
Resistance of Isogeny-Based Cryptographic

Implementations to a Fault Attack

Élise Tasso1, Luca De Feo2, Nadia El Mrabet3, and Simon Pontié1

1 CEA-Leti, Université Grenoble Alpes, F-38000 Grenoble, France
CEA-Tech, Centre CMP, Équipe Commune CEA Tech - Mines Saint-Étienne,

F-13541 Gardanne, France
{elise.tasso2,simon.pontie}@cea.fr
2 IBM Research, Zürich, Switzerland

cosade21@defeo.lu
3 Mines Saint-Étienne, CEA-Tech, Centre CMP, F-13541 Gardanne, France

nadia.el-mrabet@emse.fr

Abstract. The threat of quantum computers has sparked the develop-
ment of a new kind of cryptography to resist their attacks. Isogenies
between elliptic curves are one of the tools used for such cryptosystems.
They are championed by SIKE (Supersingular isogeny key encapsula-
tion), an "alternate candidate" of the third round of the NIST Post-
Quantum Cryptography Standardization Process. While all candidates
are believed to be mathematically secure, their implementations may be
vulnerable to hardware attacks. In this work we investigate for the �rst
time whether Ti's 2017 theoretical fault injection attack is exploitable
in practice. We also examine suitable countermeasures. We manage to
recover the secret thanks to electromagnetic fault injection on an ARM
Cortex A53 using a correct and an altered public key generation. More-
over we propose a suitable countermeasure to detect faults that has a
low overhead as it takes advantage of a redundancy already present in
SIKE implementations.

Keywords: Post-quantum Cryptography · SIKE · Elliptic Curve · Isogeny ·
Fault Injection Attack.

1 Introduction

Starting in 1994 with Shor's factorization algorithm [24], quantum computers
have been shown to threaten classic asymmetric cryptography. Thus the National
Institute of Standards and Technology launched the Post-Quantum Cryptogra-
phy Standardization Process in December 2016 [20]. Research teams worldwide
had begun to work on algorithms that can be implemented on classical com-
puters but resist quantum computer attacks before and thus continued to study
encryption and signature protocols as required by the NIST. These protocols are
based on various mathematical tools, including lattices, error correcting codes,

multivariate polynomial equations, hash functions and isogenies between ellip-
tic curves. We will focus here on the Supersingular Isogeny Key Encapsulation
(SIKE) [14], the only candidate based on isogenies. More precisely, SIKE is a
key encapsulation mechanism (KEM) based on the Supersingular Isogeny Di�e-
Hellman (SIDH) key exchange proposed by Jao and De Feo in 2011 [15]. It is now
an alternate candidate in the third round of the standardization process, mean-
ing that it is deemed promising enough by the NIST to pursue research on it.
It has indeed the smallest key size by far among the third round candidates [1],
but is comparatively slow. Like the other candidates, SIKE is believed to be
mathematically secure, but vulnerabilities may appear in its implementations.
A further interesting characteristic is its regularity, which makes hardware at-
tacks more challenging. Hardware attacks assume that the attacker has physical
access to the device where the algorithm is being executed. There are two cate-
gories of such attacks. In a passive attack, the attacker is only able to observe the
execution of the algorithm on the target. They may measure the computation
time, the power consumption or the electromagnetic emanation of the circuit
and try to deduce information about the keys or exchanged messages. These are
called side-channel attacks. In an active attack, they may disrupt the execution
of the algorithm by creating power or clock glitches, illuminating the target with
a laser beam or injecting an electromagnetic �eld to get information. These are
called fault attacks. Attacks of both kinds have been found to a�ect SIKE.

Galbraith et al. discussed in 2016 some attacks based on the leakage of partial
knowledge of the key [11]. In 2017, Gélin and Wesolowski presented a loop-abort
attack by injecting a random fault on in the isogeny computation loop counter
during the computation of the shared key [12]. There already exists countermea-
sures to avoid loop abort attacks, for instance as presented in [22]. The same
year, Ti published a paper about another way to do a fault attack on a static
key variant of SIDH [27]. Koziel et al. [17] proposed a re�ned power analysis on
the three-point Montgomery di�erential ladder during the shared secret compu-
tation and during the isogeny computation. Countermeasures are proposed for
both. In 2018, Koppermann et al. [16] also attacked the shared secret computa-
tion, but with a di�erential power attack on the scalar multiplication during the
kernel generator computation. A countermeasure to such an attack is the ran-
domisation of the projective representations of the points [4]. The latest known
attack is by Zhang et al. [30]: a di�erential power attack and di�erential elec-
tromagnetic attack, also on the scalar multiplication during the isogeny kernel
generator computation. We classify these attacks in di�erent categories as seen
in Table 1 below.

In the implementation of SIKE we can distinguish two phases: a �rst one
that uses only classical elliptic curve cryptography algorithms, where a scalar
multiplications on elliptic curve points is performed, and a second one that
performs isogeny computations and evaluations. We classify attacks depending
on their target, the �rst or the second phase. To the best of our knowledge,
there has not been any experimentally veri�ed attack speci�c to the isogeny
phase, thus we want to investigate whether Ti's 2017 theoretical fault injection

2

Table 1. Classi�cation of known hardware attacks on SIKE depending on their type,
if they are experimentally veri�ed or not, and depending on the part of the algorithm
that is attacked.

Gélin et al., 2017 [12] fault injection simulated isogeny
Koziel et al., 2017 [17] side-channel attack theoretical scalar multiplication, isogeny

Ti, 2017 [27] fault injection theoretical isogeny
Koppermann et al., 2018 [16] side-channel attack experimentally veri�ed scalar multiplication

Zhang et al., 2020 [30] side-channel attack experimentally veri�ed scalar multiplication

attack [27] is exploitable in practice. The goal of this attack is to recover the
static key, which is a private key used more than once over a long period of time.
After reviewing some background information about isogenies and SIDH/SIKE,
we will present Ti's attack. Then, we shall describe the experimental setups used
in our investigation to �nally analyse possible countermeasures.

Contributions We provide the �rst experimental realization of Ti's 2017 the-
oretical fault attack by carrying out an attack campaign in a laboratory. We
induced faults on the SIKE round 3 implementation optimized for ARM64 on a
system on chip (SoC) with four cortex A53 cores by using electromagnetic fault
injection. This provides an experimental understanding of the threat on SIKE
caused by Ti's attack. At last, we propose two new countermeasures against this
attack: one concerns the protocol and the other is a veri�cation at the end of
the public key generation.

2 Preliminaries

In this section we are going to present a few mathematical and cryptographic
notions, in particular, the SIDH cryptosystem and the key encapsulation in SIKE
that will be of use when analysing Yan Bo Ti's attack in Section 3. We shall
start with a primer on isogeny-based cryptography.

2.1 Isogenies between Elliptic Curves

For basic de�nitions concerning elliptic curves and isogenies between elliptic
curves, we refer the reader to [25]. An introduction to isogenies as used in cryp-
tography can be found in [8].

The elliptic curves used in SIKE are represented as Montgomery curves [18].

De�nition 1. Let K be a �nite �eld such that char(K) 6= 2 and A, B ∈ Fp2
such that B(A2 − 4) 6= 0. The Montgomery (elliptic) curve EA,B consists of a
point at in�nity O and the set of points (x, y) ∈ Fp2 such that

By2 = x3 +Ax2 + x.

3

In particular, B = 1 in SIKE.
One advantage of Montgomery curves is to provide algorithms to compute

scalar multiplications more e�ciently [18,7]. Indeed, let us consider the multi-
plication by an integer k on an elliptic curve E:

[k] : E → E

P 7→ P + P + ...+ P︸ ︷︷ ︸
k times

.

The automorphism of E 	 : P 7→ −P can be used to quotient E and thus
get a map x : E → P1 ∼= E/〈	〉. We have x(P) = x(Q) if and only if P = Q or
P = −Q. It is then possible to de�ne an induced multiplication on P1 for all k ∈ Z
such that x(P) 7→ x([k]P). Hence, instead of performing scalar multiplications on
points of the curve, one can use the x-coordinates of the points only. Montgomery
provides more e�cient formulas for point multiplication using the x-coordinates
in. For e�ciency reasons, this coordinate x = X/Z of Montgomery curves is
represented projectively with (X : Z), see [18,7].

As shown in [6], the A coe�cient of a Montgomery curve can be recovered
using three distinct non-zero x-coordinates of points P , Q and R such that
R = P −Q with the following formula (see also algorithm cfpk in [14]):

A =
(1− xPxQ − xPxR − xQxR)2

4xPxQxR
− xP − xQ − xR. (1)

In SIKE, an elliptic curve is encoded by such an x-coordinate triplet.
An invariant can be de�ned for these elliptic curves [7].

De�nition 2. Let E be a Montgomery curve as above. Then the j-invariant of
E is

j(E) =
256(A2 − 3)3

A2 − 4
.

This allows us to create equivalence classes of elliptic curves, see [25, � III.1].

Proposition 1. Two elliptic curves are isomorphic over the algebraic closure
of their de�nition �eld if and only if they have the same j-invariant.

Maps can be de�ned between these equivalence classes. Let E and F be two
elliptic curves de�ned over a �nite �eld K. An isogeny φ between E and F is a
non-trivial group morphism between E and F . We will often use the "morphism
aspect" of this de�nition i.e. that for all points P and Q on E,

φ(P +Q) = φ(P) + φ(Q).

Moreover, we consider in SIKE a special kind of isogenies called separable
isogenies that are uniquely determined by their kernel. This kernel C is necessar-
ily �nite. Knowing C, there are formulas by Vélu [28] showing how to compute
the equation of the target elliptic curve of the isogeny, denoted by E/C. Hence,

4

referring to the kernel of an isogeny amounts to referring to the isogeny itself.
As only separable isogenies appear in SIKE, we de�ne the degree deg(φ) of φ as
the size of its kernel. We shall now de�ne the dual of an isogeny.

De�nition 3 (Dual isogeny [25, � III.6]). Let φ : E → F be an isogeny.

Then there is a unique isogeny φ̂ : F → E called the dual isogeny of φ such that

φ̂ ◦ φ = [deg(φ)]E and φ ◦ φ̂ = [deg(φ)]F .

The dual isogeny has the following properties.

� For all isogenies φ : E → F and ψ : F → G, we have ψ̂ ◦ φ = φ̂ ◦ ψ̂.
� deg(φ̂) = deg(φ)

�
ˆ̂
φ = φ

Having described the necessary mathematical tools, we will now present the
scheme that is at the crux of SIKE.

2.2 The SIDH Key Exchange

The supersingular isogeny Di�e-Hellman (SIDH) key exchange [15] is a Di�e-
Hellman-like key exchange that is a building block of SIKE.

Alice and Bob are two parties who would like to share a key. Let e2 and
e3 be two positive integers that de�ne a prime p such that p = 2e23e3f ± 1, f
being a small cofactor (p is of that form in the SIKE speci�cations [14]). Let
E be a supersingular elliptic curve de�ned over Fp2 . Let P2, Q2 ∈ E[2e2] (i.e.
2e2P2 = 2e2Q2 = O) and P3, Q3 ∈ E[3e3] be bases of these respective torsions,
R2 such that R2 = P2 − Q2 and R3 = P3 − Q3. These parameters are public.
Alice and Bob both have a secret key which is a uniformly distributed random
integer, respectively sk2 ∈ [0, 2e2−1] and sk3 ∈ [0, 3e3−1]. The associated secret
isogenies φA and φB are such that

Ker(φA) = 〈P2 + sk2Q2〉 and Ker(φB) = 〈P3 + sk3Q3〉.

We denote by EA (respectively EB) the target curve of φA (respectively
φB), EAB the target curve of φ′A with kernel 〈φB(P2) + sk2φB(Q2)〉 and EBA
the target curve of φ′B with kernel 〈φA(P3)+sk3φA(Q3)〉. The following diagram
shows how the shared key is constructed.

First, Alice and Bob generate each their private keys, sk2 and sk3. Then,
they compute their public keys, respectively (xφA(P3), xφA(Q3), xφA(R3)) and
(xφB(P2), xφB(Q2), xφB(R2)) and exchange them. At last, they both determine
the j-invariant of EAB or EBA, depending on the party. It can be shown that
EAB and EBA are isomorphic, thus j(EAB) = j(EBA), which is used as shared
key.

Now we shall see how the public keys are computed in the key generation
steps thanks to Algorithm 1 (Algorithm isogenl in [14, � 1.3.6]).

5

E

EB

EA

EBA ' EAB

φA

φ′A

φB φ′B

Fig. 1. The SIDH key exchange [15].

Input : A private key skA.
Output: A public key pkA.

1 xS ← x(P2+sk2Q2) // ladder3pt [14, App. A, Alg. 8]
2 (x1, x2, x3)← (xP3 , xQ3 , xR3) // init_basis4

3 for i from 0 to e2 − 1 // Tree traversal loop
4 do
5 (a) Compute an 2-isogeny
6

φi : Ei → E′

(x, ...) 7→ (fi(x), ...)

7 such that Ker(φi) = 〈2e2−i−1S〉.
8 (b) Ei+1 = E′

9 (c) xs = fi(xS)
10 (d) (x1, x2, x3)← (fi(xx1), fi(xx2), fi(xx3))

11 end
12 Return (x1, x2, x3).
Algorithm 1: SIKE public key computation with 2-isogenies [14, � 1.3.6].

Remark 1. Optimized implementations of SIDH use a slightly more involved
algorithm, performing scalar multiplications and isogeny evaluations according
to a predetermined binary tree topology in the tree traversal loop starting at
Line 3 of Algorithm 1, as described in [14, � 1.3.8]. The choice of algorithm does
not impact the feasibility of Ti's attack.

In the following section, we present key encapsulation in SIKE using the
concepts of SIDH.

2.3 SIKE

SIKE is a key encapsulation mechanism (KEM). A KEM is used to securely
exchange a symmetric key for data encryption using asymmetric cryptography.
Figure 2 shows its di�erent elements. It is composed of three algorithms:

4 https://github.com/microsoft/PQCrypto-SIDH/blob/97c1/src/sidh.c#L10

6

https://github.com/microsoft/PQCrypto-SIDH/blob/97c1/src/sidh.c#L10

1. Keygen generates a pair of long term secret and public keys.
2. Encaps takes as input the public key and outputs a random symmetric key
K and an encapsulation c of said key.

3. Decaps takes as input the secret key, the public key and c and outputs the
symmetric key K.

Keygen

Secret key

generation

Public key

generation

sk

Encaps Decaps

pk
pk

c

sk

K

K

Fig. 2. Description of a Key Encapsulation Mechanism (KEM).

We use the notions of Section 2.2 to explain how the concepts of SIDH are
used in SIKE. In SIKE, an IND-CPA PKE scheme is built using the same oper-
ations as in SIDH, similar to how the "hashed ElGamal" PKE is obtained from
the Di�e�Hellman key exchange. The SIKE IND-CCA KEM is built from the
PKE scheme using a transformation of Hofheinz, Hövelmanns and Kiltz [13]. The
secret key and the public key generation in Keygen are performed exactly as in
SIDH. Encaps and Decaps are based on operations from SIDH but also use hash
functions and XOR operations. An ephemeral scalar and the associated isogeny
are generated in Encaps. This scalar cannot be called "secret" key because it
will be recovered by the other party in Decaps. Each time the parties want to
compute a shared key K, this scalar is generated anew. However, this is not nec-
essarily the case for the key material in Keygen. Ti's attack takes advantage of
this static key, as we will see in the next section. Using this ephemeral scalar and
the public key pk, a shared secret j (a j-invariant) is computed. The "secret"
scalar and a hash of j are then used to compute the symmetric key K and an
encapsulated key c as a ciphertext. In Decaps, the ciphertext is then decrypted
with the secret key to recover K and K is validated by recomputing the "secret"
scalar and the associated isogeny.

Remark 2. Since Round 2 [14], SIKE speci�es two variants, called uncompressed
and compressed. For e�ciency reasons, the roles of 2 and 3 are swapped be-
tween the two: in the uncompressed version, the public key is computed using
3-isogenies, while the ciphertext is computed using 2-isogenies. In the compressed
version, key generation is done by computing 2-isogenies and encapsulation by

7

computing 3-isogenies. The key material used inside the encapsulation is gener-
ated anew at each call of Encaps, while the public key produced by Keygen is
generated once and can be reused for multiple encapsulations.

3 Ti's Theoretical Fault Attack

As seen in Table 1, there are no experimental validations of attacks on SIKE
speci�c to isogenies. Ti's attack imposes few constraints on the faults to inject,
thus it is a good candidate for practical exploitation, even on systems where
controlling the produced faults is di�cult. This is why we decided to tackle Ti's
attack and put it in practice on a modern SoC.

First, we will explain present Ti's attack scenario. The overview of the attack
is described in Figure 3.

Secret key

Public key

generation

Correct public key

Public key

generation

Altered public key

Ti's attack

Recovered secret key

Fig. 3. Schematic representation of Ti's attack scenario.

Attack Scenario We consider an attack scenario where the victim holds a
public-private SIKE key pair, and where the attacker is permitted to retrigger
public key generation from the same secret, injecting a fault to produce an
altered public key (with some probability of success that we shall determine
later). To mount the attack, a single altered public key is su�cient.

In a KEM, Keygen generates a fresh secret key and outputs the public key at
the same time, hence it is a design mistake to enable a regeneration of the public
key. It is however di�cult to ensure that all developers will respect the KEM

8

API and avoid generating more than once a public key from the same secret.
Hence a countermeasure intrinsic to the public key generation would be useful.

Moreover, avoiding secret reuse is simply not possible in a multipartite ex-
change [2] where Bob has to use his secret key to generate multiple triplets of
points to send to Alice and Charlie, for instance. Hence if the attacker injects
a fault during the computation of the triplet Bob wants to send to Alice, they
can still recover a correct triplet of Bob's by intercepting the communication
from Bob to Charlie. Thus a countermeasure intrinsic to public key generation
is strictly necessary for multipartite key exchange (Figure 4).

Elliptic

curve E0

Points PA, QA, RA

Points PB , QB , RB

Points PC , QC , RC

Bob

(φB(P̃A),φB(QA),
φB(RA))

(φB(PC),φB(QC),
φB(RC))

Alice

Charlie

Secret key skB

Fig. 4. Ti's attack in a multipartite key exchange setting.

In Ti's article, the starting curve E0 is de�ned on Fp2 with p = 2e23e3f ± 1
where f is a small cofactor as in Section 2.2. Normally, when the key generation
is not under attack, the images of three �xed public points P3, Q3 and R3 by
the secret isogeny φ are computed to get the public key (line 10 of Algorithm 1).
The attacker will force the computation of the image of a random point by φ.
The result is an altered point φ(P̃3), φ(Q̃3) or φ(R̃3).

Ti uses the following lemma to show that it is possible to recover the secret
key via this point.

Lemma 1. Let p be a prime number such that p = 2e23e3f ± 1, where f is a
small positive integer and e2 and e3 are positive integers such that 2e2 ≈ 3e3 , the
same form as in the SIKE speci�cations [14]. Let E1, E2 and E′ be supersingular
elliptic curves de�ned over Fp2 . Suppose that φ : E1 → E2 is an isogeny of
degree 2e2 with a cylic kernel and let P and Q be generators of E1[2

e2]. For any
X ∈ E1[2

e2], let ψ : E2 → E′ be an isogeny with kernel generated by φ(X). Then
there exists an isogeny θ : E′ → E1 of degree 2ε where ε is a positive integer such
that ε 6 e2 and φ̂ = θ ◦ ψ.

Proof. See [27].

9

Input : φ(P3), φ(Q3) or φ(R3) and
M , an altered point that can be φ(P̃3), φ(Q̃3) or φ(R̃3).

Output: φ̂
1 λ = 3e3f
2 Compute Ae2 , the parameter of the �nal Montgomery curve EAacc

, using
algorithm cfpk of section 1.2.1 in [14].

3 T = λM on Ee2

4 if ord(T) = 2e2 then

5 〈T 〉 = ker(φ̂)
6 else

7 Brute force for θ such that φ̂ = θ ◦ ψ
Algorithm 2: Ti's key recovery algorithm.

This lemma is translated to Algorithm 2. In it, we highlight the case where
the candidate dual isogeny ψ has maximum order, so that θ is the identity map
(Figure 5). The general case is represented in Figure 6.

E0 EA

φ

ψ

Fig. 5. T has maximal order.

E′

E0 EA

φ

θ ψ

Fig. 6. T does not have maximal order.

If the kernel generator T has maximal order, i.e. 2e2 , then the isogeny with
kernel 〈T 〉 has degree 2e2 and is the dual of φ since an isogeny and its dual have
the same degree. If, however, T does not have maximal order, an additional
isogeny θ of degree 2e2−ord(T) will be needed so that θ ◦ ψ is the dual of φ.
Recovering φ knowing the dual is then possible using its de�nition.

Remark 3. What is the size of the search space for θ's kernel? Do note that we
study here a public key generation with a secret isogeny of degree 2e2 . First, to
be able to carry out the attack, we need the altered point to be on E0. Assuming
the altered x-coordinate (recall we are using Montgomery curve arithmetic, see
Section 2) behaves like a random element of Fp2 , the probability that it corre-
sponds to a point X on E0 is approximately 1

2 . Moreover, as E0 is supersingular,
E0(Fp2) ' (Z/(p + 1)Z)2. Hence there is a basis (A,B) of E0(Fp2) such that
A and B are of order p + 1 and 3e3B = S, where S ∈ E0 is the secret kernel
generator of φ and ord(S) = 2e2 . Let X ∈ E0(Fp2) such that X = aA + bB
where a, b ∈ Z/(p + 1)Z. Then T = 3e3φ(X) = a3e3φ(A) + bφ(3e3B) and thus
T = aφ(3e3A) using the de�nition of B. The order of 3e3A is 2e2 , and so the
order of φ(3e3A) is also 2e2 . The order of T is then 2e2−val2(a), where 2val2(a) is
the maximum power of 2 dividing a. The order of T is maximal if val2(a) = 0 i.e.

10

if a is odd. The probability of a being odd is 1
2 . T is of order 2e2−1 if a is even but

not divisible by 4. The probability for this is 1
4 . In the worst case, val2(a) = e2,

and the brute force to compute θ is the longest. But the probability of such an
event is low: only 1

2e2+1 . Hence the probability to have no θ to compute is 1
4 , to

have a θ of degree 2 to compute is 1
8 and the worst case, which corresponds to

a brute force of the dual isogeny, has probability 1
2e2+2 to occur. The expected

value of the search space for θ is then given by
e2∑
i=0

1
2i+1 ·2i = e2+1

2 , which is quite

low. All in all, there is a 50% chance that the attack will fail, a 25% chance that
the attacker will not need to search for θ, a 12.5% chance that he will have to
�nd θ among the isogenies of degree 21 and a 6.25% that he will have to �nd θ
among the isogenies of degree 22, etc... Thus it is clear that the probability for
the attacker to succeed within a reasonable time is close to 50%. Do note that
the reasoning is similar if the attack is performed to �nd a secret 3e3 -isogeny,
and that there is again a 50% chance for the attack to fail and a nearly 50%
chance for it to succeed in a reasonable amount of time. These results are valid
for a fault at line 2 of Algorithm 1. A fault on x1, x2 or x3 after executing line
10 of Algorithm 1 for the i-th time will modify the probability distribution of
val2(ord(T)). Indeed, T will have at most a 25% chance to have order 2e2−i (or
3e3−i, depending on the case): the distribution is the same, but shifted by i on
the val2(ord(T)) axis.

Remark 4. Some implementations of SIKE use compressed public keys (for in-
stance [14]). There are di�erent variants of the compression available, for instance
in [3,5,19,21,29]. We focus on the one presented in [19], which is the one used in
the round 3 submission of SIKE [14]. There are three main steps to compress a
public key:

1. Compute the basis of the 3e3 -torsion of EA.
2. Pull it back to E0 with the dual of the secret isogeny.
3. Compute the coordinates of P3, Q3 and R3 in that basis on E0.

These coordinates are the same as the coordinates of φ(P3), φ(Q3) and φ(R3)
in the 3e3-torsion of EA, and they are the compression of the public key. In this
case, we would have to adapt Ti's attack to compute the image of incorrect
points by the dual instead of images of the basis. Thus we would have to create
a fault during the computation of the image of the basis by the dual. The impact
of the di�erent compression methods on the feasability of the attack should thus
be studied in the future. In the rest of this work, we will focus on the non-
compressed version of SIKE.

Remark 5. Ti's attack is possible on both 2-isogenies and 3-isogenies. In practice,
the attacker will attack 2-isogenies or 3-isogenies depending on what is used in
Keygen. We chose to focus our experiments on the attack of only one type
of isogenies. When altering point initializations with fault injections, an e�ect
can be to uninitialize some words. In the studied SIKE implementation, the
allocated memory space for a point is �rst �lled with zero words. All these zero

11

words are then overwritten by data from constant parameter set coordinates
(init_basis at Line 2 of Algorithm 1). The expected e�ect of fault injection is
to skip an instruction during this overwriting to obtain altered point coordinates.
An overwriting by zero of a zero word has no e�ect thus it is easier to alter points
initialized with few zero words. When looking at the non-compressed SIKE p434
parameter set, one notices that the points P3 and Q3 in the ternary torsion have
more zero words in their coordinates so it is more di�cult to alter these points.
Hence we decided to attack a public key generation with computations of the
images of P3 and Q3 by 2-isogenies, starting by the non-compressed version, with
the goal of attacking the compressed version later.

4 Experimental Setups

Before performing real-life electromagnetic fault attacks, we decided to simulate
these attacks using software only. Indeed, fault injection attacks are long and
complex to carry out [10], thus we chose to validate the attack with a simulation
before the laboratory experiments. There were two steps:

� �rst, we used Sagemath [26] to simulate fault injection and to recover the
secret isogeny with an implementation of Algorithm 2 and

� then we emulated the target in C and injected the fault by debugging, while
recovering the secret with the same Sage implementation of Algorithm 2.

We are going to subsequently describe the second step, as it is the most
realistic simulation of the two, and then the experimental setup for the real-life
fault injection.

4.1 Fault Injection Simulation with C

For that second step, we simulate the fault injection by debugging with
GDB the optimized round 3 ARM64 implementation of SIKE [14] with curve
p434 (non compressed version) using QEMU as an emulator of our target.
The emulator is a tool to study the execution of the ARM64 application
on an Intel processor. We compiled the SIKE sources from the path Addi-
tional_Implementations/ARM64/SIKEp434 in the round 3 SIKE archive with
gcc 7.2.1 and the optimization level 3 [14]5.

First, we programmed a tool to generate the key material, i.e. the private
key and the public key. Our public key generation tool is a simple encapsulation
of the function EphemeralKeyGeneration_A of said ARM64 SIKE implemen-
tation. Then we could perform the fault injection simulation, which consists in
debugging the public key generation program executed by the emulator with
debugger GDB. The input is Alice's secret key. 300 fault attacks are launched
by executing EphemeralKeyGeneration_A and skipping a di�erent instruction

5 The original ARMv8-A software implementation is also available in the SIDH Mi-
crosoft library at https://github.com/microsoft/PQCrypto-SIDH/tree/f43c9f74.

12

https://github.com/microsoft/PQCrypto-SIDH/tree/f43c9f74

for each experiment. We only observed the program's behaviour when skipping
one of the �rst 300 instructions. Indeed, the �instruction skip� fault model is
easy to implement in GDB with the command �set $pc=$pc+4� and is a very
simpli�ed but satisfying model before the implementation of a real attack, as
shown in [9] and [23].

This fault injection simulation was done for two di�erent random secret
keys. Among the 300 instructions that were skipped, 85 are particularly in-
teresting because they are load/store pairs of instructions that copy the coor-
dinates xP3

, xQ3
and xR3

in the accumulator of line 2 of Algorithm 1. They
correspond to the second init_basis function call at the beginning of function
EphemeralKeyGeneration_A in sidh.c6. 28 of these instructions have no im-
pact on the public key when skipped. The 57 remaining instructions modify the
public key when skipped. Out of these 57, 8 instructions yield an x that does not
correspond to a point on the target curve because it is impossible to compute
y. For the 49 other instructions, it is possible to compute y. Table 2 shows the
order of T and the attack successes for these 49 instructions. Recovering the
secret was limited to points T with log2(ord(T)) >= 210 to limit brute force
computations and, as stated in theory in Remark 3, we notice that the obtained
log2(ord(T)) are close to e2. Thus 45 to 48 instructions yield the secret key, and
this shows that di�erent faults enable secret key recovery, and is encouraging for
the set up of a laboratory fault attack campaign.

Table 2. Number of altered instructions during the second call to init_basis yielding
the secret key.

log2(ord(T)) <208 209 210 211 212 213 214 215 216

Instructions yielding T for secret key #1 0 1 0 1 3 4 10 21 9
Instructions yielding secret key #1 / / 0 1 3 4 10 21 9

Instructions yielding T for secret key #2 0 4 0 3 3 2 14 16 7
Instructions yielding secret key #2 / / 0 3 3 2 14 16 7

Sensitive instructions yielding the secret key were also identi�ed outside of
the second call to init_basis. We focused the study on the �rst 300 instruc-
tions of the function EphemeralKeyGeneration_A. 11 additional instructions
were identi�ed after calls to the init_basis functions. A lot of instruction skips
generated altered points that could not be exploited to recover the secret. For
example, altering the points used to compute the secret kernel generates three
altered points in the public key but this alteration of the secret isogeny cannot
be exploited by the attack. Table 3 shows the order of T computed from altered
points. Each instruction skip that yields the secret key generates a unique altered
point. Again, as expected in Remark 3, the obtained log2(ord(T)) are close to
e2.

6 https://github.com/microsoft/PQCrypto-SIDH/blob/f43c9f74/src/sidh.c#L51

13

https://github.com/microsoft/PQCrypto-SIDH/blob/f43c9f74/src/sidh.c#L51

Table 3. Number of altered instructions in the 300 �rst instructions of
EphemeralKeyGeneration_A yielding the secret key.

log2(ord(T)) <208 209 210 211 212 213 214 215 216

Altered point yielding T for secret key #1 1 2 0 1 4 6 19 53 136
Instructions yielding secret key #1 / / 0 1 3 5 12 27 11

Altered point yielding T for secret key #2 1 4 0 4 3 4 31 46 128
Instructions yielding secret key #2 / / 0 3 3 3 19 19 9

4.2 Carrying Out the Fault Injection in a Laboratory

After having shown that it is possible to simulate Ti's attack, we now present an
experimental version. The target is a system on chip (SoC) equipped with four
ARM Cortex-A53 cores and including a Yocto Linux operating system. While it
is di�cult to fault a chosen instruction because of a poorly predictable latency
of execution in SoCs [10], we have seen in Section 3 and with the simulation in
Section 4.1 that we only need to fault the beginning of the key generation and
do not need to choose precisely the time for the fault injection. Thus we can
expect a successful attack on such a target. As seen in Section 3, we speci�cally
target key generation, thus we only take this part of the code from the optimized
version for ARMv8-A of the SIKE round 3 submission, ignoring decapsulation.
We force computations to run on a single CPU of the quad-core, and we �x the
CPU clock to the maximum frequency, i.e. 1.2 GHz. We choose electromagnetic
injection to create faults, because it is relatively cheap, and because it does not
require a complex sample preparation, like removing the circuit packaging. Our
setup for the campaign can be seen in Figure 7.

To launch attacks, the control computer executes a campaign script that
manages the communication with the target and the other devices (target power
supply, oscilloscope, pulse generator and motorized stage). The key generation
implemented on the target has been modi�ed so that the state of a GPIO (general
purpose input/output, here output pin) of the target changes just before the
public key computation. The fault injection is then triggered by the target when
this rising edge appears on the GPIO. The fault is induced by an electromagnetic
disturbance generated with a tension pulse generator. The width in nanoseconds,
the amplitude in Volts and the delay of the pulse, i.e. the time between the rising
edge corresponding to the public key computation and the injection of said pulse
can all be controlled. The tension pulse is then transmitted as an electromagnetic
disturbance to the target through an electromagnetic probe. The probe can be
moved with the motorized stage to �nd the optimal position for fault injection,
that is to say the position where it is indeed possible to modify the execution
of the algorithm and perform our attack. This induces unwanted currents inside
the target. The results of the algorithm computations after injection may be
a�ected and are retrieved and analysed by the computer. In case of application
or kernel crash, the power supply is used to reboot the target.

During our campaign, the probe does not move and the pulse width is set
at 6 ns. This position and the width are propitious for fault injection according

14

Fig. 7. Campaign setup.

to [10]. The amplitude varies from 300 to 360 V with a 20 V step and the delay
between the start of the public key generation and the fault injection varies
from 100 to 600 ns with a 20 ns step. Per such con�guration, 10,000 attempts
are made. Hence 1,040,000 attemps were made in total. The campaign lasted for
4.5 days.

4.3 Analysis

To analyse the results produced by either the simulation or the real fault attack,
we use a Sagemath tool and follow the steps described in Section 3. In the proof
of Ti's attack the order of the candidate dual generator can be maximal or not,
and in the latter case, a brute force is necessary to get a θ isogeny to �go back�
to the starting elliptic curve. To ensure that the computations do not take �too
much time�, i.e. that the number of candidates for θ when performing the brute
force is small, the order of generator T should be as close to the maximum
order, 2e2 , as possible. In that case, the degree of θ (the size of its kernel) will
be small. When computing T and checking its order, we will thus only keep
points that yield generators T with a �nearly� maximum order, higher or equal
to 2e2−6. Assuming that the altered point is on E0 (Remark 3), meaning that
we can compute T , the probability to get a point T with such order is more
than 99%. We then compute a candidate ψ for the dual of the secret isogeny.
Depending on the order of T , we will then determine θ or not, and then we will
compute the images of P3, Q3 and R3 by the reconstructed secret isogeny to get
a reconstructed public key and check that the attack went well. Recovering the
secret scalar associated to this secret isogeny is also possible because we know its

15

kernel point and solving discrete logarithms is easy in the smooth order groups
used by SIDH/SIKE.

4.4 Experimental Results

During the 4.5 days campaign, we obtained among 1,040,000 attempts:

� 8706 attempts producing at least one altered output point (0.84%) i.e. at
least one point whose x-coordinate is di�erent from the corresponding correct
public key coordinate. At this point, we have not yet tested if these points
are on the correct public key curve. Even if our goal is an alteration of the
isogeny input point, other faults might arise and prevent us from recovering
the secret, for example a corrupted secret kernel.

� 1780 attempts yielding the secret key (0.17% of all attempts). This repre-
sents 20.45% of attempts with faulted output point, which is nearly half of
the estimated probability in Section 3. The main explanation for this lower
probability must be that our probability estimation is based on one assump-
tion: the x-coordinate of the input point of the isogeny is faulted. In practice,
we also induced other faults. Table 4 shows log2(ord(T)) with T from the
faulted output point for the 1780 attempts (see line 3 of Algorithm 2). As
anticipated, the order of most of these points is high (Table 6 shows the
number of attempts we ignored because they yielded a point T with an or-
der too small for us to want to continue the attack) and thus, brute force
for θ is fast.

Table 4. Attacks yielding the secret by altering P3, Q3 or R3.

log2(ord(T)) 210 211 212 213 214 215 216

Number of successful attempts with altered φ(P3) 5 6 64 80 115 273 82
Number of successful attempts with altered φ(Q3) 11 14 60 52 188 371 93
Number of successful attempts with altered φ(R3) 4 19 12 10 58 75 219

Table 5. Attacks altering P3, Q3 or R3 and getting ord(T) >= 210 but not yielding
the secret.

log2(ord(T)) 210 211 212 213 214 215 216

Number of unsucessful attempts with altered φ(P3) 0 2 5 30 176 512 2169
Number of unsucessful attempts with altered φ(Q3) 0 2 4 28 83 572 2174
Number of unsucessful attempts with altered φ(R3) 0 2 5 33 82 621 2124

Remark 6. Do note that for each (amplitude, delay) con�guration, we check if
either P , Q or R has been altered. Sometimes, for a given con�guration, more

16

Table 6. Attacks yielding T but its order is too small for us to want to continue the
attack.

log2(ord(T)) 1 206 207 208 209

Number of attempts with altered φ(P3) 155 1 4 0 3
Number of attempts with altered φ(Q3) 350 0 0 5 69
Number of attempts with altered φ(R3) 225 0 0 3 1

than one of these points is altered and matches our condition (yielding the secret,
yielding a T of order greater than 210 but not the secret, yielding a T with an
order strictly smaller than 210). Thus for instance the line for attempts with an
altered φ(P3) matching the chosen condition also includes attempts where two
points including φ(P3) are altered and match it, and attempts where the three
points are altered and match it.

Figure 8 is a heat map representing the percentage of successful attempts i.e.
those that yield Alice's secret key depending on the (delay, amplitude) con�g-
uration. After one campaign, injections of pulses with a 360 V amplitude and
a delay of 440 ns seem to be the best choice to recover the secret key: there
is a 0.62% chance to recover the secret key in this con�guration. Do note that
the maximum amplitude delivered by our pulser is 400 V, and that the number
of reboots increases when approaching that limit, thus slowing the campaign.
There are few con�gurations where there is no chance to recover the secret. This
con�rms than the required accuracy on the induced fault is low and compatible
with practical fault injection.

Fig. 8. Percentage of successful attempts depending on the amplitude and delay.

Remark 7. The reader might wonder why the best success rate is only 0.62%
experimentally while the theoretical success rate of the attack is around 50% as
seen in Remark 3. This is due to the low repeatability of electromagnetic fault

17

injection [10]: a lot of attempts at altering the algorithm's execution does not
induce faults, or at least not in a way that enables us to perform the attack (e.g.
a reboot).

5 Countermeasures

As discussed in Section 3, it is di�cult to make sure that people implementing
the SIKE protocol will adhere to the speci�ed API and avoid computing twice
the public key. Moreover, it is not possible to avoid computing more than one
public key using the same secret in a multipartite setting. Thus we propose a
countermeasure that shall work in this setting too.

Let us consider the round 3 optimized implementation of SIKE. The starting
curve E0 is pushed successively through the isogenies of small degrees (update of
the curve line 8 of Algorithm 1 and Algorithm 3) to be used for the computation
of the kernel generator of the next isogeny (line 7 of Algorithm 1 and Algo-
rithm 3). Let us compute the coe�cient A of this last target elliptic curve. We
call it Ae2 . But we can also compute the coe�cient by using the x-coordinates of
the public key. Let us call the result of this computation Ax1,x2,x3

. If at least one
image of a point di�erent of P3, Q3 and R3 is computed, then the probability to
recover the correct elliptic curve coe�cient using the x-coordinates at the end
will be very low: most of the time, we will have Ax1,x2,x3

6= AeA . Algorithm 3
is a modi�ed version of the public key generation Algorithm 1 with the added
countermeasure.

We would like to know the probability of not detecting a faulted point. Sup-
pose that there is only one faulted point. Then according to Equation (1) in
Section 2.1, A is a polynomial of degree 2 in xP for instance. Hence it has two
roots in Fp2 . One is the correct xP . The probability to get the wrong one is then
1
p2 , as there is only one value that is a root and that is not the correct abscissa.
Looking at the size of p, it is a very low probability.

We implement this countermeasure during the public key generation. While
we have chosen to attack a public key generation with 2-isogenies as explained in
Remark 5 of Section 3, we also propose the variant for 3-isogenies. We implement
the test of line 12 of Algorithm 3 as follows.

� 2-isogenies: we use the computation of the coe�cient Ae2 such that Ae2 =
A
C of the public key curve at the line 5 of algorithm 23 in [14]: (A : C) =

(4A+
24 − 2C24 : C24) in projective coordinates. Even if this coe�cient is

not needed in the public key, its computation is present in SIKE. We take
advantage of this redundancy. Algorithm 10 is used to compute coe�cient
Ax1,x2,x3 using the triplet of x-coordinates of the public key. We want to
check that

(CAx1,x2,x3 : C) = (4A+
24 − 2C24 : C24).

Thus we check that

18

Input : A private key skA.
Output: A public key pkA.

1 xS ← x(PA+skAQA) ; // ladder3pt [14, App. A, Alg. 8]
2 (x1, x2, x3)← (xPB , xQB , xRB) ; // init_basis7

3 for i from 0 to eA − 1 ; // Tree traversal loop
4 do
5 (a) Compute an lA-isogeny
6

φi : Ei → E′

(x, ...) 7→ (fi(x), ...)

7 such that Ker(φi) = 〈leA−i−1
A S〉.

8 b) Ei+1 = E′

9 c) xS = fi(xS)
10 d) (x1, x2, x3)← (fi(x1), fi(x2), fi(x3))

11 end
// Ae2 can be retrieved after the computation of Ee2 .

12 Ax1,x2,x3 = get_A(x1, x2, x3)
13 if Ax1,x2,x3 6= Ae2 then
14 return 0 // fault detected, do not return the altered public key
15 else
16 return pkA = (x1, x2, x3).// return the public key
17 end

Algorithm 3: SIKE public key computation with countermeasure.

4A+
24 = Ax1,x2,x3

C24 + 2C24.

If not, then we detect a problem during the public key generation.
This costs four additions, one multiplication and one call to get_A.

� 3-isogenies: we use the computation of the coe�cient Ae2 such that Ae2 =
A
C of the public key curve at the line 5 of algorithm 24 in [14]: (A : C) =

(2(A+
24+A

−
24) : (A

+
24−A

−
24)) in projective coordinates. Even if this coe�cient

is not needed in the public key, its computation is present in SIKE. Algorithm
10 is used to compute coe�cient Ax1,x2,x3 using the triplet of x-coordinates
of the public key. We want to check that

(CAx1,x2,x3
: C) = (2(A+

24 +A−24) : (A
+
24 −A

−
24)).

Thus we check that

(A+
24 −A

−
24)Ax1,x2,x3

= 2(A+
24 +A−24).

If not, then we detect a problem during the public key generation.
This costs three additions and substractions, one multiplication and one call
to get_A.

7 https://github.com/microsoft/PQCrypto-SIDH/blob/97c1/src/sidh.c#L10

19

https://github.com/microsoft/PQCrypto-SIDH/blob/97c1/src/sidh.c#L10

A call to get_A costs seven additions and subtractions, one squaring, four
multiplications and one inversion. It is possible to get rid of the inversion and
obtain a faster veri�cation by manipulating the equality we check using the
formula of A in Equation (1) as computed by get_A.

The number of operations to add to implement the countermeasure is very
small compared to the number of operations necessary to generate the pub-
lic key, thus the overhead is low. We added the countermeasure in function
EphemeralKeyGeneration_B8 of the implementation described in Section 4 with
ARMv8-A assembly optimizations and then mesured on a Cortex-A53 a 1.5%
overhead during the public key generation with 3-isogenies. In our naive im-
plementation of the countermeasure, we use the existing get_A function which
includes a division to obtain the a�ne representation of the A coe�cient. This
normalization is not necessary to compare the two coe�cients. The overhead
could thus be further reduced by avoiding the division. The veri�cation can also
be done during and after the tree traversal step of Algorithm 3. But considering
the probability to detect a fault at the end of the public key computation, it
does not seem necessary.

6 Conclusion

We have shown that Ti's 2017 fault injection attack on the key generation step
of SIKE is exploitable in practice though electromagnetic injection on a SoC.
While it is complex to generate faults on a SoC, Ti's attack does not require a
high precision when performing it, which simpli�es the experimental veri�cation
in a laboratory. In a 4.5 days campaign, 0.17% of the attack con�gurations
yielded the secret key for at least one of the altered public key points, which
corresponds to around one con�guration that enables us to recover the secret
key every 3 minutes and 18 seconds. This attack requires both the real public key
of Alice and an altered version. While the attack scenario is unlikely to apply to
implementations of SIKE that respect the KEM API, it occurs in a multipartite
setting. We thus propose a countermeasure which consists in computing the
public key curve coe�cient by using two di�erent methods. This countermeasure
has both a small overhead and a high probability to detect a fault. It remains
to be seen if the attack is still feasible when the public keys are compressed.

References

1. Alagic, G., Alperin-Sheri�, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J., Liu,
Y.K., Miller, C., Moody, D., Peralta, R., et al.: Status report on the second round
of the NIST post-quantum cryptography standardization process. US Department
of Commerce, NIST (2020)

2. Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: Practical supersingular
isogeny group key agreement. IACR Cryptol. ePrint Arch. 2019, 330 (2019)

8 https://github.com/microsoft/PQCrypto-SIDH/blob/97c1/src/sidh.c/#L123

20

https://github.com/microsoft/PQCrypto-SIDH/blob/97c1/src/sidh.c/#L123

3. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression
for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International
Workshop on ASIA Public-Key Cryptography. pp. 1�10 (2016)

4. Coron, J.S.: Resistance against di�erential power analysis for elliptic curve cryp-
tosystems. In: International workshop on cryptographic hardware and embedded
systems. pp. 292�302. Springer (1999)

5. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: E�cient com-
pression of SIDH public keys. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 679�706. Springer (2017)

6. Costello, C., Longa, P., Naehrig, M.: E�cient algorithms for Supersingular Isogeny
Di�e-Hellman. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptology �
CRYPTO 2016: 36th Annual International Cryptology Conference. pp. 572�601.
Springer Berlin Heidelberg (2016). https://doi.org/doi:10.1007/978-3-662-53018-
4_21

7. Costello, C., Smith, B.: Montgomery curves and their arithmetic. Journal of Cryp-
tographic Engineering 8(3), 227�240 (2018)

8. De Feo, L.: Mathematics of isogeny based cryptography. CoRR abs/1711.04062
(2017), http://arxiv.org/abs/1711.04062

9. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: 2012
Workshop on Fault Diagnosis and Tolerance in Cryptography. pp. 7�15. IEEE
(2012)

10. Gaine, C., Aboulkassimi, D., Pontié, S., Nikolovski, J.P., Dutertre, J.M.: Elec-
tromagnetic fault injection as a new forensic approach for SoCs. In: 2020 IEEE
International Workshop on Information Forensics and Security (WIFS). pp. 1�6.
IEEE (2020)

11. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular
isogeny cryptosystems. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 63�91. Springer (2016)

12. Gélin, A., Wesolowski, B.: Loop-abort faults on supersingular isogeny cryptosys-
tems. In: International Workshop on Post-Quantum Cryptography. pp. 93�106.
Springer (2017)

13. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. In: Theory of Cryptography Conference. pp. 341�371.
Springer (2017)

14. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B.,
Hutchinson, A., Jalali, A., Karabina, K., Koziel, B., LaMacchia, B., Longa, P.,
Naehrig, M., Pereira, G., Renes, J., Soukharev, V., Urbanik, D.: SIKE: supersin-
gular isogeny key encapsulation (2020), https://sike.org/files/SIDH-spec.pdf

15. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: International Workshop on Post-Quantum Cryptogra-
phy. pp. 19�34. Springer (2011)

16. Koppermann, P., Pop, E., Heyszl, J., Sigl, G.: 18 seconds to key exchange: Limi-
tations of supersingular isogeny Di�e-Hellman on embedded devices. IACR Cryp-
tology ePrint Archive 2018, 932 (2018)

17. Koziel, B., Azarderakhsh, R., Jao, D.: Side-channel attacks on quantum-resistant
supersingular isogeny Di�e-Hellman. In: International Conference on Selected Ar-
eas in Cryptography. pp. 64�81. Springer (2017)

18. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Mathematics of computation 48(177), 243�264 (1987)

21

https://doi.org/doi:10.1007/978-3-662-53018-4_21
https://doi.org/doi:10.1007/978-3-662-53018-4_21
http://arxiv.org/abs/1711.04062
https://sike.org/files/SIDH-spec.pdf

19. Naehrig, M., Renes, J.: Dual isogenies and their application to public-key compres-
sion for isogeny-based cryptography. In: International Conference on the Theory
and Application of Cryptology and Information Security. pp. 243�272. Springer
(2019)

20. NIST: Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process (Dec 2016), https:

//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf

21. Pereira, G.C., Doliskani, J., Jao, D.: x-only point addition formula and faster tor-
sion basis generation in compressed SIKE. IACR Cryptol. ePrint Arch. 2020, 431
(2020)

22. Proy, J., Heydemann, K., Berzati, A., Cohen, A.: Compiler-assisted loop hardening
against fault attacks. ACM Transactions on Architecture and Code Optimization
(TACO) 14(4), 1�25 (2017)

23. Proy, J., Heydemann, K., Majeric, F., Cohen, A., Berzati, A.: Studying EM
pulse e�ects on superscalar microarchitectures at isa level. arXiv preprint
arXiv:1903.02623 (2019)

24. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124�134. IEEE (1994)

25. Silverman, J.H.: The arithmetic of elliptic curves, vol. 106. Springer Science &
Business Media (2009)

26. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
8.1) (2017), https://www.sagemath.org

27. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: International
Workshop on Post-Quantum Cryptography. pp. 107�122. Springer (2017)

28. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273,
305�347 (1971)

29. Zanon, G.H., Simplicio, M.A., Pereira, G.C., Doliskani, J., Barreto, P.S.: Faster
isogeny-based compressed key agreement. In: International Conference on Post-
Quantum Cryptography. pp. 248�268. Springer (2018)

30. Zhang, F., Yang, B., Dong, X., Guilley, S., Liu, Z., He, W., Zhang, F., Ren,
K.: Side-channel analysis and countermeasure design on ARM-based quantum-
resistant SIKE. IEEE Transactions on Computers 69(11), 1681�1693 (2020)

22

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

	Resistance of Isogeny-Based Cryptographic Implementations to a Fault Attack

