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Abstract

The classic work of Gorbunov, Vaikuntanathan and Wee (CRYPTO 2012) and follow-ups provided
constructions of bounded collusion Functional Encryption (FE) for circuits from mild assumptions.
In this work, we improve the state of affairs for bounded collusion FE in several ways:

1. New Security Notion. We introduce the notion of dynamic bounded collusion FE, where the
declaration of collusion bound is delayed to the time of encryption. This enables the encryptor to
dynamically choose the collusion bound for different ciphertexts depending on their individual
level of sensitivity. Hence, the ciphertext size grows linearly with its own collusion bound and
the public key size is independent of collusion bound. In contrast, all prior constructions have
public key and ciphertext size that grow at least linearly with a fixed bound Q.

2. CPFE for circuits with Dynamic Bounded Collusion. We provide the first CPFE schemes for
circuits enjoying dynamic bounded collusion security. By assuming identity based encryption
(IBE), we construct CPFE for circuits of unbounded size satisfying non-adaptive simulation
based security. By strengthening the underlying assumption to IBE with receiver selective
opening security, we obtain CPFE for circuits of bounded size, output length and depth enjoying
adaptive simulation based security. Moreover, we show that IBE is a necessary assumption for
these primitives.
Moreover, by relying on the Learning With Errors (LWE) assumption, we obtain the first
succinct CPFE for circuits, i.e. supporting circuits with unbounded size, but fixed output length
and depth. This scheme achieves adaptive simulation based security.

3. KPFE for circuits with dynamic bounded collusion. We provide the first KPFE for circuits of
unbounded size, but bounded depth and output length satisfying dynamic bounded collusion
security. Our construction relies on LWE and achieves adaptive simulation based security. This
improves the security of succinct KPFE by Goldwasser et al. [GTKP+13b].

4. KP and CP FE for TM/NL with dynamic bounded collusion. We provide the first KPFE and
CPFE constructions of bounded collusion functional encryption for Turing machines in the
public key setting from LWE. Our constructions achieve non-adaptive simulation based security.
Both the input and the machine in our construction can be of unbounded polynomial length
but the ciphertext size grows with the upper bound on the running time of the Turing machine
on the given input. Given RAM access to the ciphertext, the scheme enjoys input specific
decryption time.
We provide a variant of the above scheme that satisfies adaptive security, but at the cost of
supporting a smaller class of computation, namely Nondeterministic Logarithmic-space (NL).
Since NL contains Nondeterministic Finite Automata (NFA), this result subsumes all prior
work of bounded collusion FE for uniform models from standard assumptions [AMY19, AS17].
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1 Introduction

Functional encryption [SW05, BSW11] is a generalization of public key encryption which allows fine
grained control on disclosure of encrypted data. In functional encryption (FE), a secret key is associated
with a function f , a ciphertext is associated with an input x and decryption reveals f(x) and nothing
more. Security requires that any collusion of users cannot learn more about the ciphertext beyond what
they are individually authorized to learn – this property is known as collusion resistance.

In a classic work, Gorbunov, Vaikuntanathan and Wee [GVW12] provided the first construction of
Functional Encryption for circuits in the bounded collusion model – namely in a model where the scheme
may generate an unbounded number of keys but security holds only against an adversary who obtains
at most an a-priori bounded number of keys, say Q. Their construction supports all polynomial sized
circuits, and is based on the existence of public key encryption (PKE) and pseudorandom generators
(PRG) in NC1. Since circuits are a powerful model of computation, this work provides a strong feasibility
result, and moreover, from weak assumptions. Subsequent work provided other useful improvements:
the work of Ananth and Vaikuntanathan [AV19] removed the assumption of PRGs so that the resulting
scheme relies on the minimal assumption of PKE, while a series of works [AR17, Agr17, AV19]
improved the dependence of the public key and ciphertext on the collusion bound Q. A parallel line of
work has studied the construction of functional encryption schemes supporting unbounded collusions
[Agr19, AJL+19, JLMS19, JLS20, GJLS20], from standard assumptions, culminating in the recent
breakthrough of Jain, Lin and Sahai [JLS20] which achieves this much sought-after goal. However, this
intricate construction relies on several assumptions including pairings making it quantum insecure, and
has many complex reductions that incur significant loss in efficiency. Hence, it remains meaningful to
consider simpler, plausibly post-quantum constructions, even in weaker security models.

Limitations of Prior Work. Despite their success, existing constructions of FE in the bounded collusion
model suffer from at least three major drawbacks: i) the collusion bound Q must be declared at setup
time and is fixed once and for all, ii) in the public key setting, these constructions support only the circuit
model of computation and iii) all constructions that we are aware of are in the key policy setting (KPFE),
where the function f is embedded in the secret key and the input x is embedded in the ciphertext of the
FE scheme. The dual, ciphertext policy setting (CPFE), where the roles of f and x are swapped, is more
natural in several applications but has received much less attention. We discuss each of these limitations
in turn.

The first limitation pervades all prior work to the best of our knowledge and is quite a significant
drawback in our opinion. Since the collusion bound must be declared at setup time, all data encrypted
under the scheme must necessarily be subject to the same level of collusion-resistance. Thus, the
practioner is forced to choose a collusion bound which is strong enough for the most sensitive information
that may ever be encrypted under the scheme – this implies that Q is an upper bound on collusion
resistance. However, not all information has the same level of sensitivity. Consider an organization:
messages involving a potential merger with another organization, or a case of harassment which must
be investigated are significantly more delicate than routine exchanges. It is desirable that such sensitive
messages are protected even if a large number of key holders collude. On the other hand, for routine
ciphertexts decrypted via function keys (such as checking whether some encrypted message is spam or
not), such a strong level of collusion resistance is unnecessary. Moreover, the collusion bound Q impacts
the size of the public key and ciphertext of the scheme. Thus, if Q is large, then the public key as well as
every ciphertext generated by the scheme is forced to grow at least linearly in Q leading to a prohibitive
impact on efficiency.

Regarding the second limitation, it is well known that being non-uniform, the circuit model is ill-
suited for several applications [GTKP+13a, AS16, AS17, AM18]. In particular, circuits force the size
of the input to be fixed a-priori which in turn necessitates instantiation of the scheme with an upper
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bound on data size. This again leads to loss in efficiency and is ill-suited to datasets of dynamic size.
Moreover, circuits incur worst case running time over all inputs, which is also clearly undesirable in
practice. Finally, all constructions of CPFE for circuits that we are aware of, proceed via the universal
circuit route, i.e. consider the universal circuit U(f,x) = f(x) and construct KPFE with the circuit
U(·,x) in the secret key and f represented as a string, in the ciphertext. Aside from the loss of efficiency
that results by this transformation (now, both the input and the function grow with the maximum circuit
size), this transformation restricts the CPFE scheme to bounded size circuits. This is dissatisfying, as
much in practice as in theory. The ciphertext policy variant of FE is desirable in many applications. Even
in the special case of attribute based encryption (ABE), the ciphertext policy model allows an access
control policy f to be embedded against a secret message m in the ciphertext. The secret key contains
user attributes x which represent the various roles of a user, such as institute, department, date of joining
and such others. Decryption succeeds to recover m if and only if the user’s attributes satisfy the access
control policy in the ciphertext. It is arguably more natural to have an access control policy apply to a
secret message than to a user. Another application scenario is when the function f is proprietary and
must be hidden via encryption, while the data can be made publicly available. For instance, suppose a
government wants to enable citizens to run useful algorithms developed by different research labs on
some public data, eg. census data. The government publishes a secret key for the data x, the labs publish
ciphertexts with their respective algorithms fi (of arbitrary size) and anyone can compute fi(x). The
research labs want to keep their algorithms secret from competitors (but the government agency is trusted)
so the function is encrypted. The data is public but becomes available asynchronously and independently
of the function(s), so the labs cannot compute the function outputs each time. For example, new census
data may be published every year but the same programs can be used every year. Computing private
programs on public data is analogous to the setting of obfuscation, except that here the government
agency can be trusted, making it simpler than obfuscation. Given the many natural applications of CPFE,
it is undesirable to settle for a limited generic transformation via KPFE.

State of the Art. While FE for uniform models of computation has been studied [GTKP+13a, AS16, AS17,
AM18], direct constructions from standard assumptions, supporting unbounded length inputs, are few
and far-between. In the public key setting, the FE scheme by Agrawal and Singh [AS17] supports Turing
machines and is based on the Learning With Errors assumption. However, this scheme only supports a
single key request by the adversary in the security game. In the symmetric key setting, the recent work
of Agrawal, Maitra and Yamada [AMY19] provided a construction of FE for non-deterministic finite
automata (NFA) which is secure against bounded collusions of arbitrary size. However, generalizing this
construction to the public key setting and to stronger models like Turing machines was left open. To the
best of our knowledge, all bounded collusion FE schemes suffer from the fixed collusion bound, and the
only CPFE scheme that supports unbounded sized circuits is that by Sahai and Seyalioglu [SS10], which
is only single key secure.

1.1 Our Results

In this work, we improve the state of affairs in several ways:

1. New Security Notion. We introduce the notion of dynamic bounded collusion FE, where the
declaration of collusion bound is delayed to the time of encryption. This enables the encryptor to
dynamically choose the collusion bound for different ciphertexts depending on their individual
level of sensitivity. Hence, the ciphertext size grows linearly with its own collusion bound and the
public key size is independent of collusion bound. In contrast, all prior constructions have public
key and ciphertext size that grow at least linearly with a fixed bound Q. All our constructions
satisfy our new security notion – we also refer to our new notion as achieving delayed collusion
resistance.
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2. CPFE for circuits with Dynamic Bounded Collusion. We provide the first CPFE schemes for
circuits enjoying dynamic bounded collusion security. In more detail:

• By relying on the assumption of identity based encryption (IBE), we construct CPFE for
circuits of unbounded size, output length and depth satisfying non adaptive simulation based
security. Recall that non-adaptive simulation security refers to a game where the attacker
must make all it’s key requests before obtaining the challenge ciphertext [BSW11].

• By strengthening the underlying assumption to IBE with receiver selective opening security,
we obtain CPFE for circuits of bounded size, output length and depth enjoying adaptive
simulation based security1. Moreover, we show that IBE is a necessary assumption for these
primitives.

• By relying on the Learning With Errors (LWE) assumption, we obtain a succinct CPFE for
circuits – namely, supporting circuits with unbounded size, but fixed output length and depth,
which achieves adaptive simulation based security.

3. KPFE for circuits with dynamic bounded collusion. We provide the first KPFE for circuits of
unbounded size, but bounded depth and output length satisfying dynamic bounded collusion. Our
construction relies on LWE and achieves adaptive simulation based security. This improves the
security of succinct KPFE by Goldwasser et al. [GTKP+13b].

4. KP and CP FE for TM/NL with dynamic bounded collusion. We provide the first KPFE and CPFE
constructions of bounded collusion functional encryption for Turing machines in the public key
setting from LWE. Such a result was not known even with fixed collusion resistance to the best
of our knowledge. Our constructions achieve non-adaptive simulation based security. In terms of
functionality: a secret key in our KPFE construction encodes an TM M , a ciphertext encodes a
message x and decryption allows recovery of M(x) and nothing else. Both the input x and the
machine M in our construction can be of unbounded polynomial length but the ciphertext size
grows with the upper bound on the running time of the Turing machine on the given input x. Given
RAM access to the ciphertext, the scheme enjoys input specific decryption time.

5. Adaptive Bounded Collusion FE for NL with dynamic bounded collusion. The above construction
guarantees non-adaptive security while supporting general Turing machines. We also consider a
variant of the above scheme that satisfies stronger adaptive security, but at the cost of supporting
smaller class of computation Nondeterministic Logarithmic-space (NL). Since NL contains
Nondeterministic Finite Automata (NFA), this result subsumes all prior work of bounded collusion
FE for uniform models from standard assumptions [AMY19, AS17].

1.2 Our Techniques

In this section, we provide an overview of our techniques. At a high level, our work addresses two broad
challenges: obtaining stronger security guarantees via dynamic collusion and achieving more powerful
functionality via general TM or NL. We examine each of these in turn.

Dynamic Bounded Collusion. Observe that the problem of constructing FE with delayed collusion
bounds has not been studied until our work, even for bounded size circuits. A first observation is that
in such an FE scheme, it is necessary that the efficiency of the setup and key generation algorithms are
independent of (or dependent only poly-logarithmically on) the collusion bound Q. To the best of our
knowledge, previous bounded FE schemes such as [GVW12, AR17, Agr17] do not satisfy this property.

1For the knowledgeable reader, the lower bound from [BSW11] does not apply because there is only one challenge ciphertext,
with bounded output length in the security game.
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However, the recent construction by Ananth and Vaikuntanathan [AV19] (AV19) does satisfy one half of
this requirement – it enjoys a key generation algorithm which is efficient in this sense. Unfortunately, the
setup algorithm of their construction runs in time that grows with Q. Our first step will be to remove the
dependency on Q from the setup algorithm.

Improving AV19 to remove setup dependence on Q. To begin, we recap some relevant ideas from their
construction. Their construction is generic: they construct Q-bounded FE scheme from a single key FE
scheme. For concreteness, we instantiate the single key FE scheme with the concrete one by Sahai and
Seyalioglu [SS10]. While their construction is key policy, we adapt it to the ciphertext policy setting in
what follows. At a very high level, their Q bounded FE scheme runs Q subsystems in parallel, such that
each subsystem in turn runs N instances of the SS10 scheme. Since their construction is optimized using
an elegant combinatorial argument, they obtain a secret key size of poly rather than O(Q · poly). This
optimized construction forms the starting point of our work. The specific details of their final construction
are not relevant to this overview: we note only some salient features. Their construction makes use of an
“MPC style” secret sharing scheme, where an input circuit C is divided into shares Ĉ1, . . . , ĈN . Now, n
out of N parties, without any interaction, perform some computation on their shares corresponding to
input x, to obtain partial outputs ŷ1, . . . , ŷn. These n partial outputs are then combined to obtain output
y = C(x).

Using the above secret sharing scheme, the AV19 construction may be summarized as follows. The
setup algorithm generates several (the exact number is not relevant for us) public and secret key pairs of
a PKE scheme. To encrypt a circuit C, the encryptor computes many shares of C as described above.
These shares Ĉi are then hardwired into garbled circuits which, given input x, compute ŷi using the
above method. The labels of these garbled circuits are encrypted using the public keys provided by the
setup algorithm. The function key for x is a set of PKE secret keys that depend on x (again, the precise
dependence is not required here). The decryptor first uses the PKE secret keys to recover the appropriate
labels of the garbled circuit corresponding to x. Then the garbled circuit is evaluated to obtain shares ŷi
of the decryption result. These shares are then combined to obtain C(x).

The reason why their setup algorithm takes time linear in the collusion bound Q is that the number of
public keys required by their scheme is linear in Q. Having unrolled their construction when instantiated
with [SS10], our approach to removing this dependency is simple: we replace these public keys of PKE
with a single master public key of an identity based encryption (IBE) scheme. Then, encryption with
PKi is replaced by an encryption with IBE.Enc(IBE.mpk, i, ·), where i is the identity. The intuition for
security is the same as the original construction. Thus, we use the power of the IBE to hide the labels of
the garbled circuits, use the power of the garbled circuits to hide information other than the decryption
shares, and finally use the power of the secret sharing scheme to hide the circuit C.

We show that if we desire adaptive simulation (AD-SIM) security for the resultant construction, we
need an IBE satisfying the stronger security notion of receiver selective opening security [KT18]. This
is for a reason similar to why [GVW12, AV19] required non-committing security for the underlying
public key encryption. Since the length of the message that can be encrypted using an IBE with receiver
selective opening security is bounded, so is the size of the circuits that can be encrypted in our CPFE
scheme. If we relax the security notion and consider non-adaptive (NA-SIM) security, we can use IBE
with standard IND-CPA security. This allows us to encrypt a message of unbounded length, which in turn
allows us to encrypt circuits with unbounded size. A simple adaptation of the lower bound of Boneh et al.
[BSW11] shows that to support unbounded sized circuits, NA-SIM security is optimal2.

2Consider a circuit C∗ with unbounded size and unbounded output length. Let us say that this circuit has hardwired with
random string s of length `, and upon an input x, the circuit ignores the input and outputs s. Here, ` is unbounded. Now if the
attacker makes even a single key request for some x∗ after seeing the challenge ciphertext corresponding to C∗, the simulator is
faced with the impossible task of embedding a random string of length ` into a fixed sized secret key. Hence, the adversary must
not be allowed post-challenge key requests when circuits of unbounded output length are supported.
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Supporting Delayed Collusion in Security. So far, we have constructed bounded CPFE schemes whose
setup and key generation algorithms run in time independent of Q. However, this is only necessary and
not sufficient to construct FE with delayed collusion bound. Once the system is set up with the bound Q,
this will still only be secure against a collusion of size Q. Our next step is to remove this restriction so
that the encryptor can choose the bound flexibly, and in particular, differently for each ciphertext.

Here, our crucial observation is that the setup and key generation algorithms of the scheme can be
run even for super polynomial Q, thanks to their efficiency properties. Hence, we may use the “powers of
two trick” [GTKP+13a], where we run the system with different collusion bounds Q = 2, 22, . . . , 2λ.
The setup and key generation algorithms are run for these λ subsystems in parallel. When we encrypt
the message, the encryptor chooses the smallest 2i that exceeds the bound Q it wants and encrypts the
message using the i-th subsystem. Decryption is performed using the secret key for the i-th instance of the
subsystem. The resulting scheme inherits the efficiency and security properties of the subsystem. Namely,
if the subscheme is NA-SIM (respectively AD-SIM ) secure and supports unbounded (respectively
bounded) circuits, so does the resulting scheme. Thus, we obtain two schemes with incomparable
properties. Please see Section 3 for details.

Observe that the construction of bounded collusion FE in AV19 can be based on the minimal
assumption of plain PKE [AV19]. On the other hand, our constructions described above rely on the
stronger primitive of IBE. It is natural to ask whether we can base the security of the construction to
weaker primitives such as PKE. We answer this question negatively. In Section 7 we argue that the
usage of IBE is unavoidable, by showing that FE with dynamic bounded collusion for very small class of
functionalities already implies IBE.

Supporting More General Function Classes. Next, we describe our techniques for supporting more
flexible models of computation, namely Turing machines or NL. The main difficulty of constructing FE for
these function classes is to handle unbounded length inputs and unbounded size machines simultaneously.
To address this, we borrow a trick from the work of Agrawal, Maitra and Yamada [AMY19]: instead of
trying to handling them at once, we construct intermediate schemes that can handle an unbounded size
object on one side, but bounded size object on the other. Towards this, we construct KPFE and CPFE
schemes with dynamic bounded collusion that support unbounded size circuits, but with bounded output
length and depth (note that input length is always fixed). Later, we will see how to compile these to
construct FE for more general function classes. Note that in the previous step we already constructed a
CPFE scheme that can handle circuits with unbounded size even without restrictions on depth and output
length. However, this construction was only NA-SIM secure. Here, we aim to construct schemes with
AD-SIM security.

Succinct KPFE and CPFE. Let us start with the construction of KPFE that can support unbounded size
circuits. Note that such FE schemes have already been constructed by the previous works under the name
of succinct FE [GTKP+13b, Agr17]. However, they do not satisfy the security requirement that we want.
Namely, they are (conventional) bounded collusion schemes and do not satisfy the delayed collusion
property. In addition, they only satisfy NA-SIM security. Here, we upgrade the security of existing
succinct FE schemes so that they satisfy the delayed collusion property and AD-SIM security with the
help of our CPFE scheme for bounded circuits that already satisfies the desired security properties. In
more detail, we combine succinct single-key KPFE, denoted by 1KPFE with our AD-SIM secure CPFE
for bounded circuits, to obtain a new succinct KPFE with the desired security properties.

At a high level, the construction works as follows. The master public key and master secret key of
the final KPFE scheme are those of the CPFE. To encrypt a message x for a collusion bound 1Q, the
encryptor first constructs a circuit 1KPFE.Enc(·, x)3, which is an encryption algorithm of the single-key
KPFE that takes as input a master public key of the single-key KPFE and outputs an encryption of the

3The description here is oversimplified – in fact we need a PRF to derive the randomness for the encryption.
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message x under the key. The encryptor then encrypts the circuit using the CPFE scheme with respect
to the bound 1Q. To generate a secret key for a circuit C, we first freshly generate a master key pair
of the single-key KPFE (1KPFE.mpk, 1KPFE.msk). We then generate a CPFE secret key CPFE.sk
corresponding to the string 1KPFE.mpk and then generate secret key 1KPFE.skC for the circuit C of the
single-key KPFE scheme. The final secret key is (CPFE.sk, 1KPFE.skC). Decryption is done by first
decrypting the CPFE ciphertext using the CPFE secret key to recover 1KPFE.Enc(1KPFE.mpk, x) and
then decrypting it using the secret key 1KPFE.skC of the single-key KPFE scheme to recover C(x).

We discuss the efficiency of the above scheme. First we claim that the above scheme is succinct
(or equivalently, can deal with unbounded size of circuits). This is the case even though underlying
CPFE can only deal with bounded size circuits, since the size of circuits that should be supported by
the encryption algorithm of CPFE is |1KPFE.Enc(·, x)| = poly(λ, |x|), which is independent of the
size of circuits by the succinctness of the underlying 1KPFE scheme. Next, we discuss the security of
the scheme. Intuitively speaking, by the security of the underlying CPFE, the adversary can obtain no
information beyond the decryption result of the CPFE. This means that, the adversary only obtains the
information {1KPFE.Enc(1KPFE.mpk(i), x), 1KPFE.sk

(i)

C(i)}i∈[Q] for Q freshly generated, independent
instances. In turn, this implies that the adversary can only obtain the information of {C(i)(x)}i∈[Q] by
the single-key security of the underlying KPFE, as desired. A formal argument shows that the resulting
KPFE scheme inherits AD-SIM security of the CPFE, even if the underlying single-key KPFE is only
NA-SIM secure. Please see Section 4 for details.

Next, we discuss the adaptation to the CPFE setting. In this construction, we use a reusable garbled
circuit scheme [GTKP+13b] instead of single key succinct KPFE. Recall that a reusable garbled circuit is
a symmetric key variant of single key succinct KPFE, where the circuit in the secret key is also hidden.
Now, to encrypt a circuit C in our CPFE, we run the garbling algorithm of the reusable garbled circuit
scheme on input C to obtain the garbled version of C as well as some secret information for input
garbling. We then construct an input encoding circuit that takes as input x and outputs an encoded version
of it using the secret information generated above. Then, we encrypt this input encoding circuit using
the underlying CPFE. The final ciphertext consists of the garbled circuit and the encrypted circuit. To
generate a secret key for x, we use the key generation algorithm of the underlying CPFE scheme to obtain
a secret key for x. Decryption requires running the decryption algorithm of the underlying CPFE scheme
to obtain the encoded version of input x and then using this result with the garbled version of the circuit
to recover C(x). The resulting scheme is AD-SIM secure and supports unbounded size circuits. Please
see Section 5 for details.

Handling Unbounded Inputs. So far, we have constructed KPFE and CPFE schemes that can handle
unbounded size circuits but with fixed input size. However, for obtaining FE for Turing machines, we
have to be able to encrypt unbounded length inputs and this is clearly insufficient. To enable this, we use
the “delayed encryption” technique by Goyal, Koppula, and Waters (GKW16) [GKW16]. Intuitively, the
technique uses the power of garbled circuits and IBE to transport us to a world where there are infinitely
many instances of FE {mpki}i∈N – the encryptor can choose a master public key for some index j and
encrypt the message. A secret key is associated with some index k and the decryption is possible iff
j = k.

In more detail, the GKW16 scheme works as follows. During setup, the master public key and master
secret key of an IBE scheme are generated. To encrypt a message x using the j-th instance of the FE
scheme as described above without knowing the corresponding mpkj , the encryptor first constructs a
circuit Enc(·, x) that takes as input the master public key mpkj for the j-th instance and outputs the
ciphertext Enc(mpkj , x). The encryptor then garbles this encryption circuit to obtain the corresponding
garbled circuit and set of labels. Then, the encryptor encrypts each pair of labels with the IBE, where the
identity for which a label is encrypted encodes the index j, the position of the label and a single bit. Note

8



that the above step can be done without knowing mpkj . Correspondingly, the key generation algorithm
computes IBE secret keys for the correct bits of mpkk, which together with the IBE ciphertexts allow the
decryptor to recover the labels corresponding to mpkj in the jth garbled circuit when j = k. This lets the
decryptor evaluate the garbled circuit to retrieve the ciphertext Enc(mpkj , x) as desired.

With this technique, we make progress towards our goal, because we can encrypt a message of any
length by the scheme, rather than only being able to encrypt a message of fixed length. However, this is
still not enough, since the decryption is possible only when the index j and k match. For example, let
us imagine that we want to construct FE for Turing machine using infinitely many instances of FE for
circuits, where the i-th instance of FE supports circuits with input length i. Let t be an upper bound on the
runtime of the TM on input x. If we encrypt a message (x, 1t) as an input to a Turing machine, we may
encrypt it using |(x, 1t)|-th instance of the FE. On the other hand, to generate a secret key for a Turing
machine M , we convert the machine into a circuit CM (·) and generate a secret key for it. However, it
is unclear how to define the input length of the circuit. If the input length does not match |(x, 1t)|, the
decryption is impossible. Meanwhile, the entity who generates the secret key does not know the input
length |(x, 1t)|, so is stuck.

To resolve the above problem, we incorporate a trick by Agrawal, Maitra and Yamada [AMY19] used
to support unbounded inputs for an NFA machine in the context of ABE. They construct two restricted
ABE schemes for NFA: one that supports decryption in the case where the length |x| of the input x is
larger than the size |M | of the machine M and one that supports the case where |x| ≤ |M |. Then, they
run the restricted schemes in parallel. In the decryption algorithm, these sub-schemes complement each
other. Namely, we use the first sub-scheme to decrypt a ciphertext if |x| > |M | and the second otherwise.
Though they introduce the trick in the context of ABE, this perfectly works in the context of FE as well.
A hurdle is that their technique works only in the secret key setting, since the encryptor is required to
know a master secret in order to generate unbounded instances of FE (proportional to its input length) on
the fly. However, we show that in conjunction with the technique from [GKW16] described above, this
idea can be made to work in the public key setting as well. In a nutshell, this technique lets us encode x
and M in multiple slots of the FE instances so that they always intersect, instead of encoding them on a
single slot like in [GKW16].

Onward to FE for TM. Armed with these techniques, let us try constructing FE for TM. As discussed
above, our construction handles the cases |(x, 1t)| ≤ |M | and |(x, 1t)| > |M | separately. Let us begin
with the former using our KPFE that supports unbounded size circuits.

By the technique of [GKW16], we can assume that we are in a world where there are infinitely
many KPFE instances available and the i-th instance supports circuits with input length i. To encrypt a
message x with respect to the time bound 1t, we use the |(x, 1t)|-th instance of the KPFE. To generate
the secret key for a Turing machine M on the other hand, we encode M into a set of circuits Ci,M for
i = 1, . . . , |M |, where Ci,M is a circuit that takes as input a string (x, 1t) and then run the machine M for
t steps and outputs the result. We then generate secret keys forCi,M using the i-th instance of KPFE for all
of i ∈ [|M |]. This is possible even for unbounded M , because each KPFE instance supports unbounded
size circuits. The decryption is possible when |(x, 1t)| ≤ |M | by using the |(x, 1t)|-th instance. However,
it is evident that this is an incomplete scheme, since the decryption is not possible when |(x, 1t)| > |M |.

To complement this, we next construct a scheme that deals with the case of |(x, 1t)| > |M | using
our unbounded CPFE scheme. To encrypt a message (x, 1t) we convert it into a circuit {Ui,x,t}i∈[|(x,1t)|],
where Ui,x,t is a circuit that takes as input a string M of length i, interprets it as a description of a Turing
machine, and then runs it on input x for t steps to obtain the result. We then encrypt the circuit Ui,x,t
using the i-th instance of the FE for all of i ∈ [|(x, 1t)|]. This requires the underlying CPFE scheme to
support unbounded size of circuits. Since our NA-SIM secure CPFE construction supports such circuits,
we can use this here. On the other hand, our CPFE scheme with AD-SIM security cannot be used here,
because the scheme can only support circuits with bounded depth, which prohibits us from running
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the Turing machine inside the circuit for t steps, where t may be arbitrarily large. To generate a secret
key for a Turing machine M , we use the |x|-th instance of the FE. It can be seen that the decryption is
possible in this scheme when |(x, 1t)| > |M |. Having the construction for the cases of |(x, 1t)| > |M |
and |(x, 1t)| ≤ |M |, we can obtain the final construction by running them in parallel. The final scheme is
NA-SIM secure, because the underlying CPFE scheme is NA-SIM secure (even though the KPFE scheme
satisfies the stronger AD-SIM security). Please see Section 6 for details.

Above, the ciphertext size grows with the t, the upper bound on the runtime of the TM on a given
input x. We emphasize that t is not a global bound but can vary with each input x, and is therefore
unbounded. While we do not know how to remove this dependence using our current techniques, we
remark that decryption time can still be input specific using the “powers of two” trick from Goldwasser et
al. [GTKP+13a]. This requires the decryption algorithm to have RAM access to the ciphertext. In more
detail, the encryptor may repeat the encryption procedure for dlog2 te possible values of TM runtime,
with values 2i for i ∈ [dlog2 te]. The decryptor can start with the ciphertext corresponding to the smallest
value and proceed to the next ciphertext only if the previous decryption did not result in a valid output4.
This ensures that the scheme enjoys input specific decryption time.

FE for NL with Adaptive Security. The above construction guarantees NA-SIM security while supporting
general Turing machines. We also consider a variant of the above scheme that satisfies stronger AD-SIM
security, at the cost of supporting smaller class of computation NL. This is achieved by using AD-SIM
secure FE for both the building blocks of KPFE and CPFE. Recall that the reason why we cannot use
AD-SIM secure CPFE in the above construction was that it was not possible to run the Turing machine
for an unbounded number of steps inside a circuit of fixed depth. This issue arises because the Turing
machine is run sequentially. In a nutshell, our next idea is to parallelize computation so that the depth
for the corresponding circuit can be bounded by some fixed polynomial. Such a parallelization of the
computation is not known to be possible for general Turing machines, but we can do it for NL, which is
more restrictive. To do so, we represent the computation of NL as a multiplication of matrices as was done
in [LL20]. First, we enumerate all the possible internal configurations of the Turing machine M on input
x that may appear during the computation. The number of such internal configurations can be bounded
by some polynomial, since the length of the working tape is logarithmic. We then construct the transition
matrix M for the configurations. Then, one can determine whether M accepts the input x within time t
by computing Mt due to the properties of the transition matrix. Since the matrix exponentiation can be
done by O(log t) multiplications of the matrix, this can be performed by fixed polynomial depth even for
unbounded t (assuming t < 2λ). Please see Section 6.3 for details.

1.3 Concurrent Work

We note that a concurrent work [GGLW21] has independently introduced the notion of dynamic collusion
bound for KPFE schemes, same as what we consider in this paper. They obtain simulation secure KPFE
schemes for circuits with dynamic collusion resistance. Further, their techniques also significantly overlap
with our CPFE constructions in Section 3. In particular, they compile existing bounded collusion KPFE
schemes [GVW12, AV19] with IND-CPA secure IBE to obtain KPFE for circuits satisfying dynamic
collusion resistance. However, we also extend our results further to obtain succinct CP/KP-FE schemes
for circuits with dynamic collusion property, and also to support Turing machines and NL with various
security tradeoffs as explained in Section 1.2. Finally, we also argue about the necessity of IBE to achieve
dynamic collusion bound property for FE schemes, which [GGLW21] has left as an open problem.

4The definition of TM can be easily modified to output “unfinished” if the computation did not conclude in a given number
of steps.
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2 Preliminaries

In this section, we define some notation and preliminaries that we require. Some additional preliminaries
are provided in Appendix A.

Notation. We begin by defining the notation that we will use throughout this work. We use bold letters
to denote vectors and the notation [a, b] to denote the set of integers {k ∈ N | a ≤ k ≤ b}. We use [n] to
denote the set [1, n]. When we consider a string of form (x, 1t), we assume that x and 1t can be derived
from it and we differentiate (x, 1t) from (x1, 1t−1) for instance. To do so, we consider the alphabet “,” in
addition to 0 and 1 and represent each alphabet by 2-bit for example. We say a function f(n) is negligible
if it is O(n−c) for all c > 0, and we use negl(n) to denote a negligible function of n. We say f(n) is
polynomial if it is O(nc) for some constant c > 0, and we use poly(n) to denote a polynomial function
of n. We use the abbreviation PPT for probabilistic polynomial-time. The function log x is the base 2
logarithm of x.

2.1 Turing Machines

Here, we recall the definition of a Turing machine (TM) following [LL20]. The definition considers
Turing machines with two tapes, namely, input tape and working tape.

Definition 2.1 (Turing Machine). A (deterministic) TM M is represented by the tuple M = (Q, δ, F )
where Q is the number of states (we use [Q] as the set of states and 1 as the initial state), F ⊂ [Q] is the
set of accepting state and

δ : [Q]× {0, 1} × {0, 1} → [Q]× {0, 1} × {0,±1} × {0,±1}
(q, b1, b2) 7→ (q′, b′2,∆i,∆j)

is the state transition function, which, given the current state q, the symbol b1 on the input tape under scan,
and the symbol b2 on the work tape under scan, specifies the new state q′, the symbol b′2, overwriting b2,
the direction ∆i to which the input tape pointers moves, and the direction ∆j to which the work tape
pointer moves. The machine is required to hang (instead of halting) once it reaches an accepting state,
i.e., for all q ∈ [Q] such that q ∈ F and b1, b2 ∈ {0, 1}, it holds that δ(q, b1, b2) = (q, b2, 0, 0).

For input length n ≥ 1 and space complexity bound s ≥ 1, the set of internal configurations of M is

QM,n,s = [n]× [s]× {0, 1}s × [Q]

where (i, j,W, q) ∈ QM,n,s specifies the input tape pointer i ∈ [n], the work tape pointer j ∈ [s], the
content of the work tape W ∈ {0, 1}s and the machine state q ∈ [Q].

For any bit-string x ∈ {0, 1}n for n ≥ 1 and time/space complexity bounds t, s ≥ 1, the machine M
accepts x within time t and space s if there exists a sequence of internal configurations (computation
path of t steps) c0, . . . , ct ∈ QM,n,s with ck = (ik, jk,Wk, qk) such that (i0, j0,W0, q0) = (1, 1, 0s, 1)
(initial configuration),

for all 0 ≤ k < t:

{
δ(qk, x[ik],Wk[jk]) = (qk+1,Wk+1[jk], ik+1 − ik, jk+1 − jk)
Wk+1[j] = Wk[j] for all j 6= jk (valid transitions);

where x[i] is the i the bit of the string x andWk[j] is the j the bit of the stringWk, and qt ∈ F (accepting).
We also say M accepts x within time t (without the space bound) if M accepts x within time t and space
s = t.

Next, we define time/space bounded computation with non-deterministic Turing machines. The
definition is the same as Theorem 2.1, except with the following changes:
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• The transition criterion δ can be any relation between (i.e., any subset of the Cartesian product of)
[Q]× {0, 1}2 and [Q]× {0, 1} × {0,±q}2, where ((q, b1, b2), (b′2, b

′
2,∆i,∆j)) ∈ δ means that if

the current state is q, the input tape symbol under scan is b1 and the work tape symbol under scan
is b2, then it is valid to transit into state q′, overwrite b2 with b′2, and move the input and work tape
pointer by offsets ∆i and ∆j respectively.

• The definition of hanging in accepting states is that for all q ∈ [Q] such that q ∈ F and all
b1, b2 ∈ {0, 1},

δ ∩
(
{(q, b1, b2)} × ([Q]× {0, 1} × {0,±1}2)

)
= {(q, b1, b2), (q, b2, 0, 0)} .

• In the definition of acceptance

δ(qk, x[ik],Wk[jk]) = (qk+1,Wk+1[jk], ik+1 − ik, jk+1 − jk)

is changed to ((qk, x[ik],Wk[jk]), (qk+1,Wk+1[jk], ik+1 − ik, jk+1 − jk)) ∈ δ.

The following lemma can be obtained by a simple argument on emulating a Turing machine on Boolean
circuits. While we have many other clever methods of simulating Turing machines on circuits (e.g.,
[PF79]), we use the following simple one because it evaluates the depth of the circuit as a function on the
size of Turing machine, which is usually regarded as a constant and ignored.

Lemma 2.2 (Emulating a Turing Machine on Circuit). Consider a circuit that takes as input a description
of a (deterministic) Turing machine M = (Q, δ, F ), input x to M , a configuration (i, j,W, q) ∈
QM,|x|,|W | and outputs the next configuration (i′, j′,W ′, q′). We can implement such a circuit with depth
poly(log |x|, log |W |, log |M |) and size poly(|x|, |W |, |M |).

Proof. The circuit is implemented as follows. We focus on the depth of the circuits, since the bound on
the size will be clear from the description. Given the input, it first retrieves the i-th bit x[i] ∈ {0, 1} of the
input tape. This can be done by a circuit with depth O(log |x|), which checks whether i = ν or not for
each position ν of the string x in parallel and returns x[ν] for ν such that ν = i. Similarly, it can retrieve
W [j] with depth O(log |W |). Given x[i] and W [j], it then retrieves δ(q, x[i],W [j]) from δ, which can be
done with depth O(log |Q|) similarly to the above. Given δ(q, x[i],W [j]) = (q′, b′,∆i,∆j), the update
of i and j can be done in depth O(log |x|) and O(log |W |), respectively. Writing back the new value
b′ can also be done in depth O(log |W |) by finding the right place to write in the tape and change the
value there. From the above discussion, the total depth of the circuit is poly(log |x|, log |W |, log |M |) as
desired.

We also need the following lemma, which can be obtained by a simple observation.

Lemma 2.3 (Checking Transition for Non-deterministic Turing Machine). Consider a circuit that
takes as input a description of a non-deterministic Turing machine M = (Q, δ, F ), input x
to M , two configurations (i, j,W, q) ∈ QM,|x|,|W | and (i′, j′,W ′, q′) ∈ QM,|x|,|W | and outputs
whether ((i, j,W, q), (i′, j′,W ′, q′)) ∈ δ or not. We can implement such a circuit with depth
poly(log |x|, log |W |, log |M |) and size poly(|x|, |W |, |M |).

Proof. The circuit is implemented as follows. We focus on the depth of the circuits, since the bound
on the size will be clear from the description. Given the input, it first checks whether i′ − i ∈ {0,±1},
j′ − j ∈ {0,±1}. Clearly, this can be done in depth poly(log |x|, log |W |). It then checks whether
W ′[k] = W [k] for all k ∈ [|W |]\{k}, which can be done in depth poly(log |W |). It then checks whether
((q, x[i],W [j]), (q′,W ′[j], i′ − i, j′ − j)) ∈ δ or not. This can be checked in depth poly(log |Q|).
Therefore, the total depth of the circuit is poly(log |x|, log |W |, log |M |) as desired.
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2.2 Functional Encryption

Functional encryption (FE) [SW05, BSW11, O’N10] has been traditionally defined in a setting where a
trusted key generator holding a master secret key provides authorized users with secret keys corresponding
to functions. Such a key, when used to decrypt ciphertexts, reveals only the function of the plaintexts and
nothing else. In this subsection, we define the notion of functional encryption (FE) more generally so that
it captures the above notion as well as other types of functionalities as special cases.

2.2.1 Syntax and Correctness.

Let R : X × Y → {0, 1}∗ be a two-input function where X and Y denote “message space” and “key
attribute space”, respectively. Ideally, we would like to have an FE scheme that handles the relation R
directly, where we can encrypt any message x ∈ X and can generate a secret key for any key attribute
y ∈ Y . However, in many cases, we are only able to construct a scheme that poses restrictions on the
message space and key attribute space. To capture such restrictions, we introduce a parameter prm and
consider subsets of the domainsXprm ⊆ X and Yprm ⊆ Y specified by it and the functionRprm defined by
restricting the function R on Xprm ×Yprm. An FE (FE) scheme for {Rprm : Xprm ×Yprm → {0, 1}∗}prm
is defined by the following PPT algorithms:

Setup(1λ, prm)→ (mpk,msk): The setup algorithm takes as input the unary representation of the
security parameter λ and a parameter prm that restricts the domain and range of the function and
outputs the master public key mpk and a master secret key msk.

Encrypt(mpk, x)→ ct: The encryption algorithm takes as input a master public key mpk and a message
x ∈ Xprm. It outputs a ciphertext ct.

KeyGen(msk, y)→ sk: The key generation algorithm takes as input the master secret key msk, and a
key attribute y ∈ Yprm. It outputs a secret key sk. We assume that y is included in sk.

Dec(ct, sk)→ m or ⊥: The decryption algorithm takes as input a ciphertext ct and a secret key sk. It
outputs the message m or ⊥ which represents that the ciphertext is not in a valid form.

Remark 2.4 (Bounded collusion variants). In this paper, we mainly focus on FE with bounded collusion
security, where the security is guaranteed only when the number of secret keys that the adversary obtains
during the security game is below collusion bound Q. To do so, we have to slightly change the syntax
above. We consider two different types of syntax for FE depending on when Q is declared.

• The first notion we consider is bounded collusion FE [GVW12, AV19], where Q is fixed when
the system is setup. In more details, we change the syntax of FE defined above so that all the
algorithms (Setup,KeyGen,Enc,Dec) take 1Q as additional input.

• The second notion we consider is a new notion that we call dynamic bounded collusion FE. In
this notion, the bound Q is specified by the encryptor, not by the setup. Namely, we change the
syntax of FE above so that only the encryption algorithms Enc takes 1Q as input, whereas other
algorithms (Setup,KeyGen,Dec) do not.

We note that the requirement that the algorithms run in polynomial time along with the fact that all
algorithms in bounded collusion FE take 1Q as additional input imply that all the algorithms run in
polynomial in Q. In the case of FE with dynamic bounded collusion, similar implication holds for the
encryption algorithm. However, the running time of Setup and KeyGen should be dependent only on λ
and |prm|, whereas the running time of Dec may indirectly depend on Q if the size of the input ciphertext
is dependent on Q.

13



Definition 2.5 (Correctness). An FE scheme FE = (Setup,KeyGen,Enc,Dec) is correct if for all prm,
x ∈ Xprm, and y ∈ Yprm,

Pr

[
(mpk,msk)← Setup(1λ, prm) :

Dec
(
Enc(mpk, x),KeyGen(msk, y)

)
6= R(x, y)

]
= negl(λ)

where probability is taken over the random coins of Setup, KeyGen and Enc.

2.2.2 Security Notions.

As security notions for FE, we define simulation-based notions. We are mainly interested in the
bounded collusion settings because the security notion without the collusion bound is shown to be
impossible [AGVW13]. We first provide the description of the security game for FE with dynamic
bounded collusion and then for bounded collusion FE.

Definition 2.6 (AD-SIM and NA-SIM Security for FE with Dynamic Bounded Collusion). Let FE =
(Setup,KeyGen,Enc,Dec) be a (public key) FE scheme with dynamic bounded collusion for the function
family {Rprm : Xprm × Yprm → {0, 1}∗}prm. For every stateful PPT adversary A and a stateful PPT
simulator Sim = (SimEnc,SimKG) consider the following experiments:

ExprealFE,A

(
1λ
)
: ExpidealFE,Sim

(
1λ
)
:

1: prm← A(1λ)
2: (mpk,msk)← Setup(1λ, prm)
3: (x, 1Q)← AKeyGen(msk,·)(mpk)

4: ct← Enc(mpk, x, 1Q)
5: b← AO(msk,·)(mpk, ct)
6: Output b

1: prm← A(1λ)
2: (mpk,msk)← Setup(1λ, prm)
3: (x, 1Q)← AKeyGen(msk,·)(mpk)

• Let (y(1), . . . , y(Q1)) be A’s oracle queries.

• Let sk(q) be the oracle reply to y(q).

• Let V :=
{(
z(q) := R(x, y(q)), y(q), sk(q)

)}
q∈[Q1]

.

4: (ct, st)← SimEnc(mpk,V, 1|x|, 1Q)
5: b← AO

′(st,msk,·)(mpk, ct)
6: Output b

We emphasize that the adversary A is stateful, even though we do not explicitly include the internal state
of it into the output above for the simplicity of the notation. On the other hand, the above explicitly
denotes the internal state of the simulator Sim by st. We distinguish between two cases of the above
experiment:

1. The adaptive case, where:

• The oracle O(msk, ·) = KeyGen(msk, ·) with 1 ≤ Q1 < Q, and

• The oracle O′(st,msk, ·) takes as input the q-th key query y(q) for q ∈ [Q1 + 1, Q1 + Q2]
and returns SimKG(st,msk, R(x, y(q)), y(q)), where Q1 +Q2 ≤ Q

The FE scheme FE is then said to be simulation secure for one message against adaptive adversaries
(AD-SIM-secure, for short) if there is a PPT simulator Sim such that for every PPT adversary A,
the following holds:∣∣∣Pr[ExprealFE,A

(
1λ
)

= 1]− Pr[ExpidealFE,Sim

(
1λ
)

= 1]
∣∣∣ = negl(λ) (2.1)
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2. The non-adaptive case, where Q1 ≤ Q and the oracles O(msk, ·) and O′(msk, ·) are both the
“empty” oracles that return nothing: The FE scheme FE is then said to be simulation secure for
one message against non-adaptive queries (NA-SIM-secure, for short) if there is PPT simulator
Sim = (SimEnc,⊥) such that for every PPT adversaries A, Eq. (2.1) holds. Note that in the
non-adaptive case, we can ignore st since SimKG is not present in the above game and it is never
used by other algorithm.

Definition 2.7 (AD-SIM and NA-SIM Security for bounded collusion FE [GVW12]). Let FE =
(Setup,KeyGen,Enc,Dec) be a (public key) bounded collusion FE scheme for the function family
{Rprm : Xprm × Yprm → {0, 1}∗}prm. We define AD-SIM and NA-SIM security for FE by considering
the same game as Definition 2.6 with the following changes:

• We change A to output 1Q in addition to prm at the beginning of the game.

• All the algorithms run in the experiment (Setup,KeyGen,Enc,Dec, SimEnc, SimKG) take 1Q as
additional input.

We also define weaker notion of the security where the adversary is restricted to always choose Q = 1
in the non-adaptive case. If the scheme only satisfies this weaker security notion, we say the scheme is
1-NA-SIM secure.

Remark 2.8. The above definition allows to argue security of a single instance of FE. For the security
proof of our constructions in Section 6.1, it is convenient to consider multi-instance version of the above
notion. In the multi-instance security variant, the adversary declares the number of instances M at
the beginning of the game and interact with each instance as above. In the real world, the adversary
interacts with real algorithms in all instances, while in the ideal world, it interacts with simulators in all
instances. The adversary can make queries in arbitrary order and make them arbitrarily correlated as long
as it respects the restriction for each instance. This multi-instance security notion is easily shown to be
equivalent to the single-instance security notion above by simple hybrid argument.

2.2.3 Special Classes of FE

We then define various kinds of FE by specifying the relation.

KPFE for circuits. To define KPFE for circuits, we set X = {0, 1}∗ and Y as the set of all circuits
and define R(x,C) = C(x) if the length of the string x and the input length of C match and otherwise
R(x,C) = ⊥. In this paper, we will consider the circuit class Cinp,dep,out that consists of circuits with
input length inp := inp(λ), depth dep := dep(λ), and output length out := out(λ). To do so, we set
prm = (1inp, 1dep, 1out), Xprm = {0, 1}inp, and Yprm = Cinp,dep,out.
CPFE for circuits. To define CPFE for circuits, we set X to be the set of all circuits and Y = {0, 1}∗
and define R(C, x) = C(x) if the length of the string x and the input length of C match and otherwise
R(x,C) = ⊥. In this paper, we will consider the circuit class Cinp that consists of circuits with input
length inp := inp(λ). To do so, we set prm = 1inp, Xprm = Cinp, and Yprm = {0, 1}inp.

Remark 2.9. In the definition of KPFE for circuits, even though the input length, output length, and depth
of the circuits in Cinp,dep,out are bounded, the size of the circuits is unbounded. Similar comments hold
true for Cinp in the definition of CPFE.

Remark 2.10. Note that our definition of the KPFE requires that the running time of the encryption
algorithm is bounded by poly(λ, |prm|) = poly(λ, inp, dep, out). In particular, the running time should
be independent from the size of the circuit being supported by the scheme, which is unbounded. This
property is called succinctness in [GTKP+13b].

15



FE for Turing Machines. To define FE for Turing machines, we set X = {0, 1}∗, Y to be set of all
Turing machine, and define R : X × Y → {0, 1} ∪ {⊥} as

R((x, 1t),M) =

{
1 if M accepts x in t steps
0 otherwise.

.

FE for NL. To define FE for NL, we set X = {0, 1}∗, Y to be set of all non-deterministic Turing
machines with two tapes, one of which encodes the input and can only be read, whereas the other tape
can be read as well as written. When we measure the space complexity of the computation, we consider
the space being used for the latter tape. We define R : X × Y → {0, 1} ∪ {⊥} as

R((x, 1t, 12s),M) =

{
1 if M accepts x within t steps and space s
0 otherwise.

.

Note that here, s is in the exponent to reflect the idea that the space for the computation is logarithmically
bounded.

We recall the following result by Goldwasser et al. [GTKP+13b] that we will use later in Section 4.

Theorem 2.11 ([GTKP+13b]). There exists a KPFE scheme KPFE for the circuit class Cinp,dep,out with
1-NA-SIM security assuming sub-exponential hardness of the LWE problem.

Remark 2.12. Note that [GTKP+13b] defines their security notion as full-simulation based security.
However, as stated in [GTKP+13b] only, their full-simulation security is equivalent to the non-adaptive
simulation security definition from [GVW12], where no post-challenge key queries are allowed. The
1-NA-SIM security given in Theorem 2.7 is implied by the same that is adopted for this work. Thus,
[GTKP+13b] is 1-NA-SIM secure according to our Theorem 2.7.

3 CPFE with Dynamic Bounded Collusion

In this section, we construct public-key, ciphertext-policy functional encryption (CPFE) schemes with
delayed collusion bound. The first scheme supports unbounded polynomial-size circuits and achieves
NA-SIM security. The second scheme only supports bounded polynomial-size circuits, but achieves
stronger AD-SIM security. Both schemes are obtained by first constructing a bounded FE with special
efficiency property (Sections 3.2 and 3.3) and then converting it into a scheme with delayed collusion
bound (Section 3.4).

3.1 Preparations

Here, we define reusable, dynamic multi-party computation (RDMPC) protocol in the client-server
framework, which is introduced by Ananth and Vaikuntanathan [AV19] as a useful notion for the
construction of bounded FE. The formal definition of the protocol as a tuple of algorithms with its
correctness and security definitions appear in Appendix B.1. Note that we adapt their syntax and the
definitions to our setting.

We provide some intuition on how the set of algorithms from Appendix B.1 may be used as a
multi-party computation in a client-server framework. Similar to [AV19], here also the setting consists
of a single client and N servers. In particular, the client wants to offload an apriori bounded number of
computations R to these N servers. Each computation is termed as a session. To this end, the protocol
consists of two phases as described below:

16



• An offline phase, where the client takes the session count R and a secret circuit C ∈ Cinp as input,
and encodes it (via CktEnc algorithm) as (Ĉ1, . . . , ĈN ). For all k ∈ [N ], it then sends the kth
encoding Ĉk to the kth server.

• An online phase, that is performed for R sessions. The client wishes to delegate an input x(j) in the
jth session for some j ∈ [R]. For this, it encodes x(j) (via InpEnc algorithm) as x̂(j) and forwards
it to all the N servers. Hereon, some n out of N servers (formalized via any subset S ⊆ [N ] of
size n) may come to do some local computation (via the Local algorithm) on their own inputs to
get a partial output encoding. In particular, the uth server may compute the partial output encoding
ŷ

(j)
u = Local(Ĉu, x̂

(j)). The final output C(x(j)) is obtained by combining these partial output
encodings {ŷ(j)

u }u∈S via the public evaluation algorithm Decode.

Crucially, the R input encodings {x̂(j)}j∈[R] are generated with randomness independent from that of the
offline phase. Further the terms “reusable” and “dynamic” stems from the respective requirements that
the secret circuit encoding must be reusable across all R sessions and the final output may be recovered
dynamically by any subset S of the N servers in each session. We then recall the result from [AV19]
adapted to our setting.

Theorem 3.1 (Adapted from [AV19]). Assuming the existence of one-way functions, there exists an
RDMPC protocol with parameter N = Θ(R2λ), t = Θ(Rλ), and n = Θ(t) for Cinp with any inp =
poly(λ).

3.2 Basic Construction

Here, we give a construction of bounded CPFE. The construction supports unbounded size circuits and is
secure against bounded collusion. A nice feature of the construction is that the running times of the setup
and key generation algorithms are independent from the collusion bound. Looking ahead, we leverage
this property to upgrade the construction to be an CPFE scheme with dynamic bounded collusion property
later in Section 3.4.

In more details, we provide the description of CPFE for the circuit class C` for arbitrary ` = `(λ),
where C` is the set of all polynomial size circuits with input length `. Formally, our FE is for the
relation Rprm : Xprm × Yprm → {0, 1}∗ where prm = 1`, Xprm := C`, and Yprm := {0, 1}` and
Rprm(C, x) = C(x), for all C ∈ C` and x ∈ {0, 1}`.

Ingredients. We now describe the underlying building blocks used to obtain our CPFE construction:

1. A reusable, dynamic MPC protocol for C` denoted by RDMPC = (CktEnc, InpEnc, Local,Decode)
with N = Θ(R2λ), t = Θ(Rλ), and n = Θ(t). We can instantiate this by the protocol by Ananth
and Vaikuntanathan [AV19], which can be based on any one-way function (See Theorem 3.1.).
Looking ahead, we will set R = λ in our construction and therefore ignore the dependence on R
when considering the size of the parameters in the following. We denote the length of an encoding
x̂ of x ∈ {0, 1}` by ̂̀= poly(λ, `). We also denote the size of the circuit Local(Ĉj , ·) by ŝ(λ, |C|),
where Ĉj is an output of CktEnc on input a circuit C. By the efficiency properties of RDMPC, we
have ŝ(λ, |C|) = poly(λ, |Ĉj |) = poly(λ, |C|).

2. A garbled circuit scheme GC = (GC.Garble,GC.Eval) for circuit class Ĉ̀. We can instantiate this
by Yao’s scheme [Yao82], which can be based on any one-way function. We assume that a label is
represented by a binary string. The length of a label depends on the size of circuits that are garbled.
We denote the length of the labels obtained by garbling a circuit of size ŝ(λ, |C|) by L(λ, |C|).
By the efficiency property of the garbled circuit, we have L(λ, |C|) = poly(λ, ŝ(λ, |C|)) =
poly(λ, |C|).

17



3. An IBE scheme IBE = (IBE.Setup, IBE.Enc, IBE.KeyGen, IBE.Dec) with IND-CPA security
whose identity space and message space are {0, 1}∗. We can instantiate IBE from various standard
assumptions including LWE [ABB10, CHKP10], CDH, and Factoring [DG17].

Construction. Let N := N(λ,R), n := n(λ,R), and t := t(λ,R) be the parameters associated with
RDMPC. In the following construction, we run the protocol with R = λ. The basic CPFE scheme
BCPFE = (Setup, KeyGen, Enc, Dec) for the circuit class C` works as follows. Note that the scheme
below deviates from the syntax of bounded collusion FE because Setup and KeyGen take the collusion
bound Q as binary form, rather than unary form as defined in Theorem 2.4. This change in syntax is to
reflect the fact that these algorithms run in polylogarithmic time in Q rather than in polynomial time.
Even with this change, we can consider the same correctness requirement and security notions for it.

Setup(1λ, 1`, Q) : On input the security parameter λ, an input length ` = poly(λ) of the circuit
family to be supported, and the upper bound for the collusion 1 ≤ Q ≤ 2λ in binary
form and compute (IBE.mpk, IBE.msk) ← IBE.Setup(1λ). Output the master key pair as
(mpk,msk) := (IBE.mpk, IBE.msk).

KeyGen(msk, x,Q) : On input master secret key msk = IBE.msk, an input x ∈ {0, 1}` and the upper
bound for the collusion 1 ≤ Q ≤ 2λ in binary form and do the following:

1. Compute x̂← InpEnc(1λ, 1λ, 1`, x).

2. Sample u← [Q].

3. Sample random set ∆ ⊂ [N ] such that |∆| = n.

4. For all j ∈ ∆ and k ∈ [̂̀], generate a secret key as

IBE.sku,j,k,x̂k ← IBE.KeyGen(IBE.msk, (u, j, k, x̂k)),

where x̂k is the k-th bit of x̂.

5. Output

sk =
(
u,∆,

{
IBE.sku,j,k,x̂k

}
j∈∆,k∈[̂̀]

)
. (3.1)

Enc(mpk, C, 1Q) : On input the master public key mpk = IBE.mpk, a circuit C ∈ C`, and the query
bound 1 ≤ Q ≤ 2λ in unary form, do the following:

1. Compute (Ĉi,1, . . . , Ĉi,N )← CktEnc(1λ, 1λ, 1`, C) for i ∈ [Q].

2. Define the circuit Li,j(·) := Local(Ĉi,j , ·) with input length ̂̀ := |x̂|.
For all i ∈ [Q] and j ∈ [N ], do the following:

(a) Run the garbling algorithm

{labi,j,k,b}k∈[̂̀],b∈{0,1} ← GC.Garble(1λ, Li,j).

(b) For all k ∈ [̂̀] and b ∈ {0, 1}, compute

IBE.cti,j,k,b ← IBE.Enc (IBE.mpk, (i, j, k, b), labi,j,k,b) .

3. Output

ct = {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} . (3.2)
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Dec(ct, sk, 1Q) : On input a secret key sk, a ciphertext ct, and the query bound 1 ≤ Q ≤ 2λ in unary
form, do the following:

1. Parse the secret key as Eq. (3.1) and the ciphertext as Eq. (3.2).

2. For all j ∈ ∆, do the following:

(a) For all k ∈ [̂̀], compute lab′u,j,k := IBE.Dec(IBE.sku,j,k,x̂k , IBE.ctu,j,k,x̂k), where x̂k is
the k-th bit of x̂.

(b) Compute ŷ′u,j := GC.Eval({lab′u,j,k}k∈[̂̀])
3. Compute and output z = Decode({ŷ′u,j}j∈∆).

Remark 3.2 (Intuition for the construction.). The above scheme can be seen as a variant of the FE scheme
by Ananth and Vaikuntanathan [AV19], who showed a generic construction of Q-bounded FE scheme
from a single-key FE scheme. Here, we instantiate the single-key FE scheme with the construction by
Sahai and Seyalioglu [SS10] and then replace the PKE used for encrypting the labels of the garbled
circuits inside their construction with IBE. In more details, in our construction above, we run QN
instances of the single-key FE scheme. These QN instances are grouped into Q groups each consisting of
N instances. In the key generation algorithm of BCPFE, one chooses a group u ∈ [Q] and then generates
n out of N secret keys of the single-key FE instances in the group. To encrypt a message, one generates
shares of the message (in our case, a circuit) using RDMPC and then encrypts them using N instances of
FE for each group i ∈ [Q]. By the correctness of RDMPC, n secret keys of the single-key FE from a
single group can recover the decryption results.

We prove the the correctness and evaluate the efficiency of the above construction in Appendix B.2.

Security. The following theorem asserts the security of our CPFE scheme.

Theorem 3.3. Assume that IBE satisfies IND-CPA security, GC is a secure garbled circuit scheme, and
RDMPC is secure. Then, BCPFE for the circuit class C` is NA-SIM-secure.

Before the proof, we recall some lemmas from previous works and then provide an overview for the
proof.

Lemma 3.4 (Adapted from Claim 1 in [AV19]). Consider random variables γi,q for i ∈ [Q] and q ∈ [Q]
as follows. For each q ∈ [Q], u(q) ← [Q] is chosen and we set each γi,q as

γi,q ←

{
1, if i = u(q)

0 if i 6= u(q)

Then, we have Pr
[∑

q∈[Q] γi,q ≥ λ holds for some i ∈ [Q]
]
≤ e−Θ(λ).

Lemma 3.5 (Adapted from Lemma B.1 in [GVW12]). Let R ∈ N. Set t = Θ(λ), N = Θ(R2t2) and
n = Θ(t). Choose random subset ∆(i) of [N ] with size n for i ∈ [R]. Then, we have

Pr

∣∣∣∣∣∣
⋃

i,i′∈[R],i 6=i′
∆(i) ∩∆(i′)

∣∣∣∣∣∣ ≤ t
 ≤ negl(λ).

Overview for the proof of Theorem 3.3. We explain the overview for the proof briefly, before describing it
in detail. The security proof is similar to that for the construction by Ananth and Vaikuntanathan [AV19].
As we explained in Remark 3.2, our scheme can be seen as parallel QN instances of single-key FE
scheme, where the instances are grouped into Q groups each consisting of N instances. Since each user
in the system is randomly assigned to a single group, if Q users collude, the number of corrupted users
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for each group does not exceed λ with overwhelming probability by Lemma 3.4. Therefore, it suffices
to show that each group can tolerate collusion of size up to λ. This is shown via the combination of
the security of RDMPC and of the single-key FE. For an instance of FE such that only a single key is
generated, we can use the security of the FE. On the other hand, for an instance of FE such that more
than one secret key is generated, we cannot use FE security. Our parameter setting allows us to bound the
number of the latter instances in each group by t with overwhelming probability using Theorem 3.5. This
along with the fact that RDMPC can tolerate up to t corruptions for each group allows us to prove the
security of the system.

We then provide the detailed proof of Theorem 3.3 in Appendix B.3.

3.3 A Variant of Basic Construction with AD-SIM Security

Here, we provide a variant of the basic construction in Section 3.2 that satisfies stronger AD-SIM security
rather than NA-SIM security at the cost of only supporting circuits with bounded size. Similarly to
the construction in Section 3.2, the construction can be upgraded into a construction with delayed
collusion bound in Section 3.4. In more details, our construction is for the circuit class C`,s, where
C`,s is the set of circuits with input length ` and size at most s. Formally, our FE is for the relation
Rprm : Xprm × Yprm → {0, 1}∗ where prm = (1`, 1s), Xprm := C`,s, and Yprm := {0, 1}` and
Rprm(C, x) = C(x), for all C ∈ C`,s and x ∈ {0, 1}`.

Ingredients and Parameters. Our construction is the same as that in Section 3, but we require stronger
SIM-RSO security for the IBE [KT18]. As shown in [KT18], IBE with SIM-RSO security can be
constructed only from IBE with more standard IND-CPA security. Therefore, our construction here can
be based on the same set of assumptions as the construction in Section 3. However, since the IBE scheme
with SIM-RSO security can only encrypt messages with bounded length, we will have a bound on the
length of the labels of GC. This in turn implies that we can only support circuits with bounded size as
messages of the CPFE. In the construction, we encrypt circuits with fixed size s = s(λ). We denote the
size of the circuit Local(Ĉj , ·) by ŝ, where Ĉj is an output of CktEnc on input a circuit C of size s. We
also denote the length of the labels output by GC on input a circuit of size ŝ as L. While ŝ and L are
polynomial function in λ and s, we treat them as functions only depend on λ here, since the size of the
circuit s is fixed. We assume that the message space of IBE is {0, 1}L.

We observe that Setup and KeyGen run in time poly(λ, `, s, logQ) by the efficiency properties of
IBE and RDMPC. This means that these algorithms can be run even for super polynomial Q. Looking
ahead, this property will be used crucially for the full-fledged construction that we show in Section 3.4.
We also observe that Enc and Dec run in time Q · poly(λ, `, s) by the efficiency properties of IBE, GC,
and RDMPC.

The following theorem asserts the security of our CPFE scheme.

Theorem 3.6. Assume that IBE satisfies IND-CPA security and SIM-RSO security, GC is a secure
garbled circuit scheme, and RDMPC is secure. Then, BCPFE for the circuit class C`,s is AD-SIM-secure.

Overview for the proof. Before going to the formal proof, we provide its overview. The proof is similar to
that for Theorem 3.3. However, here, we have to consider secret key queries after the encryption query.
Since we consider simulation-based security definition for BCPFE, this intuitively means that we have
to be able to “program” a decryption result into a secret key issued after the encryption query. RDMPC
already has this type of capability, since this is designed for constructing FE with AD-SIM security
[AV19]. Using this property and the security of the garbled circuits, we can “program” the decryption
results into labels of garbled circuits. What remains is to simulate the IBE ciphertexts and secret keys so
that the decryption results correspond with the labels generated as above. For this purpose, we use IBE
with SIM-RSO security [KT18].

We then provide the detailed proof of Theorem 3.6 in Appendix B.4.
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3.4 Full-fledged Construction

In Sections 3.2 and 3.3, we construct bounded collusion CPFE schemes. Here, we show that these
schemes can be converted into CPFE schemes with dynamic bounded collusion property. The
resulting schemes satisfy the same level of the security and support the same class of circuits as the
original schemes. The conversion is the same for both schemes. Let BCPFE = (BCPFE.Setup,
BCPFE.KeyGen,BCPFE.Enc,BCPFE.Dec) be our FE scheme in either Section 3.2 or 3.3 and let Cprm
be the supported circuit class. We have prm = 1` or prm = (1`, 1s). An input to a circuit C ∈ Cprm has
fixed length `(λ) in both cases.

Construction. We now construct a CPFE scheme CPFE = (CPFE.Setup,CPFE.KeyGen,CPFE.Enc,CPFE.Dec)
with delayed collusion bound as follows.

Setup(1λ, prm) : On input the security parameter λ, the parameter prm that specifies the circuit family
to be supported, do the following:

1. Run (BCPFE.mpki,BCPFEmski) ← BCPFE.Setup(1λ, prm, 2i) for i ∈ [λ], where 2i is
represented as a binary number here.

2. Output (mpk,msk) := ({BCPFE.mpki}i∈[λ], {BCPFE.mski}i∈[λ]).

KeyGen(msk, x) : On input master secret key msk = {BCPFE.mski}i∈[λ] and an input x ∈ {0, 1}`, do
the following:

1. Run BCPFE.ski ← BCPFE.KeyGen(IBE.mski, x, 2
i) for i ∈ [λ], where 2i is represented as

a binary number above.

2. Output sk := {BCPFE.ski}i∈[λ].

Enc(mpk, C, 1Q) : On input the master public key mpk, a circuit C ∈ Cprm, and the query bound
1 ≤ Q ≤ 2λ in unary form, do the following:

1. Find u such that 2u−1 < Q ≤ 2u.

2. Parse mpk→ {BCPFE.mpki}i∈[λ].

3. Compute BCPFE.ctu ← BCPFE.Enc
(
BCPFE.mpku, x, 1

2u
)

and output ct = BCPFE.ctu.

Dec(ct, sk, 1Q) : On input a secret key sk, a ciphertext ct, and the query bound 1 ≤ Q ≤ 2λ in unary
form, do the following:

1. Find u such that 2u−1 < Q ≤ 2u.

2. Parse sk→ {BCPFE.ski}i∈[λ] and ct = BCPFE.ctu.

3. Compute and output BCPFE.Dec(BCPFE.sku,BCPFE.ctu).

It is clear that the correctness of the above scheme follows from that of the underlying scheme BCPFE.
We analyse the efficiency of the above construction in Appendix B.5.

The following theorem asserts the security of our CPFE scheme.

Theorem 3.7. If BCPFE satisfies AD-SIM security as bounded FE scheme, then so does CPFE scheme
as FE with delayed collusion bound. Similarly, if BCPFE satisfies NA-SIM security as bounded FE
scheme, then so does CPFE scheme as FE with delayed collusion bound.

The proof of the above theorem appears in Appendix B.6.
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4 Succinct KPFE with Dynamic Bounded Collusion

In this section, we construct new succinct public key KPFE scheme. The construction substantially
improves the security of the previous succinct bounded KPFE schemes [GTKP+13b, Agr17], because it
supports delayed collusion bound and satisfies AD-SIM security. Furthermore, our construction can be
instantiated only from the LWE assumption, similarly to the previous constructions.

We now describe the parameters for our KPFE scheme in more detail. We construct KPFE scheme
for the circuit family Cinp,dep,out containing circuits with input length inp = inp(λ), depth dep = dep(λ),
output length out = out(λ) but with arbitrary polynomial size. Formally, we construct an FE scheme
for prm = (1inp, 1dep, 1out), Xprm = {0, 1}inp, Yprm = Cinp,dep,out and Rprm : Xprm ×Yprm → {0, 1}out,
where R(x,C) = C(x), for all C ∈ Cinp,dep,out and x ∈ {0, 1}inp.

Ingredients. The underlying building blocks for our KPFE construction are as follows:

1. A bounded, public key KPFE scheme, denoted by

1KPFE = (1KPFE.Setup, 1KPFE.KeyGen, 1KPFE.Enc, 1KPFE.Dec),

for the same functionality (i.e., Rprm defined above). We require the scheme to satisfy NA-SIM
security against a single key query. We can instantiate such a scheme with the succinct KPFE
scheme from LWE [GTKP+13b] (See Theorem 2.11).

2. A CPFE scheme denoted by

CPFE = (CPFE.Setup,CPFE.KeyGen,CPFE.Enc,CPFE.Dec),

for bounded polynomial sized circuits that already supports delayed collusion bound property and
satisfies AD-SIM security. Namely, CPFE supports a circuit class Cinp′,size′ consisting of circuits
with input length inp′ and size at most size′, where the setting of the parameters is deferred until the
description of the construction. Formally, we use FE with prm′ = 1inp

′
,Xprm′ = Cinp′,size′ ,Yprm′ =

{0, 1}inp′ and Rprm′ : Xprm′ ×Yprm′ → {0, 1}∗, where R(C, x) = C(x), for all C ∈ Cinp′,size′ and
x ∈ {0, 1}inp′ . We instantiate it from our construction in Section 3.4, which in turn can be based
on any IBE.

3. A pseudorandom function PRF = (PRF.Setup,PRF.Eval). We assume without loss of generality
that the input and output space of PRF is the 1KPFE public key space and the randomness space
used in 1KPFE.Enc algorithm respectively.

At a high level, our KPFE construction is a compiler that applies the CPFE scheme already satisfying the
delayed collusion property and AD-SIM security on top of the single key, succinct KPFE scheme. This
makes the resultant KPFE satisfy the delayed collusion property and AD-SIM security as well. We now
proceed to the formal construction below.

4.1 Construction

The KPFE scheme KPFE = (Setup,KeyGen,Enc,Dec) with delayed collusion bound for the circuit
class Cinp,dep,out is as follows.

Setup(1λ, prm): On input the security parameter λ and the parameters prm = (1inp, 1dep, 1out) do the
following:

1. Compute prm′ := (1inp
′
, 1size

′
), where inp′ := inp′(λ, prm) is the length of the master public

key for 1KPFE output by 1KPFE.Setup(1λ, prm) and size′ = size′(λ, prm) is the size of the
circuit E[x,K] described in Figure 1.
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2. Run (CPFE.mpk,CPFE.msk)← CPFE.Setup(1λ, prm′).

3. Output (mpk,msk) := (CPFE.mpk,CPFE.msk).

KeyGen(msk, C) : On input the master secret key msk = CPFE.msk and a circuit C ∈ Cinp,dep,out, do
the following:

1. Compute (1KPFE.mpk, 1KPFE.msk)← 1KPFE.Setup(1λ, prm).

2. Generate a secret key under 1KPFE as 1KPFE.sk← 1KPFE.KeyGen(1KPFE.msk, C).

3. Generate another secret key CPFE.sk ← CPFE.KeyGen(CPFE.msk, 1KPFE.mpk), where
1KPFE.mpk is interpreted as a string in {0, 1}inp′ .

4. Output the full secret key sk := (CPFE.sk, 1KPFE.sk).

Enc(mpk, x, 1Q) : On input the master public key mpk = CPFE.mpk, an input x ∈ {0, 1}inp and the
query bound 1 ≤ Q < 2λ, do the following:

1. Sample a PRF key K← PRF.Setup(1λ).

2. Using prm, construct the circuit E[x,K](·) defined as Figure 1.

3. Compute a ciphertext CPFE.ct← CPFE.Enc(CPFE.mpk,E[x,K], 1
Q).

4. Output the ciphertext ct := CPFE.ct.

Dec(ct, sk) : On input a secret key sk associated with circuit C and a ciphertext ct, do the following:

1. Parse the ciphertext ct = CPFE.ct and the secret key sk = (CPFE.sk, 1KPFE.sk), where
CPFE.sk and 1KPFE.sk are associated with 1KPFE.mpk ∈ {0, 1}inp′ and the circuit C
respectively.

2. Compute y = CPFE.Dec(CPFE.sk,CPFE.ct).

3. Compute and output z = 1KPFE.Dec(1KPFE.sk, y).

Circuit E[x,K]

Hardwired constants: x ∈ {0, 1}inp, PRF key K.
On input str ∈ {0, 1}inp′ , proceed as follows:

1. Compute R = PRF.Eval(K, str).

2. Compute and output 1KPFE.Enc(str, x;R), where str is interpreted as a master public key for
1KPFE and R is used as a randomness for the encryption.

Figure 1 : Circuit E[x,K].

In Appendix C, we show that the scheme is correct, succinct and satisfies AD-SIM security.
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5 Succinct CPFE with Dynamic Bounded Collusion

Recall that our CPFE scheme in Section 3.3 only supports bounded size circuits. Here, we construct a
CPFE scheme that can support unbounded size of circuits, while still satisfying the AD-SIM security and
delayed collusion property. Compared with the CPFE scheme in Section 3.2, our construction here has
bounds on the input and output length and depth of the circuits, while the construction in Section 3.2
does not. On the other hand, our scheme here satisfies stronger AD-SIM security. So, these schemes offer
a tradeoff. We can regard our scheme in this section as a dual version of the KPFE scheme in Section 4
in the sense that it satisfies similar properties and the idea for the construction is very similar. Further,
the scheme can be instantiated only from the LWE assumption, similar to the one from Section 4. The
construction here is used as a building block for the FE scheme for NL in Section 6.3.

Our construction in this section makes use of reusable garbled circuits as a building block. Therefore,
we first introduce its definition here and then proceed describing all the building blocks formally before
showing the full construction.

5.1 Reusable Garbled Circuits

In this section, we define reusable garbled circuits (RGC) adapting from the definition given in
[GTKP+13b]. For λ ∈ N, let Cinp,dep,out denote a family of circuits with input length length inp = inp(λ),
depth dep = dep(λ) and output length out = out(λ). For brevity, we denote prm = prm(λ) =
(1inp(λ), 1dep(λ), 1out(λ)). Then, a reusable garbling scheme RGC = (RGC.Garble,RGC.Enc,RGC.Eval)
for C = {Cprm(λ)}λ∈N is as follows:

RGC.Garble(1λ, prm, C): The PPT garbling algorithm takes the security paremeter λ in unary, prm and
a circuit C ∈ Cprm, and outputs the garbled circuit C̃ and a secret key gsk.

RGC.Enc(gsk, x): The PPT encoding algorithm takes the secret key gsk and an input x ∈ {0, 1}inp and
outputs an encoding cx.

RGC.Eval(C̃, cx): The evaluation algorithm takes the garbled circuit C̃ and encoding cx associated to
x5 as input and outputs z ∈ {0, 1}out.

Definition 5.1 (Correctness). An RGC scheme RGC = (RGC.Garble,RGC.Enc,RGC.Eval) is correct
if for all λ ∈ N, C ∈ Cprm(λ) and x ∈ {0, 1}inp(λ),

Pr

[
C(x) 6= z

∣∣∣∣∣ (gsk, C̃)← RGC.Garble(1λ, prm, C),

cx ← RGC.Enc(gsk, x),RGC.Eval(C̃, cx) = z

]
= negl(λ).

where probability is taken over the random coins of RGC.Garble and RGC.Enc.

Definition 5.2 (Succinctness). We say that RGC is succinct, if the size of gsk and the running time of
RGC.Enc does not grow with size of the circuit supported by the scheme. Formally, we have that for all
λ ∈ N, prm = prm(λ), C ∈ Cprm such that (gsk, C̃)← RGC.Garble(1λ, prm, C),

|gsk|, runtime(RGC.Enc(gsk, x)) ≤ poly(λ, |prm|) = poly(λ, inp, dep, out),

where poly is some fixed polynomial.

Definition 5.3 (Circuit privacy with reusability). Consider an RGC scheme RGC = (RGC.Garble,RGC.Enc,
RGC.Eval) for a circuit family C = {Cprm(λ)}λ∈N. For every stateful PPT adversary A and a stateful PPT
simulator Sim, consider the following experiments:

5We do not require to hide x in our definition. Moving ahead, this will be made clear explictly in the security requirement in
Definition 5.3.
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ExprealRGC,A

(
1λ
)
: ExpidealRGC,A,Sim

(
1λ
)
:

1: (prm, C)← A(1λ)
2: (C̃, gsk)← RGC.Garble(1λ, prm, C)
3: b← ARGC.Enc(gsk,·)(C̃)
4: Output b.

1: (prm, C)← A(1λ)
2: (C̃, st)← Sim(1λ, prm, 1|C|)
3: b← AO[C,st](·)(C̃)
4: Output b.

Above, O [C, st] (·) is an oracle that on input x from A, runs Sim
(
1λ, x, C(x), st

)
to return its output.

We then say that RGC satisfies circuit privacy with reusability if there is a PPT simulator Sim such that
for every PPT adversary A, the following holds:∣∣∣Pr[ExprealRGC,A

(
1λ
)

= 1]− Pr[ExpidealRGC,A,Sim

(
1λ
)

= 1]
∣∣∣ = negl(λ)

Remark 5.4. Similarly to Definition 2.6, we do not denote adversary A’s internal state in the above
definition, even though it is stateful for the sake of the simplicity of the notation. On the other hand, the
above explicitly denotes the internal state of the simulator Sim by st. We use slightly stronger definition
than [GTKP+13b] in that we do not allow the simulator to update the internal state. We adopt this more
stronger definition since the construction in [GTKP+13b] satisfies this and it is simpler.

Remark 5.5. Note that in the above definition the input x is explicitly fed to the Sim. Therefore, the
definition does not require input privacy and is thus weaker than the one in [GTKP+13b]. However,
without loss of generality, we can always instantiate such a circuit-private RGC scheme by including x to
be part of the encoding cx. We then recall the following result by Goldwasser et al. [GTKP+13b].

Theorem 5.6 ([GTKP+13b]). There exists a circuit-private, succinct RGC scheme RGC for the circuit
class Cinp,dep,out assuming sub-exponential hardness of the LWE problem.

We now describe the building blocks for our CPFE scheme CPFE. To this end, we start by first
specifying its parameters. In particular, CPFE would support the circuit family Cinp,dep,out containing
circuits with input length inp = inp(λ), depth dep = dep(λ), output length out = out(λ) but with
arbitrary polynomial size. Formally, we construct an FE scheme for prm = (1inp, 1dep, 1out), Xprm =
Cinp,dep,out, Yprm = {0, 1}inp and Rprm : Xprm × Yprm → {0, 1}out, where R(C, x) = C(x), for all
C ∈ Cinp,dep,out and x ∈ {0, 1}inp.

Ingredients. The building blocks for our CPFE construction then are as follows:

1. A succinct RGC scheme denoted by

RGC = (RGC.Garble,RGC.Enc,RGC.Eval),

for Cprm. We can instantiate such a scheme with the succinct RGC scheme from LWE [GTKP+13b].
However, our construction does not require the RGC to satisfy input privacy. Hence, we use the
relaxed Definition 5.3 from Section 5.1, which suffices for our purpose (see Definition 5.2 and
Theorem 5.6).

2. A CPFE scheme denoted by

CPFE′ = (CPFE′.Setup,CPFE′.KeyGen,CPFE′.Enc,CPFE′.Dec),

for bounded polynomial-sized circuits that already supports delayed collusion bound property and
satisfies AD-SIM security. Namely, CPFE supports a circuit class Cinp,size′ consisting of circuits
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with input length inp and size at most size′, where the setting of the parameters is deferred until
the description of the construction. Formally, we use FE with prm′ = (1inp, 1size

′
),Xprm′ =

Cinp,size′ ,Yprm′ = {0, 1}inp and Rprm′ : Xprm′ × Yprm′ → {0, 1}∗, where R(C, x) = C(x), for all
C ∈ Cinp,size′ and x ∈ {0, 1}inp. We instantiate it from our construction in Section 3.4, which in
turn can be based on any IBE.

3. A pseudorandom function PRF = (PRF.Setup,PRF.Eval). We assume without loss of generality
that the input and output space of PRF is the {0, 1}inp and the randomness space used in RGC.Enc
algorithm respectively.

At a high level, our CPFE construction applies the CPFE′ scheme satisfying the delayed collusion
property and AD-SIM security on top of the succinct, reusable garbled circuit scheme supporting the
underlying class of circuits. The resultant CPFE thus satisfies succinctness with the delayed collusion
property and AD-SIM security as well. We now proceed to the formal construction below.

5.2 Construction

The CPFE scheme CPFE = (Setup,KeyGen,Enc,Dec) with delayed collusion bound for the circuit
class Cinp,dep,out is as follows.

Setup(1λ, prm): On input the security parameter λ and the parameters prm = (1inp, 1dep, 1out) do the
following:

1. Compute prm′ := (1inp, 1size
′
), where size′ = size′(λ, prm) is the size of the circuit E[gsk,K]

described in Figure 2.

2. Run (CPFE′.mpk,CPFE′.msk)← CPFE′.Setup(1λ, prm′).

3. Output (mpk,msk) := (CPFE′.mpk,CPFE′.msk).

KeyGen(msk, x) : On input the master secret key msk = CPFE′.msk and an input x ∈ {0, 1}inp,
compute CPFE′.sk← CPFE′.KeyGen(CPFE′.msk, x) and output sk := CPFE′.sk.

Enc(mpk, C, 1Q) : On input the encryption key mpk = CPFE′.mpk, a circuit C ∈ Cinp,dep,out and the
query bound 1 ≤ Q < 2λ, do the following:

1. Sample a PRF key K← PRF.Setup(1λ).

2. Using prm, generate (C̃, gsk)← RGC.Garble(1λ, prm, C) and construct the circuit E[gsk,K](·)
defined as Figure 2.

3. Compute a ciphertext CPFE′.ct← CPFE′.Enc(CPFE′.mpk,E[gsk,K], 1
Q).

4. Output the ciphertext ct := (C̃,CPFE′.ct).

Dec(ct, sk) : On input a secret key sk associated with input x and a ciphertext ct, do the following:

1. Parse the ciphertext ct = (C̃,CPFE′.ct) and the secret key sk = CPFE′.sk.

2. Compute y = CPFE′.Dec(CPFE′.sk,CPFE′.ct).

3. Compute and output z = RGC.Eval(C̃, y).
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Circuit E[gsk,K]

Hardwired constants: RGC key gsk, PRF key K.
On input x ∈ {0, 1}inp, proceed as follows:

1. Compute R = PRF.Eval(K, x).

2. Output cx = RGC.Enc(gsk, x;R), where R is used as a randomness for encoding input x.

Figure 2 : Circuit E[gsk,K].

In Appendix D, we show that the scheme is correct, succinct and satisfies AD-SIM security.

6 FE for Turing Machines with Dynamic Bounded Collusion

In this section, we construct FE for Turing machines from KPFE and CPFE schemes that we have
constructed so far. For conciseness, we first provide a generic construction of FE that combines many
instance of FE together in Section 6.1. We then construct FE for Turing machines with NA-SIM security in
Section 6.2 and FE for NL with AD-SIM security in Section 6.3 by instantiating the generic construction.

6.1 Generalized Bundling of Functionality

Consider an FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for a parameter prm = 1i and a
relation Ri : Xi × Yi → {0, 1} ∪ {⊥} for all i ∈ N. Using such FE, we will construct a new FE with
message space A and key space B. We assume that there exist efficiently computable maps S : N→ 2N

and T : N→ 2N such that maxS(n) and max T (n) can be bounded by some fixed polynomial in n. We
also assume that there exist maps f with domain A and g with domain B such that

f(x) ∈
∏

i∈S(|x|)

Xi and g(y) ∈
∏

i∈T (|y|)

Yi,

where |x| and |y| are the lengths of x and y as binary strings. Namely, f and g are maps such that

f : A 3 x 7→ {f(x)i ∈ Xi}i∈S(|x|) , g : B 3 y 7→ {g(y)i ∈ Yi}i∈T (|y|) .

Here, we require that the length of |f(x)|i and |g(x)|i can be computed from the length of |x| alone
and they do not depend on the actual value of x. In this setting, we can construct an FE scheme
BFE = (Setup,KeyGen,Enc,Dec) for a two input function Rbndl : A × B → {0, 1}∗ defined in the
following

Rbndl(x, y) = {Ri(f(x)i, g(y)i)}i∈S(|x|)∩T (|y|) , (6.1)

where f(x)i ∈ Xi and g(y)i ∈ Yi are the i-th entries of f(x) and g(x), respectively.

Ingredients. We now describe the underlying building blocks used to obtain our FE construction:

1. A pseudorandom function PRF = (PRF.Setup,PRF.Eval). We assume that PRF.Eval(K, ·) has
domain {0, 1}λ and range {0, 1}λ for any key K output by PRF.Setup(1λ). The input space
{0, 1}λ can be regarded as [2λ] by the natural bijection between the two sets. We can instantiate
PRF from any one-way function [GGM84].
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2. An FE scheme FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) for a parameter prm = 1i and a
relation Ri : Xi × Yi → {0, 1} ∪ {⊥} for i ∈ N with delayed collusion property. We require the
scheme to have either NA-SIM or AD-SIM security. We also require that the randomness used by
FE.Setup(1λ, 1i) is of fixed length λ. This is without loss of generality, since we can generate
unbounded length of pseudorandom bits from a binary string R of length λ by regarding R as a
PRF key.

3. A garbled circuit scheme GC = (GC.Garble,GC.Eval). We assume that a label is represented by
a binary string and denote its length by L(λ, |C|), where C is the circuit being garbled. We can
instantiate it by Yao’s garbled circuit [Yao82], which can be based on any one-way function.

4. An IBE scheme IBE = (IBE.Setup, IBE.Enc, IBE.KeyGen, IBE.Dec) with IND-CPA security
whose identity space and message space are {0, 1}∗. We assume that the key generation algorithm
is deterministic. This is without loss of generality, since we can use PRF to derandomize the key
generation algorithm. We can instantiate IBE from various standard assumptions including LWE
[ABB10, CHKP10], CDH, and Factoring [DG17].

Construction. We then provide the description of the construction of BFE = (Setup,KeyGen,Enc,Dec)
for Rbndl above.

Setup(1λ) : On input the security parameter λ, do the following:

1. Run (IBE.mpk, IBE.msk)← IBE.Setup(1λ).

2. Sample a PRF key K← PRF.Setup(1λ).

3. Output the master key pair as (mpk,msk) := (IBE.mpk, (IBE.msk,K)).

KeyGen(msk, y) : On input master secret key msk = IBE.msk, a key attribute y ∈ B, do the following:

1. Compute T (|y|) ⊆ N, where |y| is the length of y as a binary string.

2. Compute Ri = PRF.Eval(K, i) for i ∈ T (|y|), where i ∈ N is interpreted as a binary string
in {0, 1}λ.

3. Run (FE.mpki,FE.mski)← FE.Setup(1λ, 1i;Ri) for i ∈ T (|y|).

4. Compute g(y) = {g(y)i ∈ Yi}i∈T (|y|).

5. For i ∈ T (|y|), compute

FE.ski ← FE.KeyGen(FE.mski, g(y)i).

6. Let `i := |FE.mpki|. For all i ∈ T (|y|) and j ∈ `i, generate a secret key as

IBE.ski,j ← IBE.KeyGen(IBE.msk, (i, j,FE.mpki,j))

where FE.mpki,j is the j-th bit of FE.mpki ∈ {0, 1} as a binary string.

7. Output

sk =

(
T (|y|),

{
FE.ski, {IBE.ski,j}j∈[`i]

}
i∈T (|y|)

)
. (6.2)

Enc(mpk, x, 1Q) : On input the encryption key mpk = IBE.mpk, a message x ∈ A, and the query bound
1 ≤ Q ≤ 2λ in unary form, do the following:

1. Compute S(|x|) ⊂ N, where |x| is the length of x as a binary string.
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2. Compute f(x) = {f(x)i}i∈S(|x|).

3. Do the following for i ∈ S(|x|).

(a) Compute the length `i of FE.mpki. This is done without knowing FE.mpki.
(b) Sample a randomness ri for the encryption algorithm FE.Enc(FE.mpki, f(x)i, 1

Q; ri).
This is done without knowing FE.mpki.

(c) Define a circuit
Ei(·) := FE.Enc(·, f(x)i, 1

Q; ri)

that takes as input a string str ∈ {0, 1}`i and outputs FE.Enc(str, f(x)i, 1
Q; ri), where

str is interpreted as a master public key of the FE.
(d) Generate a garbled circuit

{labi,j,b}j∈[`i],b∈{0,1} ← GC.Garble(1λ,Ei).

(e) For all j ∈ [`i] and b ∈ {0, 1}, compute

IBE.cti,j,b ← IBE.Enc (IBE.mpk, (i, j, b), labi,j,b) .

4. Output

ct =
(
S(|x|), {IBE.cti,j,b}i∈S(|x|),j∈[`i],b∈{0,1}

)
. (6.3)

Dec(ct, sk) : On input a secret key sk, a ciphertext ct, and the query bound 1 ≤ Q ≤ 2λ in unary form,
do the following:

1. Parse the secret key as Eq. (6.2) and the ciphertext as Eq. (6.3).

2. For all i ∈ S(|x|) ∩ T (|y|) do the following.

(a) Retrieve FE.mpki from the FE.ski.
(b) For all j ∈ [`i] compute lab′i,j := IBE.Dec(IBE.ski,j,FE.mpki,j , IBE.cti,j,FE.mpki,j ).

(c) Compute ci := GC.Eval({lab′i,j}j∈[`i]).
(d) Compute zi := FE.Dec(FE.ski, ci)

3. Output {zi}i∈S(|x|)∩T (|y|).

In Appendix E, we show that the scheme is correct, satisfies efficiency in that all the algorithms run
in time polynomial in their respective input lengths and satisfies AD-SIM (resp., NA-SIM) security, if the
same holds for the FE.

6.2 FE for Turing Machines with NA-SIM Security

Here, we provide the construction of FE for Turing machines defined as in Section 2.2.3, which satisfies
NA-SIM security. Recall that in FE for Turing machines, a ciphertext is associated with (x, 1t) and a
secret key is for a Turing machine M , and the decryption results to 1 if the machine accepts the input
within t steps and 0 otherwise. To construct such a scheme, we start with constructing two schemes with
partial functionality and then combine them. The one scheme takes care of the case where |(x, 1t)| > |M |,
while the other takes care of the case where |(x, 1t)| ≤ |M |. Both schemes are obtained by applying the
generic conversion in Section 6.1 to the schemes we constructed so far.
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6.2.1 The Case of |(x, 1t)| > |M |

We first show that by applying the conversion in Section 6.1 to the CPFE scheme in Section 3.2, we can
obtain an FE scheme for Turing machines for the case where |(x, 1t)| > |M |. Formally, we construct an
FE for R> : A× B → {0, 1}, where A = {0, 1}∗, B is the set of all Turing machines, and

R>((x, 1t),M) =

{
1 (if M accepts x in t steps) ∧

(
|(x, 1t)| > |M |

)
0 otherwise.

.

To apply the conversion, we recall that the scheme in Section 3.2 is an FE for prm = 1i, Ri : Xi × Yi →
{0, 1} where Xi is the set of circuits with input length i, Yi = {0, 1}i, and Ri(C, x) = C(x). We then
set S, T , f , and g as

S(i) = {1, 2, . . . , i− 1}, T (i) = {i}, f(x, 1t) = {Ui,x,t(·)}i∈[|(x,1t)|−1] , g(M) = M

where Ui,x,t(·) is defined as Figure 3. The circuit (in particular, Step 2 of the computation) is padded so
that the circuit size only depends on |(x, 1t)|. Note that Ui,x,t is in Xi even for x and t with unbounded
length, since Xi contains circuits of unbounded size.

Circuit Ui,x,t

Hardwired constants: x, t.
On input M = (Q, δ, F ) ∈ {0, 1}i, proceed as follows:

1. Parse the input M ∈ {0, 1}i as a description of a Turing machine.

2. Run M on input x for t steps.

3. Output 1 if the state is in F (accept) and 0 otherwise.

Figure 3 : Circuit Ui,x,t.

Then, by inspection, we can observe that for Xi,Yi,S, T , f, g,A,B defined as above, Rbndl defined
as Equation (6.1) is equivalent to R> except for the case of |(x, 1t)| ≤ |M |. In this case, the decryption
result in FE for Rbndl is an empty set ∅, whereas it should be 0 in FE for R>. However, the former can be
converted into the latter very easily. To do so, we add the extra step to the decryption algorithm of the
former where it outputs 0 if the decryption result is ∅. Since the original scheme is NA-SIM secure, so is
the resulting scheme by Theorem E.2.

6.2.2 The Case of |(x, 1t)| ≤ |M |

We next show that by applying the conversion in Section 6.1 to the KPFE scheme in Section 4, we can
obtain an FE scheme for Turing machines for the case where |(x, 1t)| ≤ |M |. Formally, we construct an
FE for R≤ : A× B → {0, 1}, where A = {0, 1}∗, B is the set of all Turing machines, and

R≤((x, 1t),M) =

{
1 (if M accepts x in t steps) ∧

(
|(x, 1t)| ≤ |M |

)
0 otherwise.

.

To apply the conversion, we observe that the scheme in Section 4 can be used as an FE for prm = 1i,
Ri : Xi × Yi → {0, 1} where Xi is the set of circuits with input length i, depth i · λ, and output length 1
and Yi = {0, 1}i, and Ri(C, x) = C(x). We then set S, T , f , and g as

S(i) = i, T (i) = {1, 2, . . . , i}, f(x, 1t) = (x, 1t), g(M) = {Ui,M (·)}i∈[M ] ,
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where Ui,M (·) is defined as Figure 4. Here, we check that Ui,M (·) is in Yi. Recall that even though Yi
supports circuits with unbounded size, it has a bound on the depth of the circuit. We therefore argue that
the depth of Ui,M (·) does not exceed iλ, even for unbounded size |M |. We evaluate the depth of Step 2
of the circuit, since this is the only non-trivial step. By Lemma 2.2, this step can be implemented by a
circuit with depth

t · poly(log |x|, log t, log |M |) ≤ i · poly(log λ) ≤ i · λ

Circuit Ui,M

Hardwired constants: Description of a Turing Machine M .
On input y ∈ {0, 1}i, proceed as follows:

1. Parse the input y ∈ {0, 1}i as (x, 1t).

2. Otherwise, run M on input x for t steps.

3. Output 1 if the state is in F (accept) and 0 otherwise.

Figure 4 : Circuit Ui,M .

Then, by inspection, we can observe that for Xi,Yi,S, T , f, g,A,B defined as above, Rbndl defined
as Equation (6.1) is equivalent to R≤ except for the case of |(x, 1t)| > |M |. In this case, the decryption
result in FE for Rbndl is an empty set ∅, whereas it should be 0 in FE for R>. However, the former can be
converted into the latter by adding the extra step to the decryption algorithm where it outputs 0 if the
decryption result is ∅. This gives us the construction of FE for R≤. Since the original scheme is AD-SIM
secure, so is the resulting scheme by Theorem E.2.

6.2.3 Putting the Pieces Together

Here, we combine the two schemes we considered so far to obtain the full-fledged scheme. We set
A = {0, 1}∗ and B to be the set of all Turing machines. We also set R1 = R>, R2 = R≤, Xi = A,
Yi = B for i = 1, 2. We have already constructed schemes for R1 and R2 and now combine them. To do
so, we set S, T , f , and g as

S(i) = {1, 2}, T (i) = {1, 2}, f(x, 1t) = {(x, 1t), (x, 1t)}, g(M) = {M,M}

We observe that for Xi,Yi,S, T , f, g,A,B defined as above, Rbndl defined as Equation (6.1) is

Rbndl((x, 1t),M) =


(1, 0) (if M accepts x in t steps) ∧

(
|(x, 1t)| > |M |

)
(0, 1) (if M accepts x in t steps) ∧

(
|(x, 1t)| ≤ |M |

)
(0, 0) otherwise.

.

An FE for the above relation is not exactly the same as the FE for Turing machines we defined in
Section 2.2.3. However, the former readily implies the latter. To do so, we add the extra step to the
decryption algorithm of the former where it checks whether there is 1 in the left or right slot of the
decryption result and outputs 1 if there is. Otherwise, it outputs 0.

It is obvious that the obtained scheme satisfies correctness and efficiency requirements if so does the
underlying schemes. As for the security, we can see by Theorem E.2 that the resulting scheme is NA-SIM
secure if we combine an AD-SIM secure scheme for R≤ with an NA-SIM secure scheme for R>.
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Remark 6.1. One might think that FE for Rbndl constructed above leaks more information on (x, 1t) than
FE for Turing machines and so is our final scheme, because the decryption result can be ∅, in addition
to 0 or 1 and the decryptor can know whether |(x, 1t)| > |M | or not. However, it is not the case since
whether the decryption result is ∅ or not can be checked only from the length of the string |(x, 1t)|, which
is not meant to be hidden in our definition (and other standard definitions) of FE.

To sum up, we have the following theorem:

Theorem 6.2. We have FE for Turing machines with delayed collusion property that satisfies NA-SIM
security from the sub-exponential LWE assumption.

6.3 FE for NL with AD-SIM Security

Here, we provide the construction of FE for NL. Namely, a ciphertext encrypts a string (x, 1t, 12s), where
x is a string, t is the time bound, s is the space bound for the computation and a secret key is associated
with a non-deterministic Turing machine M . The decryption is possible if M accepts x within t steps
and the space used for the computation does not exceed s. The construction is less expressive than FE
scheme for Turing machines in Section 6.2, but it satisfies the stronger AD-SIM security. The idea for the
construction is very similar to Section 6.2. We consider two schemes that complement each other and
then combine them.

Transition Matrix. Before describing the schemes, we need some preparations. Similarly to [LL20], we
represent the computation of M(x) as a multiplication of matrices. To do so, let us enumerate all the
possible internal configurations that may appear when we run M = (Q, δ, F ) on input x with the space
for the computation being bounded by s. As an internal configuration, we have |x| and s choices for
the input and work tape pointers, respectively. We also have |Q| choices for the possible state, and 2s

possible choices for the contents of the work tape. Therefore, we have

N := s2s · |x| · |Q|

possible internal configurations. We associate each i ∈ [N ] with such configuration and represent the
configuration by a vector ei, which is a unit vector whose entries are all 0 except for the i-th entry that is
set to be 1. We also define the matrix Mat(M,x, s) as

Mat(M,x, s)i,j :=

{
1 if the configuration i can reach j in one step by δ
0 otherwise

,

where Mat(M,x, s)i,j is the (i, j)-th entry of the matrix. Furthermore, we consider a special
matrix multiplication over {0, 1}, where the multiplication A · B ∈ {0, 1}N1×N3 of two matrices
A ∈ {0, 1}N1×N2 and B ∈ {0, 1}N2×N3 is defined as

(A ·B)i,j =
∨

k∈[N2]

(Bi,k ∧Ck,j) ,

where we denote the (i, j)-th entry of a matrix D by Di,j above. The multiplication can be defined for
any size of matrices and in particular, also defined for computations involving vectors. We then define
estt as the vector corresponding to the initial state of the computation and uacc as

uacc =
∑

i ∈ [N ] : i encodes accepting state

ei.

Then, we observe that

e>stt · (Mat(M,x, s)i,j)
t · uacc =

{
1 if M accepts x within t steps and space s
0 otherwise

holds from the property of the transition matrix, where we use the special multiplication above.
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6.3.1 The Case of |(x, 1t, 12s)| > |M |

We first show that by applying the conversion in Section 6.1 to the CPFE scheme in Section 5, we can
obtain an FE scheme for NL for the case where |(x, 1t, 12s)| > |M |. Formally, we construct an FE for
R> : A× B → {0, 1}, where A = {0, 1}∗, B is the set of all non-deterministic Turing machines, and

R>((x, 1t, 12s),M) =

{
1 (if M accepts x within t steps and space s) ∧

(
|(x, 1t, 12s)| > |M |

)
0 otherwise.

.

To apply the conversion, we observe that the scheme in Section 5 can be used to construct an FE for
prm = 1i, Ri : Xi × Yi → {0, 1} ∪ {⊥} where Xi is the set of circuits with input length i, depth λ, and
output length 1, Yi = {0, 1}i, and Ri(C, x) = C(x). We then set S, T , f , and g as

S(i) = {1, 2, . . . , i− 1}, T (i) = {i}, f(x, 1t, 12s) = {Ui,x,t,s(·)}i∈[|(x,1t,12s )|−1] , g(M) = M

whereUi,x,t,s(·) is defined as Figure 5. The circuit may be padded so that it does not leak more information
about the hardwired constants (x, t, s) beyond |(x, 1t, 12s)|.

We now show that f is a valid map. Namely, Ui,x,t,s is in Xi even for x and t with unbounded length.
Recall that Xi has a bound on the depth of the circuits it supports, even though it does not have such
a bound on the size. We argue that the depth of Ui,x,t,s is bounded by λ. To do so, we evaluate the
depth of each computation step of Ui,x,t,s. First, Step 1 of the computation is trivial. Step 2 can be
implemented by a circuit of depth poly(log |x|, log s, log |M |) by Lemma 2.3. Step 3 can be executed
by O(log t) multiplication of matrices of size N ×N , which can be implemented with depth O(logN).
Therefore, this step can be computed with depth O(logN log t). Step 4 can also be implemented with
depth O(logN). Therefore, the entire computation can be implemented with depth

poly(log s, log |x|, log t, logN, log |M |) ≤ poly(log λ) ≤ λ

as desired.

Circuit Ui,x,t,s

Hardwired constants: x, t, s.
On input M ∈ {0, 1}i, proceed as follows:

1. Parse the input M = (Q, δ, F ) as a description of a Turing machine.

2. Compute Mat(M,x, s)j,k for all j, k ∈ [N ] in parallel, where N = s2s · |x| · |Q|.

3. Compute A := Mat(M,x, s)t.

4. Compute and output e>stt ·A · uacc.

Figure 5 : Circuit Ui,x,t,s.

Then, by inspection, we can observe that for Xi,Yi,S, T , f, g,A,B defined as above, Rbndl defined
as Equation (6.1) is equivalent to R> except for the case of |(x, 1t, 12s)| ≤ |M |. However, this case can
be handled by replacing the ∅ by 0, similarly to Section 6.2. This gives us the construction of FE for R>.
Since the original scheme is AD-SIM secure, so is the resulting scheme by Theorem E.2.
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6.3.2 The Case of |(x, 1t, 12s)| ≤ |M |

We next show that by applying the conversion in Section 6.1 to the KPFE scheme in Section 4, we can
obtain an FE scheme for Turing machine for the case where |(x, 1t, 12s)| ≤ |M |. Formally, we construct
an FE for R≤ : A× B → {0, 1} ∪ {⊥}, where A = {0, 1}∗, B is the set of all non-deterministic Turing
machines, and

R≤((x, 1t, 12s),M) =

{
1 (if M accepts x within t steps and space s) ∧

(
|(x, 1t, 12s)| ≤ |M |

)
0 otherwise.

.

To apply the conversion, we observe that the scheme in Section 4 can be used as an FE for prm = 1i,
Ri : Xi × Yi → {0, 1} where Xi is the set of circuits with input length i, depth i · λ, and output length 1
and Yi = {0, 1}i, and Ri(C, x) = C(x). We then set S, T , f , and g as

S(i) = i, T (i) = {1, 2, . . . , i}, f(x, 1t, 12s) = (x, 1t, 12s), g(M) = {Ui,M (·)}i∈[M ] ,

where Ui,M (·) is defined as Figure 6.
We now show that g is a valid map. Namely, Ui,M is in Yi even for M with unbounded size. In

particular, we have to show that the depth of the circuit is bounded by λ. This can be shown by the
same argument as for Ui,x,t,s, since both circuits compute e>stt ·Mat(M,x, s)t · uacc from (x, t, s,M) in
exactly the same way.

Circuit Ui,M

Hardwired constants: Description of a Turing Machine M .
On input y ∈ {0, 1}i, proceed as follows:

1. Parse the input y ∈ {0, 1}i as (x, 1t, 12s).

2. Compute Mat(M,x, s)j,k for all j, k ∈ [N ] in parallel, where N = s2s · |x| · |Q|.

3. Compute A := Mat(M,x, s)t.

4. Compute and output e>stt ·A · uacc.

Figure 6 : Circuit Ui,M .

Then, by inspection, we can observe that for Xi,Yi,S, T , f, g,A,B defined as above, Rbndl defined
as Equation (6.1) is equivalent to R≤ except for the case of |(x, 1t, 12s)| > |M |. However, this case can
be handled by replacing the ∅ by 0, similarly to Section 6.2. This gives us the construction of FE for R≤.
Since the original scheme is AD-SIM secure, so is the resulting scheme by Theorem E.2.

6.3.3 Putting the Pieces Together

Here, we combine the two schemes we considered so far to obtain the full-fledged scheme. We set
A = {0, 1}∗ and B to be the set of all Turing machines. We also set R1 = R>, R2 = R≤. Xi = A,
Yi = B for i = 1, 2. We have already constructed schemes for R1 and R2 and now combine them. To do
so, we set S, T , f , and g as

S(i) = {1, 2}, T (i) = {1, 2}, f(x, 1t) = {(x, 1t, 12s), (x, 1t, 12s)}, g(M) = {M,M}
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We observe that for Xi,Yi,S, T , f, g,A,B defined as above, Rbndl defined as Equation (6.1) is

Rbndl((x, 1t, 12s),M) =


(1, 0) (if M accepts x within t steps and space s) ∧

(
|(x, 1t, 12s)| > |M |

)
(0, 1) (if M accepts x within t steps and space s) ∧

(
|(x, 1t, 12s)| ≤ |M |

)
(0, 0) otherwise.

.

To obtain the FE scheme for NL, we add an extra step for the decryption algorithm of the FE scheme for
Rbndl obtained above, where we output 1 if the decryption result for either left or right slot is 1 and 0
otherwise. To sum up, we have the following theorem:

Theorem 6.3. We have FE for NL with delayed collusion property that satisfies AD-SIM security from
the sub-exponential LWE assumption.

7 Necessity of IBE

In this paper, we mainly focus on the construction of FE with delayed collusion bound property, which is
stronger than traditional bounded collusion security. Whereas the construction of the latter can be based
on the minimal assumption of plain PKE [AV19], we need stronger primitive of IBE for the former in
our constructions. A natural question is whether we can base the construction of the former on weaker
primitives such as PKE. In this section, we observe that the usage of IBE is unavoidable by showing
that FE with delayed collusion property even for very small class of functionality already implies IBE.
This means that our constructions of CPFE in Section 3 are optimal, in the sense that we cannot base the
scheme on weaker primitives.

To show the above implication, we use the result by Brakerski et al. [BLSV18], which showed that
the primitive called weakly compact IBE can be converted into the standard IBE. Weakly compact IBE is
a special kind of IBE such that the identity space is only polynomially large, but the master public key is
sublinear in the size of the identity space. Namely, for identity space [N ] with N = poly(λ), the size
of the master public key is N1−ε poly(λ) for some constant 1 ≥ ε > 0. As for the security, we require
IND-CPA security as per Definition A.8.

Given the aforementioned result, it suffices to show that weakly compact IBE is implied by an FE
scheme with delayed collusion property for some simple function class. In particular, let us consider an FE
scheme for the function family {Rprm}prm, where prm = 1λ, Xprm = {0, 1}λ × {0, 1}, Yprm = {0, 1}λ,
and Rprm((x, b), y) = (x, b) if x = y and Rprm((x, b), y) = x otherwise. We require the FE scheme
to satisfy NA-SIM with delayed collusion bound. It is easy to see that this FE already satisfies the
functionality of IBE by interpreting b as a message to be encrypted and x and y as identities associated
with the ciphertext and secret key, respectively. However, this FE scheme does not satisfy the standard
collusion resistance as IBE if we fix the collusion bound Q for the encryption to be some polynomial,
since the delayed collusion bound property does not guarantee the security for an adversary who makes
more than Q secret key queries.

Nevertheless, we observe that the above scheme can be used as weakly compact IBE if we restrict
the identity space. To show this, let us denote the length of the master public key by L(λ) and restrict
the identity space to be [N ] ⊆ {0, 1}λ, where N = dL1/εe for some constant 0 < ε < 1 and [N ] is
embedded into {0, 1}λ by the natural bijection between {0, 1}λ and [2λ]. We then have the encryptor
always choose Q = N − 1.

We argue that the above construction is secure weakly compact IBE. To see this, we first observe
that the size of the master public key is L(λ) ≤ N ε, which is sublinear in the number of all users in
the system. Next, we argue that the scheme satisfies IND-CPA security as weakly compact IBE. To see
this, we first observe that NA-SIM security of the FE scheme implies corresponding indistinguishability-
based security notion that we call NA-IND, where we require the indistinguishability of two ciphertexts
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encrypting two different messages m0 and m1 instead of requiring that there is a simulator that generates
a simulated ciphertext indistinguishable from the real one. This implication is standard and was observed
by [O’N10, GVW12] for general FE. Note that there is no bound on the number of key queries any more,
since we allow the adversary to collude with at most Q = N − 1 users (i.e., all but the target identity).
The only difference between NA-IND security and the standard IND-CPA security is that in the latter, the
adversary is allowed to make secret key queries after the encryption query. However, since the number of
users in the system is polynomially bounded, both security notions are in fact equivalent. In particular,
these security notions are equivalent to the selective variant of the security notion where the adversary
chooses its target identity at the beginning of the game. This can be seen by a simple reduction that
guesses the target identity for which the ciphertext is generated and queries all the other identities.
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APPENDICES

A Additional Preliminaries

A.1 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be an ordered family of sets and let PRF = (PRF.Setup,PRF.Eval) describe a
function family F := {Fλ : Kλ ×Xλ → Yλ}λ∈N with the following syntax:

• PRF.Setup(1λ) : The PPT algorithm takes as input the unary description of the security parameter
and outputs a key K ∈ Kλ.

• PRF.Eval(K, x) : The deterministic, polynomial time algorithm takes a key K ∈ Kλ and x ∈ Xλ
as inputs and outputs Fλ(K, x) = R ∈ Yλ.

The sets Kλ,Xλ and Yλ define the key space, domain, and range of the set of function family F
respectively. We say F is a pseudorandom function family if for every PPT adversary A, there exists a
negligible function negl(·) such that

AdvPRF,A(λ) :=

∣∣∣∣ Pr
K←PRF.Setup(1λ)

[
APRF.Eval(K,·)(1λ) = 1

]
− Pr
fλ←Uλ

[
Af(·)(1λ) = 1

]∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ ∈ N, where Uλ := {fλ : Xλ × Yλ} is the set of all functions from Xλ to Yλ.

A.2 Garbled Circuits

Our definition of garbled circuits is based upon the one considered in [GKW16]. For λ ∈ N, let
Cinp denote a family of circuits with inp bit inputs and C = {Cinp(λ)}λ∈N. A garbling scheme GC =
(GC.Garble,GC.Eval) for C consists of two algorithms:

• GC.Garble(C, 1λ): The PPT garbling algorithm takes as input the security parameter λ and a
circuit C ∈ Cinp(λ). It outputs 2·inp labels {labi,b}i∈[inp],b∈{0,1}.

• GC.Eval({labi}i∈[inp]): The evaluation algorithm takes as input an inp labels {labi}i∈[inp] and
outputs y.

Definition A.1 (Correctness). A garbling scheme GC for circuit family {Cinp(λ)}λ∈N is correct if for all
C ∈ Cinp(λ) and all x ∈ {0, 1}inp(λ), we have

Pr
[
GC.Eval

(
{labi,xi}i∈[inp]

)
6= C(x) :

(
{labi,b}i∈[inp],b∈{0,1}

)
← GC.Garble(1λ, C)

]
= negl(λ),

where the probability is taken over the random coins of GC.Garble.

Definition A.2 (Security). A garbling scheme GC = (Garble,Eval) for C = {Cinp(λ)}λ∈N is said to be a
secure garbling scheme if there exists a PPT simulator GC.Sim such that for all λ ∈ N, inp, C ∈ Cinp(λ)

and x ∈ {0, 1}inp(λ), we have{
{labi}i∈[inp] : {labi}i∈[inp] ← GC.Sim

(
1λ, 1inp, 1|C|, C(x)

) }
c
≈

{
{labi,xi}i∈[inp] : {labi,b}i∈[inp],b∈{0,1} ← GC.Garble

(
C, 1λ

) }
(A.1)

Garbled circuits are known to exist from one-way functions [Yao82, BHR12b]. Though the above
definition is not as general as one in [BHR12b], it suffices for our constructions in this paper.
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Remark A.3. Note that in the standard syntax of garbling scheme [LP09, BHR12a], the output of
the garbling algorithm consists of labels along with a garbled circuit. On the other hand, the output
only consists of labels in our syntax. However, the former can easily be converted into the latter by
including the garbled circuit into a label for example. This change in syntax is made for simplifying our
constructions and notations. We also note that the same primitive is called decomposable randomized
encoding in [GVW12].

Remark A.4 (Multi-instance security definition). The above definition allows to argue security of a single
instance of GC. For the security proof of our constructions in Section 3, it is convenient to consider
multi-instance version of the above notion. In the multi-instance variant, the adversary can adaptively
make polynomial number of garbling queries to the challenger. All queries are answered by honestly
generated labels in the real world whereas they are all simulated in the ideal world. If both worlds
are computationally indistinguishable, we say that GC satisfies multi-instance security. Note that such
multi-instance security follows from the standard single instance security (from Definition A.2 above) by
a set of simple hybrid arguments.

A.3 Identity-based Encryption

We define identity-based encryption (IBE) [KT18, BF01, Coc01] in this section. An IBE scheme IBE
with identity space I = {Iλ}λ∈N consists of four algorithms as follows.

• Setup(1λ) is a PPT algorithm that takes as input the unary representation of security parameter
and outputs the master public and secret keys mpk and msk.

• KeyGen(msk, id) is a PPT algorithm that takes as input the master secret key msk and an identity
id ∈ Iλ. It outputs a corresponding secret key skid.

• Enc(mpk, id,m) is a PPT algorithm that takes as input the master public parameter mpk, an
identity id ∈ Iλ and a message m ∈ {0, 1}∗. It outputs a ciphertext ct.

• Dec(skid, ct) is a deterministic polynomial time algorithm that takes as input the secret key skid
and a ciphertext ct, and outputs either a message m′ or ⊥.

Definition A.5 (Correctness). For correctness, we require that for all λ ∈ N,m ∈ {0, 1}∗, id ∈ Iλ,

Pr

[
Dec(skid, ctid) = m | (mpk,msk)← Setup(1λ, 1L),

skid ← KeyGen(msk, id), ctid ← Enc(mpk, id,m)

]
= 1,

where the probability is taken over the random coins of Setup,KeyGen and Enc.

Remark A.6 (About the identity space.). In this paper, we set the identity space I to be {0, 1}∗ by default.
This is without loss of generality assuming collision resistant hash function and an IBE scheme with
sufficiently large identity space (e.g., Iλ = {0, 1}2λ), since we can hash any string into a string of fixed
length using collision resistant hash function.

Remark A.7 (About the message length.). In the above definition, we assume that the message space
is {0, 1}∗. This is without loss of generality if we consider IND-CPA security for IBE, since it is
straightforward to extend the message space by encrypting each bit (or chunk) of the message in parallel.
However, when we consider SIM-RSO security, the above does not work. When we consider such a
scheme, we augment the above syntax so that the setup algorithm takes an additional input 1L that specifies
the message space {0, 1}L. The efficiency of the algorithms then should depend on L polynomially.
Our constructions in Section 3.2 requires IBE schemes with unbounded message space and IND-CPA
security and our construction in Section 3.3 requires a scheme with bounded message space and SIM-RSO
security.
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We consider two different definitions of security in this paper. Namely, we consider IND-CPA security
and SIM-RSO (simulation based receiver selective opening) security. Below, we describe them in order.

Definition A.8 (IND-CPA Security). An IBE scheme IBE for an identity space Iλ and message space
{0, 1}∗ is said to satisfy indistinguishability based security if for any stateful PPT adversary A, there
exists a negligible function negl(.) such that

AdvIBE,A(1λ) =
∣∣∣Pr[Exp

(0)
IBE,A(1λ) = 1]− Pr[Exp

(1)
IBE,A(1λ) = 1]

∣∣∣ ≤ negl(λ),

where for each b ∈ {0, 1} and λ ∈ N, the experiment Exp(b)
IBE,A, modelled as a game between adversary

and challenger, is defined as follows:

1. Setup Phase: On input 1λ from the adversary A, the challenger samples (mpk,msk)← Setup(1λ)
and replies to A with mpk.

2. Query phase: During the game, A adaptively makes the following queries in any arbitrary order
and unbounded many times.

(a) Key Queries: A chooses an identity id ∈ Iλ and sends it to the challenger. For each such
query, the challenger replies with skid ← KeyGen(msk, id).

(b) Encryption Queries: A submits to the challenger, an identity id∗ ∈ Iλ and a pair of equal
length messages (m0,m1). The challenger replies with ctid∗ ← Enc(mpk, id∗,mb).

3. Output phase: A outputs it’s guess b′ as output of the experiment.

We say an adversary A is legitimate if during the challenge phase, it is restricted to query for ciphertexts
corresponding to identities id∗ ∈ Iλ whose secret keys are not queried during any key query.

Remark A.9. Since we are in the public key setting, we can simplify the above experiment so that
the encryption query is allowed for only once. This simplified definition is shown to equivalent to the
definition above by a simple hybrid argument. We adopt the above multi-challenge security definition
since it is convenient for our purpose in this paper.

Definition A.10 (SIM-RSO Security). Consider an IBE scheme IBE for an identity space Iλ. For every
stateful PPT adversary A and a stateful PPT simulator Sim = (SimEnc, SimKG), consider the following
experiments:

ExprealIBE,A

(
1λ
)
: ExpidealIBE,Sim

(
1λ
)
:

1: 1L ← A(1λ)
2: (mpk,msk)← Setup(1λ, 1L)
3: (T,Msg)← AKeyGen(msk,·)(mpk), where

• T ⊂ Iλ \ Ext, where Ext = {idq}q∈[Q1]

is the set of identities for which A made a
query to KeyGen(msk, ·).

• Msg :=
{
mid ∈ {0, 1}L

}
id∈T .

4: CT := {Enc(mpk, id,mid)}id∈T ,
where CT := {ctid}id∈T .

5: b← AKeyGen(msk,·),O(msk,·)(CT), where

• A cannot query id ∈ T to KeyGen(msk, ·).

• A cannot query id 6∈ T to O(msk, ·).

6: Output b.

1: 1L ← A(1λ)
2: (mpk,msk)← Setup(1λ, 1L)
3: (T,Msg)← AKeyGen(msk,·)(mpk), where

• T ⊂ Iλ \ Ext, where Ext = {idq}q∈[Q1]

is the set of identities for which A made a
query to KeyGen(msk, ·).

• Msg :=
{
mid ∈ {0, 1}L

}
id∈T .

4: (CT, st)← SimEnc(mpk, T, 1L),
where CT := {ctid}id∈T .

5: b← AKeyGen(msk,·),O′(msk,st,·)(CT), where

• A cannot query id ∈ T to KeyGen(msk, ·).

• A cannot query id 6∈ T to O′(msk, st, ·).

6: Output b.
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We note that though the adversary A is stateful, we do not explicitly include its internal state (which may
include the list Ext, T,Msg) into the output above to keep the notation simple. On the other hand, in the
ideal experiment, st explicitly denotes the internal state of the simulator Sim. The oracles from both the
experiments above are defined below. They are called arbitrarily many times, but with the restrictions on
the identities that can be queried.

• The oracle KeyGen(msk, ·) can be invoked for all id ∈ Iλ before A specifies its target T . After
that, it can only be invoked for id 6∈ T . Each time it is invoked on some id ∈ Iλ, it runs
skid ← KeyGen(msk, id) and returns skid to A.

• The oracle O(msk, ·) = KeyGen(msk, ·) can only be invoked for an identity id in T . In particular,
each time it is invoked on some id ∈ Iλ, it runs skid ← KeyGen(msk, id) and returns skid to A.

• The oracle O′(msk, st, ·) can only be invoked for id ∈ T . When it is invoked for id ∈ T , it
computes

skid ← SimKG(st,msk, id,mid)

and returns skid to A.

Note that A can choose arbitrary size T in Step 3 in the experiments. The IBE scheme IBE is then said
to satisfy simulation based receiver selective opening security against adaptive adversaries (SIM-RSO-
secure, for short) if there is a PPT simulator Sim such that for every PPT adversary A, the following
holds: ∣∣∣Pr[ExprealIBE,A

(
1λ
)

= 1]− Pr[ExpidealIBE,Sim

(
1λ
)

= 1]
∣∣∣ = negl(λ). (A.2)

We call a query to KeyGen(msk, ·) a secret key query, and a query to O(msk, ·) and O′(msk, st, ·) a
corruption query.

Remark A.11. We would like to highlight a few points in Definition A.10 above.

1. First of all, the definition here is adapted from [KT18], but according to the notation and formulation
that we require for our construction in Section 3.3.

2. In [KT18], the adversary chooses a finite distribution on the message space in the challenge phase.
In contrast, here the adversary chooses a constant message distribution, namely a fixed list of
messages Msg = {mid1 ,mid2 , . . . ,mid|T |}, where T = {id1, . . . , id|T |} and |T | is some arbitrary
polynomial in λ. Thus our definition corresponds to the constant distribution in their setting and
hence is implied by their definition.

3. In [KT18], they do not explicitly require the existence of simulator (SimEnc, SimKG) in their
security definition. However, they implicitly construct such algorithms that satisfy the above
properties in their security proof.

4. Our definition models adaptive (i.e., multi-shot) corruptions by the adversary in Step 5, this being
a requirement for our construction. The definition in [KT18] considers the slightly simplified
non-adaptive (i.e., single-shot) corruption setting, though they note that their SIM-RSO secure IBE
scheme satisfies adaptive corruptions as well.

5. Finally, the SIM-RSO secure IBE scheme in [KT18] encrypts single-bit messages, whereas our
construction in Section 3.3 requires to support multi-bit messages. However, we note that the
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message space in their construction can be extended simply by encrypting a message m =
(m1, . . . ,mL) ∈ {0, 1}L as

Enc(mpk, (id, 1),m1), . . . ,Enc(mpk, (id, L),mL),

with (id, i) set as the extended identity for encrypting each bit i ∈ [L]. Therefore, we may use the
scheme from [KT18] to instantiate the IBE for our construction.

B Missing Details from Section 3

B.1 Reusable, Dynamic MPC Protocol

We described the RDMPC protocol informally in Section 3.1. Here, we provide its formal definition
adapted from [AV19]. In particular, we consider the following algorithms. Recall that C ∈ Cinp is
the circuit class consisting of circuits with input length inp. The protocol is further associated with
polynomial functions N = N(λ,R), n = n(λ,R), and t = t(λ,R).

CktEnc(1λ, 1R, 1inp, C)→ (Ĉ1, . . . , ĈN ): The circuit encoding algorithm takes as input the security
parameter λ, the number of sessions R, input length of circuit inp, and a circuit C ∈ Cinp. It then
outputs an encoding (Ĉ1, . . . , ĈN ) of the circuit C.

InpEnc(1λ, 1R, 1inp, x)→ x̂: The input encoding algorithm takes as input the security parameter λ, the
number of sessions R, input length of circuit inp, and an input x ∈ {0, 1}inp. It then outputs an
encoding x̂ of the input x.

Local(Ĉu, x̂)→ ŷu: The local computation algorithm takes as input the u-th encoding Ĉu of C and an
encoding x̂ of x and outputs ŷu. We assume that this algorithm is deterministic.

Decode({ŷu}u∈S , S)→ z: The decoding algorithm takes as input a set of encodings {ŷu}u∈S and a set
S ⊆ [N ] and outputs z.

Remark B.1 (Comparison with the original definition [AV19]). The protocol RDMPC we consider here
is syntactically different from the one in [AV19]. Firstly, we exchange the roles of circuits and inputs.
In particular, we are concerned about hiding the circuit and not the input, while they do the opposite.
This difference stems from the fact that we consider the construction of CPFE which is the dual notion
of KPFE they consider. Secondly, our input encoding algorithm outputs single encoding x̂, whereas
their circuit encoding algorithm outputs multiple encodings (Ĉ1, . . . , ĈN ).6 However, their construction
satisfies Ĉ1 = · · · = ĈN and thus our slightly simplified syntax can still capture this. Finally, they input
the size of the circuits to CktEnc and InpEnc (in unary form), whereas we input the input length of the
circuits to the algorithms. This means that our syntax allows the encoding algorithm to encode the input
without knowing the size of the circuit. Looking ahead, this property will be useful for constructing
CPFE that supports circuits with unbounded size. We note that their construction can be adapted to our
setting naturally.

Definition B.2 (Correctness). An RDMPC protocol RDMPC = (CktEnc, InpEnc, Local,Decode) with
parameter (N,n, t) is correct if for all inp ∈ N, x ∈ {0, 1}inp, C ∈ Cinp, and set S ⊂ [N ] of size n, we
have

Pr

 (Ĉ1, . . . , ĈN )← CktEnc(1λ, 1R, 1inp, C),
x̂← InpEnc(1λ, 1R, 1inp, x),

Decode
({

Local(Ĉu, x̂)
}
u∈S

, S
)

= C(x)

 = 1

6Recall that we swap the roles of circuits and inputs. Thus, we compare our input encoding algorithm with their circuit
encoding algorithm.
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where probability is taken over the random coins of CktEnc, InpEnc and Decode (Recall that Local is
assumed to be deterministic.).

Definition B.3 (Security). Let RDMPC = (CktEnc, InpEnc, Local,Decode) be an RDMPC protocol
for the circuit family Cinp with parameter (N,n, t). For a stateful PPT adversary A, a simulator Sim =

(Sim0,Sim1), and a coin β ∈ {0, 1} consider the following experiment Exp(β)
RDMPC,A:

1. Setup phase: On input 1λ, A submits the query bound 1R and input length 1inp of the circuits to
the challenger. Note that this defines the total number of parties N = N(λ,R), number of parties
n = n(λ,R) participating in any session, threshold t = t(λ,R). The adversary A also chooses
Scrr ⊂ [N ] of size at most t and sets ∆(1), . . . ,∆(R) ⊆ [N ] such that |∆(i)| = n and submits it to
the challenger.

2. Query phase: During the game, A is allowed to make a total of R input encoding queries. First, it
makes R1 ≤ R adaptive input encoding queries. Namely, when A makes the q-th input encoding
query x̂(q) with q ≤ R, the challenger runs x̂(q) ← InpEnc(x(q)) and returns x̂(q) to A.

3. Challenge phase: During the game, A is allowed to make single circuit encoding query. When A
submits a circuit C ∈ Cinp, the challenger proceeds as follows.

• Real World. If β = 0, the challenger runs (Ĉ1, . . . , ĈN ) ← CktEnc(1λ, 1R, 1inp, C) and

returns
({

Ĉj

}
j∈Scrr

,
{
Local(Ĉj , x̂

(q))
}
q∈[R1],j∈∆(q)

)
to A .

• Ideal World. If β = 1, we define V as V = {C(x(q)), x(q)}q∈[R1]. Then, the simulator is run

as
(
st,
{
Ĉj

}
j∈Scrr

,
{
ŷ

(q)
j

}
q∈[R1],j∈∆(q)

)
← Sim0(1|C|, Scrr,V) and the output is returned

to A. Here, st is the internal state of the simulator.

4. Query phase: A then makes R2 ≤ R − R1 input encoding queries. When A submits an input
x(q) ∈ {0, 1}inp, the challenger proceeds as follows.

• Real World. If β = 0, the challenger runs x̂(q) ← InpEnc(x(q)) and returns
(
x̂(q),

{
Ĉj(x̂

(q))
}
j∈∆(q)

)
to A.

• Ideal World. If β = 1, we run the simulator as
(
x̂(q),

{
ŷ

(q)
j

}
j∈∆(q)

)
← Sim1(st,∆(q), C(x(q)), x(q))

and returns the output to A.

5. Output phase: A outputs a guess bit β′ as the output of the experiment.

We say that an RDMPC protocol RDMPC is secure if for every adversary A, there exists a PPT simulator
Sim such that

AdvRDMPC,A(1λ) =
∣∣∣Pr
[
Exp

(0)
RDMPC,A = 1

]
− Pr

[
Exp

(1)
RDMPC,A = 1

]∣∣∣ ≤ negl(λ).

Remark B.4 (Comparison with the original definition). The above definition is slightly stronger than the
original definition in that the input encoding queries before the challenge phase are honestly answered
regardless of β = 0 or β = 1. Original definition by Ananth and Vaikuntanathan [AV19] allows the
simulator to simulate the encodings. Another difference is that we do not allow Sim1 to update its internal
state st while they do in their definition. Since their construction of RDMPC in fact satisfies this stronger
and simpler version of the definition, we use the above version of the definition.
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Remark B.5 (Multi-instance definition). The above definition allows to argue security of a single instance
of RDMPC. For the security proof of our constructions in Section 3, it is convenient to consider multi-
instance version of the above notion. In the multi-instance security variant, the adversary declares the
number of instances M at the beginning of the game and interact with each instance as above. In the real
world, the adversary interacts with real algorithms in all instances, while in the ideal world, it interacts
with simulators in all instances. The adversary can make queries in arbitrary order and make them
arbitrarily correlated as long as it respects the restriction for each instance. This multi-instance security
notion is easily shown to be equivalent to the single-instance security notion above by simple hybrid
argument.

B.2 Correctness proof of BCPFE

Theorem B.6. BCPFE defined in Section 3.2 is correct.

Proof. We observe that lab′u,j,k = labu,j,k,x̂k holds for all lab′u,j,k recovered in Step 2a of the decryption
algorithm by the correctness of IBE, since the ciphertext and secret key are both generated with respect to
the identity (u, j, k, x̂k). Then, by the correctness of GC, we have ŷ′u,j = Lu,j(x̂) = Local(Ĉu,j , x̂) for
all ŷ′u,j recovered in Step 2b of the decryption algorithm. Finally, by the correctness of RDMPC, we have
z = C(x) for z recovered in Step 3 of the decryption algorithm, since we have |∆| = n.

Efficiency of Basic CPFE scheme BCPFE. We observe that Setup and KeyGen run in time poly(λ, `, logQ)
by the efficiency properties of IBE and RDMPC. This means that these algorithms can be run even for
super polynomial Q. Looking ahead, this property will be used crucially for the full-fledged construction
in Section 3.4. We also observe that Enc and Dec run in time Q · poly(λ, `, |C|) by the efficiency
properties of IBE, GC, and RDMPC.

B.3 Proof of Theorem 3.3

Theorem B.7 (Restate of Theorem 3.3). Assume that IBE satisfies IND-CPA security, GC is a secure
garbled circuit scheme, and RDMPC is secure. Then, BCPFE for the circuit class C` is NA-SIM-secure.

Proof. To prove the security, we construct the simulator Sim = (SimEnc,⊥) for NA-SIM security of
BCPFE. The ideal world with simulator Sim for BCPFE and adversary A proceeds as follows.

Ideal World. On input 1λ, A outputs prm = 1` and 1Q, upon which the game runs Setup(1λ, prm, Q),
gets mpk = IBE.mpk, and sends it to A. For each q ∈ [Q1], A queries secret key for x(q) to receive sk(q).
A then outputs the encryption query C.

Simulating the ciphertext. Here, the simulator SimEnc is given

mpk = IBE.mpk, V, 1|C|, 1Q

where

V :=

{
C(x(q)), x(q), sk(q) =

(
u(q),∆(q),

{
IBE.sku(q),j,k,x̂k

}
j∈∆(q),k∈[̂̀]

)}
q∈[Q1]

and simulates the ciphertext for the adversary. Here, x(q) and sk(q) are the q-th key query made by the
adversary and the secret key returned to it, respectively. Furthermore, C is the circuit chosen by the
adversary for the encryption. Before giving the description of the simulator, we prepare some notations.
We define Γi ⊆ [Q1] as

Γi := {q ∈ [Q1] : u(q) = i}.
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We also define Scrr,i ⊆ [N ] and Sqrd,i ⊆ [N ] for i ∈ [Q] as

Scrr,i :=
⋃

q,q′∈Γi,q 6=q′

(
∆(q) ∩∆(q′)

)
, Sqrd,i :=

⋃
q∈Γi

∆(q)

 \Scrr,i
Recall that our construction can be seen as QN parallel instances of single key FE scheme. Each
single-key FE scheme is associated with index (i, j), where i ∈ [Q] denotes the group index and j ∈ [N ]
denotes index of the instance in the group. Intuitively, Γi corresponds to the set of queries made for the
i-th group of the system. Furthermore, Scrr,i corresponds to the set of instances j in group i such that the
secret key for the instance (i, j) is issued at least twice. For such instance, we cannot hope to use the
security of the single-key FE (or equivalently, security of the garbled circuit). On the other hand, Sqrd,i
corresponds to the set of instances j in group i such that the secret key for the instance (i, j) is issued
exactly once. For such an instance, we can use the security of the single-key FE.

We then provide the description of the simulator. The simulator proceeds as follows.

1. If there exists i ∈ [Q] such that |Γi| > λ or |Scrr,i| > t, abort.

2. For each of i ∈ [Q], run({
Ĉi,j

}
j∈Scrr,i

,
{
ŷ

(q)
i,j

}
q∈Γi,j∈∆(q)

, sti

)
← RDMPC.Sim0

(
1|C|, Scrr,i, {C(x(q)), x(q)}q∈[Γi]

)
.

3. For all i ∈ [Q] and j ∈ [N ], do the following. There are three cases to consider:

− If j ∈ Scrr,i, set Li,j(·) := Local(Ĉi,j , ·) and run

{labi,j,k,b}k∈[̂̀],b∈{0,1} ← GC.Garble
(

1λ, Li,j
)
.

Then, for all k ∈ [̂̀] and b ∈ {0, 1} compute

IBE.cti,j,k,b ← IBE.Enc (IBE.mpk, (i, j, k, b), labi,j,k,b) .

− If j ∈ Sqrd,i, retrieve q ∈ Γi such that j ∈ ∆(q). By the definition of Sqrd,i, there exists unique
such q. Then run

{labi,j,k}k∈[̂̀] ← GC.Sim
(

1λ, 1
̂̀
, 1ŝ(λ,|C|), ŷ

(q)
i,j

)
,

where ŝ(λ, |C|) is the size of the circuit Li,j . Then, for all k ∈ [̂̀] and b ∈ {0, 1} compute

IBE.cti,j,k,b ← IBE.Enc (IBE.mpk, (i, j, k, b), labi,j,k) .

Note that here, we encrypt the same label labi,j,k for both b ∈ {0, 1}.

− If j 6∈ Scrr,i ∪ Sqrd,i, for all k ∈ [̂̀] and b ∈ {0, 1} compute

IBE.cti,j,k,b ← IBE.Enc
(
IBE.mpk, (i, j, k, b), 0L(λ,|C|)

)
,

where L(λ, |C|) is the length of the labels.

4. Output ct = {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} as the ciphertext.

The Games. To prove the security, we consider the following sequence of games, where Game0

corresponds to the real game and Game5 corresponds to the ideal world. For i, let Ei denote the event
that A outputs 1 in Gamei. The theorem can be proven by showing |Pr[E0]− Pr[E5]| ≤ negl(λ).
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Game0: This is the real game ExprealBCPFE,A

(
1λ
)

for NA-SIM security defined as per Definition 2.6.

Game1: In this game, the game checks whether there exists i ∈ [Q] such that |Γi| > λ or |Scrr,i| > t
before generating a ciphertext. If there is, it aborts and otherwise continues the game. By
Lemma 3.4, we have |Γi| ≤ λ for all i ∈ [Q] with overwhelming probability. Conditioned on
this, by applying Lemma 3.5, we have |Scrr,i| ≤ t for all i ∈ [Q] with overwhelming probability.
Therefore, the probability of the above occurring is negligible. Thus, we have

|Pr[E0] = Pr[E1]| ≤ negl(λ).

Game2: In this game, we change the way how the ciphertext is generated. In particular, we change how
IBE.cti,j,k,b is generated in the following cases.

− If j ∈ Sqrd,i, the game computes

IBE.cti,j,k,b ← IBE.Enc
(
IBE.mpk, (i, j, k, b), lab

i,j,k,x̂
(q)
k

)
,

where q is the unique index such that u(q) = i and j ∈ ∆(q). Such an index exists and is unique
by the definition of Sqrd,i. Note that here, we encrypt the same label labi,j,k,x̂(k) regardless of
the value of b ∈ {0, 1}.

− If j 6∈ Scrr,i ∪ Sqrd,i, run

IBE.cti,j,k,b ← IBE.Enc
(
IBE.mpk, (i, j, k, b), 0L(λ,|C|)

)
.

As we will show in Lemma B.8, using IND-CPA security of IBE, we can prove

|Pr[E1]− Pr[E2]| ≤ negl(λ).

Game3: In this game, we further change the way the ciphertext is generated. In particular, we change
the way labi,j,k,b is generated in the following cases.

− If j ∈ Sqrd,i, the game retrieves unique q such that u(q) = i and j ∈ ∆(q). Then it runs

{labi,j,k}k∈[̂̀] ← GC.Sim
(

1λ, 1
̂̀
, 1ŝ(λ,|C|), ŷ

(q)
i,j

)
,

where ŷ(q)
i,j = Local(Ĉi,j , x̂

(q)). Then the game sets

lab
i,j,k,x̂

(q)
k

:= labi,j,k

for k ∈ [̂̀]. The label will be used when it computes IBE.cti,j,k,b for b ∈ {0, 1} as specified in
the previous game.

As we will show in Lemma B.9, using the security of GC, we can prove

|Pr[E2]− Pr[E3]| ≤ negl(λ).

Game4: In this game, we further change the way the ciphertext is generated. In particular, we change
the way Ĉi,j and ŷ(q)

i,j are generated as follows. For each of i ∈ [Q], the game runs({
Ĉi,j

}
j∈Scrr,i

,
{
ŷ

(q)
i,j

}
q∈Γi,j∈∆(q)

, sti

)
← RDMPC.Sim0

(
1|C|, Scrr,i, {C(x(q)), x(q)}q∈[Γi]

)
.
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We only have Ĉi,j and ŷ(q)
i,j for the indices i, j, q that are defined by the output of the above algorithm

and leave the values for other indices undefined. Even if it is so, the game is still well-defined since
only Ĉi,j for i, j such that j ∈ Scrr,i and ŷ(q)

i,j for i, j, q such that q ∈ Γi, j ∈ ∆(q) are needed for
the generation of the ciphertext thanks to the changes introduced in Game2 and Game3. As we
will show in Lemma B.10, we have

|Pr[E3]− Pr[E4]| ≤ negl(λ).

Game5: This is the ideal game ExpidealBCPFE,Sim

(
1λ
)

for NA-SIM security defined as per Definition 2.6.
By inspection, it can be seen that this is the same as the previous game. Therefore, we have

Pr[E4] = Pr[E5].

To finish the proof of the theorem, it suffices to prove lemmas B.8 to B.10, since we have |Pr[E0]−
Pr[E5]| ≤

∑
i∈[0,4] |Pr[Ei]− Pr[Ei+1]| by the triangle inequality.

Lemma B.8. We have |Pr[E1]− Pr[E2]| ≤ negl(λ) by the IND-CPA security of IBE.

Proof. Assume |Pr[E1]− Pr[E2]| is non-negligle. We then describe an adversary B that breaks multi-
challenge IND-CPA security of IBE as follows. Note that as we remarked in Theorem A.9, the multi-
challenge security notion is equivalent to more standard single-challenge security notion. On input 1λ,
B first runs A on input 1λ to obtain prm = 1`. Then, B is given IBE.mpk from its challenger and gives
mpk = IBE.mpk to A as master public key.

Answering the secret key queries before the encryption query. When A makes the q-th secret key for
x(q) ∈ {0, 1}`, B does the following.

1. It chooses x̂(q), u(q), and ∆(q) as in the honest key generation algorithm.

2. For all j ∈ ∆(q) and k ∈ [̂̀], it makes a secret key query for the identity (u(q), j, k, x̂
(q)
k ) and

receives IBE.sk
u(q),j,k,x̂

(q)
k

.

3. It returns sk =

(
u(q),∆(q),

{
IBE.sk

u(q),j,k,x̂
(q)
k

}
j∈∆(q),k∈[̂̀]

)
to A as a secret key.

Answering the encryption query. When A submits an encryption query C, B does the following:

1. It computes {labi,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} as honest encryption algorithm.

2. It computes {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} as follows. There are two cases:

− If j ∈ Sqrd,i and b = 1− x̂(q)
k where q is the index such that u(q) = i and j ∈ Sqrd,i, it proceeds

as follows. Note that there exists unique q satisfying this by the definition of Sqrd,i. It submits
the identity (i, j, k, b) and two messages (lab

i,j,k,1−x̂(q)k
, lab

i,j,k,x̂
(q)
k

) to the challenger. Then,
the challenger encrypts

IBE.cti,j,k,b ←

IBE.Enc
(
IBE.mpk, (i, j, k, b), lab

i,j,k,1−x̂(q)k

)
, if β = 0

IBE.Enc
(
IBE.mpk, (i, j, k, b), lab

i,j,k,x̂
(q)
k

)
if β = 1

and returns IBE.cti,j,k,b to B, where β ∈ {0, 1} is the coin for the game.
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− If j 6∈ Scrr,i ∪ Sqrd,i, it proceeds as follows. It submits the identity (i, j, k, b) and two messages
(labi,j,k,b, 0

L(λ,|C|)) to the challenger. Then, the challenger encrypts

IBE.cti,j,k,b ←

{
IBE.Enc (IBE.mpk, (i, j, k, b), labi,j,k,b) , if β = 0

IBE.Enc
(
IBE.mpk, (i, j, k, b), 0L(λ,|C|)) if β = 1

and returns IBE.cti,j,k,b to B.

− Otherwise, it computes IBE.cti,j,k,b as in the honest encryption algorithm.

3. It then returns the ciphertext ct = {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} to A.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game1 for A if β = 0 and Game2 if β = 1.
Furthermore, B does not make a secret key query for an identity that is also submitted to the challenger

for an encryption query. To see this, let us assume that B submits an identity (i, j, k, b) as a secret key
query and (i′, j′, k′, b′) as an encryption query to the challenger. We then show that we cannot have
(i, j, k, b) = (i′, j′, k′, b′). To see this, observe that B only makes secret key queries for (i, j, k, b) such
that i = u(q), j ∈ ∆(q), b = x̂

(q)
k for some q ∈ [Q1]. On the other hand, for the identity (i′, j′, k′, b′)

to be used for the encryption query, we need to have j′ ∈ Sqrd,i′ or j′ 6∈ Sqrd,i′ ∪ Scrr,i′ . Assuming
(i′, j′) = (i, j), the latter cannot happen because j′ = j ∈ ∆(q). We therefore assume the former is
the case. Since j′ ∈ Sqrd,i′ and (i′, j′, k′, b′) is used for the encryption, there exists q′ ∈ [Q1] satisfying
u(q′) = i′, j′ ∈ ∆(q′), and b′ = 1− x̂(q′)

k′ . However, j′ ∈ Sqrd,i′ implies that q′ satisfying u(q′) = i′ and
j′ ∈ ∆(q′) is unique and thus (i′, j′) = (i, j) would imply q = q′. Therefore, the two identities (i, j, k, b)
and (i′, j′, k′, b′) cannot be equal, because (i, j, k) = (i′, j′, k′) implies

b = x̂
(q)
k = x̂

(q′)
k′ 6= 1− x̂(q′)

k′ = b′.

This means that B breaks the IND-CPA security of IBE without violating the query restriction of the
game.

Lemma B.9. We have |Pr[E2]− Pr[E3]| ≤ negl(λ) by the security of GC.

Proof. Assume |Pr[E2]− Pr[E3]| is non-negligle. We then describe an adversary B that breaks the
multi-instance security of GC as follows. Note that since the multi-instance security of GC is implied by
the single instance security as we observed in Remark A.4, this is a contradiction. On input 1λ, B first
runs A on input 1λ to obtain prm = 1`. B then runs Setup(1λ, prm, Q) to obtain mpk and msk and then
sends mpk to A as the master public key.

Answering the secret key queries before the encryption query. B answers secret key queries using msk.

Answering the encryption query. When A submits an encryption query C, B proceeds as follows.

1. It computes (Ĉi,1, . . . , Ĉi,N )← CktEnc(1λ, 1λ, 1`, C) for i ∈ [Q].

2. For all i ∈ [Q] and j ∈ [N ], B does the following. There are two cases to consider:

− If j ∈ Sqrd,i, it retrieves unique q ∈ Γi such that j ∈ ∆(q). Then, it submits Li,j = Local(Ĉi,j , ·)
and x̂(q) to its challenger. Then, the challenger runs

{labi,j,k,b}k∈[̂̀],b∈{0,1} ← GC.Garble
(

1λ, Li,j
)

or
{labi,j,k}k∈[̂̀] ← GC.Sim

(
1λ, 1

̂̀
, 1ŝ, Local(Ĉi,j , x̂

(q))
)
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depending on whether B is in the real world or simulated world. Then, B is given{
lab

i,j,k,x̂
(q)
k

}
k∈[̂̀], where lab

i,j,k,x̂
(q)
k

= labi,j,k if it is in the ideal world.

− If j 6∈ Sqrd,i, it honestly garbles Li,j = Local(Ĉi,j , ·) to obtain {labi,j,k,b}k∈[̂̀],b∈{0,1}.
3. For i ∈ [Q] and j ∈ [N ], B does the following. There are three cases.

− If j ∈ Sqrd,i, it computes IBE.cti,j,k,b for all k ∈ [̂̀], b ∈ {0, 1} as

IBE.cti,j,k,b ← IBE.Enc
(
IBE.mpk, (i, j, k, b), lab

i,j,k,x̂
(q)
k

)
,

where the label lab
i,j,k,x̂

(q)
k

is generated in Step 2 above.

− If j ∈ Scrr,i, it computes IBE.cti,j,k,b for all k ∈ [̂̀], b ∈ {0, 1} as in the honest encryption
algorithm.

− If j 6∈ Scrr,i ∪ Sqrd,i, it computes IBE.cti,j,k,b as

IBE.cti,j,k,b ← IBE.Enc
(
IBE.mpk, (i, j, k, b), 0L(λ,|C|)

)
.

4. It then returns the ciphertext ct = {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} to A.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game2 for A if it is in the real world and Game3 if it is
in the ideal world. Thus, B breaks the multi-instance security of GC if A distinguishes between the two
games.

Lemma B.10. We have |Pr[E3]− Pr[E4]| ≤ negl(λ) by the security of RDMPC.

Proof. Assume |Pr[E3]− Pr[E4]| is non-negligle. We then describe an adversary B that breaks the
multi-instance security of RDMPC as follows. Note that since the multi-instance security of RDMPC is
implied by the single instance security as we observed in Remark B.5, this is a contradiction.

Simulating the Setup. On input 1λ, B first runs A on input 1λ to obtain prm = 1`. B then runs
Setup(1λ, prm) to obtain mpk and msk and then sends mpk to A as the master public key. Furthermore,
B does the following.

1. It chooses u(q) and ∆(q) for q ∈ [Q] in advance. It then aborts and outputs random bit if there
exists i ∈ [Q] such that |Γi| > λ or |Scrr,i| > t.

2. It then declares the number of instances M = Q, the query bound R = λ, the input length of
circuits ` to its challenger. The security parameter λ and R specify the total number of parties N ,
number of parties n participating in any session, and threshold t. Furthermore, for i ∈ [Q], B does
the following.

(a) It submits Scrr,i to its challenger as the corruption set in the i-th instance.

(b) It submits the sets {∆(q)}q∈Γi to its challenger where ∆(q) is the set of parties that will
participate in the session in the i-th instance.

Answering the secret key queries. When A makes a secret key query x(q), B does the following.
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1. It submits x(q) to the u(q)-th instance. Then, the challenger runs

x̂(q) ← InpEnc(1λ, 1λ, 1`, x(q))

and returns x̂(q) to B.

2. It computes IBE.sk
u(q),j,k,x̂

(q)
k

for all j ∈ ∆(q) and k ∈ [̂̀] using IBE.msk.

3. It then returns sk(q) =

(
u(q),∆(q),

{
IBE.sk

u(q),j,k,x̂
(q)
k

}
j∈∆(q),k∈[̂̀]

)
to A.

Answering the encryption query. When A submits an encryption query C, B proceeds as follows.

1. It declares the circuit C as its target for all instances of RDMPC.

2. Then, for each instance i ∈ [Q], the challenger either computes

(Ĉi,1, . . . , Ĉi,N )← CktEnc(1λ, 1λ, 1`, C), ŷ
(q)
i,j := Local(Ĉi,j , x̂

(q)) for q ∈ Γi, j ∈ ∆(q)

or({
Ĉi,j

}
j∈Scrr,i

,
{
ŷ

(q)
i,j

}
q∈Γi,j∈∆(q)

,RDMPC.sti

)
← RDMPC.Sim0

(
1|C|, Scrr,i, {C(x(q)), x(q)}q∈Γi

)
depending on whether B is in the real game or ideal game. Then, the challenger returns({

Ĉi,j

}
j∈Scrr,i

,
{
ŷ

(q)
i,j

}
q∈Γi,j∈∆(q)

)
to B for all i ∈ [Q].

3. For all i ∈ [Q] and j ∈ [N ], B does the following. There are three cases to consider.

− If j ∈ Scrr,i, it sets Li,j(·) := Local(Ĉi,j , ·) and honestly computes {IBE.cti,j,k,b}k∈[ˆ̀],b∈{0,1}.

− If j ∈ Sqrd,i, it retrieves unique q ∈ Γi such that j ∈ ∆(q). Then it runs

{labi,j,k}k∈[̂̀] ← GC.Sim
(

1λ, 1
̂̀
, 1ŝ(λ,|C|), ŷ

(q)
i,j

)
.

Then, for all k ∈ [̂̀] and b ∈ {0, 1} it computes IBE.cti,j,k,b as an encryption of labi,j,k under
the identity (i, j, k, b).

− If j 6∈ Scrr,i ∪ Sqrd,i, for all k ∈ [̂̀] and b ∈ {0, 1} it computes IBE.cti,j,k,b by encrypting
0L(λ,|C|) under the identity (i, j, k, b), where L(λ, |C|) is the length of the labels.

4. It returns ct = {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} to A as the ciphertext.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game3 for A if it is in the real world and Game4 if it is
in the ideal world. Furthermore, for each instance i ∈ [Q], the size of the corruption set Scrr,i and the
number of the sessions |Γi| are at most t and λ, respectively. Thus, B breaks the multi-instance security
of RDMPC if A distinguishes between the two games.
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B.4 Proof of Theorem 3.6

Theorem B.11 (Restate of Theorem 3.6). Assume that IBE satisfies IND-CPA security and SIM-RSO
security, GC is a secure garbled circuit scheme, and RDMPC is secure. Then, BCPFE for the circuit
class C`,s is AD-SIM-secure.

Proof. To prove the security, we construct the simulator BCPFE.Sim = (SimEnc, SimKG) for AD-SIM
security of BCPFE. The ideal world with simulator Sim for BCPFE and adversary A proceeds as follows.

Ideal World. On input 1λ, A outputs prm = (1`, 1s) and 1Q, upon which the game runs
Setup(1λ, prm, Q), gets mpk = IBE.mpk, and sends it to A. For each q ∈ [Q1], A queries secret
key for x(q) to receive sk(q). A then outputs the encryption query C.

Simulating the ciphertext. Here, the simulator SimEnc is given

mpk = IBE.mpk, V, 1|C|, 1Q

where

V :=

{
C(x(q)), x(q), sk(q) =

(
u(q),∆(q),

{
IBE.sk

u(q),j,k,x̂
(q)
k

}
j∈∆(q),k∈[̂̀]

)}
q∈[Q1]

and simulates the ciphertext for the adversary. Here, x(q) and sk(q) are the q-th key query made by the
adversary and the secret key returned to it, respectively. Furthermore, C is the circuit chosen by the
adversary for the encryption. We then provide the description of the simulator. The simulator proceeds as
follows.

1. Choose u(q) ← [Q] and a random subset ∆(q) ⊂ [N ] of size n for q ∈ [Q1 + 1, Q].

Before continuing the description of the simulator, we prepare some notations. We define Γpre
i and

Γi ⊆ [Q1] for i ∈ [Q] as

Γpre
i := {q ∈ [Q1] : u(q) = i}, Γi := {q ∈ [Q] : u(q) = i}.

We also define Scrr,i ⊆ [N ] and Sqrd,i ⊆ [N ] for i ∈ [Q] as

Sqrd,i :=

 ⋃
q∈Γpre

i

∆(q)

 \Scrr,i, Scrr,i :=
⋃

q,q′∈Γi,q 6=q′

(
∆(q) ∩∆(q′)

)
,

Here, the notation is similar to that for the proof of Theorem 3.3. However, we take the secret key queries
after the encryption query into account. Intuitively, Γpre

i (resp., Γi) corresponds to the set of queries for
the i-th group of the system before the encryption query (resp., throughout the game) . Furthermore,
Scrr,i corresponds to the set of instances j in group i such that the secret key for the instance (i, j) is
issued at least twice throughout the entire game.

We now continue to describe the simulator SimEnc below.

2. If there exists i ∈ [Q] such that |Γi| > λ or |Scrr,i| > t, abort.

3. For each of i ∈ [Q], run({
Ĉi,j

}
j∈Scrr,i

,
{
ŷ

(q)
i,j

}
q∈Γpre

i ,j∈∆(q)
,RDMPC.sti

)
← RDMPC.Sim0

(
1|C|, Scrr,i, {C(x(q)), x(q)}q∈Γpre

i

)
.
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4. For all i ∈ [Q] and j ∈ [N ], do the following. There are three cases to consider.

− If j ∈ Scrr,i, set Li,j(·) := Local(Ĉi,j , ·) and run

{labi,j,k,b}k∈[̂̀],b∈{0,1} ← GC.Garble
(

1λ, Li,j
)
.

Then, for all k ∈ [̂̀] and b ∈ {0, 1} compute

IBE.cti,j,k,b ← IBE.Enc (IBE.mpk, (i, j, k, b), labi,j,k,b) .

− If j ∈ Sqrd,i, retrieve q ∈ Γpre
i such that j ∈ ∆(q). By the definition of Sqrd,i, there exists unique

such q. Then run
{labi,j,k}k∈[̂̀] ← GC.Sim

(
1λ, 1

̂̀
, 1ŝ, ŷ

(q)
i,j

)
.

Then, for all k ∈ [̂̀] and b ∈ {0, 1} compute

IBE.cti,j,k,b ← IBE.Enc (IBE.mpk, (i, j, k, b), labi,j,k) .

Note that here, we encrypt the same label labi,j,k for both b ∈ {0, 1}.
− If j 6∈ Scrr,i ∪ Sqrd,i, IBE.cti,j,k,b is computed by the following. First, set

T := {(i, j, k, b) : i ∈ [Q], j ∈ [N ]\(Scrr,i ∪ Sqrd,i), k ∈ [̂̀], b ∈ {0, 1}}. (B.1)

Then, run (
{IBE.cti,j,k,b}(i,j,k,b)∈T , IBE.st

)
← IBE.SimEnc

(
IBE.mpk, T, 1L

)
.

5. Output the ciphertext
ct = {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1}

and keep its internal state

st :=

(
{RDMPC.sti, }i∈[Q] , IBE.st,

{
u(q),∆(q)

}
q∈[Q]

)
. (B.2)

Simulating the secret key after the encryption query. Here, we describe SimKG. It is given

st, msk = IBE.msk,
(
C(x(q)), x(q)

)
, 1Q

where x(q) is the q-th query with q ∈ [Q1 + 1, Q1 +Q2] that the adversary makes. Then, it proceeds as
follows.

1. Parse its internal state st as Eq. (B.2).

2. Run (
x̂(q),

{
ŷ

(q)

u(q),j

}
j∈∆(q)

)
← RDMPC.Sim1

(
RDMPC.stu(q) ,∆

(q), C(x(q)), x(q)
)
.

3. For all j ∈ ∆(q)\Scrr,u(q) , run{
labu(q),j,k

}
k∈[̂̀] ← GC.Sim

(
1λ, 1

̂̀
, 1ŝ, ŷ

(q)

u(q),j

)
.
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4. For all j ∈ ∆(q), do the following. There are two cases to consider.

− If j ∈ Scrr,u(q) , for all k ∈ [̂̀], run

IBE.sk
u(q),j,k,x̂

(q)
k

← IBE.KeyGen
(
IBE.msk, (u(q), j, k, x̂

(q)
k )
)
.

− If j 6∈ Scrr,u(q) , for all k ∈ [̂̀], run

IBE.sk
u(q),j,k,x̂

(q)
k

← IBE.SimKG
(
IBE.st, IBE.msk, (u(q), j, k, x̂

(q)
k ), labu(q),j,k

)
.

5. Finally, return the secret key sk(q) =

(
u(q),∆(q),

{
IBE.sk

u(q),j,k,x̂
(q)
k

}
j∈∆(q),k∈[̂̀]

)
.

The games. To prove the security, we consider the following sequence of games, where Game0

corresponds to the real game and Game8 corresponds to the ideal world. We consider similar sequence
of games to that of Theorem 3.3, but we have to consider secret key queries after the encryption query.
To deal with such queries, we introduce additional games. For i, let Ei denote the event that A outputs 1
in Gamei. The theorem can be proven by showing |Pr[E0]− Pr[E8]| ≤ negl(λ).

Game0: This is the real game ExprealBCPFE,A

(
1λ
)

for AD-SIM security defined as per Definition 2.6.

Game1: In this game, the game chooses u(q) ← [Q] and random subset ∆(q) ⊂ [N ] of size n for
q ∈ [Q1 + 1, Q] before it answers the encryption query, instead of generating them when it answers
the q-th key generation query. This is a conceptual change and we have

Pr[E0] = Pr[E1]

Game2: In this game, the game checks whether there exists i ∈ [Q] such that |Γi| > λ or |Scrr,i| > t
before generating a ciphertext. If there is, it aborts and otherwise continues the game. By
Lemma 3.4, we have |Γi| ≤ λ for all i ∈ [Q] with overwhelming probability. Conditioned on this,
by Lemma 3.5, we have |Scrr,i| ≤ t for all i ∈ [Q] with overwhelming probability. Therefore, the
probability of the above occurring is negligible. Thus, we have

|Pr[E1]− Pr[E2]| ≤ negl(λ).

Game3: In this game, we change the way how the ciphertext is generated. In particular, we change how
IBE.cti,j,k,b is generated in the following cases.

− If j ∈ Sqrd,i, the game computes

IBE.cti,j,k,b ← IBE.Enc
(
IBE.mpk, (i, j, k, b), lab

i,j,k,x̂
(q)
k

)
,

where q ∈ [Q1] is the unique index such that u(q) = i and j ∈ ∆(q). Such an index exists
and is unique by the definition of Sqrd,i. Note that here, we encrypt the same label lab

i,j,k,x̂
(q)
k

regardless of the value of b ∈ {0, 1}.

As we show in Lemma B.12, using IND-CPA security of IBE, we can prove

|Pr[E2]− Pr[E3]| ≤ negl(λ).
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Game4: In this game, we change the way how the ciphertext and secret key are generated. In particular,
we change how IBE.cti,j,k,b is generated in the following cases.

− If j 6∈ Scrr,i ∪ Sqrd,i, IBE.cti,j,k,b is computed by the following:(
{IBE.cti,j,k,b}(i,j,k,b)∈T , IBE.st

)
← IBE.SimEnc

(
IBE.mpk, T, 1L

)
,

where T is defined as Equation (B.1).

Furthermore, for the q-th secret key with q ∈ [Q1 + 1, Q1 +Q2] (i.e., for a secret key query after
the encryption query), we change the way how IBE.sk

u(q),j,k,x̂
(q)
k

is computed in the following case.

− If j 6∈ Scrr,u(q) , for all k ∈ [̂̀], the game computes

IBE.sk
u(q),j,k,x̂

(q)
k

← IBE.SimKG
(
IBE.st, IBE.msk, (u(q), j, k, x̂

(q)
k ), lab

u(q),j,k,x̂
(q)
k

)
,

where x̂(q) and lab
u(q),j,k,x̂

(q)
k

are honestly generated. Note that while the generation of the label
was necessary for answering the encryption query in the previous game, it can be deferred until
the q-th secret key query in this game.

As we will show in Lemma B.13, using the SIM-RSO security of IBE, we can prove

|Pr[E3]− Pr[E4]| ≤ negl(λ).

Game5: In this game, we further change the way the ciphertext is generated. In particular, we change
the way labi,j,k,b is generated in the following cases.

− If j ∈ Sqrd,i, the game retrieves unique q ∈ Γi such that j ∈ ∆(q). Then it runs

{labi,j,k}k∈[̂̀] ← GC.Sim
(

1λ, 1
̂̀
, 1ŝ, ŷ

(q)
i,j

)
,

where ŷ(q)
i,j = Local(Ĉi,j , x̂

(q)). Then the game sets

lab
i,j,k,x̂

(q)
k

:= labi,j,k

for all k ∈ [̂̀]. The label will be used when it computes IBE.cti,j,k,b for b ∈ {0, 1} as specified
in Game3.

As we will prove in Lemma B.14, by the security of GC, we can prove

|Pr[E4]− Pr[E5]| ≤ negl(λ).

Game6: In this game, we further change the way the secret key queries after the encryption query
are answered. Namely, we change the way how sk(q) is computed for q ∈ [Q1 + 1, Q1 + Q2].
Recall that in Game4, IBE.sk

u(q),j,k,x̂
(q)
k

was computed by IBE.SimKG algorithm using the label
lab

u(q),j,k,x̂
(q)
k

. We change the label to be simulated one in the following case.

− If j 6∈ Scrr,u(q) , the game runs{
labu(q),j,k

}
k∈[̂̀] ← GC.Sim

(
1λ, 1

̂̀
, 1ŝ, ŷ

(q)

u(q),j

)
,

where ŷ(q)

u(q),j
= Local(Ĉu(q),j , x̂

(q)) and sets

lab
u(q),j,k,x̂

(q)
k

:= labu(q),j,k
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for k ∈ [̂̀]. As we will show in Lemma B.15, using the security of GC, we can prove

|Pr[E5]− Pr[E6]| ≤ negl(λ).

Game7: In this game, we further change the way the ciphertext and the secret key are generated. In
particular, we change the way Ĉi,j and ŷ(q)

i,j are generated as follows. When the ciphertext is
generated, for each of i ∈ [Q], the game runs({
Ĉi,j

}
j∈Scrr,i

,
{
ŷ

(q)
i,j

}
q∈Γpre

i ,j∈∆(q)
,RDMPC.sti

)
← RDMPC0.Sim

(
1|C|, Scrr,i, {C(x(q)), x(q)}q∈Γpre

i

)
.

We have Ĉi,j and ŷ(q)
i,j only for indices i, j, q that are defined by the output of the above algorithm

and leave the values for other indices undefined. Even if it is so, the game is still well-defined since
only Ĉi,j for i, j such that j ∈ Scrr,i and ŷ(q)

i,j for i, j, q such that q ∈ Γpre
i , j ∈ ∆(q) are needed for

the generation of the ciphertext thanks to the changes introduced from Game3 to Game6.

We also change how the secret keys are generated. Recall that ŷ(q)

u(q),j
= Local(Ĉu(q),j , x̂

(q)) for

q ∈ [Q1 + 1, Q1 +Q2] and j ∈ ∆(q)\Scrr,u(q) are required for the generation of the q-th secret key
in the previous game. These values are not defined by the above. In this game, we generate them as(

x̂(q),
{
ŷ

(q)

u(q),j

}
j∈∆(q)

)
← RDMPC1.Sim

(
RDMPC.stu(q) ,∆

(q), C(x(q)), x(q)
)
.

As we will show in Lemma B.16, we have

|Pr[E6]− Pr[E7]| ≤ negl(λ).

Game8: This is the ideal game ExpidealBCPFE,Sim

(
1λ
)

defined as per Definition 2.6. By inspection, it can
be seen that this is the same as the previous game. Therefore, we have

Pr[E7] = Pr[E8].

To finish the proof of the theorem, it suffices to prove Lemmas B.12 to B.16. since we have |Pr[E0]−
Pr[E8]| ≤

∑
i∈[0,7] |Pr[Ei]− Pr[Ei+1]| by the triangle inequality.

Lemma B.12. We have |Pr[E2]− Pr[E3]| ≤ negl(λ) by the IND-CPA security of IBE.

Proof. The proof is almost the same as Lemma B.8. We only highlight the difference.

• Here, B makes an encryption query for an identity (i, j, k, b) only for the case of j ∈ Sqrd,i and not
for the case of j 6∈ Sqrd,i ∪Scrr,i. In particular, an encryption query is made for (i, j, k, b) such that
j ∈ Sqrd,i and b = 1− x̂(q)

k , where q ∈ [Q1] is the unique index such that u(q) = i and j ∈ ∆(q).
Note that the case of j 6∈ Sqrd,i ∪ Scrr,i is handled by the next game hop.

• B handles secret key queries made by A similarly to Lemma B.8, even after the encryption query.
Namely, B makes a secret key query for (i, j, k, b) such that i = u(q), j ∈ ∆(q), k ∈ [̂̀], and
b = x̂

(q)
k for q ∈ [Q].

• Discussion about the disjointness of the encryption queries and secret key queries remains the
same, since the definition of the set Sqrd,i here takes into account the secret key queries made after
the encryption query.
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Lemma B.13. We have |Pr[E3]− Pr[E4]| ≤ negl(λ) by the SIM-RSO security of IBE.

Proof. Assume |Pr[E3]− Pr[E4]| is non-negligle. We then describe an adversary B that breaks SIM-RSO
security of IBE as follows. On input 1λ, B first runs A on input 1λ to obtain prm = (1`, 1s). B then
computes L as a function of λ and s and declares the length L of the message space in unary form. Then,
B is given IBE.mpk and gives mpk = IBE.mpk to A as master public key.

Answering the secret key queries before the encryption query. When A makes the q-th secret key for
x(q) ∈ {0, 1}`, B does the following.

1. It chooses x̂(q), u(q), and ∆(q) as in the honest key generation algorithm.

2. For all j ∈ ∆(q) and k ∈ [̂̀], it makes a secret key query for the identity (u(q), j, k, x̂
(q)
k ) and

receives IBE.sk
u(q),j,k,x̂

(q)
k

.

3. It returns sk =

(
u(q),∆(q),

{
IBE.sk

u(q),j,k,x̂
(q)
k

}
j∈∆(q),k∈[̂̀]

)
to A as a secret key.

Answering the encryption query. When A submits an encryption query C, B does the following:

1. It choose u(q) and ∆(q) for q ∈ [Q1 + 1, Q] as in key generation algorithm. It then aborts and
outputs a random bit if there exists i ∈ [Q] such that |Γi| > λ or |Scrr,i| > t.

2. It computes {labi,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} as honest encryption algorithm.

3. It computes {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} as follows. There are three cases:

− If j ∈ Sqrd,i, it computes IBE.cti,j,k,b for all k ∈ [̂̀], b ∈ {0, 1} as IBE.cti,j,k,b ←
IBE.Enc

(
IBE.mpk, (i, j, k, b), lab

i,j,k,x̂
(q)
k

)
.

− If j ∈ Scrr,i, it computes IBE.cti,j,k,b for all k ∈ [̂̀], b ∈ {0, 1} as in the honest encryption
algorithm.

− For (i, j, k, b) ∈ T where T is defined as Equation (B.1), B computes IBE.cti,j,k,b using its
challenger as follows. It submits the target set T and messages {labi,j,k,b}(i,j,k,b)∈T to its
challenger. The IBE challenger replies B with {IBE.cti,j,k,b}(i,j,k,b)∈T , where it is generated as
either

{IBE.cti,j,k,b ← IBE.Enc (IBE.mpk, (i, j, k, b), labi,j,k)}(i,j,k,b)∈T
or (

{IBE.cti,j,k,b}(i,j,k,b)∈T , IBE.st
)
← IBE.SimEnc

(
IBE.mpk, T, 1L

)
,

depending on whether it is in the real world or simulated world. Note that by the definition of
T , T does not contain any identity for which B has made a secret key query.

− It then returns the ciphertext ct = {IBE.cti,j,k,b}i∈[Q],j∈[N ],k∈[̂̀],b∈{0,1} to A.

Answering the secret key queries after the encryption query. A then continues to make key queries. When
A makes a q-th key query for x(q), B proceeds as follows.

1. It computes x̂(q) ← InpEnc(1λ, 1λ, 1`, x(q)).

2. It computes IBE.sk
u(q),j,k,x̂

(q)
k

for all j ∈ ∆(q) and k ∈ [̂̀] as follows. There are two cases:
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− If j ∈ Scrr,u(q) , B makes a secret key query for the identity (u(q), j, k, x̂
(q)
k ) to its challenger.

Honestly generated IBE.sk
u(q),j,k,x̂

(q)
k

is returned to B. Note that by the definition of T , we have

(u(q), j, k, x̂
(q)
k ) 6∈ T .

− If j 6∈ Scrr,u(q) , B submits the identity (u(q), j, k, x̂
(q)
k ) to its challenger as a corruption query.

Then, the challenger runs either

IBE.sk
u(q),j,k,x̂

(q)
k

← IBE.KeyGen
(
IBE.msk, (u(q), j, k, x̂

(q)
k )
)
,

or

IBE.sk
u(q),j,k,x̂

(q)
k

← IBE.SimKG
(
IBE.st, IBE.msk, (u(q), j, k, x̂

(q)
k ), lab

u(q),j,k,x̂
(q)
k

)
,

depending on whether B is in the real world or simulated world. Note that by the definition of
T , we have (u(q), j, k, x̂

(q)
k ) ∈ T in this case.

3. Finally, it returns sk(q) =

(
u(q),∆(q),

{
IBE.sk

u(q),j,k,x̂
(q)
k

}
j∈∆(q),k∈[̂̀]

)
to A.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game3 for A if it is in the real world and Game4 if it
is in the ideal world. Thus, B breaks the SIM-RSO security of IBE if A distinguishes between the two
games.

Lemma B.14. We have |Pr[E4]− Pr[E5]| ≤ negl(λ) by the security of GC.

Proof. The proof is almost the same as that for Lemma B.9. We only highlight the difference.

• For the case (i, j, k, b) ∈ T , IBE.cti,j,k,b is simulated using IBE.SimEnc whereas it is simulated by
encrypting a fixed string in Lemma B.9.

• The secret key queries after the encryption query are simulated by IBE.SimKG when we generate
an IBE secret key for an identity (i, j, k, b) ∈ T .

Lemma B.15. We have |Pr[E5]− Pr[E6]| ≤ negl(λ) by the security of GC.

Proof. Assume |Pr[E5]− Pr[E6]| is non-negligle. We then describe an adversary B that breaks the
multi-instance security of GC as follows. Note that since the multi-instance security of GC is implied by
the single instance security as we observed in Remark A.4, this is a contradiction. On input 1λ, B first
runs A on input 1λ to obtain prm = (1`, 1s). B then runs Setup(1λ, prm, Q) to obtain mpk and msk and
then sends mpk to A as the master public key.

Answering the secret key queries before the encryption query. When A makes a secret key query, B
answers it using msk.

Answering the encryption query. When A submits an encryption query C, B answers it as Game5. It is
straightforward to do so since no secret is required for the simulation. Recall that during the simulation
of the ciphertext, B generates

IBE.st, {u(q),∆(q)}q∈[Q1+1,Q], {Ĉi,j}i∈[Q],j∈[N ]

as specified in Game5 and keeps them for future use.

Answering the secret key queries after the encryption query. A then continues to make key queries. When
A makes a q-th key query for x(q), B proceeds as follows.
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1. It computes x̂(q) ← InpEnc(1λ, 1λ, 1`, x(q)).

2. It computes IBE.sk
u(q),j,k,x̂

(q)
k

for all j ∈ ∆(q) and k ∈ [̂̀] as follows. There are two cases:

− If j ∈ Scrr,u(q) , B honestly generates a secret key for the identity (u(q), j, k, x̂
(q)
k ) for all k ∈ [̂̀]

using msk = IBE.msk.

− If j 6∈ Scrr,u(q) , send Lu(q),j(·) := Local(Ĉu(q),j , ·) and x̂(q) to its challenger. Then, the
challenger computes either{

labu(q),j,k,b

}
k∈[̂̀],b∈{0,1} ← GC.Garble

(
1λ, Lu(q),j

)
.

or {
labu(q),j,k

}
k∈[̂̀] ← GC.Sim

(
1λ, 1

̂̀
, 1ŝ, Lu(q),j(x̂

(q))
)

depending on whether B is in the real world or simulated world. Then, B is given{
lab

u(q),j,k,x̂
(q)
k

}
k∈[̂̀], where lab

u(q),j,k,x̂
(q)
k

= labu(q),j,k if it is in the ideal world. Then, B
runs

IBE.sk
u(q),j,k,x̂

(q)
k

← IBE.SimKG
(
IBE.st, IBE.msk, (u(q), j, k, x̂

(q)
k ), lab

u(q),j,k,x̂
(q)
k

)
,

to obtain IBE.sk
u(q),j,k,x̂

(q)
k

for all k ∈ [̂̀].
3. Finally, it returns sk(q) =

(
u(q),∆(q),

{
IBE.sk

u(q),j,k,x̂
(q)
k

}
j∈∆(q),k∈[̂̀]

)
to A.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game5 for A if it is in the real world and Game6 if it is
in the ideal world. Thus, B breaks the multi-instance security of GC if A distinguishes between the two
games.

Lemma B.16. We have |Pr[E6]− Pr[E7]| ≤ negl(λ) by the security of RDMPC.

Proof. The proof is similar to Lemma B.10, but we have to consider secret key queries after the encryption
query here. Assume |Pr[E6]− Pr[E7]| is non-negligle. We then describe an adversary B that breaks the
multi-instance security of RDMPC as follows. Note that since the multi-instance security of RDMPC is
implied by the single instance security as we observed in Remark B.5, this is a contradiction.

Simulating the Setup. On input 1λ, B first runs A on input 1λ to obtain prm = (1`, 1s). B then runs
Setup(1λ, prm, Q) to obtain mpk and msk and then sends mpk to A as the master public key. Furthermore,
B does the following.

1. It chooses u(q) and ∆(q) for q ∈ [Q] in advance. It then aborts and outputs a random bit if there
exists i ∈ [Q] such that |Γi| > λ or |Scrr,i| > t.

2. It then declares the number of instances M = Q, the query bound R = λ, and the input length of
circuits ` to its challenger. The security parameter λ and R specify the total number of parties N ,
number of parties n participating in any session, and threshold t. Furthermore, for i ∈ [Q], B does
the following.

(a) It submits Scrr,i to its challenger as the corruption set in the i-th instance.

(b) It submits the sets {∆(q)}q∈Γi to its challenger where ∆(q) is the set of parties that will
participate in the session in the i-th instance.
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Answering the secret key queries before the encryption query. When A makes a secret key query x(q), B
does the following.

1. It submits x(q) to the u(q)-th instance. Then, the challenger runs

x̂(q) ← InpEnc(1λ, 1λ, 1`, x(q))

and returns x̂(q) to B.

2. Given x̂(q), it honestly computes sk(q) using IBE.msk and returns it to A.

Answering the encryption query. When A submits an encryption query C, B proceeds as follows.

1. It declares the circuit C as its target for all instances of RDMPC.

2. Then, for each of i ∈ [Q], the challenger either computes

(Ĉi,1, . . . , Ĉi,N )← CktEnc(1λ, 1λ, 1`, C), ŷ
(q)
i,j := Local(Ĉi,j , x̂

(q)) for q ∈ Γpre
i , j ∈ ∆(q)

or({
Ĉi,j

}
j∈Scrr,i

,
{
ŷ

(q)
i,j

}
q∈Γpre

i ,j∈∆(q)
,RDMPC.sti

)
← RDMPC.Sim0

(
1|C|, Scrr,i,

{
C(x(q)), x(q)

}
q∈Γpre

i

)
depending on whether B is in the real game or ideal game. Then, the challenger returns({

Ĉi,j

}
j∈Scrr,i

,
{
ŷ

(q)
i,j

}
q∈Γpre

i ,j∈∆(q)

)
to B for all i ∈ [Q].

3. Given the value, B simulates the ciphertext as Game6 and returns it to A. This is possible without
using any secret information. During the simulation B generates IBE.st and keeps the value for
future use.

Answering the secret key queries after the encryption query. A then continues to make key queries. When
A makes a q-th key query for x(q), B proceeds as follows.

1. It submits x(q) to the u(q)-th instance. Then, the challenger either computes

x̂(q) ← InpEnc(1λ, 1λ, 1`, x(q)), ŷ
(q)

u(q),j
:= Local(Ĉu(q),j , x̂

(q)) for j ∈ ∆(q),

or (
x̂(q),

{
ŷ

(q)

u(q),j

}
j∈∆(q)

)
← RDMPC.Sim1

(
RDMPC.stu(q) ,∆

(q), C(x(q)), x(q)
)

depending on whether B is in the real game or ideal game. Then, the challenger returns(
x̂(q),

{
ŷ

(q)

u(q),j

}
j∈∆(q)

)
to B.

2. It computes IBE.sk
u(q),j,k,x̂

(q)
k

for all j ∈ ∆(q) and k ∈ [̂̀] as follows. There are two cases to
consider:

− If j 6∈ Scrr,u(q) , it runs{
labu(q),j,k

}
k∈[̂̀] ← GC.Sim

(
1λ, 1

̂̀
, 1ŝ, ŷ

(q)

u(q),j

)
.

Then, for all k ∈ [̂̀], it runs

IBE.sk
u(q),j,k,x̂

(q)
k

← IBE.SimKG
(
IBE.st, IBE.msk, (u(q), j, k, x̂

(q)
k ), labu(q),j,k

)
.
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− If j ∈ Scrr,u(q) , it honestly generates IBE.sk
u(q),j,k,x̂

(q)
k

for all k ∈ [̂̀] using IBE.msk.

3. Finally, it returns sk(q) =

(
u(q),∆(q),

{
IBE.sk

u(q),j,k,x̂
(q)
k

}
j∈∆(q),k∈[̂̀]

)
to A.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game6 for A if it is in the real world and Game7 if it is
in the ideal world. Furthermore, for each instance i ∈ [Q], the size of the corruption set Scrr,i and the
number of the sessions |Γi| are at most t and λ, respectively. Thus, B breaks the multi-instance security
of RDMPC if A distinguishes between the two games.

B.5 Efficiency of Full-fledged CPFE from Section 3.4

We observe that Setup and KeyGen run in time poly(λ, `, log 2i) = poly(λ, `) by the efficiency property
of BCPFE. Here, we crucially use the fact that the setup and key generation algorithms of BCPFE runs
polylogarithmic in the collusion bound. Otherwise, Setup and KeyGen defined above does not run in
polynomial time. We also observe that Enc and Dec run in time 2u poly(λ, `) = Q · poly(λ, `) by the
efficiency property of BCPFE.

B.6 Proof of Theorem 3.7

Theorem B.17 (Restate of Theorem 3.7). If BCPFE satisfies AD-SIM security as bounded FE scheme,
then so does CPFE scheme as FE with delayed collusion bound. Similarly, if BCPFE satisfies NA-SIM
security as bounded FE scheme, then so does CPFE scheme as FE with delayed collusion bound.

Proof. Here, we prove the statement for the case of AD-SIM. The proof for NA-SIM is similar and
simpler.

Ideal world: By the definition, we have a simulators (BCPFE.SimEnc,BCPFE.SimKG) for BCPFE.
We construct the simulators (SimEnc, SimKG) for CPFE using them as follows.

Simulating the ciphertext. Here, we describe SimEnc. It is given

mpk = BCPFE.mpk, 1|Q|, 1|C|, V :=
{
C(x(q)), x(q), sk(q)

}
q∈[Q1]

where Q is the collusion bound chosen by the adversary and x(q) and sk(q) are the q-th secret key query
and answer to it, respectively. Given the input, it proceeds as follows.

1. Find u such that 2u−1 < Q ≤ 2u.

2. Parse mpk→ {BCPFE.mpki}i∈[λ] and retrieve BCPFE.mpku.

3. Parse sk(q) → {BCPFE.sk(q)
i }i∈[λ] and define Vu = {C(x(q)), x(q),BCPFE.sk

(q)
u }q∈[Q1].

4. Run BCPFE.ctu ← BCPFE.SimEnc(mpku,Vu, 1`, 12u) and return ct = BCPFE.ctu.

Simulating the secret key. Here, we describe SimKG. When the adversary makes the q-th key query,
where q ∈ [Q1 + 1, Q1 +Q2], it is given(

msk = BCPFE.msk, st, x(q), C(x(q))
)

as input. Then, it proceeds as follows.
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1. Parse msk→ {BCPFE.mski}i∈[λ].

2. Run BCPFE.ski ← BCPFE.KeyGen(BCPFE.mski, x, 2
i) for i ∈ [λ]\{u}.

3. Run BCPFE.sku ← BCPFE.SimKG(BCPFE.sku, x
(q), C(x(q))).

4. Return sk = {BCPFE.ski}i∈[λ].

The games. We now provide the games to argue indistinguishability from the real world. To do so, we
define Gamei for i ∈ [0, imax] as follows, where imax := dlogQmaxe and Qmax is the upper bound
on the value of Q chosen by the adversary. We can use the running time of the adversary as Qmax for
example. Note that we have imax < λ because we have Qmax < 2λ.

Gamei. In this game, the ciphertext is generated as in the real world if u ≥ i and as in the ideal world
otherwise, where u is an integer such that 2u−1 < Q ≤ 2u. Similarly, the secret keys after the
challenge ciphertext are generated as in the real world if u ≤ i and as in the ideal world otherwise.

It is easy to see that Game0 is equivalent to the real game ExprealCPFE,A

(
1λ
)

defined as per Theorem 2.7
and Gameimax is equivalent to the ideal game ExpidealCPFE,Sim

(
1λ
)
. It is easy to see that Gamei−1 and

Gamei are indistinguishable by a straightforward reduction where the reduction algorithm chooses
(prm, 12i) as its target parameter and generates BCPFE instances other than index i by itself at the
beginning of the game. The theorem readily follows.

C Missing Details from Section 4

Correctness. Here we show the correctness of our KPFE scheme from Section 4.

Theorem C.1. For any given inp(λ), dep(λ) and out(λ), assume 1KPFE supports the circuit class
Cinp,dep,out. Further, assume CPFE supports the circuit class Cinp′,size′ . Then, the KPFE scheme Section 4
is correct.

Proof. Consider any honestly generated ciphertext ct = CPFE.ct and secret key sk = (CPFE.sk, 1KPFE.sk),
where the latter is associated with some string 1KPFE.mpk ∈ {0, 1}inp′ and some circuit C ∈ Cinp,dep,out.
Then the correctness of CPFE and PRF dictates that

y = CPFE.Dec(CPFE.sk,CPFE.ct) = E[x,K](1KPFE.mpk)

= 1KPFE.Enc(1KPFE.mpk, x;PRF(K, 1KPFE.mpk)),

since E[x,K] ∈ Cinp′,size′ . Next, the correctness of KPFE further ensures that z = KPFE.Dec(1KPFE.sk, y) =
C(x). This completes the proof of the theorem.

Efficiency. Here, we evaluate the efficiency of our KPFE construction from Section 4. In particular, we
show in the following theorem that our scheme is succinct as per Remark 2.10.

Theorem C.2. Let inp(λ), dep(λ) and out(λ) be polynomials in λ. Further, let 1KPFE be a succinct
KPFE scheme for circuit family Cinp,dep,out and CPFE be a CPFE scheme for circuit family Cinp′,size′ .
Then, the KPFE scheme KPFE = (Setup,KeyGen,Enc,Dec) is succinct and runs in polynomial time.

Proof. By the succinctness of 1KPFE.Setup(1λ, prm), the running time of the encryption algorithm
1KPFE.Enc is independent of the circuit size, which is unbounded. Instead, the running time grows only
with inp(λ), dep(λ) and out(λ). This implies that size′(λ) = poly(λ, inp(λ), dep(λ), out(λ)) and E[x,K]

can be computed in time poly(λ, inp(λ), dep(λ), out(λ)). Given this, it is straightforward to bound the
running time of the algorithms. In particular, the running time of the encryption algorithm is independent
from the size of the circuits and thus the scheme is succinct.
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We also observe that the running time of the encryption algorithm is linear in Q, which is inherited
from the same property of CPFE.

Proof of Security. Here, we prove the security of our KPFE scheme from Section 4.

Theorem C.3. Assume PRF is a secure pseudorandom function. Further, assume 1KPFE for the circuit
family Cinp,dep,out is 1-NA-SIM-secure as per Definition 2.7 and CPFE for the circuit family Cinp′,size′ is
AD-SIM-secure as per Definition 2.6. Then, KPFE for the circuit family Cinp,dep,out is AD-SIM-secure as
per Definition 2.6.

Proof. Since CPFE satisfies AD-SIM security, we have a simulator CPFE.Sim = (CPFE.SimEnc,CPFE.SimKG)
for CPFE. Similarly, since 1KPFE satisfies NA-SIM security, we have a simulator 1KPFE.Sim =
(1KPFE.SimEnc,⊥). We construct the simulator Sim = (SimEnc,SimKG) for KPFE using these
algorithms. The ideal world with simulator Sim for KPFE and adversary A proceeds as follows.

Ideal world: On input 1λ, A outputs prm = (1inp, 1dep, 1out), upon which the game runs Setup(1λ, prm),
gets mpk = CPFE.mpk, and sends it to A. For each q ∈ [Q1], A queries secret key for circuit C(q)

to receive sk(q) = (CPFE.sk(q), 1KPFE.sk(q)). Note that sk(q) contains 1KPFE master public key
1KPFE.mpk(q) and C(q) in CPFE.sk(q) and 1KPFE.sk(q) respectively. It then outputs (x, 1Q).

Simulating the ciphertext after prechallenge queries. On input

mpk = CPFE.mpk, V =
{
z(q) := C(q)(x), C(q), sk(q)

}
q∈[Q1]

, 1|x|, 1Q

SimEnc proceeds as follows.

1. For all q ∈ [Q1], run

1KPFE.ct(q) ← 1KPFE.SimEnc(1KPFE.mpk(q),V(q)
1KPFE, 1

|x|),

where V(q)
1KPFE := {z(q), C(q), 1KPFE.sk(q)}.

2. Further, it computes size′ and run

(CPFE.ct,CPFE.st)← CPFE.SimEnc
(
CPFE.mpk,VCPFE, 1size

′
, 1Q

)
where VCPFE := {1KPFE.ct(q), 1KPFE.mpk(q),CPFE.sk(q)}q∈[Q1].

3. Output the ciphertext ct = CPFE.ct and internal state st = CPFE.st.

After giving the ciphertext ct, A makes secret key queries. The queries are answered by the simulator.

Simulating the secret key after the challenge query. For q-th query with q ∈ [Q1 + 1, Q1 +Q2], SimKG
is given

CPFE.st, msk = CPFE.msk, z(q) := C(q)(x), C(q)

and proceeds as follows.

1. Run (1KPFE.mpk(q), 1KPFE.msk(q))← 1KPFE.Setup(1λ, prm).

2. Run 1KPFE.sk(q) ← 1KPFE.KeyGen(1KPFE.msk(q), C(q)).

3. Run 1KPFE.ct(q) ← 1KPFE.SimEnc(1KPFE.mpk(q),V(q)
1KPFE, 1

|x|), where V(q)
1KPFE := {z(q), C(q), 1KPFE.sk(q)}.

4. Run CPFE.sk(q) ← CPFE.SimKG(CPFE.st,CPFE.msk, 1KPFE.ct(q), 1KPFE.mpk(q)).
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5. Return sk(q) = (CPFE.sk(q), 1KPFE.sk(q)).

The games. To prove the security, we consider the following sequence of games, where Game0

corresponds to the real game and Game3 corresponds to the ideal world. For i ∈ [0, 3], let Ei denote
the event that A outputs 1 in Gamei. In particular, we prove that |Pr[Ei]− Pr[Ei+1]| ≤ negl(λ) for all
i ∈ [0, 2], which implies |Pr[E0]− Pr[E3]| ≤ negl(λ).

Game0. This is the real game ExprealKPFE,A

(
1λ
)

as per Definition 2.6.

Game1. In this game, we replace the encryption algorithm and key generation algorithms of CPFE with
its simulator CPFE.SimEnc and CPFE.SimKG respectively. In particular, CPFE.ct is generated as
follows.

1. For all q ∈ [Q1], compute 1KPFE.ct(q) = E[x,K](1KPFE.mpk(q)).

2. Further, it computes size′ and run

(CPFE.ct,CPFE.st)← CPFE.SimEnc
(
CPFE.mpk,VCPFE, 1size

′
, 1Q

)
where VCPFE := {1KPFE.ct(q), 1KPFE.mpk(q),CPFE.sk(q)}q∈[Q1].

Furthermore, we change the way how CPFE.sk(q) for q ∈ [Q1 + 1, Q1 + Q2] is generated as
follows.

1. Compute 1KPFE.ct(q) = E[x,K](1KPFE.mpk(q)).

2. Run CPFE.sk(q) ← CPFE.SimKG(CPFE.st,CPFE.msk, 1KPFE.ct(q), 1KPFE.mpk(q)).

As we will show in Lemma C.4, using AD-SIM security of CPFE, we can prove

|Pr[E0]− Pr[E1]| ≤ negl(λ).

Game2. In this game, we change how 1KPFE.ct(q) is computed for all q ∈ [Q1 + Q2]. Instead of
setting it as 1KPFE.ct(q) = E[x,K](1KPFE.mpk(q)), the game chooses fresh randomness R(q) for
1KPFE.Enc and sets

1KPFE.ct(q) = 1KPFE.Enc(1KPFE.mpk(q), x;R(q)).

Note that the previous game is equivalent to this game if we replace R(q) with PRF(K, 1KPFE.mpk(q)).
As we will show in Lemma C.5, using the security of PRF, we can prove

|Pr[E1]− Pr[E2]| ≤ negl(λ).

Game3. In this game, we further change how 1KPFE.ct(q) is computed for all q ∈ [Q1 + Q2]. In
particular, we compute

1KPFE.ct(q) ← 1KPFE.SimEnc(1KPFE.mpk(q),V(q)
1KPFE, 1

|x|)

where V(q)
1KPFE := {C(x(q)), C(q), 1KPFE.sk(q)}. This removes all information about the challenge

message from the entire distribution and thus corresponds to the ideal game ExpidealKPFE,Sim

(
1λ
)

as
per Definition 2.6. As we will show in Lemma C.6, using NA-SIM security of 1KPFE, we can
prove

|Pr[E2]− Pr[E3]| ≤ negl(λ).

64



To finish the proof of the theorem, it suffices to prove Lemmas C.4 to C.6.

Lemma C.4. We have |Pr[E0]− Pr[E1]| ≤ negl(λ) by the AD-SIM security of CPFE.

Proof. Assume |Pr[E0]− Pr[E1]| is non-negligle. We then describe an adversary B that breaks AD-SIM
security of CPFE as follows. On input 1λ, B first runs A on input 1λ to obtain prm = (1inp, 1dep, 1out).
B then sets prm′ := (1inp

′
, 1size

′
) using prm, sends prm′ to CPFE challenger and obtains CPFE.mpk. It

sends mpk := CPFE.mpk to A. When A submits a key query for a circuit C(q) for some q ∈ [Q1], B
does the following:

1. It samples (1KPFE.mpk(q), 1KPFE.msk(q)) ← 1KPFE.Setup(1λ, prm) and futher generates
1KPFE.sk(q) ← 1KPFE.KeyGen(1KPFE.msk(q), C(q)).

2. It submits its own key query for 1KPFE.mpk(q) to CPFE challenger and receives CPFE.sk(q).

3. It sends sk(q) := (CPFE.sk(q), 1KPFE.sk(q)) to A.

When A submits an encryption query (x, 1Q), B does the following:

1. It samples K← PRF.Setup(1λ) and constructs E[x,K] as per the real protocol.

2. It then submits the tuple
(
E[x,K], 1

Q
)

to its CPFE challenger and obtains CPFE.ct. In particular,
the CPFE challenger replies B with CPFE.ct, where

(CPFE.ct,CPFE.st)←

{
CPFE.Enc

(
CPFE.mpk,E[x,K], 1

Q
)
, if B is in ExprealCPFE,B

(
1λ
)

CPFE.SimEnc
(
CPFE.mpk,VCPFE, 1size

′
, 1Q

)
, if B is in ExpidealCPFE,Sim

(
1λ
) .

In the above, VCPFE := {E[x,K](1KPFE.mpk(q)), 1KPFE.mpk(q),CPFE.sk(q)}q∈[Q1].

3. It then sends the ciphertext CPFE.ct to A.

A then makes key queries. When A makes a q-th key query for C(q), B proceeds as follows.

1. It samples (1KPFE.mpk(q), 1KPFE.msk(q)) ← 1KPFE.Setup(1λ, prm) and futher generates
1KPFE.sk(q) ← 1KPFE.KeyGen(1KPFE.msk(q), C(q)).

2. It submits its own key query for 1KPFE.mpk(q) to CPFE challenger and receives CPFE.sk(q). In
particular, the CPFE challenger replies B with CPFE.sk(q), where

CPFE.sk(q) ←

CPFE.KeyGen
(
CPFE.msk, 1KPFE.mpk(q)

)
, if B is in ExprealCPFE,B

(
1λ
)

CPFE.SimKG
(
CPFE.st,CPFE.msk,V(q)

CPFE

)
, if B is in ExpidealCPFE,Sim

(
1λ
) .

In the above, V(q)
CPFE := {E[x,K](1KPFE.mpk(q)), 1KPFE.mpk(q)}.

3. It sends sk(q) := (CPFE.sk(q), 1KPFE.sk(q)) to A.

It is straightforward to see that B simulates Game0 for A if it is in the real world and Game1 if it is
in the ideal world. Thus, B breaks the AD-SIM security of CPFE if A distinguishes between the two
games.

Lemma C.5. We have |Pr[E1]− Pr[E2]| ≤ negl(λ) by the security of PRF.
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Proof. Assume |Pr[E1]− Pr[E2]| is non-negligle. We then describe an adversary B that breaks the
PRF security. This is a straightforward reduction where B generates CPFE.mpk and CPFE.msk by
itself. When B has to compute 1KPFE.ct(q), either when it answers to the challenge query or secret key
query, it queries the PRF oracle on input 1KPFE.mpk(q) and gets R(q) in response. Then, it computes
1KPFE.ct(q) = KPFE.Enc(1.KPFE.mpk(q), x;R(q)) and proceeds as Game2. It is easy to see that B
simulates Game2 when R(q) is truly random. On the other hand, if R(q) = PRF(K, 1KPFE.mpk(q)),
where K is the PRF key chosen by the PRF oracle, it simulates Game1 because we have

1KPFE.ct(q) = 1KPFE.Enc(1KPFE.mpk(q), x;PRF(K, 1KPFE.mpk(q)))

= E[x,K](1KPFE.mpk(q))

in this case. Thus, B breaks the PRF security if A distinguishes between the two games.

Lemma C.6. We have |Pr[E2]− Pr[E3]| ≤ negl(λ) by the multi-instance 1-NA-SIM security of 1KPFE.

Before proving the security, we define multi-instance version of NA-SIM security for 1KPFE and
observe that this is implied by the NA-SIM security as per Definition 2.7. The reason why we introduce
this security notion is that it makes the description of the reduction for Lemma C.6 simpler.

Definition C.7 (Multi-Instance Security for 1NA-SIM). Here, we define multi-instance security for
1NA-SIM. The security is defined by the real and ideal game similarly to 1NA-SIM security definition as
per Definition 2.7, but there are multiple instances. We summarize the difference from the single-instance
case in the following.

1. At the beginning of the game, the adversary A specifies the number of instances N along with prm.

2. Then, (mpk(i),msk(i))← Setup(1λ, prm) is run for i ∈ [N ]. Then, {mpk(i)}i∈[N ] is returned to
A.

3. After that, A can make a secret key query and an encryption query for each instance of the FE
with the restriction that the secret key query should be made before the encryption query and both
queries should be made only once for each instance.

4. In the real world, all the key queries and encryption queries are answered honestly. In the ideal
world, it is answered by the simulator that computes ct← SimEnc(mpk, (R(x(i), y(i)), y(i), sk(i))),
where, x(i) and y(i) are the encryption query and key query to the i-th instance respectively and
sk(i) is the corresponding secret key to y(i).

It is straightforward to see that the above definition is implied by the single-instance definition
(Definition 2.7) by the standard hybrid argument.

Proof of Lemma C.6. Assume |Pr[E2]− Pr[E3]| is non-negligle. We then describe an adversary B that
breaks the multi-instance 1-NA-SIM security of 1KPFE as follows. On input 1λ, B first runs A on input
1λ to obtain prm = (1inp, 1dep, 1out). B then sends prm and Qmax to 1KPFE challenger, where Qmax is
an upper-bound for Q that is specified by A for the challenge query. We can set Qmax to be the running
time of A for example. The challenger then sends {1KPFE.mpk(q)}q∈[Qmax] to B in response. B then
samples (CPFE.mpk,CPFE.msk) by itself and sends mpk := CPFE.mpk to A. When A submits a key
query for a circuit C(q) for some q ∈ [Q1], B does the following:

1. It sends C(q) to the q-th instance of 1KPFE challenger to obtain 1KPFE.sk(q).

2. It then computes CPFE.sk(q) ← CPFE.KeyGen(CPFE.msk, 1KPFE.mpk(q)).

3. Finally, it sends sk(q) := (CPFE.sk(q), 1KPFE.sk(q)) to A.
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When A submits an encryption query (x, 1Q), B does the following:

1. For all q ∈ [Q], it submits x to its q-th encryption oracle, upon which it computes

1KPFE.ct(q) ←

{
1KPFE.Enc(mpk(q), x), if B is in Expreal1KPFE,B(1λ)

1KPFE.SimEnc(1KPFE.mpk(q),V(q)
1KPFE, 1

|x|), if B is in Expideal1KPFE,1KPFE.Sim(1λ)

where V(q)
1KPFE := {C(q)(x), C(q), 1KPFE.sk(q)} and 1KPFE.Sim refers to the simulator for multi-

instance security of 1KPFE.

2. Finally, it obtains (CPFE.ct,CPFE.st) ← CPFE.SimEnc(CPFE.mpk,VCPFE, 1size
′
, 1Q), where

VCPFE := {1KPFE.ct(q), 1KPFE.mpk(q),CPFE.sk(q)}q∈[Q1].

3. It returns CPFE.ct to A.

A then makes key queries. When A makes a q-th key query for C(q), B proceeds as follows.

1. It sends C(q) to the q-th instance of 1KPFE challenger to obtain 1KPFE.sk(q).

2. It then submits x to its q-th encryption oracle, upon which it computes

1KPFE.ct(q) ←

{
1KPFE.Enc(mpk(q), x), if B is in Expreal1KPFE,B(1λ)

1KPFE.SimEnc(1KPFE.mpk(q),V(q)
1KPFE, 1

|x|), if B is in Expideal1KPFE,1KPFE.Sim(1λ)

where V(q)
1KPFE := {C(q)(x), C(q), 1KPFE.sk(q)}.

3. It then runs CPFE.sk(q) ← CPFE.SimKG(CPFE.st,CPFE.msk, 1KPFE.ct(q), 1KPFE.mpk(q))

4. Finally, it sends sk(q) := (CPFE.sk(q), 1KPFE.sk(q)) to A.

It is straightforward to see that B simulates Game2 for A if it is in the real world and Game3 if it is in
the ideal world (of the multi-instance 1NA-SIM game for 1KPFE). Thus, B breaks the multi-instance
1NA-SIM security of 1KPFE if A distinguishes between the two games.

D Missing Details from Section 5

Correctness. We prove the the correctness of our CPFE scheme in Theorem D.1 below.

Theorem D.1. For any given inp(λ), dep(λ) and out(λ), assume RGC supports the circuit class
Cinp,dep,out. Further, assume CPFE′ supports the circuit class Cinp,size′ . Then, the CPFE scheme is
correct.

Proof. Consider any honestly generated ciphertext ct = (C̃,CPFE′.ct) and secret key sk = CPFE′.sk,
where the latter is associated with input x ∈ {0, 1}inp. Then the correctness of CPFE and PRF dictates
that

y = CPFE′.Dec(CPFE′.sk,CPFE′.ct) = E[gsk,K](x) = RGC.Enc(gsk, x;PRF(K, x)),

since E[gsk,K] ∈ Cinp,size′ . Next, the correctness of RGC implies z = RGC.Eval(C̃, y) = C(x). This
completes the proof of the theorem.
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Efficiency. Here, we evaluate the efficiency of the construction in Theorem D.2 below. The running time
of the key generation algorithm of our construction is “succinct” in the sense that its running time does
not depend on the size of the circuits that can be encrypted. Instead, its running time only depends on
input and output length and depth of the circuits.

Theorem D.2. Let inp(λ), dep(λ) and out(λ) be polynomials in λ. Further, let RGC be a succinct RGC
scheme for circuit family Cinp,dep,out and CPFE′ be a CPFE scheme for circuit family Cinp,size′ . Then, the
CPFE scheme CPFE = (Setup,KeyGen,Enc,Dec) is succinct and runs in polynomial time.

Proof. By the efficiency properties of CPFE′, the running time of CPFE′.KeyGen depends on its circuit
size, i.e. size′ = |E[gsk,K]|, where E[gsk,K] is defined in Figure 2. Further, by the succinctness of gsk and
RGC.Enc, the size of E[gsk,K] is independent of the size of underlying circuit C ∈ Cinp,dep,out, which is
unbounded. Instead, |E[gsk,K]| grows only with inp(λ), dep(λ) and out(λ). This implies that size′(λ) =
poly(λ, inp(λ), dep(λ), out(λ)) and E[gsk,K] can be computed in time poly(λ, inp(λ), dep(λ), out(λ)).
Given this, it is straightforward to bound the running time of all the algorithms by the efficiency of CPFE′

and RGC. In particular, the running time of the key generation algorithm is independent from the size of
the circuits and thus the scheme is succinct.

We also observe that the running time of the encryption algorithm is linear in Q, which is inherited
from the same property of CPFE′.

Proof of Security. Theorem D.3 below asserts the security of CPFE.

Theorem D.3. Assume PRF is a secure pseudorandom function. Further, assume RGC for the circuit
family Cinp,dep,out is secure as per Definition 5.3 and CPFE′ for the circuit family Cinp,size′ is AD-SIM-
secure as per Definition 2.6. Then, CPFE for the circuit family Cinp,dep,out is AD-SIM-secure as per
Definition 2.6.

Proof. Since CPFE′ satisfies AD-SIM security, we have a simulator CPFE′.Sim = (CPFE′.SimEnc,
CPFE′.SimKG) for CPFE′. Similarly, since RGC satisfies security as per Definition 5.3, we have
a simulator RGC.Sim. We construct the simulator Sim = (SimEnc,SimKG) for CPFE using these
algorithms. The ideal world with simulator Sim for CPFE and adversary A proceeds as follows.
Ideal world: On input 1λ, A outputs prm = (1inp, 1dep, 1out), upon which the game runs Setup(1λ, prm),
gets mpk = CPFE′.mpk, and sends it to A. For each q ∈ [Q1], A queries secret key for input x(q) to
receive sk(q) = CPFE′.sk(q). It then outputs (C, 1Q).

Simulating the ciphertext after prechallenge queries. On input

mpk = CPFE′.mpk, V =
{
z(q) := C

(
x(q)

)
, x(q), sk(q) = CPFE′.sk(q)

}
q∈[Q1]

, 1|C|, 1Q

SimEnc proceeds as follows.

1. Invoke RGC simulator to obtain (C̃,RGC.st)← RGC.Sim(1λ, prm, 1|C|).

2. Further, for all q ∈ [Q1], obtain

cx(q) ← RGC.Sim
(
1λ, x(q), z(q),RGC.st

)
.

3. Next, it computes size′ and invokes the CPFE′ simualtor to obtain

(CPFE′.ct,CPFE′.st)← CPFE′Sim(CPFE′.mpk,VCPFE′ , 1size
′
, 1Q),

where VCPFE′ := {cx(q) , x(q),CPFE′.sk(q)}q∈[Q1].
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4. Output the ciphertext ct := (C̃,CPFE′.ct) and internal state st = (RGC.st,CPFE′.st).

After giving the ciphertext ct, A makes secret key queries. The queries are answered by the simulator.

Simulating the secret key after the challenge query. For q-th query with q ∈ [Q1 + 1, Q1 +Q2], SimKG
is given

st = (RGC.st,CPFE′.st), msk = CPFE′.msk, z(q) := C
(
x(q)

)
, x(q)

and proceeds as follows.

1. Obtain cx(q) ← RGC.Sim
(
1λ, x(q), z(q),RGC.st

)
.

2. Obtain CPFE′.sk(q) ← CPFE′.SimKG(CPFE′.st,CPFE′.msk, cx(q) , x
(q)).

3. Return sk(q) := CPFE′.sk(q).

The games. To prove the security, we consider the following sequence of games, where Game0

corresponds to the real game and Game3 corresponds to the ideal world. For i ∈ [0, 3], let Ei denote
the event that A outputs 1 in Gamei. In particular, we prove that |Pr[Ei]− Pr[Ei+1]| ≤ negl(λ) for all
i ∈ [0, 2], which implies |Pr[E0]− Pr[E3]| ≤ negl(λ).

Game0. This is the real game ExprealCPFE,A

(
1λ
)

as per Definition 2.6.

Game1. In this game, we replace the encryption algorithm and key generation algorithms of CPFE′ with
its simulator CPFE′.SimEnc and CPFE′.SimKG respectively. In particular, CPFE′.ct is generated
as follows.

1. For all q ∈ [Q1], compute an encoding cx(q) = E[gsk,K]

(
x(q)

)
.

2. Further, it computes size′ and run

(CPFE′.ct,CPFE′.st)← CPFE′.SimEnc
(
CPFE′.mpk,VCPFE′ , 1size

′
, 1Q

)
where VCPFE′ := {cx(q) , x(q),CPFE′.sk(q)}q∈[Q1].

Furthermore, we change the way how CPFE.sk(q) for q ∈ [Q1 + 1, Q1 + Q2] is generated as
follows.

1. Compute an encoding cx(q) ← E[gsk,K]

(
x(q)

)
.

2. Run CPFE.sk(q) ← CPFE′.SimKG
(
CPFE′.st,CPFE′.msk, cx(q) , x

(q)
)
.

As we will show in Lemma D.4, using AD-SIM security of CPFE′, we can prove

|Pr[E0]− Pr[E1]| ≤ negl(λ).

Game2. In this game, we change how the RGC encoding cx(q) is computed for all q ∈ [Q1 + Q2].
Instead of setting it as cx(q) = E[gsk,K](x

(q)), the game chooses fresh randomness R(q) for RGC.Enc
and sets

cx(q) = RGC.Enc
(
gsk, x(q);R(q)

)
.

Note that the previous game is equivalent to this game if we replace R(q) with PRF(K, x(q)). As
we will show in Lemma D.5, using the security of PRF, we can prove

|Pr[E1]− Pr[E2]| ≤ negl(λ).
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Game3. In this game, we further change how the garbled circuit for C in the challenge message and the
encodings {cx(q)}q∈[Q1+Q2] are computed. In particular, we compute them as follows.(

C̃,RGC.st
)
← RGC.Sim(1λ, prm, 1|C|),{

cx(q) ← RGC.SimEnc
(
1λ, x(q), z(q),RGC.st

)}
q∈[Q1+Q2]

.

This removes all information about the challenge message from the entire distribution and thus
corresponds to the ideal game ExpidealCPFE,Sim

(
1λ
)

as per Definition 2.6. As we will show in
Lemma D.6, using RGC security from Definition 5.3, we can prove

|Pr[E2]− Pr[E3]| ≤ negl(λ).

To finish the proof of the theorem, it suffices to prove lemmas D.4 to D.6.

Lemma D.4. We have |Pr[E0]− Pr[E1]| ≤ negl(λ) by the AD-SIM security of CPFE.

Proof. Assume |Pr[E0]− Pr[E1]| is non-negligle. We then describe an adversary B that breaks AD-SIM
security of CPFE′ as follows. On input 1λ, B first runs A on input 1λ to obtain prm = (1inp, 1dep, 1out).
B then sets prm′ := (1inp, 1size

′
) using prm, sends prm′ to CPFE′ challenger and obtains CPFE′.mpk. It

sends mpk := CPFE′.mpk to A.
When A submits a key query for an input x(q) ∈ {0, 1}inp for some q ∈ [Q1], B relays it to the

CPFE′ challenger and receives CPFE′.sk(q). It then sends sk(q) := CPFE′.sk(q) to A. When A submits
an encryption query (C, 1Q), B does the following:

1. It samples K ← PRF.Setup(1λ), computes (gsk, C̃) ← RGC.Garble(1λ, prm, C) and constructs
E[gsk,K] as per the real protocol.

2. Then it sends the tuple
(
E[gsk,K], 1

Q
)

to the CPFE′ challenger and obtains CPFE′.ct. In particular,
the CPFE′ challenger replies B with CPFE′.ct, where

(CPFE′.ct,CPFE′.st)←

{
CPFE′.Enc

(
CPFE′.mpk,E[gsk,K], 1

Q
)
, if B is in ExprealCPFE′,B

(
1λ
)

CPFE′.SimEnc
(
CPFE′.mpk,VCPFE′ , 1size

′
, 1Q

)
, if B is in ExpidealCPFE′,Sim

(
1λ
) .

In the above, VCPFE′ :=
{
E[gsk,K](x

(q)), x(q),CPFE′.sk(q)
}
q∈[Q1]

.

3. It then sends the ciphertext ct := (C̃,CPFE′.ct) to A.

A then makes post-challenge key queries. When A makes a q-th key query for x(q), B proceeds as follows.

1. It submits x(q) to CPFE′ challenger and receives CPFE′.sk(q). In particular, the CPFE′ challenger
replies B with CPFE′.sk(q), where

CPFE′.sk(q) ←

{
CPFE′.KeyGen

(
CPFE′.msk, x(q)

)
, if B is in ExprealCPFE′,B

(
1λ
)

CPFE′.SimKG
(
CPFE′.st,CPFE′.msk,V(q)

CPFE′

)
, if B is in ExpidealCPFE′,Sim

(
1λ
) .

In the above, V(q)

CPFE′
:= {E[gsk,K](x

(q)), x(q)}.

2. It sends sk(q) := CPFE′.sk(q) to A.

It is straightforward to see that B simulates Game0 for A if it is in the real world and Game1 if it is
in the ideal world. Thus, B breaks the AD-SIM security of CPFE if A distinguishes between the two
games.
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Lemma D.5. We have |Pr[E1]− Pr[E2]| ≤ negl(λ) by the security of PRF.

Proof. Assume |Pr[E1]− Pr[E2]| is non-negligle. We then describe an adversary B that breaks the
PRF security. This is a straightforward reduction where B generates CPFE′.mpk and CPFE′.msk by
itself. When A asks the challenge query (C, 1Q), B first computes (C̃, gsk)← RGC.Garble(1λ, prm, C).
When B has to compute the encodings cx(q) , during the challenge phase or to answer the post-challenge
secret keys, it queries the PRF oracle on input x(q) and gets R(q) which it uses to compute cx(q) ←
RGC.Enc(gsk, x;R(q)). Then it proceeds as Game2. It is easy to see that B simulates Game2 when R(q)

is truly random. On the other hand, if R(q) = PRF(K, x(q)), where K is the PRF key chosen by the PRF
oracle, it simulates Game1 because we have cx(q) = RGC.Enc(gsk, x(q);PRF(K, x(q))) = E[gsk,K](x

(q))
in this case. Thus, B breaks the PRF security if A distinguishes between the two games.

Lemma D.6. We have |Pr[E2]− Pr[E3]| ≤ negl(λ) by security of RGC.

Proof. Assume |Pr[E2]− Pr[E3]| is non-negligle. We then describe an adversary B that breaks the
security of RGC as follows. On input 1λ, B first runs A on input 1λ to obtain prm = (1inp, 1dep, 1out).
B then computes size′ using prm and samples (CPFE′.mpk,CPFE′.msk) by itself and sends mpk :=
CPFE′.mpk to A. B answers the pre-challenge secret keys same as in Game2.

When A submits an encryption query (C, 1Q), B does the following:

1. It submits the tuple (1λ, prm, C) to the RGC challenger, upon which it computes

(C̃, st′)←

{
RGC.Garble(1λ, prm, C) with st′ = gsk, if B is in ExprealRGC,B(1λ)

RGC.Sim(1λ, prm, 1|C|) with st′ = RGC.st, if B is in ExpidealRGC,B,RGC.Sim(1λ)

and returns C̃ to B.

2. For all q ∈ [Q1], it submits the x(q) to the RGC challenger, upon which it computes

cx(q) ←

{
RGC.Enc(gsk, x), if B is in ExprealRGC,B(1λ)

RGC.Sim(1λ, x(q), C(x(q)),RGC.st), if B is in ExpidealRGC,B,RGC.Sim(1λ)

and returns cx(q) to B.

3. Finally, it gets (CPFE′.ct,CPFE′.st) ← CPFE′.SimEnc(CPFE′.mpk,VCPFE′ , 1size
′
, 1Q), where

VCPFE′ := {cx(q) , x(q),CPFE′.sk(q)}q∈[Q1].

4. It returns ct := (C̃,CPFE′.ct) to A.

A then makes post-challenge key queries. When A makes a q-th key query for x(q), B proceeds as follows.

1. It sends x(q) to the RGC challenger, upon which it computes

cx(q) ←

{
RGC.Enc(gsk, x), if B is in ExprealRGC,B(1λ)

RGC.Sim(1λ, x(q), C(x(q)), stRGC.Sim), if B is in ExpidealRGC,B,RGC.Sim(1λ)

and returns cx(q) to B.

2. It then runs CPFE′.sk(q) ← CPFE′.SimKG(CPFE′.st,CPFE′.msk, cx(q) , x
(q))

3. Finally, it sends sk(q) := CPFE′.sk(q) to A.

It is straightforward to see that B simulates Game2 for A if it is in the real world and Game3 if it is
in the ideal world of the security game of RGC. Thus, B breaks the security of RGC if A distinguishes
between the two games.
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E Missing Details from Section 6

Correctness. Theorem E.1 below proves the correctness of our BFE scheme from Section 6.1.

Theorem E.1. BFE defined in Section 6.1 is correct.

Proof. We observe that lab′i,j = labi,j,FE.mpki,j holds for all lab′i,j recovered in Step 2b of the
decryption algorithm by the correctness of IBE, since the ciphertext and secret key are both generated
with respect to the identity (i, j,FE.mpki,j). Then, by the correctness of GC, we have ci =

FE.Enc(FE.mpki, f(x)i, 1
Q; ri) for all i ∈ S(|x|) ∩ T (|y|) recovered in Step 2c of the decryption

algorithm. Finally, by the correctness of FE, we have zi = Ri(f(x)i, g(y)i) for all zi recovered in
Step 2d of the decryption algorithm as desired.

Efficiency. We check that all algorithms in BFE run in polynomial time in its input length. This is obvious
for Setup. As for the running time of KeyGen, one can observe that the running time can be bounded
by a polynomial in λ, the size of T (|y|), and max T (|y|) by the efficiency of FE and IBE. These values
are bounded by a polynomial in |y| by the property of T . Thus, the key generation algorithm runs in
polynomial time in its input length. Similarly, the running time of Enc can be bounded by a polynomial
in λ, Q, the size of S(|x|), and maxS(|x|) by the efficiency of FE, GC, and IBE. By the property of S,
we can see that the algorithm runs in polynomial time in its input length. Finally, having observed above,
it is straightforward to see that the decryption algorithm runs in polynomial time in its input length.

Proof of Security. Theorem E.2 below asserts the security of BFE scheme from Section 6.1.

Theorem E.2. Suppose PRF is a secure pseudorandom function and GC is secure garbled circuit scheme,
and IBE is IND-CPA secure identity-based encryption scheme. Then, assuming FE is NA-SIM secure, so
is BFE. Furthermore, if FE is AD-SIM secure, so is BFE.

Proof. Here, we prove the statement for the case of AD-SIM. The proof for NA-SIM is similar and
simpler. Since FE satisfies AD-SIM security, we have a simulator FE.Sim = (FE.SimEnc,FE.SimKG)
for FE. We construct the simulator BFE.Sim = (SimEnc, SimKG) for BFE using these algorithms. The
ideal world with simulator Sim for BFE and adversary A proceeds as follows.

Ideal world: On input 1λ, the game runs Setup(1λ), gets mpk = IBE.mpk, and sends it to A. For each
q ∈ [Q1], A queries secret key for y(q) to receive

sk(q) =

(
T (|y(q)|),

{
FE.sk

(q)
i ,
{
IBE.sk

(q)
i,j

}
j∈[`i]

}
i∈T (|y(q)|)

)
.

A then outputs (x, 1Q) as its target.

Simulating the ciphertext after prechallenge queries. SimEnc takes as input

mpk = IBE.mpk, V, 1Q, 1|x|

where

V =

{
Rbndl(x, y(q)) =

{
Ri(f(x)i, g(y(q))i)

}
i∈S(|x|)∩T (|y(q)|)

, y(q), sk(q)

}
q∈[Q1]

and simulates the ciphertext. Before giving the description of the simulator, we prepare some notations.
We define Γi ⊆ [Q1] as

Γi :=
{
q ∈ [Q1] : i ∈ T (|y(q)|)

}
.

Intuitively, Γi is the set of indices q of secret key queries before the encryption query that uses the i-th
instance of FE. The simulator SimEnc proceeds as follows.
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1. Compute the set S(|x|). This is possible using 1|x| without knowing x.

2. For all i ∈ S(|x|), compute FE.mpki as follows. There are two cases to consider:

− If Γi 6= ∅, retrieve FE.mpki from FE.sk
(q)
i for some q ∈ Γi.

− If Γi = ∅, run
(FE.mpki,FE.mski)← FE.Setup(1λ, 1i)

using fresh randomness. Keep the key pair (FE.mpki,FE.mski) for future use.

3. For all i ∈ S(|x|), do the following.

(a) Run
(FE.cti,FE.sti)← FE.SimEnc

(
FE.mpki,VFE,i, 1Q

)
where

VFE,i =
{
Ri

(
f(x)i, g(y(q))i

)
, g(y(q))i, FE.sk

(q)
}
q∈Γi

.

Note that VFE,i can be an empty set.

(b) Compute the length `i of FE.mpki and the size |Ei| of the circuit Ei = FE.Enc(·, f(x)i, 1
Q; ri).

This is possible by our assumption on f since the length of f(x)i is computable from |x|
without knowing x. Then run

{labi,j}j∈[`i]
← GC.Sim(1λ, 1`i , 1|Ei|,FE.cti).

(c) For all j ∈ [`i] and b ∈ {0, 1}, compute

IBE.cti,j,b ← IBE.Enc (IBE.mpk, (i, j, b), labi,j) .

Note that here, we encrypt the same label for both b = 0 and b = 1.

4. Output the ciphertext

ct =
(
S(|x|), {IBE.cti,j,b}i∈S(|x|),j∈[`i],b∈{0,1}

)
and keep its internal state

st :=
(
{FE.mski}i∈S(|x|):Γi=∅ , {FE.sti}i∈S(|x|)

)
. (E.1)

Simulating the secret key after the encryption query. Here, we describe SimKG. It is given

st, msk = (IBE.msk,K), Rbndl(x, y(q)) =
{
Ri(f(x)i, g(y(q))i)

}
i∈S(|x|)∩T (|y(q)|)

where y(q) is the q-th query with q ∈ [Q1 + 1, Q1 +Q2] that the adversary makes. Then, it proceeds as
follows.

1. Parse its internal state st as Eq. (E.1).

2. Compute the set T (|y(q)|).

3. For all i ∈ T (|y(q)|), do the following. There are two cases:

− If i ∈ S(|x|) ∧ Γi = ∅, recover (FE.mpki,FE.mski) from st.
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− Otherwise, compute

(FE.mpki,FE.mski)← FE.Setup(1λ, 1i;Ri),

where Ri = PRF.Eval(K, i).

4. For i ∈ T (|y(q)|), compute FE.sk
(q)
i as follows. There are two cases:

− If i ∈ S(x),

FE.sk
(q)
i ← FE.Sim

(
FE.sti,FE.mski, Ri

(
f(x)i, g(y(q))i

)
, g(y(q))i

)
.

− If i 6∈ S(x), run
FE.sk

(q)
i ← FE.KeyGen(FE.mski, g(y(q))i).

5. For all i ∈ T (|y(q)|) and j ∈ `i, generate a secret key as

IBE.ski,j ← IBE.KeyGen(IBE.msk, (i, j,FE.mpki,j)).

6. Return sk(q) =

(
T (|y(q)|),

{
FE.sk

(q)
i , {IBE.ski,j}j∈[`i]

}
i∈T (|y(q)|)

)
.

The games. To prove the security, we consider the following sequence of games, where Game0

corresponds to the real game and Game8 corresponds to the ideal world. For i, let Ei denote the event
that A outputs 1 in Gamei. The theorem can be proven by showing |Pr[E0]− Pr[E8]| ≤ negl(λ).

Game0: This is the real game ExprealBFE,A

(
1λ
)

for AD-SIM security defined as per Definition 2.6.

Game1: In this game, we change the game so that it computes all the key pairs {(FE.mpki,FE.mski)}i
that are necessary in advance instead of generating them on the fly when they are needed. Namely,
it sets imax sufficiently large so that it always satisfies

imax ≥ max

i : i ∈ S(|x|) ∪

 ⋃
q∈[Q1+Q2]

T (|y(q)|)

 (E.2)

and computes (FE.mpki,FE.mski) ← FE.Setup(1λ, 1i;Ri) where Ri = PRF.Eval(K, i) for all
i ∈ [imax] at the beginning of the game. These keys will be used for answering the secret key
queries later in the game. Note that by setting imax to be sufficiently large polynomial, we can
ensure that it satisfies Equation (E.2), since |x| and |y(q)| are bounded by the running time of A
and each element in S(|x|) and T (|y|) is bounded by a polynomial in |x| and |y|. This change is
clearly conceptual and thus we have

Pr[E0] = Pr[E1].

Game2. In this game, we replace Ri = PRF.Eval(K, i) with true randomness. Namely, the game
generates

(FE.mpki,FE.mski)← FE.Setup(1λ, 1i)

for i ∈ [imax] using true randomness instead of Ri at the beginning of the game. As we show in
Lemma E.3, using the security of PRF, we can prove

|Pr[E1]− Pr[E2]| ≤ negl(λ).
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Game3: In this game, we change the way the encryption query is answered. In particular, IBE.cti,j,b is
generated as

IBE.cti,j,b ← IBE.Enc
(
IBE.mpk, (i, j, b), labi,j,FE.mpki,j

)
for all i ∈ S(|x|), j ∈ [`i], and b ∈ {0, 1} in this game, where FE.mpki,j is the j-th bit of FE.mpki.
Note that we encrypt the same label for b = 0 and b = 1. As we show in Lemma E.4, using
IND-CPA security of IBE, we can prove

|Pr[E2]− Pr[E3]| ≤ negl(λ).

Game4: In this game, we change the way the encryption query is answered. In particular, it generates
{labi,j,FE.mpki,j}i∈S(|x|),j∈[`i] as follows. It first runs

FE.cti ← FE.Enc(FE.mpki, f(x)i, 1
Q),

and computes
{labi,j}j∈[`i]

← GC.Sim(1λ, 1`i , 1|Ei|,FE.cti)

for all i ∈ S(|x|). Then, it sets
labi,j,FE.mpki := labi,j

for all j ∈ [`i]. The labels obtained above are then encrypted by IBE as specified in the previous
game. As we show in Lemma E.5, using security of GC, we can prove

|Pr[E3]− Pr[E4]| ≤ negl(λ).

Game5: In this game, we change the way both the encryption query and secret key queries are answered.
In particular, when the game answers the encryption query, it generates FE.cti as

(FE.cti,FE.sti)← FE.SimEnc
(
FE.mpki,VFE,i, 1Q

)
where

VFE,i =
{
Ri

(
f(x)i, g(y(q))i

)
, g(y(q))i, FE.sk

(q)
}
q∈Γi

for all i ∈ S(|x|). Then, {FE.cti}i∈S(|x|) obtained above is used to generate the ciphertext as
specified in the previous games. In addition, it answers the secret key query after the encryption
query as follows. When the adversary makes the q-th secret key query y(q) with q ∈ [Q1 + 1, Q1 +

Q2], it computes FE.sk(q)
i for i ∈ T (|y(q)|) as follows. There are two cases:

− If i ∈ S(x), it computes FE.sk(q)
i as

FE.sk
(q)
i ← FE.Sim

(
FE.sti,FE.mski, Ri

(
f(x)i, g(y(q))i

)
, g(y(q))i

)
.

− If i 6∈ S(x), it computes FE.sk(q)
i as

FE.sk
(q)
i ← FE.KeyGen(FE.mski, g(y(q))i).

As we show in Lemma E.6, using AD-SIM security of FE, we can prove

|Pr[E4]− Pr[E5]| ≤ negl(λ).
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Game6: In this game, we stop generating all the key pairs {(FE.mpki,FE.mski)}i∈[imax] at the
beginning of the game. Instead, each key pair is generated when it is necessary to answer a
secret key or an encryption query. Note that we use the same key pair for each instance i throughout
the game, once it is generated. This is clearly a conceptual change and thus we have

Pr[E5] = Pr[E6].

Game7: In this game, we change the way we generate (FE.mpki,FE.mski) when it is required for
answering the encryption query or secret key queries. There are three cases to consider:

− If the key pair (FE.mpki,FE.mski) has been generated before, the game uses the same key pair.

− If the key pair (FE.mpki,FE.mski) is necessary for answering a key query and it has not
been generated before, the game generates it using a PRF key K as (FE.mpki,FE.mski) ←
FE.Setup(1λ, 1i;Ri) where Ri = PRF.Eval(K, i).

− If the key pair (FE.mpki,FE.mski) is necessary for answering an encryption query and the pair
has not been generated before (i.e., if i ∈ S(|x|) and Γi = ∅), the game samples fresh pair as
(FE.mpki,FE.mski)← FE.Setup(1λ, 1i) by using true randomness.

As we show in Lemma E.7, using the security of PRF, we can prove

|Pr[E6]− Pr[E7]| ≤ negl(λ).

Game8: This is the real game ExpidealFE,Sim

(
1λ
)

for AD-SIM security defined as per Theorem 2.6. By
inspection, it can easily be seen that this game is the same as the previous game. We therefore have

Pr[E7] = Pr[E8].

To finish the proof of the theorem, it suffices to prove Lemma E.3 to E.7.

Lemma E.3. We have |Pr[E1]− Pr[E2]| ≤ negl(λ) by the security of PRF.

Proof. Assume |Pr[E1]− Pr[E2]| is non-negligle. We then describe an adversary B that breaks the
PRF security. At the beginning of the game, B makes a PRF query for i and receives Ri for all
i ∈ [imax], where Ri is set as PRF.Eval(K, i) or random. Then, B generates FE.mpki and FE.mski as
(FE.mpki,FE.mski)← FE.Setup(1λ, 1i;Ri) for i ∈ [imax] and (IBE.mpk, IBE.msk)← IBE.Setup(1λ).
Then, the rest of the game is simulated using IBE.msk and {FE.mski}i∈[imax]. It is easy to see that B
simulates Game1 if B has access to a PRF function and Game2 otherwise. Thus, B breaks the PRF
security if A distinguishes between the two games.

Lemma E.4. We have |Pr[E2]− Pr[E3]| ≤ negl(λ) by the security of IBE.

Proof. Assume |Pr[E2]− Pr[E3]| is non-negligle. We then describe an adversary B that breaks multi-
challenge IND-CPA security of IBE as follows. Note that as we remarked in Remark A.9, the multi-
challenge security notion is equivalent to more standard single-challenge security notion.

Simulating the Setup. At the beginning of the game, B is given IBE.mpk from the challenger. B then
gives mpk := IBE.mpk to A. Furthermore, B generates (FE.mpki,FE.mski) ← FE.Setup(1λ, 1i) for
i ∈ [imax]. B then makes secret key query for identity (i, j,FE.mpki,j) for all i ∈ [imax] and j ∈ [`i] to
receive IBE.ski,j .

Answering the secret key queries. Throughout the game, B can easily answer the secret key queries made
by A using {IBE.ski,j}i∈[imax],j∈[`i] and {FE.mski}i∈[imax].

Answering the encryption query. When A submits an encryption query (x, 1Q), B does the following:
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1. It computes {labi,j,b}i∈S(|x|),j∈`i,b∈{0,1} as honest encryption algorithm.

2. It computes {IBE.cti,j,b}i∈S(|x|),j∈[`i],b∈{0,1} as follows. There are two cases:

− If b = FE.mpki,j , it honestly encrypts labi,j,b to obtain IBE.cti,j,b.

− If b = 1 − FE.mpki,j , B submits identity (i, j, b) and messages (labi,j,b, labi,j,1−b) to its
challenger. Then, the challenger encrypts

IBE.cti,j,b ←

{
IBE.Enc (IBE.mpk, (i, j, b), labi,j,b) , if β = 0

IBE.Enc (IBE.mpk, (i, j, b), labi,j,1−b) if β = 1

and returns IBE.cti,j,b to B. Note that the same label labi,j,FE.mpki,j is encrypted for identities
(i, j, 0) and (i, j, 1) if β = 1.

3. It then returns the ciphertext ct =
(
S(|x|), {IBE.cti,j,b}i∈S(|x|),j∈`i,b∈{0,1}

)
to A.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game2 for A if β = 0 and Game3 if β = 1.
Furthermore, B does not make a secret key query for an identity that is also submitted to the challenger
for an encryption query. To see this, observe that B submits identities of the form (i, j,FE.mpki,j) for
secret key queries and (i, j, 1− FE.mpki,j) for encryption queries to the challenger. This means that B
breaks the IND-CPA security of IBE without violating the query restriction of the game, if A distinguishes
the games.

Lemma E.5. We have |Pr[E3]− Pr[E4]| ≤ negl(λ) by the security of GC.

Proof. Assume |Pr[E3]− Pr[E4]| is non-negligle. We then describe an adversary B that breaks the
multi-instance security of GC as follows. Note that since the multi-instance security of GC is implied by
the single instance security as we observed in Remark A.4, this is a contradiction.

Simulating the Setup. At the beginning of the game, B runs (IBE.mpk, IBE.msk)← IBE.Setup(1λ) and
then gives mpk := IBE.mpk to A. Furthermore, B generates (FE.mpki,FE.mski) ← FE.Setup(1λ, 1i)
for i ∈ [imax].

Answering the secret key queries. Throughout the game, B can easily answer the secret key queries made
by A using IBE.msk and {FE.mski}i∈[imax].

Answering the encryption query. When A submits an encryption query (x, 1Q), B proceeds as follows.

1. It computes S(|x|) ⊂ N and f(x) = {f(x)i}i∈S(|x|).

2. It does the following for i ∈ S(|x|).

(a) It samples ri and defines a circuit Ei(·) := FE.Enc(·, f(x)i, 1
Q; ri).

(b) It submits the circuit Ei(·) and FE.mpki to the challenger. The challenger either runs

{labi,j,b}j∈[`i],b∈{0,1} ← GC.Garble(1λ,Ei)

or
{labi,j}j∈[`i]

← GC.Sim(1λ, 1`i , 1|Ei|,Ei(FE.mpki))

depending on whether B is in the real game or ideal game. Then, B is given {labi,j}j∈[`i]
where labi,j is set labi,j = labi,j,FE.mpki,j in the real case.
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(c) For all j ∈ [`i] and b ∈ {0, 1}, it computes

IBE.cti,j,b ← IBE.Enc (IBE.mpk, (i, j, b), labi,j) .

3. Finally, it returns the ciphertext ct =
(
S(|x|), {IBE.cti,j,b}i∈S(|x|),j∈[`i],b∈{0,1}

)
to A.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game3 for A if it is in the real world and Game4 if it is
in the ideal world. Thus, B breaks the multi-instance security of GC if A distinguishes between the two
games.

Lemma E.6. We have |Pr[E4]− Pr[E5]| ≤ negl(λ) by AD-SIM security of FE.

Proof. Assume |Pr[E4]− Pr[E5]| is non-negligle. We then describe an adversary B that breaks the
multi-instance AD-SIM security of FE as follows. Note that since the multi-instance AD-SIM security of
FE is implied by the single instance security as we observed in Remark 2.8, this is a contradiction.

Simulating the Setup. At the beginning of the game, B runs (IBE.mpk, IBE.msk)← IBE.Setup(1λ) and
then gives mpk := IBE.mpk to A. Furthermore, B declares the number imax of instances and the parameter
prm = 1i for the i-th instance of FE for all i ∈ [imax]. Then, the game runs (FE.mpki,FE.mski) ←
FE.Setup(1λ, 1i) for i ∈ [imax] and gives {FE.mpki}i∈[imax] to A.

Answering the secret key queries before the encryption query. When A makes a secret key query for y(q),
B does the following.

1. It computes T (|y(q)|) ⊆ N and g(y(q)) =
{
g(y(q))i ∈ Yi

}
i∈T (|y|).

2. For all i ∈ T (|y(q)|), B does the following. It makes a secret key query for g(y(q))i for the i-th
instance of FE to its challenger. Then, the challenger computes

FE.sk
(q)
i ← FE.KeyGen(FE.mski, g(y(q))i)

and returns FE.sk(q)
i to B.

3. B generates a secret key IBE.ski,j ← IBE.KeyGen(IBE.msk, (i, j,FE.mpki,j)) for all i ∈ T (|y(q)|)
and j ∈ `i.

4. It returns sk(q) =

(
T (|y(q)|),

{
FE.sk

(q)
i , {IBE.ski,j}j∈[`i]

}
i∈T (|y(q)|)

)
to A.

Answering the encryption query. When A submits an encryption query (x, 1Q), B proceeds as follows.

1. It computes the set S(|x|) and f(x) = {f(x)i}i∈S(|x|).

2. For all i ∈ S(|x|), B does the following.

(a) It makes an encryption query for (f(x)i, 1
Q) for the i-th instance. The challenger runs

(FE.cti,FE.sti)←

{
FE.Enc(FE.mpki, f(x)i), if B is in ExprealFE,B(1λ)

FE.SimEnc
(
FE.mpki,VFE,i, 1Q

)
, if B is in ExpidealFE,Sim(1λ)

where
VFE,i =

{
Ri

(
f(x)i, g(y(q))i

)
, g(y(q))i, FE.sk

(q)
i

}
q∈Γi

and returns FE.cti to B. Recall that Γi is defined as Γi :=
{
q ∈ [Q1] : i ∈ T (|y(q)|)

}
.
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(b) It runs {labi,j}j∈[`i]
← GC.Sim(1λ, 1`i , 1|Ei|,FE.cti).

(c) For all j ∈ [`i] and b ∈ {0, 1}, it computes IBE.cti,j,b ← IBE.Enc (IBE.mpk, (i, j, b), labi,j) .

3. It returns the ciphertext ct =
(
S(|x|), {IBE.cti,j,b}i∈S(|x|),j∈[`i],b∈{0,1}

)
to A.

Simulating the secret key after the encryption query. When A makes a secret key query for y(q)

with q ∈ [Q1, Q1 +Q2], B proceeds as follows.

1. It computes the set T (|y(q)|) and g(y(q)) =
{
g(y(q))i ∈ Yi

}
i∈T (|y(q)|).

2. For all i ∈ T (|y(q)|), B makes a secret key query for g(y(q))i for the i-th instance to its challenger.

− If i ∈ S(x), the challenger runs

FE.sk
(q)
i ←

{
FE.KeyGen(FE.mski, g(y(q))i), if B is in ExprealFE,B(1λ)

FE.SimKG
(
FE.sti,FE.mski,V(q)

FE,i, 1
Q
)
, if B is in ExpidealFE,Sim(1λ)

where
V(q)
FE,i =

{
Ri

(
f(x)i, g(y(q))i

)
, g(y(q))i

}
and returns FE.sk(q)

i to B.

− If i 6∈ S(x), the challenger runs

FE.sk
(q)
i ← FE.KeyGen(FE.mski, g(y(q))i)

and returns it to B regardless of whether B is in the real world or ideal world, since B has not
made an encryption query for the i-th instance.

3. For all i ∈ T (|y(q)|) and j ∈ `i, it honestly generates IBE.ski,j .

4. It returns sk(q) =

(
T (|y(q)|),

{
FE.sk

(q)
i , {IBE.ski,j}j∈[`i]

}
i∈T (|y(q)|)

)
to A.

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is straightforward to see that B simulates Game4 for A if it is in the real world and Game5

if it is in the ideal world. Furthermore, B restricts the restrictions on queries for AD-SIM security.
Namely, for each instance i, B chooses Q as its collusion bound and makes at most Q secret key queries.
Thus, B breaks the multi-instance AD-SIM security of FE without violating the query restrictions if A
distinguishes between the two games.

Lemma E.7. We have |Pr[E6]− Pr[E7]| ≤ negl(λ) by the security of PRF.

Proof. Assume |Pr[E6]− Pr[E7]| is non-negligle. We then describe an adversary B that breaks the PRF
security.

Simulating the Setup. At the beginning of the game, B runs (IBE.mpk, IBE.msk)← IBE.Setup(1λ) and
gives mpk = IBE.mpk to A.

Answering the secret key queries before the encryption query. When A makes a secret key query for y(q)

with q ∈ [Q1], B does the following.

1. Compute T (|y(q)|) ⊆ N and g(y(q)) =
{
g(y(q))i ∈ Yi

}
i∈T (|y(q)|).
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2. For all i ∈ T (|y(q)|), B does the following. It checks whether (FE.mpki,FE.mski) has been
generated or not. If not, it makes a PRF query on input i and obtains Ri, where either Ri =
PRF.Eval(K, i) or Ri is random. It then runs (FE.mpki,FE.mski)← FE.Setup(1λ, 1i;Ri).

3. Then, B answers the secret key query using IBE.msk and {FE.mski}i∈T (|y(q)|).

Answering the encryption query. When A submits an encryption query (x, 1Q), B proceeds as follows.

1. Compute S(|x|) ⊆ N and f(x) = {f(x)i ∈ Xi}i∈S(|x|).

2. For all i ∈ S(|x|), B does the following. It checks whether (FE.mpki,FE.mski) has been generated
or not. If not, it runs (FE.mpki,FE.mski)← FE.Setup(1λ, 1i) using true randomness.

3. Then, B generates the ciphertext using IBE.mpk and {FE.mpki}i∈S(|x|). During the simulation of
the ciphertext, B generates FE.sti for i ∈ S(|x|). It keeps them for future use.

Answering the secret key queries after the encryption query. The secret key quries after the encryption
queries are handled similarly to those before the encryption query. However, in this case, B may use
FE.sti for i ∈ S(|x|).

Final guess. At the end of the game, A outputs its guess. B outputs the same guess as A.

It is easy to see that B simulates Game7 if B has access to a PRF function and Game6 otherwise.
Thus, B breaks the PRF security if A distinguishes between the two games.
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