
Dynamic Collusion Bounded Functional Encryption

from Identity-Based Encryption

Rachit Garg
UT Austin*

Rishab Goyal
MIT�

George Lu
UT Austin�

Brent Waters
UT Austin and NTT Research§

Abstract

Functional Encryption is a powerful notion of encryption in which each decryption key
is associated with a function f such that decryption recovers the function evaluation f(m).
Informally, security states that a user with access to function keys skf1 , skf2 , . . . (and so on) can
only learn f1(m), f2(m), . . . (and so on) but nothing more about the message. The system is said
to be q-bounded collusion resistant if the security holds as long as an adversary gets access to
at most q = q(λ) function keys. A major drawback of such statically bounded collusion systems
is that the collusion bound q must be declared at setup time and is fixed for the entire lifetime
of the system.

We initiate the study of dynamically bounded collusion resistant functional encryption sys-
tems which provide more flexibility in terms of selecting the collusion bound, while reaping the
benefits of statically bounded collusion FE systems (such as quantum resistance, simulation
security, and general assumptions). Briefly, the virtues of a dynamically bounded scheme can
be summarized as:

Fine-grained individualized selection. It lets each encryptor select the collusion bound by
weighing the trade-off between performance overhead and amount of collusion resilience.

Evolving encryption strategies. Since the system is no longer tied to a single collusion
bound, thus it allows to dynamically adjust the desired collusion resilience based on any
number of evolving factors such as the age of the system, or number of active users etc.

Ease and simplicity of updatability. None of the system parameters have to be updated
when adjusting the collusion bound. That is, the same key skf can be used to decrypt
ciphertexts for collusion bound q = 2 as well as q = 2λ.

We construct such a dynamically bounded functional encryption scheme for the class of all
polynomial-size circuits under the general assumption of Identity-Based Encryption.

*Email: rachg96@cs.utexas.edu.
�Email: goyal@utexas.edu. Research supported in part by NSF CNS Award #1718161, an IBM-MIT grant,

and by the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR00112020023. Any opin-
ions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Government or DARPA.

�Email: gclu@cs.utexas.edu.
§Email: bwaters@cs.utexas.edu. Supported by NSF CNS-1908611, CNS-1414082, Packard Foundation Fellow-

ship, and Simons Investigator Award.

1 Introduction

Public-key encryption [DH76] is one of the most fundamental concepts in cryptography. Tradi-
tionally, public-key encryption was defined to provide an “all-or-nothing” type functionality and
security, where given a decryption key sk, a user can either recover the entire plaintext m from a
ciphertext ct or nothing at all. In the recent years, an extremely powerful notion of encryption
called Functional Encryption (FE) [SW05, BSW11] has emerged.

FE provides a fine-grained access control mechanism over encrypted data where a decryption
key is now associated with a function f and the decryptor recovers the function evaluation f(m)
from the ciphertext. Moreover, a user with access to function keys skf1 , . . . , skfn can only learn
f1(m), . . . , fn(m) but nothing more about the message. This security requirement is commonly
captured in a game based indistinguishability definition, where the adversary submits two messages,
m0 andm1, as a challenge and must be unable to distinguish between encryptions ofm0 andm1 with
non-negligible probability given that fi(m0) = fi(m1) hold for all keys in adversary’s possession.

Over the last several years, FE has been studied extensively. Significant progress has been made
towards building various expressive forms of FE under such indistinguishability-based definitions.
Starting with initial works [BW07, KSW08] that built specific forms of predicate encryption over
bilinear maps, the search for FE for general circuits under standard cryptographic assumptions
culminated in the recent breakthrough work of Jain, Lin, and Sahai [JLS21]. They proposed an
FE scheme for general circuits from a combination of PRGs in NC0, Symmetric eXternal Diffie-
Hellman (SXDH), Learning with Errors (LWE), and Learning Parity with Noise (LPN) over large
fields assumptions. While this is tremendous progress, an unfortunate limitation of this FE scheme
is that it is susceptible to quantum attacks due to the post-quantum insecurity of the SXDH
assumption. But even more broadly, pursuing the direction of indistinguishability-based security
for FE suffers from the drawback that it is unclear how it captures the intuition that an attacker
learns at most the function evaluation but nothing more.

For these reasons, FE has also been investigated in the bounded collusion model under simulation-
based definitions. In the bounded collusion model, the FE system declares a bound q at the setup
time, such that all the system parameters are allowed to grow polynomially with q (in addition
to the security parameter λ). Additionally, the security requirement is captured via a simulation-
based game, which says that as long as the attacker does not make more than q key queries,
the adversary’s view - which includes the ciphertext ctm and function keys skf1 , . . . , skfq - can
be “simulated” given only the function evaluations f1(m), . . . , fq(m) and nothing more about m.
Although this more closely captures the intuition behind FE, if the attacker corrupts more than
q keys, then no security is provided. Despite its limitations, the bounded collusion model for
FE has been very useful in various contexts such as proving negative results in differential pri-
vacy [KMUW18], applications to tracing [GKW18, CVW+18], etc. In some cases, it is the only
currently known pathway to certain applications in the post-quantum regime. A notable feature
of the bounded collusion model is that under them, FE can be built from the minimal assump-
tion of public-key encryption (and OWFs in case of private-key FE) as studied in a long line of
works [SS10, GVW12, AR17, Agr17, GKW18, CVW+18, AV19].

The question. A major drawback of such bounded collusion FE systems is that the setup au-
thority needs to declare the collusion bound q at the very beginning, and the bound q is fixed, once
and for all, for the entire lifetime of the system. This puts the authority in a difficult situation, as it

2

requires an incredible amount of foresight at the setup time. In particular, if the authority sets the
bound q lower than the eventual number of compromised keys, then the system will be insecure;
whereas overestimating the bound q would result in significant performance overhead. Now when
the collusion bound is breached, the only option to would to do a fresh setup and redistribute
the keys which is at best inefficient, and possibly infeasible in certain scenarios. Switching to the
state-of-the-art fully collusion resistant FE schemes would suffer from drawbacks discussed above.

With the aforementioned limitations of existing FE systems, we ask the following –

Can we build an FE system for general circuits that reaps the benefits of bounded collu-
sion FE systems – post-quantum security, simulation security, and general assumptions
– while at the same time provide more flexibility to the authority in terms of selecting
the collusion bound? And, would such an FE system lead to results in the domain of
full collusion resistance?

In this work, we study the above question. We answer the first part in affirmative by intro-
ducing a new flexible corruption model that we call the “dynamic collusion” model, and building
a simulation secure FE system in the dynamic collusion model from the general assumption of
Identity-Based Encryption (IBE) [Sha85, Coc01, BF01] (for which we have quantum-safe instanti-
ations [GPV08, CHKP10, ABB10]). Since it is widely believed that the FE for general circuits is
significantly more expressive than plain IBE, this seems to answer the latter part negatively. Next,
we define our dynamic collusion model and provide a high level overview of our techniques.

Defining Dynamically Bounded Collusion Resistance

In this work, we refer to the traditional notion of bounded collusion resistance for FE as statically
bounded collusion resistance. Recall that, syntactically, a statically bounded FE is defined exactly
as fully collusion resistant FE, that is using four polynomial time algorithms – Setup, KeyGen, Enc,
and Dec – except the Setup algorithm now additionally takes the target collusion bound q as an
input. As mentioned previously, declaring the collusion bound q upfront lets the setup authority
set up the system parameters with enough redundancy, and this typically leads to the running time
and sizes of all system parameters (i.e., the keys and ciphertexts) to grow polynomially with q.

In the dynamic collusion model, the Setup algorithm no longer takes the collusion bound as
input, but instead the Enc algorithm selects the collusion bound per ciphertext. That is, the setup
and key generation algorithms no longer depend on the collusion bound q, but only the encryptor
needs to specify the collusion bound.1 Basically, this lets the encryptor dynamically decide the
size of set of colluding users against which it wants to hide its message. As a consequence, in the
dynamic collusion model, only the size of the ciphertexts potentially grows with the collusion bound
q, but the running times of the Setup and KeyGen algorithms (therefore the public and secret keys)
are independent of q. The security requirement is again captured via a simulation-based game but
where the admissibility constraints on the attacker are lifted such that the number of key queries
the attacker is permitted can be adaptively specified at the time of committing the challenge m
instead of beginning of the game as in the static model.

Our dynamic collusion model and its comparison with the static model is discussed in detail
in Section 3. Below we briefly highlight the virtues of the dynamic collusion model.

1However, note that it is essential that the master public-secret keys and every function key is resuable for all
values of the collusion bound.

3

Fine-grained individualized selection. A dynamically bounded collusion FE scheme allows
each user to select the collusion bound by weighing the trade-off between the performance
overhead and amount of collusion resilience at encryption time. For example, depending
upon the factors such as available computing resources, or the bandwidth on the communica-
tion channel, or the sensitivity of data etc, an encryptor might want to increase/decrease the
amount of collusion resilience to better fit the computing/communication/privacy constraints.

Evolving encryption strategies. Since the system is no longer statically tied to a single collusion
bound at setup time, thus it allows to dynamically adjust the desired collusion resilience based
on any number of evolving factors such as the age of the system, or number of active users
etc. Thus, the authority does not need to have any foresight about the attackers at setup
time in contrast to statically bounded collusion FE systems.

(Of course the ciphertexts in which the collusion bound was exceeded will not be secure, but
future attacks can be prevented by adapting to a larger collusion bound.)

Ease and simplicity of updatability. While the above features are already highly desirable, a
noteworthy property of these systems is that none of the parameters have to be updated when
adjusting the collusion bound. That is, the same function key skf can be used to decrypt
ciphertexts for collusion bound q = 2 as well as q = 2λ without requiring any updates. Also,
the storage space for the parameters is bounded by a fixed polynomial in λ.

Next, we provide an overview of our approach and describe the technical ideas. Later on, we
discuss some related works and open questions.

1.1 Technical Overview

In this section, we provide a high level overview of our framework and FE construction. The
overview is split into four parts. First, we informally define the notion of dynamically bounded
collusion resistant FE for general circuits. Second, we define an efficiency property that we refer to as
weak optimality for statically bounded collusion FE systems, and show how this could be generically
lifted to a dynamically bounded collusion FE scheme. Therefore, to get our final result we simply
need to construct a statically bounded collusion FE scheme from IBE that satisfies the weak
optimality property. In the third part, we discuss how to use ideas from the bounded collusion FE
construction for NC1 circuits by Gorbunov-Vaikuntanathan-Wee [GVW12], and construct a weakly
optimal statically bounded collusion resistant FE scheme. Combining this with our abstraction,
this results in a dynamically bounded collusion resistant FE for NC1 circuits under the assumption
of IBE. However, to generically bootstrap this to a (dynamically bounded) FE scheme for the class
of all polynomial sized circuits, we need to rely on PRFs computable in NC1 as in [GVW12].
In the final part, we show how to avoid making the additional assumption regarding low-depth
computable PRFs by using ideas from the statically bounded FE construction from [AV19]. We
describe that by abstracting out the main ideas from the third part, we could use similar ideas
to extend [AV19] to get the desired dynamically bounded collusion resistant FE for all polynomial
sized circuits.

Dynamic vs. Static Bounded Collusion Model

Let us start by recalling the syntax of functional encryption in the static collusion model. An FE
scheme in the static collusion model consists of four algorithms with the following semantics:

4

– Setup takes as input the collusion bound q and samples the master public-secret key pair (mpk,msk).

– KeyGen generates a function key skf given function f and master key msk.

– Enc encrypts a message m to a ciphertext ct.

– Dec recovers f(m) from the ciphertext and decryption key.

In the dynamic collusion model, the collusion bound q is not fixed at the system setup, but instead
the encryptor chooses the amount of collusion resilience it wants every time a fresh ciphertext is
created. This is reflected with the following changes:

– Setup no longer takes the collusion bound q as an input.

– Enc takes the desired collusion bound q as an additional input for sampling the ciphertext.

Note that since the collusion bound q is not specified during setup or key generation at all, thus
the efficiency condition for a dynamically bounded collusion FE scheme requires the running time
of Setup and KeyGen to be fixed polynomials in λ, whereas in static setting they are allowed to
grow polynomially with q.

Dynamic to Static via Weak Optimality

As we mentioned before, our first observation is that a dynamically bounded collusion FE scheme
can be constructed from any statically bounded scheme if it satisfies the ‘weak optimality’ property.
Intuitively, the weak optimality property says that the running time of the setup and key generation
algorithms grows only poly-logarithmically in the collusion bound q.

Now looking closely at the notion of weakly-optimal statically bounded collusion FE, we observe
that the major difference between this and a dynamic system is that the Setup algorithm requires
q as an explicit input in the static setting, but not in the dynamic setting. Our idea to get around
this is to exploit the efficiency property of the static scheme, where the dynamic collusion FE
scheme essentially runs λ independent instances of the static collusion FE scheme in parallel with
geometrically increasing collusion bounds. That is, i-th subsystem (running a single instance of
the static scheme) is set up with collusion bound qi = 2i. And, now the master public-secret key
pair as well as each function key in the dynamic system contains λ independently sampled keys
where the i-th sub-key is sampled using the i-th static FE system. Since the encryption algorithm
receives the target collusion bound q as input, thus the encryptor uniquely selects a static FE
sub-system under which it encrypts the message. The target collusion bound to subsystem index
mapping can simply be defined i := dlog qe (i.e., nearest power of two). Note that setting up the
system this way ensures the dynamic system achieves the desired efficiency. This is because the
setup and key generation will be efficient (by weak optimality of the static FE scheme), and since
2i = 2dlog qe < 2q, thus the running time of encryption and decryption is a polynomial in q.

Since the above transformation is very natural, one would expect the simulation security of the
resulting dynamic FE system to also follow directly from the simulation security of the underlying
static FE schemes. However, this is not the case. To better understand the technical barrier, let us
first consider the most natural simulation strategy described next. The simulator for the dynamic
system simply runs the simulator for each of the underlying static systems in parallel, where the
ciphertext simulator is only run for the static system corresponding to the adversarially selected

5

challenge target collusion bound q∗. While this seems to compile, there are two subtle issues that
need to be carefully handled.

First, the running time of each static FE simulator grows with the underlying collusion bound
which grows as large as exponential in λ. For avoiding the problem of inefficient simulation, we
additionally require the underlying static FE scheme to have weakly-optimal simulators as well
which means that all but the ciphertext simulation phase of the static FE could be performed
optimally (i.e., the simulator running time grows only poly-logarithmically in q). However, this is
still not enough for proving simulation security. The reason is that typically the simulation security
states that the distribution of secret keys and ciphertext are simulatable as long as the adversary
does not make more key queries than what is specified by the static collusion bound. That is, if the
adversary makes more key queries then no guarantee is provided. Now our dynamic FE simulator
must invoke the underlying static FE simulator even for collusion bounds smaller than q∗, thus the
standard simulation guarantee is insufficient. To get around this issue, we define a notion called
strong simulation security for static-bounded-collusion FE schemes under which we require that the
real and ideal worlds are also indistinguishable even when the adversary makes more key queries
than that specified by the collusion bound as long as the adversary does not make any challenge
message queries. More details are provided in Section 3.2.

Weakly Optimal Static FE for NC1 from IBE via [GVW12]

The main ingredients for our construction are an identity-based encryption scheme IBE and gar-
bled circuits GC. Our construction is inspired from the q-bounded collusion resistant FE scheme for
NC1 by Gorbunov, Vaikuntanathan, and Wee (GVW) [GVW12]. At a high level, their approach
was to provide a general bootstrapping theorem that upgrades any 1-bounded collusion resistant
FE scheme 1KeyFE (such as [SS10]) to a q-bounded collusion resistant FE scheme for NC1 un-
conditionally. Let D be the maximum degree of the circuits in the family. Their transformation
executes a non-interactive BGW-style multiparty computation protocol [BGW88] in the head, i.e.
pieces of the ciphertext serve as analogues to the parties. More concretely,

– Setup samples N independent master public-secret key pair (mpki,mski) for the 1KeyFE scheme.
These N key pairs are set as the master public-secret key pairs for this scheme respectively.

– KeyGen associates the decryption key with random subset/pieces Γ ⊆ [N] of size p = Dt+ 1 (t is
a some fixed polynomial in the security parameter). The secret keys are a collection of mski
for i ∈ Γ.

– Enc chooses ` random degree t polynomials µ1, . . . , µ` with constant terms x1, . . . , x`.
2 It com-

putes cti as the 1KeyFE encryption of (µ1(i), . . . , µ`(i)) for i ∈ [N]. It outputs (ct1, . . . , ctN).

– Dec computes p evaluations of the polynomial P (·) = C(µ1(·), . . . , µ`(·)). Note that P is a degree
p − 1 = Dt polynomial (as degree of C and µ is D and degree t, respectively) with constant
term C(x). Since we have mski for i ∈ Γ, we can decrypt cti to learn P (i). As we have p
evaluations for a polynomial with degree p−1, we can interpolate and compute P (0) = C(x).

The correctness of the scheme follows from the correctness of the 1KeyFE scheme. The main
observation is that the security holds for a q collusion of keys if a combinatorial property on the

2Here and throughout, x = (x1, . . . , x`) corresponds to the message being encrypted.

6

set Γ is satisfied. Let Γj ⊆ [N] be the sampled subset when jth query is made. Whenever two sets
Γj ,Γj′ intersect, we learn two keys for the underlying 1KeyFE scheme thereby breaching its security
and adversary can learn the corresponding plaintexts. Observe that if the security is broken for
enough 1KeyFE copies, i.e. > t, then we can decrypt similar to an honest party. Thus we need the
combinatorial property that the two sets have small pairwise intersection. Additionally note that
revealing the entire polynomial P can reveal additional information about x as the hiding of circuit
C is not guaranteed in our scheme. Thus we need to randomize the polynomial P for every keygen
query. This is done by sampling a cover free set ∆ ⊆ [N′] that has at least one cover free element
for every query. The scheme now computes 1KeyFE keygen’s corresponding to the circuit,

GC,∆(x, Z1, . . . , ZN′) = C(x) +
∑
i∈∆

Zi

where Z1, . . . , ZN′ are used to randomize P and |∆| = p′.
For upgrading the GVW construction to achieve weak optimality, we face the following chal-

lenges.

� To satisfy small pairwise intersection property, N needs to be a polynomial function of q.
This makes Setup run in poly(q) time, rather than poly(log q).

� In GVW, each decryption key contains p many secret keys for the single key system where p
is polynomially dependent on q. Thus KeyGen also runs in time poly(q).

� Additionally, the circuit used by the 1-bounded FE system is GC,∆ takes inputs size ` + N′.
To satisfy the cover free property, N′ needs to be a polynomial function of q, therefore the
size of circuit GC,∆ also grows polynomially with q. Thus, each invocation of the KeyGen for
the 1KeyFE scheme grows polynomially with q.

Broadly, we solve the above problems by opening up the underlying 1-bounded FE scheme
1KeyFE, relying on better combinatorial techniques, and leveraging IBE for obtaining necessary
compression in the key space.

� To tackle the first issue, we rely on an IBE scheme to compress public keys. Since 1KeyFE
scheme outputs poly(q) many public keys and secret keys, an IBE system can be used to
compress the 1KeyFE public keys (which contain poly(q) many PKE public keys) to a single
IBE public key which can be generated in time poly(log(q)) and make it weakly optimal.

� We observe that by increasing N by only a polynomial factor, we can reduce the number p of
secret keys required to recover to be dependent only on κ (not q) while still maintaining the
same combinatorial properties. This relies on better concentration bounds.

� Lastly, observe that to randomize the polynomials, we only need to add a size p′ subset of
values in the GVW construction. By opening up the 1KeyFE construction, we can decompose
and individually encrypt garbled labels to reduce the circuit size to be proportional to p′

rather than N′, additionally using IBE to perform the selection of labels corresponding to
{Zi}i∈∆. Concretely, we split GC,∆ into two sub-circuits GC and Sel∆ with the functionality
that

Sel∆(Z1, . . . , ZN′) = (Zδ1 , . . . , Zδp′), GC(x, Y1, . . . , Yp′) = C(x) +
∑
i∈[p′]

Yi,

7

where ∆ = {δ1, . . . , δp′}. Note that GC,∆(x, Z1, . . . , ZN′) = GC(x,Sel∆(Z1, . . . , ZN′)), that is
it is a composition of the two circuits. Basically, our idea is to use garbled circuits to encode
GC whereas rely on IBE to encode the Sel∆ selector circuit, and this solves the circuit size
problem.

Formally, our construction does the following:

� Setup initializes two IBE schemes, one with space [N]× [N′] and one with space [N]× ([|C|]×
{0, 1}).

� KeyGen selects a subset taglist1 ⊆ [N], as well as a subset taglist2 ⊆ [N′]. For every element
tag1 ∈ taglist1, tag2 ∈ taglist2, and bit Ci in the function circuit, give an IBE secret key on
identity (tag1, tag2) in the first scheme and an IBE secret key on identity (tag1, (i, Ci)) in the
second scheme.

� Enc splits input x into ` random degree t polynomials µ1, . . . , µ` with constant terms x1, . . . , x`
as before. Additionally, it samples N′ random polynomials ζ1, . . . , ζN′ of degree p − 1 with
constant term 0.

For each tag1 ∈ [N], sample a unique field element e and compute a garbling of circuit

Ũ tag1of the circuit U [µ1(e), . . . , µ`(e)](C,Z1, . . . , Zp′) = C(µ1(e), . . . , µ`(e)) +
∑p′

i=1 Zi where
µ1(e), . . . , µ`(e) are hardcoded inside the circuit. We then use the first IBE scheme to encrypt
the labels for a share of the randomizing polynomials ζ and the second IBE scheme to encrypt
the labels corresponding to the circuit wires.

� Dec computes p evaluations of the polynomial η(·) = C(µ1(·), . . . , µ`(·))+
∑p′

i=1 ζtag2i(·). Note
that P is a degree p−1 = Dt polynomial as degree of C is D and degree of µ is t and constant
term C(x).

Now using identities given by taglist1, taglist2, taglist3 and given IBE secret keys to reveal the
input labels corresponding to positions for C and positions for the randomizing polynomial
Zi. Since we can decrypt to learn η(i). As we have p evaluations for a polynomial with degree
p− 1, we can interpolate and compute the entire polynomial η and hence η(0) = C(x).

Our weakly optimal FE construction is described in detail later in Section 4. Below we sketch
main ideas behind the proof which relies on a careful case analysis.

Case 1: For tag1 where the pairwise intersection fails, observe that there exist at least two de-
cryption key queries where secret keys for the same IBE identity might be issued. Thus we
cannot rely on IBE security for these queries and assume that the IBE plaintext is revealed.

Case 2: For tag1 where the pairwise intersection holds and there exists a query j∗ that chose tag1,
observe that here we only rely on security for identities (tag1, tag2) where tag2 6∈ taglist2,(j

∗)

or identities (tag1, tag3) where tag3 6∈ taglist3,(j
∗). Since the query j∗ was made on Cj∗ and

these sets of identities revealed, we want to avoid relying on security of these identities. The
labels corresponding to these identities do not reveal any information apart from Cj∗(x) due
to the simulatability of garled circuits.

Case 3: For tag1 where the pairwise intersection holds and there exists no prior query, we can
rely on IBE security as know no identity is revealed in any of the prior queries. Thus all the

8

labels of the garbled circuit are computationally hidden to an adversary and no information
is revealed.

If the small set intersection property succeeds then ≤ p − 1 evaluations are revealed for poly-
nomial η and the constant term is hidden. More details are provided in Section 4.1.

Improving NC1 to P/poly via [AV19]

Although the above construction is restricted to the function class NC1, it can be transformed into
a static bounded collusion FE scheme for P/poly using the generic ‘bootstrapping’ transformation
presented in [GVW12], which maintains the weak optimality we require. The idea here is for the
NC1 FE scheme to output keys which compute a specific type of garbled circuit of C and the
corresponding input labels for its input x rather than directly outputting x itself. The garbled
circuit and its labels can then be evaluated in the clear. Thanks to the work of [AIK06], we know
there exists garbled circuits (for P/poly) which can be computed by constant depth circuits with
respect to the input x and randomness used. Unfortunately, however, this result makes use of an
additional assumption of length-doubling PRGs in NC1, which is not known to implied by IBE.

To achieve weakly optimal static bounded collusion FE for P/poly without such an additional
assumption, we apply our techniques to the static bounded collusion FE for P/poly scheme of
[AV19], which can be built from only public key encryption (and implied primitives, including
plain PRGs and garbled circuits). The construction of [AV19] follows a similar structure to the
‘bootstrapped’ GVW construction described above. However, the key insight made here is that
rather than relying on the function secret keys to evaluate the PRG needed to compute these
specialized garbled circuits, the encryptor can simply evaluate the PRG seed randomness required
and include said PRG outputs in the FE ciphertext. Since the PRG evaluations are now being done
by the party generating encryptions rather than the functional secret keys themselves, this can be
implemented using any (not just NC1) pseudorandom generators, which are implied by IBE.

However, this modification on [GVW12] introduces additional technical difficulties when at-
tempting to achieve weak optimatity. Whereas previously, the scheme generated 1-bounded func-
tional keys for the circuit GC,∆(x, Z1, . . . , ZS) = C(x) +

∑
i∈∆ Zi, now the scheme generates func-

tional keys for a much more complex circuit which computes a garbling of C on x. More specifically,
the 1-bounded functional keys now need to compute a CorrGarb functionality which computes a
garbled circuit of the input circuit and labels. However, much like in the GC,∆ circuit, the only
reason this circuit grows polynomially with the collusion bound is the necessity for seperate parties
to receive garbled circuits generated under what appears to be independent randomness derived
from the same ciphertext. This is done by independently selecting a random subsets of the input
randomness for each key given out. IBE can be utilized here in a similar way as we did for GC,∆
— that is, by using IBE secret keys to moderate which subset of garbled labels are accessible, we
can ensure that the garbled circuit scales only with the size of the subset of randomness, rather
than the entire input randomness. Since increasing the input randomness is now effectively ‘free’,
we can increase the input randomness to reduce the size of the subset required to be independent
of the collusion bound. Our scheme is decribed in detail later in Section 5.

Lastly, we remark that currently we prove the security of our constructions against non-adaptive
adversaries. Recall that a non-adaptive adversary is prohibited from making any key queries in the
post-challenge phase (that is, after receiving the challenge ciphertext). We do not consider this to
be a limitation of our techniques, and believe that our constructions can also be made adaptively

9

secure by relying on simple ideas as in [GVW12, AV19]. We leave further analysis for the full
version.

1.2 Related Work and Future Directions

Prior work on bounded collusion resistance. The intial works on bounded collusion re-
sistance for FE were for the specific class of IBE systems. Dodis et al. [DKXY02] and Gold-
wasser, Lewko, and Wilson [GLW12] constructed bounded collusion secure IBE with varying pa-
rametere size from regular public-key encryption and special types of linearly key homomorphic
public-key encryption, respectively. For more expressive classes of FE, Sahai and Seyalioglu [SS10]
proposed general functional encryption schemes resilient against a single function-key query us-
ing garbled circuits [Yao86]. Following [SS10], GVW [GVW12] build a statically bounded col-
lusion resistant FE scheme for NC1 circuits from any public-key encryption scheme, and also
provided a generic compiler to improve to the class of all polynomial time computable func-
tions by additionally relying on PRFs computable in NC1. Afterwards, a number of follow-
up works [AR17, Agr17, GKW18, CVW+18] improved the concrete efficiency of the statically
bounded collusion resistant FE scheme wherein they improved the dependence of the FE scheme
parameters on the collusion bound q by relying on more structured algebraic assumptions. Most
recently, Ananth and Vaikuntanathan [AV19] achieved optimally efficient statically secure FE
scheme from the minimal assumption of public-key encryption. The optimal efficiency states
that the system parameters grow only linearly with the collusion bound q, since any further im-
provement would lead to a fully collusion resistant FE scheme via the bootstrapping theorems
from [GGH+13, SW14, AJ15, BV15, AJS15].

Comparison with bundling functionalities and encrypt ahead FE. Goyal, Koppula, and
Waters (GKW) [GKW16] proposed the concept of bundling functionalities in FE systems, where
bundling functionalities in an FE scheme meant having the property that a single set of public
parameters can support the union of all message/function spaces supported by the underlying
FE system. They provided a generic transformation that started with IBE (and other implied
primitives) and was able to upgrade any FE scheme to its bundled counterpart. One might ask
that whether applying the [GKW16] transformation to the family of bounded collusion FE, where
the the collusion bound q is treated as part of the functionality index that is bundled, already leads
to a dynamically bounded collusion FE system. It turns out this is not the case because such a
generic transformation suffers from the limitation that a function key for a given collusion bound is
not reusable for other collusion bounds. In particular, this necessitates each user to make additional
queries to the authority for obtaining function keys for desired collusion bound, and this only solves
the problem of removing the problem of removing the collusion bound dependence for the setup
algorithm. Additionally, GKW proposed a novel variant of FE called encrypt ahead FE. One could
ask the same question about relationship between encrypt ahead FE and dynamically bounded
collusion resistant FE, and the answer is the same as for the case of bundling functionalities which
is they are insufficient.

Open questions. Our work introduces a new interesting avenue for exploring dynamic collusion
resilience in FE systems. And, we provide positive results under the general assumption of IBE.
Although we know that public-key encryption is both the necessary and sufficient assumption for
building optimally efficient statically bounded collusion resistant FE systems (due to the work of

10

Ananth and Vaikuntanathan [AV19]), it is unclear whether public-key encryption is also sufficient
for building dynamically bounded collusion resistant FE systems, or whether IBE is a necessary
assumption for building them. Another interesting research direction is studying similar concepts of
dynamic “query” resilience in other cryptographic contexts. For example, one could ask the same
question for the concept of CCA-secure encryption where we know that CPA-secure public-key
encryption implies (statically-)bounded-query-CCA security for public-key encryption [CHH+07].
We believe answering the question of dynamically bounded-query-CCA security might provide
more insight in resolving the longstanding open problem of constructing a (general) CCA-secure
encryption scheme from a CPA-secure one.

1.3 Concurrent Work

In a concurrent and independent work, Agrawal et al. [AMVY21] also achieved similar results as
this work with some differences in the presentation and abstractions. They introduced the concept
of dynamic collusion bounded functional encryption as we do to provide more flexibility for selecting
the collusion bound. And, similar to us, they construct such functional encryption schemes for all
polynomial-sized circuits from identity-based encryption. In addition, they also extend their results
to uniform computation models while relying on specific algebraic assumptions.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. For any integer q ≥ 2, we let
Zq denote the ring of integers modulo q. We denote the set of all positive integers upto n as
[n] := {1, . . . , n}. For any finite set S, x ← S denotes a uniformly random element x from the
set S. Similarly, for any distribution D, x ← D denotes an element x drawn from distribution D.
The distribution Dn is used to represent a distribution over vectors of n components, where each
component is drawn independently from the distribution D. Two distributions D1 and D2, param-
eterized by security parameter λ, are said to be computationally indistinguishable, represented by
D1 ≈c D2, if for all PPT adversaries A, |Pr[A(x) = 1 : x← D1]−Pr[A(x) = 1 : x← D2]| ≤ negl(λ).

2.1 Garbled Circuits

Our definition of garbled circuits [Yao86] is based upon the work of Bellare et al. [BHR12]. Let
{Cn}n be a family of circuits where each circuit in Cn takes n bit inputs. A garbling scheme GC
for circuit family {Cn}n consists of polynomial-time algorithms Garble and Eval with the following
syntax.

� Garble(1λ, C ∈ Cn): The garbling algorithm takes as input the security parameter λ and a
circuit C ∈ Cn. It outputs a garbled circuit C̃, together with 2n wire keys {wi,b}i≤n,b∈{0,1}.

� Eval(C̃, {wi}i≤n): The evaluation algorithm takes as input a garbled circuit C̃ and n wire
keys {wi}i≤n and outputs y ∈ {0, 1}.

We define additional notation that will help us in our constructions.

11

Definition 2.1. Let (C̃,W = {wi,b}i≤n,b∈{0,1})← Garble(1λ, C ∈ Cn). We will useW{xa,...xb},{x̂a,,...x̂b}
to denote the the subset of wires {wi,x̂i}i∈{xa,...,xb}. Similarly, for W ′ = {wi}i≤n, i.e. a set of in-
put garbled wires. We will use W ′{xa,...xb} = {wi}i∈{xa,...,xb} to denote the subset of input wires
corresponding to these positions.

Correctness. A garbling scheme GC for circuit family {Cn}n is said to be correct if for all λ, n,
x ∈ {0, 1}n and C ∈ Cn, Eval(C̃, {wi,xi}i≤n) = C(x), where (C̃, {wi,b}i≤n,b∈{0,1})← Garble(1λ, C).

Security. Informally, a garbling scheme is said to be secure if for every circuit C and input x,
the garbled circuit C̃ together with input wires {wi,xi}i≤n corresponding to some input x reveals
only the output of the circuit C(x), and nothing else about the circuit C or input x.

Definition 2.2. A garbling scheme GC = (Garble,Eval) for a class of circuits C = {Cn}n is said
to be a secure garbling scheme if there exists a polynomial-time simulator Sim such that for all n,
C ∈ Cn and x ∈ {0, 1}n, the following distributions are computationally indistinguishable:{

Sim
(

1λ, 1n, 1|C|, C(x)
)}

λ
≈c
{(
C̃, {wi,xi}i≤n

)
:
(
C̃, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C)

}
λ
.

The following corollary follows from the definition.

Corollary 2.1. If GC is a secure garbling scheme for a class of circuits C = {Cn}n, then for all n,
C ∈ Cn and x ∈ {0, 1}n, the following distributions are computationally indistinguishable:{

Sim
(

1λ, 1n, 1|C|
)}

λ
≈c
{
C̃ :

(
C̃, {wi,b}i≤n,b∈{0,1}

)
← Garble(1λ, C)

}
λ
.

While this definition is not as general as the definition in [BHR12], it suffices for our construction.

2.2 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE for set of identity spaces I = {In}n∈N and message
spaces M consists of four polynomial time algorithms (Setup,KeyGen,Enc,Dec) with the following
syntax:

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and iden-
tity space index n. It outputs the public parameters mpk and the master secret key msk.

KeyGen(msk, id)→ skid. The key generation algorithm takes as input the master secret key msk
and an identity id ∈ In. It outputs a secret key skid.

Enc(mpk, id,m)→ ct. The encryption algorithm takes as input the public parameters mpk, a mes-
sage m ∈M, and an identity id ∈ In. It outputs a ciphertext ct.

Dec(skid, ct)→ m/⊥. The decryption algorithm takes as input a secret key skid and a ciphertext
ct. It outputs either a message m ∈M or a special symbol ⊥.

Correctness. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) satisfies correctness if
for all λ, n ∈ N, (mpk,msk) ← Setup(1λ, 1n), id ∈ In, m ∈ M, skid ← KeyGen(msk, id), and
ct← Enc(mpk, id,m), we have that Dec(skid, ct) = m.

12

Definition 2.3. We say an IBE scheme IBE = (Setup,KeyGen,Enc,Dec) is secure if for any stateful
PPT adversary A there exists a negligible function negl(·), such that for all λ, n ∈ N, the following
holds

Pr

AKeyGen(msk,·)
1 (st, ct) = b :

(mpk,msk)← Setup(1λ, 1n); b← {0, 1}
(m0,m1, id

∗)← AKeyGen(msk,·)(1λ, 1n,mpk)
ct← Enc(mpk, id∗,mb)

 ≤ 1

2
+ negl(λ),

where all identities id queried by A satisfy id 6= id∗.

3 Functional Encryption: Dynamic Bounded Collusion

In this section, we define the notion of functional encryption (FE) where we start by recalling the
regime of (statically) bounded collusion secure FE systems as studied in prior works [SS10, GVW12].
We follow that by extending the notion to dynamic collusion bounded secure FE systems. And,
along the way we also introduce a special compactness property for statically bounded collusion
secure FE schemes. This will serve as an appropriate intermediate abstraction to build a fully
dynamic collusion bounded FE schemes.

Syntax. Let M = {Mn}n∈N, R = {Rn}n∈N be families of sets, and F = {Fn} a family of
functions, where for all n ∈ N and f ∈ Fn, f :Mn → Rn. We will also assume that for all n ∈ N,
the set Fn contains an empty function εn :Mn → Rn. As in [BSW11], the empty function is used
to capture information that intentionally leaks from the ciphertext.

A functional encryption scheme FE for a family of function classes {Fn}n∈N and message spaces
{Mn}n∈N consists of four polynomial-time algorithms (Setup,Enc,KeyGen,Dec) with the following
semantics.

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and the
functionality index n3 (in unary), and outputs the master public-secret key pair (mpk,msk).

Enc(mpk,m ∈Mn)→ ct. The encryption algorithm takes as input the master public key mpk and
a message m ∈Mn and outputs a ciphertext ct.

KeyGen(msk, f ∈ Fn)→ skf . The key generation algorithm takes as input the master secret key
msk and a function f ∈ Fn and outputs a function key skf .

Dec(skf , ct)→ Rn. The decryption algorithm takes as input a ciphertext ct and a secret key skf
and outputs a value y ∈ Rn.

Correctness and Efficiency. A functional encryption scheme FE = (Setup,Enc,KeyGen,Dec)
is said to be correct if for all λ, n ∈ N, functions f ∈ Fn, messages m ∈ Mn and (mpk,msk) ←
Setup(1λ, 1n), we have that

Pr [Dec(KeyGen(msk, f),Enc(mpk,m)) = f(m)] = 1.

And, it is said to be efficient if the running time of the algorithms is a fixed polynomial in the
parameters λ and n.

3One coud additionally consider the setup algorithm to take as input a sequence of functionality indices where the
function class and message space are characterized by all such indices (e.g., having input length and circuit depth as
functionality indices). For ease of notation, we keep a single functionality index in the above definition.

13

3.1 Bounded Collusion FE: Static and Dynamic

Informally, a functional encryption scheme is said to be secure if an adversary having secret keys
for functions {fi}i≤q and a ciphertext ct for message m learns only {fi(m)}i≤q, and nothing else
about the underlying message m.

The Static Setting. Now in the “static” bounded collusion setting, the scheme is said to guarantee
security so long as q is a polynomial in the security parameter λ and fixed a-priori at the setup
time. Thus, the syntax of the setup algorithm changes as follows:

Setup(1λ, 1n, q)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and the
functionality index n (in unary), and also takes as input the ‘collusion bound’ q (in binary).4

It outputs the master public-secret key pair (mpk,msk).

Efficiency. Although the collusion bound q is given in binary to the setup algorithm, the efficiency
condition for a statically bounded collusion FE scheme only requires that the running time of the
all the algorithms is a fixed polynomial in λ, n and q. That is, the running time of Setup, KeyGen,
Enc, and Dec is allowed to polynomially grow with the collusion bound q.

Static bounded collusion security. This is formally captured via the following ‘simulation based’
security definition as follows. We first provide the adaptive definition, and later provide the non-
adaptive definition.

Definition 3.1 (static-bounded-collusion simulation-security). A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) is said to be statically-bounded-collusion simulation-secure if there
exists a stateful PPT simulator Sim = (S0, S1,S2, S3) such that for every stateful PPT adversary
A, the following distributions are computationally indistinguishable:AKeyGen(msk,·)(ct) :

(1n, 1q)← A(1λ)
(mpk,msk)← Setup(1λ, 1n, q)

m← AKeyGen(msk,·)(mpk)
ct← Enc(mpk,m)


λ∈N

≈cAS
Um(·)
3 (st2,·)(ct) :

(mpk, st0)← S0(1λ, 1n, q)

m← AS1(st0,·)(mpk)
(ct, st2)← S2(st1,Π

m)


λ∈N

whenever the following admissibility constraints and properties are satisfied:

– S1 and S3 are stateful in that after each invocation, they updates their states st1 and st3
(respectively) which is carried over to its next invocation.

– Πm contains a list of functions fi queried by A in the pre-challenge phase along with the
their output on the challenge message m. That is, if fi is the i-th function queried by A
to oracle S1 and qpre be the number of queries A makes before outputting m, then Πm =(
(f1, f1(m)), . . . , (fqpre , fqpre(m))

)
.

4Although most prior works on bounded collusion security consider the collusion bound q to either be a global
parameter, or given in unary to the setup algorithm. Here we instead pass it in binary for technical reasons as will
become clear in the sequel. See Remark 3.1 for more details.

14

– Amakes at most q queries combined to the key generation oracles in the corresponding games.

– S3 for each queried function fi, in the post-challenge phase, makes a single query to its
message oracle Um on the same fi itself.

Remark 3.1 (unary vs binary). Note that in the above security games, we require the adversary to
specify the collusion bound q in unary at the beginning. This is in contrast to the setup algorithm
which gets q in binary as an input. The reason for this distinction is that in the security game
for bounded collusion security we do not want to allow the attacker to specify super-polynomial
collusion bounds, whereas (as we point out later) allowing the setup algorithm to be run on super-
polynomial values of the collusion bound is important for our dynamic collusion bounded FE
schemes.

Weak optimality. Additionally, we also introduce the notion of a “weakly optimal” statically-
bounded-collusion secure FE scheme where this system provides better efficiency properties. That
is, in a weakly optimal static bounded collusion system, the running time of the setup and key
generation algorithms grows only poly-logarithmically in the collusion bound q. Concretely, we
define it below.

Definition 3.2 (weakly optimal statically-bounded-collusion). A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) is said to be ‘weakly optimal’ statically-bounded-collusion FE
scheme if the running time of the Setup and KeyGen algorithm is additionally upper bounded
by a fixed polynomial in λ, n and log q.

Strengthening the simulation guarantee. In this work, we consider a strengthening of the above
simulation-secure properties (for the class of weakly optimal static-bounded-collusion FE schemes)
which will be be crucial towards building a dynamic-bounded-collusion functional encryption scheme.
Note that typically the simulation security states that the distribution of secret keys and ciphertext
are simulatable as long as the adversary does not make more key queries than what is specified
by the static collusion bound. That is, if the adversary makes more key queries then no guarantee
is provided. However, we consider a stronger simulation guarantee below wherein the real world
is still simulatable even when the adversary makes more key queries than that specified by the
collusion bound as long as the adversary does not make any challenge message queries. That is,
either the collusion bound is not crossed, or no challenge ciphertext is queried. In addition to
this, we require the running time of the simulator algorithms S0,S1 and S3 (that is, all except the
ciphertext simulator S2) grow only poly-logarithmically in the static collusion bound q. Formally,
we define it below.

Definition 3.3 (strong simulation-security). A functional encryption scheme FE = (Setup,Enc,
KeyGen,Dec) is said to be statically-bounded-collusion strong simulation-secure if, in the security
game defined in Definition 3.1, the following additional conditions hold:

1. the number of key queries made by adversary is allowed to exceed the static collusion bound
q as long as the adversary does not submit any challenge message, and

2. the running time of the simulator algorithms S0, S1 and S3 is upper bounded by a fixed
polynomial in λ, n and log q.

15

Lastly, we also define the non-adaptive variant of the simulation security.

Definition 3.4 (non-adaptive simulation-security). A functional encryption scheme FE = (Setup,
Enc,KeyGen,Dec) is said to be statically-bounded-collusion non-adaptive (regular/strong) simulation-
secure if the adversary is prohibited from making any key queries in the post-challenge phase (that
is, after receiving the challenge ciphertext) in its respective security game.

The Dynamic Setting. Now in the “dynamic” bounded collusion setting, the scheme is no longer
tied to a single collusion bound q fixed a-priori at the system setup, but instead the encryptor could
choose the amount of collusion resilience it wants. Thus, this changes the syntax of the setup and
encryption algorithm when compared to the static setting from above:

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm takes as input the security parameter λ and the
functionality index n (in unary). It outputs the master public-secret key pair (mpk,msk).

(Note that thus syntactically the setup of a dynamic bounded collusion scheme is same as
that of a fully collusion resistant scheme.)

Enc(mpk,m ∈Mn, 1
q)→ ct. The encryption algorithm takes as input the master public key mpk,

a message m ∈ Mn, and it takes the desired collusion bound q (in unary) as an input. It
outputs a ciphertext ct.

Efficiency. Since the collusion bound q is not specified during setup or key generation at all, thus
the efficiency condition for a dynamically bounded collusion FE scheme requires the running time
of Setup and KeyGen to be fixed polynomials in λ and n. While since the encryptor takes q as input
in unary, thus the running time of the Enc algorithm could grow polynomially with collusion bound
q. Similarly, the running time of Dec is also allowed to grow polynomially with collusion bound q.

Dynamic bounded collusion security. This is formally captured via a ‘simulation based’ security
definition as in the static setting. The game is similar to that provided in Definition 3.1, except
now the attacker specifies the collusion bound q while making the challenge ciphertext query and
the simulator also only receives the collusion bound as input at that point. For completeness, we
describe it formally below (both the adaptive and non-adaptive variants).

Definition 3.5 (dynamic-bounded-collusion simulation-security). A functional encryption scheme
FE = (Setup,Enc,KeyGen,Dec) is said to be dynamically-bounded-collusion simulation-secure if
there exists a stateful PPT simulator Sim such that for every stateful PPT adversary A, the
following distributions are computationally indistinguishable:AKeyGen(msk,·)(ct) :

1n ← A(1λ)
(mpk,msk)← Setup(1λ, 1n)

(m, 1q)← AKeyGen(msk,·)(mpk)
ct← Enc(mpk,m, 1q)


λ∈N

≈cASimUm(·)(·)(ct) :

1n ← A(1λ)
mpk← Sim(1λ, 1n)

(m, 1q)← ASim(·)(mpk)
ct← Sim(Πm, 1q)


λ∈N

whenever the admissibility constraints and properties, as defined in Definition 3.1, are satisfied.

16

Definition 3.6 (non-adaptive simulation-security). A functional encryption scheme FE = (Setup,
Enc,KeyGen,Dec) is said to be dynamically-bounded-collusion non-adaptive simulation-secure if,
in the security game defined in Definition 3.5, the adversary is prohibited from making any key
queries in the post-challenge phase (that is, after receiving the challenge ciphertext).

3.2 Upgrading Static to Dynamic Bounded Collusion FE via Weak Optimal
Efficiency

In this section, we provide a generic construction of a dynamic-bounded-collusion FE scheme
from any static-bounded-collusion FE scheme that satisfies the strong simulation property (Defi-
nition 3.3) and the weak optimality property (Definition 3.2). Below we provide our construction
followed by correctness and security proofs.

3.2.1 Construction

Let Static-FE = (S-FE.Setup, S-FE.Enc, S-FE.KeyGen, S-FE.Dec) be a weakly-optimal static-bounded-
collusion FE scheme for a family of function classes {Fn}n∈N and message spaces {Mn}n∈N. We
use Static-FE to build a dynamic-bounded-collusion FE scheme FE = (Setup,Enc,KeyGen,Dec) as
follows.

Setup(1λ, 1n)→ (mpk,msk). The setup algorithm runs the Static-FE setup algorithm λ times with
increasing values of the static collusion bound q as follows:

∀i ∈ [λ], (mpki,mski)← S-FE.Setup(1λ, 1n, q = 2i).

It then sets the master secret and public keys as an λ-tuple of all these keys, i.e. msk =
(mski)i∈[λ] and mpk = (mpki)i∈[λ].

KeyGen(msk, f)→ skf . Let msk = (mski)i∈[λ]. The key generation algorithm runs the Static-FE
key generation algorithm with all λ keys independently as ski,f ← S-FE.KeyGen(mski, f) for
i ∈ [λ]. It outputs the secret key sk as sk = (ski,f)i∈[λ].

Enc(mpk,m, 1Q)→ ct. Let mpk = (mpki)i∈[λ]. The encryption algorithm simply encrypts the mes-
sage m under dlogQe-th master public key as ct← S-FE.Enc(mpkdlogQe,m). (It also includes
Q as part of the ciphertext.)

Dec(skf , ct)→ z. Let skf = (ski,f)i∈[λ]. The decryption algorithm runs the Static-FE decryption

using the dlogQe-th function key as z ← S-FE.Dec(skdlogQe,f , ct).

3.2.2 Correctness, Efficiency, and Security

The correctness of the above scheme follows directly from the correctness of the underlying static-
bounded-collusion FE system, while for the desired efficiency consider the following arguments.
First, note that by weak optimality of Static-FE we have that the running time of S-FE.Setup and
S-FE.KeyGen grows as poly(λ, n, log q). Since the Setup and S-FE.KeyGen algorithms run S-FE.Setup
and S-FE.KeyGen (respectively) λ many times for log q ∈ {1, . . . , λ}, thus we get that running time
of Setup and KeyGen is poly(λ, n) as desired. Lastly, the encryption and decryption algorithm run
in time at most poly(λ, n, 2dlogQe) = poly(λ, n,Q) since the dlogQe-th static-bounded-collusion FE

17

system uses 2dlogQe ≤ 2 · Q as the static collusion bound. Thus, the resulting FE scheme satisfies
the required efficiency properties.
To conclude, we prove the following.

Theorem 3.1. If Static-FE = (S-FE.Setup, S-FE.Enc, S-FE.KeyGen,S-FE.Dec) is a weakly-optimal
static-bounded-collusion simulation-secure FE scheme (as per Definitions 3.2 and 3.3), then the
above scheme FE = (Setup,Enc,KeyGen,Dec) is a dynamic-bounded-collusion simulation-secure FE
scheme (as per Definition 3.5).

Proof. The proof follows from a composition of the static-bounded-collusion simulation-security
property of Static-FE. Recall that in the static setting, we require the scheme to provide a stronger
form of real world vs. ideal world indistinguishability. Where typically the simulation security states
that the distribution of secret keys and ciphertext are simulatable as long as the adversary does not
make more key queries than what is specified by the static collusion bound. That is, if the adversary
makes more key queries then no guarantee is provided. However, in our formalization of simulation
security for static-bounded-collusion FE schemes, we require that the real and ideal worlds are
also indistinguishable even when the adversary makes more key queries than that specified by the
collusion bound as long as the adversary does not make any challenge message queries. That is,
either the collusion bound is not crossed, or no challenge ciphertext is queried. Also, the running
time of the simulator algorithms S0,S1 and S3 (all except the ciphertext simulator S2) grow only
poly-logarithmically in the collusion bound.

Thus, the simulator for the dynamic-bounded-collusion FE scheme simply runs the S0 algorithms
for all collusion bounds q = 1, . . . , 2λ to simulate the individual master public keys. It then also
runs the S1 algorithms for simulating the individual function keys for each of these static-bounded-
collusion FE systems for answering each adversarial key query. Note that since the running time
of S0 and S1 is also poly(λ, n, log q) where q = 1, . . . , 2λ, thus this is efficient.

Now when the adversary makes the challenge query for message m, it also specifies the target
collusion bound Q∗. The dynamic-bounded-collusion simulator then runs only the ciphertext simu-
lator algorithm S2 for the static FE system corresponding to collusion bound log q = dlogQ∗e. Note
that the simulator does not run S2 for the underlying FE schemes with lower (and even higher)
collusion bounds. This is important for two reasons: (1) we want to invoke the simulation security
of the i-th static FE scheme for i < dlogQ∗e but we can only do this if the ciphertext simulator S2

is not run for these static FE schemes, (2) the running time of S2 could grow polynomically with
the collusion bound q, thus we should not invoke simulator algorithm S2 for i > dlogQ∗e as well
(since for say i = λ, the running time would be exponential in λ which would make the dynamic
simulator inefficient). Thus, even the ciphertext simulation is efficient and the dynamic simulator is
an admissible adversary with respect to static FE challenger, therefore our dynamic FE simulator
is both efficient and can rely on simulation security of the underlying static FE schemes. The last
phase of simulation (i.e., post-challenge key generation phase) works the same as the second phase
simulator (i.e., pre-challenge key generation phase) which is by running S3 for all collusion bounds.

This completes a high level sketch. A complete proof will be provided in the full version.

Remark 3.2 (non-adaptive simulation-security). If the underlying static-bounded-collusion FE
scheme only provides security against non-adaptive attackers Definition 3.4, then the resulting
dynamic-bounded-collusion FE scheme is also secure only against non-adaptive attackers Defini-
tion 3.6.

18

4 Statically Bounded Collusion FE for NC1

We construct Static-FE = (S-FE.Setup, S-FE.Enc, S-FE.KeyGen,S-FE.Dec), a weakly-optimal static-
bounded-collusion FE scheme for the family of function classes {Fn}n∈N computable by NC1 cir-
cuits. Each function Fn takes as input x ∈ {0, 1}` where the circuit computing the function has size
upper bounded by λ and degree upper bounded by D. The ingredients for our construction are an
identity-based-encryption scheme IBE and garbled circuits GC. We show that our construction is
non-adaptive simulation secure Definition 3.4 and weakly optimal. Let κ be the security parameter
for the remainder of this paper.

S-FE.Setup(1κ, 1λ, 1D, q)→ (mpk,msk)

� Set the parameters p = κ ·D+ 1, p′ = κ, Γ = 2pq2, ∆ = 2q, t = κ, N = p ·Γ, N′ = p′ ·∆.
Let pp = (p, p′,Γ,∆, t,N,N′, (1λ, 1D, q)) be implicitly known to each algorithm. Let F
be a finite field of size > N.

� IBE.Setup(1κ, ([p]× [Γ])× ([p′]× [∆]))→ (IBE.pk1, IBE.msk1)5.

� IBE.Setup(1κ, ([p]× [Γ])× ([λ]× {0, 1}))→ (IBE.pk2, IBE.msk2).

� Output (mpk = (IBE.pk1, IBE.pk2),msk = (IBE.msk1, IBE.msk2)).

S-FE.KeyGen(msk, C)→ skC

� Sample a1, . . . , ap
R←− [Γ].

� Sample b1, . . . , bp′
R←− [∆].

� Let C = C1 . . . Cλ be the bits of circuit C.

� For i ∈ [p], let tag1
i = (i, ai) and for i ∈ [p′] let tag2

i = (i, bi).

� For i ∈ [λ], let tag3
i = (i, Ci).

� Let taglist1 = (tag1
1, . . . , tag

1
p), taglist2 = (tag2

1, . . . , tag
2
p′), and taglist3 = (tag3

1, . . . , tag
3
λ).

� Let sk1 = sk2 = ∅. We assume that these sets are ordered sets.
For i1 ∈ [p],

– For i2 ∈ [p′],

* sk1
i1,i2 ← IBE.KeyGen(IBE.msk1, (tag

1
i1 , tag

2
i2)).

* Add sk1
i1,i2 to the set sk1.

– For i3 ∈ [λ],

* sk2
i1,i3 ← IBE.KeyGen(IBE.msk2, (tag

1
i1 , tag

3
i3)).

* Add sk2
i1,i3 to the set sk2.

� Output skC = (sk1, sk2, taglist1, taglist2, taglist3).

S-FE.Enc(mpk, x = x1 . . . x`, 1
q)→ ct

� Pick ` random degree t polynomials µ1(·), . . . , µ`(·) where µi(·) has constant term xi.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

5Our IBE scheme takes identity space In as input where we can imagine In is a binary vector of length n = log(N·N′)

19

� Pick N′ random degree p − 1 polynomials ζtag2(·) where tag2 ∈ [p′] × [∆] with constant
term 0.

� Define U [x1, . . . , x`](C = c1, . . . cλ, Z1, . . . , Zp′) to be the universal circuit which takes as
input the description of a binary circuit C of length λ and p′ elements of F−Z1, . . . , Zp′

and does the following:

– Interpret C as an arithmetic circuit over F. 6

– Compute and output C(x1, . . . , x`) +
∑p′

i=1 Zi where x1, . . . , x` are hardcoded inside
the circuit.

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� For every possible tag1 ∈ [p]× [Γ],

– Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e. (Ũ tag1 ,Ltag1)←
GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and Ltag1 indicates the set
of labels for each wire in this circuit.

– For every possible tag2 = (i, δ) ∈ [p′]× [∆],

* Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1 is

used to choose the input labels for a garbled circuit for position S corresponding
to the real input T .

* ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

* Add ct1tag1,tag2 to the set ct1.

– For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
* Let input3 = Ltag

1

{ci},{b}.

* ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

* Add ct2tag1,tag3 to the set ct2.

– Add the garbled circuit Ũ tag1 to the set ct3.

– Add ftag1 to the set ct4.

� Output ct = (ct1, ct2, ct3, ct4).

S-FE.Dec(skC , ct, 1
q)→ y

� Parse ct as (ct1, ct2, ct3, ct4).

– ct1 as {ct1tag1,tag2}tag1∈[p]×[Γ],tag2∈[p′]×[∆].

– ct2 as {ct2tag1,tag3}tag1∈[p]×[Γ],tag3∈[λ]×{0,1}.

– ct3 as {Ũ tag1}tag1∈[p]×[Γ].

– ct4 as {ftag1}tag1∈[p]×[Γ].

� Parse skC as (sk1, sk2, taglist1, taglist2, taglist3).

– sk1 as {sk1
i1,i2}i1∈[p],i2∈[p′].

– sk2 as {sk2
i1,i2}i1∈[p],i2∈[λ].

6We emphasize U is still a boolean circuit which computes field additions and multiplications as an arithmitization
of the boolean circuit C

20

� For i1 ∈ [p],

– For i2 ∈ [p′],

* input2i2 = IBE.Dec(sk1
i1,i2 , ct

1
tag1i1 ,tag

2
i2

)

– For i3 ∈ [λ]

* input3i3 = IBE.Dec(sk2
i1,i3 , ct

2
tag1i1 ,tag

3
i3

)

– Combine input labels for garbled circuit Ũ tag1i1 as L = {input2i2}i2∈[p′]∪{input3i3}i3∈[λ].

– Let xtag1i1
= GC.Eval(Ũ tag1i1 , L)

� Let π be a degree p−1 polynomial defined as follows. For each i1 ∈ [p], let the evaluation
at input ftag1i1

be defined as π(ftag1i1
) = xtag1i1

. Interpolate the polynomial π.

� Output π(0).

Efficiency

Claim 4.1. If IBE,GC consists of PPT algorithms, then our Static-FE = (S-FE.Setup,S-FE.Enc,
S-FE.KeyGen, S-FE.Dec) scheme consists of PPT algorithms and is weakly optimal according to
Definition 3.2.

Proof. We analyze the different algorithms.

� S-FE.Setup runs IBE.Setup twice for different identity spaces. We have that the first setup runs
in time poly(κ, log(N ·N′)) = poly(κ, log(q,D)). The second setup runs in time poly(κ, log(N ·
λ · 2)) = poly(κ, log(q, λ)). Thus S-FE.Setup is efficient according to Definition 3.2.

� S-FE.KeyGen runs IBE.KeyGen with IBE.msk1 for p·p′ times and IBE.KeyGen with IBE.msk2 for
p ·λ times. One invocation of IBE.KeyGen with IBE.msk1 takes poly(κ, log(q,D)) time and one
invocation of IBE.KeyGen with IBE.msk2 takes poly(κ, log(q, λ)) time. The whole algorithm
thus runs in time poly(κ, λ,D, log(q)).

� S-FE.Enc runs IBE.Enc with IBE.pk1, N · N′ times, IBE.Enc with IBE.pk2, N · λ · 2 times and
GC.Garble N times on a circuit that takes inputs of size λ+p′ (and hardcoded ` values). Since
these are PPT algorithms in their input, the resulting algorithm is poly(κ, `, λ,D, q).

� S-FE.Dec runs IBE.Dec on ct’s encrypted with IBE.pk1 p · p′ times, IBE.Dec on ct’s encrypted
with IBE.pk2 p · λ times and GC.Eval p times on a garbled circuit that garbled a circuit that
takes inputs of size λ + p′ (hardcoded ` values). Since these are PPT algorithms in their
input, the resulting algorithm is poly(κ, `, λ,D, q).

Correctness

Claim 4.2. If IBE is a correct identity based encryption scheme, GC is a correct garbling scheme,
then our S-FE scheme is correct weakly-optimal static-bounded-collusion FE scheme.

21

Proof. We make the following observations for each κ, q, x ∈ {0, 1}`, for any polynomials (in κ) λ
(the maximum size of circuit), D (degree of the circuit) and any circuit C with size ≤ λ and degree
≤ D.

S-FE.Dec(skC , ct, 1
q), computes ∀i1 ∈ [p],∀i2 ∈ [p′], IBE.Dec(sk1

i1,i2 , ct
1
tag1i1 ,tag

2
i2

). We compute

sk1
i1,i2 during S-FE.KeyGen as IBE.KeyGen(msk1, (tag

1
i1 , tag

2
i2)) and ct1tag1i1 ,tag

2
i2

during IBE.Enc

as encryption of L
tag1i1
{Zi2},{ζtag2i2

(ftag1i1
)} on id = (tag1

i1 , tag
2
i2). If IBE is a correct identity based

encryption scheme, then the decryption proceeds correctly i.e. the labels for garbled circuit Ũ tag1i1

where the input label for each Zi2 is set according to the input ζtag2i2
(ftag1i1

).

Similarly, decryption computes ∀i1 ∈ [p],∀i3 ∈ [λ], IBE.Dec(sk2
i1,i3 , ct

2
tag1i1 ,tag

3
i3

). During key-

gen, tag3
i3 is set as (i3, Ci) where C is the circuit being computed and sk2

i1,i3 is computed as

IBE.KeyGen(msk2, (tag
1
i1 , tag

3
i3)) and ct2tag1i1 ,tag

3
i3

during IBE.Enc as encryption of L
tag1i1
{ci},{Ci} on

id = (tag1
i1 , tag

3
i3). If IBE is a correct identity based encryption scheme, then the decryption

proceeds correctly i.e. the labels for garbled circuit Ũ tag1i1 where the input label for each ci is set
according to the input Ci.

Thus decryption through the procedure GC.Eval computes ∀i1 ∈ [p],

C(µ1(ftag1i1
), . . . , µ`(ftag1i1

)) +
∑
i2∈[p′]

ζtag2i2
(ftag1i1

).

As we know for each i1 ∈ [p], ftag1i1
from parsing of ct4. We can compute the degree p − 1

polynomial π using polynomial interpolation.
Note that π(0) = C(µ1(0), . . . , µ`(0)) +

∑
i2∈[p′] ζtag2i2

(0). As polynomials µ1, . . . , µ` have con-

stant terms x1, . . . , x` and the rest of the constant terms are 0, we compute C(x).

4.1 Security

Theorem 4.1. Let IBE be a secure encryption scheme according to Definition 2.3 and GC be
a secure garbled circuits scheme according to Definition 2.2. Then the above S-FE scheme is a
statically-bounded-collusion non-adaptive strong simulation-secure encryption scheme according to
Definition 3.4.

Proof. We describe the simulators below. For non-adaptive simulation security, we focus on simu-
lators S0,S1, S2.

S0(1κ, 1`, 1λ, 1D, q)→ (mpk, st0)

� Run S-FE.Setup(1κ, 1`, 1λ, 1D, q)→ (mpk,msk). Let st0 be msk and output (mpk, st0).

S1(st0, C)→ skC .

� Run S-FE.KeyGen(st0, C)→ skC .

S2(st1,Π
x)→ (ct, st2).

22

� Parsing:

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing colluding identities:

– Let I ⊆ ([p]× [Γ]) be a set of identites,

∪j∈q,j′∈q,i1∈[p] ∧ j 6=j′
(

(tag
1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2

∈ K1 \ K ∈ ([p′] × [∆]). If no such element exists, then

output ⊥, otherwise, add tag
2,(j)
i∗2

to K∗ such that K∗j = tag
2,(j)
i∗2

.

– Add K1 to set K. i.e. K = K ∪ K1.

� Sampling polynomials:

– Pick ` random degree t polynomials µ1(·), . . . , µ`(·) where µi(·) has constant term
0.

– Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

– For j ∈ q,

* Sample a random degree p− 1 polynomials ηj(·) with constant term Cj(x).

– For tag2 ∈ ([p′]× [∆]) \ K∗,
* Pick a random degree p− 1 polynomials ζtag2(·) with constant term 0.

– For j ∈ q,

* Set ζK∗j (·) such that the following equation is satisfied, ∀tag1 ∈ I,

ηj(ftag1) = Cj(µ1(ftag1), . . . , µ`(ftag1)) +
∑
i2∈[p′]

ζ
tag

2,(j)
i2

(ftag1).

Since we know the values of ηj at points in I and only one polynomial is not
picked from the construction of K∗, this is a valid assignment.

� Defining circuits:

– Define U [x1, . . . , x`](C = c1, . . . cλ, Z1, . . . , Zp′) to be the universal circuit which
takes as input the description of a binary circuit C of length λ and p′ elements of
F− Z1, . . . , Zp′ and does the following:

23

* Interpret C as an arithmetic circuit over F.

* Compute and output C(x1, . . . , x`) +
∑p′

i=1 Zi where x1, . . . , x` are hardcoded
inside the circuit.

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– If tag1 ∈ I, proceed according to the normal encryption, i.e.

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1 is

used to choose the input labels for a garbled circuit for position S correspond-
ing to the real input T .

· ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
· Let input3 = Ltag

1

{ci},{b}.

· ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

– Else if tag1 6∈ I, at most one of tag1,(1), . . . , tag1,(q) contain tag1, because of our

construction of set I. Let j∗ be the set such that ∃i∗1 ∈ [p] where tag
1,(j∗)
i∗1

= tag1. If

no such j∗ exists, then j∗ = ⊥.

– If j∗ ≤ q,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)].

* Let (Ũ tag1 , L) ← GC.Sim(1κ, 1(λ+p′)·log |F|, 1|Û |, ηj∗(ftag1)) where Ũ tag1 denotes
the garbled circuit and L are the input wires for the circuit.

* For every possible tag2 = (i2, δ) ∈ [p′]× [∆],

· Let input2 = L{Zi2} (Definition 2.1).

· If tag
2,(j∗)
i2

= tag2, then ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

· Else, ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
· Let input3 = L{ci}.

· If Cj∗,i = b, then ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

· Else, ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|).

24

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

– Else,

* Garble the universal circuit Û = U [0, . . . , 0] for each tag1, i.e. (Ũ tag1 ,Ltag1) ←
GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and Ltag1 indicates the
set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)}.

· ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· ct2tag1,tag3 = IBE.Enc(IBE.pk1, ∅, (tag1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

� Output ct = (ct1, ct2, ct3, ct4) with an empty state st2.

The security follows from a careful case analysis.

� Case 1: For identities where tag1 ∈ I, observe that there exist at least two keygen queries
where secret keys might be issued. Thus we cannot rely on IBE security for these queries.

� Case 2: For identities where tag1 6∈ I and ∗ ≤ q, observe that here we only rely on security

for identities where tag
2,(j∗)
i2

6= tag2 or Cj∗,i 6= b. Since the query j∗ was made on Cj∗ and
these sets of identities revealed, we want to avoid these identities. The remaining labels for
the circuit can be simulated using the garbled circuit simulator as we know the output of
Cj∗(x).

� Case 3: For identities where tag1 6∈ I and ∗ = ⊥, we can rely on IBE security as know no
identity is revealed in any of the prior queries. Thus all the labels of the garbled circuit are
computationally hidden to an adversary and no information is revealed.

To capture these changes formally, we define our sequence of games. For each adjacent set of
games we prove that the advantage of any PPT attacker A in the two games must be negligibly
close.

First we change how polynomials ζ is sampled. This change is made as the simulator only gets
Cj(x) as input and not the plaintext x. Thus we eventually want to sample η directly depending
on the value of Cj(x) and not have it computed from setting µ and ζ’s. In the next game, we rely
on IBE security and those identities which have not been shared in prior keygen queries according
to the case analysis discussed above. Finally we simulate the garbled circuit using the evaluation
Cj(x) and directly not the input µ’s. In the final game we observe that µ values are only evaluated
for points in I corresponding to Case 1 and hence using Lemma A.3, we can change how µ’s are
sampled to hide the final lingering information about x.

25

Game 0. This is the real non-adaptive security game between a challenger and an attacker. The
game is parameterized by a security parameter κ.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Challenger C runs S-FE.Setup(1κ, 1λ, 1D, q)→ (mpk,msk) and sends mpk to A.
Setup phase:

� Set the parameters p = κ ·D+ 1, p′ = κ, Γ = 2pq2, ∆ = 2q, t = κ, N = p ·Γ, N′ = p′ ·∆.
Let pp = (p, p′,Γ,∆, t,N,N′, (1λ, 1D, q)) be implicitly known to each algorithm.

� IBE.Setup(1κ, ([p]× [Γ])× ([p′]× [∆]))→ (IBE.pk1, IBE.msk1)7.

� IBE.Setup(1κ, ([p]× [Γ])× ([λ]× {0, 1}))→ (IBE.pk2, IBE.msk2).

� Output (mpk = (IBE.pk1, IBE.pk2),msk = (IBE.msk1, IBE.msk2)).

3. Keygen query phase: A queries the keygen oracle S-FE.KeyGen(msk, ·) and makes q queries,
where the oracle computes as follows, S-FE.KeyGen(msk, C)→ skC .

� Sample a1, . . . , ap
R←− [Γ].

� Sample b1, . . . , bp′
R←− [∆].

� Let C = C1 . . . Cλ be the bits of circuit C.

� For i ∈ [p], let tag1
i = (i, ai) and for i ∈ [p′] let tag2

i = (i, bi).

� For i ∈ [λ], let tag3
i = (i, Ci).

� Let taglist1 = (tag1
1, . . . , tag

1
p), taglist2 = (tag2

1, . . . , tag
2
p′), and taglist3 = (tag3

1, . . . , tag
3
λ).

� Let sk1 = sk2 = ∅. We assume that these sets are ordered sets.
For i1 ∈ [p],

– For i2 ∈ [p′],

* sk1
i1,i2 ← IBE.KeyGen(IBE.msk1, (tag

1
i1 , tag

2
i2)).

* Add sk1
i1,i2 to the set sk1.

– For i3 ∈ [λ],

* sk2
i1,i3 ← IBE.KeyGen(IBE.msk2, (tag

1
i1 , tag

3
i3)).

* Add sk2
i1,i3 to the set sk2.

� Output skC = (sk1, sk2, taglist1, taglist2, taglist3).

4. Challenge message: A outputs a challenge message x ∈ {0, 1}`.

5. Encryption phase: C computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Sampling polynomials:

– Pick ` random degree t polynomials µ1(·), . . . , µ`(·) where µi(·) has constant term
xi.

– Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

7Our IBE scheme takes identity space In as input where we can imagine In is a binary vector of length n = log(N·N′)

26

– Pick N′ random degree p−1 polynomials ζtag2(·) where tag2 ∈ [p′]×[∆] with constant
term 0.

� Defining circuits:

– Define U [x1, . . . , x`](C = c1, . . . cλ, Z1, . . . , Zp′) to be the universal circuit which
takes as input the description of a binary circuit C of length λ and p′ elements of
F− Z1, . . . , Zp′ and does the following:

* Interpret C as an arithmetic circuit over F.

* Compute and output C(x1, . . . , x`) +
∑p′

i=1 Zi where x1, . . . , x` are hardcoded
inside the circuit.

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e. (Ũ tag1 ,Ltag1)←
GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and Ltag1 indicates the set
of labels for each wire in this circuit.

– For every possible tag2 = (i, δ) ∈ [p′]× [∆],

* Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1 is

used to choose the input labels for a garbled circuit for position S corresponding
to the real input T .

* ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

* Add ct1tag1,tag2 to the set ct1.

– For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
* Let input3 = Ltag

1

{ci},{b}.

* ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

* Add ct2tag1,tag3 to the set ct2.

– Add the garbled circuit Ũ tag1 to the set ct3.

– Add ftag1 to the set ct4.

� Output ct = (ct1, ct2, ct3, ct4).

6. Guess: A outputs a bit b.

Game 1. In this game, we change the order in how we sample polynomials ζ i.e.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing:

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

27

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

1,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

1,(j)
λ).

� Computing colluding identities:

– Let I ⊆ ([p]× [Γ]) be a set of identites,

∪j∈q,j′∈q,i1∈[p] ∧ j 6=j′
(

(tag
1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2

∈ K1 \ K ∈ ([p′] × [∆]). If no such element exists, then

output ⊥, otherwise, add tag
2,(j)
i∗2

to K∗ such that K∗j = tag
2,(j)
i∗2

.

– Add K1 to set K. i.e. K = K ∪ K1.

� Sampling polynomials:

– Pick ` random degree t polynomials µ1(·), . . . , µ`(·) where µi(·) has constant term
xi.

– Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

– For j ∈ q,

* Sample a random degree p− 1 polynomials ηj(·) with constant term Cj(x).

– For tag2 ∈ ([p′]× [∆]) \ K∗,
* Pick a random degree p− 1 polynomials ζtag2(·) with constant term 0.

– For j ∈ q,

* Set ζK∗j (·) such that the following equation is satisfied, ∀tag1 ∈ [p]× [Γ],

ηj(ftag1) = Cj(µ1(ftag1), . . . , µ`(ftag1)) +
∑
i2∈[p′]

ζ
tag

2,(j)
i2

(fi).

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e. (Ũ tag1 ,Ltag1)←
GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and Ltag1 indicates the set
of labels for each wire in this circuit.

– For every possible tag2 = (i, δ) ∈ [p′]× [∆],

* Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1 is

used to choose the input labels for a garbled circuit for position S corresponding
to the real input T .

28

* ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

* Add ct1tag1,tag2 to the set ct1.

– For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
* Let input3 = Ltag

1

{ci},{b}.

* ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

* Add ct2tag1,tag3 to the set ct2.

– Add the garbled circuit Ũ tag1 to the set ct3.

– Add ftag1 to the set ct4.

� Output ct = (ct1, ct2, ct3, ct4).

4. Guess: A outputs a bit b.

Game 2. In this game, we rely on IBE security based on a case analysis if tag1 6∈ I.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing: . . . ,Computing colluding identities:. . . ,Computing cover free ele-
ments:. . . ,Sampling polynomials:. . . .

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– If tag1 ∈ I, proceed according to the normal encryption, i.e.

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1 is

used to choose the input labels for a garbled circuit for position S correspond-
ing to the real input T .

· ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
· Let input3 = Ltag

1

{ci},{b}.

· ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

29

– Else if tag1 6∈ I, at most one of tag1,(1), . . . , tag1,(q) contain tag1, because of our

construction of set I. Let j∗ be the set such that ∃i∗1 ∈ [p] where tag
1,(j∗)
i∗1

= tag1. If

no such j∗ exists, then j∗ = ⊥.

– If j∗ ≤ q,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i2, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi2},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1.

· If tag
2,(j∗)
i2

= tag2, then ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

· Else, ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· If Cj∗,i = b, then ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

· Else, ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

– Else,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)}.

· ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|)

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

4. Guess: A outputs a bit b.

30

Game 3. In this game, we rely on garbled circuit security based on a case analysis if tag1 6∈ I.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing: . . . ,Computing colluding identities:. . . ,Computing cover free ele-
ments:. . . ,Sampling polynomials:. . . .

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– If tag1 ∈ I, proceed according to the normal encryption, i.e.

– Else if tag1 6∈ I,

– If j∗ ≤ q,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)].

* Let (Ũ tag1 , L) ← GC.Sim(1κ, 1(λ+p′)·log |F|, 1|Û |, ηj∗(ftag1)) where Ũ tag1 denotes
the garbled circuit and L are the input wires for the circuit.

* For every possible tag2 = (i2, δ) ∈ [p′]× [∆],

· Let input2 = L{Zi2}.

· If tag
2,(j∗)
i2

= tag2, then ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

· Else, ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
· Let input3 = L{ci}.

· If Cj∗,i = b, then ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

· Else, ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

– Else,

* Garble the universal circuit Û = U [0, . . . , 0] for each tag1, i.e. (Ũ tag1 ,Ltag1) ←
GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and Ltag1 indicates the
set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)}.

· ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}

31

· Let input3 = Ltag
1

{ci},{b}.

· ct2tag1,tag3 = IBE.Enc(IBE.pk1, ∅, (tag1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

4. Guess: A outputs a bit b.

Game 4. This is the final ouput of the simulator, i.e. modify how the polynomials µ1, . . . , µ` are
sampled.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing: . . . ,Computing colluding identities:. . . ,Computing cover free ele-
ments:. . . .

� Sampling polynomials:

– Pick ` random degree t polynomials µ1(·), . . . , µ`(·) where µi(·) has constant term
0.

– Pick

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:. . . .

4. Guess: A outputs a bit b.

4.2 Analysis.

Next, we show by a sequence of lemmas that no adversary can distinguish between any two adjacent
games with non-negligible advantage. In the last game, we show that the advantage of any such
adversary is negligible. We will let advxA denote the probability that A outputs bit 1 in Game x.

Lemma 4.1. ∀κ ∈ N, |adv0
A − adv1

A| = negl(κ).

Proof. In game 0, ζ’s are picked as polynomials with constant 0 and ∀j ∈ [q], ηj(·) is defined by
the relation,

ηj(fi) = Cj(µ1(fi), . . . , µ`(fi)) +
∑
i2∈[p′]

ζ
tag

2,(j)
i2

(fi).

Thus ηj(·) is a random polynomial with constant term Cj(x).
In game 1, we output ⊥ if the cover free property is not satisfied or if the set I is of cardinality

greater than t. This happens with negligible probability because of Lemma A.2 and Lemma A.1.
Additionally, ηj(·) is a random with constant Cj(x) and the cover free element ζK∗j (·) is set so that,

ηj(fi) = Cj(µ1(fi), . . . , µ`(fi)) +
∑
i2∈[p′]

ζ
tag

2,(j)
i2

(fi).

32

Since we have simply reversed the order in which we choose the polynomials and we choose them
from the same distribution. Thus the only place the two games differ is when Game 1 outputs ⊥
which is negl(κ).

Lemma 4.2. Assuming that IBE be a secure encryption scheme according to Definition 2.3. ∀κ ∈ N,
|adv1

A − adv2
A| ≤ negl(κ).

Proof. In Game 1, every ciphertext is IBE encrypted on the input labels. In Game 2, we encrypt
some ciphertexts to the all 0’s string. We define a sequence of sub-hybrids where we change each
IBE encryption one-by-one based on IBE security.

The sub-hybrids exist for each tag1
∗ ∈ [p]× [Γ + 1], tag2

∗ ∈ [p′]× [∆ + 1] and tag3
∗ ∈ [λ]×{0, 1, 2}.

If we say tag1 > tag1
∗, then we compare the two elements in [p] × [Γ + 1] lexicographically. The

elements in increasing order are (1, 1), . . . , (1,Γ), (2, 1), . . . , (p,Γ), (p,Γ+1). Additionally define the
addition operation tag1

∗ + 1 to pick the next lexicographic element and operation tag1
∗ − 1 to pick

the next previous lexicographic element. We similarly define the operations for iterators tag2
∗ and

tag3
∗.

Sub-Game 2tag1∗,tag
2
∗,tag

3
∗.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing: . . . ,Computing colluding identities:. . . ,Computing cover free ele-
ments:. . . ,Sampling polynomials:. . . .

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– If tag1 ∈ I or tag1 ≥ tag1
∗, proceed according to the normal encryption, i.e.

– Else if tag1 6∈ I, at most one of tag1,(1), . . . , tag1,(q) contain tag1, because of our

construction of set I. Let j∗ be the set such that ∃i∗1 ∈ [p] where tag
1,(j∗)
i∗1

= tag1. If

no such j∗ exists, then j∗ = ⊥.

– If j∗ ≤ q,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i2, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi2},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1.

· If tag
2,(j∗)
i2

= tag2 or tag2 ≥ tag2
∗, then ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag

1, tag2), (input2)).

· Else, ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

33

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· If Cj∗,i = b or tag3 ≥ tag3
∗, then ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag

1, tag3), (input3)).

· Else, ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

– Else,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)}.

· If tag2 ≥ tag2
∗, ct

1
tag1,tag2 = IBE.Enc(IBE.pk1, (tag

1, tag2), (input2)).

· Else ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· If tag3 ≥ tag3
∗, ct

2
tag1,tag3 = IBE.Enc(IBE.pk2, (tag

1, tag3), (input3)).

· Else ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|)

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

4. Guess: A outputs a bit b.

We make the following observations.

� Game 1 is equivalent to Game 2(1,1),(1,1),(1,0). As we have chosen tag1
∗, tag

2
∗, tag

3
∗ as the lexi-

cographically smallest elements, all encryptions are same as in Game 1.

� Game 2 is equivalent to Game 2(p,Γ),(p′,∆+1),(λ,2). As we have chosen tag1
∗, tag

2
∗, tag

3
∗ as the

lexicographically largest elements, all switches in encryptions are made according to Game 2.

� Game 2tag
1
∗,(p
′,∆+1),(λ,2) is equivalent to Game 2tag

1
∗+1,(1,1),(1,0). The construction of the sub-

hybrid loops can be observed to verify this.

We write two separate reductions for the two different iterations. The first is when we go from
Game 2tag

1
∗,tag

2
∗,tag

3
∗−1 to Game 2tag

1
∗,tag

2
∗,tag

3
∗ and the second is when we go from Game 2tag

1
∗,tag

2
∗−1,tag3∗

to Game 2tag
1
∗,tag

2
∗,tag

3
∗ .

34

Lemma 4.3. Assuming that IBE be a secure encryption scheme according to Definition 2.3. ∀κ ∈ N,

|adv2tag
1
∗,tag

2
∗,tag

3
∗−1

A − adv2tag
1
∗,tag

2
∗,tag

3
∗

A | ≤ negl(κ).

Proof. We first consider the different cases,

1. Case 1: If tag1
∗ ∈ I. Then the normal encryption procedure is called on both games and the

games are identical.

2. Case 2: Else if tag1
∗ 6∈ I and j∗ ≤ q and Cj∗,i = b. Then the normal encryption procedure is

called on both games and the games are identical.

3. Case 3: Else if tag1
∗ 6∈ I and j∗ ≤ q and Cj∗,i 6= b. Then we rely on reduction B1 that is

described below.

4. Case 4: Else, we rely on reduction B1 that is described below.

Let A be an adversary that has non-negligible advantage in distingushing between the two games.
We describe a reduction B1 that has non-negligible advantage in breaking IBE security between
challenger C and B1.

Reduction B1(1κ) :

1. B1 receives IBE.pk2 from Challenger C where identity space was set to ([p]×[Γ])×([λ]×{0, 1}).

2. Adversary B1 outputs circuit parameters 1λ, 1D and collusion bound q to A.

3. Setup phase:

� Set the parameters p = κ ·D+ 1, p′ = κ, Γ = 2pq2, ∆ = 2q, t = κ, N = p ·Γ, N′ = p′ ·∆.
Let pp = (p, p′,Γ,∆, t,N,N′, (1λ, 1D, q)) be implicitly known to each algorithm.

� IBE.Setup(1κ, ([p]× [Γ])× ([p′]× [∆]))→ (IBE.pk1, IBE.msk1)8.

� Output (mpk = (IBE.pk1, IBE.pk2),msk = (IBE.msk1,⊥)).

4. Keygen query phase: B1 queries the keygen oracle S-FE.KeyGen(msk, ·) and makes q
queries, where the oracle computes as follows, S-FE.KeyGen(msk, C)→ skC .

� Sample a1, . . . , ap
R←− [Γ].

� Sample b1, . . . , bp′
R←− [∆].

� Let C = C1 . . . Cλ be the bits of circuit C.

� For i ∈ [p], let tag1
i = (i, ai) and for i ∈ [p′] let tag2

i = (i, bi).

� For i ∈ [λ], let tag3
i = (i, Ci).

� Let taglist1 = (tag1
1, . . . , tag

1
p), taglist2 = (tag2

1, . . . , tag
2
p′), and taglist3 = (tag3

1, . . . , tag
3
λ).

� Let sk1 = sk2 = ∅. We assume that these sets are ordered sets.
For i1 ∈ [p],

– For i2 ∈ [p′],

8Our IBE scheme takes identity space In as input where we can imagine In is a binary vector of length n = log(N·N′)

35

* sk1
i1,i2 ← IBE.KeyGen(IBE.msk1, (tag

1
i1 , tag

2
i2)).

* Add sk1
i1,i2 to the set sk1.

– For i3 ∈ [λ],

* Let sk2
i1,i3 be the response of IBE challenger C when a key query is made on on

identity (tag1
i1
, tag3

i3
).

* Add sk2
i1,i3 to the set sk2.

� Output skC = (sk1, sk2, taglist1, taglist2, taglist3).

5. Challenge message: A outputs a challenge message x ∈ {0, 1}`.

6. Encryption phase: B1 computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing: . . . ,Computing colluding identities:. . . ,Computing cover free ele-
ments:. . . ,Sampling polynomials:. . . .

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– If tag1 ∈ I or tag1 ≥ tag1
∗, proceed according to the normal encryption, i.e.

– Else if tag1 6∈ I, at most one of tag1,(1), . . . , tag1,(q) contain tag1, because of our

construction of set I. Let j∗ be the set such that ∃i∗1 ∈ [p] where tag
1,(j∗)
i∗1

= tag1. If

no such j∗ exists, then j∗ = ⊥.

– If j∗ ≤ q,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i2, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi2},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1.

· If tag
2,(j∗)
i2

= tag2 or tag2 ≥ tag2
∗, then ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag

1, tag2), (input2)).

· Else, ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· If Cj∗,i = b or tag3 ≥ tag3
∗, then ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag

1, tag3), (input3)).

· Else, B1 sends (input3, 0
|input3| as the challenge message to C and (tag1, tag3)

as the challenge identity. Let ct∗ be the ciphertext received by B1, then,
ct2tag1,tag3 = ct∗.

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

36

– Else,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)}.

· If tag2 ≥ tag2
∗, ct

1
tag1,tag2 = IBE.Enc(IBE.pk1, (tag

1, tag2), (input2)).

· Else ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· If tag3 ≥ tag3
∗, ct

2
tag1,tag3 = IBE.Enc(IBE.pk2, (tag

1, tag3), (input3)).

· Else, B1 sends (input3, 0
|input3| as the challenge message to C and (tag1, tag3)

as the challenge identity. Let ct∗ be the ciphertext received by B1, then,
ct2tag1,tag3 = ct∗.

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

7. Guess: B1 outputs a bit b which is output by the adversary A.

We note that B1 is an admissable IBE adversary as when we are in Case 3, the identity given
out in prior keygen’s to C doesn’t match the challenge identity as Cj∗,i 6= b. Similarly in Case 4 as
j∗ = ⊥, the challenge identity has a different tag1 than all the prior queries from consruction of set
I. It is easy to notice that if A has non-negligible advantage in distinguishing the games, then B1

has non-negligible advantage. This violates IBE security from Definition 2.3.

Lemma 4.4. Assuming that IBE be a secure encryption scheme according to Definition 2.3. ∀κ ∈ N,

|adv2tag
1
∗,tag

2
∗−1,tag3∗

A − adv2tag
1
∗,tag

2
∗,tag

3
∗

A | ≤ negl(κ).

Proof. We first consider the different cases,

1. Case 1: If tag1
∗ ∈ I. Then the normal encryption procedure is called on both games and the

games are identical.

2. Case 2: Else if tag1
∗ 6∈ I and j∗ ≤ q1 and tag

2,(j∗)
i2

= tag2
∗. Then the normal encryption

procedure is called on both games and the games are identical.

3. Case 3: Else if tag1
∗ 6∈ I and j∗ ≤ q1 and tag

2,(j∗)
i2

6= tag2
∗. Then we rely on reduction B2 that

is described below.

4. Case 4: Else, we rely on reduction B2 that is described below.

37

Let A be an adversary that has non-negligible advantage in distingushing between the two games.
We describe a reduction B2 that has non-negligible advantage in breaking IBE security between
challenger C and B2.

Reduction B2(1κ) :

1. B2 receives IBE.pk1 from Challenger C where identity space was set to ([p]× [Γ])× ([p′]× [∆]).

2. Adversary B2 outputs circuit parameters 1λ, 1D and collusion bound q to A.

3. Setup phase:

� Set the parameters p = κ ·D+ 1, p′ = κ, Γ = 2pq2, ∆ = 2q, t = κ, N = p ·Γ, N′ = p′ ·∆.
Let pp = (p, p′,Γ,∆, t,N,N′, (1λ, 1D, q)) be implicitly known to each algorithm.

� IBE.Setup(1κ, ([p]× [Γ])× ([λ]× {0, 1}))→ (IBE.pk2, IBE.msk2).

� Output (mpk = (IBE.pk1, IBE.pk2),msk = (⊥, IBE.msk2)).

4. Keygen query phase: B2 queries the keygen oracle S-FE.KeyGen(msk, ·) and makes q
queries, where the oracle computes as follows, S-FE.KeyGen(msk, C)→ skC .

� Sample a1, . . . , ap
R←− [Γ].

� Sample b1, . . . , bp′
R←− [∆].

� Let C = C1 . . . Cλ be the bits of circuit C.

� For i ∈ [p], let tag1
i = (i, ai) and for i ∈ [p′] let tag2

i = (i, bi).

� For i ∈ [λ], let tag3
i = (i, Ci).

� Let taglist1 = (tag1
1, . . . , tag

1
p), taglist2 = (tag2

1, . . . , tag
2
p′), and taglist3 = (tag3

1, . . . , tag
3
λ).

� Let sk1 = sk2 = ∅. We assume that these sets are ordered sets.
For i1 ∈ [p],

– For i2 ∈ [p′],

* Let sk2
i1,i2 be the response of IBE challenger C when a key query is made on on

identity (tag1
i1
, tag2

i2
).

* Add sk1
i1,i2 to the set sk1.

– For i3 ∈ [λ],

* sk2
i1,i3 ← IBE.KeyGen(IBE.msk2, (tag

1
i1 , tag

3
i3)).

* Add sk2
i1,i3 to the set sk2.

� Output skC = (sk1, sk2, taglist1, taglist2, taglist3).

5. Challenge message: A outputs a challenge message x ∈ {0, 1}`.

6. Encryption phase: B2 computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing: . . . ,Computing colluding identities:. . . ,Computing cover free ele-
ments:. . . ,Sampling polynomials:. . . .

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

38

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– If tag1 ∈ I or tag1 ≥ tag1
∗, proceed according to the normal encryption, i.e.

– Else if tag1 6∈ I, at most one of tag1,(1), . . . , tag1,(q) contain tag1, because of our

construction of set I. Let j∗ be the set such that ∃i∗1 ∈ [p] where tag
1,(j∗)
i∗1

= tag1. If

no such j∗ exists, then j∗ = ⊥.

– If j∗ ≤ q,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i2, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi2},{ζtag2 (ftag1)} where recall the LS,T notation Definition 2.1.

· If tag
2,(j∗)
i2

= tag2 or tag2 ≥ tag2
∗, then ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag

1, tag2), (input2)).

· Else, B2 sends (input2, 0
|input2| as the challenge message to C and (tag1, tag2)

as the challenge identity. Let ct∗ be the ciphertext received by B2, then,
ct1tag1,tag2 = ct∗.

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· If Cj∗,i = b or tag3 ≥ tag3
∗, then ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag

1, tag3), (input3)).

· Else, ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

– Else,

* Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for each tag1, i.e.

(Ũ tag1 ,Ltag1) ← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and
Ltag1 indicates the set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)}.

· If tag2 ≥ tag2
∗, ct

1
tag1,tag2 = IBE.Enc(IBE.pk1, (tag

1, tag2), (input2)).

· Else, B2 sends (input2, 0
|input2| as the challenge message to C and (tag1, tag2)

as the challenge identity. Let ct∗ be the ciphertext received by B2, then,
ct1tag1,tag2 = ct∗.

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

39

· If tag3 ≥ tag3
∗, ct

2
tag1,tag3 = IBE.Enc(IBE.pk2, (tag

1, tag3), (input3)).

· Else, ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

7. Guess: B2 outputs a bit b which is output by the adversary A.

We note that B2 is an admissable IBE adversary as when we are in Case 3, the identity given

out in prior keygen’s to C doesn’t match the challenge identity as tag
2,(j∗)
i2

6= tag2
∗. Similarly in Case

4 as j∗ = ⊥, the challenge identity has a different tag1 than all the prior queries from consruction
of set I. It is easy to notice that if A has non-negligible advantage in distinguishing the games,
then B2 has non-negligible advantage. This violates IBE security from Definition 2.3.

Following the sequence of polynomial in κ many sub-hybrid proofs, we have that any two
adjacent games have negligible advantage. Thus the advantage for an adversary in distinguishing
Games 1 and 2 is negligible.

Lemma 4.5. Assuming that GC is a secure garbled circuits scheme according to Definition 2.2.
∀κ ∈ N, |adv2

A − adv3
A| ≤ negl(κ).

Proof. In Game 3, garble circuits are simulated . We define a sequence of sub-hybrids where we
change each garbling procedure one-by-one based on garbled circuit security.

The sub-hybrids exist for each tag1
∗ ∈ [p]× [Γ + 1].

Sub-Game 3tag1∗.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing: . . . ,Computing colluding identities:. . . ,Computing cover free ele-
ments:. . . ,Sampling polynomials:. . . .

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– If tag1 ∈ I, proceed according to the normal encryption, i.e.

– Else if tag1 6∈ I,

– If j∗ ≤ q,

* If tag1 ≥ tag1
∗, Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for

each tag1, i.e. (Ũ tag1 ,Ltag1)← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled
circuit and Ltag1 indicates the set of labels for each wire in this circuit.

40

* Else Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)]. Let (Ũ tag1 , L)←
GC.Sim(1κ, 1(λ+p′)(log |F|), 1|Û |, ηj∗(ftag1)) where Ũ tag1 denotes the garbled circuit
and L are the input wires for the circuit.

* For every possible tag2 = (i2, δ) ∈ [p′]× [∆],

· If tag1 ≥ tag1
∗, let input2 = Ltag

1

{Zi2},{ζtag2 (ftag1)}.

· Else, let input2 = L{Zi2} (Definition 2.1).

· If tag
2,(j∗)
i2

= tag2, then ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

· Else, ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
· If tag1 ≥ tag1

∗, let input3 = Ltag
1

{ci},{b}.

· Else let input3 = L{ci}.

· If Cj∗,i = b, then ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

· Else, ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

– Else,

* If tag1 ≥ tag1
∗, Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for

each tag1, i.e. (Ũ tag1 ,Ltag1)← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled
circuit and Ltag1 indicates the set of labels for each wire in this circuit.

* Else, Garble the universal circuit Û = U [0, . . . , 0] for each tag1, i.e. (Ũ tag1 ,Ltag1)←
GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and Ltag1 indicates the
set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)}.

· ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· ct2tag1,tag3 = IBE.Enc(IBE.pk1, ∅, (tag1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

4. Guess: A outputs a bit b.

We make the following observations.

41

� Game 2 is equivalent to Game 3(1,1). As we have chosen tag1
∗ as the lexicographically smallest

elements, all encryptions are same as in Game 2.

� Game 3 is equivalent to Game 2(p,Γ+1). As we have chosen tag1
∗ as the lexicographically largest

elements, all switches in encryptions are made according to Game 3.

Lemma 4.6. Assuming that GC is a secure garbled circuits scheme according to Definition 2.2.

∀κ ∈ N, |adv3tag
1
∗−1

A − adv3tag
1
∗

A | ≤ negl(κ).

Proof. We first consider the different cases,

1. Case 1: If tag1
∗ ∈ I. Then the normal garbling procedure is called on both games and the

games are identical.

2. Case 2: Else if tag1
∗ 6∈ I and j∗ ≤ q. We rely on reduction B3 that is described below.

3. Case 3: Else, observe that all the labels of the garbled circuit aren’t being used in encryption.
Thus we can switch the circuits to garble with hardcoded 0′s rather than µ1, . . . , µ`. Here
we rely on the fact that in Corollary 2.1, the hardcoded values are hidden if no labels are
revealed.

Let A be an adversary that has non-negligible advantage in distingushing between the two games.
We describe a reduction B3 that has non-negligible advantage in breaking garbled circuit security
between challenger C and B3.

Reduction B3(1κ) :

1. Adversary B3 outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x, 1q)→ ct. It sends this to A.

� Parsing: . . . ,Computing colluding identities:. . . ,Computing cover free ele-
ments:. . . ,Sampling polynomials:. . . .

� Let ct = (ct1, ct2, ct3, ct4) be (∅, ∅, ∅, ∅). We assume that these sets are ordered sets.

� Computing Ciphertexts:
For every possible tag1 ∈ [p]× [Γ],

– If tag1 ∈ I, proceed according to the normal encryption, i.e.

– Else if tag1 6∈ I,

– If j∗ ≤ q,

* B3 receives (Ũ tag1 , L) from the challenger C where the garbling circuit input was
Û = U [µ1(ftag1), . . . , µ`(ftag1)].

* For every possible tag2 = (i2, δ) ∈ [p′]× [∆],

· Let input2 = L{Zi2}.

· If tag
2,(j∗)
i2

= tag2, then ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), (input2)).

· Else, ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

42

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1},
· Let input3 = L{ci}.

· If Cj∗,i = b, then ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), (input3)).

· Else, ct2tag1,tag3 = IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

– Else,

* If tag1 ≥ tag1
∗, Garble the universal circuit Û = U [µ1(ftag1), . . . , µ`(ftag1)] for

each tag1, i.e. (Ũ tag1 ,Ltag1)← GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled
circuit and Ltag1 indicates the set of labels for each wire in this circuit.

* Else, Garble the universal circuit Û = U [0, . . . , 0] for each tag1, i.e. (Ũ tag1 ,Ltag1)←
GC.Garble(1κ, Û) where Ũ tag1 denotes the garbled circuit and Ltag1 indicates the
set of labels for each wire in this circuit.

* For every possible tag2 = (i, δ) ∈ [p′]× [∆],

· Let input2 = Ltag
1

{Zi},{ζtag2 (ftag1)}.

· ct1tag1,tag2 = IBE.Enc(IBE.pk1, (tag
1, tag2), 0|input2|).

· Add ct1tag1,tag2 to the set ct1.

* For every possible tag3 = (i, b) ∈ [λ]× {0, 1}
· Let input3 = Ltag

1

{ci},{b}.

· ct2tag1,tag3 = IBE.Enc(IBE.pk1, ∅, (tag1, tag3), 0|input3|).

· Add ct2tag1,tag3 to the set ct2.

* Add the garbled circuit Ũ tag1 to the set ct3.

* Add ftag1 to the set ct4.

4. Guess: B3 outputs a bit b which is output by the adversary A.

We note that B3 is an admissable GC adversary as when we are in Case 2, the reduction shows
that the advantage for an adversary is negligible. Similarly, in Case 3 as the labels aren’t being
used, we simply switch the circuits. The advantage of an adversary noticing this is also negligible
from garbled circuit security.

Following the sequence of polynomial in κ many sub-hybrid proofs, we have that any two
adjacent games have negligible advantage. Thus the advantage for an adversary in distinguishing
Games 2 and 3 is negligible.

Lemma 4.7. ∀κ ∈ N, adv3
A = adv4

A.

Proof. In game 3, µ1, . . . , µ` are picked as polynomials with constants x1, . . . , x` respectively while
in game 4, we pick these with constants 0, . . . , 0 respectively.

43

These changes affect how the polynomials µ and ζ are sampled, but not η (as it’s chosen
independently in game 3 and ζ’s are set later because of the change made in the first game).
Observe in games 3 and 4, that we only care about evaluations of these polynomial at points in
I and from the games we know that |I| ≤ t. Thus these are identitically distributed because of
lemma Lemma A.3. Hence an adversary cannot notice a difference.

Game 4 is the game with simulators S0, S1,S2, hence we have shown the scheme is a statically-
bounded-collusion non-adaptive simulation-secure encryption scheme. We now argue that we ad-
ditionally satisfy strong security.

Claim 4.3. The above S-FE scheme is a statically-bounded-collusion non-adaptive strong simulation-
secure encryption scheme according to Definition 3.3.

Proof. We go through the two properties.

� If the number of key queries made by adversary is allowed to exceed the static collusion bound
q, then as long as the adversary does not submit any challenge message, the security game
defined in Definition 3.1 holds. This can be seen easily as the simulators S0 and S1 are the
same as S-FE.Setup,S-FE.KeyGen. Independent of the collusion bound, there is no change in
the two worlds.

� The running time of the simulator algorithms S0, S1 are upper bounded by a fixed polynomial
in λ, n and log q as S-FE.Setup,S-FE.KeyGen are weakly optimal.

5 Statically Bounded Collusion FE for P/poly

We construct Static-FE = (S-FE.Setup, S-FE.Enc, S-FE.KeyGen,S-FE.Dec), a weakly-optimal static-
bounded-collusion FE scheme for the family of function classes {Fn}n∈N computable by P/poly
circuits. Each function Fn takes as input x ∈ {0, 1}` where the circuit computing the function has
size upper bounded by λ. The ingredients for our construction are an identity-based-encryption
scheme IBE and garbled circuits GC. We show that our construction is non-adaptive simulation
secure Definition 3.4 and weakly optimal. Let κ be the security parameter for our construction.

S-FE.Setup(1κ, 1λ, q)→ (mpk,msk)

1. Set the parameters p = κ · c9 + 2, p′ = κ, Γ = 2pq2, ∆ = 2q, t = κ, N = p ·Γ, N′ = p′ ·∆.
Let pp = (p, p′,Γ,∆, t,N,N′, (1λ, q)) be implicitly known to each algorithm.
Let F be a finite field of size > N. Let PRG : {0, 1}κ → {0, 1}4p′κ+4 be a pseudorandom
generator (this is implied by the existence of an IBE scheme).

2. IBE.Setup(1κ, ([p]× [Γ])× ([p′]× [∆]))→ (IBE.pk1, IBE.msk1)10.

3. IBE.Setup(1κ, ([p]× [Γ])× ([λ]× {0, 1}))→ (IBE.pk2, IBE.msk2).

9Here c is a constant and refers to the degree of the circuit V which is defined later in encryption.
10Our IBE scheme takes identity space In as input where we can imagine In is a binary vector of length n = log(N·N′)

44

CorrGarb(C, x, {sdjw,b, k
j
w,b}j∈[p′],w∈W,b∈{0,1}, {rjw}j∈[p′],w∈W)

Inputs: Circuit C

Input Message x ∈ {0, 1}`

PRG Seeds {sdjw,b}j∈[p′],w∈W,b∈{0,1}
keys {kjw,b}j∈[p′],w∈W,b∈{0,1}
Point and permute random bit {rjw,b}j∈[p′],w∈W,b∈{0,1}

Output: Garbled Cicuit GC = C̃

Input Labels K

� For every wire w ∈ W, bit b ∈ {0, 1}, set kw,b = ⊕p′

j=1k
j
w,b. Set rw = ⊕p′

j=1r
j
w.

� Consider a universal circuit that takes in U(·, ·) i.e. a circuit and an input and outputs the
computation of the circuit. Let G be a gate in this circuit that takes in wires w1, w2 and
outputs wires w3, w4. For every b1, b2 ∈ {0, 1}.

– Set sdw3,G(b1,b2)⊕rw3
=
(
sd1w3,G(b1,b2)⊕rw3

◦ . . . ◦ sdp
′

w3,G(b1,b2)⊕rw3

)
.

– Similarly, set sdw4,G(b1,b2)⊕rw4
=
(
sd1w4,G(b1,b2)⊕rw4

◦ . . . ◦ sdp
′

w4,G(b1,b2)⊕rw4

)
.

– Let kw,0 = k
(0)
w,0 ◦ k

(1)
w,0 and kw,1 = k

(0)
w,1 ◦ k

(1)
w,1 for every wire w ∈ W.

– The (b1, b2)th entry for gate G is set to be,

k
(b2)
w1,b1

⊕ k(b1)w2,b2
⊕ (sdw3,G(b1⊕rw1

,b2⊕rw2
)⊕rw3

◦G(b1 ⊕ rw1
, b2 ⊕ rw2

)⊕ rw3
◦

sdw4,G(b1⊕rw1
,b2⊕rw2

)⊕rw4
◦G(b1 ⊕ rw1

, b2 ⊕ rw2
)⊕ rw4

)

where kw1,b1 = k0w1,b1
◦ k1w1,b1

and kw2,b2 = (k0w2,b2
◦ k1w2,b2

)

� The translation table for the circuit U is the mapping M function that maps {0, 1}4vκ+4 →
{0, 1} where M(kow,row) = 0 and M(kow,row⊕1) = 1 for each output wire ow.

� The complete garbled circuit with the description of each garbled gate is contained in GC. We
generate the input wire keys corresponding to the inputs inp = (C ◦ x) and call that K.

K =
(

(sdiw1,inp1⊕riw1 ; inp1 ⊕ riw1
) ◦ · · · ◦ (sdiwL,inpL⊕riwL ; inpL ⊕ riwL

)
)
,

where (i) sdiwi,b =

(
sd

iw1
i ,b◦···◦sd

p′
iwi,b

)
, (ii) L = |C|+ ` and, (iii) iw1, . . . , iwL are the input wire

labels for the circuit U(·, ·).

� Output (GC,K) where s′′ = |GC|+ |K|.

Figure 1: Routine Correlated Garbling

4. Output (mpk = (IBE.pk1, IBE.pk2),msk = (IBE.msk1, IBE.msk2)).

S-FE.KeyGen(msk, C)→ skC .

45

CorrEval(GC,K)

Inputs: Garbled Circuit GC = C̃

Input Labels Kinp

Outputs: Output Value y

On input the garbled circuit GC, wire labels Kinp, for every gate G with input wires w1, w2 and
output wires w3, w4, do the following: suppose (kw1,b1⊕rw1

, b1⊕ rw1
) and (kw2

, b2⊕ rw2
, b2⊕ rw2

) be
the wire labels respectively corresponding to the wires w1 and w2 obtained during the evaluation
process. Using these keys and the (b1 ⊕ rw1 , b2 ⊕ rw2)th entry of the garbled table, we get the key
sdw3

, G(b1, b2)⊕rw3
◦G(b1, b2)⊕rw3

for the wth3 wire and the key sdw4
, G(b1, b2)⊕rw4

◦G(b1, b2)⊕rw4

for the wth4 wire. Continuing this way, we finally obtain the labels associated with the output wire.
Let the wire labels obtained corresponding to the output wires be kow1

, y1⊕ row1
, . . . , kowL′ ,yL′⊕rowL′

.

Using the translation table, output y = (y1 ◦ . . . ◦ yL′).

Figure 2: Routine Correlated Evaluation

1. Let C = C1 . . . Cλ be the bits of circuit C.

2. For each i1 ∈ [p], sample γ
R←− [Γ], let tag1

i1 = (i1, γ).

3. For each i2 ∈ [p′], sample δ
R←− [∆], let tag2

i2 = (i2, δ).

4. For i ∈ [λ], let tag3
i = (i, Ci).

5. Let taglist1 = (tag1
1, . . . , tag

1
p), taglist2 = (tag2

1, . . . , tag
2
p′), and taglist3 = (tag3

1, . . . , tag
3
λ).

6. Let sk1 = sk2 = ∅. We assume that these sets are ordered sets.
For i1 ∈ [p],

� For i2 ∈ [p′],

– sk1
i1,i2 ← IBE.KeyGen(IBE.msk1, (tag

1
i1 , tag

2
i2)).

– Add sk1
i1,i2 to the set sk1.

� For i3 ∈ [λ],

– sk2
i1,i3 ← IBE.KeyGen(IBE.msk2, (tag

1
i1 , tag

3
i3)).

– Add sk2
i1,i3 to the set sk2.

7. Output skC = (sk1, sk2, taglist1, taglist2, taglist3).

S-FE.Enc(mpk, x = x1 . . . x`, 1
q)→ ct

1. Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

2. Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

3. For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
� Sample a degree t polynomial δtag3(·) over F whose constant term is b.

4. For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

� Sample sdtag
2

w,b
R←− {0, 1}κ.

46

� Set ktag
2

w,b = PRG(sdtag
2

w,b).

� Sample rtag
2

w
R←− {0, 1}.

� For h ∈ [κ],

– Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

� For h ∈ [4 · p′ · κ+ 4],

– Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

� Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

5. For every tag2 ∈ ([p′]× [∆]), h ∈ [s′′]11,

� Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

6. For every input i ∈ `, h ∈ [log |F|],
� Sample a degree-t polynomial µi,h(·) over F whose constant term is xi,h where xi

denotes the ith coordinate of x ∈ F and is represented as bits of length log |F|.
7. For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

� Let C1, . . . Cλ be the binary representation of C.

� Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

� Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e (see Figure 1).

� Output the hth bit of the G.

8. Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets
are ordered sets.

9. For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

� Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

� Add the garbled circuit Ṽtag1,h to the set ct1.

� For every possible tag2 = (i2, δ) ∈ ([p′]× [∆]),

– Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Let inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

– Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Let inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

11Recall that s′′ is the output length of algorithm CorrGarb on circuit of size λ, input length `.

47

– Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Let inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

– Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Let inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

� For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
– Let input2 = Ltag

1,h
{Ci},{b}.

– ct2tag1,tag3,h = IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)).

– Add ct2tag1,tag3,h to the set ct2.

� Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

� Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

� Add inputµ to the set Eµ.

� Add ftag1 to the set ct3.

10. Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

S-FE.Dec(skC , ct, 1
q)→ y

1. Parse ct as (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

� ct1 as {Ṽtag1,h}tag1∈[p]×[Γ],h∈[s′′].

� ct2 as {ct2tag1,tag3,h}tag1∈[p]×[Γ],tag3∈[λ]×{0,1},h∈[s′′].

� ct3 as {ftag1}tag1∈[p]×[Γ].

� Eµ as {Eµ
tag1
}tag1∈[p]×[Γ].

� Eζ as {Eζ
tag1,tag2,h

}tag1∈[p]×[Γ],tag2∈[p′]×[∆],h∈[s′′].

� Eξ as {Eξ
tag1,tag2,h

}tag1∈[p]×[Γ],tag2∈[p′]×[∆],h∈[s′′].

� Eη as {Eη
tag1,tag2,h

}tag1∈[p]×[Γ],tag2∈[p′]×[∆],h∈[s′′].

� Eν as {Eνtag1,tag2,h}tag1∈[p]×[Γ],tag2∈[p′]×[∆],h∈[s′′].

2. Parse skC as (sk1, sk2, taglist1, taglist2, taglist3).

� sk1 as {sk1
i1,i2}i1∈[p],i2∈[p′].

� sk2 as {sk2
i1,i2}i1∈[p],i2∈[λ].

3. For each i ∈ [p] and h ∈ [s′′],

� For i3 ∈ [λ]

– input2i3 = IBE.Dec(sk2
i1,i3 , ct

2
tag1i1 ,tag

3
i3
,h)

� For i2 ∈ [p′],

– inputζi2 = IBE.Dec(sk1
i1,i2 ,E

ζ
tag1i1 ,tag

2
i2
,h

).

– inputξi2 = IBE.Dec(sk1
i1,i2 ,E

ξ
tag1i1 ,tag

2
i2
,h

).

48

– inputηi2 = IBE.Dec(sk1
i1,i2 ,E

η
tag1i1 ,tag

2
i2
,h

).

– inputνi2 = IBE.Dec(sk1
i1,i2 ,E

ν
tag1i1 ,tag

2
i2
,h).

� Compute ytag1i,h ← GC.Eval(Ṽtag
1,h

i , (input2,Eµ, inputζ , inputxi, inputη, inputnu)).

4. For each h ∈ [s′′], interpolate the sets of degree p−1 polynomials which lie on (ftag1i , ytag1i,h)
to obtain πh. Parse π1(0) ◦ . . . ◦ πs′′(0) as (GC,K).

5. Output CorrEval(GC,K) (see Figure 2).

Efficiency

Claim 5.1. If IBE,GC consists of PPT algorithms, then our Static-FE = (S-FE.Setup,S-FE.Enc,
S-FE.KeyGen,S-FE.Dec) scheme consists of PPT algorithms and is weakly optimal according to
Definition 3.2.

Proof. We analyze the different algorithms.

� S-FE.Setup runs IBE.Setup twice for different identity spaces. We have that the first setup runs
in time poly(κ, log(N·N′)) = poly(κ, log(q,D, κ)). The second setup runs in time poly(κ, log(N·
λ · 2)) = poly(κ, log(q, λ, κ)). Thus S-FE.Setup is efficient according to Definition 3.2.

� S-FE.KeyGen runs IBE.KeyGen with IBE.msk1 for p · p′ times and IBE.KeyGen with IBE.msk2

for p · λ · 2 times. One invocation of IBE.KeyGen with IBE.msk1 takes poly(κ, log(q,D)) time
and one invocation of IBE.KeyGen with IBE.msk2 takes poly(κ, log(q, λ)) time. Thus, we can
bound the runtime of the entire algorithm similar with poly(κ, λ,D, log(q)).

� S-FE.Enc runs GC.Garble on a circuit of size V. Since from above we can see |V| ∈ poly(κ, λ, q),
we can see by efficiency of garbled circuits, this in total takes time in poly(κ, λ, q).

Next, note that the labels of each input of V is encrypted at most max(N · s′′ ·N′,N · s′′ ·λ ·2) ∈
poly(κ, λ, q) times. Since GC.Garble is efficient, each labels is of length poly(κ, λ). Since IBE
is efficient, the encryptions of all these labels can be generated in poly(κ, λ, q) time.

� S-FE.Dec runs IBE.Dec on a subset of ciphertexts produced by S-FE.Enc. Since S-FE.Enc is
efficient, these are polynomially bounded in number and size. Then, it runs GC.Eval p · s′′
many times, which, by efficiency of GC, is also efficient.

Correctness The claim below will help us formalize correctness.

Claim 5.2. Circuit V has size poly(|C|, κ, q) and depth c.

Proof. V considers a universal circuit which takes in inputs C, x, which are both length bounded
by |C|. We can bound the size of |U| by poly(|C|). We can observe that for each wire, the length
of the following inputs are

� Eδ takes in a field element and a tag (which can be written in log(poly(q ·Γ)) ∈ O(log(q, κ,D))
bits) for each of of 2|C| tags, so we can bound the size of Eδ with poly(|C|, log(κ,D, q)).

49

� Eµ takes in two field element for each of p = κ · D tags, which bounds the size with
poly(κ,D, log(q))

� Eζ takes in b · h = 2κ field element for each of p′ = κ tags, which bounds the size with
poly(κ, log(q,D)).

� Eξ takes in b · h ∈ O(p′ · κ) ∈ poly(κ) field element for each of p′ = κ tags, which bounds the
size with poly(κ, log(q,D)).

� Eη a field element and a tag for each for p′ = κ tags, which bounds the size with poly(κ, log(q,D)).

Since all of these inputs are applied to at most |U| wires, we can bound the total size of all inputs
of CorrGarb with poly(|C|, κ,D, log(q)). Since each inputs is involved in a constant amount of
concatenation and xor operations, this bounds the total size of ECi with poly(|C|, κ,D, log(q)).
This also bounds the size of Eν with poly(|C|, κ,D, log(q)). Since ECi simply adds these values
together on top of this, we can in turn bound its size similarly with poly(|C|, κ,D, log(q)).

Claim 5.3. If IBE is a correct identity based encryption scheme, GC is a correct garbling scheme,
then our S-FE scheme is correct weakly-optimal static-bounded-collusion FE scheme.

Proof. We make the following observations for each κ, q, x ∈ {0, 1}`, for any polynomials (in κ) λ
(the maximum size of circuit), D (degree of the circuit) and any circuit C with size ≤ λ and degree
≤ D.

S-FE.Dec(skC , ct, 1
q), computes ∀i1 ∈ [p], h ∈ [s′′], ∀i2 ∈ [p′], a bunch of decryptions on identi-

ties (tag1
i1 , tag

2
i2) under msk1. As the ciphertexts are generated using IBE.Enc as encryption of

L
tag1i1 ,h

Eζi2
,Êζ

tag1i1
,tag2i2

and others similarly. If IBE is a correct identity based encryption scheme, then the

decryption proceeds correctly i.e. the labels for garbled circuit Ṽtag
1
i1
,h where the input label for

each position is set accordingly.
Similarly, decryption computes ∀i1 ∈ [p],∀i3 ∈ [λ], IBE.Dec(sk2

i1,i3 , ct
2
tag1i1 ,tag

3
i3

). During key-

gen, tag3
i3 is set as (i3, Ci) where C is the circuit being computed and sk2

i1,i3 is computed as

IBE.KeyGen(msk2, (tag
1
i1 , tag

3
i3)) and ct2tag1i1 ,tag

3
i3

during IBE.Enc as encryption of L
tag1i1 ,h

{ci},{Ci} on

id = (tag1
i1 , tag

3
i3). If IBE is a correct identity based encryption scheme, then the decryption

proceeds correctly i.e. the labels for garbled circuit Ṽtag
1
i1
,h where the input label for each ci is set

according to the input Ci.
Thus decryption through the procedure GC.Eval thus computes ∀i1 ∈ [p],

CorrGarb({δi,Ci(ftag1i1)}i∈λ, {µi,h(ftag1i1
)}i∈`,h∈[log F], {ζ

tag2

w,b,h(ftag1i1
)}w∈W,b∈{0,1},h∈[κ],tag2∈taglist2 ,

{ζtag
2

w,b,h(ftag1i1
)}w∈W,b∈{0,1},h∈[κ],tag2∈taglist2 , {η

tag2
w (ftag1i1

)}w∈W,tag2∈taglist2) +
∑

tag2∈taglist2
νtag

2

h (ftag1i1
)

As we know for each i1 ∈ [p], ftag1i1
from parsing of ct3.

50

For each h ∈ [s′′], we can interpolate the sets of degree p − 1 polynomials which lie on
(ftag1i , ytag1i,h) to obtain πh. π1(0) ◦ . . . ◦ πs′′(0) is thus set as (GC,K) which is then evaluated
to reveal output C(x) using CorrEval.

5.1 Security for AV scheme

The simulator proceeds in roughly the same way as the Section 4 simulator, with the primary
difference being that rather being able to directly simulate our circuit output, we need to simulate
the output of the CorrGarb garbling procedure which produces the corresponding circuit output. To
do this, the simulator, after receiving the pre-challenge phase functional queries and their outputs,
simply needs to compose the simulator SimCorrGarb (analogous to the one in [AV19]) below to produce
a target output GC,K of the regular garbled circuit, which can be simulated using the Section 4
simulator. The caveat of the SimCorrGarb simulator needs to be run on an independent random
sdjw,0, which we can argue via the cover-freeness of the tag2 space in a similar way to arguing the
independence of the

∑
Zi random polynomials in Section 4.

More details are provided later in Appendix B.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (h)ibe in the standard
model. In Proceedings of the 29th Annual international conference on Theory and
Applications of Cryptographic Techniques, EUROCRYPT’10, pages 553–572, Berlin,
Heidelberg, 2010. Springer-Verlag.

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions
and attacks. In Annual International Cryptology Conference, 2017.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. Computational Complexity, 15(2):115–
162, 2006.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Annual Cryptology Conference, 2015.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation
from functional encryption for simple functions. Cryptology ePrint Archive, Report
2015/730, 2015.

[AMVY21] Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Func-
tional encryption for turing machines with dynamic bounded collusion from lwe. To
appear in CRYPTO, 2021.

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revis-
ited. In Theory of Cryptography Conference, 2017.

51

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryp-
tography - 17th International Conference, TCC 2019, Nuremberg, Germany, December
1-5, 2019, Proceedings, Part I, volume 11891 of Lecture Notes in Computer Science,
pages 174–198. Springer, 2019.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing.
In Proceedings of the 21st Annual International Cryptology Conference on Advances
in Cryptology, CRYPTO ’01, 2001.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988,
Chicago, Illinois, USA, 1988.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In CCS ’12, 2012.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: definitions and
challenges. In Proceedings of the 8th conference on Theory of cryptography, TCC’11,
pages 253–273, Berlin, Heidelberg, 2011. Springer-Verlag.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In Proceedings of the 2015 IEEE 56th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 171–190, 2015.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Proceedings of the 4th conference on Theory of cryptography, TCC’07, pages
535–554, Berlin, Heidelberg, 2007. Springer-Verlag.

[CHH+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael
Pass, Abhi Shelat, and Vinod Vaikuntanathan. Bounded cca2-secure encryption. In
International Conference on the Theory and Application of Cryptology and Information
Security, pages 502–518. Springer, 2007.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to
delegate a lattice basis. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
French Riviera, May 30 - June 3, 2010. Proceedings, pages 523–552, 2010.

[Coc01] Clifford Cocks. An identity based encryption scheme based on Quadratic Residues.
In Cryptography and Coding, IMA International Conference, volume 2260 of LNCS,
pages 360–363, 2001.

[CVW+18] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs.
Traitor-tracing from lwe made simple and attribute-based. In TCC, 2018.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography, 1976.

52

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public
key cryptosystems. In International Conference on the Theory and Applications of
Cryptographic Techniques, 2002.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, 2013.

[GKW16] Rishab Goyal, Venkata Koppula, and Brent Waters. Semi-adaptive security and
bundling functionalities made generic and easy. In Theory of Cryptography - 14th
International Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part II, 2016.

[GKW18] Rishab Goyal, Venkata Koppula, and Brent Waters. Collusion resistant traitor tracing
from learning with errors. In STOC, 2018.

[GLW12] Shafi Goldwasser, Allison Lewko, and David A Wilson. Bounded-collusion ibe from
key homomorphism. In Theory of Cryptography Conference, 2012.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In CRYPTO, 2012.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In STOC (to appear), 2021.

[KMUW18] Lucas Kowalczyk, Tal Malkin, Jonathan Ullman, and Daniel Wichs. Hardness of non-
interactive differential privacy from one-way functions, 2018.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In Proceedings of the theory
and applications of cryptographic techniques 27th annual international conference on
Advances in cryptology, EUROCRYPT’08, 2008.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of
CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with
public keys. In Proceedings of the 17th ACM conference on Computer and communi-
cations security, CCS ’10, pages 463–472, New York, NY, USA, 2010. ACM.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT,
pages 457–473, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In STOC, pages 475–484, 2014.

[Yao86] Andrew Yao. How to generate and exchange secrets. In FOCS, pages 162–167, 1986.

53

A Helpful Combinatoric Lemmas

We first discuss a few lemma’s that will help us prove the security of the scheme.

Lemma A.1. Let A1, . . . Ap be disjoint sets of size Γ = pq2. For i ∈ [p], j ∈ [q], let each ai,j be
sampled uniformly and independently at random from Ai. Let A be the set{

x ∈
p⋃
i=0

Ai | ∃i, j0, j1 : j0 6= j1 ∧ x = ai,j0 = ai,j1

}

Then
Pr[|A| ≥ q] ≤ negl(κ)

Proof. Denote the elements of Ai as xi,k for k ∈ [Γ]. Let Xi,k be the indicator variable which is one
if xi,k is in A and 0 otherwise, and let X =

∑
Xi,k, which is the cardinality of A.

Claim A.1. E[X] ≤ 1

Proof. Consider the set

A′ =
{

(i, j0, j1) ∈ [p]× [q]2 | j0 < j1 ∧ ai,j0 = ai,j1
}

Clearly we can define a surjective mapping from A′ to A by taking the mapping each (i, j0, j1 to
ai,j0 in A, letting us upper bound |A| ≤ |A′|. Now we can write E[|A′|] as the sum of of indicator
variables Xi,j0,j1 , which is 1 if ai,j0 = ai,j1 . We can see that since each ai,j are chosen independently
and uniformly at random in a set of size S

Pr[Xi,j0,j1 = 1] ≤ 1

Γ

, which means by linearity of expectations we can write

E[|A′|] =
p ·
(q

2

)
Γ
≤ p · q2

2pq2
≤ 1

which transitively upper bounds E[X].

Claim A.2. The set of random variables {Xi,k}i∈[p],k∈[Γ] is negatively associated.

Proof. i ∈ [p], j ∈ [q], k ∈ [Γ], let Yi,j,k to be the random variable which is 1 if ai,j = k and 0
otherwise. For any fixed i∗, j∗, we can see that the collection {Yi∗,j∗,k}k∈[Γ] is negatively associated
by the Zero-One Lemma, since ai∗,j∗ can only take on one value. Since each ai,j are chosen
independently, we can use the fact that the union of independent negatively associated sets of
variables are negatively associated to see that {Yi,j,k}i∈[p],j∈[q],k∈[Γ] is negatively associated. Finally,
we observe that for any i∗, k∗, we can write Xi∗,k∗ as the zero one function which is one if and only
if
∑

j∈q Yi∗,j,k∗ ≥ 2. Since {Xi,k}i∈[p],k∈[Γ] can be written as a monotonic function on disjoint index
sets of {Yi,j,k}i∈[p],j∈[q],k∈[Γ], it too is negatively assocaited.

54

Thus, we can apply a Chernoff bound to

Pr

 ∑
i∈[p] k∈[Γ]

Xi,k ≥ κ · E

 ∑
i∈[p] k∈[Γ]

Xi,k

 ≤ exp

−(κ− 1)2E

 ∑
i∈[p] k∈[Γ]

Xi,k

 /(κ+ 1)


⇔ Pr[|A| ≥ κ] ≤ exp(−Ω(κ))

Lemma A.2. Let p′ = κ and q ∈ poly(κ). Let B1, . . . Bp′ be disjoint sets of size ∆ ≥ 2q. For
i ∈ [p′], j ∈ [q], let each bi,j be sampled uniformly and independently at random from Bi.

Pr
[
∃j∗ ∈ [q] ∀i ∈ [p′] ∃j′ ∈ [q]\{j} : bi,j∗ = bi,j′

]
≤ negl(κ)

Proof. Consider for each j, at in every Bi, observe the set {bi,j′ ∈ Bi | j′ 6= j} has size at most
q−1. Since bi,j is chosen independently, the probability a j′ exists which for which bi,j′ equal to bi,j

is 1
2 . By independence, the probability this is true for all i is at most

(
1
2

)p′
. We can union bound

over all j ∈ [q] with q · 2−p′ ∈ negl(κ)

Lemma A.3. Let F be a finite field. ∀t ∈ [0, |F|)c0 6= c1 ∈ F, let pb(·) be a random degree t
polynomial where pb(0) = cb. Finally, let S ⊂ F\{0} : |S| ≤ t. Define Db = {(x, pb(x)) | x ∈ S}.
The distributions D0 and D1 are identical.

Proof. We first prove the following claim.

Claim A.3. Consider any subset of distinct field elements x1, . . . xt+1 ∈ F, then for every set of
values y1, . . . yt+1 ∈ F, there exists a unique degree t polynomial p(·) such that ∀i ∈ [t+1] p(xi) = yi.

Proof. We can construct said polynomial p(·) via lagrange interpolation as∑
i∈[t+1]

yi ·
∏

j∈[t+1]\{i}

x− xj
xi − xj

We can verify that p(xi) = yi as for any i′ 6= i, the product term contains x−xi
xi′−xi

, which evaluates to

0. In addition, we can see the value of the product term at xi is yi ·
∏
j 6=i

xi−xj
xi−xj = yi · 1 = yi. Since

each product is of t degree one terms, this is a degree t polynomial. Since the cardinality of degree
t polynomials is |F|t+1, equal to the cardinality of possible {yi} + i ∈ [t+ 1] sets, this surjective
relation must be bijective, so the polynomial is unique.

Suppose |S| = t, fix a particular element D = {(xi, yi)}i∈[t] in the range of Db. We can compute
the probability of D occuring as the probability the random polynomial pb satisfies ∀x ∈ S :
pb(xi) = yi and pb(0) = cb. By the claim above, there is a unique polynomial satisfying these

relations. Thus, the probability of D
R←− Db is 1 in the number of degree t polynomials over F with

constant term cb, which of course is |F|t, and independent of b, so these distributions are identical.
If |S| < t, we can consider an arbitrary subset S′ ⊂ F : |S′| = t and S ⊂ S′. We can

compute the observation of any given D = {(xi, yi)}i∈[|S|]
R←− Db from S as the union of D′ =

D ∪ {(x∗i , y∗i)}x∗i∈S′\S
R←− D′b for all possible sets {y∗i }, which has cardinality Ft−|S| so we can

conclude the probability of D is |F|
t−|S|

|F|t , which of course is independent of b.

55

B Security for AV scheme

We describe the simulators below. For non-adaptive simulation security, we focus on simulators
S0,S1, S2.

S0(1κ, 1`, 1λ, 1D, q)→ (mpk, st0)

� Run S-FE.Setup(1κ, 1`, 1λ, 1D, q)→ (mpk,msk). Let st0 be msk and output (mpk, st0).

S1(st0, C)→ skC .

� Run S-FE.KeyGen(st0, C)→ skC .

S2(st1,Π
x)→ (ct, st2).

� Parsing:

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing recieved identities:

– Let I ⊆ ([p]× [Γ]) be a set of identities which are queried on two or more keys,⋃
j∈q,j′∈q,i1∈[p] ∧ j 6=j′

(
(tag

1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2
∈ K1 \K ∈ ([p′]× [∆]) and add it (tag

2,(j)
i∗2

) to K∗ such that

K∗j = tag
2,(j)
i∗2

. If no such element exists, output ⊥
– Add K1 to set K. i.e. K = K ∪ K1.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

56

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e.

– Output the hth bit of the G.

� For tag1 ∈ [p]× [Γ], j ∈ q, h ∈ [s′′]

– Sample a random degree p− 1 polynomials τj,h(·) with constant term as the hth bit
of SimCorrGarb(1κ, Cj , Cj(x)).

� For every tag2 ∈ ([p′]× [∆])\K∗, h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

� For every tag2′ ∈ K∗, h ∈ [s′′],

– Set νtag
2

h (·) to be the polynomial interpolation which satisfies ∀tag1 ∈ I,

τj,h(ftag1) = SimCorrGarb(1κ, Cj , Cj(x)).

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is 0.

� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets
are ordered sets.

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– If there exists a unique j∗ index for which tag1 ∈ taglist1,(j
∗).

* Simulate the garbled circuit (Ṽtag1,h,Ltag1,h)← GC.Sim(1κ, 1|input|, 1|V
tag1,h|, τj∗(ftag1))

* Add the simulated garbled circuit Ṽtag1,h to the set ct1.

57

* For every possible tag2 = (i2, δ) ∈ ([p′]× [∆])

Set inputζ = Ltag
1,h

Eζi2

Set inputξ = Ltag
1,h

Eξi2

Set inputη = Ltag
1,h

Eηi2

Set inputν = Ltag
1,h

Eνi2

* For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
Set input2 = Ltag

1,h
{Ci} .

* Set inputµ = Ltag
1,h

Eµ

– Otherwise

* Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

* Add the garbled circuit Ṽtag1,h to the set ct1.

* For every possible tag2 = (i2, δ) ∈ ([p′]× [∆])

· If ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j)

Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Set inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Set inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Set inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Set inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

· Otherwise, if 6 ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j), set inputζ to an
appropriately length of padded zeroes.
Set inputζ = 0|inputζ |

Set inputξ = 0|inputξ|

Set inputη = 0|inputη |

Set inputν = 0|inputν |

* For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
· If ∃j : tag1 ∈ taglist1,(j) ∧ tag3 ∈ taglist3,(j)

Set input2 = Ltag
1,h

{Ci},{b}.

· Otherwise, add encryptions of appropriately padded 0’s
Set input2 = 0|input2|

· Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

· Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

– Add components to ciphertext

58

* For tag1 ∈ ([p]× [Γ]), h ∈ [s′′]

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

* For every possible tag3 = (i, b) ∈ ([λ]× {0, 1})
· Add IBE.Enc(IBE.pk2, (tag

1, tag3), (input2)) to ct2

* Add inputµ to the set Eµ.

* Add ftag1 to the set ct3

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) with an empty state st2.

Before moving to the security of the encryption scheme, we analyze the security of the CorrGarb
algorithm in two experiments CorrExptA,Ch0 (1λ) and CorrExptA,SimCorrGarb

1 (1λ) which are very similar
from their [AV19] counterparts.

CorrExptA,Ch0 (1λ):

� Challenge Ch Computes the following:

– Let {taglist2,(i)}i∈[q] be a cover free set of subsets of ([p′] × [∆]) where taglist2,(i) =

(tag
2,(i)
1 , . . . , tag

2,(i)
p′).

– For every wire w ∈ W, index tag2 ∈ ([p′] × [∆]), bit b ∈ {0, 1}, sample sdtag
2

w,b
R←−

{0, 1}λ and sample rtag
2

w
R←− {0, 1}

– For every wire w ∈ W, index tag2 ∈ ([p′]×[∆]), bit b ∈ {0, 1}, let ktag
2

w,b = PRG(sdtag
2

w,b)

� A submits its challenge input x. It then submits at most q circuit queries C1, . . . , Cq.

� For the ith circuit query Ci, Ch generates the following:

(GCi,Ki)← CorrGarb

(
Ci, x, {sd

taglist
2,(i)
j

w,b , k
taglist

2,(i)
j

w,b }j∈[p′],w∈W,b∈{0,1}, {rjw}j∈[p′],w∈W

)
CorrExptA,SimCorrGarb

1 (1λ):

� A submits its challenge input x. It then submits at most Q circuit queries C1, . . . , CQ
adaptively.

� On inputs (1λ, Ci, Ci(x)), SimCorrGarb generates
(
{GCi,Ki}i∈[Q]

)
. The result is sent to A.

� A outputs bit b. Output b.

Lemma B.1. For every PPT adversary A, there exists a PPT simulator SimCorrGarb such that the
following holds:∣∣∣Pr

[
0← CorrExptA,Ch0 (1λ)

]
− Pr

[
0← CorrExptA,SimCorrGarb

1 (1λ)
]∣∣∣ ≤ negl(λ)

Proof. The proof follows exactly from Lemma 2 in [AV19] where we’ve adjusted the simulator and
notation according to the notation of our paper.

59

SimCorrGarb(1
κ, C, C(x))

Inputs: Security Parameter1κ

Circuit C

Circuit Output C(x)

Output: Garbled Circuit GC = C̃

Input Labels K

� For every i ∈ [q], sample a p′-sized set taglist2,(i) ⊆ ([p′]× [∆]) uniformly at random.

� Check if this is cover free, i.e. for every i∗ ∈ [q], there exists a unique index that is not present

in other sets. taglist2,(i
∗) \ (∪i∈[q],i6=i∗taglist2,(i)) 6= ∅. If this is not true, then output ⊥.

� For every wire w ∈ W, bit b ∈ {0, 1}, sample the PRG seeds as follows: for every tag2 ∈
([p′]× [∆]), sample sdtag

2

w,b
R←− {0, 1}κ.

� A submits the input x. Then it adaptively submits the queries C1, . . . , Cq.

� For every i ∈ [q], the ith simulated garbling GCi of Ci is generated as follows:

– For every wire w ∈ W and bit b, set sdw,b = sd
taglist

2,(i)
1

w,b ◦ ... ◦ sd
taglist

2,(i)

p′

w,b

– For every wire w ∈ W, sample rw
R←− {0, 1} uniformly at random

– Next, generate the input wire labels of GCi as

Ki =
(

(sdiw1,riw1
; riw1

) ◦ . . . ◦ (sdiwL,riwL
; riwL

))
)

– For every gate G in universal circuit U(·, ·), program the (rw1 , rw2)th entry of the garbled
table as

k
rw2
w1,rw1

⊕ krw1
w2,rw2

⊕
(
sdw3,rw3

◦ rw3
◦ sdw4,rw4

◦ rw4

)
where each k0w,rw ◦ k

1
w,rw is computed to be the xor of the PRG output on the corre-

sponding seeds. All other entries in the garbled circuit are uniformly random.
Construct GCi to consist of garbled gates for every U(·, ·).

– Complete the translation table TTi as follows, TTi has the wire label kow,row mapped to
Ci(x) and a random string mapped to complement of Ci(x), where ow is the output wire
of Ci.

� Output {GCi,Ki}i∈[q]

Figure 3: Routine Correlated Garbling Simulator

Theorem B.1. Let IBE be a secure encryption scheme according to Definition 2.3 and GC be
a secure garbled circuits scheme according to Definition 2.2. Then the above S-FE scheme is a
statically-bounded-collusion non-adaptive strong simulation-secure encryption scheme according to
Definition 3.4.

60

Game 0. This is the real non-adaptive security game between a challenger and an attacker. The
game is parameterized by a security parameter κ.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Challenger C runs S-FE.Setup(1κ, 1λ, 1D, q)→ (mpk,msk) and sends mpk to A.
Setup phase:

� Set the parameters p = κ · c + 2, p′ = κ, Γ = 2pq2, ∆ = 2q, t = κ, N = p · Γ, N′ = p′ ·∆.

Let F be a finite field of size > N. Let PRG : {0, 1}κ → {0, 1}4p′κ+4 be a pseudorandom
generator.

� IBE.Setup(1κ, ([p]× [Γ])× ([p′]× [∆]))→ (IBE.pk1, IBE.msk1).

� IBE.Setup(1κ, ([p]× [Γ])× ([λ]× {0, 1}))→ (IBE.pk2, IBE.msk2).

� Output (mpk = (IBE.pk1, IBE.pk2),msk = (IBE.msk1, IBE.msk2)).

3. Keygen query phase: A queries the keygen oracle S-FE.KeyGen(msk, ·) and makes q queries,
where the oracle computes as follows, S-FE.KeyGen(msk, C)→ skC .

� Let C = C1 . . . Cλ be the bits of circuit C.

� For each i1 ∈ [p], sample γ
R←− [Γ], let tag1

i1 = (i1, γ).

� For each i2 ∈ [p′], sample δ
R←− [∆], let tag2

i2 = (i2, δ).

� For i ∈ [λ], let tag3
i = (i, Ci).

� Let taglist1 = (tag1
1, . . . , tag

1
p), taglist2 = (tag2

1, . . . , tag
2
p′), and taglist3 = (tag3

1, . . . , tag
3
λ).

� Let sk1 = sk2 = ∅. We assume that these sets are ordered sets.
For i1 ∈ [p],

– For i2 ∈ [p′],

* sk1
i1,i2 ← IBE.KeyGen(IBE.msk1, (tag

1
i1 , tag

2
i2)).

* Add sk1
i1,i2 to the set sk1.

– For i3 ∈ [λ],

* sk2
i1,i3 ← IBE.KeyGen(IBE.msk2, (tag

1
i1 , tag

3
i3)).

* Add sk2
i1,i3 to the set sk2.

� Output skC = (sk1, sk2, taglist1, taglist2, taglist3).

4. Challenge message: A outputs a challenge message x ∈ {0, 1}`.

5. Encryption phase: C computes S-FE.Enc(mpk, x = x1x2 . . . x`, 1
q)→ ct. It sends this to A.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

61

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

� For every tag2 ∈ ([p′]× [∆]), h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is xi,h where xi

denotes the ith coordinate of x ∈ F and is represented as bits of length log |F |.
� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e (see Figure 1).

– Output the hth bit of the G.

� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets
are ordered sets.

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

– Add the garbled circuit Ṽtag1,h to the set ct1.

– For every possible tag2 = (i2, δ) ∈ ([p′]× [∆]),

* Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Let inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

* Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Let inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

62

* Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Let inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

* Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Let inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

– For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
* Let input2 = Ltag

1,h
{Ci},{b}.

* ct2tag1,tag3,h = IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)).

* Add ct2tag1,tag3,h to the set ct2.

– Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

– Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

– Add inputµ to the set Eµ.

– Add ftag1 to the set ct3.

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

6. Guess: A outputs a bit b.

Game 1. In this game, we introduce some purely syntactic changes which make it easier to
describe some of the following games

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x = x1x2 . . . x`, 1
q)→ ct. It sends this to A.

� Parsing:

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing recieved identities:

– Let I ⊆ ([p]× [Γ]) be a set of identities which are queried on two or more keys,⋃
j∈q,j′∈q,i1∈[p] ∧ j 6=j′

(
(tag

1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

63

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2
∈ K1 \K ∈ ([p′]× [∆]) and add it (tag

2,(j)
i∗2

) to K∗ such that

K∗j = tag
2,(j)
i∗2

.

– Add K1 to set K. i.e. K = K ∪ K1.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

� For every tag2 ∈ ([p′]× [∆]), h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is xi,h where xi

denotes the ith coordinate of x ∈ F and is represented as bits of length log |F |.
� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e.

– Output the hth bit of the G.

� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets
are ordered sets.

64

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

– Add the garbled circuit Ṽtag1,h to the set ct1.

– For every possible tag2 = (i2, δ) ∈ ([p′]× [∆]),

* Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Let inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

* Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Let inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

* Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Let inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

* Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Let inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

– For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
* Let input2 = Ltag

1,h
{Ci},{b}.

* ct2tag1,tag3,h = IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)).

* Add ct2tag1,tag3,h to the set ct2.

– Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

– Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

– Add inputµ to the set Eµ.

– Add ftag1 to the set ct3.

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

4. Guess: A outputs a bit b.

Game 2. In this game, we proceed with the game only if the randomly selected subsets satisfy
some combinatorial properties required to allow us to properly program our ciphertexts.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x = x1x2 . . . x`, 1
q)→ ct. It sends this to A.

� Parsing:

65

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing recieved identities:

– Let I ⊆ ([p]× [Γ]) be a set of identities which are queried on two or more keys,⋃
j∈q,j′∈q,i1∈[p] ∧ j 6=j′

(
(tag

1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2
∈ K1 \K ∈ ([p′]× [∆]) and add it (tag

2,(j)
i∗2

) to K∗ such that

K∗j = tag
2,(j)
i∗2

. If no such element exists, output ⊥
– Add K1 to set K. i.e. K = K ∪ K1.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

66

� For every tag2 ∈ ([p′]× [∆]), h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is xi,h where xi

denotes the ith coordinate of x ∈ F and is represented as bits of length log |F |.
� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e .

– Output the hth bit of the G.

� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets
are ordered sets.

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

– Add the garbled circuit Ṽtag1,h to the set ct1.

– For every possible tag2 = (i2, δ) ∈ ([p′]× [∆]),

* Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Let inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

* Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Let inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

* Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Let inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

* Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Let inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

– For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
* Let input2 = Ltag

1,h
{Ci},{b}.

* ct2tag1,tag3,h = IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)).

* Add ct2tag1,tag3,h to the set ct2.

– Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

67

– Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

– Add inputµ to the set Eµ.

– Add ftag1 to the set ct3.

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

4. Guess: A outputs a bit b.

Game 3. In this game, we reorder the way we sample polynomials in the ciphertext.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x = x1x2 . . . x`, 1
q)→ ct. It sends this to A.

� Parsing:

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing recieved identities:

– Let I ⊆ ([p]× [Γ]) be a set of identities which are queried on two or more keys,⋃
j∈q,j′∈q,i1∈[p] ∧ j 6=j′

(
(tag

1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2
∈ K1 \K ∈ ([p′]× [∆]) and add it (tag

2,(j)
i∗2

) to K∗ such that

K∗j = tag
2,(j)
i∗2

. If no such element exists, output ⊥
– Add K1 to set K. i.e. K = K ∪ K1.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},

68

– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e.

– Output the hth bit of the G.

� For tag1 ∈ [p]× [Γ], j ∈ q, h ∈ [s′′]

– Sample a random degree p− 1 polynomials τj,h(·) with constant term as the hth bit

of CorrGarb(C, x, ζ(0), ξ(0), η(0), {νtag2(0)}tag2∈taglist2,(j)).

� For every tag2 ∈ ([p′]× [∆])\K∗, h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

� For every tag2′ ∈ K∗, h ∈ [s′′],

– Set νtag
2

h (·) to be the polynomial interpolation which satisfies ∀tag1 ∈ I,

τj,h(ftag1) = G(δC(ftag1), µ(ftag1), ζ(ftag1), ξ(ftag1), η(ftag1), {νtag2(ftag1)}tag2∈taglist2,(j)).

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is xi,h where xi

denotes the ith coordinate of x ∈ F and is represented as bits of length log |F |.
� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets

are ordered sets.

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

– Add the garbled circuit Ṽtag1,h to the set ct1.

69

– For every possible tag2 = (i2, δ) ∈ ([p′]× [∆]),

* Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Let inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

* Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Let inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

* Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Let inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

* Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Let inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

– For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
* Let input2 = Ltag

1,h
{Ci},{b}.

* ct2tag1,tag3,h = IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)).

* Add ct2tag1,tag3,h to the set ct2.

– Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

– Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

– Add inputµ to the set Eµ.

– Add ftag1 to the set ct3.

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

4. Guess: A outputs a bit b.

Game 4. In this game, we erase certain encryptions when the IBE ciphertext is not under a key
given to the adversary.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x = x1x2 . . . x`, 1
q)→ ct. It sends this to A.

� Parsing:

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

70

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing recieved identities:

– Let I ⊆ ([p]× [Γ]) be a set of identities which are queried on two or more keys,⋃
j∈q,j′∈q,i1∈[p] ∧ j 6=j′

(
(tag

1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2
∈ K1 \K ∈ ([p′]× [∆]) and add it (tag

2,(j)
i∗2

) to K∗ such that

K∗j = tag
2,(j)
i∗2

. If no such element exists, output ⊥
– Add K1 to set K. i.e. K = K ∪ K1.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

71

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e.

– Output the hth bit of the G.

� For tag1 ∈ [p]× [Γ], j ∈ q, h ∈ [s′′]

– Sample a random degree p− 1 polynomials τj,h(·) with constant term as the hth bit

of CorrGarb(C, x, ζ(0), ξ(0), η(0), {νtag2(0)}tag2∈taglist2,(j)).

� For every tag2 ∈ ([p′]× [∆])\K∗, h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

� For every tag2′ ∈ K∗, h ∈ [s′′],

– Set νtag
2

h (·) to be the polynomial interpolation which satisfies ∀tag1 ∈ I,

τj,h(ftag1) = G(δC(ftag1), µ(ftag1), ζ(ftag1), ξ(ftag1), η(ftag1), {νtag2(ftag1)}tag2∈taglist2,(j)).

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is xi,h where xi

denotes the ith coordinate of x ∈ F and is represented as bits of length log |F |.
� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets

are ordered sets.

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

– Add the garbled circuit Ṽtag1,h to the set ct1.

– For every possible tag2 = (i2, δ) ∈ ([p′]× [∆]),

* If ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j)

· Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Let inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

· Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Let inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

· Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Let inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

· Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Let inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

72

* Otherwise, add encryptions of appropriately padded 0’s

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), 0|inputζ |) to Eζ

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), 0|inputξ|) to Eξ

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), 0|inputη |) to Eη

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), 0|inputν |) to Eν

– For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
* If ∃j : tag1 ∈ taglist1,(j) ∧ tag3 ∈ taglist3,(j)

· Let input2 = Ltag
1,h

{Ci},{b}.

· ct2tag1,tag3,h = IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)).

· Add ct2tag1,tag3,h to the set ct2.

* Otherwise, add encryptions of appropriately padded 0’s

· Add IBE.Enc(IBE.pk2, (tag
1, tag3), 0|input2|) to ct2

– Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

– Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

– Add inputµ to the set Eµ.

– Add ftag1 to the set ct3.

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

4. Guess: A outputs a bit b.

Game 5. In this game, we simulate the garbled circuits when only requested on one key.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x = x1x2 . . . x`, 1
q)→ ct. It sends this to A.

� Parsing:

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing recieved identities:

– Let I ⊆ ([p]× [Γ]) be a set of identities which are queried on two or more keys,⋃
j∈q,j′∈q,i1∈[p] ∧ j 6=j′

(
(tag

1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

73

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2
∈ K1 \K ∈ ([p′]× [∆]) and add it (tag

2,(j)
i∗2

) to K∗ such that

K∗j = tag
2,(j)
i∗2

. If no such element exists, output ⊥
– Add K1 to set K. i.e. K = K ∪ K1.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e.

– Output the hth bit of the G.

� For tag1 ∈ [p]× [Γ], j ∈ q, h ∈ [s′′]

– Sample a random degree p− 1 polynomials τj,h(·) with constant term as the hth bit

of CorrGarb(C, x, ζ(0), ξ(0), η(0), {νtag2(0)}tag2∈taglist2,(j)).

� For every tag2 ∈ ([p′]× [∆])\K∗, h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

74

� For every tag2′ ∈ K∗, h ∈ [s′′],

– Set νtag
2

h (·) to be the polynomial interpolation which satisfies ∀tag1 ∈ I,

τj,h(ftag1) = G(δC(ftag1), µ(ftag1), ζ(ftag1), ξ(ftag1), η(ftag1), {νtag2(ftag1)}tag2∈taglist2,(j)).

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is xi,h where xi

denotes the ith coordinate of x ∈ F and is represented as bits of length log |F |.
� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets

are ordered sets.

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– If there exists a unique j∗ index for which tag1 ∈ taglist1,(j
∗).

* Simulate the garbled circuit (Ṽtag1,h,Ltag1,h)← GC.Sim(1κ, 1|input|, 1|V
tag1,h|, τj∗(ftag1))

* Add the simulated garbled circuit Ṽtag1,h to the set ct1.

* For every tag2 = (i2, δ) ∈ taglist2,(j
∗)

Set inputζ = Ltag
1,h

Eζi2

Set inputξ = Ltag
1,h

Eξi2

Set inputη = Ltag
1,h

Eηi2

Set inputν = Ltag
1,h

Eνi2

* For other tag2 = (i2, δ) ∈ [p′]× [Γ]\taglist2,(j∗)
Set inputζ = 0|inputζ |

Set inputξ = 0|inputξ|

Set inputη = 0|inputη |

Set inputν = 0|inputν |

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

* For every possible tag3 = (i, b) ∈ taglist3,(j
∗),

Set input2 = Ltag
1,h

{Ci} .

* For other tag3 = (i, b) ∈ [λ]× {0, 1}\taglist3,(j∗)
Set input2 = 0|input2|

* Set inputµ = Ltag
1,h

Eµ

* Add IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)) to ct2

– Otherwise

* Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

* Add the garbled circuit Ṽtag1,h to the set ct1.

* For every possible tag2 = (i2, δ) ∈ ([p′]× [∆])

75

· If ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j)

Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Set inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Set inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Set inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Set inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

· Otherwise, if 6 ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j), set inputζ to an
appropriately length of padded zeroes.
Set inputζ = 0|inputζ |

Set inputξ = 0|inputξ|

Set inputη = 0|inputη |

Set inputν = 0|inputν |

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

* For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
· If ∃j : tag1 ∈ taglist1,(j) ∧ tag3 ∈ taglist3,(j)

Set input2 = Ltag
1,h

{Ci},{b}.

· Otherwise, add encryptions of appropriately padded 0’s
Set input2 = 0|input2|

· Add IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)) to ct2

* Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

* Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

* Add inputµ to the set Eµ.

* Add ftag1 to the set ct3

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

4. Guess: A outputs a bit b.

Game 6. In this game, we simulate the correlated garbling.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

76

3. Encryption phase: C computes S-FE.Enc(mpk, x = x1x2 . . . x`, 1
q)→ ct. It sends this to A.

� Parsing:

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing recieved identities:

– Let I ⊆ ([p]× [Γ]) be a set of identities which are queried on two or more keys,⋃
j∈q,j′∈q,i1∈[p] ∧ j 6=j′

(
(tag

1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2
∈ K1 \K ∈ ([p′]× [∆]) and add it (tag

2,(j)
i∗2

) to K∗ such that

K∗j = tag
2,(j)
i∗2

. If no such element exists, output ⊥
– Add K1 to set K. i.e. K = K ∪ K1.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

77

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e.

– Output the hth bit of the G.

� For tag1 ∈ [p]× [Γ], j ∈ q, h ∈ [s′′]

– Sample a random degree p− 1 polynomials τj,h(·) with constant term as the hth bit
of SimCorrGarb(1κ, Cj , Cj(x)).

� For every tag2 ∈ ([p′]× [∆])\K∗, h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

� For every tag2′ ∈ K∗, h ∈ [s′′],

– Set νtag
2

h (·) to be the polynomial interpolation which satisfies ∀tag1 ∈ I,

τj,h(ftag1) = SimCorrGarb(1κ, Cj , Cj(x)) +
∑

ν(·)∈Eν
ν(ftag1).

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is xi,h where xi

denotes the ith coordinate of x ∈ F and is represented as bits of length log |F |.
� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets

are ordered sets.

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– If there exists a unique j∗ index for which tag1 ∈ taglist1,(j
∗).

* Simulate the garbled circuit (Ṽtag1,h,Ltag1,h)← GC.Sim(1κ, 1|input|, 1|V
tag1,h|, τj∗(ftag1))

* Add the simulated garbled circuit Ṽtag1,h to the set ct1.

* For every tag2 = (i2, δ) ∈ taglist2,(j
∗)

Set inputζ = Ltag
1,h

Eζi2

Set inputξ = Ltag
1,h

Eξi2

Set inputη = Ltag
1,h

Eηi2

Set inputν = Ltag
1,h

Eνi2

* For other tag2 = (i2, δ) ∈ [p′]× [Γ]\taglist2,(j∗)
Set inputζ = 0|inputζ |

78

Set inputξ = 0|inputξ|

Set inputη = 0|inputη |

Set inputν = 0|inputν |

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

* For every possible tag3 = (i, b) ∈ taglist3,(j
∗),

Set input2 = Ltag
1,h

{Ci} .

* For other tag3 = (i, b) ∈ [λ]× {0, 1}\taglist3,(j∗)
Set input2 = 0|input2|

* Set inputµ = Ltag
1,h

Eµ

* Add IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)) to ct2

– Otherwise

* Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

* Add the garbled circuit Ṽtag1,h to the set ct1.

* For every possible tag2 = (i2, δ) ∈ ([p′]× [∆])

· If ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j)

Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Set inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Set inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

Set inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Set inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

· Otherwise, if 6 ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j), set inputζ to an
appropriately length of padded zeroes.
Set inputζ = 0|inputζ |

Set inputξ = 0|inputξ|

Set inputη = 0|inputη |

Set inputν = 0|inputν |

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

* For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),

79

· If ∃j : tag1 ∈ taglist1,(j) ∧ tag3 ∈ taglist3,(j)

Set input2 = Ltag
1,h

{Ci},{b}.

· Otherwise, add encryptions of appropriately padded 0’s
Set input2 = 0|input2|

· Add IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)) to ct2

* Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

* Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

* Add inputµ to the set Eµ.

* Add ftag1 to the set ct3

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

4. Guess: A outputs a bit b.

Game 7. In this game, we erase the final input information encoded in the input polynomials,
allowing the circuit to be simulated.

1. Adversary A outputs circuit parameters 1λ, 1D and collusion bound q.

2. Setup Phase:. . . ,Keygen query phase:. . . ,Challenge message:. . . .

3. Encryption phase: C computes S-FE.Enc(mpk, x = x1x2 . . . x`, 1
q)→ ct. It sends this to A.

� Parsing:

– Let |Πx| = q (wlog the cardinality is the maximum number of queries allowed).

– Parse Πx = ((C1, C1(x)), . . . , (Cq, Cq(x))).

– ∀j ∈ [q], let skCj be the reply to query Cj to S1.

– Parse skCj as (sk1,(j), sk2,(j), taglist1,(j), taglist2,(j), taglist3,(j)).

– Parse taglist1,(j) = (tag
1,(j)
1 , . . . , tag

1,(j)
p).

– Parse taglist2,(j) = (tag
2,(j)
1 , . . . , tag

2,(j)
p′).

– Parse taglist3,(j) = (tag
3,(j)
1 , . . . , tag

3,(j)
λ).

� Computing recieved identities:

– Let I ⊆ ([p]× [Γ]) be a set of identities which are queried on two or more keys,⋃
j∈q,j′∈q,i1∈[p] ∧ j 6=j′

(
(tag

1,(j)
i1

) ∩ (tag
1,(j′)
i1

)
)
.

– If |I| > t, output ⊥.

� Computing cover free elements:
For j ∈ q, let K = K∗ = ∅. Let K∗ be an ordered set.

– Let K1 = ∪i2∈[p′]tag
2,(j)
i2

.

– Pick any element tag
2,(j)
i∗2
∈ K1 \K ∈ ([p′]× [∆]) and add it (tag

2,(j)
i∗2

) to K∗ such that

K∗j = tag
2,(j)
i∗2

. If no such element exists, output ⊥

80

– Add K1 to set K. i.e. K = K ∪ K1.

� Let U(·, ·) be a universal circuit that takes a circuit C and an input x and evaluates
C(x) where length of C is λ and length of x is ` bits. Let W refer to all wires of said
universal circuit.

� Pick N unique nonzero field elements ftag1 where tag1 ∈ [p]× [Γ].

� For every possible tag3 = (i3, b) ∈ [λ]× {0, 1},
– Sample a degree t polynomial δtag3(·) over F whose constant term is b.

� For every wire w ∈ W, b ∈ {0, 1}, tag2 ∈ ([p′]× [∆]),

– Sample sdtag
2

w,b
R←− {0, 1}κ.

– Set ktag
2

w,b = PRG(sdtag
2

w,b).

– Sample rtag
2

w
R←− {0, 1}.

– For h ∈ [κ],

* Sample a degree t polynomial ζtag
2

w,b,h(·) over F whose constant term is hth bit of

sdtag
2

w,b .

– For h ∈ [4 · p′ · κ+ 4],

* Sample a degree t polynomial ξtag
2

w,b,h(·) over F whose constant term is hth bit of

ktag
2

w,b .

– Sample a degree t polynomial ηtag
2

w (·) over F whose constant term is r
(tag2)
w .

� For tag1 ∈ [p]×[Γ], h ∈ [s′′], let Vtag1,h[{δtag3(ftag1)}tag3∈[λ]×{0,1}] be the circuit that takes

as inputs a circuit C of size λ and Eµ, Eζ , Eξ, Eη, Eν and computes an arithmetization
of the following circuit.

– Let C1, . . . Cλ be the binary representation of C.

– Let EδC = {δ(i,Ci)(ftag1)}i∈[λ].

– Compute G = CorrGarb(EδC , E
µ, Eζ , Eξ, Eη) +

∑
e∈Eν e.

– Output the hth bit of the G.

� For tag1 ∈ [p]× [Γ], j ∈ q, h ∈ [s′′]

– Sample a random degree p− 1 polynomials τj,h(·) with constant term as the hth bit
of SimCorrGarb(1κ, Cj , Cj(x)).

� For every tag2 ∈ ([p′]× [∆])\K∗, h ∈ [s′′],

– Sample a degree p− 1 polynomial νtag
2

h (·) over F whose constant term is 0.

� For every tag2′ ∈ K∗, h ∈ [s′′],

– Set νtag
2

h (·) to be the polynomial interpolation which satisfies ∀tag1 ∈ I,

τj,h(ftag1) = SimCorrGarb(1κ, Cj , Cj(x)).

� For every input i ∈ `, h ∈ [log |F|],
– Sample a degree-t polynomial µi,h(·) over F whose constant term is 0.

81

� Let ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν) be (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅). We assume that these sets
are ordered sets.

� For tag1 ∈ ([p]× [Γ]), h ∈ [s′′],

– If there exists a unique j∗ index for which tag1 ∈ taglist1,(j
∗).

* Simulate the garbled circuit (Ṽtag1,h,Ltag1,h)← GC.Sim(1κ, 1|input|, 1|V
tag1,h|, τj∗(ftag1))

* Add the simulated garbled circuit Ṽtag1,h to the set ct1.

* For every tag2 = (i2, δ) ∈ taglist2,(j
∗)

Set inputζ = Ltag
1,h

Eζi2

Set inputξ = Ltag
1,h

Eξi2

Set inputη = Ltag
1,h

Eηi2

Set inputν = Ltag
1,h

Eνi2

* For other tag2 = (i2, δ) ∈ [p′]× [Γ]\taglist2,(j∗)
Set inputζ = 0|inputζ |

Set inputξ = 0|inputξ|

Set inputη = 0|inputη |

Set inputν = 0|inputν |

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

* Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

* For every possible tag3 = (i, b) ∈ taglist3,(j
∗),

Set input2 = Ltag
1,h

{Ci} .

* For other tag3 = (i, b) ∈ [λ]× {0, 1}\taglist3,(j∗)
Set input2 = 0|input2|

* Set inputµ = Ltag
1,h

Eµ

* Add IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)) to ct2

– Otherwise

* Garble the circuit i.e. (Ṽtag1,h,Ltag1,h)← GC.Garble(1κ,Vtag1,h).

* Add the garbled circuit Ṽtag1,h to the set ct1.

* For every possible tag2 = (i2, δ) ∈ ([p′]× [∆])

· If ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j)

Let Êζ
tag1,tag2

= {ζtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[κ].

Set inputζ = Ltag
1,h

Eζi2
,Êζ

tag1,tag2

Let Êξ
tag1,tag2

= {ξtag
2

w,b,h(ftag1)}w∈W,b∈{0,1},h∈[4p′κ+4].

Set inputξ = Ltag
1,h

Eξi2
,Êξ

tag1,tag2

.

Let Êη
tag1,tag2

= {ηtag
2

w (ftag1)}w∈W .

82

Set inputη = Ltag
1,h

Eηi2
,Êη

tag1,tag2

.

Let Êνtag1,tag2,h = {νtag
2

h (ftag1)}.
Set inputν = Ltag

1,h

Eνi2
,Êν

tag1,tag2,h

.

· Otherwise, if 6 ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j), set inputζ to an
appropriately length of padded zeroes.
Set inputζ = 0|inputζ |

Set inputξ = 0|inputξ|

Set inputη = 0|inputη |

Set inputν = 0|inputν |

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputζ)) to Eζ .

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputξ)) to Eξ.

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputη)) to Eη.

· Add IBE.Enc(IBE.pk1, (tag
1, tag2), (inputν)) to Eν .

* For every possible tag3 = (i, b) ∈ ([λ]× {0, 1}),
· If ∃j : tag1 ∈ taglist1,(j) ∧ tag3 ∈ taglist3,(j)

Set input2 = Ltag
1,h

{Ci},{b}.

· Otherwise, add encryptions of appropriately padded 0’s
Set input2 = 0|input2|

· Add IBE.Enc(IBE.pk2, (tag
1, tag3), (input2)) to ct2

* Let Êµ
tag1

= {µi,h(ftag1)}i∈`,h∈[log |F|].

* Let inputµ = Ltag
1,h

Eµ,Êµ
tag1

.

* Add inputµ to the set Eµ.

* Add ftag1 to the set ct3

� Output ct = (ct1, ct2, ct3,Eµ,Eζ ,Eξ,Eη,Eν).

4. Guess: A outputs a bit b.

B.1 Analysis.

Next, we show by a sequence of lemmas that no adversary can distinguish between any two adjacent
games with non-negligible advantage. In the last game, we show that the advantage of any such
adversary is negligible. We will let advxA denote the probability that A outputs bit 1 in Game x.

Lemma B.2. ∀κ ∈ N, |adv0
A − adv1

A| = 0.

Proof. This game simply introduces new syntactic notation and does not affect the execution of
the game

Lemma B.3. ∀κ ∈ N, |adv1
A − adv2

A| = negl(κ).

Proof. In Game 2, we add two abort conditions when taglist1 is does not satisfy the small set
intersection property or when taglist2 is not cover free. By Lemma A.2 and Lemma A.1, these both
occur with negligible probability.

83

Lemma B.4. ∀κ ∈ N, |adv2
A − adv3

A| = 0.

Proof. Note in Game 2, the distribution of τj,h is a uniformly random polynomial with the specified

constant term by the randomness of ν(·). Since the distribution of {νtag2(·)}tag2∈taglist2\tag2′ , τj,h is

identical, and these fix the value of νtag
2′

(·), the distribution of νtag
2
(·) given to A is identical.

Lemma B.5. ∀κ ∈ N, |adv3
A − adv4

A| = negl(κ).

Proof. If there does not exist j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j), then we know that by
construction of S-FE.KeyGen, that IBE keygen is never given out for identity (tag1, tag2) for IBE.pk1.
Similarly, if there does not exist j : tag1 ∈ taglist1,(j) ∧ tag3 ∈ taglist3,(j), then we know that
by construction of S-FE.KeyGen, that IBE keygen is never given out for identity (tag1, tag3) for
IBE.pk2. Thus, we can provide a series of (polynomially many) subhybrids incrementally replacing
each ciphertext with 0, where we can argue the indistinguishability of said subhybrids by reducing
to IBE security.

Let L = Eζ ◦Eξ ◦Eη ◦Eν ◦ ct2 be a list of all IBE ciphertexts output by Game 3. For a ∈ | L|, we
define Game 3a to replace any ciphertext in the first a elements of L to under identity (tag1, tag2) :6
∃j tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j) or (tag1, tag3) :6 ∃j tag1 ∈ taglist1,(j) ∧ tag3 ∈ taglist3,(j) with
an equal length encryption of 0 under the same ciphertext.

Claim B.1. ∀κ ∈ N, a ∈ [| L|], |adv3a−1

A − adv3a

A | ≤ negl(κ)

Proof. Note the only difference between Games 3a−1 and 3a is the way ciphertext La is constructed.
We can break this down into two cases - for the tag which La is encrypted under, either it is a tag
(tag1, tag2) for which ∃j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j) or there is no such j (an analogous
argument holds for ciphertexts encrypted under tags in space (tag1, tag3), but for notational sim-
plicity, we will refer to the former case). In the first case, the two games are identical, so we are
done. In the second case, we can rely on IBE security.

Suppose A is a distinguisher between games 3a−1 and 3a. Then we can construct an adversay
A′ which breaks the IBE security game as follows:

A′

1. Run A, receive circuit parameters

2. Receive mpk on identity space ([p]× [Γ])× ([p′]× [∆]) from challenger and set as IBE.pk1

3. Generate (IBE.pk2, IBE.sk2)← IBE.Setup(1κ, ([p]× [Γ])× ([λ]× {0, 1}))→.

4. Pass (IBE.pk1, IBE.pk2) to A.

5. Receive keygen queries from A, and run S-FE to generate any of required secret keys. Query
the IBE.KeyGen oracle for any secret keys of IBE.pk1 = mpk required.

6. Run Game 3a−1’s Encryption Phase.

� When encrypting La, let m be the message to be encrypted under (tag1, tag2). Set
m0 = m and m1 = 0 and receive IBE challenge ciphertext ct. Set La = ct.

7. Receive bit b from A. Return b.

84

Since the only difference between Game 3a−1 and 3a on La, we can see the execution of A′
above corresponds exactly to 3a−1 when b = 0 and 3a when b = 1. Since there is not j : tag1 ∈
taglist1,(j) ∧ tag2 ∈ taglist2,(j), IBE.KeyGen never needs to request on (tag1, tag2).

Since L is of polynomial size, the difference between Games 3 = 30 and 3| L| = 4 is negligible as
well.

Lemma B.6. ∀κ ∈ N, |adv4
A − adv5

A| = negl(κ).

Proof. Much like the previous games, we can provide a series of subhybrids indexed by tag1 ∈
([p]× [Γ]) which are indistinguishable this time by a reduction to the simulation security of garbled
circuits.

Define some list tag1
1, . . . tag

1
p·Γ of all elements in ([p]× [Γ]). Define Game 4a to be the game

for which simulate garbling (run the red text in Game 5) only for tags tag1
1, . . . , tag

1
a.

Claim B.2. ∀κ ∈ N ∀a ∈ [p · Γ], |adv4a−1

A − adv4a

A | = negl(κ).

Proof. Observe that these games only differ on tag1
a. We can split this into two cases - either there

does not exists a unique j∗ for which tag1
a ∈ taglist1,(j

∗), in which case these games are identical, or
there does exist such a unique taglist1,(j

∗). In the latter case, suppose A is a distinguisher between
games 4a−1 and 4a. Consider the following distinguisher A′ for garbled circuits.

A′

1. Run A and receive circuit parameters.

2. Run Setup Phase, Keygen Phase, Challenge Phase as the challenger using S-FE.Setup, S-FE.KeyGen.

3. Run Game 4a−1’s Encryption Phase.

� At tag1
a, request a sample (GC,L) from the garbled circuit security game for a circuit of

size |Vtag1,h| evaluated at EδC(tag1
a), E

µ(tag1
a), E

ζ(tag1
a), E

ξ(tag1
a), E

η(tag1
a), E

ν(tag1
a).

For all tag2 ∈ taglist2,(j
∗),

– Set inputζ = Ltag
1,h

Eζi2

– Set inputξ = Ltag
1,h

Eξi2

– Set inputη = Ltag
1,h

Eηi2

– Set inputν = Ltag
1,h

Eνi2

Similarly, for all tag3 ∈ taglist3,(j
∗),

– Set input2 = Ltag
1,h

{Ci}

In addition, for all other tag2, tag3 not in the above lists, set the above mentioned values

to appropriately padded 0. Finally, set inputµ = Ltag
1,h

Eµ
before proceeding with execution

of Game 4a−1.

85

4. Receive bit b from A. Return b.

We can observe here that the distribution induced by the above is Game 4a−1 when (GC,L)
is produced by GC.Garble and is Game 4a when produced by GC.Sim. We can verify that the latter is
true as we set τj∗(ftag1) = Vtag1,h(EδC(tag1

a), E
µ(tag1

a), E
ζ(tag1

a), E
ξ(tag1

a), E
η(tag1

a), E
ν(tag1

a)),

while the former is true as we can see when tag2 /∈ taglist2,(j
∗), since j∗ is the unique list for which

tag1 ∈ taglist1,(j
∗), we know that there cannot exist j : tag1 ∈ taglist1,(j) ∧ tag2 ∈ taglist2,(j), which

means that Game 4a−1 sets the inputs under those corresponding tags to 0. Since these two dis-
tributions are computationally indistinguishable by the security of garbled circuits, A′ and thus A
must have negligible advantage.

Since p ·Γ is polynomial, the difference between Games 4 = 40 and 4p·Γ = 5 is negligible as well.

Lemma B.7. ∀κ ∈ N, |adv5
A − adv6

A| = negl(κ).

Proof. The only difference between these games is the use of SimCorrGarb rather than CorrGarb in
generating τj,h. Let A be a distinguisher between Games 5 and 6. Then consider the following
reduction A′ against the security game of correlated garbling.

A′

1. Run A and receive circuit parameters.

2. Run Setup Phase, Keygen Phase, Challenge Phase as the challenger using S-FE.Setup, S-FE.KeyGen.

3. Run Game 5’s Encryption Phase.

� Submit the input x and circuits C1, . . . , Cq received in Keygen phase to your challenger.

� Receive encodings {GCi,Ki}i∈[q]

� Set τj,h(·) to be a random polynomial with constant term equal to the hth bit of (GCj ,Kj).

� Set νj,h(·) to be the polynomial which satisfies

τj,h(ftag1) = (GCj ,Kj)h +
∑

ν(·)∈Eν
ν(ftag1).

4. Receive bit b from A. Return b.

Lemma B.8. ∀κ ∈ N, |adv6
A − adv7

A| = 0.

Lemma B.9. Observe that in game 6, µ is only evaluated on points where GC is not simulated -
i.e. when tag1 ∈ I. Since there are < p′ such points, the evaluation of a random polynomial with
constant terms xi and 0 are information-theoretically identical.

86

	Introduction
	Technical Overview
	Related Work and Future Directions
	Concurrent Work

	Preliminaries
	Garbled Circuits
	Identity-Based Encryption

	Functional Encryption: Dynamic Bounded Collusion
	Bounded Collusion FE: Static and Dynamic
	Upgrading Static to Dynamic Bounded Collusion FE via Weak Optimal Efficiency
	Construction
	Correctness, Efficiency, and Security

	Statically Bounded Collusion FE for NC1
	Security
	Analysis.

	Statically Bounded Collusion FE for P/poly
	Security for AV scheme

	References
	Helpful Combinatoric Lemmas
	Security for AV scheme
	Analysis.

