there exists a legal environment such that π′ never generates output
even if the legal adversary delivers all messages. As we do not want π′ to be
considered trivial if there also exists a legal environment Z for which π′ always
generates an output under the conditions outlined in [Can+02], we thus consider
an appropriate notion that accounts for this11.

Note that non-triviality may be lost under composition. To this end, take a
protocol ρφ that makes one subroutine call to some protocol φ and is non-trivial.
Replacing φ with its realization π that takes more steps than φ may make the
composed protocol ρπ trivial as timers in ρ may always be triggered due to the
additional steps performed by the protocol π. However, that this does not render
ρπ insecure.

Impossibility Results. The well-known impossibility results due to Canetti and
Fischlin [CF01] state that there is no bilateral (i.e. involving two communicating
parties) and terminating (in the sense of correctness for honest parties) protocol
π that UC-realizes FCOM in the plain model. This is due to the fact that if a
protocol π is in the plain model, an environment is able to internally emulate
every (presumptive) UC simulator for π.

We state the following variant of the impossibility result of [CF01] for TLUC-
realizing FCOM in the plain model:

Theorem 5. There exists no bilateral, non-trivial protocol π in the plain model
where only one party sets up timers such that π ≥TLUC FCOM.

By introducing a temporary asymmetry between simulator and environment,
e.g. when the environment counts the steps relative to the real-world adversary,
non-trivial and environmentally friendly realizations of UC-complete functionali-
ties in the plain model using timed assumptions become possible.

6 Composable Commitments in the Plain Model

We are now ready to present our construction πMCOM that TLUC-realizes the
ideal functionality FMCOM (Fig. 1) and prove its security. Our construction is
based on the UCCOneTime commitment scheme in the FCRS-hybrid model due
to Canetti and Fischlin [CF01], which is a variant of the trapdoor commitment
scheme due to Di Crescenzo, Ishai, and Ostrovsky [DIO98], which is in turn
based based on the commitment scheme due to Naor [Nao90].

In the original scheme UCCOneTime, which is suitable for a single commitment
only, the CRS consists of two parts: a pair of public keys (pk0, pk1) for a trapdoor
PRG PRG (cf. [CF01]) as well as a uniformly random string σ ∈ {0, 1}4κ. With
the knowledge of the associated secret keys (sk0, sk1) for the trapdoor PRG,
it is possible to extract commitments. By changing the distribution of σ in an
indistinguishable way, the commitment scheme becomes equivocal.

11 As legal environments count the number of computation steps independent of the
input, the existence of one environment with fixed input implies the existence of
other environments with all possible inputs such that π always generates an output.

29



To enable simulation in the case of static corruptions, the knowledge of only
one trapdoor, depending on which party is corrupted, is sufficient. The other
trapdoor does not even have to exist. Assuming trapdoor one-way permutations
with dense public description [DP92], we can perform two coin-tosses to generate
(pk0, pk1) resp. σ. While our coin-toss protocol (see Section 6.1) is not fully
simulatable, it is simulatable if the simulator plays the initiator. This suffices
to set up the extraction trapdoor if the sender is corrupted by having the
commitment receiver, played by the simulator, start the coin-toss for (pk0, pk1).
The simulator can equivocate the result to public keys for which it knows the
secret keys. Conversely, the coin-toss for σ is started by the commitment sender.
If it is honest, the simulator can simulate the coin-toss such that σ contains an
equivocation trapdoor. From that point on, UCCOneTime can be executed as-is,
using the values obtained by this preamble phase instead of the CRS as in the
original protocol. For each new commitment between two parties, this preamble
phase is re-executed. A similar approach is used in [Dac+13].

Our coin-toss protocol πCT uses the trapdoor commitment scheme SSCOM
(see Section 4.2) whose equivocation trapdoor is protected by a timed commitment
that can be extracted by the simulator. As SSCOM is timed simulation-sound,
SSCOM commitments of corrupted committers remain binding.

TLUC security does not imply concurrent self-composability. Thus, we cannot
simply prove the security of a single commitment and conclude that it holds
for multiple commitments performed concurrently. Indeed, when using weaker
building blocks, our construction can be shown to securely realize one instance of
FCOM, but not FMCOM, where the latter captures concurrent self-composition.

In the following, we thus prove that πMCOM TLUC-realizes the ideal function-
ality FMCOM for multiple commitments. Later on, we can plug πMCOM into any
(UC-secure) protocol making one subroutine call to FMCOM while maintaining
security.

6.1 The Coin-Toss Protocol πCT

One important building block towards constructing our TLUC-secure commitment
scheme is the coin-toss protocol πCT (Construction 3). It is essentially identical
to the protocol due to Blum [Blu81], except for the use of a string commitment
and with the addition of handling the timers of SSCOM.

Construction 3 (Coin-Toss Protocol πCT). Parameterized by a security param-
eter κ, a timed security parameter `, a length parameter s = s(κ) and a `′(`, κ)-
simulation-sound commitment scheme SSCOM with message space M ⊇ {0, 1}s.

1. On input (coin-toss, sid , s), the sender samples r
$← {0, 1}s uniformly at

random.
2. Sender and receiver start an instance of SSCOM on common input

(1κ, commit, sid , `(κ), `′(`(κ), κ)). The sender’s private input for the com-
mitment is r. All notify messages are forwarded between the adversary and
the parties of SSCOM. Messages (timer, id) coming from a SSCOM party are
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forwarded to the adversary as (timer, id, `), i.e. augmented with the timed
security parameter `.

3. After the commit phase has finished, the receiver samples r′
$← {0, 1}s uni-

formly at random and sends r′ to the sender.
4. Upon receiving r′, sender and receiver perform the unveil phase of SSCOM.
5. If the receiver accepts, sender and receiver output (coin-toss, sid, r ⊕ r′).

Otherwise, the execution halts.

As SSCOM is not straight-line extractable, we cannot show that πCT TLUC-
realizes the coin-toss functionality FCT. However, πCT exhibits the following useful
properties: If the commitment receiver is corrupted, the coin-toss is simulatable.
If the sender is corrupted and does not abort, the result of the coin-toss is
distributed uniformly at random. Due to the simulation-soundness of SSCOM,
the result of one session is independent from all other instances of πCT that may
run concurrently, with the exception of aborts skewing the distribution.

We do not prove these properties on their own, but show them implicitly in
the proof of the construction of the commitment scheme.

6.2 The Commitment Scheme πMCOM

We now give the construction of the composable commitment scheme πMCOM.

Construction 4 (Commitment Scheme πMCOM). Parameterized by a timed
security parameter `(κ) and a trapdoor PRG PRG with key space {0, 1}l(κ) for
some polynomial l, domain {0, 1}κ and range {0, 1}4κ.

Commit Phase.

1. Upon receiving (commit, sid , cid , Pi, Pj , b) as input for the committer Pi,
committer Pi and receiver Pj execute two instances of πCT with timed security
parameter `(κ) to generate
(a) (pk0, pk1) ∈ {0, 1}l(κ)×{0, 1}l(κ) (the “extraction CRS”) with the receiver

acting as initiator in πCT with session ID (sid , cid , 0), where l(κ) is the
length of public keys of PRG.

(b) σ ∈ {0, 1}4κ (the “equivocation CRS”) with the sender acting as initiator
in πCT with session ID (sid , cid , 1).

If both instances of πCT terminate successfully, both parties store
(sid , cid , (pk0, pk1, σ)). Otherwise, they halt the execution.

2. The committer samples r
$← {0, 1}κ and sets c = PRG(pk0, r) if b = 0 and c =

PRG(pk1, r)⊕σ if b = 1. Then, the committer sends (commitment, sid , cid , c)
to the receiver. The committer stores (sid , cid , (b, r, c)), the receiver stores
(sid , cid , c) and outputs (committed, sid , cid , Pi, Pj).

Unveil Phase.

1. Upon receiving (unveil, sid , cid , Pi, Pj) as input, the committer sends
(unveil, sid , cid , (b, r)) to the receiver.
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2. Upon receiving (unveil, sid , cid , (b, r)) from the sender, the receiver checks
if c = PRG(pk0, r) for b = 0 or if c = PRG(pk1, r) ⊕ σ for b = 1, relative
to the values stored for this (sid , cid). If the check is successful, the receiver
outputs (unveil, sid , cid , Pi, Pj , b) and halts otherwise.

We discuss how to generalize our result to hold in different frameworks in
Section 7.1.

7 Proof of Security

Theorem 6. Assume that PRG is a trapdoor PRG with dense public descrip-
tion and that SSCOM is a (computationally) trapdoor, extractable and timed
simulation-sound commitment scheme. Then, πMCOM ≥TLUC IDEAL(FMCOM).

Proof. First, we define the simulator for πMCOM and the dummy adversary.

Definition 5 (The Simulator S).

Corrupted Receiver, Honest Sender.

1. Upon receiving the delayed output (committed, sid , cid , Pi, Pj) from FMCOM,
play the coin-toss for the extraction CRS honestly and report all messages.
In case of an error or timeout, halt.

2. Sample r0, r1
$← {0, 1}κ and play the coin-toss for the equivocation CRS using

the algorithm of the trapdoor committer Ctrap. Equivocate the commitment
such that the result of the coin-toss is σ = PRG(pk0, r0)⊕ PRG(pk1, r1) for

r0, r1
$← {0, 1}κ. In case of an error, halt.

3. Perform the commit phase by reporting c = PRG(pk0, r0) as message from
the sender. Upon successful message delivery, allow the delayed output.

4. Upon receiving the delayed output (unveil, sid , cid , Pi, Pj , b) from FMCOM,
report (unveil, sid , cid , (0, r0)) if b = 0 and (unveil, sid , cid , (1, r1)) if b = 1.
Upon successful message delivery, allow the delayed output.

Corrupted Sender, Honest Receiver.

1. Generate keys (pki, ski) ← PRG.TGen(1κ) for i = 0, 1 and perform πCT

for the extraction CRS using the algorithm of the trapdoor committer Ctrap.
Equivocate the commitment such that the coin-toss result is (pk0, pk1). In
case of an error, halt.

2. Play the coin-toss for the equivocation CRS honestly and report all messages.
In case of an error or timeout, halt.

3. Upon receiving (commitment, sid , cid , c) from the environment:
– If c is in the range of PRG(pk0, ·), send (commit, sid , cid , Pi, Pj , 0) to
FMCOM on behalf of the corrupted sender Pi.

– Otherwise, send (commit, sid , cid , Pi, Pj , 1) to FMCOM on behalf of the
corrupted sender Pi.
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Subsequently, allow the public delayed output of (committed, sid , cid , Pi, Pj)
of the honest receiver.

4. Eventually, receive (unveil, sid , cid , (b, r)) from the environment. If c is a
valid commitment to b and b agrees with the value sent to FMCOM, send
(unveil, sid , cid , Pi, Pj) to FMCOM and allow the public delayed output. Oth-
erwise, if b = 1 does not agree with the value sent to FMCOM but r is in the
range of PRG(pk1, ·), output a special error symbol ⊥FAIL. Otherwise, i.e. if
the commitment is invalid, halt.

Both Parties Honest.
Identical to the case of the corrupted receiver.

We prove Theorem 6 by showing that the simulator given in Definition 5 is
valid for the dummy adversary, which is sufficient (see Proposition 3). First, we
define a series of hybrids for the proof, ordered by the start of the individual
commitments. In order to better distinguish between elementary commitments
in πCT and commitments to be performed with πMCOM, we also refer to the
latter as sessions of πMCOM. Starting with an all-real execution, we consecutively
introduce the simulator into the execution.

For each hybrid, we show the indistinguishability of the environment’s out-
put compared to the previous hybrid. We also show that the environment is
non-abusing, i.e. does not equivocate commitments, despite the equivocations
performed by the simulator. While both properties are related, they require
separate proofs at first. The hybrids are defined as follows:

– H0: The real execution with the dummy adversary D and protocol πMCOM.
– Hi

1: The execution with a simulator Si1 and the protocol IDEAL(F1) for
the ideal functionality F1 that gives the inputs of all honest parties to the
simulator and lets it determine all outputs. Si1 honestly executes πMCOM

but uses the code of the trapdoor committer Ctrap of SSCOM whenever the
simulator S would do so in the first i sessions. Outputs of simulated honest
parties are forwarded to F1.

– Hi
2: Identical to Hq

1 with F2 = F1 and Si2 = Si1, apart from the following
changes for sessions k ≤ i:
• If, in the k-th session, only the sender (of πMCOM) is corrupted, Si2

generates (skj , pkj)← PRG.TGen(1κ) for j ∈ {0, 1} and equivocates the
first coin-toss to (pk0, pk1).

• If, in the k-th session, only the receiver (of πMCOM) is corrupted or both

sender and receiver are honest, Si2 samples r0, r1
$← {0, 1}κ, equivocates

the second coin-toss to σ = PRG(pk0, r0)⊕PRG(pk1, r1) and commits by
sending c = PRG(pk0, r0) as commitment.

– Hi
3: Identical to Hq

2 , but F i3 behaves like FMCOM for the first i sessions and
like F2 otherwise. Si3 is identical to Sq2 , except that it runs S for the first i

sessions. If S outputs ⊥FAIL in the j-th session, output ⊥jFAIL.
– H4: The ideal execution.

We now present the full proof.
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Lemma 1. If SSCOM is (computationally) trapdoor, then outi1 and outi+1
1 are

(computationally) indistinguishable. If SSCOM is timed simulation-sound, then,
for an appropriate (polynomial) timed security parameter `′ for SSCOM, the
environment is non-abusing in Hi

1.

Proof. We prove the indistinguishability by a reduction to the trapdoorness
property of SSCOM. Then, we show that the environment is non-abusing.

Indistinguishability. Let A′ be the following adversary against the trapdoorness
of SSCOM:

1. On input (1κ, z), A′ internally starts an instance of Hi
1 with input (1κ, z) for

the environment.
2. If there is a commitment in the i + 1-th session for which the trapdoor

committer Ctrap would be used, perform this commitment externally with
the trapdoorness experiment.

3. Eventually, A′ outputs what the environment outputs.

As the trapdoorness property is not timed, A′, running in polynomial time,
constitutes a valid adversary. By definition of A′, its advantage in the oracle
trapdoor game is identical to the distinguishing advantage of the environment
between Hi

1 and Hi+1
1 , i.e. AdvOTD

A′,SSCOM,O = |Pr[outi1 = 1] − Pr[outi+1
1 = 1]|,

which is negligible as SSCOM is oracle-trapdoor. It follows that |Pr[out01 =
1]− Pr[outq1 = 1]| ≤ q(κ) · neglOTD(κ).

Non-Abusing. For the use in later hybrids, we need to show that the environment
does not equivocate commitments where it is the sender, even if it receives
equivocated commitments (cf. Definition 3). In analogy to [Dac+13], we call this
property non-abusing. In order to show that the environment is non-abusing,
we perform a reduction to the timed simulation-soundness of SSCOM. In the
reduction, the reduction adversary A′ internally executes an instance of the UC
experiment where the legal environment is abusing. We have to ensure that A′
is able to internally simulate the execution without triggering a timeout in the
reduction when there is no such timeout triggered by the TLUC environment.
This is generally not trivial since the TLUC environment Z and A′ may count the
number of performed computation steps differently. For example, Z may (legally)
not count simulation overhead resulting from e.g. simulating other environments
and protocols. Of course, A′ would have to count these steps. To address this
caveat, A′ runs, if applicable, the corresponding unrolled TLUC execution (cf.
Definition 13) where all steps are counted correctly, including the emulation
overhead resulting from A′ internally emulating said execution (cf. Proposition 7).

Also, Z counts the steps relative to a (presumptive) execution of πMCOM and
the dummy adversary D, while A′ emulates an UC execution with an instance
of IDEAL(F1) and a simulator Si1. For the reduction to go through even in the
presence of these discrepancies, the timed security parameter `′ of SSCOM has
to be chosen sufficiently large to account for these differences.

Let EABUSEi1
denote the event that the environment is abusing in Hi

1.
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Suppose for the sake of contradiction that Pr[EABUSEi1
] is non-negligible, i.e.

Z is abusing. Then, we can construct an adversary A′ against the `′(`(κ), κ)-
simulation-soundness of SSCOM using the following reduction:

1. On input (1κ, z), A′ chooses j
$← {1, . . . , q} uniformly at random, where q =

q(κ) is an upper bound for the number of sessions. Then,A′ internally executes
an instance of Hi

1. timer and notify messages are forwarded between the
internal execution of the UC experiment and the timed simulation-soundness
game. To this end, the timed security parameter ` is removed from timer

messages coming from UC protocol parties and added to timer messages for
UC parties.

2. The commitments of the sessions that are played using Ctrap in Hi
1 are played

as left sides with the timed simulation-soundness game, using the uniform
distribution on bitstrings of length l(κ) resp. 4κ.

3. If all or no parties in the j-th session are corrupted, abort.
4. If there is a corrupted party in the j-th session, play the single SSCOM

commitment where the committer is corrupted as the right side in the
simulation-soundness experiment.

Clearly, Z’s view is identically distributed in the reduction and in Hi
1, unless

all parties in the j-th session are honest or corrupted. If the timed security
parameter `′ is sufficiently large, A′ never has to send a (notify, ?, 1) message
before Z (when asked through a notify message) does. Thus, any attack carried
out by Z can be performed by A′ without having to trigger a timeout prematurely.
In particular, `′(`(κ), κ) has to be sufficiently large to account for the following
differences between the reduction and the presumptive execution according to
which Z counts the number of steps performed:

– Overhead due to the reduction itself, e.g. interaction with the experiment and
relaying of messages between the internal UC execution and the experiment.

– Overhead due to changes in the internally emulated UC execution, e.g.
additional steps for IDEAL(F1), as well as possible overhead for the trapdoor
committer algorithm Ctrap. However, if Ctrap requires less steps than C, A′
has to count according to C, as the simulation-soundness experiment requires
to count the maximum.

We want `′ to not depend on the internally emulated environment Z or the
maximum number of sessions q, but only on the reduction as well as the timeout
parameter `12. To this end, we observe the following: A′ relays messages between
its internal UC execution and the experiment. For each commitment session, the
overhead is independent of the number of sessions q.
Z may schedule the sessions in a way such that when the timer in the j-th

session is active, multiple other sessions are activated. In the real execution,
unless a timeout occurs, the number of active sessions is trivially upper-bounded

12 This does of course not rule out that ` may depend on Z and q. However, Z and q
do not have to be additionally considered for `′.
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by `(κ), as each activation will consume at least one computation step. Thus,
the maximum number of active sessions is independent from the bound for the
number of challenge sessions q(κ). We have to consider the case that Z is a routing
environment. In this case, the steps needed by A′ to emulate the UC experiment
may be more compared to the steps reported by Z due to unaccounted emula-
tion overhead. However, according to Proposition 7, there exists an “unrolled”
execution (cf. Definition 13) where there is no such emulation overhead and the
environment’s view is identically distributed. Due to the structure of routing
environments, A′ is able to “unroll” the execution in polynomial time before
starting the internal emulation. At this point, no timers are active. Alternatively,
we may provide A′ with the necessary information via its advice.

Thus, setting `′ as `(κ) plus the overhead for one single session plus some
additional (small) overhead polynomial in κ, suffices. It follows that `′ is poly-
nomially bounded, independent of q and the particular environment. As A′
internally executes an instance of the UC experiment with a legal environ-
ment and adversary and timeout parameter `, A′ is also a legal adversary
against the `′(`(κ), κ)-simulation-soundness of SSCOM for appropriately cho-
sen `′. By definition of A′, its advantage in the simulation-soundness experi-
ment is equal to Pr[EABUSEi1

]/q(κ) in Hi
1. Thus, a non-negligible probability

of EABUSEi1
contradicts the simulation-soundness of SSCOM. It follows that

Pr[EABUSEi1
] ≤ q(κ) · neglSIMSOUND(κ) and that Z is non-abusing in Hi

1.

Lemma 2. If PRG.TGen outputs public keys that are computationally indistin-
guishable from uniformly random strings of the same length, PRG is a PRG and
SSCOM is extractable, then outi2 and outi+1

2 are computationally indistinguishable.
Moreover, the environment is non-abusing in Hi

2.

Proof. We start by proving the non-abusing property.

Non-Abusing. In order to show that the environment is non-abusing in Hi
2 (the

argument for Hi,#
2 is analogous), we cannot directly reduce to the simulation-

soundness of SSCOM as in the previous lemma. This is because we do not know
the correct distribution of the equivocated commitments beforehand, as it depends
on the second-round message of the coin-toss.

For i = 0, we have shown that the environment is non-abusing in H0
2 = Hq

1 .
If the environment were to become abusing in H1

2 , we could use the environment
to break the assumptions stated in Lemma 2, namely the indistinguishability
of keys output by PRG.TGen (pseudorandom strings) and PRG.Gen (uniformly
random strings) or the PRG property of PRG, respectively. To this end, it is
important that the reduction adversary is able to extract commitments created
by the environment. While SSCOM is not straight-line extractable, it can be
made parallel-extractable via rewinding in strict polynomial-time when using
appropriate building blocks (cf. Corollary 5), allowing the reduction adversary
to determine if the environment is abusing or not. As the properties we reduce
to have non-interactive challenge phases, the reduction adversary is able to
execute the extractor without having to rewind the reduction. Thus, a strict
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polynomial-time reduction with only a polynomial loss of security is possible.
As the aforementioned properties are not timed but hold for polynomial-time
adversaries in general, we do not have to argue that the reduction adversary is
able to provide its answer in time.

For i > 1, we can use this same strategy to create a contradiction to the
assumptions of Lemma 2 by using the fact that in the previous hybrid (i.e. Hi

2 or

Hi,#
2 ), the environment was non-abusing. To this end, the adversary A′ chooses

a random index j
$← [q] and extracts the environment’s commitment in the

j-th session. All messages in other threads are answered as usual. If no party is
corrupted or the extraction fails, the adversary outputs a random bit b. If the
environment is abusing in the j-th session (determined by the same criterion as
in Definition 3), it outputs 1, otherwise it outputs 0.

Thus, it holds that Pr[EABUSEi2
] ≤ Pr[EABUSE0

2
] + i · (2 · neglPRGKEY(κ) + q ·

neglPRGVAL(κ) + 2 · neglEXT(κ)) for negligible functions neglPRGKEY, neglPRGVAL

and neglEXT.
Note that in order to show the non-abusing propery, it was not necessary to

first show the indistinguishability of the adjacent hybrids. We will do this in the
following, making use of the non-abusing property.

Indistinguishability, Corrupted Sender. Suppose for the sake of contradiction that
outi2 and outi+1

2 are not computationally indistinguishable. We can construct
an adversary against the indistinguishability of uniformly random values and
public keys originating from PRG.TGen. First, we consider a sub-hybrid Hi,#

2

between Hi
2 and Hi+1

2 where only the first public key pk0 is replaced with a value
originating from PRG.TGen.

The reduction adversary A′ works as follows:

1. On input (1κ, z), internally start an execution of Hi
2 on input (1κ, z).

2. Obtain the challenge pk0 from the experiment and also sample r
$← {0, 1}l(κ).

3. Equivocate the commitment in the i-th coin-toss such that it has the result
(pk0, r) and continue the execution of H0

i as specified.
4. Output what the environment outputs.

If pk0 is a uniformly random string, then the environment’s view is identically
distributed as in Hi

2. If pk0 originates from PRG.TGen, then the environment’s

view is identically distributed as in Hi,#
2 . Thus, the distinguishing advantage

of A′ is the same as the environment’s, contradicting the indistinguishability of
PRG keys with trapdoor and uniformly random strings.

As the proof for the indistinguishability of Hi,#
2 and Hi+1

2 is similar, we omit
it. All in all, as PRG keys with and without trapdoor are indistinguishable, we
conclude |Pr[outi2 = 1]−Pr[outi+1

2 = 1]| = 2 · neglPRGKEY(κ), which is negligible.

Indistinguishability, Corrupted Receiver. Suppose for the sake of contradiction
that outi2 and outi+1

2 are not computationally indistinguishable, i.e. there exists a
non-negligible function ν(κ) that lower-bounds Z’s distinguishing advantage. We
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construct an adversary A′ against the PRG property of PRG with non-negligible
advantage ν′(κ).
A′, on input (1κ, z), acts as follows:

1. Obtain the challenge public key pk (which is distributed uniformly at random
over {0, 1}l(κ) from the PRG experiment as well as a challenge value s. Also,

sample pk′
$← {0, 1}l(κ)

2. Internally, start an instance of Hi
2 with input (1κ, z). At the beginning of

the i-th session, play the πCT instance for the extraction trapdoor as follows:
First, use the extractor E of SSCOM (cf. Corollary 5) to obtain the value v
committed to by the environment. Simulate all protocol messages not related
to SSCOM as in Hi

2. If E outputs v = ⊥E , output a uniformly random bit
to the PRG experiment. Otherwise, send v ⊕ (pk0, pk1) with pkb = pk′ and
pk1−b = pk as second-round message. Let v′ denote the value unveiled by the
environment. Let EINCON denote the event that v 6= v′. If EINCON occurs, or
Z does not open the commitment, output a uniformly random bit b′.

3. Sample r
$← {0, 1}κ and equivocate the equivocation CRS σ to PRG(pkb, r)⊕s.

4. Continue the execution, but commit as follows: If b = 0, send PRG(pk0, r) as
c. If b = 1, send PRG(pk1, r)⊕ σ = s as c.

5. Finally, obtain the output b′ of Z and output b′.

If s is a uniformly random string, then Z’s view is distributed as in Hi
2:

– σ is a uniformly random element (and so is σ ⊕ c).
– If b = 0, c is always in the range of PRG(pk0, ·).
– If b = 1, c⊕ σ = s⊕ (PRG(pk1, r)⊕ s) = PRG(pk1, r) is always in the range

of PRG(pk1, ·).

If s is distributed pseudorandomly, i.e. is in the range of PRG(pk, ·), then Z’s
view is distributed as in Hi+1

2 :

– There exists r′ ∈ {0, 1}κ such that σ = PRG(pkb, r)⊕ PRG(pk, r′)
– If b = 0, c is always in the range of PRG(pk0, ·).
– If b = 1, c is always in the range of PRG(pk0, ·) and c⊕σ = s⊕(PRG(pk1, r)⊕
s) = PRG(pk1, r) is always in the range of PRG(pk1, ·).

If EINCON does not occur, A′’s advantage in the PRG game is identical to Z’s
distinguishing advantage between Hi

2 and Hi+1
2 . If EINCON occurs, A′’s advantage

is 0. We can thus use A′ to bound the distinguishing advantage of Z as follows,
using the security of PRG and the extractability of SSCOM:

|Pr[outi2 = 1]− Pr[outi+1
2 = 1]| ≤ Pr[EINCON] + |Pr[outi2 = 1 ∧ ¬EINCON]− Pr[outi+1

2 = 1 ∧ ¬EINCON]|

≤ Pr[EINCON] + |Pr[outs is uniformly random
A′ = 1 ∧ ¬EINCON]− Pr[outs is a PRG image

A′ = 1 ∧ ¬EINCON]|
≤ Pr[EINCON] + neglPRGVAL(κ)

The last inequality holds due to the security of PRG.
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As SSCOM is simulation-sound and extractable with overwhelming probability,
we can bound Pr[EINCON] by Pr[EABUSEi2

] + neglEXT(κ) (as the execution is

identically distributed to Hi
2 when the extraction occurs), where neglEXT(κ) is a

bound for the extraction error. It thus holds that

|Pr[outi2 = 1]− Pr[outi+1
2 = 1]| ≤ Pr[EINCON] + neglPRGVAL(κ)

≤ Pr[EABUSE0
2
] + i · (2 · neglPRGKEY(κ) + q · neglPRGVAL(κ) + 2 · neglEXT(κ)) + neglEXT(κ) + neglPRGVAL(κ)

≤ Pr[EABUSE0
2
] + q · (2 · neglPRGKEY(κ) + q · neglPRGVAL(κ) + 2 · neglEXT(κ)) + neglEXT(κ) + neglPRGVAL(κ)

which is negligible as the environment is non-abusing in H0
2 .

In particular, it follows that |Pr[out02 = 1]−Pr[outq2 = 1]| is negligible too, as
there exists a common bound between adjacent hybrids.

Lemma 3. If the environment is non-abusing in Hq
2 , then outi3 and outi+1

3 are
computationally indistinguishable. Moreover, the environment is non-abusing in
Hi

3.

Proof. As the only possible difference between Hi
3 and Hi+1

3 is the simulator
outputting a special error symbol ⊥i+1

FAIL if the environment is able to open a
commitment of a corrupted sender to a value different than the one extracted
by the simulator in the i+ 1-th session, the proof is straight-forward. Let Ei+1

FAIL

denote this event.

Non-Abusing. If Z is non-abusing in Hq
2 , then it is also non-abusing in Hi+1

3 . This
is due to the fact that outi3 and outi+1

3 are identically distributed unless Ei+1
FAIL

occurs. If Ei+1
FAIL occurs, the execution halts without giving Z the opportunity to

equivocate a commitment that it has not been able to equivocate in the previous
hybrid.

Indistinguishability. If Ei+1
FAIL does not occur, Hi

3 and Hi+1
3 are identically dis-

tributed. It thus suffices to bound Pr[Ei+1
FAIL].

Corrupted Sender. If Ei+1
FAIL occurs, then there exist r0, r1 ∈ {0, 1}κ such that

σ = PRG(pk0, r0)⊕ PRG(pk1, r1) in the i+ 1-th session, which we call a collision.
Let S = {σ′ | ∃r0, r1 : σ′ = PRG(pk0, r0) ⊕ PRG(pk1, r1)} denote the set of
collisions and let ECOL denote the event that σ ∈ S. As the size of PRG’s image is
upper-bounded by the size of its domain, i.e. 2κ, we can bound |S| by 22κ. Thus, in
a coin-toss for σ where the commitment is not equivocated and the second-round
message is chosen uniformly at random, the probability Pr[ECOL] ≤ 22κ/24κ is
negligible.

In order for Pr[Ei+1
FAIL] to be non-negligible, the environment must bias the

coin-toss either by only finishing sessions where the result is a collision or by
equivocating its commitment such that a collision occurs. Let Ei+1

INCON denote the
event that the environment equivocates the commitment in πCT in the i+ 1-th
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session. We can upper-bound bound Pr[Ei+1
FAIL] by Pr[Ei+1

COL∧¬Ei+1
INCON∨Ei+1

INCON].
As Z is non-abusing in Hi

3, it follows that Pr[Ei+1
INCON] ≤ Pr[EABUSEq2

] and is

negligible. As Pr[ECOL] ≤ 2−2κ, it follows that Pr[ECOL ∧ ¬EINCON] ≤ 2−2κ. All
in all, we have |[Pr[outi3 = 1]−Pr[outi+1

3 = 1]| = Pr[Ei+1
FAIL] ≤ 2−2κ+Pr[EABUSEq2

],
which is negligible as the environment is non-abusing.

As there exists a common bound for the distinguishing advantage between
the hybrids Hi

3 and Hi+1
3 for all i ∈ {0, . . . , q − 1}, it follows that |Pr[out03 =

1]− Pr[outq3 = 1] is negligible.

Corrupted Receiver. If the receiver is corrupted, the simulation is identical to the
previous hybrid. Thus, Z’s view is identically distributed and its distinguishing
advantage is 0.

As H4 is identical to Hq
3 , except for syntactical changes (the final simulator

outputs ⊥FAIL when the previous one would output ⊥iFAIL) and it holds that
Pr[out4 = 1] = Pr[outq3 = 1].

As there exists a common bound for the distinguishing advantage between
the individual hybrids, out0 and out4 are computationally indistinguishable and
the claim follows.

Remark 2. Our proof differs from the one in [CF01] in a number of ways:

– In the proof for the UCCOneTime scheme, the reduction adversary has to guess
the bit committed to by the honest committer when embedding the public
key from the PRG reduction into the CRS. In our reduction, this is different
as the reduction adversary knows the bit committed to by the honest party
beforehand.

– The UCCOneTime scheme requires a PRG with a stretch of 3κ that expands
strings of length κ to strings of length 4κ. This is due to the fact that the
UCCOneTime simulator always embeds an equivocation trapdoor into the CRS,
even if the receiver is honest. In our case, this is not only impossible if the
committer is corrupted, but the analysis is also somewhat different, allowing
the use PRGs with a stretch of 2κ only.

7.1 Generalizing Our Result

Our protocol πMCOM uses a timed simulation-sound commitment scheme SSCOM
to TLUC-realize FMCOM. However, it can be generalized to realize FMCOM for
other security notions, depending on the properties of SSCOM and the existence
of certain complexity assumptions.

If one desires a setting where there is no (even temporary) complexity asymme-
try between simulator and environment, one can replace SSCOM with a UC-secure
commitment scheme and obtains a commitment scheme that UC-realizes FMCOM.
Following the impossibility results of [CF01], this requires a setup.

The other extreme would be to consider large asymmetries that hold through-
out the whole execution. This is the general setting of (Cenv, Csim)-security
introduced by [LPV09]. In this setting, Cenv denotes the complexity class of the
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environment and Csim the complexity class of the simulator. If Cenv = Csim, one
achieves a framework with universal composition. In the case of UC security, the
complexity class considered is (non-uniform) probabilistic polynomial-time.

If Cenv is e.g. (non-uniform) polynomial-time and Csim is quasi-polynomial
time, then we can realize FMCOM in the plain model, assuming that trapdoor one-
way permutations with dense public description and subexponential hardness exist.
Indistinguishability is even guaranteed if the environment passes its view after
the execution to a distinguisher with complexity Csim, which is not guaranteed
by other approaches.

In between these extremes, more fine-grained solutions are possible, e.g. by
considering different security parameters for environment and simulator. In a
very practical setting, one might believe that e.g. RSA-4096 is secure even for
adversaries able to break RSA-1024. Our protocol can be adapted to this setting,
using a simulator that is able to efficiently break RSA-1024 but not RSA-4096.

7.2 Obtaining a Timer-Obeying Simulator Using a Setup

We have stated in Section 4.2 that a potential candidate for the weakly extractable
timed commitment scheme TCOM used in SSCOM is the timed commitment
scheme of Boneh and Naor [BN00], which is in the plain model.

In order to argue for the plausibility of their plain-model MPC protocol,
Prabhakaran and Sahai [PS04] outline how to realize their angel in the FCRS-
hybrid model, essentially resulting in a UC protocol.

We discuss how to cast our protocol πMCOM in the FKRK-hybrid model
when using the timed commitment scheme of [BN00], resulting in a composable
commitment that is simulatable even for simulators that obey to timers.

The changes to the commitment scheme of [BN00] are as follows: Instead of
having the committer sample primes p1, p2 such that p1 ≡ p2 ≡ 3 mod 4 and
send N = p1 · p2 to the receiver, we use the FKRK functionality to provide a
public key N for each committer (to all parties) as well as the secret ϕ(N) (to
the committer only) according to the aforementioned distribution.

Informally, the extraction trapdoor ϕ(N) is protected by the BBS assumption,
which is believed to be hard for polynomial-time adversaries with only the
knowledge of N . Otherwise, the protocol remains unmodified. Each N can even
be used for multiple TCOM commitments [BN00], i.e. as sole setup for πMCOM.

The resulting protocol in the FKRK-hybrid model is straight-line extractable.
The new simulator does not have to use the costly (but still polynomial-time)
forced-open algorithm, but can use ϕ(N) to very efficiently extract timed com-
mitments from malicious senders. Otherwise, the simulation remains unmodified.
It is easy to see that the resulting simulator can obey all timers if the timed
security parameter ` is chosen such that there is sufficient time for the timed
commitment to be extracted using ϕ(N) while still guaranteeing its timed hiding
property without the knowledge of ϕ(N).

While this modified protocol still crucially relies on timers to prevent the
environment from extracting timed commitments created by the simulator and is
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thus not UC-secure, the simulation strategy is as “plausible” as any UC simulation
strategy relying on a trusted setup.

8 Constant-Round Black-Box Composable General MPC

In order to achieve composable general MPC, we can plug the construction
πMCOM into any UC-secure generic MPC protocol in the FMCOM-hybrid model
while maintaining security (using Corollary 3).

Hazay and Venkitasubramaniam [HV15] have presented a constant-round and
black-box general MPC protocol in the FCRS-hybrid model based on public-key
encryption and semi-honest oblivious transfer. We can generate the CRS of the
[HV15] protocol using a simulatable coin-toss, assuming that trapdoor one-way
permutations with dense public description exist, thus casting the protocol in
the FMCOM-hybrid model.

Theorem 7. Assume that timed commitment schemes and perfectly binding
homomorphic commitment schemes exist. Also, assume that enhanced trapdoor
one-way permutations with dense public descriptions exist. Then, for every well-
formed functionality F , there exists a constant-round black-box protocol πBBF in

the plain model such that π̂BBF ≥TLUC IDEAL(F̂).

In Theorem 7, F̂ denotes the multi-session existence of F (cf. [CR03]) that
naturally captures concurrent self-composition.

Considering possible candidates for timed commitments and perfectly binding
homomorphic commitment schemes, we obtain the following corollary.

Corollary 4. Assume that the generalized BBS assumption and the DDH as-
sumption hold and that enhanced trapdoor one-way permutations with dense
public description exist. Then, for every well-formed functionality F , there
exists a constant-round black-box protocol πBBF in the plain model such that

π̂BBF ≥TLUC IDEAL(F̂).

Alternative and more practically efficient constructions for composable generic
MPC in the plain model are possible. For example, one can use our composable
commitment scheme to bootstrap the CRS of the OT protocol of Peikert, Vaikun-
tanathan, and Waters [PVW08]. The resulting protocol can then be combined
with an arbitrary (efficient) UC-secure generic MPC protocol in the FOT-hybrid
model, resulting in a TLUC-secure generic MPC protocol.

9 Conclusion

We constructed a composable constant-round black-box general MPC protocol in
the plain model from standard (timed) assumptions only. In contrast to previous
techniques for generic MPC in the plain model, our approach fully fulfills the
notion of environmental friendliness.
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Looking ahead, it remains to investigate if these results can be obtained
more efficiently and from weaker or more generic assumptions and if stronger
properties, e.g. with respect to transitivity or composition, can be achieved. With
the recent popularity of timed assumptions, it is necessary to define a meaningful
extension of environmental friendliness for timed game-based security properties.
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Appendix

A Definitions

A.1 (Interactive) Turing machines

In the following, we re-visit some notation for interactive Turing machines in the
stand-alone setting.

Let A and B be interactive Turing machines. Then τ ← 〈A(α),B(β)〉(γ)
denotes the transcript of the interaction between A and B on private input α
resp. β and common input γ. Similarly, zP ← outP〈A(α),B(β)〉(γ) denotes the
output of party P ∈ {A,B}. By (zA, zB, τ)← out〈A(α),B(β)〉(γ), we denote the
outputs of parties A and B as well as the transcript of their interaction.

A.2 Commitment Schemes

In this section, we provide basic definitions of commitment schemes and their
properties. Depending on their use later on, the security definitions are either
asymptotic or concrete. If necessary, we consider tag-based commitment schemes
(cf. [DDN00]).

Definition 6 (Interactive Commitment Scheme). An interactive com-
mitment scheme COM = 〈C,R〉 with message space M is a two-phase protocol
between two interactive Turing machines C and R. Both parties get the phase
Commit or Unveil as well as the security parameter κ as common input. The
committer C additionaly gets a value m ∈M as input for the commit phase. We
call the transcript

c← 〈C(m),R(ε)〉(1κ, Commit)

the commitment c between C and R (to m ∈M).
We say that COM is perfectly correct if for all κ ∈ N and all m ∈M ,

Pr[m′ = m | (zC, zR, c)← out〈C(m),R(ε)〉(1κ, Commit),m′ ← outR〈C(zC),R(zRec)〉(Unveil)] = 1

where the probability is over the random coins used by C and R. Statistical
correctness is defined analogously and admits a negligible error probability.

Definition 7 (Hiding). For an interactive commitment scheme COM = 〈C,R〉,
the hiding experiment is defined as:

Experiment ExpHiding
A,COM (κ, a)

(m0,m1, state)← A(1κ, find, a)

b
$← {0, 1}

if |m0| 6= |m1|
return b

b′ ← outA〈C(mb),A(guess, state)〉(1κ, Commit)
return b = b′
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The advantage of a possibly malicious receiver A is given by

AdvHiding
A,COM(κ, a) := 2

∣∣∣∣Pr[ExpHiding
A,COM(κ, a) = 1]− 1

2

∣∣∣∣ .
The probability is over the randomness of A, R and the choice bit b. An adversary
A is called valid if m0,m1 ∈M and A eventually outputs a single bit. We say
that COM is (`(κ), ε(κ))-hiding if `(κ) is an upper bound for the number of steps
performed by A on input guess and for all κ ∈ N and `(κ)-bounded valid A and

for all a ∈ {0, 1}∗, AdvHiding
A,COM(κ, a) ≤ ε(κ).

Definition 8 (Binding). For an interactive commitment scheme COM = 〈C,R〉,
the binding experiment is defined as

Experiment ExpBinding
A,COM (κ, a)

(zA, zR, c)← out〈A(a),R(ε)〉(1κ, Commit)
m0 ← outR〈A(zA, 0),R(zR)〉(Unveil)
m1 ← outR〈A(zA, 1),R(zR)〉(Unveil)
return m0 ∈M ∧m1 ∈M ∧m0 6= m1

where A and R use the same coins in each run of the unveil phase. The advantage
of a possibly malicious committer A is given by

AdvBinding
A,COM (κ, a) := Pr[ExpBinding

A,COM (κ, a) = 1] .

The probability is over the randomness of A and R. We say that COM is compu-
tationally binding if for all PPT adversaries A, there exists a negligible function
ε such that for all κ ∈ N and all a ∈ {0, 1}∗, AdvBinding

A,COM (κ, a) ≤ ε(κ). We say
that COM is perfectly binding if for all unbounded adversaries A, it holds that
AdvBinding

A,COM (κ, a) = 0

Next, we consider a stronger notion of the hiding property called pCCA
security. In the pCCA hiding experiment, the adversary may additionally interact
with an (inefficient) oracle O to perform an unbounded number of commitments
in parallel, with O acting as receiver. After all commit phases with O have
finished, O outputs, for each commitment, the unique value committed to. If
no such value exists, a special symbol ⊥ is returned for this commitment. The
challenge commitment where the adversary acts as receiver must remain hiding,
even with access to O. pCCA security constitutes a stronger variant of parallel
one-left many-right non-malleability.
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Definition 9 (pCCA security). For a commitment scheme COM = 〈C,R〉,
the pCCA hiding experiment is defined as

Experiment ExppCCA-Hiding
A,COM,O (κ, a)

(m0,m1, tag , state)← AO(1κ, find, a)

b
$← {0, 1}

if |m0| 6= |m1|
return b

b′ ← outA〈C(mb),AO(guess, state)〉(Commit, tag)
return b = b′

O acts as honest receiver R for multiple sessions in parallel. When all commit
phases have finished, the oracle returns the unique values committed to. If no
such unique value exists, a special symbol ⊥ is output for these commitments.
An adversary A is valid if it eventually outputs a bit and never interacts with
O on the challenge tag. We say that COM is pCCA-secure if for all valid PPT
adversaries A, there exists a negligible function negl such that for all κ ∈ N and
all a ∈ {0, 1}∗,

AdvpCCA-Hiding
A,COM (κ, a) := 2

∣∣∣∣Pr[ExppCCA-Hiding
A,COM (κ, a) = 1]− 1

2

∣∣∣∣ ≤ negl(κ)

A.3 A Brief Introduction to Universal Composability

In the following, we give a very brief introduction of the Universal Composability
framework due to [Can01] and the corresponding security notion, called UC
security. It focuses only on the aspects pertaining to this paper, leaving out other
important aspects and details. Unless stated otherwise, this paper uses UC2013.

The Setting. Extending the notion of the real-ideal paradigm, which considers a
single protocol execution and non-reactive functionalities only, Universal Compos-
ability models the distributed execution of protocols in a network environment
by multiple parties. Like in the real-ideal paradigm, the security of protocols is
defined through ideal functionalities that model a trusted party carrying out
some task honestly, e.g. commitments, authenticated message transmission or
secure function evaluation. UC security considers the security a protocol not only
when a single instance is executed in isolation, but in a setting where multiple,
possibly different, protocols are executed concurrently.

The Machine Model. Protocol parties and other entities of the framework are
modeled as interactive Turing machines that feature several communication
tapes. Parties may give or receive input via the input tape, receive computation
results of subroutines via the subroutine output tape and receive general messages
(from the adversary) via the incoming communication tape. Sending a message
is performed by writing the message, along with the recipient’s identity, to the
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outgoing message tape and issuing a special external write message. All entities
in the UC execution experiment run in (non-uniform) probabilistic polynomial
time.

The Execution Experiment. The UC execution is, apart from the challenge
protocol and its parties, defined using two further entities: An adversary that
may corrupt parties and, depending on the communication model, alter, inject
or drop messages sent between protocol parties via the incoming communication
tape. The adversary may freely interact with the environment Z that (adaptively)
provides input to all protocol parties and the adversary. As environment and
adversary may freely communicate throughout the execution, the environment is
able to incorporate other protocols executed concurrently next to the challenge
protocol, capturing the setting of general composition. In order to show the UC
security of a protocol, it is thus not necessary to explicitly consider different
protocols running alongside as they can, without loss of generality, be considered
to be part of the environment.

Protocol Emulation. UC security is based on the notion of protocol emulation:
Let π and φ be protocols. We say that π emulates φ (denoted by π ≥UC φ)
if, informally, for all adversaries A, there exists a PPT simulator S such that
no environment Z can distinguish if it interacts with π and A or with φ and
S. In contrast to the stand-alone real-ideal paradigm, UC security does not
distinguish between a real and an ideal execution experiment but provides a
uniform treatment of protocol emulation. To this end, there exists a special class
of protocols called ideal protocols. For an ideal functionality F , let IDEAL(F)
denote the corresponding ideal protocol. If π ≥UC IDEAL(F), we say that π
UC-emulates or UC-realizes F .

Properties of UC Security. UC security exhibits several properties such as
reflexivity or transitivity and is closed under general composition. Using these
properties, one can show that one instance of π UC-realizes a single instance of
the protocol φ to argue that one may replace all instances of φ in a protocol ρ
that makes multiple subroutine calls to φ (we say that ρ is in the φ-hybrid model)
with instances of π without losing security. Usually, this is used to conclude that
for a protocol ρ in the F -hybrid model that UC-realizes G, one can replace F by
its realization π and the resulting protocol ρπ still UC-realizes G.

As the dummy adversary that reports all messages between protocol parties to
the environment and delivers all messages sent from the environment is complete,
it is sufficient to show UC security only for this dummy adversary, leading to
easier proofs. Also, UC security is transitive, i.e. if π1 ≥UC π2 and π2 ≥UC π3,
then π1 ≥UC π3.

Impossibility Results. While UC security is a very strong notion, there exist
a number of impossibility results such as the ones of [CF01] that imply that
non-trivial functionalities such as the commitment functionality FCOM can only
be realized using some kind of setup, e.g. a common reference string, a public key

51



infrastructure or a random oracle. Lindell [Lin03] has shown that these impossi-
bilities are not due to the particular definition of UC security, but universally
apply to general composition.

Ideal Functionality for Multiple Commitments. The ideal functionality for multi-
ple commitments FMCOM in Fig. 1, introduced by [CF01], models ideal bilateral
commitments for multiple parties and instances. Individual commitments are
distinguished by their commitment ID cid .

Functionality FMCOM

FMCOM proceeds as follows, running with parties P1, . . . , Pn and an adversary S.

1. Upon receiving a value (Commit, sid , cid , Pi, Pj , b) from Pi, where b ∈ {0, 1},
record the tuple (sid , cid , Pi, Pj , b) and generate a public delayed output
(Committed, sid , cid , Pi, Pj) to Pj . Ignore subsequent (Commit, sid , cid , Pi, Pj , ?)
messages.

2. Upon receiving a value (Unveil, sid , cid , Pi, Pj) from Pi, proceed as follows: If
the tuple (sid , cid , Pi, Pj , b) is recorded, then generate a public delayed output
(Unveil, sid , cid , Pi, Pj , b) to Pj . Otherwise, do nothing.

Fig. 1. The ideal commitment functionality for multiple commmitments FMCOM

(adapted from [CF01])

B Timed Simulation-Sound Commitment Schemes

In the following, we prove the security of the SSCOM commitment scheme.
First, we define oracle trapdoor commitment schemes (Definition 10), which

are similar to standard trapdoor commitment schemes except that adversary is
additionally given access to an oracle O. Later on, in our constructions, this will
be the pCCA oracle for some pCCA-secure commitment scheme.

B.1 Oracle Trapdoor Commitment Schemes

Previous definitions of trapdoor commitments such as the ones of [MY04; GMY03]
do not provide the adversary with additional oracles, e.g. a (p)CCA oracle in
order to strengthen security. In the following, we define the stronger notion of
oracle trapdoorness.

Definition 10 (Oracle Trapdoor Commitment Scheme). A commitment
scheme TRAPCOM = 〈C,R,Ctrap〉 is called oracle trapdoor for oracle O and
message space M if 〈C,R〉 and 〈Ctrap,R〉 are commitment schemes with message
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space M such that for all PPT adversaries A, there exists a negligible function
negl such that for all κ ∈ N and all z ∈ {0, 1}∗,

AdvOTD
A,O,TRAPCOM(κ, z) := |Pr[ExpOTD

A,O,TRAPCOM(κ, z) = 1]− 1

2
| ≤ negl(κ)

where the probability is over the randomness of A and the randomness of the
OTD experiment. The random variable ExpOTD

A,O,TRAPCOM is defined as follows:

1. Sample b
$← {0, 1} uniformly at random.

2. Run A on input (1κ, z). A interacts with the experiment by first sending
(start, tag , v) to start the commit phase of TRAPCOM, acting as receiver.
If b = 0, the experiment runs the code of the honest committer C on input
(1κ, tag , v). If b = 1, the experiment runs the code of the trapdoor committer
Ctrap on input (1κ, tag , |v|). After the commit phase has finished, the unveil
phase is performed. At any time, A may interact with the (possibly stateful)
oracle O(·, ·) which takes a tag as first argument. Finally, A outputs a bit b′.

3. Output b if A has queried O with a tag that has the tag of the challenge
commitment as prefix, if v /∈M or if b′ /∈ {0, 1}. Otherwise, output 1 if b = b′

and 0 otherwise.

If AdvOTD
A,O,TRAPCOM(κ, z) is negligible for unbounded adversaries, then TRAPCOM

is called statistically oracle trapdoor. If A is unbounded and its advantage is
0, then TRAPCOM is called perfectly oracle trapdoor. A trapdoor commitment
scheme TRAPCOM is called unconditionally oracle trapdoor if it is perfectly or
statistically oracle trapdoor.

In the following, we parameterize oracle trapdoor commitment schemes with
additional parameters related to timed security properties. However, as the
oracle-trapdoorness is a polynomial-time property, we have chosen to omit these
parameters here.

It directly follows that a commitment scheme satisfiying the above notion is
also hiding.

B.2 Construction SSCOM

Proof for the Oracle Trapdoorness of SSCOM. We first prove that SSCOM
is oracle-trapdoor for the pCCA oracle of COMpCCA.

Theorem 8. Let COMpCCA be a pCCA-secure and perfectly binding commitment
scheme with message space M . Let TCOM be a perfectly binding and weakly
extractable timed commitment scheme. Then, the commitment scheme SSCOM
is an oracle-trapdoor commitment scheme with message space M for the pCCA
oracle of COMpCCA.

Proof. We prove Theorem 8 by a reduction to the pCCA hiding property of
COMpCCA. To this end, we first define a series of hybrids. Let Hi denote the
following hybrid:
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1. Interact with the adversary A on input (1κ, z) as in the oracle trapdoorness
game. Initially, receive a message (start, tag , v).

2. Create the shares sm,n ∈ {0, 1}|v| according to the protocol description of
SSCOM. Continue the execution as in the oracle trapdoorness experiment,
except with the following changes:

(a) Perform the commit phase of SSCOM as follows: For j = 1, . . . , i, commit
to sj,0 using COMpCCA for both the commitment with tag (tag , j, 0) and
tag (tag , j, 1). For j > i, commit to sj,0 for the commitment with tag
(tag , j, 0) and to sj,1 for the commitment with tag (tag , j, 1), i.e. commit
honestly.

(b) At the beginning of the unveil phase, extract the index vector I stored
in the timed commitment using the forced-open algorithm.

(c) In the unveil phase, send sm,n for m > i. For m ≤ i, send shares that are
consistent with v and I.

3. Continue the internal execution of the oracle trapdoorness game, eventually
output what A outputs.

By definition, H0 is identical to an execution of the oracle trapdoorness game
where b = 0, i.e. the commit and unveil phase are performed honestly. Similarly,
Hκ is identical to an execution with b = 1, i.e. the commit and unveil phase are
performed like the trapdoor algorithm would.

Suppose for the sake of contradiction that there exsits an adversary that can
distinguish between H0 and Hκ with non-negligible probability, i.e. |Pr[out0 =
1] − Pr[outκ = 1]| = ν(κ) is non-negligible. Then, there exists an index i such
that the adversary can distinguish between Hi and Hi+1 with non-negligible
probability of at least ν(κ)/κ. We show that this contradicts the pCCA hiding
property of COMpCCA.

Lemma 4. If COMpCCA is pCCA-secure, then Hi and Hi+1 are (computation-
ally) indistinguishable.

Proof. Suppose for the sake of contradiction that outi and outi+1 are not com-
putationally indistinguishable, i.e. p := |Pr[outi = 1] − Pr[outi+1 = 1]| is non-
negligible. Then, we can construct an adversary A′ against the pCCA-hiding
property of COMpCCA with non-negligible advantage as follows:

On input (1κ, z), A′ externally runs an instance of the pCCA hiding game.
Internally, it runs an instance of the oracle trapdoorness game with adversary A
on input (1κ, z) as follows:

1. Forward oracle queries by A to the pCCA oracle of the pCCA hiding game.

2. Sample b′
$← {0, 1} uniformly at random.

3. Play Hi honestly, but play the commitment with tag (tag , i+ 1, b′) as follows:

– Send (si+1,0, si+1,1) and tag (tag , i+ 1, b′) to the pCCA hiding game as
challenge.

– Perform the commit phase for the commitment with tag (tag , i+ 1, b′)
with the pCCA hiding game.
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4. Continue the execution of Hi but abort the unveil phase if I[i+ 1] = b′. In
this case, send b′ to the hiding experiment.

5. Otherwise, continue the execution and output whatever A outputs.

If A′ does not abort and the pCCA hiding game has the choice bit 0, i.e.
commits to si+1,0, thenA’s view is distributed as inHi. Otherwise, it is distributed
as in Hi+1. Let p denote A’s distinguishing advantage between outi and outi+1.
By definition of A′, its advantage in the pCCA hiding game is p/2, which is
non-negligible if p is non-negligible, contradicting the pCCA hiding property of
COMpCCA.

We can conclude that |Pr[out0 = 1]−Pr[outκ = 1]| ≤ 2κ·AdvpCCA hiding
A′,COMpCCA,O(κ, z),

which is negligible as COMpCCA is pCCA-secure.

Theorem 9. Let SSCOM be an oracle-trapdoor commitment scheme for the
pCCA oracle of COMpCCA. Let TCOM be a (T, `′(`(κ), κ), negl(κ))-weakly ex-
tractable timed commitment scheme for some polynomially bounded T > `′(`(κ), κ),
sufficiently large `′(`(κ), κ) and negligible function negl. Then, SSCOM is an `(κ)-
simulation-sound commitment scheme.

Proof for the Timed Simulation-Soundness of SSCOM. In the following,
we show that SSCOM (Construction 2) is timed simulation-sound.

Proof. We prove Theorem 9 using a hybrid argument. Let q = q(κ) be a bound
for the number of left commitment sessions in the timed simulation-soundness
experiment.

Let Hi denote the execution of the simulation-soundness experiment where
the first i left sessions are equivocated and the remaining sessions are honest,
i.e. use the code of the honest committer C instead of Ctrap. (For the honest
sessions, the committer’s private input is sampled at commit time.) H0 refers
to an execution where all sessions are honest, Hq to an execution where all
sessions are equivocated, i.e. the standard execution of the simulation-soundness
experiment.

Let H?
i be identical to Hi, but stop the execution before the TCOM commit-

ment to I in the single right session is unveiled. Let Sext = (se0,0, s
e
0,1, . . . , s

e
κ,0, s

e
κ,1)

denote the set of shares committed to in the right session. As COMpCCA is per-
fectly binding, Sext is well-defined. Let S denote the set of shares sent in the
first-round message of the unveil phase. We say that S is consistent relative to I
(which is well-defined as TCOM is perfectly binding) if the following holds:

– S is locally consistent, i.e. s0,0 ⊕ s0,1 = · · · = sκ,0 ⊕ sκ,1 and
– s0,I[0] = se0,I[0] ∧ · · · ∧ sκ,I[κ] = seκ,I[κ], i.e. the shares are consistent with

commitments that would be unveiled. As TCOM is perfectly binding, I is
well-defined.

The adversary wins in H?
i if S is consistent relative to I and reconstructs to a

different value, i.e. s00,0 ⊕ s00,1 6= se0,0 ⊕ se0,1.
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We first show that inH0, the execution where no commitments are equivocated,
the adversary A is non-abusing, i.e. does not equivocate on the right side. Starting
from H0, we will show that this property is retained in subsequent hybrids. As a
non-abusing adversary does not satisfy the winning condition, the claim follows.

Lemma 5. If TCOM is (T, `′(`(κ), κ), negl)-hiding for polynomial T , sufficiently
large `′(`(κ), κ) and perfectly binding and if COMpCCA is perfectly binding, then
A is non-abusing in H0.

Proof. We prove Lemma 5 by a reduction to the timed hiding property of TCOM.
As we cannot simulate H0 in the reduction to the hiding property, we instead
show that A is non-abusing in H?

0 . It then follows that A is also non-abusing in
H0.

Assume for the sake of contradiction that there exists an adversary A that is
abusing in H?

0 . First, we fix the coins of A and H?
0 up to the point before the

TCOM commitment starts such that A has maximum success probability. We
also fix A’s advice z. Let rA denote these coins of the adversary and rH denote
the coins of the hybrid. As the execution of H?

0 using these coins is deterministic
until the TCOM commitment starts and COMpCCA is perfectly binding, the shares
sm,n committed to in the right session are well-defined given the coins and the
advice. As before, let Sext denote the set containing these shares. We prove
Lemma 5 by a reduction to the non-uniform timed hiding property of TCOM.
To this end, we construct an adversary A′ against the hiding property of TCOM
that is successful if A is abusing. A′ works as follows:

1. On input (1κ, (rA, rH , Sext, z)), internally start an instance of H?
0 using coins

rA for the adversary and rH for H?
0 . Externally, interact with the TCOM

hiding experiment. Run the adversary A on input (1κ, z).

2. Sample I
$← {0, 1}κ and send (I, I) to the TCOM hiding experiment.

3. Perform the commit phase for TCOM in the right execution with the hiding
experiment.

4. Receive the shares S in the unveil phase.
5. If A has sent a (notify, id, 1) message where id is the tag of the right

commitment in either thread, output a random bit b.
6. If S is locally consistent with I and Sext, output 0. If S is locally consistent

with I and Sext, output 1. Otherwise, output a random bit b.

In order to abuse, A must send shares in the unveil phase that are consistent
with the index vector I or I committed to with TCOM as well as the extracted
shares. Thus, an abusing A can be used to distinguish between a commitment to
I resp. I. If A is unsuccessful, i.e. the sent shares are inconsistent, we output a
uniformly random bit.

It remains to show that A′ is `′(`(κ), κ)-bounded. By assumption, A is legal.
Thus, between the beginning of the timed commitment and the transmission of
the shares sm,n, the whole experiment, including the adversary A, has spent at
most ` steps, unless A has notified the receiver of a timeout. If `′ is sufficiently
large to account for i) the overhead from internally emulating H?

0 and A, ii) the

56



computations performed by A′ after the challenge commitment has been sent and
iii) possible (polynomial) speed-up of the internally emulated A due to changes
in the machine model of A′, which may be different, then A′ is legal and its
advantage in the hiding game is equal to the probability that A′ is abusing,
which contradicts the timed hiding property of TCOM if A is abusing with
non-negligible probability. By definition of H?

0 and H0, A cannot win in H0 if it
cannot win in H?

0 , as COMpCCA is perfectly binding. Thus, if A is non-abusing in
H?

0 , then it is also non-abusing in H0 and the claim follows.

Remark 3. In order to obtain a uniform reduction, changes to the proof and an
additional assumption are necessary. With respect to the assumptions, the pCCA-
secure commitment scheme has to be extractable by the reduction adversary, e.g.
via rewinding, which is usually the case for non-malleable commitment schemes
in the plain model. In particular, the scheme due to Goyal et al. [Goy+14]
satisfies this property, regardless of the instantiation of the base commitment.
As the commit phases of COMpCCA have finished before the challenge phase of
the reduction starts, rewinding does not interfere with the reduction.

Also, the timed hiding definition (Definition 7) has to be split in two phases.
In a first phase before the actual commit phase starts, the steps performed by the
polynomial-time adversary A are not counted. Second, the share commitments
are extracted, e.g. via rewinding, instead of providing their value via the non-
uniform advice. In the second phase, the timed commitment is performed and the
adversary’s steps are counted as usual. As Definition 7 requires security against
non-uniform adversaries, any timed commitment scheme secure according to
this definition is also secure when considering the outlined variant of the hiding
experiment.

Lemma 6. If A is non-abusing in H0 and if SSCOM is an oracle trapdoor
commitment scheme for the pCCA oracle of COMpCCA and COMpCCA is a perfectly
binding and pCCA-secure commitment scheme, then A is non-abusing in Hi for
i > 0, i.e. Pr[outi = 1] ≤ negl(κ).

Proof. We prove Lemma 6 by induction. We have shown that A is non-abusing
in H0, except with negligible probability. We assume that A is non-abusing in
Hi−1 for some fixed i ∈ [q(κ)]. Then, we can show that A is also non-abusing
in Hi by a reduction to the oracle trapdoor property of SSCOM for the pCCA
oracle of COMpCCA. To this end, we construct an adversary A′ against the oracle
trapdoorness of SSCOM as follows:

1. On input (1κ, z), sample a bit b
$← {0, 1} and internally start an execution of

Hi−1.
2. In the i-th left session, sample vi ← Di and play the commitment with the

oracle trapdoorness experiment on challenge value vi.
3. Play the single right commitment honestly, but perform the share commit-

ments with the pCCA oracle. After these commit phases have finished, obtain
the sm,n from the pCCA oracle. Then, continue the execution.
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4. Upon receiving the s′m,n in the right session, check if they are locally con-
sistent and consistent with the index vector I and the extracted shares. If
they reconstruct to a different value than the extracted shares, i.e. A has
equivocated the right session, output 1.

5. Otherwise (i.e. if A has not equivocated), output 0.

Let pi−1 resp. pi denote the probability that A is abusing in Hi−1 resp. Hi.
The advantage of A′ in the oracle trapdoorness game is p := |pi − pi−1|/2. If
p is non-negligible, then A′ wins the trapdoorness game with non-negligible
probability, contradicting the oracle trapdoorness of SSCOM. It follows that the
advantage of A′ in Hi for i ≥ 1 can be bounded by AdvOTD

A,SSCOM,O(κ), which is
negligible by assumption.

All in all, we have AdvSIMSOUND
A,TRAPCOM,`(κ) ≤ neglhidingTCOM (κ)+(q(κ)−1)·neglOTDSSCOM,O(κ),

which is negligible.

Looking at the proof of our composable commitment scheme (Lemma 2),
we need SSCOM commitments to be (not necessarily straight-line) extractable.
The general setting is the following: The environment concurrently receives
commitments from the simulator. At the same time, it commits in parallel. In the
reduction, the reduction adversary can play all commitments the environment
receives as they are unrelated to the reduction. However, it has to extract the
parallel commitments by the environment in order to embed a challenge. As
the “left sides” can be played honestly and can be rewound, we do not need
the strong extractability guaranteed by some non-malleable commitments (e.g.
[Goy+14]) where the left sides have to be simulated by the extractor without
rewinding them. Thus, extractability similar to the notion defined by Pass and
Wee [PW09] is sufficient. We also recall that extractability for one commitment
already implies parallel extractability in this setting [PW09]).

Corollary 5. Let E′ be a polynomial-time extractor for COMpCCA with over-
whelming success probability (over the coins of the extractor and the adversary),
then there exists an extractor E for SSCOM with overwhelming success probability
(over the coins of the extractor and the adversary).

Sketch. We prove Corollary 5 by constructing an extractor E for SSCOM as
follows. Let E′ denote the extractor for COMpCCA.

– Internally execute E′ in parallel and forward all messages related to COMpCCA

instances where the adversary is the committer between E′ and the adversary.
– Execute all instances of COMpCCA where the adversary is receiver honestly,

also when rewinding.
– Emulate all other messages of SSCOM relative to the current state of the

sessions resp. to the protocol description if no such state exists for the current
session.

– After the commitment to I has finished, run the forced-open algorithm to
obtain I.
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– Determine the unique value committed to relative to I and the extracted
shares and output the reconstructed value. In case of failure, output ⊥.

Depending on the setting, E may also use the code of the trapdoor committer
for the left sides.

For example, the pCCA-secure commitment scheme due to Goyal et al.
[Goy+14] admits such an extractor E′. In contrast to their construction in the
context of non-malleability, our composite extractor honestly answer challenges
of concurrently executed commitments where the adversary acts as receiver.

Corollary 5 follows implicitly from the proof of Theorem 9.

C TLUC Security

In the following, we give a full treatment of TLUC security. We re-state the
properties of the notion unchanged and present their proofs.

Remark 4. We have chosen to model TLUC security using the mechanisms
currently available in the UC framework. However, it is conceivable to achieve a
similar notion of security using different mechanisms. To this end, an anonymous
reviewer has suggested the use of shells, which have seen heavy use in recent
iterations of the UC paper. This would necessitate changes to the framework, i.e.
the introduction of a shell for the environment, which is currently not available
in the UC framework.

Unfortunately, there is no indication that resorting to shells would lead to
easier definition or improve the notion’s properties. Looking ahead, composition
is limited because environments cannot internally execute simulators that break
timed assumptions without affecting the number of counted steps. In any setting
where the steps of the environment are counted correctly, this would affect timed
assumptions of the challenge protocol, leading to limited composition.

Legal Adversaries. We first define legal adversaries, i.e. adversaries that correctly
handle timer-related messages:

Definition 11 (Legal Adversaries). An adversary A is called legal if

1. upon receiving (timer, µ, id, t) from some ITI with extended identity µ via
the incoming communication tape, A immediately sends (timeout, µ, id, t) to
the environment.

2. it does not sends messages (timer, µ, id, t) to the environment if the party with
extended ID µ is honest and has not sent (timer, µ, id, t) to the adversary.

3. upon receiving (notify, µ, id) from some ITI with extended identity µ via the
incoming communication tape, A immediately sends (notify, µ, id) to the
environment.

4. upon receiving (notify, µ, id , b) from the environment, A immediately writes
(notify, µ, id , b) on the incoming communication tape of the ITI with extended
identity µ.
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Counting Computational Steps. When a honest party P sets up a timer with
timeout `, we want P to be able to learn when the timer has expired. To this
end, it is first necessary to define how computation steps are counted against the
timer by the environment, which is ultimately responsible to signal if a timeout
has occurred.

Suppose that we want to prove that a protocol π making use of a timed
assumption emulates some protocol φ. At some point in the reduction, we may
have to construct a stand-alone adversary A′ against the timed assumption that
incorporates the whole TLUC execution and uses a distinguishing environment to
contradict the security of the timed assumption. In this situation, the counting of
steps by Z and by A′ has to be compatible in the sense that if Z never triggers
a timeout, neither does A′.

While the intuition is clear, the definition must account for the fact that
adversary and protocol under consideration might change, e.g. when considering
protocol emulation. To this end, we explicitly parameterize environments with
a protocol and adversary to make clear relative to which ones the number of
performed steps is counted. Let Z[π,A] denote the environment Z that expects
to interact with protocol π and adversary A and counts its steps accordingly.

Note that an environment may not have enough information to precisely
calculate the correct number of steps performed by other entities, e.g. if the
protocol is probabilistic. Considering the security guarantee we want to capture,
this is no problem as long as the environment does not under-estimate the number
of steps performed. In particular, security is not affected if the number of steps
performed is estimated too high, leading to a timeout triggered too early. This is
accounted for in Definition 14.

We also require environments to perform the calculation independent of the
protocol parties’ inputs and outputs. Otherwise, we would introduce a side-
channel (in the ideal execution) which might help the adversary to learn a party’s
secrets by observing if timeouts are triggered or not. In this setting, one can design
clearly insecure protocols that e.g. realize the ideal commitment functionality
FCOM and prove their security in TLUC. For discussion, see Appendix C.4.

Routing Environments. Before defining legal environments, we look ahead to
the proofs of various framework properties. In the proof of the completeness
of the dummy adversary (Proposition 9), an environments ZD interacting with
a protocol π and the dummy adversary D internally runs an adversary A and
a legal environment Z and appropriately routes all messages. As ZD does not
perform any meaningful computations on its own but only routes messages, we
call it a routing environment. In the proof, we have to show that ZD is a legal
environment. Clearly, the number of steps performed in the interaction of ZD
with D is greater than the number of steps in the execution of Z with A. As Z
is oblivious of the fact that it is emulated, it cannot possibly account for this
difference. In particular, in the “outer” execution with ZD, additional steps are
performed by ZD due to emulation overhead as well as due to the additional
steps performed by the dummy adversary D. Still, we want both executions to
count the same number of computation steps. Otherwise, the view of the “inner”
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environment Z would not be identically distributed when emulated or ZD would
not be a legal environment.

In the proof of the single-instance composition theorem (Theorem 10), a similar
situation arises where an environment Z ′ internally emulates an environment Z
and a protocol ρ.

In the following, we thus define the class of routing environments, which are
allowed to count steps identically to their internally emulated environment (see
Definition 14), even though more steps are actually performed. This is justified
as in every execution with a routing environment, there exists a corresponding
“unrolled” execution without routing environments (see Definition 13) for which
the number of counted steps is correct. This “unrolled” execution can then be
used e.g. in a reduction.

Definition 12 (Routing Environment). Z ′[π,D] is a type-1 routing environ-
ment if it expects to interact with challenge protocol π and the dummy adversary
D and internally emulates a non-routing environment Z[π,A] and adversary A
that is not the dummy adversary, and routes messages as follows:

– Outputs from the challenge protocol to the environment Z ′ are forwarded as
outputs to the internal environment Z.

– Inputs from the internal environment Z to the challenge protocol are forwarded
to the challenge protocol as inputs of Z ′.

– Inputs from the internal environment Z to the adversary A are forwarded to
the internal emulation of A.

– Messages from the internal adversary A to the environment Z are forwarded
to the internal environment Z.

– Messages from the internal adversary A to the challenge protocol are for-
warded to the external adversary as coming from Z ′.

– Messages from the adversary to the environment Z ′ are forwarded to the
internal adversary A as coming from the challenge protocol π.

– Eventually, Z ′ outputs what Z outputs.

Z ′[π,D] is a type-2 routing environment if it expects to interact with a challenge
protocol π and the dummy adversary D, internally emulates an environment
Z[ρπ,D] that is either a non-routing environment or a type-2 environment and
protocol ρ that makes one subroutine call to π and routes messages as follows:

– Outputs from the challenge protocol to the environment Z ′ are forwarded as
output to the appropriate party of ρ coming from π.

– Inputs from the protocol ρ to π are forwarded to the challenge protocol as
input coming from Z ′.

– Inputs from Z to the adversary pertaining ρ are forwarded to ρ as coming
from the dummy adversary D.

– Inputs from Z to the adversary pertaining π are forwarded to the adversary
as coming from the environment Z ′

– Messages from ρ to the adversary are forwarded as input to Z as coming
from the dummy adversary D.
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– Messages from the adversary to Z ′ are forwarded to Z.
– Eventually, Z ′ output what Z outputs.

We will make use of type-1 environments in the proof of the completeness of
the dummy adversary (Proposition 9). Type-2 routing environments will be used
in the proof of the single-instance composition theorem (Theorem 10).

As TLUC inherits the notion of polynomial time of the UC framework, routing
environments are inherently polynomially bounded. Thus, the nesting depth of
routing environments is also polynomially bounded. Also, there always exists
an innermost non-routing environment. As routing environments only route
messages between the outside and internally emulated entities, there exists an
“unrolled” execution without routing environments. In the unrolled execution,
the innermost environment interacts with the actual challenge protocol (which
may have been split into several parts hosted by different routing environments
before) and an adversary which may not be the dummy adversary. We formally
define the unrolled execution as follows:

Definition 13 (Unrolled Execution). Let Zk be a routing environment
expecting to interact with protocol πk and adversary D such that Zk (transitively)
incorporates k environments such that the innermost environment Z, expecting
to interact with adversary A and protocol ρπ1

...πk (if A = D) resp. ρπ2
...πk (if

A 6= D), is no routing environment. For i = 2, . . . , k − 1, let Zi denote the
i-th routing environment (of type 2) that is emulated by the i + 1-th routing
environment, along with the protocol πi. Zi expects to interact with the protocol
π...

πk

i and the adversary D. If Z1 is a type-1 routing environment, it expects
to interact with ρπ2

...πk and internally runs Z and A. If Z1 is a type-2 routing
environment, it expects to interact with π2

...πk and D and internally runs Z and
π1. The unrolled execution of Zk is defined as the execution of Z interacting with
the protocol ρπ2

...πk resp. ρπ1
...πk and the adversary A.

Legal Environments. We are now ready to define the class of legal environments,
namely environments that correctly handle timers set up by honest parties.

Definition 14 (Legal Environment). An environment Z expecting to interact
with protocol π and adversary A, denoted by Z[π,A], is called legal if upon
receiving (notify, µ, id) from the adversary, it immediately sends

– (notify, µ, id , 0) to the adversary if the party with extended identity µ is
honest and the (presumptive) execution of the UC execution experiment with
π and A will have performed less than ` steps since
• Z has received (timer, µ, id, `) from the adversary and
• A has written (notify, µ, id, ?) to the incoming communication tape of
µ,

subject to the rules below13. The calculation of all steps is performed obliviously
of the protocol parties’ inputs and relative to the first message (timer, µ, id, ?)
from µ with ID id.

13 It is possible to admit a negligible error to these calculation to get a definition that
captures more “intuitively secure” protocols.
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– (notify, µ, id , 1) to the adversary otherwise.

Computation steps are counted as follows:

– If Z[π,A] is a non-routing environment, Z[π,A] counts the steps as if the
whole execution experiment were emulated by a single Turing machine.

– If Z[π,D] is a routing environment, Z[π,D] counts the steps as if the whole
unrolled experiment (cf. Definition 13) were emulated by a single Turing
machine.

Note that while we specify that computation steps have to be counted as if
the whole TLUC experiment were executed on a single Turing machine, we do
not fix the concrete machine model (e.g. the alphabet or the number of tapes).
The actual machine model we are interested in depends on the timing assumption
used in the protocol π (if there are any) such that the environment Z always
counts the correct number of steps if some reduction adversary A′ internally
emulates the TLUC execution experiment.

Proposition 7 (Properties of Routing Environments). Let Z be the
outermost legal non-routing environment that is (transitively) emulated by a
routing environment Z ′. Then,

– Z ′ is a legal environment,
– the number of steps counted by Z is correct for the unrolled execution run on

a single Turing machine and
– the view of Z in the unrolled execution is identically distributed as when

(transitively) emulated by Z ′.

Proof. We prove Proposition 7 by induction over the nesting depth. Let Z denote
the outermost legal non-routing environment.

If Z expects to interact with an adversary A that is not the dummy adversary
D, then Z is internally executed by a type-1 routing environment that expects to
interact with the same protocol and the dummy adversary and internally emulates
Z and the adversary A. Let Z1 denote this environment, where the index denotes
the nesting depth. By Definition 12, Z1 relays all timer and notify messages
between Z, A and the external adversary. Thus, notify messages are handled
according to the calculation of Z. In order for Z1 to be legal, it suffices to show
that the steps performed by the “unrolled” execution experiment are identical to
the steps performed by the execution considered by Z. As the unrolled execution
is the very execution Z expects, i.e. the interaction between Z, the protocol π
and the adversary A, it holds that the number of steps calculated by Z are also
valid for Z1.

If Z expects to interact with the dummy adversary D and a protocol ρπ1 ,
then Z is emulated by a type-2 routing environment Z1. Z1 internally executes
Z and a protocol ρ, while externally expecting to interact with a protocol π1
such that ρ makes exactly one subroutine call to π1. Also, Z1 expects to interact
with the dummy adversary. Again, Z1 relays all timer and notify messages.
In the unrolled execution, Z interacts with the composed protocol ρπ1 and the
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dummy adversary, which is the very execution Z considers when counting the
steps performed by the execution experiment. Thus, Z1 notifies timers correctly,
making it a legal environment. Also, the number of steps counted by Z is correct
for the unrolled execution.

In both cases, it follows from the definition of routing environments and
the unrolled execution that Z’s view in the unrolled execution is identically
distributed and that the number of steps calculated by Z is also correct for the
unrolled execution run on a single Turing machine.

Suppose that we have shown Proposition 7 to hold for an arbitrary but fixed
nesting of depth k ≥ 1. We show that it also holds for nestings of depth k+ 1. As
k ≥ 1, we know that Zk+1 is a type-2 routing environment and expects to interact
with the dummy adversary. Zk+1 expects to externally interact with a protocol
πk+1 and the dummy adversary. Internally, it emulates a routing environment
Zk[π

πk+1

k ,D] or Zk[πk+1,D] (if k = 1 and Zk is of type 1). By using the same
argument as in the base case, the claim for k ≥ 1 follows.

We are now ready to define TLUC protocol emulation. To this end, we only
consider legal environments and adversaries. Otherwise, the definition of protocol
emulation is equivalent to the standard notion of UC protocol emulation.

C.1 Distinguishing Between UC and TLUC Protocols

To facilitate an easier discussion, we would like to clearly and syntactically
distinguish between UC and TLUC protocols where former are protocols that
do not use timers and the latter are protocols that may use timers. As TLUC
security is cast in the unmodified UC framework, such a syntactic distinction is
impossible. In particular, UC protocols can use the same messages that TLUC
protocols use to set up and check timers. While they have no meaning in the UC
framework in the sense that a honest party can rely on them being handled in
any particular way, we cannot rule out that the timer and notify messages are
used UC protocols, too.

Still, we want to use the following informal distinction in the context of
protocol emulation: Let π1 and π2 be protocols. If π1 (non-trivially) TLUC-
emulates π2 but π1 does not (non-trivially) UC-emulate π2, then we consider π1
not to be a UC protocol. If π1 (non-trivially) UC-emulates the ideal protocol
of some non-trivial functionality F , then π1 is always considered to be a UC
protocol: While such a π1 may send timer and notify messages, the definition
of UC emulation makes no guarantee on how these messages are handled. Thus,
intuitively, the security of π1 cannot depend on timers being handled correctly.
Of course, every UC protocol is also a TLUC protocol (but not vice versa).

In order to allow a clear and explicit distinction, a possible solution is to
augment the model of interactive Turing machines to include a new timeout tape
that handles timer-related messages. As a timeout tape does not exist in the
UC framework, UC protocols never read its contents or write messages on it.
In such a model, we can syntactically recognize TLUC protocols that are not
UC protocols. However, we stress that this is not formally necessary and do not
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assume such a change in the following. Alternatively, one could assume that UC
protocols never use timer and notify (or some other unique) messages. However,
as stated before, this not formally justified.

C.2 Protocol Emulation

We define TLUC emulation in analogy to UC emulation.

Definition 15 (TLUC Emulation). Let π and φ be protocols. We say that
π TLUC-emulates φ if for all legal PPT adversaries A, there exists a PPT
simulator S such that for all legal PPT environments Z[π,A] there exists a
negligible function negl such that for all κ ∈ N, a ∈ {0, 1}∗ it holds that

|Pr[Exec
(
π,A,Z[π,A]

)
(κ, a) = 1]− Pr[Exec

(
φ,S,Z[π,A]

)
(κ, a) = 1]| ≤ negl(κ)

If π TLUC-emulates φ, we write π ≥TLUC φ. When omitting the non-uniform
input a, the notion of protocol emulation is uniform.

Note that in Definition 15, the environment Z is supposed to count the
steps according to the execution with π and A even if it is actually interacting
with φ and S. This allows the PPT-bounded simulator S to perform more steps
than the adversary A without triggering a time-out, allowing it to break timed
assumptions. If φ is an UC protocol, its security is not affected by such a powerful
simulator. In contrast, if φ is a protocol making use of timers, honest parties of
the protocol φ may not rely on timing assumptions as the adversary S is allowed
to violate them unnoticed.

Meaningfulness of TLUC Security. When introducing a new security notion, it
is important to argue that it does not allow to prove the security of “obviously”
insecure protocols. The basic idea behind TLUC security is the very same as
behind established simulation-based security notions, where a protocol’s security
is defined through the ideal functionality it realizes. For simulation-based security
notions, care has to be taken that the simulator’s capabilities do not affect
the security guarantees of the ideal functionality. For example, SPS security
is not meaningful for ideal functionalities that use a polynomial-time hardness
assumption like a signature scheme that can be broken by the super-polynomial
simulator. As the TLUC simulation is always polynomial-time, is does not affect
an ideal functionality that makes use of computational assumptions. What is
more, we show that non-trivial functionalities can be realized using a uniform
polynomial-time simulation.

In total analogy to both UC security and other composable security notions
that admit general MPC in the plain model, we can show strong impossibility
results. This underlines that the new mechanism of timers does not help the
simulator per se.

Plausibility of TLUC Simulation. Canetti et al. [Can+07] have raised the question
of simulation plausibility with respect to different simulation strategies and
deniability. They state that “if the resources required to simulate a protocol
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session are readily available, then we say the protocol session is plausibly deniable
(since it is plausible that information obtained from the protocol was the result
of a simulation). If the resources required to simulate are difficult or impossible
to obtain, then there is no guarantee of plausible deniability (since it will be
difficult to convince others that an incriminating protocol transcript was the
result of a simulation)” [Can+07]. In standard UC, the existence of a simulation
strategy is “plausible” as in the presence of a trusted setup, the task of simulation
does not asymptotically require any computational power that other entities are
not capable of. In particular, protocol parties can provide “fake” transcripts of
interactions that cannot be verified by other parties that do not have access
to the setup used in the transcript. (Still, UC security does not rule out that
a simulator has to perform an “efficient” computation requiring Θ(κ100) steps,
while all other entities have run-time in e.g. Θ(κ) with a small constant factor
only.)

In contrast, when considering e.g. SPS security, the simulator is required to
have computational power (i.e. online super-polynomial computation capabilities)
that is not believed to exist and which are not admitted to other entities such
as protocol parties or the environment. In this setting, a protocol transcript is
meaningful to other parties that have not participated in the protocol execution
in question: Either, the transcript is the result of a real execution or its creation
required super-polynomial powers, which are not believed to be available. Thus,
a protocol participation cannot be plausibly denied.

In advanced settings such as the Angel-based security framework, the question
of simulation plausibility is harder to answer as the power available to the
simulator is less clear-cut. (Moreover, a complexity advantage can often be traded
for the ability to rewind, e.g. in [CLP10; CLP13]. ) ) Indeed, as Canetti et al.
[Can+07] argue, if the angel of [PS04] “were to somehow be made practical in
the real world, all security would be lost”, making the simulation implausible.
Still, Prabhakaran and Sahai [PS04] have argued the plausibility of their angel by
showing that it can be realized in the FCRS-hybrid model from one-way functions.
We show a similar result for our composable commitment scheme in Section 7.2.

In TLUC, we believe that the plausibility of the simulation depends largely
on the size of the (only temporary) gap between simulator and environment. If
this gap is very large, i.e. if the simulator has to perform many more computation
steps than the environment is allowed to while a timer is active, simulation may
be less plausible than in a setting where this gap is very small, consisting only of
very few steps. To some extent, this can be adjusted via a protocol’s parameters
and the underlying timed assumption. However, the asymmetry can always be
“caught up” by a polynomial-time protocol party—allowing it to fake a transcript
given “enough time” to internally execute the simulator. In any case, TLUC
simulators are asymptotically as efficient as UC simulators and their existence
would never endanger other polynomial-time hardness assumptions.
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C.3 Properties of TLUC Security

Having defined protocol emulation, we can state important properties of TLUC
security in analogy to properties of UC security.

Proposition 8. The dummy adversary D is legal.

Proposition 8 immediately follows from the definition of the dummy adversary
in the UC framework.

Proposition 9 (Completeness of the Dummy Adversary). Let π and φ
be protocols. Then, π ≥TLUC φ if and only if π TLUC-emulates φ with respect to
the dummy adversary.

Proof. Clearly, if π TLUC-emulates φ, then π TLUC-emulates φ with respect to
the dummy adversary. We now show the converse. Let π TLUC-emulate φ with
respect to the dummy adversary, i.e there exists a simulator SD such that for all
legal environments Z[π,D], it holds that

Exec
(
π,D,Z[π,D]

)
≈ Exec

(
φ,SD,Z[π,D]

)
(1)

Consider the type-1 routing environment (cf. Definition 12) ZD that expects
to interact with the dummy adversary D and protocol π as the environment
that internally runs Z[π,A] and A and relays all messages between (its internal
simulation of) A and the dummy adversary D as well as (its internal simulation
of) Z[π,A] and the challenge protocol π. Eventually, ZD outputs what Z outputs.

By Proposition 7, ZD is legal. Also, the views of Z and A remain identically
distributed and timers set up in Exec

(
π,A,Z[π,A]

)
are handled identically to

timers set up in Exec
(
π,D,ZD

[
π,D]) and vice versa.

It follows that

Exec
(
π,A,Z[π,A]

)
≡ Exec

(
π,D,ZD

[
π,D]). (2)

Now, consider the execution where ZD interacts with the simulator for the dummy
adversary SD and protocol φ. Using Equation (1) and the fact that ZD is legal, we
know that Exec

(
π,D,ZD[π,D]

)
and Exec

(
φ,SD,ZD[π,D]

)
are (computationally)

indistinguishable.
We now construct the simulator S for A and π from SD: S internally runs

instances of A and SD as follows:

– Messages from φ to the adversary are forwarded to SD.
– Messages from SD to φ are forwarded to φ.
– Messages from SD to the environment are forwarded to A.
– Messages from A to π are forwarded to SD.
– Messages from A to the environment are forwarded to the environment.
– Messages from the environment to the adversary are forwarded to A.

By applying Proposition 7 again, it follows that

Exec
(
φ,SD,ZD

[
π,D]) ≡ Exec

(
φ,S,Z[π,A]) (3)

Combining Equations (1) to (3), the claim follows.

67



TLUC security is also compatible with UC security, meaning that UC-secure
protocols are also TLUC-secure.

Proposition 10 (Compatibility with UC Security). Let π, φ be protocols
such that π ≥UC φ. Then, π ≥TLUC φ.

Proof. As TLUC emulation is a special case of UC emulation and the class of
simulators is not restricted, Proposition 10 trivially follows.

Transitivity. In contrast to UC security, TLUC security is not transitive. This
means that there exist protocols π1, π2, π3 such that π1 ≥TLUC π2 and π2 ≥TLUC

π3, but π1 6≥TLUC π3. For an example, see Appendix C.5. However, we can state
the following weaker and useful properties.

Corollary 6 (Transitivity for UC Protocols). Let π1, π2, π3 be protocols
such that π1 ≥UC π2 and π2 ≥UC π3. Then, π1 ≥TLUC π3.

Also, TLUC emulation is transitive in conjunction with UC emulation.

Proposition 11 (TLUC-UC Transitivity). Let π1, π2, π3 be protocols. If
π1 ≥TLUC π2 and π2 ≥UC π3, then it holds that π1 ≥TLUC π3.

Proof sketch. Let A be a legal adversary. Since π1 ≥TLUC π2, there exists a
(possibly not legal) TLUC simulator S1 for every legal adversary A such that for
every legal environment Z[π1,A], it holds that

Exec
(
π1,A,Z[π1,A]

)
≈ Exec

(
π2,S1,Z[π1,A]

)
(4)

and since π2 ≥UC π3, there exists a simulator S2 for all (not necessarily legal)
adversaries B such that

Exec
(
π2,B,Z

)
≈ Exec

(
π3,S2,Z

)
(5)

As Equation (5) quantifies over all adversaries, it implies the existence of a
simulator for the adversary / simulator S1.

We construct the simulator S3 for π1 and A as follows: Internally, run S2,S1
and A as follows:

– Messages from π3 to the adversary are forwarded to S2.
– Messages from S2 to the environment are forwarded to S1.
– Messages from S2 to π3 are forwarded to π3.
– Messages from S1 to the environment are forwarded to the environment.
– Messages from S1 to π2 are forwarded to S2.
– Messages from the environment to the adversary are forwarded to S1.

In Equation (5), we have quantified over the environment Z[π1,A] as well as
the simulator S1. Thus, it follows from Equations (4) and (5) and the definition
of S3 that

Exec
(
π1,A,Z[π1,A]

)
≈ Exec

(
π3,S3,Z[π1,A]

)
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Composition. In the following, we consider the case of a protocol ρ that makes
one subroutine call to a protocol φ.

Theorem 10 (Single Instance Composition Theorem). Let π, φ be
subroutine-respecting protocols such that π ≥TLUC φ. Let ρ be a protocol that
makes one subroutine call to φ. Then, ρπ ≥TLUC ρ

φ.

Let ρ be a protocol that UC-realizes the ideal protocol IDEAL(G) of some ideal
functionality G and makes one subroutine call to the ideal protocol IDEAL(F)
of some ideal functionality F . Using Propositions 10 and 11 and Theorem 10, we
can import ρ into TLUC, replace IDEAL(F) with an appropriate TLUC protocol
while preserving security and conclude that the resulting composite protocol
TLUC-realizes IDEAL(G).

Proof. In the following, we show that if π TLUC-emulates φ for the dummy adver-
sary, then ρπ emulates ρφ for the dummy adversary, i.e. for all legal environments,
there exists a simulator Sρ such that

Exec
(
ρπ,D,Z[ρπ,D]

)
≈ Exec

(
ρφ,Sρ,Z[ρπ,D]

)
. (6)

By Proposition 9, this is sufficient and implies the general case. First, we
construct a simulator Sρ for ρπ. Internally, Sρ runs the simulator SD for π and
handles messages as follows:

– Messages from protocol parties of ρ are sent to the environment.
– Messages from the environment to the protocol parties of ρ are sent to these

parties.
– Messages from protocol parties of φ are sent to SD.
– Messages from SD to φ are sent to φ.
– Messages from the environment to the protocol parties of π are sent to SD.
– Messages from SD to the environment are sent to the environment.

We show that Sρ is a valid simulator for ρπ and D by contradiction: Suppose
there exists an environment Z that can distinguish between the execution with
ρπ and D and the execution with ρφ and Sρ, i.e.

Exec
(
ρπ,D,Z[ρπ,D]

)
6≈ Exec

(
ρφ,Sρ,Z[ρπ,D]

)
. (7)

Let Z ′[π,D] be the type-2 routing environment (cf. Definition 12) that inter-
nally runs Z[ρπ,D] and ρ.

Using Proposition 7 and the definition of Sρ, it is easy to see that Z’s view
when emulated by Z ′ is identically distributed as in the execution of ρπ and A
resp. the execution of ρφ and SD, depending on the challenge protocol of Z ′. By
Proposition 7, Z ′ is legal for π and D if Z is legal for ρπ and D.

Thus, the distinguishing advantage of Z ′ for π and φ is identical to that of Z
for ρπ and ρφ and Equation (7) implies that

Exec
(
π,D,Z ′[π,D]

)
6≈ Exec

(
φ,SD,Z ′[π,D]

)
, (8)

contradicting the assumption that π ≥TLUC φ. Overall, it follows that if π ≥TLUC

φ, then ρπ ≥TLUC ρ
φ.
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Corollary 7 (UC Reusability). Let ρ be a protocol that makes one subroutine
call to a protocol φ such that ρφ ≥UC σ for some protocol σ. Let π be a protocol
such that π ≥TLUC φ. Then, ρπ ≥TLUC σ.

Unfortunately, TLUC security is not closed under general composition. More
concretely, this means that there exist protocols π and φ such that π ≥TLUC φ
holds, but ρπ 6≥TLUC ρφ, where ρ makes multiple subroutine calls to φ. For an
example, see Appendix C.6.

Environmental Friendliness. UC security has the desirable property of environ-
mental friendliness [CLP13], which informally ensures that game-based security
properties of protocols running along UC protocols (“in the environment”) are
not impacted by the UC execution. Unfortunately, this property does not hold
for all game-based security properties for many notions that allow generic MPC
in the plain model due to the use of super-polynomial simulation. What is more,
determining whether the game-based property holds may be non-trivial, requiring
e.g. to consider the security proof of the protocol in question. However, as TLUC
security is a special case of UC security and considers polynomial-time simulation
only, it inherits the environmental friendliness of UC security.

Environmental friendliness considers the validity of a game-based security
property P when the presumptively P -secure cryptographic scheme Π, where
P is defined via some security game, is executed alongside another protocol Π ′

with game-based security property Q. In particular, a UC-like execution running
concurrently is considered.

First, we restate the notion of a security game as defined in [CLP13].

Definition 16 (Security Game, [CLP13]). A security game (or game)
consists of an ITM Chal, called the challenger, that is polynomial-time in the
length of the messages it receives, and a constant τC, called the threshold, in the
interval [0, 1). In an execution of a security game, the challenger Chal interacts
with an adversary A on common input 1n and outputs accept or reject at the
end of the interaction.

We say that An breaks Chaln with advantage ε, if An makes Chaln accept
with probability τC + ε. We say that A breaks Chal, or the game-based assumption
C, if An breaks Chaln with advantage ε(n) for infinitely many n ∈ N for a
non-negligible function ε. ε is the advantage of the adversary.

An example for such a security game could be the IND-CPA game for encryp-
tion schemes with τ = 1/2, i.e. the trivial winning probability of an adversary.
However, Definition 16 is also valid for IND-CPA security with τ = 1.

Based on games, one can define assumptions, which restrict the parameter
τ such that there exists a trivial strategy for adversaries to win the game with
probability τ .

Definition 17 (Game-Based Assumptions, [CLP13]). A game-based as-
sumption is simply a security game C = (Chal, τ), such that, there is a non-
uniform PPT adversary A, called the trivial strategy, satisfying that An breaks
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Chaln with probability at least τ (possibly without any advantage) for all n ∈ N.
We say that assumption C holds if no non-uniform PPT adversary can break the
game (Chal, τ).

Definition 17 would rule out τ = 1 for IND-CPA security, as there is no trivial
winning strategy for the IND-CPA game with winning probability 1. However, the
definition of game-based assumptions does not rule out the existence of insecure
schemes Π for which the adversary has a non-negligible advantage over τ . This
is covered in the following definition of game-based security properties.

Definition 18 (Game-Based Security Property, [CLP13]). A game-based
security property of a cryptographic scheme Π is simply a security game PΠ =
(Chal, τ). We say that the property PΠ holds if no non-uniform PPT adversary
can break the game (Chal, τ).

However, the game for IND-CPA security does not capture a setting where
other protocols are executed concurrently. In order to argue that the security
of Π is not impacted by a protocol ρ that runs concurrently and implements a
functionality G, the game PΠ has to be modified accordingly. The proceedings
version [CLP13] gives an informal description of the associated game (see the
full version14 for a complete description):

Similar to UC security, an environment Z that gives input to the challenger
Chal as well as ρ and may freely interact with the adversary A, is introduced. The
adversary A not only interacts with Chal, but also with ρ (which may be a “real”
protocol or the ideal protocol of some functionality G). Z may, in particular,
correlate the inputs of ρ and Chal. However, Π and ρ are never sub-routines of one
another. As a consequence, environmental friendliness does not generally imply
composability in the sense of subroutine replacement. Also, the adversary A does
not “attack” the execution of ρ as in the UC execution experiment. Furthermore,
there is no simulator. Like in the security game (Chal, τ), the adversary’s success
is determined by the output of Chal and not e.g. by the output of Z.

The game ChalG/ρ is defined similar to Chal, with the execption that (the ideal
protocol of) G is replaced with ρ. In contrast to UC security, the environment Z
and the adversary know whether G or ρ are executed.

The outlined game is (implicitly) considered in the following definition.

Definition 19 (Environmental Friendliness, [CLP13]). Let P = (Chal, τ)
be a game-based security property of a cryptographic scheme Π, and ρ a protocol
implementing a functionality G. Then we say that ρ is environmental friendly to
Π with property P , if the security property PG/ρ = (ChalG/ρ, τ) holds.

In order to prove the environmental friendliness of some protocol ρ that
emulates an ideal functionality G according to some security notion (e.g. Angel-
based security), the following general proof strategy is often applied (e.g. in
[CLP10; CLP13]):

14 https://www.cs.cornell.edu/~rafael/papers/EnvFriendly-proc.pdf

71

https://www.cs.cornell.edu/~rafael/papers/EnvFriendly-proc.pdf


1. Define the game-based properties of Π that hold in an execution with G.
2. Consider a property P that does not longer hold when G is replaced with ρ.
3. Use a presumptive simulator for ρ in the interaction with G. Due to the

simulatability, the adversary’s success probability from Item 2 should be the
same as in an interaction with ρ, except for a negligible difference. Depending
on the security notion, the simulation may be inefficient (e.g. because the
simulator has access to a super-polynomial helper).

4. Replace the inefficient simulation strategy with an efficient strategy (which is
possible by assumption), e.g. by implementing the super-polynomial helper
using rewinding that is possible when interacting with Chal.

5. Obtain a contradiction to Item 1.

Proposition 12 (Environmental Friendliness of TLUC Security). Let
π be a protocol that TLUC-emulates the ideal protocol of some functionality G.
Then π is friendly to every (non-timed) game-based property P of a protocol Π
with property P .

Proof. Proposition 12 state that UC security is environmentally friendly [CLP13]
to all game-based properties. As TLUC security is a special case of UC security
and all entities run in polynomial-time, the claim follows.

Protocols running alongside composable MPC protocols may not only be
affected by super-polynomial simulation, but also by non-uniform simulation.
For example, Lin, Pass, and Venkitasubramaniam [LPV09] propose a variant of
UC security where the environment runs in uniform polynomial-time, while the
simulator runs in non-uniform polynomial-time. The non-uniform input of the
simulator may impact the security of protocols that have started before the input
is given to the simulator—even if these protocols are secure against non-uniform
adversaries. As the definition of environmental friendliness is non-uniform, it
does not capture this property.

Both the simulation and the reductions for our composable commitment
scheme (Section 6) are uniform. Our constructions thus do not adversely affect
security properties of previously started protocols that hold against polynomial-
time adversaries.

Remark 5. Environmental friendliness as defined by [CLP13] is not meaningful
for timed game-based properties such as the timed hiding property of a timed
commitment scheme.

When considering an ideal functionality F and a concurrently executed
protocol π using timed assumptions, the functionality F may already be unfriendly
to timed properties of π. For example, F may perform computations that break
time-lock puzzles used in π.

In the experiment of environmental friendliness, no simulator is not used. The
(presumptive) simulator is only used to show that a protocol π is as friendly as
a functionality F (which may already be unfriendly in our setting). Thus, the
problems of environmental friendliness to protocols using timed assumptions start
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well before considering the effects of the simulation, which additionally affect the
environmental friendliness.

To the best of our knowledge, this novel environmental friendliness for timed
game-based properties is not fulfilled by any security notion for composable
MPC—not even for UC security.

Non-Triviality. While there exists no general and formal definition of non-
triviality in the UC framework, Canetti et al. [Can+02] consider a protocol π to
be a non-trivial realization of F if π ≥UC IDEAL(F) and for all adversaries A
that deliver all messages and do not corrupt any party, the simulator S allows
all outputs generated by F .

With TLUC security, this notion is not sufficient as it does not consider the
possibility that a protocol aborts due to timeouts, which may, depending e.g. on
the environment, occur even if the adversary delivers all messages.

As an example, let π be a protocol that non-trivially UC-emulates FCOM and
takes t(κ) steps to execute successfully if all parties are honest. Now, let π′ be
the protocol that is identical to π, with the following exception. When receiving
its input, the honest committer sets up a timer with 10t(κ) steps. At the onset
of the unveil phase, it checks if the timer has expired and halts upon expiration.
Clearly, π′ should be considered non-trivial.

However, there exists a legal environment such that π′ never generates output
even if the legal adversary delivers all messages. As we do not want π′ to be
considered trivial if there also exists a legal environment Z for which π′ always
generates an output under the conditions outlined in [Can+02], we thus consider
an appropriate notion that accounts for this15.

Note that non-triviality may be lost under composition. To this end, take a
protocol ρφ that makes one subroutine call to some protocol φ and is non-trivial.
Replacing φ with its realization π that takes more steps than φ may make the
composed protocol ρπ trivial as timers in ρ may always be triggered due to the
additional steps performed by the protocol π. However, that this does not render
ρπ insecure.

Impossibility Results. The well-known impossibility results due to Canetti and
Fischlin [CF01] state that there is no bilateral (i.e. involving two communicating
parties) and terminating (in the sense of correctness for honest parties) protocol
π that UC-realizes FCOM in the plain model. This is due to the fact that if a
protocol π is in the plain model, an environment is able to internally emulate
every (presumptive) UC simulator for π.

We state the following variant of the impossibility result of [CF01] for TLUC-
realizing FCOM in the plain model:

Theorem 11. There exists no bilateral, non-trivial protocol π in the plain model
where only one party sets up timers such that π ≥TLUC FCOM.

15 As legal environments count the number of computation steps independent of the
input, the existence of one environment with fixed input implies the existence of
other environments with all possible inputs such that π always generates an output.
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Proof. The following proof follows the same outline as the proof of the impossi-
bility result in [CF01]. Suppose that π ≥TLUC IDEAL(FCOM), i.e. for all legal
adversaries, there exists a simulator S for all legal environments. We first consider
the case where the committer is the party that sets up the timer(s). We use the
presumptive simulator S to construct a legal environment Z[π,D] expecting to
interact with the dummy adversary for which there is no simulator, contradicting
the assumption.

The environment Z[π,D] works as follows: Initially, it orders the adversary to
corrupt the committer and internally executes the simulator S for the corrupted
receiver to generate an equivocal commitment. Prior to the beginning of the

unveil phase, it samples a bit b
$← {0, 1} and instructs the simulator to decommit

to b. timer and notify messages for / from the internal instance of S are handled
by Z relative to a real execution where the committer is honest. This is possible
without b as legal environments handle these message independent of parties’
inputs and outputs.

As there are no “real” timers if the committer is corrupted and π is non-trivial,
π is also non-trivial in this execution. Furthermore, Z[π,D] is a legal environment.

If the environment is in the real execution of the protocol π, then the internally
emulated simulator can, due to the correctness of the simulation, unveil the
commitment to the bit b, except with negligible probability. In particular, the
timer and timeout messages are handled as in an interaction with a legal
adversary relative to the internally emulated instance of S.

If the environment is in the ideal execution of FCOM, the whole execution
is independent of b until the onset of the unveil phase. Thus, any simulator
will extract the wrong bit b′ with probability 1/2, where the probability is over
the coins of the simulator and the environment. Even if the internally emulated
simulator failed during the unveil phase with non-negligible probability, this
would allow the environment to distinguish as such a failure does not occur in
the real execution, except with negligible probability.

We now consider the case that the receiver is the only party setting up timer(s).

At the onset of the execution, the environment Z[π,D] samples b
$← {0, 1}

and sends b as input to the honest committer. It also orders the adversary to
corrupt the receiver and internally executes the simulator S for the corrupted
sender to extract the commitment of the honest committer. Again, timers for
the internally emulated simulator are handled relative to a presumptive real
execution (independent of the honest committer’s input b). In the real execution,
the internally emulated simulator will succeed in extracting the correct bit
with overwhelming probability. In the ideal execution, the extracted bit b′ will
either be independent of b or the extraction may fail altogether, allowing Z to
distinguish.

By introducing a temporary asymmetry between simulator and environment,
e.g. when the environment counts the steps relative to the real-world adversary,
non-trivial and environmentally friendly realizations of UC-complete functionali-
ties in the plain model using timed assumptions become possible.
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C.4 Example for Side-Channels

With TLUC security, we require legal environments to count steps performed by
protocol parties independent of the parties’ actual inputs, which may influence
the number of steps taken. In the following, we show that this is necessary in
order to achieve a meaningful notion of security. If environments were to count
the actual number of steps depending on the input, this would introduce a
side-channel that can leak the secret of honest parties even in the ideal execution.
As a consequence, obviously insecure protocols could be proven secure.

As an example, we consider a commitment scheme in the plain model that is
clearly insecure but can be shown to emulate IDEAL(FCOM) if legal environments
count the actually performed steps instead of an upper bound independent of a
party’s input.

The protocol π between a committer and a receiver is defined as follows:

– Upon receiving (commit, sid , b), the committer sends a message (init, sid)

to the receiver. The receiver then samples r0, r1
$← {0, 1}κ and sends

(timer, r0, 10000κ) to the adversary. Upon its next activation, the receiver
sends (timer, r1, 1000κ) to the adversary. Upon its next activation, it sends
(init, sid) to the committer. If b = 0, the committer performs 1000κ + 1
steps. If b = 1, the committer performs 10000κ+ 1 steps. Afterwards, it sends
(done, sid) to the receiver. The receiver checks the status of both timers,
remembers the result and outputs (committed, sid).

– Upon receiving (unveil, sid) as input, the committer sends (sid , b) to the
receiver. If b = 0 and the first timer has timed out but the second has not, it
outputs (unveil, sid , 0). If b = 1 and both timers have timed out, it outputs
(unveil, sid , 1). Otherwise, it halts.

Let S be the following simulator for π and the dummy adversary.

– If the committer is corrupted, internally run the protocol of the honest
receiver. After having received (done, sid), interact with FCOM as follows: If
only first timer has timed out, send (commit, sid , 0) to FCOM on behalf of the
corrupted sender. Otherwise, send (commit, sid , 1). Upon receiving the bit b′

during the unveil phase, do the following checks: If b′ = 0 and only the first
timer has timed out, send (unveil, sid) to FCOM on behalf of the corrupted
committer and allow the receiver’s output. If b′ = 1 and both timers have
timed out, send (unveil, sid) to FCOM on behalf of the corrupted committer
and allow the receiver’s output. Otherwise, halt.

– If the receiver is corrupted, internally run the protocol of the honest committer
on input b = 0 after getting the request for the receiver’s output from FCOM.
When receiving the output request (unveil, sid , b) from FCOM, send (sid , b)
to the corrupted receiver.

– If both parties are honest, follow the strategy for the corrupted receiver and
additionally simulate the messages of the honest receiver. Eventually, allow
the output of FCOM if the honest receiver would accept.
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Now, consider that we require environments to always count the steps relative
to the actual steps performed by the protocol parties. Clearly, the protocol is
non-trivial (cf. Appendix C). If the sender is corrupted, any legal environment
Z will handle the timers as in the real execution. Thus, the receiver’s output
is identically distributed as the simulator S can extract the bit that will be
accepted by the receiver (if it exists). Conversely, if the receiver is corrupted, the
environment Z does not know the number of steps performed by the simulator.
Thus, the commitment is not binding and the simulator can always unveil the
bit that the honest committer has sent to FCOM.

It follows that any legal environment’s view in an execution with π and D is
identically distributed to an execution with IDEAL(FCOM) and S if the steps
counted by Z depend on secret inputs.

C.5 Counterexample for Transitivity

In contrast to UC security, TLUC security is not transitive.

Proposition 13. There exist protocols π1, π2, π3 such that π1 ≥TLUC π2 and
π2 ≥TLUC π3 but π1 6≥TLUC π3.

Proof. Let π3 the ideal protocol of the ideal commitment functionality FCOM. Let
π2 be the protocol πMCOM (with slight syntactical modifications towards realizing
FCOM instead of FMCOM) from Section 6. Let π1 be the following protocol:

– Upon receiving (commit, sid , b) as input, the committer samples b′
$← {0, 1}

and sends c = b⊕ b′ to the receiver, which stores c and outputs (committed, sid).

– Upon receiving (unveil, sid) as input, the committer sends (b, b′) to the
receiver. If c = b⊕ b′, the receiver outputs (unveil, sid , b).

Clearly π1 does not realize FCOM, as the commitment is not extractable (and not
even binding for a malicious sender). However, one can show that π1 ≥TLUC π2:
Roughly, the simulator S for π1 acts as follows: If the sender is corrupted, the
simulator must be able to equivocate the commitment in π2. This is possible as
the simulator is able to determine the output of the coin-toss for the equivocation
CRS. (This possible is as the corrupted committer is played by the simulator and
not the environment in this situation.) Conversely, if the receiver is corrupted,

the simulator sends a random value c
$← {0, 1} in the simulation of π1. Later on,

when it learns the committed bit b in π2, the simulator sends (b, c⊕ b) as unveil
message.

Note that the above simulator is not a legal adversary. While this is not
necessary to argue that π1 ≥TLUC π2, the prerequisite π2 ≥TLUC π3 only requires
the existence of a simulator for a legal adversary for π1, which S is not.
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C.6 Counterexample for Composition

TLUC security is not closed under general composition.

Proposition 14. Let π, φ be subroutine-respecting protocols such that π ≥TLUC

φ. There exists a protocol ρ that makes multiple subroutine calls to φ such that
ρπ 6≥TLUC ρ

φ.

As an example, take the commitment protocol πMCOM (cf. Section 6) and
replace the pCCA-secure commitment scheme COMpCCA used in SSCOM with a
malleable extractable commitment scheme. One can easily prove that this protocol
still TLUC-realizes a single instance of FCOM, but is not even concurrently self-
composable.
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